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Foreword

Welcome to the 11th International Conference on Database Systems for Ad-
vanced Applications (DASFAA 2006)! This year’s conference was held in Sin-
gapore where DASFAA was last held in 1997. DASFAA 2006 continued the
tradition of providing an international forum for technical discussion among re-
searchers, developers and users of database systems from academia, business and
industry. Organizing DASFAA 2006 was a very rewarding experience—it gave
me an excellent opportunity to work with many fine colleagues both within and
outside Singapore.

I would like to thank Kian-Lee Tan and Vilas Wuwongse for putting together
a world-class Program Committee. The committee worked very hard to bring a
high-quality technical program to the conference. DASFAA 2006 also included
an industrial track. David Cheung and Hwee Hwa Pang co-chaired this track
and set up a separate committee to assess the quality of the submitted papers.

The conference also featured three tutorials: (1) Database Watermarking
by Radu Sion, (2) Multilingual Database Systems by Jayant R. Haritsa, and
(3) Video Sequence Indexing and Query Processing by Xiaofang Zhou, and a
panel session. I would like to thank Ee Peng Lim and Krithi Ramamritham for
their effort in organizing the tutorials and panel, respectively.

This conference would not have been possible without the support of many
other colleagues: Tok-Wang Ling (Honorary Conference Chair), Mong Li Lee
(Publication Chair), Masatoshi Yoshikawa (Publicity Chair), Sourav Saha
Bhowmick and Anthony Kum Hoe Tung (Local Arrangement Co-chairs), Chee
Yong Chan (Treasurer), and Mrs. Siew Foong Ho (Secretary).

Finally, I greatly appreciated the support of the National University of Sin-
gapore (NUS) and the Nanyang Technological University. In particular, I was
happy that DASFAA 2006 participated in the NUS Centennial Celebrations as
an event organized by the NUS academic staff.

April 2006 Beng Chin Ooi
Conference Chair



Message from the Program Co-chairs

The 11th International Conference on Database Systems for Advanced Applica-
tions (DASFAA 2006) was held in Singapore from April 12 to 15, 2006. As an
annual international conference in the Pacific Asia region, DASFAA 2006 kept
the traditions of the conference in promoting research and development activi-
ties in the database field among participants and their institutions from Pacific
Asia and the rest of the world.

This year, the conference received 188 (research-track) submissions from over
28 different countries. The submitted papers were rigorously reviewed by the
Program Committee members, and 46 full papers and 16 short papers were
accepted for presentation.

The papers chosen for presentation spanned a wide range of topics, rang-
ing from well-established areas such as XML, spatial and temporal databases,
and data mining to upcoming areas like sensor networks, uncertainty and data
streams, and subsequence matching and bioinformatics. The combination of se-
lected papers made the conference interesting and provided the basis for discus-
sion and exchange of ideas and for future development.

The conference was privileged to have keynote addresses delivered by Alon
Y. Halevy of Google Inc. and University of Washington, Krithi Ramamritham
of IIT Bombay, and Christian Jensen of Aalborg University. They provided in-
sightful thoughts into various research challenges on information management,
dissemination of dynamic data and geo-enabled mobile services.

DASFAA 2006 also included an industrial track with the aim of drawing indus-
try practitioners and the academic community to share practical experience and
real-world challenges that require research attention, and to advance the state of
the art by integrating new techniques and research results in novel systems and
applications. This track included a paper on automating the maintenance of the
statistics for query optimization in Sybase ASE 15.0, a paper on automatically
finding a mapping that transforms an XML schema into a relational counter-
part that is tuned to the application workload, and a third paper that treats
the problem of missing data from sensors deployed to monitor elderly dementia
patients.

The research and industrial tracks were both supported by their respective
Technical Program Committees. Both teams comprised renowned and hardwork-
ing researchers from around the world. Their invaluable efforts in reviewing the
papers ensured the high quality of the accepted papers. We would like to take
this opportunity to thank them again!

The technical program also consisted of three tutorials and a panel session.
The three tutorials featured were Database Watermarking by Radu Sion, Mul-
tilingual Database Systems by Jayant R. Haritsa, and Video Sequence Indexing
and Query Processing by Xiaofang Zhou.



VIII Preface

The conference would not have been a success without the help and con-
tributions of many individuals, and we would like to acknowledge them here:
Tok-Wang Ling, Beng Chin Ooi, Ee Peng Lim, Krithi Ramamritham, Masatoshi
Yoshikawa, Mong Li Lee, Sourav Saha Bhowmick, Anthony Kum Hoe Tung,
Chee Yong Chan and Mrs. Ho Siew Foong. Finally, we would like to thank the
session chairs, tutorial speakers, authors and participants, who contributed to
making this conference a success.

April 2006 Kian-Lee Tan and Vilas Wuwongse
Research Track Co-chairs

David Cheung and Hwee Hwa Pang
Industrial Track Co-chairs
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Nerius Tradǐsauskas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Efficient Maintenance of Ephemeral Data
Albrecht Schmidt, Christian S. Jensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Data Mining

Mining Outliers in Spatial Networks
Wen Jin, Yuelong Jiang, Weining Qian, Anthony K.H. Tung . . . . . . . . 156

Summarizing Frequent Patterns Using Profiles
Gao Cong, Bin Cui, Yingxin Li, Zonghong Zhang . . . . . . . . . . . . . . . . . . 171

Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary
Regions and Thoroughfares in Object Mobility Databases

Florian Verhein, Sanjay Chawla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

XML Compression and Indexing

Document Decomposition for XML Compression: A Heuristic Approach
Byron Choi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

An Efficient Co-operative Framework for Multi-query Processing over
Compressed XML Data

Juzhen He, Wilfred Ng, Xiaoling Wang, Aoying Zhou . . . . . . . . . . . . . . . 218

Adaptively Indexing Dynamic XML
Damien K. Fisher, Raymond K. Wong . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

XPath Query Evaluation

TwigStackList¬: A Holistic Twig Join Algorithm for Twig Query with
Not-Predicates on XML Data

Tian Yu, Tok Wang Ling, Jiaheng Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



Table of Contents XV

Efficient Schemes of Executing Star Operators in XPath Query
Expressions

Young Chul Park, Je Hyun Cho, Geum Ji Cha, Peter Scheuermann . . 264

Exploit Sequencing to Accelerate XML Twig Query Answering
Qian Qian, Jianhua Feng, Jianyong Wang, Lizhu Zhou . . . . . . . . . . . . . 279

Uncertainty and Streams

Probabilistic Similarity Join on Uncertain Data
Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz . . . . 295

Handling Uncertainty and Ignorance in Databases: A Rule to Combine
Dependent Data

Sunil Choenni, Henk Ernst Blok, Erik Leertouwer . . . . . . . . . . . . . . . . . . 310

PMJoin: Optimizing Distributed Multi-way Stream Joins by Stream
Partitioning

Yongluan Zhou, Ying Yan, Feng Yu, Aoying Zhou . . . . . . . . . . . . . . . . . 325

Peer-to-Peer and Distributed Networks

Clustering Peers Based on Contents for Efficient Similarity Search
Yanfeng Shu, Bei Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Optimizing Peer Virtualization and Load Balancing
Wanxia Xie, Shamkant B. Navathe, Sushil K. Prasad, David Fisher,
Yong Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Distributed Network Querying with Bounded Approximate Caching
Badrish Chandramouli, Jun Yang, Amin Vahdat . . . . . . . . . . . . . . . . . . . 374

Performance and Authentication

Type-Level Access Pattern View: A Technique for Enhancing
Prefetching Performance

Wook-Shin Han, Woong-Kee Loh, Kyu-Young Whang . . . . . . . . . . . . . . 389

The Dynamic Sweep Scheme Using Slack Time in the Zoned Disk
Sungchae Lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Authentication of Outsourced Databases Using Signature Aggregation
and Chaining

Maithili Narasimha, Gene Tsudik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420



XVI Table of Contents

XML Query Processing

A Practitioner’s Approach to Normalizing XQuery Expressions
Ki-Hoon Lee, Seo-Young Kim, Euijong Whang, Jae-Gil Lee . . . . . . . . . 437

Hidden Conditioned Homomorphism for XPath Fragment Containment
Yuguo Liao, Jianhua Feng, Yong Zhang, Lizhu Zhou . . . . . . . . . . . . . . . 454

Efficient Query Processing for Streamed XML Fragments
Huan Huo, Guoren Wang, Xiaoyun Hui, Rui Zhou, Bo Ning,
Chuan Xiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

OLAP and Data Warehouse

An Efficient Algorithm for Computing Range-Groupby Queries
Young-Koo Lee, Woong-Kee Loh, Yang-Sae Moon,
Kyu-Young Whang, Il-Yeol Song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Ag-Tree: A Novel Structure for Range Queries in Data Warehouse
Environments

Yaokai Feng, Akifumi Makinouchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

An XML Document Warehouse Model
Vicky Nassis, Tharam S. Dillon, Rajugan Rajagopalapillai,
Wenny Rahayu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Web and Web Services

An Evaluation of Concurrency Control Protocols for Web Services
Oriented E-Commerce

Hong-Ren Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

COWES: Clustering Web Users Based on Historical Web Sessions
Ling Chen, Sourav S. Bhowmick, Jinyan Li . . . . . . . . . . . . . . . . . . . . . . . 541

A Precise Metric for Measuring How Much Web Pages Change
Shin Young Kwon, Sang Ho Lee, Sung Jin Kim . . . . . . . . . . . . . . . . . . . . 557

Query Processing

Similarity Search in Transaction Databases with a Two-Level Bounding
Mechanism

Jo-Chun Chuang, Chung-Wen Cho, Arbee L.P. Chen . . . . . . . . . . . . . . . 572



Table of Contents XVII

RAF: An Activation Framework for Refining Similarity Queries Using
Learning Techniques

Yiming Ma, Sharad Mehrotra, Dawit Yimam Seid, Qi Zhong . . . . . . . . 587

Query Optimization for a Graph Database with Visual Queries
Greg Butler, Guang Wang, Yue Wang, Liqian Zou . . . . . . . . . . . . . . . . . 602

Design: Modeling and Dependencies

A Four Dimensional Petri Net Approach for Workflow Management
Ping-Yu Hsu, Yen-Liang Chen, Yuan-Bin Chang . . . . . . . . . . . . . . . . . . . 617

Containment of Conjunctive Queries over Conceptual Schemata
Andrea Cal̀ı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

Data Tables with Similarity Relations: Functional Dependencies,
Complete Rules and Non-redundant Bases
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Most data management scenarios today rarely have a situation in which all the data
that needs to be managed can fit nicely into a conventional relational DBMS, or into
any other single data model or system. Instead, we see a set of loosely connected data
sources, typically with the following recurring challenges:

– Users want be able to search the entire collection without having knowledge of
individual sources, their schemas or interfaces. In some cases, they merely want to
know where the information exists as a starting point to further exploration.

– An organization may want to enforce certain rules, integrity constraints, or conven-
tions (e.g., on naming entities) across the entire collection, or track flow and lineage
between systems. Furthermore, the organization needs to create a coherent external
view of the data.

– The administrators may want to impose a single “support system” in terms of recov-
ery, availability, and redundancy, as well as uniform security and access controls.

– Users and administrators need to manage the evolution of the data, both in terms of
content and schemas, in particular as new data sources get added (e.g., as a result
of mergers or new partnerships).

The aforementioned data management challenges are ubiquitous – they arise in enter-
prises (large or small), coordination within and across government agencies, data analy-
sis in large science-related research or development projects, management
of libraries (digital or otherwise), information collection and dissemination in the bat-
tlefield, search on one’s PC desktop or other personal devices, coordination between
devices in a “smart” home, and in search for structured objects on the web. In these
scenarios, there is some well-understood scope and control across the data and sys-
tems within these organizations, and hence one can identify a space of data, which, if
managed in a principled way, will offer significant benefits to the organization.

We recently introduced dataspaces [1] as a new abstraction for data management
for such scenarios, and proposed the development of DataSpace Support Platforms
(DSSPs) as an important agenda item for the data management field. In a nutshell, a
DSSP offers a suite of interrelated services and guarantees that enables an application
developer to focus on the specific challenges of an application, rather than the recur-
ring challenges involved in dealing consistently and efficiently with large amounts of
interrelated but disparately managed data.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 1–2, 2006.
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Traditionally, data integration and data exchange systems have aimed to offer many
of the purported services of dataspace systems. In fact, DSSPs can be viewed as the
next step in the evolution of data integration architectures, but are distinct from current
data integration systems in the following way. Data integration systems require seman-
tic integration before any services can be provided. Hence, although there is not a single
schema to which all the data conforms, the system knows the precise relationships be-
tween the terms used in each schema. As a result, significant upfront effort is required
in order to set up a data integration system.

Dataspace management is not a data integration approach; rather, it is more of a
data co-existence approach. The goal of DSSPs is to provide base functionality over
all data sources, regardless of how integrated they are. For example, a DSSP can pro-
vide keyword search over all of the data sources it contains, similar to the way that
existing desktop search systems. When more sophisticated operations are required,
such as relational-style query processing, data mining, over certain sources, then ad-
ditional effort can be applied to more closely integrate those sources, in an incremental,
“pay-as-you-go” fashion. Furthermore, as we perform more integration tasks, we ex-
pect the cost of integration to decrease. Similarly, along the administrative dimension,
initially a DSSP can only provide weaker guarantees of consistency and durability. As
stronger guarantees are desired, more effort can be put into making agreements among
the various owners of data sources, and opening up certain interfaces (e.g., for commit
protocols).

To summarize, the distinguishing properties of dataspace systems are the following:

– A DSSP must deal with data and applications in a wide variety of formats accessible
through many systems with different interfaces. A DSSP is required to manage all
the data in the dataspace rather than leaving some out, as with DBMSs.

– Although a DSSP offers an integrated means of searching, querying, updating, and
administering the dataspace, often the same data may also be accessible and mod-
ifiable through an interface native to the system hosting the data. Thus, unlike a
DBMS, a DSSP is not in full control of its data.

– Queries to a DSSP may offer varying levels of service, and in some cases may return
best-effort or approximate answers. For example, when individual data sources are
unavailable, a DSSP may be capable of producing the best results it can, using the
data accessible to it at the time of the query.

– A DSSP should offer the tools to create tighter integration of data in the space as
necessary.
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The Internet and the Web are increasingly used to disseminate fast changing data such 
as sensor data, traffic and weather information, stock prices, sports scores, and even 
health monitoring information. These data items are highly dynamic, i.e., the data 
changes continuously and rapidly, streamed in real-time, i.e., new data can be viewed 
as being appended to the old or historical data, and aperiodic, i.e., the time between 
the updates and the value of the updates are not known a priori. Increasingly, users are 
interested in monitoring such data for online decision making. To provide users with 
dynamic, interactive, and personalized experiences, websites are relying on dynamic 
content generation applications, which build Web pages on the fly based on the run-time 
state of the website and the user session on the site. These applications make use of 
database backends.  But, these benefits come at a cost, each request for a dynamic page 
requires computation as well as communication across multiple components inside the 
data dissemination and information processing infrastructure.  

Consider the following scenario. 

A company involved in developing IT enabled services responds to Request For pro-
posals (RFPs). Often RFPs are brought to its attention by customers, sometimes 
through word of mouth. Won't it be convenient if the posting of a relevant RFP at a 
(potential) customer's website is automatically brought to the attention of the  
appropriate business unit or group within company? Our work  is motivated by such 
needs -- the need to constantly track and monitor the dynamics of information sources 
-- some of which are identified through historical access patterns, others by monitor-
ing potentially useful sites judiciously. Also, often a company responding to RFPs is 
looking to bolster its case by citing completed projects where the relevant skillsets 
have been demonstrated. The needed information can be retrieved by maintaining a 
knowledge repository and setting the following query that continuously sends  
up-to-date information, as the knowledge base gets updated, to the proposal writer(s). 

CQ RFP_tracker:  

   SELECT project_name, contact_info 

   FROM RFP_DB 

   WHERE skill_set_required  ��available_skills 

Such a knowledge repository can be seen as an aggregator of data from specific dy-
namic sources. As another example, consider a user who wants to track a portfolio of 
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stocks, in different (brokerage) accounts. He or she might be using a third party data 
aggregator which provides a unified view of financial information of interest by peri-
odically obtaining information from multiple independent sources. 

These examples reflect applications which make use of information that experience 
rapid and unpredictable changes for on-line decision making in time critical or value 
critical environments.  The growth of the Internet as well as Intranets has made the 
problem of managing and disseminating such dynamic data both interesting and 
challenging. Resource limitations at a source of dynamic data or within the 
dissemination infrastructure will limit the number of users that can be served directly 
by the source. As user load on a site increases, the computation and communication 
costs can result in significant delays, leading to poor scalability and availability of 
dynamic data. Solutions needed to mitigate these problems involve techniques from 
multiple domains: 

• WWW and the internet -- caching, replication, dynamic page generation tech-
niques, edge servers; 

• Distributed systems -- replication, load balancing, distribution of data;  
• Networking -- content distribution networks, application level multicasting, 

peer-to-peer networks; and 
• Databases -- active, real-time databases, caching. 

There is a lot of excitement about this topic if the papers in conferences related to all 
the above areas are any indication. As part of our work, we have contributed to this 
excitement,  but many questions remain. In this keynote talk, we will discuss the fol-
lowing issues, focusing on the open problems (see reference for details): 

Specification of user QoS needs 
The focus in many applications such as traffic monitoring, network fault management, 
etc., has been on the dissemination of important events as opposed to data, and on the 
execution of continuous queries.  There are several alternative ways in which these 
can be expressed; Event-condition-action rules have been used for situation monitor-
ing, profiles have been proposed for retrieving data or changes from the web and 
other sources, and continuous SQL-like queries have been used for processing  
dynamic data. In spite of the communication and computation overheads being  
non-negligible, the system should provide temporally coherent responses to queries 
over distributed data. So, in addition to specifying the queries, users’ QoS should also 
be formulated to quantify the required coherency in the responses. 

Caching-based approaches 
Caching and replicating are widely used approaches to mitigate the performance de-
gradations due to content distribution and delivery. But, unless updates to the data are 
carefully disseminated from sources to caches (to keep them coherent with the 
sources), the communication and computation overheads involved can lead to further 
losses of coherence in the results of queries executed over dynamic data. 

Content Distribution Networks (CDNs) for dynamic data 
Resource limitations at a source of dynamic data will limit the number of users that 
can be served directly by the source. A natural solution to this is to have CDNs for 
Dynamic Data, formed by a set of repositories which replicate the source data and 
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serve it to geographically closer users. Services like Akamai and IBM’s edge server 
technology are exemplars of such networks of repositories, which aim to provide 
better services by shifting most of the work to the edge of the network (closer to the 
end users). Although such systems scale quite well, when the data is changing rapidly, 
the quality of service at a repository farther from the data source will deteriorate. In 
general, replication can reduce the load on the sources, but replication of time-varying 
data introduces new challenges.  Unless updates to the data are carefully disseminated 
from sources to repositories (to keep them coherent with the sources), the communi-
cation and computation overheads involved can result in delays as well as scalability, 
further contributing to loss of data coherence. 

Change detection and monitoring 
This is a critical requirement for many dynamic data intensive applications. Timely 
dissemination of changes to interested information sources is especially critical as 
periodic pull by humans (current usage) is a waste of resources. Algorithms for de-
tecting changes to the contents of HTML and XML pages have been developed and 
used in many systems. In general, it is important for the change tracking procedure to 
be adaptive. Rather than having a periodic fetching of pages, the time of next fetch 
needs to be determined depending on the observed trend of changes in fetched pages. 
This would further reduce the amount of resources consumed for tracking and  
monitoring. 

While discussing solutions to the above topics, we will make connections to those 
from peer-to-peer systems, stream processing, as well as sensor networks. 
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Abstract. We are witnessing the emergence of a global infrastructure that en-
ables the widespread deployment of geo-enabled, mobile services in practice. At
the same time, the research community has also paid increasing attention to data
management aspects of mobile services. This paper offers me an opportunity to
characterize this research area and to describe some of their challenges and pit-
falls, and it affords me an opportunity to look back and reflect upon some of the
general challenges we face as researchers. I hope that my views and experiences
as expressed in this paper may enable others to challenge their own views about
this exciting research area and about how to best carry out their research in their
own unique contexts.

1 Introduction

Driven in large part by rapid and sustained advances in key computing and communica-
tion hardware technologies, an infrastructure is emerging that contains vast quantities
of interconnected computing and sensory devices.

Notably, we are witnessing continued improvements in the capabilities of consumer
electronics such as mobile phones, personal digital assistants, personal computers, cam-
eras, mp3 players, watches, navigation systems, and driver assistance systems. The per-
formance and performance/price ratios associated with key technologies utilized by
such systems and devices continue to increase quite rapidly.

Geo-positioning is also becoming increasingly available. For example, network as-
sisted GPS promises to eliminate the excessive power consumption of GPS receivers,
thus rendering GPS practical for outdoor, battery powered devices. The first satellite of
the Galileo positioning system has already been launched, and Galileo is expected to
be operational in 2010 [20]. Galileo will offer better positioning than does GPS with
respect to several aspects, including the accuracy, penetration, and time to fix [1]. For
example, the best-case accuracy (without the use of ground stations) of Galileo is 45 cm
as opposed to 2 m for GPS. Next generation GPS will also offer better positioning, and
Galileo and GPS are expected to be interoperable.

Further, the trend is towards the ability of consumer electronics devices to commu-
nicate with one another and their becoming Internet-worked.

This emerging infrastructure has the potential for enabling entirely new, geo-enabled
applications and services that were either not relevant or of little use in fixed desktop
computing settings.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 6–19, 2006.
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The range of possible applications and services is virtually limitless. For example, it
includes traffic and transportation related services such as “fleet” management, includ-
ing emergency vehicle dispatching and hazardous cargo and traffic offender tracking;
road-pricing where payment is dependent on where, when, and how much a vehicle
drives; other “metered” services, such as insurance and parking. It includes services
that warn drivers about accidents, slow-moving vehicles, and icy and slippery road con-
ditions on the road ahead. It also includes a wider range of safety-related services, such
as services that track senile senior citizens, tourists traveling in potentially dangerous
environments, and prisoners serving time at home. Next, it includes the oft-mentioned
point-of-interest services that identify gas stations, restaurants, hospitals, etc. Finally,
it includes the emerging and challenging area of games and “-tainment” (edu-, info-,
enter-) services. One theme is to move games from taking part in a virtual world be-
hind a small computer screen to taking part in reality. Virtual objects, e.g., treasures (or
caches, cf. geocaching [6]), monsters, and bullets, are given geographical coordinates
along with real, physical objects. This arrangement then enables games that aim to find
treasures, catch or escape monsters, and hit with (virtual!) bullets.

Adopting a data centric view, I believe that by capturing pertinent aspects of reality
in digital form—in semantically rich and appropriately organized structures, and with
powerful update and retrieval techniques available—an ideal foundation for delivering
a wide range of mobile services is obtained.

Members of the database research community are increasingly engaging in research
in this exciting area, for good reasons. Geo-enabled, mobile services have great poten-
tial for being applied throughout society. Data management is a central element of such
services. Further, this area offers ample new challenges to data management.

The remainder of this paper consists of four sections. In the next section, I discuss
several general issues that relate to conducting use-inspired research and that reach
beyond this research area. Section 3 elaborates on the data centric view of geo-enabled,
mobile services espoused above. Then, Sect. 4 presents selected challenges and pitfalls
specific to research within geo-enabled, mobile services. Finally, Sect. 5 summarizes
the paper and points to further readings.

2 Aspects of Conducting Use-Inspired Research

This section considers first the positioning of research activities according to the degrees
to which they are use inspired. Then, the positioning of research activities with respect
to when their results can be expected to find practical application is discussed. Finally,
Sect. 2.3 covers possible sources of inspiration for research ideas.

2.1 Solutions to Real Problems and Fundamental Insights

In his book “Pasteur’s Quadrant,” Donald E. Stokes [18] discusses the traditional di-
chotomy between basic research and applied research. He argues for a new, two-dimen-
sional taxonomy. One dimension distinguishes between research that is use inspired
and research that is not. The other distinguishes between research that yields (or aims
for) fundamental understanding and research that does not. Stokes names the other two
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interesting quadrants after Bohr (fundamental insight, not use inspired) and Edison (no
fundamental insight, use inspired). He gracefully leaves the last quadrant unnamed.

Our different research activities may be categorized according to Stokes’ concepts.
In particular, we may position our activities with respect to how use inspired they are.
At the one extreme, we find application development. Here, we may well have a re-
quirements specification that details what it takes to meet users’ needs. At the other
extreme, we typically find mathematical works that simply aim to solve open problems,
e.g., to establish new complexity bounds for theoretical problems.

Much research in the database area—certainly in relation to the specific area con-
sidered in this paper—belongs in-between these two extremes. On the one hand, we do
not base our work on articulated requirements specifications from real applications. On
the other hand, we do tend to state practical concerns as motivation for our research.

Both extremes have merit, as do positions in-between these two. However, there are
also dangers associated with in-between positions. In particular, when aiming for in-
between positions, we run the risk of neither meeting any real needs nor solving any
fundamental problems, thus ending up in the unnamed quadrant. Some years ago, I
discussed this issue with a senior researcher. He told me that when he reviews papers,
he is happy with a paper if it is able to simply point to one real application where its
contribution is useful. At first, I thought that these were low stakes. I have since realized
that this is not the case. It can actually be quite hard to identify such an application.
A single paper often represents only one step towards a contribution that may have
practical applications.

If we simply list, as an afterthought, specific applications in the motivational part
of the introduction to a paper when the research is being written up, the results are
often not convincing, and we run the risk of fooling ourselves. I believe that some of
our research activities may benefit from us spending more time thinking about their
positioning with respect to (specific or classes of) applications.

2.2 Timing

In many of our research activities, we aim for results that may eventually find applica-
tion in practice. For this research, it seems to make sense for us to consider early on
when we expect the results to be applied and then to formulate expectations to the state
of reality as of that future time. The point is that the research results should apply to
that reality.

It is of course not possible to accurately predict the state of reality, or even the aspects
of reality that may be most relevant for our research, in, say, five or ten years from now.
However, I still advocate that we spend a bit of time in formulating some expectations.
The alternative would be to work totally in the dark.

One starting point is to extrapolate technology trends. Moore’s Law effectively states
that processor speeds double every 2 years (the numbers of a transistors on a chip dou-
bles every 2 years) [8]. This self-fulfilling prophecy was put forward by Intel co-founder
Gordon Moore in the mid 1960s, and it has roughly held true for four decades. Similar
statements, with shorter doubling times, may be made for disk capacities and computer
network bandwidths.
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Let us consider what I term the Bicycle Analogy: How fast will a bicyclist be able
to go if Moore’s Law applied? Making the reasonable assumptions that the bicyclist
is able to travel at 30 km/h originally and that the speed doubles every 2 years for 40
years, the current speed is 31,457,280 km/h!

This analogy illustrates several points: First, it illustrates my view that quantita-
tive advances in hardware technologies are very important drivers of the research in
software technologies. They have a profound impact on the software research agenda.
(Qualitative advances, e.g., in the form of new types of sensors, are also important.)
Second, sustained, exponential improvements such as these are dramatic and difficult
to imagine. Indeed, they are counter-intuitive—we are simply not used to such rates of
improvements in our daily lives. So, even if we have heard about exponential improve-
ments, they are not natural to us.

I still remember how thrilled I was when, in 1991, I was able to get an external disk
for my Mac. This disk was heavier than my current laptop, it sounded like a jet plane
when it was turned on, and its capacity was less than 20 MB! At that time, if someone
had told me about today’s disks, or that I could get, e.g., a Secure Digital memory card
that weighs 2 grams, uses very little power, and has a capacity of 2 GB, I am not sure
that I would have believed it or acted wholeheartedly upon it in my research.

Third, the humans are the constant parts of the equation. While we perhaps think
we are getting a lot smarter as the years go by, the improvements are negligible in
comparison to the technology improvements.

Jim Gray’s DBLP listing [5] has a significant concentration of papers that concern
technology trends and is a good starting point for continued studies.

However, just because something is technically possible, this does not mean that that
something is being deployed in practice. If we simply adopt a very technological focus,
we may end up with overly optimistic predictions. Many technological possibilities do
not materialize in practice, or do so only much later than possible. For example, third-
generation mobile telephony has been technically possible for quite a few years, but is
only now being deployed in many parts of the world.

People and enterprises are often conservative. The availability of existing infrastruc-
tures, or legacy systems, that to a large extent are capable of meeting needs block the
deployment of new technologies. For new technologies to actually be deployed, a plau-
sible business case must exist.

Incidentally, one big difference between academia and business is the importance
of timing. In academia, it is probably not a disaster if a particular research result finds
application only a few years later than expected. Rather, it is likely to be considered
a success that the result found application at all! In business, where the potential fi-
nancial rewards are higher, timing is of the essence. Once an enterprise has invested in
new technology, that investment needs to generate revenue, so that salaries, etc. can be
paid.

2.3 Inspiration

One important aspect of doing well in research is to work on great research ideas. There
are many approaches to seeking inspiration that may lead to great ideas. Here, I discuss
three.
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A traditional way of getting ideas is to study the body of related work within one’s
area. In any event, it is important to be familiar with past, related work. One reason is that
research results have little value if they are not new. Another is that it is important to build
on past results where possible. By reading the literature, it is possible to get great ideas.
However, this approach may also have a tendency to foster research activities and results
that are closely related to existing activities and results. What has already been done had
a tendency to define the “universe,” and it is difficult to step well outside this universe.

For example, the research literature contains several dozen proposals for temporal
data models and query languages. It seems that as everybody in the temporal database
community read the many interesting papers about data models and query languages,
they had to also study these subjects and also had to propose their own. As more and
more proposals accumulated, it became increasingly harder to invent new and interest-
ing proposals. And at some point, it probably became more constructive to study other
problems.

The second approach to seeking inspiration is to interact with entrepreneurs. While
researchers are constantly on the lookout for interesting problems to work on and thus
thrive on problems, entrepreneurs thrive on solutions—they have plenty of problems.

During my interactions with entrepreneurs—e.g., via participation in advisory
boards or boards of directors for technology start-ups, via industrial collaborations in
research projects, and via participation in industry associations—many of my “great”
ideas have been shot down as either not a “real” problem (because there is an easy 80%
solution that does the job) or not an “important” problem (because there are many, more
pressing problems).

While entrepreneurs have their own agendas and can be quite strong minded, they
offer a different perspective. They serve as a filter that helps eliminate bad ideas and
prioritize the remaining ones. In my experience, this has a positive effect on relevance
and impact.

The third approach is to obtain inspiration from domain experts. One of the problems
with relying solely on the first approach is that the research literature is generally quite
abstract when it comes to the requirements of real problems. In contrast, domain experts
have much richer views of problems and requirements. By interacting with domain
experts, it becomes possible to “see” problems that would otherwise have remained
invisible. For example, I have benefited from interacting with traffic researchers. This
way, I have learned about problems that I would otherwise not have imagined.

3 Geo-Enabled Mobile Services

This section first elaborates on the data centric view of mobile services as formulated in
the introduction. It then discusses the various types of content of relevance for mobile
services, including business content (e.g., point-of-interest data), generic geo-content,
also termed infrastructure, and user-specific geo-context.

3.1 Overview

The introduction states that “by capturing pertinent aspects of reality in digital form—
in semantically rich and appropriately organized structures, and with powerful update
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and retrieval techniques available—an ideal foundation for delivering a wide range of
mobile services is obtained.” This section elaborates some on this statement.

First, this statement represents a data centric view of mobile services. The idea is that
a service request by a mobile user translates into queries against the database envisioned
in the statement. A key challenge in the delivery of mobile services then becomes a data
processing problem.

The phrase “digital mirror of reality” has been used for describing the envisioned
database. While this concise phrase is certainly to the point, it only partially reflects
the desirable capabilities of this database, which go well beyond simply being a mirror.
In particular, the database may capture past states of reality and one or more perceived
future states, in addition to the current state. In more technical terms, the database sup-
ports the valid-time aspect of data. Further, if accountability is a concern, the database
may include an incorruptible record of its past states. In technical terms, this is called
transaction-time support.

Next, the database and the database management system used may not be a single re-
lational or object-relational database stored in a centralized system. Rather, the database
and system may well be distributed and heterogeneous in a number of respects. For ex-
ample, the data may be physically distributed and may not adhere to the same common
schema or data model. The control and data processing may also be distributed.

3.2 Infrastructure and Business Content

The delivery of geo-enabled mobile services in practice is dependent on relevant con-
tent being available. Examples of content include weather data; traffic condition data,
including information about accidents and congestion; information about sights and at-
tractions, e.g., for tourists; information about hotel rooms, etc. available for booking;
and information about the current locations of populations of service users.

The management of such content includes several aspects. An information technol-
ogy infrastructure, as discussed briefly in the previous section, must exist that is capable
of capturing the content and capable of absorbing the content as it is made available,
while being able simultaneously to make the content available to services.

We may distinguish between two types of content: the geographical infrastructure
itself and all the other, “real” content that may be given geographical references and that
must reference the infrastructure. So-called points of interest exemplify real content.

The geographical infrastructure, or geo-content, concerns the geographical space
“itself,” with hills, lakes, rivers, fjords, etc. It also concerns the road networks for use by
vehicles and the transportation infrastructures for, e.g., pedestrians, trains, aircraft, and
ships. The infrastructure for vehicles is of high interest because users may frequently
be either constrained to, or at least using, this infrastructure.

Geo-content is essential. Users think of the real content as being located in a trans-
portation infrastructure, and they access the content via the infrastructure. For example,
the location of a point of interest is typically given in terms of the road along which it
is located, and directions for how to reach the location are given in terms of the trans-
portation infrastructure.

For the delivery of a range of geo-enabled mobile services, it is particularly impor-
tant that a representation of the road infrastructure is available that supports multiple
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functions, including content capture; content update and querying, including route
planning and way finding; and user display. This representation may be composed of
several constituent representations [11].

It is common practice to specify the location of some content relative to the nearest
kilometer post along a specific road. For example, the entry to a new parking area may
be indicated by a road, a kilometer post on that road, and an offset. One representation,
using linear referencing, is used in connection with the capture of such content.

A weighted, directed-graph representation may also be used that represents a quite
abstract view of an infrastructure. This representation ignores geographical detail, but
preserves the topology, and it may be used for connectivity-type queries, such as route
guidance and way finding.

Next, a geo-representation is also needed that captures the geographical coordinates
of the road infrastructure. With this representation, it is possible to map a location given
in terms of geographical coordinates, e.g., from GPS receivers or point-on-a-map-and-
click interfaces, to a location in the infrastructure. Finally, these three representations
must be integrated.

All the real content encompasses any content that may reference, directly or indi-
rectly, the geographical infrastructure. A museum, a store, or a movie theatre may have
both a set of coordinates and a location in the road network. This type of content is
open-ended and extremely voluminous. For example, it may include listings of movies
currently running in the movie theatre, it may include seat availability information for
the different shows, and it may include reviews of the movies. Often, the real content is
the primary interest of the users.

Content is generally dynamic. This applies to road networks, where road construction
and accidents change the characteristics of the networks with varying degrees of perma-
nence. Other content is also dynamic. Examples abound. New stores open and existing
stores relocate or close. The opening hours of a facility may change. The program of a
movie theater changes. The sales available in a store change. This dynamicity of content
implies that a representation of content must be designed to accommodate updates.

Content is more or less dynamic. The content that derives from the sampling of the
positions of moving objects belongs at the highly dynamic end of the spectrum. Captur-
ing the present positions, and possibly the past as well as anticipated future positions,
of a large population of mobile users requires special techniques, as discussed next.

3.3 User-Specific Geo-Context—Locations, Destinations, Routes, and
Trajectories

User-specific geo-context is another kind of content. Among such content, the current
position of a service user is the traditional geo-context used in location-based services.

To maintain an up-to-date record of the current position of a service user, we may
envision a scenario where a central server maintains a representation of the user’s move-
ment and where the local client, e.g., a mobile phone, is aware of the server-side repre-
sentation. The client frequently compares its GPS position to the server-side position,
and when the two differ by a threshold slightly smaller than the accuracy required, an
update is issued to the server, which then revises its representation of the client’s move-
ment and sends this new representation to the client [3, 4]. This arrangement, termed
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shared-prediction-based tracking, aims to reduce the number of updates needed in or-
der to main a current position at a given accuracy.

Different representations of a user’s movement result in different rates of update. We
consider several possible representations in turn. First, we may represent the movement
of a user as a constant function, i.e., as a point. With this representation, an update is
needed every time the user has moved a (Euclidean) distance equal to the threshold
away from the previous position. This is a simple representation, and it may be useful
when the user is barely moving or is moving erratically within an area that is small in
comparison to the area given by the threshold used.

Second, we may represent the movement by a linear function, i.e., by a vector. When
the user exceeds the threshold, the user sends the current GPS location and the current
speed and direction (which GPS receivers also provide) to the server. The server then
uses this information to predict the user’s to-be-current positions.

Third, we may utilize the infrastructure in the representation of a user’s movement.
This requires that we are able to locate the user with respect to the infrastructure. One
possibility is to assume that the user is moving at constant speed along the road on which
the user is currently located. We may use the GPS speed as the constant speed, and we
may assume that the user stops when reaching the end of the current road segment.
Depending on the lengths of the segments, this representation can be expected to be
better or worse than the vector representation. However, for realistic segments, this
representation has the potential for outperforming the vector representation.

Next, we may use the route of the user in place of the segments. Folklore has it that
most humans who travel do so towards a known destination. Most often, we do not
move around aimlessly. Further, being creatures of habit, and perhaps for maximum
efficiency, we tend to follow routes we have previously followed. Therefore, it is a
good assumption that we are frequently able to predict correctly the route on which
a service user travels. Using the correct route in place of a road segment means that
the number of updates needed to maintain a user’s position with the desired accuracy
decreases further. Indeed, updates occur only because of incorrectly predicted speeds—
no updates are caused by incorrectly predicted “locations.” It should also be observed
that if a route is predicted incorrectly, e.g., because the user makes a turn, this does not
lead to a breakdown. Rather, this simply forces an update and a new prediction.

The infrastructures currently available for mobile services support the accumulation
of GPS data from vehicles. Based on this data, it is possible to gradually create usage
patterns for vehicles that consist of the routes traveled by the vehicles along with usage
meta-data, which are temporal patterns that describe for each vehicle and route when
the route is being used by that vehicle [2]. For example, a pattern may specify that a
route is being used in the morning on weekdays. The resulting route and destination
data may subsequently be used in services. By also attaching travel speeds to routes, we
obtain trajectories, which are routes “lifted” into the time dimension [7].

4 Pitfalls and Specific Recommendations

This section presents six recommendations for conducting research. These are in-
tended to apply to the area of geo-enabled, mobile services, but are to varying degrees
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applicable also to other areas of research. These are all recommendations that I am
trying to follow myself, with the hope that my research is going to benefit.

4.1 Perceived Reality

For application-oriented research, estimate the time of application and formu-
late expectations to the reality as of that time; then design for that reality.

This recommendation was discussed in an abstract setting in Sect. 2.2. My different re-
search activities1 have quite different use horizons. For example, my research on track-
ing (e.g., [3, 4]) is applicable here and now, and is expect to remain applicable for the
foreseeable future. For this research activity, we take care to only make assumptions
that are met by current infrastructures. Assumptions concern the available computing
and storage capabilities of mobile terminals, the available communication technologies,
the available positioning technologies, the available digital road networks, and existing
legislation.

Towards the other extreme, I expect that much of my research on the indexing of the
positions of moving objects (e.g., [12, 14, 15, 16, 17]) is only applicable in the longer
term. For disk-based indexing to be of interest, the sets of data items to be indexed must
be much larger than the data sets seen today. For indexes that consider the current states
of objects, the data sets should probably contain positions of hundreds of thousands
of objects, while for indexes that consider the entire lifetimes of objects, data sets that
concern thousands or tens of thousands of objects suffice to render disk-based indexing
relevant.

This line of research is more speculative than the research on tracking, and it is
also somewhat more removed from specific applications. Some of the results may not
offer the final answers, but may serve as inspiration for further work. Also, although
this research is generally cast in the setting of indexing of moving object, it might be
that the results will be applied in other settings, e.g., settings with low-dimensional,
continuous variables.

4.2 Architectural Setting

Ensure that at least one appropriate architectural setting exists or may be
envisioned for the research contribution.

For some research, it is important to be specific about the architectural assumptions
underlying the research. For other research, it may be sufficient to ensure that an ap-
propriate architectural setting exists or can be envisioned. And for yet other research,
architectural settings may not be an important concern.

In particular, for research that is expected to have practical application in the short
term, the architectural setting is likely to be a concern. In keeping with this, the research
I have conducted with my colleagues on tracking and also route acquisitioning and pro-
visioning [2] is fairly explicit about architecture, and attempts have been made to ensure

1 I will generally concern myself with my own research, to avoid making bold statements about
the research of others.
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that the assumptions about the possible application contexts are reasonable. In particu-
lar, we believe that the contributions are applicable in current application contexts, e.g.,
existing server-side systems, existing mobile terminals that use GPS for positioning
and for GPRS data communication, and existing digital road networks. To justify these
claims, we have built and demonstrated proof-of-concept prototype implementations.

Considering next the research on the indexing of moving objects, which is less di-
rectly applicable in practice and only in the longer term, the issue seems to be to ensure
that architectural settings will indeed exist at the time when the various proposed in-
dexes become widely applicable.

One point here is that it appears unrealistic to assume that the many indexes for mov-
ing objects will find their way into conventional object-relational database management
systems. Other areas of data management and computer science research are also quite
prolific when it comes to the invention of new indexes, so these observations apply also
to those other areas. We may instead assume that the indexes may be applied in more
componentized and open data management architectures.

4.3 Composability

Invent solutions for composable functionality.

When research on query processing in relation to moving objects first took off, the ef-
ficient processing of many basic types of queries had yet to be explored in the new
moving-object settings. Examples included one-time and continuous range queries,
nearest-neighbor queries, and reverse nearest-neighbor queries, to name but a few.

As techniques for the processing of these basic types of queries accumulate, it is
natural that attention shifts to as yet unexplored or lightly explored types of queries. A
potential pitfall is that we start producing highly optimized solutions to very specialized
types of queries. This path is not advisable, as the prospects of these solutions finding
practical applications are likely to decrease with the degree of specialization of the
functionality.

To appreciate the point, consider SQL and the relational algebra as examples: We
should avoid following the path where we invent highly efficient algorithms for in-
creasingly complex SQL queries. Rather, we should focus on developing efficient al-
gorithms for the relational algebra operators in terms of which the SQL queries may
be expressed. At some point, query optimization should take over from efficient, stand-
alone algorithms.

4.4 Versatility and Robustness

Prioritize versatile and robust solutions over specialized and brittle, although
possibly highly performant, solutions.

One lesson to be learned from current, commercial data management technology and
existing applications is that versatile and robust solutions have better chances of finding
practical use than do very specialized ones, even if these exhibit very high performance
in some cases. The objective of a query optimizer is quite modest: it should avoid the
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clearly inefficient ways of computing a query and identify one good way of executing
the query. (Even meeting this objective can be a challenge.)

In the area of data processing for moving objects, the parameter space—the number
of parameters and parameter settings that characterize a data processing workload—
is very large. One consequence of this is that there is “room” for many solutions that
offer superior performance for certain settings, but may be clearly inefficient for other
settings.

The recommendation is that we try to aim for solutions that are versatile in terms of
the functionality they offer and that are robust in terms of the settings. A solution for
which there exist other solutions so that for every possible parameter setting, at least
one of these other solutions has twice the performance may still be preferable if it is
much more robust than its competitors.

One concern here is that is seems to be much easier to produce an experimental
study that demonstrates the merits of a highly performant, but possibly brittle, solution
than a study that demonstrates the merits of a robust solution with performance that is
dominated by existing solutions.

4.5 Context

Design query processing techniques that exploit the entire context.

Mobile services are delivered to devices that are typically without (qwerty) keyboards
and that have only small screens. Further, a service may be expected to be delivered in
situations where the main focus of attention of its user is not the service, but rather that
of, e.g., navigating safely in traffic. For these reasons, it is much more important than in
a desktop computing situation that the user receives only the relevant information and
service, with as little interaction with the system as possible. One approach to obtaining
these qualities is to make the mobile services aware of the user’s context, as covered in
Sects. 3.2 and 3.3. Another benefit of taking the entire context into account is that better
functionality can be provided.

The user’s current location is one possible geo-context, and the user’s destination is
another. Yet another is the route that takes the user from the current location to the des-
tination. Also, the trajectory that takes the user to the destination is a possible context.

Routes are interesting for at least two reasons. First, as also discussed in Sect. 3.3,
mobile users typically travel towards destinations. A user often, or typically, follows
the same route when going from one location to another. For example, a user typically
travels along the same route from home to work.

Second, routes are significant as context for a range of services. For example, a ser-
vice that knows the route of a user may alert the user about travel conditions, e.g.,
congestion and accidents, on the route ahead, while not bothering the user with con-
ditions that do not relate to the user’s route. As another example, routes may be used
when users request the locations of “nearby” points of interest.

Another type of geo-context is the infrastructure, e.g., the transportation infrastruc-
ture, into which the users are embedded.

When we design query processing techniques, I recommend that we try to use as
arguments all the context that we can reasonably expect to have available. So if we can
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assume to know the likely route of a moving vehicle, we may suggest restaurants or gas
stations to the driver that are near to the expected route, rather than merely to the driver’s
current location, which is the best a service can do if it ignores the route. And, utilizing
knowledge of the road network, we can use network distances as opposed to Euclidean
distances in our calculations, and we can augment the answers with distances, detour
distances, and suggested routes to the points of interest returned.

4.6 Queries and Updates

Pay attention to both query performance and update performance.

Many indexing and query processing techniques for geographical data were originally
developed for largely static data. For example, R-trees do not contend well with work-
loads with frequent updates.

In contrast, mobile-service application scenarios exist that are characterized by fre-
quent position updates. This puts focus on techniques that are capable of supporting
workloads consisting of frequent updates as well as queries, and it puts focus on studies
of the trade-off between query performance and update performance.

Updates of moving-object positions correspond to the sampling of continuous, po-
sition-valued variables. One implication of this is that our record of the position of a
moving object is inaccurate. Different services may tolerate different inaccuracies. For
example, a localized-weather service may tolerate a relatively high degree of inaccu-
racy without this affecting the functionality of the service, while a navigation service is
dependent on more accurate positions.

An obvious approach to taking advantage of the different accuracy tolerances of
different services is to perform updates only when needed to maintain the accuracies
needed (cf. Sect. 3.3). Indexing and query processing techniques should be able to ex-
ploit this approach to updates.

By forming predictions of the future movements of the objects, the numbers of up-
dates can be further reduced. Indexing techniques for moving objects that represent the
current and near-future positions of the objects as linear functions from time to points
in space predict that the objects move in linear fashion. Techniques that represent ob-
ject positions as points in space predict that the objects do not move. One study of the
movements of vehicles [3, 4] shows that constant prediction leads to almost three times
as many updates as does linear prediction for a range of reasonable accuracies.

5 Summary

Based on my own research experience and with a focus on my research in the area
of geo-enabled mobile services, this paper first presents some of my general thoughts
about conducting use-inspired research. Following a data centric characterization of
geo-enabled mobile services and the content of relevance to such services, the paper
presents six recommendations for future work in mobile services.

Although I try to maintain a portfolio of research activities that range from ones with
practical applicability in the short term to ones that are more speculative and that may
only have indirect applications in the long term, the paper mainly concerns research
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with intended applications in the near and medium terms. Thus, those who conduct
research in an abstract setting that is unrelated to perceived applications may not find
the paper relevant.

It is important to realize that there is no single best approach to obtaining good
research results. I hope that the thoughts presented in this paper can inspire others to
possibly adjust the approaches they favor, so that they avoid detours and dead ends in
their research and instead are able to identify direct routes to even better results.

For those who are interested in introductions to the general area covered in this paper,
the recent books by Voisard and Schiller [19] and Güting and Schneider [7] come highly
recommended. Reaching beyond data management, the first offers a broad coverage of
location-based services, while the second is devoted specifically to data management for
moving objects. Also, two recent special issues [9, 10] of the IEEE Data Engineering
Bulletin are good starting points for those interested in doing research in indexing and
query processing for moving objects.
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Abstract. To process aggregation queries issued through different sen-
sors as access points in sensor networks, existing algorithms handle
queries independently and perform in-network aggregation only at the
query time. As a result of ad-hoc and independent execution of queries,
no partial result is sharable and reusable among the queries. Conse-
quently, scarce sensor network resources can be easily overconsumed,
particularly, those sensors commonly accessed by queries. In this paper,
we address this issue by examining strategies to maintain Materialized
In-Network Views (MINVs) that pre-compute and store commonly used
aggregation results in the sensor network. With MINVs, aggregated
sensed results for some spatial regions are available and sharable to
queries. Thus, the number of sensor accesses is greatly reduced. Through
simulations, we validate the effectiveness of proposed strategies.

1 Introduction

Sensor network applications are often interested in the sensed data in ceratin
geographical regions (typically in form of spatial windows) rather than on some
specific sensors. Examples of such applications include pollution monitoring and
city road traffic control. Through sensor networks, those environmental data
(i.e., pollution and traffic) are tracked and made available for querying. Due
to the expensive energy cost of communication in wireless sensor networks, a
summary of readings (i.e., aggregated readings) is preferred over a collection
of all individual sensor readings. This kind of queries that collect aggregated
readings from sensors within a geographical area is called spatial aggregation
query. In such queries, aggregate functions such as sum, count, average, max and
min are frequently used. Example queries include: “What is the average pollution
index value in the 10-meter space surrounding me?” and “How many available
parking slots in the car park?”.

In-network aggregation has been studied in sensor database projects (for ex-
ample, Cougar [1] and TinyDB [2]). These works focus on the construction and
optimization of a routing tree, an ad-hoc network topology over which query
results are aggregated and routed toward the root where the result is collected.
However, the design of these works focuses only on a single query. For a large-
scale sensor network, multiple queries may be issued from different locations with
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sensors close to the users serving as access points . With existing techniques, in-
dividual queries can be processed by forming independent routing trees with
access points as the roots. Due to independent topologies, the aggregated results
cannot be naturally shared with and reused by other queries. The scarce sensor
resources (in particular, the battery power) are therefore easily overconsumed.
Thus, the lifetime of a sensor network (or a certain portion of network) is quickly
shortened when a large number of queries are issued.

Sharing results of multiple aggregation queries and optimizing the query per-
formance presents some technical challenges that must be faced. An indepen-
dent executing query does not take other queries into consideration. Therefore,
it is difficult to (1) determine what partial aggregated result of a query will be
reusable (if any) by other queries; (2) decide which sensors to store sharable
results for later access; and (3) make other queries aware of the availability of
the stored query results. Moreover, processing on-demand queries issued from
arbitrary sensors is already a challenging issue.

In this paper, we address these challenges by maintaining Materialized
In-Network Views (MINVs) in the sensor networks. By identifying a set of
frequently-used sensor readings at the planning stage, a MINV can be defined to
store an aggregated result of readings from the set of sensors in support for pro-
cessing queries at the run time. Obviously, the deployment of MINVs has several
advantages. First, the study of query compatibility in multiple query optimiza-
tions is reduced to the matching between the view and the queries. A query can
take full advantage of the view if the aggregation required by the query is the
same as the view. Thus, multiple queries can be supported through the view.
Second, the views are distributed in the sensor network, so it does not overload
any single sensor and it does not require any super sensor (i.e., a more powerful
sensor) for data storage or processing. Queries are executed by traversing sensors
in the network to collect readings, either the raw data or aggregated results from
the views, based on the real requirements.

The rest of the paper is organized as follows. Section 2 describes the system
model our proposals are based on and reviews related work. Section 3 details
the proposed schemes to support multiple spatial aggregation queries. Section 4
evaluates the impact of different factors on the performance through simulation.
Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we first describe the characteristics of sensor networks and our
assumptions. Then, we discuss spatial aggregation queries followed by the review
of some approaches in data dissemination reported in literature.

2.1 System Model and Assumptions

We consider the sensor network formed by homogeneous and stationary sensors
as shown in Fig. 1(a) where dots represent sensors. We assume that sensors
are densely and uniformly distributed in a geographical area. Sensors have four
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basic capabilities: (1) sensing, (2) storage, (3) computation, and (4) wireless
communication. Sensors can sense and collect its readings, and serve as storage
for its own collected readings and a partial content of a MINV. Computation
enables some query processing tasks and wireless communication enables a sensor
to relay messages from one sensor to its neighbors. All sensors are considered
identical in terms of processing power, memory size, radio transmission coverage
and energy. No task or data is sent to a specific super sensor for storage or
processing. All sensors either operate independently or collaborate with others.
We further assume the sensors are location-aware (i.e., each sensor obtains its
geographical location) and time synchronized, (i.e., each sensor obtains the global
clock) through GPS or other positioning techniques [3, 4].

As many well-known research in sensor data routing such as GAF [5] and
data dissemination such as TTDD [6] and Comb-needle [7], we model the sensor
network as a grid. We define the side length of a grid bound by R/

√
5 with R the

transmission range of each sensor based on GAF [5]. Each cell is uniquely iden-
tified by a grid coordinate (x,y). For convenience, we refer to the cell at (x,y) as
grid(x,y). We assume the cell side length is at most R/

√
5, therefore the signal of

a sensor in a cell is conservatively reachable to other sensors in adjacent cells. To
be specific, a message from a sensor located in grid(x, y) can be received by all
other sensors within the same cell and neighboring cells (above, below, left and
right) can also hear the message, but not sensors in diagonally adjacent cells. For
simplicity, each cell is assumed to have only one sensor located at the center of
grid(x, y) and denoted by sx,y. Fig. 1(b) shows a logical presentation of the grid-
structured sensor network. Further, we indicate a number in each cell as the read-
ing of a corresponding sensor located inside the cell. Based on a grid-structured
sensor network, we focus on the processing of spatial aggregation queries.

2.2 Spatial Aggregation Queries

Without loss of generality, we assume that each sensor maintains data in the
following form: 〈readings, loc〉. Based on the grid structured sensor network,
our spatial aggregation query is expressed in an SQL-like syntax as exemplified
in the following:
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SELECT AGG(readings) FROM SensorNetwork
WHERE loc IN 〈[x1, x2], [y1, y2]〉;

This expression means collecting (AGG(readings)), aggregated readings from
sensors in a logical relation, SensorNetwork, whose locations (loc) are within a
region specified by 〈[x1, x2], [y1, y2]〉 where x1, x2, y1 and y2 are the grid co-
ordinates. Referring to the Fig. 1(a), two aggregation queries, denoted by Q1
and Q2, are issued at two different sensors (called access points) to aggregate
readings received at all the sensors within the specified spatial window. Later,
the query results are routed back to the user via the corresponding access points.

2.3 Related Work

A number of ongoing research projects focus on guiding the sensors to dissem-
inate their measurements to interested users. In general, those works can be
grouped in three major categories, namely, pure push, pure pull and hybrid ap-
proaches. They are briefly reviewed as follows.

Pure Push Approaches. Pure push approaches proactively propagate readings
from individual sensors assuming that queries located in different parts of the
sensor network may be interested in their readings. This approach is suitable
when multiple queries are scattered in the network and their locations are not
known in advance. Example push approaches include flooding, SPIN [8] and
TTDD [6].

Pure Pull Approach. In pure pull approach, sensors are silent unless a request
arrives. Queries play an active role to traverse the network to collect readings.
After having been triggered by a query, interested sensors deliver their readings
toward an access point (also called sink point) where the query is issued. Example
pull approaches include directed diffusion [9], TAG [10] and Cougar [1].

Hybrid Push and Pull Approach. Hybrid approaches combine the advan-
tages of both push and pull approaches. These approaches are composed of two
steps. First, sensors push their readings to collection points determined by dis-
semination algorithms. Second, from collection points, queries pull the readings
depending on requirements. Several distributed approaches are proposed such as
geographic hash-tables (GHTs) [11], DIM [12] and Comb-needle [7].

Our approaches proposed in this paper are also hybrid approaches, but are
very different from existing work. First, we consider multiple queries with more
complicated aggregation, which have not been considered in sensor networks.
Second, we assume each sensor can serve as an access point and queries can be
issued at any access point.

3 Materialized In-Network View

Motivated by the needs of sharing query results for multiple queries, we examine
the use of MINVs to support multiple spatial aggregation queries. The material-
ized view has been widely used in data warehouse and OLAP applications [13] to
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improve the query response time. It computes aggregated values among a collec-
tion of disk resident operational data and stores the results as database views on
disks. When a query is issued, the partial results of interested views are retrieved
to ease query computation. We employ the similar idea in the context of sensor
networks.

However, techniques designed for manipulating materialized views in a cen-
tralized database system cannot be directly applied to sensor networks due to
the constraints of sensor networks. First, wireless communication is very energy
expensive. Thus, both the message size and quantity need to be minimized. Sec-
ond, each sensor has only a limited amount of memory and therefore a MINV
needs to be distributed among sensors. Third, in-network view maintenance tech-
nique, rather than central approaches, are applied to keep the size of messages
(intermediate view change) transferred among sensors compact.

Based upon the above factors, we propose three different approaches, namely,
full scanning, replication cluster, and prefix sum, for managing a MINV and
process spatial aggregation queries. Full scanning does not maintain any view.
Replication cluster, as its name suggests, maintains a view of a pre-defined cluster
and replicates the view to all the nodes inside the cluster. Prefix sum, good for
supporting range sum queries, allows sensors to maintain cumulated readings
over a range of sensors [13].

For the sake of simplicity, the following discussion focuses on the aggregation
function, sum. Thus, a query accumulates sensor readings within a specified
spatial window 〈[x1, x2], [y1, y2]〉. A given sum-aggregation query Q is to retrieve∑x2

i=x1

∑y2
j=y1

r(si,j), with r(si,j) the reading received from a sensor si,j . Let
us revisit the query Q1 depicted in Fig. 1(b). The specified spatial window is
〈[1, 3], [1, 3]〉 and the corresponding sum is 28 (= 2+1+5+4+2+3+3+2+6).

3.1 Full Scanning

Full scanning is a pure pull approach. It maintains no view and serves as our
baseline algorithm. Every query has to traverse all sensors within the query
window to collect and aggregate readings. Initially, a query is routed from an
access point to the closest sensor, named originating node, on the boundary of
the spatial window. The query traversal follows two sorts of paths, namely, border
path and interior paths. The border path runs along the window boundary and
readings are recorded from encountered nodes until the originating node is met
again. The interior paths are linear paths horizontally or vertically crossing the
window. Employing both border and interior paths has the following advantages:
(1) They ensure a complete coverage (and traversal) of all sensors in the window.
(2) Parallel traversal of border path and interior paths improves response time.
(3) The originating node where the scanning ends is the closest sensor to the
access point; facilitating the efficient final result delivery.

The detailed description of scanning process of Q1 is illustrated in Fig. 2.
Initiated at the access point (4, 0), Q1 is first routed to the originating node
(3, 1) and traverses the border path in the clockwise direction. At (2, 1), Q1
finds a row of nodes ((2, 1) through (2, 3)) not yet visited and forks a child query
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Q′
1 to traverse along the interior path to collect the reading of the sensor at

(2, 2). Meanwhile, Q1 continues the traversal to (1, 1), (1, 2), and (1, 3). Then, at
(2, 3), the intersection between the interior and border paths, Q1 collects Q′

1’s
result (i.e., 2) and aggregates it with the tentative result (i.e., 20). Thereafter, Q1
carries the aggregated reading of 22 and scans through (3, 3), (3, 2), and (3, 1),
with the final reading of 28. The final answer is sent back to the access point.
Q2 traverses in the same fashion but with a counter-clockwise border path. The
description is omitted for space saving.

For every single query, full scanning takes one pass and visits all required
sensors once. However, sensors within a common query-interested region could
be accessed multiple times. In Fig. 2, sensors within the common region of Q1 and
Q2 (i.e. 〈[1, 2], [1, 3]〉), are accessed twice. Therefore, the saving/sharing among
queries can be obtained if a sharable partial result is available somewhere.

3.2 Replication Cluster

The replication cluster approach is motivated by spatial access locality of queries,
i.e., sensors closely located are very likely to be accessed by a same query. Here,
we assume that certain clusters are determined at the system planning stage
based on analysis of query patterns and other system, network, and application
factors. Further, this cluster information is assumed known to both sensors and
issued queries via pre-programming. Our idea is to let each sensor within a cluster
maintain (and replicate) the view of an entire cluster. Thereafter, a query fully
covering a cluster can obtain the view by visiting any single sensor within the
cluster. Thus, the traversal of all the member nodes of a cluster is replaced by
one sensor visit, significantly reducing the number of sensor accesses.

To maintain the freshness of a view inside a cluster, every sensor knows other
member sensors in the same cluster and they adopt a flooding mechanism to
update the view. When a sensor obtains a new reading, it updates its own replica
of the view and then broadcasts the change (the difference between previous and
new readings for sum semantic) to intermediate neighbor nodes. The broadcast
is marked by a unique tuple 〈IDs, IDb〉, with IDs the ID of the sender sensor



26 K.C.K. Lee et al.

3

7

2

3

4

5

3

4

2

2

1

2

2

1

1

2

6

3

5

3

2

8

3

3

3

0 1 2 3 4

0

1

2

3

4

Q1

3

7

2

3

4

5

3

4

2

2

1

2

2

1

1

2

6

3

5

3

2

8

3

3

3

0 1 2 3 4

0

1

2

3

4

Q2

[13] [16] [13]

x
y

x
y

Fig. 3. Replication cluster

and IDb the ID of the sender’s broadcast. Once neighbor nodes receive the
change, they update their own view replica and rebroadcast the same message.
The flooding-based view update terminates at those nodes outside the cluster.

Fig. 3 shows query processing with replication cluster. Suppose two clusters
are formed, located at 〈[1, 2], [0, 1]〉 and 〈[1, 2], [2, 3]〉. Like full scanning, Q1 is first
routed to node (3, 1) and starts traversal in the clockwise direction. However, a
child query at (2, 1) can be avoided because the sensor at (2, 2) is part of a cluster
fully covered by the query. Thus, it takes only the border path and aggregated
result is 28 (= 2 + 4 + 3 + 13 + 5 + 1). The result is sent back to the access
point. Although Q1 traverses both (1, 3) and (2, 3) (the path annotated by a
dotted line), the query and the partial result are routed through the two sensors
without invoking computation at the application level in sensors. Q2 performs
similarly. Note that the cluster 〈[1, 2], [2, 3]〉 is shared by both Q1 and Q2. Q1
obtains the aggregated result (13) at node (1, 2) while Q2 obtains it at node
(2, 3). The workload of sensors within a cluster is also shared.

The cluster size has an impact on the performance. If the cluster size is rel-
atively large to a query, a query will be less likely to be completely covered by
a cluster; resulting in full scanning. If the cluster size is too small, the saving is
limited since it still needs to fork child queries to scan interior sensors, and the
sharing of aggregated readings is also limited.

3.3 Prefix Sum

The third approach is prefix sum view [13] which accumulates readings through-
out the network. Each sensor maintains a partial cumulated sum of readings. We
present two variants, namely, 1-dimensional (1-D) prefix sum and 2-dimensional
(2-D) prefix sum. They employ the same aggregation concepts but are different
in scopes of aggregation.

1-Dimensional Prefix Sum. With 1-D prefix sum, every sensor, si,j in a sen-
sor network maintains its own reading r(si,j), and a cumulated sum of readings
denoted by Vi,j−1 =

∑j−1
k=0 r(si,k) (or simply Vi,j−1 = r(si,j−1) + Vi,j−2 where

Vi,−1 = 0). Sensor si,j knows the sum of the readings of all the preceding nodes
namely si,0, si,1 · · · si,j−1 in the row i. Fig. 4(a) depicts a sample sensor network



Processing Multiple Aggregation Queries in Geo-Sensor Networks 27

3
(0)
7

(0)

2
(0)
3

(0)
4

(0)

3
(7)
4

(2)
2

(3)
2

(4)

1
(8)
2

(10)

2
(6)
1

(5)
1

(6)

2
(9)
6

(12)
3

(8)
5

(6)
3

(7)

2
(11)

8
(18)

3
(11)

3
(11)

3
(10)

0 1 2 3 4

0

1

2

3

4 Q1

5
(3)

x
y

(a) 1-D prefix sum

0 1 2 3 4

0

1

2

3

4

3

7

2

3

4

3

4

2

2

1

2

2

1

1

2

6

3

5

3

2

8

3

3

3

5
(0)(0)

(0)

(0)(0)

(3)

(0)(0)

(8)

(0)(0)

(9)

(0)(0)

(11)
(0) (3) (8) (9) (11)(3) (8) (9) (11) (13)

(0) (10) (18) (21) (29)
(0) (10) (18) (21) (29)(10) (18) (21) (29) (39)

(0) (12) (24) (29) (40)
(0) (12) (24) (29) (40)(12) (24) (29) (40) (53)

(0) (15) (29) (35) (51)
(0) (15) (29) (35) (51)(15) (29) (35) (51) (67)

(0) (19) (35) (42) (61)

x
y

Q1

(b) 2-D prefix sum

Fig. 4. Linear Access on a Wireless Broadcast Channel

partitioned into 5 rows. In the top row, sensors s0,j keep readings: 3, 5, 1, 2 and
2 and the corresponding cumulated sums V0,j−1 shown in braces: 0, 3, 8, 9 and
11 respectively, with 0 < j ≤ 5.

Instead of sending a sequence of readings along a row to initialize and update
a view, in-network maintenance is used to propagate the sum of readings. At
row i, the first node, si,0 starts propagating its own readings as Vi,0 (= r(si,0))
to the second node, si,1. Then si,1 keeps this received reading, and computes
Vi,1, i.e., Vi,0 + r(si,1) and sends it to si,2. The propagation repeats until the last
sensor of the row is reached.

Upon request, a sensor si,j can report any of the three readings: (1) its reading,
r(si,j); (2) Vi,j−1, a stored cumulated sum of r(si,0) through r(si,j−1); and (3)
Vi,j , a derived cumulated sum from readings of si,0 through si,j (i.e., Vi,j−1 +
r(si,j)). Thus, it is efficient to find out the cumulated sum from si,a to si,b (a ≤ b)
in a row i by subtracting Vi,a−1 from Vi,b, since they are obtainable in si,a and
si,b. In Fig. 4(a), accessing sensors at (0, 2) and (0, 4) can get the cumulated
sum from (0, 2) to (0, 4). The sensor at (0, 2) provides V0,1 = 8 and the sensor
at (0, 4) reports V0,4 = V0,3 + r(s0,4) = 11 + 2 = 13. The cumulated sum for the
range is V0,4 − V0,1 = 5.

Spatial aggregation query processing is reduced to accessing the two ending
nodes of rows covered by a query. For example, Q1 in Fig. 4(a) covers three
rows. Q1 is first routed to the originating node at (3, 1) to start clockwise border
path traversal. It visits sensors at (3, 1), (2, 1) and (1, 1) to collect V3,0(= 3),
V2,0(= 2), and V1,0(= 7), respectively. Then the query is routed to (1, 3), and it
visits (1, 3), (2, 3), and (3, 3) in sequence, collecting V1,3(= 18), V2,3(= 11), and
V3,3(= 11). Finally the query result of 28 (= −3− 2− 7 + 18 + 11 + 11) is sent
back to the user.

2-Dimensional Prefix Sum. 2-D prefix sum view is in a 2-dimensional fash-
ion. Before the discussion, we define the notation Wi,j as the cumulated sum of
reading of s0,0 through si,j , i.e., Wi,j =

∑i
a=0
∑j

b=0 r(sa,b). Different from 1-D
prefix sum view, each sensor si,j has to maintain four readings, including (1) the
local reading, r(si,j); (2) the cumulated sum Wi,j−1 provided by node si,j−1; (3)
the cumulated sum Wi−1,j provided by node si−1,j ; and (4) the cumulated sum
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Wi−1,j−1 from node si−1,j−1. With these four readings, si,j can determine Wi,j

that is r(si,j)+Wi,j−1+Wi−1,j−Wi−1,j−1. Illustrated in Fig. 4(b), a sensor, s2,2,
maintains four readings r(s2,2)(= 2), W2,1(= 24), W1,2(= 21) and W1,1(= 18).
The cumulated sum, W2,2, is then 2 + 24 + 21− 18 = 29.

2-D prefix sum takes an entire 2D sensor network as a whole and maintain a
network-wise view starting from s0,0. When a sensor si,j receives all the cumu-
lated sums, i.e., Wi,j−1, Wi−1,j , and Wi−1,j−1 from its neighbors, it calculates
Wi,j and broadcasts two readings, Wi,j and Wi,j−1 to sensors si,j+1 and si+1,j .
The reason to broadcast Wi,j−1 is that si+1,j may be located out of the trans-
mission range of si,j−1 and may not receive Wi,j−1 during si,j−1’s broadcast.

The aggregated readings for a query can be efficiently derived with fewer
sensor visits. For a region 〈[x1, x2], [y1, y2]〉, the aggregated reading is Wx2,y2 −
Wx2,y1−1 − Wx1−1,y2 + Wx1−1,y1−1. Since fewer nodes are visited, spatial ag-
gregation queries can be performed at a much lower cost. As an example, Q1
in Fig. 4(b) specifies 〈[1, 3], [1, 3]〉 as its traversal window. First, Q1 visits the
sensor at (3, 1) where W3,0(= 15) is collected. Second, it visits the sensor at
(1, 1) to collect W0,0(= 3). Then Q1 goes to sensors at (1, 3) and (3, 3) to collect
W0,3(= 11) and W3,3(= 51). The final result is 28 (= −15 + 3− 11 + 51).

Discussion. Unlike replication cluster, prefix sum does not reinforce any cluster
boundary. It provides better reuse of a MINV by simple addition and subtrac-
tion. With an 1-D prefix sum view, a range query can be answered by visiting
nodes along two ending columns while with a 2-D prefix sum view, readings from
four corner sensors are energy sufficient. 1-D prefix sum view has a slightly lower
maintenance cost, and higher concurrency in view update than 2-D prefix sum
view. Consider a sensor network of m× n nodes with insignificant signal inter-
ference. 1-D prefix sum view update performs a row-based update that involves
at most (n − 1) propagations. 2-D prefix sum view maintenance starts at s0,0,
the top-left grid, and terminates at sm−1,n−1. It requires (n−1) propagations to
reach the top-right side of the sensor network and another (m− 1) propagations
to reach the bottom. Consequently, the time to update the entire network is
about the same as the time to propagate (m + n − 2) messages. Besides, the
storage overhead for 1-D prefix sum view is less than 2-D prefix sum view.

3.4 Extensions

In the above discussion, we have only considered the aggregate function sum.
Here, we discuss the necessary extensions to the three approaches in support
of other aggregate functions, such as max, min, count, average1, and median, as
shown in Table 1. To allow replication cluster to support max/min/median, the
view definition can be modified such that all other possible sensor readings are
maintained in the view. Keeping additional readings is useful to maintain the
min/max and median. From the table we can observe that optimization is highly
dependent on aggregate function types. Full-scanning can support all types of
aggregate functions but it generally performs worse than the other two schemes
1 average can be determined by the dividing sum by count.
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Table 1. Support of aggregate functions

Approach count/sum/average max/min median
Full scanning Yes Yes Yes
Replication cluster Yes Additional readings required
Prefix sum Yes No No

due to the high traversal cost. Other approaches incur view update cost. Depend-
ing on the aggregate functions, appropriate approaches can be chosen or used in
a combined way to evaluate a query. This observation inspires our future research
work, i.e., how to combine different approaches to process aggregate queries.

4 Performance Evaluation

In this section, we provide performance evaluation of proposed approaches. We
use simulation which is developed with CSIM18 [14] to examine the efficiency
of our proposal in terms of total message costs, energy consumption and query
response time. The system parameters are set as in Table 2. For simplicity, we
assume sensor network, window queries, and clusters are squares, i.e. m = n,
qx = qy and cx = cy. We take sum as the aggregation function. Periodically or
triggered by any sensor, update of a MINV is performed. We consider Rq as the
ratio of the query issuing frequency (rq) to the frequency of the update happening
(ru), i.e., the average number of queries issued between two consecutive updates.
In addition to the proposed schemes, namely, full scanning (FS), replication
cluster (RC), 1-D prefix sum (1DPS) and 2-D prefix sum (2DPS), we considered
an alternative that all raw sensor readings are pulled out of the sensor network
and maintained at a remote base station. We label this scheme Base Station
(BS). All queries are routed to and processed at the base station. Assuming the
base station is resident at grid(0,0) in the network, the message relay cost for a
sensor at grid(i,j) is i + j.

To compare the performance of the three proposed approaches and the BS
scheme, our simulation varies query window size, ratio of query/update rates and

Table 2. Parameters

Parameter Notation Settings Default Value
Sensor network size m × n 602, · · · 1402 1002

Query window size qx × qy 102, · · · 1002 202

Query rate (10−3 event per sec) rq 50, 5, 0.5, 0.05 0.5
Update rate (10−3 events per sec) ru 50 50
Ratio of query/update events Rq = ru/rq 1, 10, 100, 1000 100
Cluster size cx × cy 2 × 2, 4 × 4
Message Latency between two sensors 30ns
Energy consumption per every message 21,600nj (send),3,600nj(receive)
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network size and study their impact on the number of message relays, energy con-
sumption and query response time. The number of message relays counts the mes-
sage passings between sensors. Energy consumption refers to the energy consumed
per sensor in processing view updates and queries. For each sensor, the energy con-
sumed to send a message takes 21,600 nano-joules (nj) and that to receive a mes-
sage takes 3,600nj [15]. Query response time refers to the duration between query
issue time and corresponding result collection time. On average, transmission of
a message between sensors takes 30ms. In our evaluation, all results to present
are averaged by the number of queries executed, so the average cost per query is
reported. In the following subsections, the impacts of each factor is studied.

Evaluation 1. Impact of Query Window Size: Our first evaluation studies
the impact of query window size which affects the query traversal costs. Generally
speaking, a larger query window is expected to yield a larger number of messages
transmitted for all proposed approaches. BS is however not affected by the query
window size. We vary the query window size (side length in 10, · · · 100, with a
step of 10) and fix the ratio of query rate and update rate (Rq) at 100 (by fixing
query rate, rq, at 0.5× 10−3/sec and update rate, ru at 50× 10−3/sec).

The result is shown in Fig. 5. Firstly, Fig. 5(a) shows the number of message
relays (in log scale). In the figure, we can see that 1DPS and 2DPS provide the
least number of message relays, outperforming all other approaches. FS perform
better than RC (both 2× 2 and 4× 4 clusters) only when small query sizes are
experimented. As the query size larger than 30× 30, FC and RC(2× 2) are very
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close. Finally BS maintains the constant and largest number of message relays
due to its high update costs.

Next, we study the impact of query size on energy consumption and query
response time in Fig. 5(b) and Fig. 5(c), respectively. In Fig. 5(b), observation
of energy consumption per sensor is very similar to that of message relays since
message passing constitutes the major source of energy consumption. With this
reason, we can see both 1DPS and 2DPS perform reasonably better than all oth-
ers. BS maintains a constant level of energy consumption since it is independent
of query size. In Fig. 5(c), query response time of all proposed schemes are the
same since they involve the same longest query path, i.e., the border path for
a same query window. Meanwhile, BS provides the shortest response time since
queries do not need to traverse the query windows.

To sum up, this evaluation shows that the increase of query window size
causes the message relays, energy consumption and response time increased for
our proposed approaches. 1DPS and 2DPS perform the best and RC performs
better than FC only when larger queries are experimented. BS provides constant
performance and it performs the best in term of response time, otherwise, it is
the weakest in the evaluation.

Evaluation 2. Impact of Ratio Between Query Rate and Update Rate:
In the second evaluation, we study the effect of the ratio between query rate
and update rate. The objective of this evaluation is to study the benefit of
our proposed approaches when many queries are executed in a sensor network.
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When the query rate is relatively high to update rate, the cost of MINV update
is shared among queries for PS, RC and BS. FS is expected to have a fixed
number of messages relays. We reuse the same settings as Evaluation 1 except
that we vary the ratio of query rate and update rate between 1, 10, 100 and 1000
(by fixing query rate, rq, at 50, 5, 0.5, 0.05 (×10−3/sec) and fixing the update
rate, ru, at 50 × 10−3/sec) and we retain the query window size at 20 × 20.
Fig. 6 shows different performance metrics against the specified variation of
ratio query/update rates. Fig. 6(a) shows the result in term of the number of
message relays (in log scale). When a small query/update ratio (1 and 10) is
experimented, all schemes except FS incurs higher costs due to heavy view update
cost. Later, they decrease dramatically when higher query/update ratio (100 and
1000) is evaluated. Both 1DPS and 2DPS perform the same and better than RCs.
BS is the weakest in this evaluation. Fig. 6(b) shows the energy consumption.
The trends are similar to that of number of message relays because the message
transmission is the major source of energy consumption. Fig. 6(c) depicts the
query response time. BS performs the best and all other approaches have same
query response time regardless of query/update ratio.

Evaluation 3. Impact of Network Size: The third evaluation investigates
the scalability of our proposed approaches to the network size. We fix the query
size and ratio of query/update rate at 20 × 20 and 100 respectively and we
vary the network size from 60× 60, to 80× 80, to 100× 100, to 120× 120 and
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to 140 × 140. Fig. 7 plots the results. In Fig. 7(a), we can find the larger the
network size is adopted, the larger the number of message relays produced by
the schemes except for FS which does not maintain any view. Again, 1DPS and
2DPS perform the same and the best among all approaches while BS is the worst.
Even worse, we can see that rate of increase of BS is higher than others because
of increasing average distance between sensors and the base station; raising the
average update costs. These results indicate that our 1DPS and 2DPS are good
for various network size.

Fig. 7(b) depicts the impact of network sizes on energy consumption. It shows
that the energy consumption all our proposed approaches generally decreases
with the increase of the network size since queries (whose size equal to 20× 20)
become relatively small and they are scattered in the network. Therefore, the
average energy consumed per node per query is much reduced. On the other
hand, BS requires update propagation from every sensor, so that the update
cost is increased with the network size. This observation points out the fact
that the in-network query processing is more energy efficient. Fig. 7(c) shows
the response time. This time all proposed approaches performs the same and
BS remains the best.

5 Conclusion and Future Work

Aggregation queries are very important for sensor-network based systems. This
paper identifies the limitations of existing ad-hoc based approaches for pro-
cessing multiple aggregation queries and proposes materialized in-network views
(MINVs) and associated access strategies, namely, full scanning, replication clus-
ter, and prefix sum. Each approach has its own advantage and can support var-
ious types of the aggregation functions. Based on simulation, we compare their
performance. Prefix sum provides the best performance in almost all the cases.

This is the first work addressing multiple spatial aggregation query processing
in sensor networks. In the near future, we plan to work on a number of extensions.
First, we are going to conduct in-depth analysis and extensive simulations and
prototyping to validate our proposals and analysis. At the current stage, we
consider queries issued in an one time fashion. To have continuous monitoring,
sensors stream and aggregate their readings to the access points periodically or
upon events of interest happen. As we have identified the minimum number of
sensors to visit for a query using 1-D prefix sum and 2-D prefix sum in this paper,
we will extend this model to register queries at those interested sensors in the
spatial window. When changes of interested aggregated readings are detected at
those query-registered sensors, the latest aggregated readings are propagated to
the users. Further, as sensor memory is limited to accommodate a large number
of views, we are studying the issue of memory management and selection criteria
to maintain MINVs among sensors in sensor networks. Last but not least, as we
explored in the paper, a query may include multiple aggregate functions and
each approach has its own strength. It may be possible to execute the query
using a combination of these proposed approaches.
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Abstract. Wireless sensor networks have been widely used for civilian and mil-
itary applications, such as environmental monitoring and vehicle tracking. The
sensor nodes in the network have the abilities to sense, store, compute and com-
municate. To enable object tracking applications, spatial queries such as nearest
neighbor queries are to be supported in these networks. The queries can be in-
jected by the user at any sensor node. Due to the limited power supply for sensor
nodes, energy efficiency is the major concern in query processing. Centralized
data storage and query processing schemes do not favor energy efficiency. In this
paper, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries. A cost model is built to analyze the performance of
DNN. Experimental results show that DNN outperforms the centralized scheme
significantly in terms of energy consumption and network lifetime.

1 Introduction

A sensor network is a distributed ad-hoc network comprised of a large number of sen-
sor nodes equipped with capabilities of computing, storing and communicating [1].
The sensor nodes are usually battery operated and are deployed in an unattended man-
ner to gather and process information without human intervention. Therefore, energy
efficiency is the major concern in accessing the data captured by the sensor network.

A simple centralized method is to send all collected data to the base station for stor-
age [2, 3]. The queries are also forwarded to and processed at a central base station.
This approach involves unnecessary communication cost if only a portion of the data
are accessed by the user. Moreover, due to message relay, the energy consumed by the
sensor nodes closer to the base station is much higher than that by the nodes further
from the base station. Unbalanced energy consumption reduces network lifetime [4, 5].
To improve energy efficiency, it is desirable to store the data at the sensor nodes in a
distributed manner and apply in-network processing techniques to user queries [6, 7].
In this way, only the relevant data are extracted from the network and the communica-
tion cost is greatly reduced compared to the centralized scheme. Existing in-network
query processing techniques have focused on aggregation and join queries [7, 8, 9, 10].
However, not much work has been done on spatial queries.

Nearest neighbor queries are an important class of spatial queries in object tracking
applications [11]. In this paper, we consider in-network processing of nearest neighbor
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Query point

S1 S2

o1

o2

Fig. 1. Nearest Sensor Node vs. Nearest Object

queries. Our objective is to locate the nearest objects to a given query point. For exam-
ple, consider a sensor network tracking the movement of taxies. The pedestrians carry
devices, such as PDAs, to interact with the sensor network. Each PDA accepts from
its user queries for nearest taxies and their locations, and injects the queries into the
network by sending them to nearby sensor nodes. The data will be extracted from the
relevant sensor nodes to respond to the user.

Existing work on nearest neighbor queries has focused on finding the nearest sensor
nodes to a specified query point [12, 13]. This is different from our objective to locate
the nearest objects to the query point because the nearest object may not be detected by
the nearest sensor node. Figure 1 shows an example where S1 and S2 are two sensor
nodes that detect objects o1 and o2 respectively. S2 is closer to the query point than S1.
However, the nearest object to the query point is o1.

In this paper, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries in wireless sensor networks. A grid structure is constructed
for in-network storage of the collected data. Query processing in DNN proceeds in
four steps: query routing, preliminary search, expanded search and result routing. We
build a cost model to analyze the energy consumption of DNN and compare it with the
centralized scheme. Experimental results show that DNN achieves significant energy
saving over the centralized scheme.

The rest of the paper is organized as follows. Section 2 summarizes the related work.
Section 3 presents the DNN scheme for in-network processing of nearest neighbor
queries. Section 4 develops a cost model. Section 5 describes the experimental setup
and discusses the experimental results. Finally, Section 6 concludes the paper.

2 Related Work

R-tree is a widely used indexing structure to support spatial queries in these databases
[14]. M. Demirbas and Hakan [12] applied R-tree to locate the nearest sensor nodes
in wireless sensor networks. In their approach, the sensor nodes are organized into a
distributed R-tree in a bottom-up fashion. Each node keeps pointers to the lower level
children and the higher level parent in the tree. Queries may be injected at any sensor
node. However, to locate the nearest sensor nodes, the query has to trace back to the root
of the tree making it a hotspot in the network. In addition, the tree structure is difficult
to maintain in a dynamic environment.

Lee et al. [13] proposed an algorithm to locate k nearest sensor nodes in wireless
sensor networks. They first locate the nearest sensor node to the query point and a set
of perimeter nodes around the query point. A circle centered at the query point is then
determined and is further divided into a set of subspaces each containing a perimeter
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node. The information of each subspace is collected by the perimeter node through a
tree structure. After the query is resolved, the perimeter tree is destroyed to avoid the
high cost of tree maintenance.

The above work has focused on locating the nearest sensor nodes. The locations of
sensor nodes usually do not change over time. Different from [12, 13], we focus on the
moving objects tracked by the sensor network. Our objective is to locate the nearest
objects to a given query point. Although a number of indexing schemes have been pro-
posed for moving object databases [15, 16], they targeted at centralized databases only
and therefore do not apply to in-network processing in wireless sensor networks.

3 In-Network Processing of Nearest Neighbor Queries

In this section, we propose a distributed scheme called DNN for in-network processing
of nearest neighbor queries in wireless sensor networks.

3.1 Distributed Data Storage

We consider a sensor network with the sensor nodes spreading over a 2-dimensional
space. The sensor nodes are aware of their locations through GPS [17] or other lo-
calization algorithms [18]. The sensor nodes can sense the moving objects and collect
their location information. Instead of sending all collected data to a central repository,
we propose to store them at the sensor nodes in a distributed manner by partitioning the
sensor network into a set of grid cells.

As shown in Figure 2, each grid cell has an area of α × α, where α is a system
parameter known to all sensor nodes in the network. The grid structure is constructed
by designating a reference point (xr , yr) as the corner of a grid cell. Then, given any
point (x, y) on the plane, the centroid of the grid cell containing (x, y) is given by(
xr + (�x−xr

α � + 1
2 ) · α, yr + (� y−yr

α � + 1
2 ) · α

)
. The sensor node closest to the cen-

troid of a grid cell is called a grid index node (shown by a solid dot in Figure 2). It
is responsible for maintaining the location data of the objects detected in the grid cell.
The object locations are periodically sampled by the sensor nodes and reported to the

α

grid index node

( xr, yr )

centroid

Fig. 2. Grid Structure in Sensor Network
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grid index node1. The location data can be sent to the corresponding grid index node
through GPSR routing2 [22] by setting the centroid position of the grid cell as the
destination.

To save communication cost, at each sampling, the location of an object is reported
to the grid index node only if its location has changed since the last sample. We shall
call it a location update. We assume that the objects being tracked are identifiable. They
are electronically tagged or are identified based on the pre-embedded object code table
in the sensor nodes [20, 21]. When the object location changes, at most two messages
are needed to update the data at the grid index nodes. One message is used to signal
the grid index node to remove the old location data and the other message is used to
update the grid index node with the new location data. For example, Figure 3(a) shows
the case where an object moves from one grid cell G1 to another cell G2. The location
of the object is detected by sensor nodes S1 and S2 at two successive samplings. At
the latter sampling, S1 sends a message to the grid index node in G1 to remove the
old location data. Meanwhile, S2 sends the new location data to the grid index node in
G2. Figure 3(b) shows another case where an object moves within a grid cell G1. The
location of the object is detected by sensor nodes Sa and Sb at two successive sam-
plings. At the latter sampling, both Sa and Sb send a message to the grid index node
in G1. Sa’s message signals the index node to remove the old location data while Sb’s
message feeds the index node with the new location data. If the object moves within a
grid cell and its location is detected by the same sensor node in two successive sam-
plings, only one message is sent from the sensor node to the grid index node for location
update.

1 Although the sensor nodes may work collaboratively to determine the location of an object in
their vicinity [19], we assume that for each object, only one sensor node (the sensing leader or
cluster head) is responsible for reporting its location at each sampling [20, 21]. For simplicity,
the detecting sensor node in the rest of this paper refers to this node.

2 GPSR is a greedy location-based routing scheme. Given the geographic locations of the source
and the destination, GPSR routes the message to the node closest to the destination location.
All message routing in this paper refers to GPSR routing.
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3.2 Query Processing

In the preliminary search, we need a rule to determine the visiting order of grid cells.
Since the location of boundary object determines the search circle for expanded search,
to reduce the search cost, we would like the boundary object to be as close to the query
point as possible. Thus, it is intuitive to visit the grid cells based on their distances to
the cell G0 containing the query point. We propose a circle approach to determine the
visiting order of grid cells. Users issue queries for the locations of the nearest objects to
given query points. In this paper, we focus on one-shot queries which complete once the
results are returned. The queries can be injected into the sensor network at any sensor
node (e.g., depending on the locations of the users). Each query Q is characterized by
two locations (xs, ys) and (x0, y0), where (xs, ys) is the location where the query is
issued (called the query source), and (x0, y0) is the location of the query point. If a user
queries for the nearest object in his proximity, then (xs, ys) = (x0, y0).

Query processing in DNN proceeds in four steps: query routing, preliminary search,
expanded search and result routing. When a sensor node receives a query message, it
calculates the centroid position of the grid cell G0 containing the query point (x0, y0).
In the query routing step, the query message is routed to the grid index node in G0.
The purpose of preliminary search is to find an object (called the boundary object) and
define the search space. In this step, the grid cells surrounding G0 (more specifically,
the index nodes in these grid cells) are visited by message passing until a grid cell
containing at least one object is found. Among the objects detected in that grid cell,
the one closest to the query point is selected as the boundary object. A search circle
centered at the query point and with a radius of the distance between the query point
and the boundary object is defined as the search space. The nearest object to the query
point is guaranteed to be located within the circle. The next step is expanded search.
In this step, the grid cells within or intersecting with the circle, excluding those visited
in the preliminary search, are visited by message passing to locate the nearest object.
Finally, the query result is routed back to the user at (xs, ys).

Now, we discuss the preliminary search and the expanded search in detail.

Preliminary Search. The search is divided into rounds. In each round i, the unvisited
grid cells intersecting with the circle centered at the centroid of G0 and with a radius
of i · α are visited in clockwise order (see Figure 4(a)). This is done by sequentially
passing a message from the grid index node of one cell to that of another. The message
contains the locations of the query source and query point. Note that given the location
of the query point, each grid index node can determine autonomously which grid cell
to visit next. Figure 4(b) shows the route of the message in the preliminary search. The
preliminary search completes when a grid cell containing at least one object is found.

Expanded Search. On completion of the preliminary search, a search circle centered
at the query point and with a radius of the distance between the query point and the
boundary object is defined. Let d be the radius of the circle. Intuitively, if the minimum
distance between a grid cell and the query point is smaller than d, the grid cell is likely to
contain objects less than distance d away from the query point. Therefore, a search list
for the expanded search is given by all grid cells within or intersecting with the search
circle, excluding those visited in the preliminary search. Figure 5 shows an example.



40 Y. Yao, X. Tang, and E.-P. Lim

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G16

G15

G14

G24 G10

G13

G11 G12

G7

3 αi

α

2 αi

Round 1

Round 2

Round 3

(a) Overview

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G40 G39G41 G38

G16

G15

G14

G43

G42 G37

G44

G45

G46

G24G47 G10

G34

G26

G33

G25

G35

G27

G32G13

G11 G12 G31

G28 G29

G7

G30

G36

G48

(b) Routing Path

Fig. 4. Preliminary Search

G4

G0

G1 G2

G3

G17

G5G6

G8

G18G19G20

G21

G22

G23

G9

G40 G39G41 G38

G16

G15

G14

G43

G42 G37

G44

G45

G46

G24G47 G10

G34

G33

G35

G32G13

G11 G12 G31

G7

G36

Query
point

Boundary
object

b

Round in
preliminary

search

Round in
expanded

search

a

Fig. 5. Expanded Search

Suppose the query point (x0, y0) is in G0 and the boundary object a is found in grid
cell G13. The grid index node in G13 determines the search circle (shown by the outer
solid circle in Figure 5) and derives the set of grid cells within or intersecting with it:
Set1 = {G0 – G24, G33, G34, G38 – G41, G43 – G46}. The grid index node in G13 also
computes the set of grid cells that have been visited in the preliminary search (based
on the rounds shown by the dashed circles in Figure 5): Set2 = {G0 – G11, G13}3.
Therefore, the search list in the expanded search is given by Set3 = Set1 − Set2 =
{G12, G14 – G24, G33, G34, G38 – G41, G43 – G46}.

The message passed between cells in the expanded search contains the search list
and the locations of the boundary object, query source and query point. At each step,
the message is routed to the grid cell on the search list that is closest to the cell currently
holding the message. When a grid cell Gc receives the message, it first removes itself
from the search list. One of the following three cases can occur: (i) no object is detected
in Gc; (ii) all the objects detected in Gc are further away from the query point than

3 The preliminary search completes in the middle of round 2, so the sensor nodes G14– G15,
G17 – G19 and G21– G23 have not been visited in the preliminary search.
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the boundary object; (iii) at least one object detected in Gc is closer to the query point
than the boundary object. In cases (i) and (ii), the search list is not updated and the
message is simply routed to the next grid cell on the search list that is closest to Gc. In
case (iii), the object detected in Gc that is closest to the query point is selected as the
new boundary object by updating the message content. A new search circle is derived
accordingly. The search list is then updated by removing all grid cells outside the new
search circle. The message is then routed to the next grid cell on the updated search
list that is closest to Gc. The expanded search continues until the search list becomes
empty. On completion of the expanded search, the message is routed to the query source
and the location of boundary object is returned to the user as the query result.

In the example of Figure 5, the message is first routed to cell G14 in the expanded
search (among the cells on the search list, G14 is closest to the grid cell G13 last visited
in the preliminary search). Object b detected in G14 is closer to the query point than
the current boundary object a. Thus, the search circle is shrunk and the search list is
updated by removing cells G16, G38, G39, G40, G41, G43, G44, G45, G46 and G24
from the search list because they are outside the new search circle (shown by the inner
solid circle in Figure 5). Among the cells on the updated search list, G15 is closest to
cell G14. So, the message is routed to G15 to continue the expanded search.

4 Cost Model and Analysis

In this section, we analyze the cost of the DNN scheme presented in Section 3. It is
known that the energy consumption in wireless sensor networks is dominated by the
communication cost [1]. We assume a dense network. In this case, the cost of message
routing, i.e., the number of hops on the route from a source to a destination, is propor-
tional to the Euclidean distance between the source and the destination. Therefore, we
shall analyze the distance travelled by messages. We consider a square sensor field of
size s× s. It is divided into grid cells of size α× α. A total number of N sensor nodes
are randomly deployed in the network. A total of n objects are tracked by the sensor
network.

4.1 Cost Model for DNN

In DNN, query processing and location update both involve communication.4 For query
processing, let Cquery , Cpre, Cexp and Cresult be the expected costs of query routing,
preliminary search, expanded search and result routing per query respectively. The ex-
pected cost of a location update shall be denoted by Cupdate.

Query Routing and Result Routing. The expected costs of query and result routing
are approximated by the distance between the query source and the query point. Assume
the query source and query point are both randomly distributed in the network. Then,
the expected routing distance is given by the average distance between any two points
in the sensor network:

4 Since this paper focuses on energy-efficient query processing, we do not include the communi-
cation overhead in sensing and data fusion. Such overhead is the same for the proposed DNN
scheme and the centralized scheme we shall compare.
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It follows from the mathematical results [23] that

Cquery = Cresult =
s

15
[
√

2 + 2 + 5ln(1 +
√

2)] = 0.5214 · s.

Preliminary Search. To derive the cost of preliminary search, we need to know the
number of grid cells visited. For simplicity, we assume that the probabilities of de-
tecting objects in different cells are identical and independent. We use p to denote the
probability that at least one object is detected in a grid cell. If the number of objects n
is much smaller than the number of grid cells (s × s)/(α × α), p is approximated by

n
(s×s)/(α×α) . Then, the probability that we need to visit i grid cells in the preliminary

search to locate a boundary object is p(1−p)i−1. Therefore, the average number of grid
cells visited in the preliminary search is given by

p + 2p(1− p) + 3p(1− p)2 + · · · = 1
p
.

Starting from the grid cell containing the query point, to visit i cells, the message needs
to be sent between i− 1 pairs of neighboring cells. Since the distance between a pair of
neighboring cells is bounded by

√
2α, the cost of preliminary search is bounded by

Cpre = (
1
p
− 1) ·

√
2α.

Expanded Search. Similar to the preliminary search, we need to derive the number of
grid cells visited in the expanded search. As described in Section 3.2, a search circle is
derived at the end of preliminary search. If we know the total number of grid cells in the
circle and the number of grid cells visited in the preliminary search, we can calculate
the upper bound on the number of grid cells to visit in the expanded search.

We start by analyzing the relationship between the radius of a circle and the number
of grid cells within or intersecting with the circle. It is intuitive that the number of
cells is proportional to the area of the circle. Therefore, we used quadratic regression.
The regression result shows that, given the circle radius r (r is a multiple of α), the
number of grid cells within or intersecting with the circle is: ar2 + br + c, where
a = 3.1417

α2 , b = 4.1178
α , c = 2.3241. Figure 6 shows that the regression result (i.e., the

number of grid cells computed by ar2 + br + c) well matches the empirical result (i.e.,
the actual number of grid cells within or intersecting with the circle).

Let i be the number of grid cells visited in the preliminary search. We assume that
the last grid cell visited in the preliminary search is in round xi, i.e., the circle with
radius ri = xi · α. Note that a(ri − α)2 + b(ri − α) + c indicates the number of grid
cells visited in the first xi − 1 rounds, and ar2

i + bri + c is the number of grid cells
visited if round xi completes. It follows that

a(ri − α)2 + b(ri − α) + c ≤ i ≤ ar2
i + bri + c.
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Therefore,

−b +
√

b2 − 4a(c− i)
2a

≤ ri ≤
−b +

√
b2 − 4a(c− i)

2a
+ α.

So, we approximate ri by

ri =
−b +

√
b2 − 4a(c− i)

2a
+

1
2
α.

We then derive the average number of grid cells visited in the expanded search as

∞∑
i=1

p(1− p)i−1 · (ar2
i + bri + c− i), (1)

where p(1−p)i−1 is the probability that i cells are visited in the preliminary search, and
ar2

i +bri+c−i is the corresponding number of grid cells to visit in the expanded search.
Since the sum (1) converges when i approaches infinity, we can compute it numerically.

Similar to the preliminary search, we use
√

2α as a bound on the distance between
neighboring grid cells. Thus, the cost of expanded search is bounded by

Cexp =
∞∑

i=1

p(1 − p)i−1 · (ar2
i + bri + c− i) ·

√
2α.

Location Update. The communication cost of each location update is determined by
the following factors: average distance from any point in a grid cell to the centroid of the
grid cell; and the number of messages per location update. Following the mathematical
results [23], the average distance is given by∫ α

2
0

∫ α
2

0

√
x2 + y2dxdy

α
2 ·

α
2

= 0.3825 · α.

As discussed in Section 3.1, at most two messages are required for each location
update. Therefore, the cost per location update is bounded by

Cupdate = 2 · 0.3825 · α = 0.7650 · α.
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Let q be the rate at which queries are injected into the network. Let u be the total
number of location updates per time unit for all objects in the network (it is obvious
that u depends on the movement pattern of objects). Then, to summarize, the total
communication cost of DNN is given by

CDNN = (Cquery + Cpre + Cexp + Cresult) · q + Cupdate · u

= (2 · 0.5214 · s +
1− p

p
·
√

2α

+
∞∑

i=1

p(1− p)i−1 ·
(
ar2

i + bri + c− i
)
·
√

2α) · q + 0.7650 · α · u.

4.2 Cost Model for Centralized Scheme

For comparison purpose, we also derive the communication cost of the centralized
scheme in which all sensor nodes send the collected data to the base station and all
queries are also forwarded to the base station for processing. We refer to this scheme
as CNN. We assume the base station is located at the centroid of the network.5 The cost
of CNN consists of three parts: query routing, result routing and location update. The
expected costs of query and result routing as well as the cost of per location update are
all given by the average distance between any point in the network and the centroid of
the network, i.e.,

Cquery = Cresult = Cupdate =

∫ s
2

0

∫ s
2

0

√
x2 + y2dxdy
s
2 ·

s
2

= 0.3825 · s.

In CNN, all collected data are maintained at the base station. Thus, only one message
needs to be sent from the detecting sensor node to the base station at each location
update. Therefore, the total communication cost of CNN is given by

CCNN = (Cquery + Cresult) · q + Cupdate · u = 2 · 0.3825 · s · q + 0.3825 · s · u.

5 Performance Evaluation

5.1 Experiment Setup

We conducted a wide range of experiments to evaluate the performance of the proposed
DNN scheme and compared it with CNN. Table 1 summarizes the system parameters
and their settings. We simulated a sensor network geographically covering a 50000m×
50000m area. The number of sensor nodes deployed in the sensor network was set at
4× 106, implying that on average, there is one sensor node in each 25m× 25m square.
The default size of a grid cell was set at 125m× 125m. The default number of objects
being tracked was set at 800. The object were initially placed in the network at random.
Their movement followed the random walk model. Specifically, time was divided into

5 We set the base station at the centroid of the network to favor the centralized scheme.



In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks 45

Table 1. System Parameters and Settings

Parameters Description Default Value Range
N Number of sensor nodes 4 × 106 —
R Communication range 40m —
s × s Size of sensor network 50000m × 50000m —
α × α Size of grid cell 125m × 125m [125m × 125m,

3125m × 3125m]
n Number of objects tracked 800 [160, 1600]
r Sampling rate of sensor nodes 1 per time unit —
v Object moving velocity 50m per time unit —
Pmove Probability of object moving

in each time interval
0.5 [0.1, 0.9]

q Query rate 50 per time unit [10, 100]
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intervals. At the beginning of each interval, the object decided whether to move or pause
according to the probabilities Pmove and Ppause (Pmove +Ppause = 1). If it decided to
move, the move direction was randomly selected between 0 and 2π. The moving speed
was set at 50m per time unit. The default length of the interval was set at 1 time unit.
The default value for Pmove was set at 0.5. The object locations were sampled by the
sensor network once every time unit. At each sampling, the sensor node closest to an
object was assumed to report the object location to the grid index node (in DNN) or
the base station (in CNN). The default query rate was set at 50 per time unit. Both the
query source and query point were randomly distributed in the network. The default
communication range of each sensor node is set at 40m.

5.2 Impact of Number of Objects

Figure 7 shows the simulation and analytical results of the Euclidean distance travelled
by messages6 as a function of number of objects. As seen from Figure 7(a), the ana-
lytical and simulation results match well. The analytical cost of DNN is slightly higher
than the simulation result. This is because the DNN cost analyzed in Section 4 is an
upper bound. As shall be explained soon, the cost of CNN increases with the num-
ber of objects, while that of DNN decreases with increasing number of objects. DNN
outperforms CNN over a wide range of object numbers.

6 We measured the total number of location updates per time unit in the simulation experiments
and plugged it into the analytical model presented in Section 4.
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Figure 8(a) shows the total number of messages sent by the sensor nodes in the sim-
ulation experiments. It is seen that the curves have the same trend as those in Figure 7.
This verifies that the cost defined using Euclidean distance (Section 4) is a good measure
of message complexity. Figures 8(b) and 8(c) show the breakdown of query processing
and location update messages. As shown in Figure 8(b), when the number of objects
increases, the number of query processing messages in CNN remains unchanged. This
is because in CNN, query processing consists of query routing and result routing only,
the cost of which are independent of the number of objects. For DNN, the number
of query processing messages reduces with increasing number of objects because the
boundary object is located closer to the query point. This not only cuts down the num-
ber of grid cells visited in the preliminary search but also reduces the size of the search
circle and hence the number of cells to visit in the expanded search. Figure 8(c) shows
that the number of location update messages in DNN is considerably lower than that
of CNN. It also grows much slower compared to that of CNN when the number of ob-
jects increases. With large number of objects, the overall message complexity of CNN
is dominated by the location update messages and is much higher than that of DNN.

Figure 9 shows the distribution of the number of messages sent by the sensor nodes
for DNN and CNN when the object number is 800. A point (x, y) on the curve means
that a fraction x of all sensor nodes send more than y messages each. As shown in
Figure 9, the workload distribution among the sensor nodes is highly unbalanced in
CNN. The top 0.1% of the nodes send substantially high numbers of messages than
the remaining nodes. On the other hand, the workload hence energy consumption is
much more balanced among the sensor nodes in DNN. The numbers of messages sent
by the top nodes are more than two orders of magnitude lower than those in CNN. If
we define the network lifetime as the time duration before the first sensor node runs out
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of energy [24], DNN would prolong the network lifetime by a factor of more than 100
over CNN.

5.3 Impact of Object Movement

Figure 10 shows the performance results for different Pmove values. It is intuitive that
the objects move faster and hence incur more location updates at larger Pmove values.
Since the number of location update messages in DNN is much lower than the number
of query processing messages (recall Figures 8(b) and (c)), the total number of messages
in DNN is not significantly affected by the increase in Pmove. The overall message
complexity of CNN, on the other hand, substantially increases with Pmove. This is
because the total number of messages in CNN is dominated by that of location update
messages. As shown in Figure 10(a), DNN considerably outperforms CNN over a wide
range of Pmove values.

5.4 Impact of Query Rate

Figure 11 shows the performance results for different query rates. The results indicate
that the overall message complexity increases with query rate for both DNN and CNN.
As shown in Figure 11(b), the number of location update messages is independent of
the query rate for both schemes. Figure 11(c) shows that the number of query process-
ing messages increases with query rate, leading to an increase in the overall message
complexity. DNN outperforms CNN over a wide range of query rates. In general, the
improvement of DNN over CNN is smaller for larger query rate.
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5.5 Impact of Grid Cell Size

We also investigate the impact of grid cell size. Figure 12 shows the message complexity
for different α values 125m, 500m, 2000m and 3125m when the number of objects
increases from 160 to 1600. In general, the number of query processing messages in
DNN decreases with increasing grid cell size (see Figure 12(b)). On the other hand, the
number of location update messages increases with grid cell size (see Figure 12(c)).
When the number of objects is small, the location update messages take up a negligible
portion of the total number of messages. Therefore, the overall message complexity of
DNN decreases with increasing grid cell size. When the number of objects is large, the
location update messages take up a larger portion of the total number of messages. As a
result, the overall message complexity of DNN may increase with grid cell size beyond
certain value. For example, when there are more than 800 objects being tracked, the
cost for α = 3125 is higher than that for α = 2000.

6 Conclusion

In this paper, we have proposed a distributed scheme called DNN for in-network pro-
cessing of nearest neighbor queries in wireless sensor networks. To avoid sending data
to a central repository, a grid structure is constructed for in-network storage of the col-
lected data. By localizing the location updates, DNN eliminates hotspots in the system.
Query processing in DNN proceeds in four steps: query routing, preliminary search,
expanded search and result routing. Experimental results show that DNN can signifi-
cantly reduce and balance network-wide energy consumption compared to the central-
ized scheme.
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Abstract. In sensor networks, multi-join queries are processed by join-
ing sensor data generated at different sensor nodes. Due to the energy
constraint, however, sometimes only partial sensor data can be trans-
mitted to the join site. In handling the energy constraint on each sensor
node, the load shedding strategy under the MAX-subset principle has
been considered for shedding selected data at each node so that trans-
mitted data may yield the maximal possible results in a multi-join. Exist-
ing load shedding approaches, however, isolate sensor data to be joined,
which often do not yield the maximal results. To obtain as many re-
sults as possible, we propose two load shedding strategies, the basic local
associated shedding strategy and the global associated shedding strategy,
based on different shedding constraints in this paper. We also present the
max-loss-first associated shedding strategy and the multi-round associated
shedding strategy for improving the basic local associated shedding strat-
egy. Experimental results show that the proposed strategies generate as
many results as possible on multi-joins.

1 Introduction

In recent years, wireless sensor networks have been developing as an effect of ad-
vanced communications and electronics [2, 9]. Wireless sensor networks, however,
have some notable constraints. First, sensor networks run for a long time when
habitat monitoring is required. Second, sensor nodes are limited in power, com-
putation capacity, and memory. Third, the number of sensor nodes in a sensor
network can be very large [2, 5, 12]. These constraints cause the energy efficiency
problem to become the most significant problem in sensor networks [9, 17], since
communication between nodes is more energy consuming than processes that
are performed locally [10]. In order to improve the energy efficiency in sensor
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networks, communication and data transmitting among different nodes should
be minimized.

Assume that in a sensor network there are two kinds of nodes: the ordinary
sensor nodes, which sense the environmental data and perform user specified
simple queries (such as selection, projection, etc.), and the proxy nodes, which
collect sensor data from ordinary sensor nodes and process join queries [11].
Ordinary sensor nodes are power constrained while the proxy nodes have no
such restriction. In such a network, we note that processing multi-join operations
requires large amount of communications and data transmission between nodes.
In at least two different scenarios, only a portion (or none) of the sensing data
should be transferred: (1) some sensing data collected from different nodes may
not produce any join result and hence transferring them wastes energy, and (2)
if the remaining energy in a sensor node is insufficient to transfer all the sensing
data to the proxy node, then only a subset of data can be transmitted to satisfy
the energy constraint. Whenever one or the other scenario occurs, some sensor
data must be dropped (i.e., they are not transferred to the proxy node to be
joined). Hence, the problem of choosing which portions of the data set to drop is
of crucial importance for processing multi-joins in sensor networks, since different
input data sets yield different join results. This is the load shedding problem for
multi-joins in sensor networks. A well-known measurement is MAX-subset [8],
which uses the size of the final join, i.e., the results after shedding of stream
data, to determine the shedding decision.

In this paper we focus on the problem of load shedding over multi-joins in
sensor networks using the measure of MAX-subset. We first define two shedding
constraints, the local shedding constraint and the global shedding constraint, each
of which represents a different multi-join shedding problem in sensor networks.
Hereafter, we propose three different strategies, the basic local associated shed-
ding strategy, max-loss-first associated shedding strategy, and the multi-round
associated shedding strategy in solving the shedding problem under local shed-
ding constraint, and apply the global associated shedding strategy in solving shed-
ding problem under the global shedding constraint. We will provide experimental
results to verify the effect of the proposed strategies.

The rest of the paper is organized as follows. In Section 2, we survey related
work. In Section 3, we define the problem of load shedding for multi-joins in sen-
sor networks. In Section 4, we describe our load shedding strategies. In Section 5,
we present the experimental results on the proposed load shedding strategies. In
Section 6, we give a concluding remark.

2 Related Work

The load shedding problem in data stream systems has been widely studied
during the past few years. In a data stream management system, the incoming
rate of stream data is unpredictable. Thus, when the incoming rate exceeds the
processing rate, it is necessary to drop some data in order to make sure that
the system load is below the accepted upper bound. Most of the existing data
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stream management systems, such as STREAM [3, 4, 13, 15], AURORA [7, 16],
and TelegraphCQ [1, 6, 14], have their own load shedding mechanisms. There
are two fundamental types of drop operators: random drop and semantic drop.
The former randomly chooses tuples passed through the operator to drop with
probability ρ, which expresses the fraction of tuples that should be dropped,
whereas the latter looks like a filter, since it checks the value of each tuple
and then decides whether the tuple should be dropped. When performing the
semantic load shedding, there are also several measurements, such as QoS [16]
that uses the importance of tuple’s content to measure whether it should be
dropped, and MAX-subset [8] that uses the number of join results generated by
each input tuple to determine whether this input tuple should be dropped. [15]
defines two different stream arrival models, the frequency-based model and the
age-based model, when performing MAX-subset load shedding on data streams.
In the frequency-based model, the number of join results produced by each input
tuple is determined by the attribute value, whereas in the age-based model, the
number of join results that a tuple produces is a function of the age of the tuple
in the window. Based on various drop operators, measures, and models, different
load shedding approaches are proposed in previous research works.

[8] views the join approximation problem in sensor networks as the static join
approximation problem (as opposite to the dynamic join approximation prob-
lem in data streams). [8] also surveys possible error measures in approximated
join queries (i.e., when some input tuples have to be evicted), and propose the
measurement of MAX-subset, since most of the popular and common set ap-
proximation errors actually reduce to MAX-subset. [8] reduces the static join
approximation problem into a bipartite graph problem and proposes the opti-
mal dynamic programming solution and two fast 2-approximation algorithms,
i.e., the node degree greedy (NDG) algorithm and the average degree greedy
(ADG) algorithm, in solving the static join approximation problem. Among the
two approximate algorithms, the former is applicable to the formulation when
HA and HB tuples from the two relations RA and RB are to be deleted, respec-
tively, while the latter is applicable when H number of tuples are to be deleted
from RA and RB overall.

[8] also considers m-relations-joins, m > 2. It has been proved [8] that the
static join approximation problem for maximizing the size of results of a multi-
join is an NP-hard problem. An approximate algorithm is also proposed [8] for
maximizing the size of results while Hi tuples are evicted from relation Ri (1 ≤
i ≤ m). We call this method the independent shedding strategy (IS for short),
since IS independently chooses tuples from each relation that produce the lowest
number of join results to be dropped. [8] proves that IS is an m-approximation
algorithm. [8], however, does not consider another shedding constraint for multi-
joins, i.e., when altogether a total of H tuples need to be deleted from relations
involved in a multi-join. Furthermore, IS does not always generate the maximal
results of a multi-join, which is a major design fault of IS.

We have investigated the features of multi-joins, as well as the sensor networks,
and have developed several shedding strategies for performing multi-joins in
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sensor networks. We consider the shedding problem according to two different
constraints: the local shedding constraint and the global shedding constraint. We
show that our methods are better than IS, which is the only work directly related
to ours, i.e., in solving the load shedding problem of multi-joins under the static
assumption in sensor networks.

3 Problem Statement

In this section, we first discuss the multi-join shedding constraints in sensor
networks. Hereafter, we introduce the measure of MAX-subset in load shedding
and illustrate the approach proposed in [8] through a simple example.

Throughout this paper, it is assumed that relations R1, R2, ..., Rm join with
each other according to the order R1 ��1 R2 ��2 ... ��m−1 Rm, where ��i (1 ≤ i ≤
m−1) is the equal join operation over attributes shared by Ri and Ri+1, and Xi is
the combination of join attributes in Ri. Further assume that Ri (2 ≤ i ≤ m−1)
uses two different attributes to join with Ri−1 and Ri+1, respectively.

3.1 Load Shedding Constraints

According to different applications discussed in Section 1, we design two kinds of
load shedding constraint, which are local shedding constraint and global shedding
constraint.

Definition 1 (Local shedding constraint).Given relations R1, R2, ..., Rm involved
in a multi-join. For each relation Ri, it is required to remove Hi(≤ |Ri|) tuples from
Ri. We call 〈H1, . . . , Hm〉 the local shedding constraint with respect to R1, R2, ...,
Rm, and Hi the local shedding constraint value of relation Ri.

Definition 2 (Global shedding constraint). Given relations R1, R2, ..., Rm in-
volved in a multi-join. It is required to remove a total of H tuples from the m
relations, where 1 ≤ H ≤ |R1|+|R2|+· · ·+|Rm|. We call 〈H〉 the global shedding
constraint over R1, R2, ..., Rm.

Adopting different shedding decisions for multi-joins yield different results, and
the size of each join resultant tuple is used as the measure of corresponding
shedding decision, based on the assumption that each resultant set is equally
important to the query user. We apply the measurement of MAX-subset [8]
to load shedding over multi-joins, and propose several load shedding strategies
based on the two constraints as given in Definitions 1 and 2 to obtain larger pos-
sible retained join results than the results computed by using existing approach.

3.2 Overview of the Independent Shedding (IS) Strategy

[8] proposes an approximate algorithm IS that handles load shedding based on
the local shedding constraint. IS independently deletes Hi (1 ≤ i ≤ m) tuples
that produce the fewest join results from Ri in a multi-join. We illustrate how
IS works through Example 1.
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Fig. 1. R1 ��1 R2 ��2 R3, where ��1 is R1[A] = R2[A] and ��2 is R2[B] = R3[B]

Example 1. Assume that relations R1, R2, and R3 are joined together in the
order of R1 ��1 R2 ��2 R3 such that the predicate of ��1 is R1[A] = R2[A] and
the predicate of ��2 is R2[B] = R3[B] as shown in Fig. 1.

As shown in Fig. 1, if no shedding is performed on any relation, t1 in R1 can
produce 2 results, while t2 and t3 each can produce 1 result, whereas t1 and t2
in R3 each can produce 1 result, while t3 in R3 can produce 2 results. Given a
local shedding constraint 〈2, 0, 2〉 applied to R1, R2, and R3, IS drops t2 and t3
from R1, and t1 and t2 from R3, since they are the ones that produce fewest
results when considering load shedding on the three relations independently.
Unfortunately, IS obtains zero-join results after shedding, i.e., after shedding,
R1 ��1 R2 ��2 R3 = Ø. Instead, if we drop t2 and t3 from R1, and t2 and t3
from R3, then R1 ��1 R2 ��2 R3 yields 1 result, which is a better solution than
IS in terms of generating maximal join results. Since IS considers tuples from
different relations independently, it isolates the complex relationships among
all the tuples in different relations involved in a multi-join, and as a result, its
multi-joins may not obtain the maximum resultant sets.

4 Our Load Shedding Strategies

In this section, we introduce our load shedding techniques, which include three
shedding strategies conforming to local shedding constraint: (1) the basic local
associated shedding strategy, (2) the max-loss-first associated shedding strategy,
and (3) the multi-round associated shedding strategy, and global associated shed-
ding strategy to global shedding constraint.

The basic local associated shedding strategy performs shedding in an ordered
manner, through which larger join results can be retained than the ones com-
puted by using strategy adopted by IS [8]. The max-loss-first and the multi-round
strategy are designed for improving the basic local associated shedding strategy
by quickly defining a shedding order and multiplying the number of rounds of
shedding, respectively. The global associated shedding strategy, on the other
hand, solves the shedding problem under the global shedding constraint using
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a global ranking of tuples on all relations. Prior to introducing the proposed
strategies, we define different terms used in the strategies.

4.1 Output rate

In a multi-join R1 ��1 R2 ��2 ... ��m−1 Rm, suppose t is a join attribute value in
relation Ri (1 ≤ i ≤ m), then output rate(t) is defined as the number of tuples
generated by each input tuple that has the join attribute value t, i.e.,

output rate(t) =
1

|δXi−1=t(Ri)|
|R1 ��1 . . . ��i−1 δXi−1=t(Ri) ��i . . . ��m−1 Rm|.

Note that if two tuples in one relation have the same join attribute value, then
they must have the same output rate. Hence, we only compute the output rate
of each join attribute value, instead of tuples.

It is not desired to obtain output rate using the above equation, since we can
only obtain the result of multi-join after the join-operation has been processed
at the proxy node. In order to calculate output rate before computing the join-
operation at proxy node, we calculate the frequency of each join attribute value
and send those frequencies to proxy node to compute the output rate of each
join attribute value. For relation R1 (Rm, respectively), the frequency f1(v)
(fm(v), respectively) of join attribute value v is defined as the number of tuples
in δX1=v(R1) (δXm=v(Rm), respectively). For relation Ri (2 ≤ i ≤ m− 1), the
frequency fi(u, v) of join attribute values (u, v) in a tuple of Ri is defined as the
number of tuples in δXi=(u,v)(Ri).

The output rate of each attribute value v in relation R1 (Rm, similarly) is
defined as follows:

output rate(v) =∑
(v,u)∈R2[X2]

(f2(v, u)
∑

(u,w)∈R3[X3]

(. . .
∑

(g,h)∈Rm−1[Xm−1]

(fm−1(g, h) · fm(h)) . . .))

The output rate of each attribute value in relation Ri (2 ≤ i ≤ m− 1) is defined
as follows:

output rate(u, v) =

(
∑

(w,u)∈Ri−1[Xi−1]

(fi−1(w, u) . . .
∑

(k,p)∈R2[X2]

(f2(k, p) · f1(k)) . . .)

·(
∑

(v,o)∈Ri+1[Xi+1]

(fi+1(v, o) . . .
∑

(g,h)∈Rm−1[Xm−1]

(fm−1(g, h) · fm(h)) . . .))

We demonstrate in Example 2 the process of computing the output rates using
frequency information on various join attributes.

Example 2. Assume that three relations R1, R2, and R3 are joined in the order
of R1 ��1 R2 ��2 R3, and each relation involved in the join has eight tuples.
The frequency information of join attribute value in R1, R2 and R3 (denoted as
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Fig. 2. (a) Frequencies of join attribute values. (b) Output rates of join attribute values.

f1, f2, and f3, respectively) are shown in Fig. 2(a), which are used to compute
the output rates as shown in Fig. 2(b). For example, the output rate of the join
attribute value ‘b’ in R1 is

output rate(b) = f2(b, a) · f3(a) + f2(b, c) · f3(c) = 1 · 5 + 3 · 1 = 8.

The output rate of the attribute value ‘(a, a)’ in

output rate(a, a) = f1(a) · f3(a) = 2 · 5 = 10.

The output rate values of other tuples can be computed likewise and are shown
in Fig. 2(b).

4.2 The Basic Local Associated Shedding (BLAS) Strategy

IS considers tuples from different relations independently, and often can not gen-
erate the maximum results of a multi-join. In order to improve IS, we propose
the basic local associated shedding strategy (BLAS for short), which is designed
to consider the load shedding on tuples in an associate way, in stead of indepen-
dently. First, BLAS arranges relations in an order, which is called the shedding
order in BLAS. For example, consider the three-relations-join R1 �� R2 �� R3 un-
der the shedding constraint 〈H1, H2, H3〉, there are six possible shedding orders,
e.g., R1 → R2 → R3 and R3 → R2 → R1. In a shedding order, BLAS starts from
the first relation Ri(1 ≤ i ≤ 3) and drops Hi tuples with the lowest output rate
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Table 1. Different shedding orders on relations in Example 2 lead to different join
results under the local shedding constraint 〈4, 4, 4〉. Item “ 3·c ” under the “Drop
Tuples from R1” column denotes that three tuples with the attribute value ‘c’ are
removed from relation R1 when shedding is performed.

Shedding # of Join Drop Tuples Drop Tuples Drop Tuples
Order Results from R1 from R2 from R3

R1→R2→R3 24 1·b, 3·c 2·(b,c), 1·(c,a), 1·(c,c) 1·a, 2·b, 1·c
R1→R3→R2 24 1·b, 3·c 2·(b,c), 1·(c,a), 1·(c,c) 1·a, 2·b, 1·c
R2→R1→R3 24 1·b, 3·c 3·(b,c), 1·(c,c) 1·a, 2·b, 1·c
R2→R3→R1 24 1·b, 3·c 3·(b,c), 1·(c,c) 1·a, 2·b, 1·c
R3→R1→R2 18 1·a, 3·c 2·(a,a), 1·(c,a), 1·(c,c) 2·a, 2·b
R3→R2→R1 18 1·b, 3·c 3·(b,c), 1·(c,c) 2·a, 2·b

values among all tuples in Ri. Hereafter, the output rate values of tuples in the
second relation in the shedding order are updated, which is followed by choosing
tuples that yield the smallest join results in the second relation to drop. This
process is repeated until shedding over the last relation in the shedding order is
accomplished.

Consider Example 1 again. Given the local shedding constraint 〈2, 0, 2〉 (i.e.,
does not drop any tuples from R2). If the shedding order is R1 → R3 → R2,
then BLAS first drops t2 and t3 from R1. While noting that retaining t3 in R3
would yield empty result, BLAS will drop t3 from R3. Hereafter, another tuple
in R3 will be dropped, and BLAS will randomly select t1 or t2 to drop. As a
result, BLAS can generate 1 result, instead of none using IS.

Note that different shedding orders result in different performances of BLAS.
In Example 2, suppose the local shedding constraint is 〈4, 4, 4〉, which yield 6
different shedding orders, and the number of join results are shown in Table 1.
Note that different shedding orders yield the same number of join results if the
number of shed tuple values of each corresponding relation is the same, since ��i

is associative and commutative. (See, for example, the first two shedding orders
in Table 1.)

In order to obtain the largest join results, BLAS explores the shedding order
space and chooses the one with the join result with the largest number of tuples
to be the final shedding decision.

4.3 The Max-Loss-First Associated Shedding (MxLF) Strategy

BLAS searches the order space to find the best order, i.e., selects one of the
shedding orders that yields the largest results among all the orders in the order
space, as the final shedding decision. However, when m (m > 1) relations are
joined, there are m! different shedding orders. If m is very large, the searching
cost could be very high. In solving this problem, we propose the max-loss-first
associated shedding strategy (MxLF for short), which computes only one shed-
ding order in a multi-join, instead of m! shedding orders. For example, instead
of considering the six shedding orders as shown in Table 1, MxLF computes only
the shedding order R1 → R3 → R2.
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When performing shedding over relations, the shedding loss of a relation R is
the number of lost join tuples caused by shedding over R. In MxLF, the larger
the shedding loss is, the higher the priority it is in the shedding order to be
adopted.

We define two different methods that follow the design philosophy of MxLF.
In the first method, MxLF calculates the shedding loss of each relation while
shedding is being performed. First of all, MxLF computes the shedding loss of
each relation, given that the sets of lowest producing tuples are dropped (i.e., for
each relation Ri, Hi tuples are dropped). The relation with the largest loss value
is chosen as the first one in the shedding order. Hereafter, MxLF computes the
revised shedding losses of the remaining relations, i.e., updating the shedding
losses of the other relations involved in the multi-join due to the shedding on
the first relation. This process is repeated for choosing the next relation in the
shedding order.

In the second method, MxLF computes the shedding loss of each relation only
once before all shedding is processed. Hereafter, the loss values are used to rank
relations in a descending order, and this order is used as the shedding order by
MxLF.

We call the two MxLF methods MAX1 and MAX2, respectively. Note that
MAX1 is the real max-loss-first method, whereas MAX2 uses only the loss value
before shedding of each relation involved in a multi-join without prorated ad-
justments on shedding losses on other involved relations to estimate the real loss
value during the shedding process. Obviously, MAX2 is more practical since its
computational cost is lower than MAX1. Furthermore, MxLF is just an approx-
imate method that chooses a shedding order quickly in order to avoid the cost
of searching the order space in BLAS. Whether MxLF can choose the optimal
shedding order is largely dependent on the data sets to be joined. We have ex-
perimented many data sets in which MxLF yields the optimal shedding order in
most cases; however, occasionally MxLF fails, which is anticipated.

4.4 The Multi-round Associated Shedding (MLAS) Strategy

Even though in most cases, MxLF can find the best shedding order among all m!
possible orders when m relations are joined, it may not yield the maximum resul-
tant set. For instance, consider the shedding order R2 → R1 → R3 → ... → Rm

is chosen by MxLF when joining R1, R2, ..., Rm under the local shedding con-
straint 〈H1, H2, ..., Hm〉. MxLF first removes H2 number of the least productive
tuples from R2, which is followed by computing the output rates of tuples in R1
and dropping H1 number of the least productive tuples from R1. Suppose in
R2, tuple t that matches with tuples s1, s2, ..., si (i ≥ 1) in R1 is retained, but
s1, s2, ...., si are all removed from R1 in the subsequent shedding step. This causes
t ∈ R2 to become “useless,” as shedding using a shedding order is irreversible,
i.e., shedding using shedding orders can only work forward, but not backward.

To further enhance BLAS (or MxLF), we propose the multi-round associated
shedding strategy (MLAS for short). MLAS satisfies the local shedding constraint
through multi-rounds of BLAS, and in each shedding round the local shedding
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constraint values are fractions of the original ones. For example, if the original
local shedding constraint is 10 tuples for each relation and the round number is
set to be 5, then MLAS processes the shedding through 5 rounds of consecutive
shedding. In each round BLAS is adopted to drop the two least productive tuples
from each relation. The shedding rounds are performed one after the other,
thus in the latter rounds the output rates of tuples which are retained from the
former rounds are calculated and the least productive tuples in each relation are
dropped. Adopting this strategy, MLAS can minimize the probability of retaining
least productive tuples or shedding tuples that yield the largest resultant sets.
In the example above, if tuple t ∈ R2 becomes “useless” after the first shedding
round, t will be dropped by MLAS in the subsequent shedding round.

In MLAS, the number of rounds to be processed has the impact on the resul-
tant size of multi-joins. In most cases, more rounds yield larger resultant sizes,
even though occasionally more rounds lead to smaller resultant sizes. As shown
in Fig. 6(a), the resultant size of the 5th round is smaller than the resultant size
of the 4th round.

4.5 The Global Associated Shedding (GAS) Strategy

The global associated shedding strategy (GAS for short) considers tuples to be
shed from all relations globally under global shedding constraint 〈H〉 rather than
shedding individual relations. Before shedding, the output rate of each tuple in
each relation involved in a multi-join is calculated and a global ranking of all
the tuples is established according to the output rate value of each tuple in the
descending order. Tuples at the end of the ranking, regardless which relation
they come from, are dropped because they have the smallest output rate values
among all the tuples (and thus are treated as “least productive” tuples).

We can also adopt the multi-round shedding strategy on GAS, in which a
set of tuples with the smallest output rates among others are dropped from the
global ranking in each shedding round, and the dropped set size in each round
is a fraction of H . This process is similar to that of MLAS.

5 Experimental Results

In this section, we study the effect of our proposed load shedding strategies
through 3-relations equi-join. First, we compare the number of results obtained
by applying the local associated shedding approaches and IS considering different
types of data distributions, data sizes under different local shedding constraint.
Second, we study the performance of the global shedding approach GAS and the
local shedding approach BLAS.

We generated five synthetic data sets as shown in Table 2 by considering
two common types of data distributions, i.e., uniform distribution and normal
distribution. Three data sets are uniformly distribution, whereas the other two
data sets are normally distribution. In each data set, let |R1| = |R2| = |R3|
(where |Ri| is the number of tuples in Ri, i = 1, 2, 3). In the case of 3-relations
equi-join, each of R1 and R3 provides an join attribute to join with R2, while
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Table 2. Synthetic data sets, in which “Size” means the number of tuples in each
relation

Data set Size Distribution Parameters
1 100K Uniform D1=D2=D3=D4, |D1|=50
2 100K Uniform D1=D2⊂D3=D4, |D1|=30, |D3|=60
3 10 Uniform D1=D2=D3=D4, |D1|=3
4 100K Normal μ1=0, μ2=20, μ3=40, μ4=60, σ1=σ2=σ3=σ4=10
5 100K Normal μ1=μ2=μ3=μ4=0, σ1=σ2=σ3=σ4=1

R2 provides two join attributes to join with R1 and R3, respectively. We assume
that the involved four join attributes come from the value domain D1, D2, D3,
and D4, respectively. For uniform distribution, we generated different data sets
by adjusting the number of value domains, i.e. |Di|. For normal distribution, we
generated different data sets by setting different distribution expectations and
standard deviations of Di (i = 1, ..., 4), i.e. μi and σi, respectively.

We ran each test for 10 times to obtain average results over the five data sets.
Through the experiments on different data sets. We conclude that the proposed
local shedding strategies come very close to generate the optimal solution. We
also compared the experimental results of GAS and BLAS.

The configuration on the hardware and software used in the experiments
were (1) hardware: CPU P3 1.0GHz, memory: 384MB RAM, disk size: 40G;
(2) operating system: Microsoft Windows 2000 Professional; (3) programming
environment: Microsoft Visual C++ 6.0.

5.1 Effect of Data Distribution

We compared the effect of two common types of data distributions, i.e., uniform
distribution and normal distribution using data sets 1, 2, 4, and 5. We randomly
chose tuples from data sets to form Ri (i = 1, 2, 3) and varied the number of
tuples in |Ri| from 10K to 100K. In both uniform and normal data distributions,
we compared the number of results using different load shedding strategies. Let
Ti = Hi

|Ri| , where Hi is the local shedding constraint value, and Ri is the number
of records in relation Ri. Fig. 3 shows the comparison results on data sets 1 and
2, and Fig. 4 shows the comparison results on data sets 4 and 5.

Earlier, we have mentioned that BLAS exhaustively searches the order space
to find the best order which generates the maximal results. Fig. 3 shows that the
number of join results using BLAS and MxLF are significantly higher than that
of IS. When the number of tuples in each relation Ri increases, the gap between
BLAS (MxLF, respectively) and IS becomes wider, which indicates that BLAS
and MxLF are especially good for large data set.

Fig. 4 shows that when the attribute values follow normal distribution, both
BLAS and MxLF outperform IS, even though the differences between BLAS
(MxLF, respectively) and IS are not as significant as that in the data sets 1 and
2 with uniform distribution. It is interesting to know that in Fig. 4(c), when all
the join attributes are in standard normal distribution, the BLAS, MxLF, and
the IS superposed with one another. The reason is that join attributes in data
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Fig. 4. Comparisons between local associated shedding approaches and IS using various
data sets with normal distribution

set 5 conform to standard normal data distribution. That is, for a join attribute
value v, if v has high (low, respectively) frequency in one relation, v must also
have high (low, respectively) frequency in other relations. When IS is adopted
to perform load shedding, tuples that produce the smallest amount of tuples in
the multi-join results may be ranked at the beginning (end, respectively) of the
associated relation. In this scenario, all involved relations will be consistent in
making the decision to drop the same join attributes. Since there is little conflict
between relations in making deletion decisions, the number of join results is
maximized and there is little room for BLAS to improve.

Both Fig. 3 and Fig. 4 indicate that the curves of MxLF rarely fall below the
curves of BLAS, which implies that in most cases MxLF often chooses the best
shedding orders.

5.2 Effect of Different Local Shedding Constraint

We used three different data sets (i.e., 1, 3, and 4) to test the effect of applying
different local shedding constraint by varying Ti from 0.1 to 0.9.

Figs. 5 (a) and (b) show the comparison results using data sets 1 and 4
with uniform and normal data distribution, respectively. No matter which data
distribution, i.e. normal or uniform distribution, is adopted and various numbers
of tuples to be dropped from different relations, BLAS and MxLF always perform
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better than IS. Figs. 5 (a) and (b) also show that MxLF behaves well under
various local shedding constraint.

Fig. 5 (c) shows the comparisons between different approaches and the optimal
solution using data set 3 (a small data set). We plotted the number of join results
in Fig. 5(c) generated by IS, BLAS, and the optimal solution. The figure shows
that the curves of BLAS and the optimal solution are superposed with one
another, and IS does not catch up with the optimal solution in most cases. We
have observed that in most cases BLAS comes very close to the optimal solution.

5.3 Effect of Round Numbers in MLAS

Intuitively, one may think that more rounds lead to a larger resultant set. We
have verified this hypothesis through a number of test cases. We used data sets
1 and 4, and randomly chose a number of tuples from these data sets to form Ri

(i ≥ 1) and |Ri|=20K. Figs. 6(a) and (b) show the number of join results using
different round numbers in MLAS (BLAS is the special case when the round
number equals to 1). The round numbers were changed from 1 to 50.

Figs. 6(a) and (b) show that when the shedding round number is small, the
multi-round approach significantly increases the number of tuples in the multi-
join result, and when the round number increases to a certain value, the number
of tuples in the multi-join result remains stable. We conclude that a balance point
can be found to obtain a large number of tuples in a multi-join result through
small numbers of multi-rounds. For example, we can set the round number in
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the uniform data set (as shown in Fig. 6(a)) to be 7 so that we can obtain 876M
join results.

5.4 Comparison Between GAS and BLAS

In order to compare global shedding approach with local shedding approaches,
we let the global constraint value H to be the sum of three local constraint
values, i.e. H=H1+H2+H3. We used data set 1 and assume that each relation
Ri (i = 1, 2, 3) has 20K tuples.

Fig. 6 (c) compares GAS and BLAS under different local shedding constraint
values for different relations. The figure shows that the number of results gener-
ated by GAS is always greater than that of BLAS. This is easy to understand,
since GAS globally ranks output rates of tuples from different relations, whereas
local shedding approaches cannot. Fig. 6 (c) shows that under different local
shedding constraint, the number of tuples in multi-join results are different. The
curve marked with “2:5:2” denotes that H1 : H2 : H3 = 2:5:2, which yields the
maximal number of results among the four BLAS curves in Fig. 6 (c), while
the curves marked with “1:1:1” and “4:1:4” have the worst performance among
all the possible local shedding constraint value allocations. These indicate the
existence of potential rules of the optimal load shedding decision in multi-joins,
which will be further investigated in our future work.

6 Conclusion

In this paper we have proposed several associated shedding strategies for multi-
joins in sensor networks, which include (1) the basic local associated shedding
strategy (BLAS), (2) the max-loss-first associated shedding strategy (MxLF), (3)
the multi-round associated shedding strategy (MLAS), and (4) the global associ-
ated shedding strategy (GAS). BLAS improves existing approaches and obtains
large number of multi-join results, whereas MxLF and MLAS further enhance the
performance of BLAS. MxLF can quickly find a shedding order, whereas MLAS
can retain more join results by increasing the shedding rounds. We have also
considered the global shedding constraint for which GAS is proposed. Finally,
we have identified the effect of the proposed load shedding strategies through
experimental results, which show that the proposed strategies generate much
larger number of multi-join results than the ones using existing approaches.
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7. Carney, D., Çetintemel, U. (eds.): Monitoring Streams-A New Class of Data Man-
agement Applications. In Proceedings of VLDB (2002) 469–477

8. Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data
Streams. In Proceedings of ACM SIGMOD(2003) 40–51; Extended version: Seman-
tic Approximation of Data Stream Joins. In IEEE TKDE (2005), Vol. 17 44–59

9. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy Efficient Commu-
nication Protocol for Wireless Micro-sensor Networks. In Proceedings of the 33rd
Hawaii International Conference on System Sciences. (2000) 3005-3014

10. Li, J., Li, J., Shi, S.: Concepts, Issues and Advance of Sensor Networks and Data
Management of Sensor Networks. Journal of Software, Vol. 14. (2002) 1717–1727

11. Madden, S., Franklin, M.J.: Fjording the Stream: An Architecture for Queries over
Streaming Sensor Data. In Proceedings of ICDE (2002) 555–666

12. Mainwaring, A., Polastre, J., (eds.): Wireless Sensor Networks for Habitat Moni-
toring. In WSAN, 2002

13. Motwani, R., Widom, J. (eds.): Query Processing, Resource Management, and
Approximation in a Data Stream Management System. In CIDR (2003) 245–256

14. Reiss, F., Hellerstein, J.M.: Data Triage: An Adaptive Architecture for Load Shed-
ding in TelegraphCQ. In Proceedings of ICDE (2005) 155–156

15. Srivastava, U., Widom, J.: Memory-Limited Execution of Windowed Stream Joins.
In Proceedings of VLDB (2004) 324–335
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Abstract. Time-series subsequence matching is an operation that
searches for such data subsequences whose changing patterns are similar
to a query sequence from a time-series database. This paper addresses a
performance issue of time-series subsequence matching. First, we quan-
titatively examine the performance degradation caused by the window
size effect, and then show that the performance of subsequence matching
with a single index is not satisfactory in real applications. We claim that
index interpolation is a fairly effective tool to resolve this problem. In-
dex interpolation performs subsequence matching by selecting the most
appropriate one from multiple indexes built on windows of their distinct
sizes. For index interpolation, we need to decide the sizes of windows for
multiple indexes to be built. In this paper, we solve the problem of select-
ing optimal window sizes in the perspective of physical database design.
For this, given a set of pairs 〈length, frequency〉 of query sequences to
be performed in a target application and a set of window sizes for build-
ing multiple indexes, we devise a formula that estimates the overall cost
of all the subsequence matchings. By using this formula, we propose an
algorithm that determines the optimal window sizes for maximizing the
performance of entire subsequence matchings. We formally prove the op-
timality as well as the effectiveness of the algorithm. Finally, we perform
a series of experiments with a real-life stock data set and a large volume
of a synthetic data set to show the superiority of our approach.

1 Introduction

Around us, there are a variety of objects such as stock prices, temperature val-
ues, and money exchange rates whose values change as time goes by. The list
of such changing values sampled at a time interval is called a data sequence
for the object[1, 2, 7]. For example, a list of temperature values in New York,
which were measured at every 1:00 AM during a year, could be a data se-
quence. Also, a set of data sequences stored in a database is called a time-series
database[1, 2, 6, 7, 9, 10, 12].

In a time-series database, it is possible to predict future values of an object
by analyzing its past values. Let us assume that we have a time-series database
consisting of stock price sequences of several companies for past 10 years. We
can predict how the stock price of our company will fluctuate next week by
referencing to sequences whose changing patterns are similar to that of our
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company’s in the last week. Similar sequence matching is an operation that finds
such sequences whose changing patterns are similar to that of a given query
sequence from a time-series database[1, 2, 7, 12]. Similar sequence matching is
classified into two categories as follows[7, 12]:

(1) Whole matching: Given N data sequences S1, . . . , SN , a query sequence Q,
and a tolerance ε, we find such data sequences Si that are similar to Q. Here,
we note that the data and query sequences should be of the same length.

(2) Subsequence matching: Given N data sequences S1, . . . , SN , a query se-
quence Q, and a tolerance ε, we find all the sequences Si, one or more
subsequences of which are similar to Q, and the offsets in Si of those subse-
quences.

Since subsequence matching is a generalization of whole matching, it is ap-
plicable to practical applications more than whole matching. In this paper, we
focus our attention on subsequence matching.

As a measure for determining the similarity for arbitrary two sequences
X(=[x0, x1, . . . , xn−1]) and Y (=[y0, y1, . . . , yn−1]) of the same length n, the
Euclidean distance D(X , Y ) defined below is widely used as a basic similarity
measure[1, 4, 5, 7, 8, 13, 14]1. Two sequences X and Y whose D(X , Y ) is below
a user-specified tolerance value ε are regarded similar and are also said to be in
ε-match[12].

D (X, Y ) =

√√√√n−1∑
i=0

(xi − yi)
2 (1)

There have been two basic methods proposed in references [7] and [12] for
subsequence matching. Following reference[12], we call them FRM [7] and Dual-
Match[12], respectively. Both of them use an index for efficient processing of
subsequence matching. Also, they employ the concept of a window as an indexing
unit. The window is a subsequence of a fixed-size w extracted from query and
data sequences. Their common idea for performing subsequence matching is
summarized as follows.

For indexing, windows of size w are extracted from every data sequence. Then,
each window is transformed into a point in f(� w)-dimensional space by using
the Discrete Fourier transform(DFT) or wavelet transform. All these points are
stored into an R*-tree[3], a multidimensional index structure.

For subsequence matching with a tolerance ε, windows of size w are extracted
from a query sequence of length l(≥ w), and are transformed into points in
f -dimensional space. For each point, a range query of a range ε�

√
p(p = �l�w�)

is performed on the R*-tree built in the indexing stage. This process is called
an index searching step. As a result, candidate subsequences, each of which

1 In addition to the Euclidean distance, the Manhattan distance, the maximum dis-
tance in any pair elements[2], and the time warping distance can be also used as a
similarity measure.
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has a high possibility to be in ε-match with a query sequence, are found. For
resolving false alarms[1, 7], which are recommended as the candidates but not
true answers, each candidate subsequence is accessed from disk, and its actual
Euclidean distance to the query sequence is computed. This process is called a
post-processing step.

In both methods, the performance of subsequence matching is highly depen-
dent on the window size. That is, the performance tends to deteriorate as the
difference between the size of a window and the length of a query sequence gets
larger. This phenomenon is called a window size effect [12]. In FRM and Dual-
Match, the size of a window is determined by the minimum among lengths of
query sequences to be issued, and subsequence matching performs by using only
one R*-tree. This approach, however, has a problem that the performance of
subsequence matching degrades seriously as the length of a query sequence in-
creases. We can consider building of indexes for all the lengths of query sequences
to be issued in a target application. This requires a large cost of maintaining a
large number of indexes, thereby being infeasible in real applications.

In this paper, we propose a novel subsequence matching method based on
the concept of index interpolation[11]. Index interpolation constructs multiple
indexes on different sizes of windows and processes subsequence matching by
selecting the most appropriate one for a given query sequence. Index interpola-
tion is applicable to both FRM and Dual-Match, and is expected to enhance the
performance of subsequence matching significantly.

In index interpolation, more indexes provide better performance, but require
a higher cost for their maintenance. This paper mainly focuses on the selection
of the sizes for multiple windows that maximize the performance of subsequence
matching when the number of indexes is given.

We summarize the contributions of the paper in the following. First, we quan-
titatively show the performance degradation of subsequence matching due to the
window size effect, and then reveal that the overall performance of subsequence
matchings using a single index is not satisfactory in real applications. We claim
that the concept of index interpolation is quite useful for solving this problem.
For subsequence matching by using index interpolation, we need to determine
the sizes of windows on which multiple indexes are built. We employ the physi-
cal database design methodology to select optimal sizes of windows. That is, we
devise a formula that estimates the entire cost of performing all the subsequence
matchings when there are a set of pairs 〈length, frequency〉 of query sequences to
be issued and a set of sizes of windows on which indexes are built. By using this
formula, we propose an algorithm that decides the optimal sizes of windows that
maximize the overall performance of all the subsequence matchings. We also for-
mally verify the optimality and effectiveness of the proposed algorithm. Finally,
we show the effect of performance enhancement by the proposed algorithm over
previous ones via extensive experiments.

The paper is organized as follows. Section 2 briefly introduces previous meth-
ods for subsequence matching, and discusses their advantages and disadvantages.
Section 3 presents a result of preliminary experiments that show how the gap
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between the length of a query sequence and the size of a window affects the
performance of subsequence matching. Section 4 proposes a new method based
on index interpolation, and addresses the selection of multiple window sizes for
optimizing the performance of subsequence matching. Section 5 verifies the su-
periority of the proposed method via a series of experiments. Finally, Section 6
summarizes and concludes the paper.

2 Related Work

2.1 FRM

Reference [7] proposed a subsequence matching method that allows data and
query sequences of arbitrary lengths. Following reference [12], we call this method
FRM. FRM uses the concept of a window of a fixed length for R*-tree indexing.

For indexing, FRM extracts sliding windows of size w from every possible
position inside each data sequence S of length len(S)(≥ w), and then it converts
every sliding window into a point in f(� w)-dimensional space by using DFT.
The number of points extracted from each data sequence S is (len(S)−w+1). As
a result, a large number of points appear in this way, and thus storage overhead
for storing these points individually also gets large. For alleviating this problem,
FRM forms the minimum bounding rectangles(MBR) enclosing multiple points
and builds an R*-tree[3] on these MBRs instead of points.

For subsequence matching, FRM extracts p disjoint windows of size w from a
query sequence of length len(Q)(≥ w) where p = �len(Q)/w�, and then converts
every disjoint window into a point in f -dimensional space by using DFT. For
each point, FRM performs a range query on an R*-tree by using the point
as a center and ε/

√
p as a range. This index searching step finds the points

that correspond to the candidate subsequences that are highly likely to be true
answers. To discard false alarms, it performs the post-processing step; i.e., it
accesses all the sequences containing the candidate subsequences from the disk,
and computes their Euclidean distance to the query sequence. Finally, it returns
the final result set containing only the true answers after leaving out the false
alarms.

2.2 Dual-Match

In order to reduce storage overhead, FRM stores the MBRs, each of which
encloses multiple points, instead of storing individual points in an R*-tree. In-
herently, these MBRs have dead space[3] inside. This dead space is the primary
cause of false alarms, and thus degrades the overall performance of subsequence
matching[12]. Moon et al.[12] proposed a method called Dual-Match to overcome
this problem.

In contrast to FRM that locates sliding windows on data sequences and dis-
joint windows on a query sequence, Dual-Match extracts disjoint windows from
data sequences and sliding windows from a query sequence. By this simple role
exchange, Dual-Match reduces the number of points to be stored in the R*-tree
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by the ratio of 1/w. This makes it possible to store individual points themselves
rather than MBRs in an R*-tree. As a result, Dual-Match does not suffer from
the problem caused by the dead space inside MBRs any longer, and thus achieves
considerable performance improvement.

3 Motivation

3.1 Window Size Effect

Given a query sequence, subsequence matching with FRM or Dual-Match tends
to incur more false alarms as the window size gets smaller. For example, the win-
dow size for an R*-tree R1 is larger than that for an R*-tree R2. In this case, the
candidate set returned by searching R2 would contain extra false alarms, which
do not exist in the set returned by searching R1. More false alarms require more
time in the post processing step, thereby degrading the overall performance of
subsequence matching. This phenomenon is called window size effect [12]. There-
fore, the choice of a large window in R*-tree construction is so beneficial to
efficient processing of subsequence matching.

On the other hand, the R*-tree thus built is useless in subsequence matching
when its window size is larger than the length of (in FRM ) and half the length
of (in Dual-Match) a query sequence[7, 12]. In this case, subsequence match-
ing takes much time since the sequential scan should be employed for finding
matched subsequences. Therefore, it is crucial to choose a proper size of windows
in the indexing stage for efficient processing of subsequence matchings.

Let us denote minQLen as the minimum among the lengths of query se-
quences to be used in a target application. The previous methods determine
the window size for indexing as minQLen (in FRM ) or �(minQLen + 1)/2� (in
Dual-Match). In real applications, however, query sequences of various lengths
are issued regardless of the window size employed in indexing. Thus, the perfor-
mance degradation of subsequence matching becomes fairly serious in case the
difference between the length of a query sequence and the size of window is large.

3.2 Preliminary Experiments

We used 620 Korean stock price sequences of length 1,024 in experiments. Other
experiment environments such as hardware and software settings, extraction of
windows from data sequences, the lower-dimensional transform, and construction
of indexes are the same as those explained in detail in Section 5.

We performed two preliminary experiments. The first experiment used only a
single index of the fixed window size and observed the performance tendency of
subsequence matching while changing the length of query sequences. The window
size was set to w = 64 and the lengths of query sequences were set to Len(Q) =
64, 128, 256, 512, and 1,024. The second experiment used query sequences of the
fixed length and observed the performance tendency of subsequence matching
while changing the window size. The length of query sequences used was Len(Q)
= 1,024, and the window sizes were w = 64, 128, 256, 512, and 1,024.



70 S.-H. Lim, H.-J. Park, and S.-W. Kim

 0

 50

 100

 150

 200

 250

 300

 350

 1024 512 256 128 64

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Query Sequence Length

 0

 50

 100

 150

 200

 250

 300

 350

 1024 512 256 128 64

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Query Sequence Length

(a) FRM (b) Dual-Match

Fig. 1. Variation of Total Execution Time According to Query Sequence Lengths
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Fig. 2. Variation of Total Execution Time According to Window Sizes

We used the total execution time of subsequence matchings for all the query
sequences as a performance factor. For every query, we adjusted a tolerance ε so
that 20 subsequences should be returned as a final result set.

Figures 1(a) and 1(b) show the results of the first experiment for FRM and
Dual-Match, respectively. In the figures, the horizontal axes represent the length
of query sequences, and the vertical axes the total execution time in the unit of
seconds. The results show that the total execution time increases as the query
sequence gets longer for both FRM and Dual-Match. The rationale of the results
is that, as the difference between the length of query sequences and the size of
windows increases, the number of candidate subsequences obtained from the
index searching step also increases due to the window size effect.

Figures 2(a) and 2(b) show the results of the second experiment. The horizon-
tal axes represent the window size, and the vertical axes the total execution time.
The results show that the total execution time rapidly decreases as the window
size increases for both FRM and Dual-Match. The rationale of the results is the
same as that of the first experiment.

In summary, the performance of subsequence matching dramatically dete-
riorates as the gap of the length of query sequences and the size of windows
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increases. This implies that the performance of subsequence matchings is not
satisfactory to users when their processing is done with only a single R*-tree
built on windows whose size is determined by considering the minimum length
of query sequences as in the prior work.

4 The Proposed Method

In this section, we propose a novel method based on the concept of index inter-
polation to overcome the performance degradation caused by the window size
effect. In index interpolation, we build multiple indexes on windows of different
window sizes, and then use an index whose window size is the most appropriate
for a given query sequence in subsequence matching.

As the number of indexes increases, the cost for maintaining indexes also
increases while subsequence matching performs better. The cost includes not
only the storage space for storing indexes but also the time for updating indexes
when data is inserted, deleted, or modified. Thus, it is necessary to build as few
indexes as possible.

In this section, we consider determining a list of optimal window sizes for a
given set of pairs 〈lengths and its frequencies〉 of query sequences. The lengths
and frequencies of query sequences can be easily obtained by analyzing a target
application, which is a widely-accepted assumption in physical database design.

4.1 Optimal Window Size

For further presentation, we first introduce some notations and definitions. We
denote the length of a query sequence by li, i ≥ 1, and do the list of n query
sequence lengths by 〈l1, l2, . . . , ln〉 where l1 < l2 < · · · < ln. Similarly, we
denote the frequency of a query sequence length li by fi and do accordingly
the frequency list of 〈l1, l2, . . . , ln〉 by 〈f1, f2, . . . , fn〉. We denote a window size
by wi, i ≥ 1, and do the list of m window sizes by 〈w1, w2, . . . , wm〉 where
w1 < w2 < · · · < wm. In index interpolation, we perform subsequence matching
by selecting the most appropriate one from 〈w1, w2, . . . , wm〉 and by using its
corresponding index. We call this window size an optimal one for the length of
the query sequence, lk, and denote it by wopt(lk).

We show that the optimal window size wopt(lk) for a query sequence length
lk in a window list 〈w1, w2, . . . , wm〉 is computed by

wp = max{wi|wi ≤ lk (1 ≤ i ≤ m)} for FRM and (2)

wq = max{wi|wi ≤ �(lk + 1)/2� (1 ≤ i ≤ m)} for Dual-Match (3)

We show that wp is the optimal window size for FRM. (One can show wq is the
optimal window size for Dual-Match in a similar way.) We first show any window
size in 〈wp+1, . . ., wm〉 cannot be the optimal one for query sequence length lk.
By definition of wp, windows sizes wp+1, . . . , wm are all larger than lk and the
indexes for those window sizes cannot be used in subsequence matching for a



72 S.-H. Lim, H.-J. Park, and S.-W. Kim

query sequence of length lk[7]. Thus, in this case, we have to perform sequential
scan for a query sequence of length lk, which shows as poor performance as no
indexes are built.

Now, we show that wp is the optimal window size for lk among 〈w1, . . . , wp〉.
Every window in 〈w1, . . . , wp〉 is not larger than lk and thus an index built for
any window size in 〈w1, . . . , wp〉 can be used for processing a query sequence
of length lk without any concern of false dismissal[7]. According to the window
size effect, as a window size is nearer to lk, the performance becomes better.
Therefor, it is hold that wp is wopt(lk) the optimal window size for lk.

4.2 Cost Function

Given a query sequence length lk and its frequency fk, the cost of processing a
query sequence of length lk over the list of window sizes W = 〈w1, w2, . . . , wm〉,
denoted by C(lk, fk, W ), is defined as follows.

C(lk, fk, W ) = fklk/wopt(k)

This cost function is inferred from the observation from our preliminary experi-
ments in Section 3: The cost of subsequence matching was found to be roughly
proportional to the query sequence length and to be inversely proportional to
the window size.

Now, we extend the cost function to a more general case. Given a list of
query sequence lengths L = 〈l1, l2, . . . , ln〉 and a list of their frequencies F =
〈f1, f2, . . . , fn〉, the processing cost of subsequence matchings using W , denoted
by C(L, F, W ), is the sum of C(lk, fk, W )’s for all 1 ≤ k ≤ n, i.e.,

C(L, F, W ) =
n∑

k=1

fklk/wopt(k). (4)

Also, the cost function for a sublist L[i..j]=〈li, . . . , lj〉 and F [i..j]=〈fi, . . . , fj〉
over W is defined analogously.

C(L[i..j], F [i..j], W ) =
j∑

k=i

fklk/wopt(k). (5)

4.3 Computing of Optimal Window Size List

In this section, we present an algorithm for determining a list of optimal window
sizes W when L and F are given. First, we give a formal definition of W , the
optimal window size list.

Definition 1. For L = 〈l1, l2, . . . , ln〉, F = 〈f1, f2, . . . , fn〉, and m, a window
size list W = 〈w1, w2, . . . , wm〉 is considered optimal if and only if C(L, F, W ) ≤
C(L, F, W ′) for any window size list W ′ of length m. The cost C(L, F, W ) is
called the optimal cost of L and F over the window size lists of length m and
also denoted by Om(L, F ).
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We show that every window size in W , the optimal window size list, corresponds
to some query sequence length lj in the next lemma. This implies that, for
determining W , we just need to consider nCm, instead of lnCm, lists of windows
sizes, where C represents combination.

Lemma 1. If a window size list 〈w1, w2, . . . , wm〉 is an optimal window size list
of length m(≤ n) for L=〈l1, l2, . . . , ln〉 and F =〈f1, f2, . . . , fn〉, 〈w1, w2, . . . , wm〉
= 〈lg(1), lg(2), . . ., lg(m)〉 for some 1 ≤ g(1) < g(2) < · · · < g(m) ≤ n.

Proof. We only need to show that each window size wi for 1 ≤ i ≤ m is the
same as lj for some 1 ≤ j ≤ n. We prove it by contradiction. Assume that w′

i

is a window size that is not same as any lj for 1 ≤ j ≤ n. Then, there exist
two consecutive query sequence lengths la−1 and la satisfying la−1 < w′

i < la.
One can show that the cost of subsequence matchings of L and F by using
〈w1, . . . , w

′
i, . . . , wm〉 is larger than that by using 〈w1, . . . , la, . . . , wm〉, which

contradicts that 〈w1, w2, . . . , wm〉 is optimal. Hence, every window size wi is
the same as some lj .

Next, we show how to compute the optimal cost Om(L, F ) for L=〈l1, l2, . . . , ln〉
and F = 〈f1, f2, . . . , fn〉. We note that we can obtain the optimal window size list
of length m as a result of computing the optimal cost Om(L, F ). One can con-
sider a naive approach that computes the costs over all possible window size lists
of length m and then gets the minimum of them. However, this approach should
compute O(nm) values, which are too much. In this paper, we present an algo-
rithm that computes the optimal cost Om(L, F ) in O(mn2) time using dynamic
programming. The main idea is that we first compute the optimal costs for query
sequence sublists and then extend them to get the optimal cost for the whole query
sequence list.

The computation of the optimal cost Om(L, F ) consists of two steps. In step 1,
we compute an n×n array NC where each entry NC(i, j) for 1 ≤ i ≤ j ≤ n stores
C(L[i..j], F [i..j], 〈li〉), i.e., the cost of the sublists 〈li, . . . , lj〉 and 〈fi, . . . , fj〉 over
the window size list 〈li〉. In step 2, we compute the optimal cost Om(L, F ) using
the array NC.

Step 1. Compute the array NC: We compute C(L[i..j], F [i..j], 〈li〉) for each
1 ≤ i ≤ j ≤ n and store it into NC(i, j). We show how to compute all NC(i, j)’s
in O(n2) time. By equation (5), NC(i, j) =

∑j
k=i fklk/li. Thus, NC(i, i) = fi

and NC(i, j) = NC(i, j−1)+fjlj/li for all 1 ≤ i < j ≤ n, which means that we
can compute NC(i, i) in O(1) time, and we also can compute NC(i, j) in O(1)
time from NC(i, j − 1). Hence, we get the following lemma.

Lemma 2. We can compute all NC(i, j)’s for 1 ≤ i ≤ j ≤ n in O(n2) time.

Step 2. We compute the optimal cost Om(L, F ): Let C′(i, j) for 1 ≤ i ≤ n and
1 ≤ j ≤ m denote the optimal cost of the sublists 〈li, . . . , ln〉 and 〈fi, . . . , fn〉 over
the list of j window sizes whose smallest window size w1 is li. Then, Om(L, F ) =
C′(1, m). We show that we can compute C′(1, m) by dynamic programming. We
first show the following recurrence is satisfied for C′(i, j) for 1 ≤ i ≤ n and
1 ≤ j ≤ m.



74 S.-H. Lim, H.-J. Park, and S.-W. Kim

Lemma 3. C′(i, j) = minn−j+2
k=i+1 {NC(i, k − 1) + C′(k, j − 1)}.

Proof. By definition of C′(i, j), the smallest window size w1 is li. Consider the
second smallest window size w2. The window size w2 can be one of the query
sequence lengths li+1, . . . , ln−i+1 by Lemma 1. If w2 is lk, C′(i, j) = NC(i, k−1)
+ C′(k, j − 1) ≤ NC(i, k′ − 1) + C′(k′, j − 1) for any i + 1 ≤ k′ ≤ n − i + 1.
Hence, the recurrence is satisfied for C′(i, j).

Finally, we show we can compute C′(1, m) in O(mn2) time. Since we can
compute C′(i, j) in O(n) time by Lemma 3, and we compute at most mn values
of C′(i, j)’s, we can compute C′(1, m) in O(mn2) time and we get the following
lemma.

Lemma 4. We can compute the optimal cost Om(L, F ) in O(mn2) time.

The pseudo-code for computing C′(1, m) is depicted in Figure 3. In lines 1-4,
we compute the array NC. In lines 5-10, we initialize some elements of the C′

array. In lines 11-15, we compute all the elements of the C′ array.

1: for i := 1 to n do
2: NC[i][i] := fi

3: for j := i + 1 to n do
4: NC[i][j] := NC[i][j − 1] + fj lj/li
5: for i := 1 to n do
6: C[i][1] := NC[i][n]
7: for j := 2 to n − i do
8: C[i][j] := ∞
9: for j := n − i + 1 to m do
10: C[i][j] := 0
11: for i := n − 2 downto 1 do
12: for j := 2 to min{m, n − i} do
13: for k := i + 1 to n − j + 2 do
14: temp := NC[i][k − 1] + C[k][j − 1]
15: if (temp < C[i][j]) C[i][j] := temp

Fig. 3. Pseudo-code for computing C′(1, m)

5 Performance Evaluation

5.1 Experiment Environment

We used a real-life data set called K Stock Data and a synthetic data called
Syn Data. K Stock Data, the same one used for our preliminary experiments
presented in Section 3, consists of 620 stock price sequences whose length is
1,024. Syn Data is a synthetic data set comprising random walk data sequences
s = <s1, s2, . . . , sn> generated as follows[1].

si+1 = si + zi (6)
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Here, zi is a random variable that takes an arbitrary value from an interval
[-0.1, 0.1] and s1, the first element of a sequence, is a special value obtained
randomly from the interval [1, 10]. For performing our experiments extensively,
we generated five sets of Syn Data that comprise 2,000, 3,000, 4,000, and 5,000
data sequences of length 1,024, respectively and another five sets of Syn Data
that consist of 1,000 data sequences whose lengths are 2,000, 3,000, 4,000, and
5,000, respectively. On all these data sets, we built R*-trees in the same way as
in our preliminary experiments.

Table 1. Number of Query Sequences in Each Group

Number of query Number of query Sub-total number of
sequence sequences query
groups in each group sequences

4 30 120
5 10 50
6 5 30
16 1 16

Total: 31 216

Also, query sequences have their lengths of multiples of 32 in the range [64,
1,024], and each query sequence belongs to a group by its length. The total
number of groups is 31. We generated query sequences over groups as in Table 1,
which follow the features in real applications. We see that query sequences in
four groups frequently appear, and those in 16 groups do not. As a performance
factor, we used the average execution time for subsequence matchings with the
total of 216 query sequences. We also adjusted a tolerance ε so that 20 final
answers are returned.

The hardware platform used in our experiments is a 2.8 GHz Pentium 4 PC
equipped with 512MB RAM and 9GB hard disk. The software platform is MS
Windows 2000 Server. The language used in development is Microsoft Visual
C++. We set the size of a page for storing both data and R*-trees to 1KB.
For dimensionality reduction, we used the DFT, and extracted six features for
indexing. Since reference [12] already verified that Dual-Match performs much
better than FRM, we only used Dual-Match in our experiments.

We compared the performance of the three methods: (A) Dual-Match with
only one index (as in the original approach), (B) Dual-Match with multiple
indexes whose window sizes are evenly chosen in the range of the minimum and
maximum query sequence lengths, (C) Dual-Match with multiple indexes whose
window sizes are chosen by our approach as shown in Section 4. Hereafter, we
shortly call them methods (A), (B), and (C), respectively.

5.2 Results and Analyses

We ran three types of experiments for performance evaluation. In Experiment 1,
we compared the performance of the three methods (A), (B), and (C) using
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K Stock Data with different numbers of indexes. In Experiment 2 and Exper-
iment 3, we compared the performance of the three methods using Syn Data
while changing the number and the length of data sequences, respectively.
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Fig. 4. Performance with Different Numbers of Data Sequences

Figure 4 shows the results of Experiment 1. The horizontal axis represents
the number of R*-trees employed for subsequence matchings, and the vertical
axis does the average execution time in the unit of seconds. As shown in the
figure, method (A) showed the worst performance, and method (C) showed the
best performance. When using five R*-trees, method (C) performs 7.8 times and
1.5 times better than methods (A) and (C), respectively. Also, it showed perfor-
mance 5.6 times and 3.2 times better than methods (A) and (C), respectively.
The performance gain tends to get larger with a smaller number of R*-trees
employed in methods (B) and (C).

In Experiment 2, we examined the performance tendency of the three methods
while changing the number of data sequences of length 1,024 to 2,000, 3,000,
4,000, and 5,000. We built four R*-trees for methods (B) and (C).

Figure 5 shows the results of Experiment 2. The horizontal axis represents the
number of data sequences, and the vertical axis does the average execution time.
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Fig. 6. Performance with Different Lengths of Data Sequences

In all cases, the performance of method (C) was shown to be better than that
of method (B), which was shown to have better performance than method (A).
Also, the performance gain of method (C) was shown to be about 5.7 times to
6.1 times when compared with method (A), and about 1.9 to 2.1 when compared
with method (B).

In Experiment 3, we investigated the performance change of the three methods
with 1,000 synthetic data sequences of length 2,000, 3,000, 4,000, and 5,000. As
in Experiment 2, we employed four R*-trees for methods (B) and (C).

Figure 6 shows the results of Experiment 3. The horizontal axis represents the
length of data sequences, and the vertical axis does the average execution time.
The results appeared to be quite similar to that of Experiment 2. Regardless
of the length of data sequences, method (C) showed the best performance, and
achieved significant speedup about 6.2 times and 2.0 times over methods (A)
and (B), respectively.

In summary, by employing the concept of index interpolation, we could im-
prove the performance of subsequence matching significantly compared with the
prior approach that uses only a single R*-tree. Also, our method for selecting the
optimal window sizes for multiple R*-trees was shown to be fairly effective when
compared with the simple one that chooses window sizes from even positions
within a possible range.

6 Conclusions

In this paper, we have proposed a novel method for time-series subsequence
matching based on index interpolation[11] that resolves the performance degra-
dation caused by the window size effect.

The main contributions can be summarized as follows.

(1) Via preliminary experiments, we have first verified that the performance of
subsequence matching by previous methods that employ only one R*-tree is
not satisfactory to users. Then, we have claimed that index interpolation is
a good choice to resolve this performance problem.
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(2) We have derived a formula that estimates the cost for all the subsequence
matchings when a set of pairs 〈length, frequency〉 of query sequences to be
issued and a set of windows sizes for the R*-tree building are provided.

(3) Using the cost formula, we have proposed an efficient algorithm that deter-
mines an optimal set of window sizes that maximize the overall performance
of all the subsequence matchings performed in a target application. We have
formally shown the optimality and effectiveness of the proposed algorithm.

(4) We have quantitatively verified the effect of performance improvement ob-
tained from the proposed method through a series of experiments.

The results reveal that the proposed approach outperforms the previous one
up to 7.8 times. Currently, the proposed method provides the optimal list of
window sizes, but not the optimal number of indexes. As a future study, we are
considering tackling this issue by reflecting the update costs as well as subse-
quence matching costs.
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Abstract. There is much interest in the processing of data streams for
applications in the fields such as financial analysis, network monitoring,
mobile services, and sensor network management. The key characteristic
of stream data, that it continues to arrive, demands a new approach. This
paper focuses on the problem of detecting, exactly, similar pairs of sub-
sequences of arbitrary length in streaming fashion. We propose DAPSS
(DAta stream Processing for Store and Search), an efficient and effective
method to detect the similar pairs, which keeps (1) the feature data of
each sequence in the memory space and (2) the compressed data of the
original sequences in the disk space. Experiments on synthetic and real
data sets show that DAPSS is significantly (up to 35 times) faster than
the naive method while it guarantees the correctness of query results.

1 Introduction

The focus on data engineering has recently shifted towards data stream applica-
tions. Examples include financial analysis, network monitoring, mobile services,
sensor network management. In such applications, the data of interest comprises
multiple sequences that each evolve over time. Generally the time-series data
streams arrive online at high bit rates and are potentially unbounded in size.
A fundamental challenge faced by these applications is that the data sources
generate semi-infinite sequences. The resource limitations unavoidably imply a
trade-off — it is practically impossible to keep all historical data in the memory
space, but fast query processing must be ensured.

To analyze the co-evolving sequences in real time, the techniques for data
stream processing should fulfill two important requirements:

1. Memory space requirements are limited to handle the co-evolving data
streams.

2. High-speed computation is provided for update and query processing.

Previous studies assumed that data would be discarded after the processing
to meet the above conditions; unfortunately, this sacrifices matching accuracy.
We, therefore, try to remove this drawback, and add the following essential
requirement:

3. The correctness of query results is guaranteed.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 80–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



DAPSS: Exact Subsequence Matching for Data Streams 81

To the best of our knowledge, this is the first study on the similarity search prob-
lem for streaming data sequences that considers output exactness in bounded
memory.

We focus on the problem of detecting, exactly, similar pairs in multiple stream-
ing data sequences with similarity queries of unknown, arbitrary length. Typical
queries would be ‘Find articles that have similar sales trend in on-line manner’,
‘Find persons who have similar movements in real time’, or ‘Find sites that shake
in the same way during an earthquake’. This problem is applicable to various
services, but the naive approach has excessive CPU and memory requirements
due to the unbounded nature of the voluminous data streams.

This paper proposes not only a new technique for sequence approximation,
but also a framework in which multiple resolutions of (1) archiving compressed
data streams, (2) updating the feature data of the streams, and (3) query
processing, can be generated efficiently. We introduce DAPSS (DAta stream
Processing for Store and Search) for monitoring multiple data streams. DAPSS
has the following nice characteristics:

– High-speed processing: It detects similar pairs in a few seconds given
hundreds of streaming data sequences in our experiments.

– Correctness: It returns all the qualifying pairs without omission (i.e., no
false negatives and no false positives).

– Low memory consumption: Pairs are detected using bounded memory.
– Data archiving: Streaming data sequences are compressed and stored

rapidly on a disk.
– No restriction on query length: It achieves fast subsequence matching

for similarity queries of unknown, arbitrary length.

To achieve both high performance and output exactness, DAPSS first prunes a
significant number of sequences at low computation cost by using a new approx-
imation technique and if necessary to ensure the correctness of query results,
examines the original data sequences held on a disk. We conducted several ex-
periments on synthetic and real data sets to verify the effectiveness of DAPSS.
The results show that DAPSS is up to 35 times faster than the naive method.

The remainder of the paper is organized as follows. Section 2 describes related
work on sequence matching. In Section 3 we give the problem definition and in-
troduces our proposed method for monitoring high-speed data stream. Section 4
presents our experiments and performance study of our method. In Section 5 we
list the conclusions.

2 Related Work

While there has been much work on sequence matching, none of the previously
published methods meets the requirements described in the introduction.

The majority of previous studies have targeted sequence indexing for stored
data sets. Agrawal et al. studied whole sequence matching (similarity searches
tackling equal length sequences) [1]. They utilize the Discrete Fourier Transform
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(DFT) to approximate sequences and use R*-tree [2] to index the first few DFT
coefficients. Faloutsos et al. introduced a technique for subsequence matching
(similarity searches that target arbitrary length sequences) [3]. They divide the
data sequences into sliding windows and the query sequence into disjoint win-
dows; DFT is then applied to each window. They also use R*-tree to index the
stored sequences. Moon et al.’s search method [4] is also based on sliding win-
dows and represents an improvement over the one of [3]. Indyk et al. address the
problem of identifying “representative trends” in time-series data. A representa-
tive trend is a subsequence that has the smallest sum of distances from all other
subsequences. The representative trend can be derived from “sketches”, which
are the polynomial convolutions of the sequence and random vectors. They effi-
ciently compute the sketches by using FFT (Fast Fourier Transformation). They
efficiently compute the sum of distances by using random projections and FFT
(Fast Fourier Transformation). However, their proposed method does not guar-
antees the exactness of results. Sakurai et al. studied similarity search problem
for DTW (Dynamic Time Warping) [6]. They proposed a lower bounding mea-
sure for the DTW distance to guarantee no false negatives.

Recently, studies on data stream have been attracting much interest [7, 8]. Var-
ious algorithms and architectures of data stream management systems (DSMSs)
have been presented so far [9, 10, 11, 12]; they are slightly related to our work.
Many recent works focus on stream mining, including frequent items [13], clus-
tering [14]. Sakurai et al. introduced an approximation technique for estimat-
ing the cross-correlation function. They detect lag correlations between data
streams [15].

The similarity search problem has been studied also in the data stream do-
main. Zhu et al. studied the problem of detecting strongly correlated streaming
data sequences [16]. They divide sequences among basic windows to compute
DFT coefficients, and superimpose a grid on an approximated space to detect
similar pairs. Unfortunately, their method is for fixed length queries and does not
achieve output exactness. Bulut et al. studied the problem of detecting highly
correlated sequences among many streaming data sequences given arbitrary
length queries [17]. They use minimum bounding rectangles (MBRs) of R*-tree to
calculate the coefficients of the Discrete Wavelet Transform (DWT) [18] at mul-
tiple resolutions. They use R*-tree to detect similar pairs with arbitrary length
queries, but their method does not guarantee the correctness of query results.

3 Proposed Method

This paper focuses on the problem of detecting, exactly, similar pairs of subse-
quences of arbitrary length in data streams, that is, subsequence matching in
streaming fashion. Table 1 lists the symbols and their definitions. Most proofs
are omitted in this paper due to the space limitations. We employ the Euclidean
distance as a dissimilarity measure. Note that the correlation coefficient would
be fine; the correlation coefficient can be obtained from the Euclidean distance
and basic statistics (i.e., sums and square sums) [16].
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Table 1. Definition of main symbols

Symbols Definitions

xt Value of a sequence X at time t = 1, · · · , n

n Sequence length
m Number of sequences
l Query length (1 ≤ l ≤ n)
Xl Subsequence of X from n − l + 1 to n

ε Threshold for similarity queries
D(X,Y ) Euclidean distance between sequences X and Y

X̂ Approximation of X

L(X̂,Ŷ ) Lower bound of D(X,Y )
U(X̂,Ŷ ) Upper bound of D(X,Y )
K Number of reference points
Oi reference point (1 ≤ i ≤ K)

3.1 Preliminaries

Given two sequences X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), their Eu-
clidean distance D(X, Y ) is defined as

√∑n
t=1(xt − yt)2. The problem we

address in this paper is the following:

Problem . Given a query, length l, and a distance threshold, ε, find sequence
pairs in data streams as the set that satisfies the following condition:

D(Xl, Yl) =

√√√√ n∑
t=n−l+1

(xt − yt)2 ≤ ε (1)

This problem is associated with similarity search in multi-dimensional spaces
[2, 19, 20, 21], but differs from traditional problems in that n continues to increase
as new sequences continue to arrive.

Two technical barriers prevent the naive method from efficiently solving this
problem. (1) Too much memory is required. This is due the unbounded length
of the sequences; O(mn) memory is required to store all data sequences and n
continues to increase. (2) The CPU cost is excessive. This is mainly due to the
number of sequences m; O(m2l) CPU cost is incurred to calculate the combina-
tions of all sequences.

3.2 Ideas Behind DAPSS

DAPSS is composed of the following three ideas.

Lossless compression. Since it is a practical impossibility to keep all historical
data in the memory space, we exploit the disk space. DAPSS compresses the
original sequences to reduce the I/O cost for accessing the archive on the disk.
We employ lossless compression to guarantee the correctness of query results.
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PSA: Piecewise Statistical Approximation. Previous works on sequence
matching have introduced many approximation techniques such as the Fourier
transform, Wavelet transform, APCA (Adaptive Piecewise Constant Approx-
imation) [22], SVD (Singular Value Decomposition) [23]. We propose a new
approximation technique, referred to as PSA (Piecewise Statistical Approxima-
tion), which yields low computation cost and high accuracy. PSA consists of the
mean values and standard deviations of sequences. The major advantage of PSA
is that, if we divide a sequence into multiple segments, the PSA representations
of the segments are easily combined. Rather keeping the original sequences in
the memory space, we keep only the PSA of each sequence. PSA enables the
lower and upper bounding distances to be calculated by using our proposed dis-
tance function, and to detect similar pairs with low CPU cost and virtually no
disk access.

Feature matrix. We introduce an index structure, called the feature matrix,
to accelerate search performance. The feature matrix allows similar pairs to be
detected by using distances from several reference points in the metric space.
While PSA allows high-speed comparisons, the number of comparisons increases
rapidly with the number of sequences (i.e., O(m2)). The matrix reinforces PSA
and reduces the number of comparisons that must be performed since it elim-
inates dissimilar pairs quickly; its construction cost is low. Therefore, similar
sequences can be detected quickly any time users require.

3.3 Lossless Compression

The first idea is to save the I/O cost for accessing the archived streams by com-
pressing the original data. In the lossless compression, each value of sequences
is reorganized byte by byte to achieve high compression ratios. Our compression
technique, used here, is slightly similar to Burrows-Wheeler Transform (BWT)
[24] in that it sorts data before compressing, but differs in that it divides data
before reorganizing.

Preprocessing. The inner structure of each sequence value is reorganized as
the preprocessing. As shown in Fig. 1, each sequence value is expressed as a set of
several bytes (e.g., 16.84 is expressed as 01000001 10000110 10111000 01010010

16.84

17.03

17.35
: compression order

Inner structureValueTime

2+−Tn

n

1+−Tn 01000001 10000110 10111000 01010010

01000001 10001000 00111101 01110001

11001101110011001000101001000001

Fig. 1. Example of the inner struc-
ture of sequence values

Algorithm StoreData(XT )
//B is the number of bytes of sequence values
for i to B do

combine the i-th bytes of XT ;
end for
compress the combined data by RLE;
append the compressed data to the sequential
file on the disk:

Fig. 2. Algorithm for the lossless compression
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in IEEE-754). A single sequence value by itself can not be compressed effectively
because neighboring bytes are not similar. Typically, most sequence data has the
property of fluctuating gradually, so the sign part and fixed-point part tend to
be similar (e.g., the sign part and fixed-point part of 16.84, 17.03 and 17.35
are all 01000001). We therefore reorganize sequence values every T time ticks
for compression. For example, the set of each first byte of the T data values is
compressed; the set of each second byte is then compressed. Fig. 2 shows the
algorithm of the lossless compression.

Compressing and archiving. We employ RLE (Run-Length Encoding) for
compressing data streams. There are many other encoding methods such as
Huffman encoding [25] and Lempel-Ziv 77[26], but RLE is preferable since it
offers one-pass encoding. The compressed data of each sequence are appended
to the sequential file on the disk. Note that the sequential file is not a fixed-size
structure; the compressed data are stored with information about the number
of bytes to be read.

3.4 PSA

PSA consists of mean values and standard deviations, and its distance function
gives lower and upper bounds of the distance of sequences, which guarantee no
false positives and no false negatives, respectively.

Computing sequence features. We partition each sequence into S segments
of predetermined length (i.e., the i-th segment of length si) and use their averages
and standard deviations as features.

Definition 1 (PSA). Let μi and σi be the average, standard deviation of the i-th
segment of a sequence X, respectively. The PSA representation of X is defined as:

X̂ = (〈μ1, σ1, s1〉, 〈μ2, σ2, s2〉, . . . , 〈μS , σS , sS〉) (2)

μi =
1
si

ti+1−1∑
j=ti

xj , σi =

√√√√ 1
si

ti+1−1∑
j=ti

x2
j − μ2

i

where n =
∑S

i=1 si, and ti denotes the starting time tick of the i-th segment.

The major advantage of PSA is that the segments are easily combined since
the segments consist of their average and standard deviation. We utilize this
advantage, as described later.

Computing lower and upper bounding Distances. We introduce the
lower bounding distance L(X̂, Ŷ ) of D(X, Y ) and its upper bounding distance
U(X̂, Ŷ ). As shown in Fig.3, the lower/upper bounding distance is computed
from consecutive segments shorter/longer than the query length.
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Fig. 3. Sequence segmentation Fig. 4. Illustration of updating segments

Theorem 1. Given two subsequences Xl = (xn−l+1, . . . , xn) and Yl = (yn−l+1,
. . . , yn) of length l, then we have

L(X̂l, Ŷl) ≤ D(Xl, Yl) (3)

where

L(X̂l, Ŷl) =

√√√√ S∑
i=Slb

si

{(
μX

i − μY
i

)2 +
(
σX

i − σY
i

)2}

Slb = min(j
∣∣∣ S∑

i=j

si ≤ l)

Lemma 1. The similarity search based on L(X̂l, Ŷl) is sufficient to guarantee
no false negatives.

Lemma 1 is well-known as the lower bounding lemma [1].

Theorem 2. Given two subsequences Xl and Yl, the following holds.

U(X̂l, Ŷl) ≥ D(Xl, Yl) (4)

where

U(X̂l, Ŷl) =

√√√√ S∑
i=Sub

si

{(
μX

i − μY
i

)2 +
(
σX

i + σY
i

)2}

Sub = max(j
∣∣∣ S∑

i=j

si ≥ l)

Similarly, we derive the upper bounding lemma as follows.

Lemma 2. The similarity search based on U(X̂l, Ŷl) is sufficient to guarantee
no false positives.
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Management of segment lengths. We vary the segment length for each
sequence; it yields an equal approximation error even when the query length is
different. The segment length depends on the elapsed time starting when data
arrive, as shown in Fig. 4. The length si of the i-th segment depends on level
h, and the more the level h becomes, the longer si becomes. Length si is 2h.
Therefore DAPSS can handle arbitrary length queries. That is, relative errors
are similarly small for both short and long queries.

The PSA representations are incrementally updated by combining segments
when the number of segments of level h exceeds capacity C. We use Fig. 4 to
illustrate our update procedure in case of C = 2. Let ch be the number of
segments of level h. Before updating, the number of segments for each level is
c0 = 2, c1 = 2 and c2 = 1. Suppose we receive one sequence value, then we have
c0 = 3, which is larger than C = 2. We combine the two segments at level 0 into
one segment, and move it to level 1. Since we have c1 = 3, another combination
is done in the same way. As a result, the number of segments for each level is
c0 = 1, c1 = 1 and c2 = 2.

Such segments are easily combined; a new segment 〈μ′
i, σ

′
i, s

′
i〉 can be com-

puted from the i-th and (i + 1)-th segments as: μ′
i = (μi + μi+1)/2, σ′

i =√
(σ2

i + σ2
i+1)/2 + (μi − μi+1)2/4 and s′i = 2si, respectively. Fig. 5 shows the

update algorithm of PSA.
As discussed in 3.3, since DAPSS stores the original sequences on the disk, it

maintains the offset (i.e., file pointer) in the sequential file, which corresponds
to each segment. After the i-th and (i + 1)-th segments are combined, we use
the offset of the i-th segment as the offset of the combined segment.

Algorithm UpdatePSA(xn+1)
compute the (S + 1)-th segment from xn+1;
S = S + 1;
i = S − c0;
c0 = c0 + 1;
//H is the maximum number of h for X
for h = 0 to H do

if ch > C then
combine the i-th and (i + 1)-th segments
(compute a new segment for level h + 1);
ch = ch − 2;
S = S − 1;
i = i − ch+1;
ch+1 = ch+1 + 1;

else
break;

end if
end for

Fig. 5. PSA update Algorithm

Fig. 6. Metric space formed by two
reference points

O1 O2 O3 O4

X̂l 3 3 4 3
Ŷl 4 5 3 7
Ẑl 1 3 2 3

ε = 3

Fig. 7. Example of data structure
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3.5 Feature Matrix

We use the feature matrix, which contains the distances between several refer-
ence points and the PSA of each sequence, to eliminate dissimilar sequence pairs
efficiently. This implies that metric space is formed by the feature matrix. Many
index structures have been proposed such as M-tree [27], mvp-tree [28], but the
feature matrix is non-hierarchical since we need high-speed processing for con-
structing index structures. The feature matrix also guarantees no false negatives.

Data structure. We randomly select several reference points Oi(1 ≤ i ≤ K)
from the set of PSA representations for all sequences. Each sequence is assigned
K values, L(X̂l, Oi), which are the lower bounding distances between its PSA (re-
ferred to as X̂l) and Oi. In the metric space formed by the reference points, these
values mean K concentric circles whose centers are Oi and radii are L(X̂l, Oi)
themselves (See Fig. 6). As shown in Fig. 7, the data structure of the feature
matrix is simply an array of the distances between X̂l and Oi. Fig. 8 shows an
algorithm for computing the feature matrix.

Algorithm ComputeMatrix
select K reference points Oi (1 ≤ i ≤ K)
randomly from the PSA set;
//compute the matrix elements
for each PSA X̂l do

for i = 0 to K do
compute L(X̂l, Oi);

end for
end for

Fig. 8. Algorithm for computing the fea-
ture matrix

Algorithm MatrixFiltering (X̂l)
input: X̂l

output: the candidate set, Set{Ŷl}
for each PSA Ŷl do

if∀ Oi : |L(X̂l,Oi)−L(Ŷl,Oi)| ≤ ε then
report Ŷl as a candidate;

end if
end for

Fig. 9. Filtering algorithm

Filtering. The feature matrix filters out dissimilar sequence pairs with no false
positives by using the following lemma.

Lemma 3. Let X̂l and Ŷl be the PSA representations of Xl and Yl, and let O
be a reference point, then we have

|L(X̂l, O)− L(Ŷl, O)| ≤ D(Xl, Yl) (5)

Fig. 9 shows the filtering algorithm. For all reference points, it checks whether
|L(X̂l, Oi)− L(Ŷl, Oi)| ≤ ε holds. For example in Fig. 7, if ε = 3, Xl and Yl are
not similar since |3 − 7| > ε at O4. However, the pair of Xl and Zl is a similar
candidate since |L(X̂l, Oi)− L(Ŷl, Oi)| ≤ ε for all reference points.

3.6 Update Algorithm

DAPSS performs update processing whenever it receives new data. Fig. 10 shows
the update algorithm of DAPSS. It updates the PSA of each sequence for the
received data. In addition, the subsequences of length T are compressed and
stored on the disk every T time ticks.
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Algorithm Update
input: new values at t for m

sequences X1,· · · ,Xm

for each sequence X do
X̂ =UpdatePSA(xt);
if t mod T = 0 then

StoreData(XT );
end if

end for

Fig. 10. Update algorithm

Algorithm Search
input: ε, l
output: all similar subsequence pairs
ComputeMatrix;
for each subsequence Xl do

Set{Ŷl} =MatrixFiltering(X̂l);
for each subsequence Ŷl do

if L(X̂l, Ŷl) ≤ ε then
if U(X̂l, Ŷl) ≤ ε then

report Xl and Yl as a similar pair;
else

//load Xl and Yl from the sequential files
LoadData(Xl);
LoadData(Yl);
if D(Xl, Yl) ≤ ε then

report Xl and Yl as a similar pair;
end if

end if
end if

end for
end for

Fig. 11. Search algorithm

3.7 Search Algorithm

When output is required by users or applications, DAPSS performs query pro-
cessing to report similar pairs. Fig. 11 shows the search algorithm of DAPSS.
We first compute the feature matrix, then extract similar pair candidates by us-
ing the matrix. The extracted candidates are examined on the lower and upper
bounding distances computed from their PSA. If the lower bounding distance
exceeds ε, we discard the candidate since it cannot be one of the similar pairs.
Inversely, if the upper bounding distance does not exceed ε, we determine that
the candidate is one of the similar pairs since its exact distance does not exceed
the threshold either. Otherwise, the original sequences are fetched from the disk,
and their exact distance is computed.

3.8 Complexity

We discuss how DAPSS can effectively detect similar pairs. Let m be the number
of sequences of length n.

Lemma 4. Let l be query length. The naive method requires O(mn) space and
O(m2l) time.

Proof. The naive method keeps m sequences of length n in the memory space. It
computes the distances of all possible pairs for a similarity query of length l. �
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Lemma 5. DAPSS requires O(m log(n) + l) memory space.

Proof. Keeping the PSA of m sequences requires O(mC log(n)) memory space
since PSA has log(n) levels and each level has C segments. For query processing,
computing the feature matrix of K reference points and the exact distance of
the query length l need O(mK) and O(l), respectively. Since C and K are small
constant values, and the space for compressing is negligible, the space complexity
is O(m log(n) + l). �

Lemma 6. DAPSS requires O(m) amortized time per time-tick for update pro-
cessing.

Proof. The PSA coefficients on level h needs to be computed every 2h time
ticks (h = 0, · · · , log n). On average, DAPSS computes O(m) coefficients per
time-tick for m sequences since

∑log n
h=0 1/2h = 2. Compressing with RLE for

m subsequences needs O(mT ) every T time ticks. Overall, update processing
requires amortized time O(m) per time-tick. �

Note that the time complexity of DAPSS for update processing is constant, O(m);
it does not depend on n. The time complexity for query processing depends on the
effectiveness of filtering due to the use of the feature matrix and PSA. In the next
section, we will show the effectiveness by processing several data sets.

4 Experimental Evaluation

We performed experiments to demonstrate the effectiveness of DAPSS. We com-
pared DAPSS with the naive method since none of the previously published
methods meets the requirements described in the introduction. Note that the
naive method requires O(mn) memory space, which is much larger than the
space DAPSS requires (i.e., O(m log(n) + l)). All experiments were conducted
on a 3.2GHz Pentium 4 PC with 1GB of main memory. We used the following
real and synthetic data sets:

– RandomWalk : we generated 500 sequences as xt = α +
∑t

i=1 βi, where α
and βi are uniform random numbers in the ranges [-100,100] and [-0.5,0.5],
respectively.

– Humidity: humidity readings from 55 sensors within several buildings. Each
sensor gives a reading every 30 seconds. We chose 50 sequences in the exper-
iments.

– Trajectory: We kept track of the trajectory of 80 people’s movements in an
exhibition. This is the set of 2-dimensional time-series data of length 10,000.
Each sensor gives a reading every 0.1 seconds.

The threshold for query processing increases as query length l grows; ε = 0.1 · l
for RandomWalk, ε = 0.02 · l for Humidity and ε = 0.04 · l for Trajectory. In our
method, we used the time interval of T = 64 for the sequence compression, the
capacity of segments C = 40, and there are 5 reference points (i.e., K = 5). In
our experiments, we forbade the use of the disk cache; we cleared the disk cache
before every trial.
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4.1 Search Cost

We measured the search process time of DAPSS in a comparison with the naive
method. Sequence length n was set at 10, 000. Fig. 12 depicts the wall clock
time of DAPSS and the naive method for various query lengths, l. We used the
sequence sets of m = 500 for RandomWalk, m = 50 for Humidity and m = 80
for Trajectory. The results show that DAPSS can efficiently detect similar data
sequences; it is up to 35 times faster than the naive method.

Fig. 13 shows the wall clock time for various numbers of sequences when
l = 8000. The results show that DAPSS can find similar sequences pairs much
faster then the naive method. Instead of O(m2) time taken by the naive method,
the search cost of DAPSS is close to O(m) in Fig. 13. The result corresponds with
our expectations. This is because the feature matrix causes a drastic reduction
by pruning similar candidate pairs.

(a) RandomWalk

(b) Humidity

(c) Trajectory

Fig. 12. Wall clock time for search process-
ing versus query length

(a) RandomWalk

(b) Humidity

(c) Trajectory

Fig. 13. Wall clock time for search pro-
cessing versus the number of sequences
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Answer
Exaxt

Fig. 14. Number of exact distance computations

4.2 Frequency of Exact Distance Computations

For our method, the search cost depends primarily on the number of exact
distance computations since they trigger disk access. Fig. 14 shows the num-
ber of exact distance computations for query processing. In this figure, ”An-
swer” represents the number of data sequence pairs included in answer set
{Xl, Yl|D(Xl, Yl) ≤ ε}. ”Exact” denotes the number of exact distance computa-
tions using the original sequences. We used RandomWalk for this experiment.
The sequence length is n = 10, 000 and the number of sequences is m = 500.

This figure shows that DAPSS can reduce the number of exact computations;
Exact is even lower than Answer. If the upper bounding distance does not ex-
ceed ε, we can determine that the candidate is one of the similar pairs without
computing its exact distance. The effectiveness of the upper bounding distance
reduces the number of exact computations, which yields high performance as
shown in Figs. 12 and 13.

4.3 Update Cost

Fig. 15 shows the update cost upon receiving new sequence data. In this figure
”RandomWalk (store)” and ”Trajectory (store)” represent the results, which
include the cost of storing data streams. In here, we omit the results for Humidity
since they are similar to those of RandomWalk.

RamdomWalk
Trajectory
RamdomWalk (store)
Trajectory (store)

Fig. 15. Wall clock time for update pro-
cessing

RamdomWalk Humidity Trajectory

Fig. 16. Compression rate
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The update cost is extremely low compared to the search cost. Moreover, the
update cost is constant for all sequence lengths, n. We theoretically discussed
the complexity of DAPSS in Section 3.8. DAPSS requires O(m) time for update
processing; it does not depend on n. Our theoretical analysis is confirmed by
this experimental result.

We observe that the cost of ”Trajectory (store)” is lower than that of ”Ran-
domWalk (store)” even though Trajectory is 2-dimensional time-series data. The
reason for this is that RLE achieves better compression rate for Trajectory as
shown in Fig. 16. Because many of the moving objects stopped often, Trajectory
could be compressed more strongly and thus stored on the disk more efficiently.

5 Conclusion

In this paper, we address on the problem of detecting similar pairs of streaming
data sequences given arbitrary length queries. We proposed DAPSS, which is
based on three ideas: With lossless compression, streaming data sequences are
compressed efficiently. With PSA, similar pair candidates are found rapidly even
in long data sequences. With the feature matrix, similar pair candidates are
found rapidly even if there are many data sequences. DAPSS achieves all of the
following goals: (1) High-speed processing, (2) Correctness, and (3) Low memory
consumption. Moreover, DAPSS has the following nice characteristics: (4) Data
archiving, and (5) No restriction on query length. Our experimental results show
that DAPSS can efficiently detect similar data sequences; it is significantly (up
to 35 times) faster than the naive method.
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Abstract. In this paper, an efficient strategy for mining top-K non-trivial fault-
tolerant repeating patterns (FT-RPs in short) with lengths no less than min_len 
from data sequences is provided. By extending the idea of appearing bit se-
quences, fault-tolerant appearing bit sequences are defined to represent the loca-
tions where candidate patterns appear in a data sequence with insertion/deletion 
errors being allowed. Two algorithms, named TFTRP-Mine(Top-K non-trivial 
FT-RPs Mining) and RE-TFTRP-Mine (REfinement of TFTRP-Mine), re-
spectively, are proposed. Both of these two algorithms use the recursive formu-
las to obtain the fault-tolerant appearing bit sequence of a pattern systematically 
and then the fault-tolerant frequency of each candidate pattern could be counted 
quickly. Besides, RE-TFTRP-Mine adopts two additional strategies for pruning 
the searching space in order to improve the mining efficiency. The experimental 
results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when 
K and min_len are small. In addition, more important and implicit repeating pat-
terns could be found from real music objects by adopting fault tolerant mining. 

1   Introduction 

Repeating patterns represent the important sub-patterns in a data sequence because 
they appear repeatedly. There have been many approaches proposed for mining re-
peating patterns[1][3][4]. However, in most approaches, only exact pattern matching 
was considered during the mining process. It may cause some implicit repeating pat-
terns not being found because of insertion/deletion errors occurring. For example, 
suppose two data sequences: S1=“ACDE…ACEDE…”, and S2 =“ACD E… ADE…” 
are given. The pattern “ACEDE” approximately matches “ACDE” with one insertion 
error in S1. Besides, the pattern “ADE” approximately matches “ACDE” with one 
deletion error in S2. However, the exact matching approach will lost the implicit re-
peating pattern “ACDE” in these two sequences. 

To solve the above problem, this paper focuses on the strategy for mining “fault-
tolerant” repeating patterns, FT-RPs in short. In other words, the insertion/deletion 
errors are allowed when counting the appearing frequency of a pattern. Besides, to 
avoid duplicated information and many short patterns being found, only “non-trivial” 
FT-RPs, i.e., those FT-RPs containing no super-pattern with the same fault-tolerant 
                                                           
* This work was partially supported by the R.O.C. N.S.C. under Contract No. 94-2213- 

E-003-010. 
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frequency, and their lengths no less than a given min_len are mined out. Moreover, by 
giving the desired number of non-trivial FT-RPs to be mined, we propose an approach 
of mining “top-K non-trivial fault-tolerant repeating patterns with length no less than 
min_len” to avoid finding a huge amount of non-representative patterns. 

A data structure called correlative matrix was proposed in [3] to aid the process for 
extracting repeating patterns in a music object. The main disadvantage of this ap-
proach is that the processing cost is proportional to the square of the length of the 
music object. To solve this problem, the same authors developed the String-Join algo-
rithm [1] to extract the non-trivial repeating patterns in a music object. In [4], the 
representation of bit index sequence was designed to characterize note sequences of 
music objects. In the mining process, the frequency of a candidate pattern was ob-
tained by performing shift and and operations on bit sequences and then counting the 
number of 1s in the resultant bit sequence. Therefore, frequency checking could be 
performed quickly.   

Fault-tolerant data mining would discover more general and useful information for 
real-world dirty data. The problem of fault-tolerant frequent patterns (itemsets) was 
defined and solved in [6] by proposing FT-Apriori algorithm. Similar to the Apriori-like 
algorithms, FT-Apriori algorithm suffered from generating a large number of candidates 
and scanning database repeatedly. This problem became worse when the fault tolerance 
was increasing or the support thresholds were decreasing. To speed up the mining of 
fault tolerant frequent patterns, we proposed an algorithm named FFT-Mine (Fast Fault 
Tolerant frequent patterns Mining) in [5]. By extending the form of appearing vectors, 
the fault-tolerant appearing vectors were defined to represent the distribution that the 
candidate patterns were contained in database with fault tolerance. FFT-Mine algorithm 
provided a systematically method to reduce the number of operations performed on bit 
vectors to get the fault-tolerant appearing vectors of candidates. Then whether a candi-
date is a fault-tolerant frequent itemset could be judged quickly. 

When mining frequent patterns, it is difficult for users to set an appropriate mini-
mum support threshold without knowing the distribution of data in the database. 
Moreover, if long patterns exist in a database, the mining result may return many 
short or tedious patterns with duplicated information. To prevent the above problems 
occurring, [2] proposed a TFP algorithm to discover top-K frequent closed patterns 
with length no less than min_l. For solving the similar problems when mining fre-
quent sequential patterns, TSP algorithm was proposed in [7]. It adopted the similar 
idea proposed in TFP algorithm to raise the minimum support during the mining 
process for discovering top-K closed sequential patterns. Then the searching space 
would be pruned dramatically to speed up the mining process. 

In summarizing the interesting strategies proposed in the related works, an efficient 
way of mining top-K non-trivial fault-tolerant repeating patterns (FT-RPs in short) 
with length no less than min_len for data sequences is proposed in this paper. By 
extending the idea of appearing bit sequences, fault-tolerant appearing bit sequences 
are defined to represent the locations where candidate patterns appear in a data se-
quence with insertion/deletion errors allowed. Then the fault-tolerant frequency of a 
candidate pattern could be counted from its fault-tolerant appearing bit sequence 
quickly. The recursive formulas are designed for obtaining the fault-tolerant appear-
ing bit sequence of a pattern systematically in order to eliminate the duplicate compu-
tations. Two algorithms, named TFTRP-Mine and RE-TFTRP-Mine, respectively, 
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are proposed. The TFTRP-Mine algorithm generates candidate patterns by performing 
a depth-first searching approach. The RE-TFTRP-Mine algorithm adopts two addi-
tional strategies to increase the mining efficiency. The first one is to assign priorities 
of found repeating patterns for generating candidates according to their fault-tolerant 
frequencies. Moreover, the minimum frequency is raised dynamically when K num-
bers of FT-RPs have been found. The experimental results show these two strategies 
will prune the searching space dramatically when K is small proportional to the num-
ber of whole FT-RPs. 

This paper is organized as follows.  Section 2 defines the relative terms used in this 
paper. The appearing bit sequences and the way of getting fault-tolerant appearing bit 
sequences are introduced in Section 3. Section 4 describes the whole processing steps 
of TFTRP-Mine and RE-TFTRP-Mine algorithms. The performance evaluation of 
proposed algorithms is shown in Section 5. Finally, in Section 6, we propose the con-
clusion and feature works of this paper. 

2   Preliminaries 

[Def. 2.1] Let E={l1, l2, …, lk} denote the set of data items in a specific application 
domain. DSeq=D1D2…Dn is a data sequence, where Di∈E( i=1…n) denoting the data 
item on the ith position of the sequence. The length of DSeq is denoted as |DSeq|. 

[Def. 2.2] Let S1 and S2 denote two data sequences, where S1=X1X2…Xm and 
S2=Y1Y2…Yn. S2 is a sub-sequence of S1 iff there exists an integer sequence i1, i2, …, in 

such that 1≤ i1≤ i2 … ≤ m and Xik = Yk for k = 1to n.  

[Def. 2.3] Given a data sequence DSeq=D1D2…Dn and another data sequence (also 
named a pattern) P=P1P2…Pm, P appears in DSeq on position i iff there exists an 
integer 1≤ i ≤ n, such that DiDi+1…Di+m-1= P1P2…Pm. It is also said DSeq contains P 
on position i and P is a sub-pattern of DSeq. The frequency of a pattern P in DSeq is 
the number of various positions in DSeq where DSeq contains P. 

[Def. 2.4] A data sequence DSeq=D1D2…Dn is said to FT-contain pattern 
P=P1P2…Pm (m≥2) on position i with  insertion errors iff there exist an integer 1≤ i 
≤ n, such that Di=P1, D(i+m-1)+ =Pm, and P is a sub-sequence of DiDi+1…D(i+m-1)+ . 
Given a fault tolerance I ( I >0), DSeq is said to insertion FT-contain pattern P 
under fault tolerance I, denoted as IFT-contain in short, iff DSeq FT-contains P with 

 insertion errors and ≤ I. In other words, there exists a sub-pattern of DSeq starting 
from position i which is gotten by inserting at most I data items in the middle of P. 
The pattern is also said to IFT-appear in DSeq. 

[Example 2.1] Suppose DSeq=ABCDABCA, and I=2. Given patterns P1=ABCA, 
P2=BCAC, and P3=ABBC. According to [Def. 2.4], DSeq FT-contains P1 on position 
1 with 1 insertion error. Besides, DSeq FT-contains P1 on position 5 with 0 insertion 
error. Similarly, DSeq FT-contains P2 on position 2 with two insertion errors. There-
fore, DSeq IFT-contains P1 and P2. However, P3 doesn’t IFT-appear in DSeq. 

[Def. 2.5] A data sequence DSeq=D1D2…Dn is said to FT-contain a pattern 
P=P1P2…Pm  (m> ) on position i with  deletion errors iff there exist an integer  
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1≤ i≤ n, such that DiDi+1…D(i+m-1)-  is a sub-sequence of P. Given a fault tolerance 
D( D > 0), DSeq is said to deletion FT-contain pattern P, denoted as DFT-contain 

in short, iff DSeq FT-contains P on position i with  deletion errors, where Di=P1 and 
≤ D. That is, there exists a sub-pattern of DSeq starting from position i which is 

gotten by deleting at most D data items from P except the first data item. The pattern 
P is also said to DFT-appear in DSeq.  

[Example 2.2] Suppose DSeq=ABCBCA, and D=3. Given patterns P1=BCDA and 
P2=EFB. DSeq FT-contains P1 on position 4 with 1 deletion error (by deleting “D” 
from P1). Therefore, P1 DFT-appears in DSeq. Although DSeq FT-contains P2 on 
positions 2 and 4, respectively, with 2 deletion errors, P2 doesn’t DFT-appear in DSeq 
because the deletion error on the first data item of P2 is not allowed. 

[Def. 2.6] The fault tolerant frequency of a pattern P in DSeq, denoted as FT-
freqDSeq(P), is the number of various positions in DSeq where DSeq IFT/DFT-contains 
P. The pattern P is named a fault-tolerant repeating pattern, FT-RP in short, if and 
only if FT-freqDSeq(P) ≥ a required minimum frequency min_freq. 

[Def. 2.7] A  FT-RP P is a non-trivial FT-RP if there does not exist any FT-RP P’ 
such that P is a sub-pattern of P’, and FT-freqDSeq(P’) = FT-freqDSeq(P). 

3   Bit Sequence Representation 

In this section, section 3.1 will introduce the design of appearing bit sequences. How 
to apply the appearing bit sequences of patterns to compute the frequency of candi-
date patterns with fault tolerance quickly is introduced in section 3.2 and 3.3. 

3.1   Appearing Bit Sequences 

For each kind of data item N in the data sequence, N has a corresponding appearing 
bit sequence (denoted as AppearN). The length of each appearing bit sequence equals 
the length of the data sequence. The leftmost bit is numbered as bit 1 and the number-
ing increases to the rightmost bit. If some data item appears on the ith position of the 
data sequence, bit i in the appearance bit sequence of this data item is set to be 1; 
otherwise, it is set to be 0. A bit index table is used to store the appearing bit se-
quences for all the data items in the data sequence. Therefore, the frequency of a data 
item is obtained according to the number of bits with value 1 in its appearing bit se-
quence, without needing to scan the data sequence repeatedly. The idea is also appli-
cable for a longer pattern as explained in the following example. 

[Example 3.1] The bit index table of “ABCDABCACDEEABCCDEAC” is given as 
shown in Table 1.  

1) Suppose we would like to get AppearAB. A position i where “AB” appears implies 
“A” must appear on position i and “B” appears on the next position (i+1).  
Step1. Get AppearB=01000100000001000000 from Table 1. 
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Table 1. The bit index table of DSeq 

Data Item Appearing Bit Sequence 
A 10001001000010000010 
B 01000100000001000000 
C 00100010100000110001 
D 00010000010000001000 
E 00000000001100000100 

Step2. Perform left shift 1 (=|AB|-1) bit operation on AppearB (shift bit (i+1) to  
bit i, where 1≤i≤19, and set bit 20 to be 0), L_shift(AppearB, 1) = 
10001000000010000000. 

Step3. AppearAB = AppearA∧L_shift(AppearB, 1) = 10001000000010000000. 
 2) Suppose we would like to get AppearABC after getting AppearAB. A position i 

where “ABC” appears implies “AB” must appears on position i and “C” appears 
on position i+2.  
Step1. Obtain AppearC=00100010100000110001 from Table 1. 
Step2. Perform left shift 2 (=|ABC|-1) bits on AppearC, L_shift(AppearC, 2) = 

10001010000011000100.  
Step3. AppearABC = AppearAB∧L_shift(AppearC, 2) = 10001000000010000000.  

Accordingly, the frequency of “ABC” in DSeq equals the number of bits with 
value 1 in AppearABC (that is 3 in this case).  

Suppose pattern P=P1P2…Pm (m≥2), where Pi (i=1, …,m) is a data item. Let 
P’=P1P2…Pm-1 and X=Pm. Then AppearP could be deduced from AppearP’ and Ap-
pearX according to the recursive formula 3.1 shown below.  

If |P|=1, AppearP= AppearP ; 

Otherwise, AppearP= AppearP’ ∧L_shift(AppearX, |P|-1).          (3.1) 

The function L_shift(b, n, c) performs left shift n bits on b, and the rightmost bits on b 
are filled with constant c(c=0 or 1). If the parameter c is omitted from the function, 
the default value of c is set to be 0. 

3.2   Appearing Bit Sequences with Insertion Fault Tolerance 

By extending appearing bit sequences, the fault-tolerant appearing bit sequences are 
designed to represent the appearing positions of a pattern with fault tolerance. Given a 
fault-tolerance ( I or D), the fault-tolerant appearing bit sequence of a pattern P in a 
data sequence, denoted as FT-AppearP

+( )/FT-Appear P
-( ), represents the positions 

where the data sequence IFT/DFT-contains P.  
By considering the insertion fault tolerance, the appearing bit sequence of a pattern 

P with E numbers of insertion errors, denoted as AppearP
+(E), is defined. The bits 

with value 1 in AppearP
+( ) represent those positions where the data sequence FT-

contains P with E insertion errors. According to [Def. 2.4], there are ( I+1) situations 
that a pattern P IFT-appears in DSeq under fault tolerance I. That is, DSeq FT-
contains P with 0, 1, 2, …, or I insertion errors. In other words, performing I or 
operations on ( I+1) appearing bit sequences: AppearP

+(0), AppearP
+(1), AppearP

+(2), 
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…, and AppearP
+( I), FT-AppearP

+( I) could be obtained. According to the definition, 
AppearP

+(E) with |P|=1 is obtained from the following rule: 

[Rule 3.1] Suppose the insertion fault-tolerance is set to be I. If |P|=1, AppearP
+(E) 

=0 for all 1≤E≤ I.             (3.2) 

The remaining problem is how to get AppearP
+(E) for |P|>1 and 0≤E≤ I. Since  

AppearP
+(0) represents the locations where DSeq FT-contains P with zero insertion 

error, the way of getting AppearP
+(0) is the same as getting AppearP. When 1≤E≤ I, 

AppearP
+(E) could be obtained by performing bit operations on appearing bit se-

quences of the prefix of P with length |P-1| and the last data item in P according to the 
following lemma.   

[Lemma 3.1] Given a pattern P=P1P2…Pm, where Pi (i=1,…,m) is a data item. Let P’ 
denote P1P2…Pm-1 and X denote Pm. DSeq FT-contains pattern P with E insertion er-
rors on position i, iff DSeq FT-contains pattern P’ with k insertion errors on position i 
(0 ≤ k ≤ E) and X appears on position i+(|P|+E)-1. 

Proof. P’ appears in DSeq from position i to (i+|P|-1)+k (with k insertion errors) and 
E-k insertion errors occurs between P’ and X. Besides, |P’|+1=|P|. It induces that X  
appears on position (i+|P|-1)+k+(E-k)+1=i+(|P’|+1)+E-1= i+(|P|+E)-1.  

In other words, X must appear on the (|P|+E-1)th position on the right hand side of 
position i. Therefore, the way of getting AppearP

+(E) is expressed as the following 
recursive formula for 0<E≤ I. 

If |P|=1,  AppearP
+(E)= 0;                        

Otherwise, AppearP
+(E)=( ∨

=

E

k 0

AppearP’
+(k))∧L_shift(AppearX,|P|+E-1).      (3.3) 

To combine Formulas (3.1) and (3.3), a recursive function of getting AppearP
+(E), 

where 0<E≤ I is defined as follows. 

[Def. 3.1] Recursive function of getting AppearP
+(E): Suppose a pattern P=P1P2…Pm 

is given, where Pi (i=1,…,m) is a data item. Let P’ denote P1P2…Pm-1 and X denote 
Pm. When insertion fault tolerance I is given, AppearP

+(E) is obtained from the fol-
lowing recursive function for 0≤E≤ I. 

If |P|=1, then AppearP
+(0)= AppearP; ∀1≤E≤ I, AppearP

+(E)=0;  

Else AppearP
+(E)= ( ∨

=

E

k 0

AppearP’
+(k))∧L_shift(AppearX, |P|+E-1). 

[Example 3.2] Suppose I is set to be 1. According to the bit index table shown in 
Table 1, the process of getting AppearAB

+(1) and AppearABC
+(1) is shown as follows. 

(1) AppearAB
+(1) 

Step1. Get AppearB = 01000100000001000000 from the bit index table. 
Step2. Perform an or operation on AppearA

+(0) and AppearA
+(1). According to 

formula (3.2), AppearA
+(1)=0, and AppearA

+(0)= AppearA.  
s = AppearA

+(0)∨ AppearA
+(1)=10001001000010000010. 
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Step3. Perform left shift 2 (= |AB|+1-1) bits on AppearB,  
t = L_shift(AppearB, 2) =  00010000000100000000. 

Step4. Perform an and operation on s and t to get AppearAB
+(1). Thus the resultant 

bit sequence: s∧t= 00000000000000000000. 
(2) AppearABC

+(1) 
Step1. Get AppearC = 00100010100000110001. 
Step2. Perform an or operation on AppearAB

+(0) and AppearAB
+(1). Since Ap-

pearAB
+(0) is gotten based on formula (3.1) and AppearAB

+(1) is known 
from the previous result of this example, the resultant appearing bit se-
quence: s=AppearAB

+(0) ∨AppearAB
+(1 )= 10001000000010000000. 

Step3. Perform left shift 3 (=|ABC|+1-1) bits on AppearC,  
t = L_shift(AppearC, 3) =  00010100000110001000. 

Step4. Perform an and operation on s and t to get AppearABC
+(1). Thus the resul-

tant bit sequence: s∧t= 00000000000010000000. 

Finally, FT-AppearP
+( I) is obtained by performing ∨

=

I

i

δ

0

 AppearP
+(i). FT-freqDSeq(P) 

equals to the number of bits with value 1 in FT-AppearP
+( I). Therefore, the insertion 

fault-tolerant frequency of a pattern P could be counted quickly.  

[Example 3.3] Follows the results shown in Example 3.1 and Example 3.2,  
FT-AppearABC

+(1) = AppearABC
+(0) ∨ AppearABC

+(1) = 10001000000010000000 and 
FT-freqDSeq(“ABC”) = 3.  

To avoid duplicate computations of or and left shift operations to get AppearP
+(E) for 

various E, the function of getting AppearP
+(E) is re-defined to use recurrent relations 

between temporary results for getting AppearP
+(E) and AppearP

+(E-1). 

[Def. 3.2] Modified recursive function of getting AppearP
+(E): Suppose a pattern 

P=P1P2…Pm is given. Let P’ =P1P2…Pm-1 and X denote Pm. AppearP
+(E) is obtained 

from the following recursive function for 0≤E≤ I. 

If |P|=1, then AppearP
+(0)= AppearP; ∀1≤E≤ I, AppearP

+(E)=0; 
Else If E =0, then temp1(E) = AppearP’

+(0); temp2(E) = L_shift(AppearX, |P|-1);  
Else temp1(E) = temp1(E-1)∨ AppearP’

+(E);  temp2(E) = L_shift(temp2(E-1), 1); 
AppearP

+(E)= temp1(E) ∧ temp2(E). 

3.3   Appearing Bit Sequences with Deletion Fault Tolerance 

The appearing bit sequence of a pattern P with E numbers of deletion errors is de-
noted as AppearP

-(E). The bits with value 1 in AppearP
-(E) represent those positions 

where the data sequence FT-contains P with E deletion errors.  
Suppose a pattern P=P1P2…Pm is given. Let Y denote the first data item P1 and P” 

denote P2P3…Pm. FT-AppearP
-( I) represents the positions where Y appears and DSeq 

FT-contains P” on the next positions with at most D deletion errors. Therefore, when 
finding a position j where DSeq FT-contains P” with 0, 1, 2, …, or D deletion errors, 
if implies DSeq DFT-contains P on position (j-1) if position (j-1) contains Y. In other 
words, after performing or operations on ( D+1) appearing bit sequences:  
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AppearP’’
+(0), AppearP’’

+(1),…, AppearP’’
+( D -1), and AppearP’’

+( D), then performing 
a left shift operation on the previous result, and finally performing an and operation 
with AppearY, FT-AppearP

-( D) could be obtained. Note that if |P| ≤ D+1, when 
performing the left shift operation, the rightmost bit is filled with 1 because the bit is 
considered as “don’t care” bit on the next performed and operation. Otherwise, 0 is 
filled to the rightmost bit. According to the definition, AppearP”

-(E) is obtained from 
the following rule for all |P”|≤E≤ D: 

[Rule 3.2] Suppose the deletion fault-tolerance is set to be D. If |P”| ≤ D, AppearP”
-

(E)=0 for all |P”|<E≤ D; AppearP”
-(E)=complement(AppearP”) for E=|P”|.      (3.4) 

Accordingly, the remaining problem is to get AppearP”
-(E) for 0 ≤ E < |P”|. Since 

AppearP
-(0) represents the positions where DSeq FT-contains P” with zero deletion 

error, it implies the same information represented in AppearP”.  Therefore, the way of 
getting AppearP

-(0) is the same as getting AppearP”. When 1 ≤ E ≤ |P”|, AppearP”
-(E) 

is obtained by performing bit operations on appearing bit sequences of the prefix of 
P” with length |P”-1| and the last data item in P” according to the following lemma.   

[Lemma 3.2] Given a pattern P”=P2P3…Pm, where (i=2 , …,m) is a data item.  Let Q 
denote P2P3…Pm-1 , and X denote the last data item Pm. DSeq FT-contains pattern 
P”with E deletion errors on position i, iff  

1) DSeq FT-contains pattern Q with E deletion errors on position i and X appears on 
position  i+(|P”|-1-E), or 

2) DSeq FT-contains pattern Q with (E-1) deletion errors on position i and FT-
contains X on position i+(|P”|-E) with 1 deletion error. 

Proof   
1) Q appears in DSeq from position i to i+(|Q|-E)-1 (with E deletion errors). If DSeq 

FT-contains P” on position i with E deletion errors, X must appear on position 
i+(|P”|-1-E) (because |Q|=|P”|-1).   

2) Q appears in DSeq from position i to i+(|Q|-(E-1))-1= i+(|Q|-E) (with E-1 deletion 
errors). Then X is forced to be absent on position i+(|Q|-E)+1. That is, DSeq FT-
contains X with 1 deletion error on position i+(|P”|-1-E)+1=i+(|P”|-E).                  

Therefore, the way of getting AppearP”
-(E) is expressed as the following recursive 

function for 0 < E ≤ D. 

If |P”| < E, AppearP”
-(E) = 0; 

Else if |P”| = E, AppearP”
-(E) = complement(AppearP” ); 

Else AppearP”
-(E)=(AppearQ

-(E) ∧ L_shift(Appearx, |P”|-E-1,0))∨ 
                             (AppearQ

-(E-1) ∧ L_shift(Appearx
-(1), |P”|-E,1)).                 (3.5) 

To combine Formulas (3.1) and (3.5), a recursive function of getting AppearP”
-(E), 

where 0 ≤ E ≤ D is defined as follows. 

[Def. 3.3] (Recursive function of getting AppearP”
-(E)): Suppose a pattern P”= 

P2P3…Pm is given. Let Q denote P2P3…Pm-1  and X denote Pm. When deletion fault 
tolerance D is given, AppearP”

-(E) is obtained from the following recursive function 
for 0 ≤ E ≤ D. 
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IF |P”|=1, then AppearP”
-(0)= AppearP(E); AppearP”

-(1)=complement(AppearP); 
Else if E = 0, then  AppearP”

-(0)=AppearQ
-(0) ∧L_shift(Appearx , |P”|-1); 

Else if E >|P”|, then AppearP”
-(E) = 0;  

Else if E =|P”|, then AppearP”
-(E) = complement( AppearP”

-(0) ); 
Else AppearP”

-(E) = (AppearQ
-(E) ∧L_shift(Appearx , |P”|-E-1,0))∨ 

(AppearQ
-(E-1) ∧L_shift(Appearx

-(1), |P”|-E,1)). 

[Example 3.4] Suppose D is set to be 1. According to the bit index table shown in 
Table 1, the process of getting AppearB

-(1), AppearBC
-(1) and AppearBCD

-(1) is de-
scribed as follows. 

(1) AppearB
-(1) = complement( AppearB). 

Step1. Get AppearB = 01000100000001000000.  

Step2. AppearB
-(1) = ¬AppearB = 10111011111110111111. 

(2) AppearBC
-(1) = (AppearB

-(1) ∧L_shift(AppearC,0,0) ∨ 
                          (AppearB

-(0) ∧L_shift(AppearC
-(1),1,1) 

Step1. Get AppearC = 00100010100000110001. 
Step2. Perform left shift 0 (=|BC|-1-1) bit on AppearC,  

s= L_shift(AppearC,0,0)=00100010100000110001. 
Step3. Perform an and operation on s and AppearB

-(1), where the result of AppearB
-

(1) has been obtained previously. u=s∧ AppearB
-(1)=00100010100000110001. 

Step4. AppearC
-(1)= ¬AppearC =11011101011111001110. 

Step5. Perform left shift 1 (=|BC|-1) bit on AppearC
-(1) (the rightmost bit is filled 

with 1). t= L_shift(AppearC
-(1),1,1) = 10111010111110011101. 

Step6. Perform an and operation on t and AppearB
-(0).   

v = t∧ AppearB=00000000000000000000.  
Step7. Perform an or operation on u and v.  Then the resultant bit sequence is w= u∨ v 

= 00100010100000110001.  
(3) AppearBCD

-(1) =  (AppearBC
-(1) ∧L_shift(AppearD,1,0) ∨ 

                      (AppearBC
-(0)∧L_shift(AppearD

-(1),2,1)  
Step1. Get AppearD = 00010000010000001000. 
Step2. Perform left shift 1 (=|BCD|-1-1) bit on AppearD.  

s= L_shift(AppearD(1),1,0) =00100000100000010000. 
Step3. Perform an and operation on s and AppearBC

-(1), where the result of AppearBC
-

(1)  has been obtained previously. 
u=s∧ AppearBC

-(1)=00100000100000010000      
Step4. AppearD

-(1)= ¬ AppearD=11101111101111110111. 
Step5. Perform left shift 2 (=|BCD|-1) bits on AppearD

-(1).  
t=L_shift(AppearD

-(1),2,1)=10111110111111011111.  
Step6. Perform an and operation on t and AppearBC

-(0). 
v = t∧ AppearBC

-(0)=00000100000001000000.  
Step7. Perform an or operation on u and v. Then the resultant bit sequence is w = u∧v 

= 00100100100001010000. 

Let temp(E) denote the results of ∨
=

E

k 0

Appearp”
-(k). To combine formulas 3.4 and 3.5, a 

recursive function of getting FT_AppearP
-(δD) is defined as follows. 
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[Def. 3.4] (Recursive function of getting FT_AppearP
-(δD)): Suppose a pattern 

P=P1P2…Pm is given, where Pi (i=1,…,m) is a data item. Let Y denote P1, P’’ denote 
P2P3…Pm, Q denote P2P3…Pm-1 , and X denote Pm. When deletion fault tolerance δD is 
given, FT_AppearP

-(δD) is obtained from the following recursive function. 

If |P|≤ δD +1, then FT_AppearP
-(δD) = AppearY; 

Else  tempP’(δD-1) = AppearQ ∨ (AppearQ
-(δD -1) ∧ L_shift(AppearX, |P’’|-δD, 0));  

tempP’(δD)= tempQ(δD-1) ∨ (AppearQ
-(δD) ∧ L_shift(AppearX, |P’’|-δD-1, 0)); 

FT_AppearP
-(δD) = AppearY ∧ L_shift(tempP’(δD),1,0). 

FT_FreqDSeq
-(P) equals to the number of bits with value 1 in FT_AppearP

-(δD). There-
fore the deletion fault-tolerant frequency of a pattern P could be counted efficiently to 
evaluate whether P is a FT-RP or not. 

4   Mining Top-K Non-trivial FT-RPs with Min- ength Constraint 

In this section, two algorithms, called TFTRP-Mine and RE-TFTRP-Mine, are 
developed for finding Top-K non-trivial FT-RPs. These two algorithms are applica-
ble for both situations considering insertion/deletion fault tolerance by exchanging the 
function of generating fault-tolerant appearing bit sequences. 

4.1   TFTRP-Mine Algorithm 

TFTRP-Mine Algorithm is designed based on the representation of fault-tolerant 
appearing bit sequences to mine top-K non-trivial FT-RPs. First, the data sequence is 
scanned once to create the bit index table. Initially, the candidate pattern is a single 
data item in the data sequence. If the candidate is a FT-RP, an additional data item is 
appended to the FT-RP to generate a longer candidate pattern. In other words, the 
candidate patterns are generated in depth-firs order. So the fault-tolerant appearing bit 
sequence of a candidate pattern is obtained according to the recursive function de-
fined in the previous section. Then, the fault-tolerant frequency of a candidate pattern 
is counted efficiently to decide whether it is a FT-RP. According to the anti-
monotonic property, it is not necessary to generate candidate patterns by appending 
additional data items to a non-FT-RP. Moreover, a FT-RP must satisfy the minimum 
length and non-trivial constraints before being outputted to the mining result. Finally, 
after sorting the mining result according to the fault-tolerant frequencies, the top-K 
non-trivial FT-RPs satisfying the min_len constraints are obtained from the first K 
patterns in the result. In summarizing the above descriptions, the mining process of 
TFTRP-Mine algorithm consists of the following steps. 

Algorithm TFTRP-Mine: 
Input: a data sequence DSeq, fault tolerance δI /δD, min_len, and K. 
Output: Top-K non-trivial FT-RPs with length no less than min_len. 
Step1. Scan DSeq once to construct the bit index table. 

Let D = {D1, D2, …Dn}denote the set of data items in DSeq. 
Step2. Set P to be an empty data sequence. Set l = 1 and jl = 1. 

l
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Step3.Generate longer candidate patterns: 
Step3-1. Generate a new candidate P’ by appending data item Djl to P, and com-

pute FT-AppearP’
+(δI ) or FT-AppearP’

-(δD ).  
Step3-2. Count the number of bits with value 1 in FT-AppearP’

+(δI ) or FT-
AppearP’

-(δD) to get FT_freqDSeq(P’). If FT_freqDSeq(P’) < min_freq, pro-
ceed to Step3-6. 

Step3-3. Check whether P’satisfies the minimum length constraint. If |P’| ≥ 
min_len, insert P’ into Minlen set. 

Step3-4. Set P=P’, l = l + 1, jl = 1, and recursively call Step3. 
Step3-5. Check whether P’, is non-trivial by calling procedure Non_Trivial(P’, 

temporal results).   
Step3-6. Set jl = jl +1, If jl ≤ n, proceed to Step3-1. 
Step3-7. l = l-1.  If l > 0, return the recursive call; otherwise, proceed to Step4. 

Step4. Sort the temporal results in fault-tolerant frequency descending order. Extract 
the first K patterns from the temporal results. 

If S is non-trivial among the patterns found until now according to the results in 
Temp, the procedure Non_Trieval(S, Temp) will insert S into Temp. Moreover, all the 
sub-patterns of S in Temp, which have the same frequencies with S, will be removed. 

4.2   RE-TFTRP-Mine Algorithm 

In TFTRP-Mine algorithm, all the FT-RPs in the data sequence are found first.  Then, 
top-K non-trivial FT-RPs are extracted from the results. If huge amounts of FT-RPs 
exist, all FT-RPs still have to be mined out even only the top-K non-trivial FT-RPs 
need to be outputted. It causes the mining process costly even for a small K setting. 
Therefore, the refinement of TFTRP-Mine, RE-TFTRP-Mine algorithm is designed. 
In the refined algorithm, those FT-RPs which are not possible the top-K non-trivial 
FT-RPs are pruned as early as possible by raising min_freq during the mining process. 
The idea is to raise min_freq to be a higher value if the least frequency among the 
most updated top-K FT-RPs has became larger than min_freq. Then, the FT-RPs with 
fault-tolerant frequencies less than the new min_freq will not be used to generate 
longer candidate patterns in the following mining process. Moreover, in order to get 
the FT-RPs with high fault-tolerant frequencies as early as possible, among the FT-
RPs which have been discovered, the FT-RPs with higher frequencies are assigned 
higher priorities used to generate new candidates.  

The mining process of RE-TFTRP-Mine algorithm is shown below. Since the 
minimum length constraint is required, the two strategies described above are applied 
only after all the FT-RPs with length equal to min_len have been found and stored in 
Minlen_Heap. Then, the patterns in Minlen_Heap are sorted according to their fault-
tolerant frequencies to decide their priorities for generating the following candidates.   

Algorithm RE-TFTRP-Mine: 
Input: a data sequence DSeq, fault tolerance δI /δD, min_len, and K. 
Output: Top-K non-trivial FT-RPs with length no less than min_len. 
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Step1. Scan DSeq once to construct the bit index table. 
Let D = {D1, D2, …Dn }denote the set of data items in DSeq. 

Step2. Set P to be an empty data sequence. Set l = 1 and jl = 1. 
Step3. Generate longer candidate patterns: 

Step3-1. Generate a new candidate P’ by appending data item Djl to P, and compute 
FT-AppearP’

+(δI ) or FT-AppearP’
-(δD ).  

Step3-2. Count the number of bits with value 1 in FT-AppearP’
+(δI ) or FT-AppearP’

-

(δD) to get FT_freqDSeq(P’). If FT_freqDSeq(P’) < min_freq, proceed to Step3-5. 

Step3-3. Check whether P’ satisfies the minimum length constraint. If |P’| ≥ 
min_len, insert P′ into Minlen_Heap and proceed to Step3-5. 

Step3-4. If |P’| < min_len, set P=P’, l = l + 1, jl = 1, and recursively call Step3. 

Step3-5. Set jl = jl + 1. If  jl≤ n, go back to Step3-1. 
Step3-6. l = l -1, if l > 0, return the recursive call; else if l = 0, copy the K patterns in 

Minlen-Heap with top-K fault tolerant frequencies to temporal top-K set, and 
proceed to Step4. 

Step4. Select a FT-RP to generate candidates: 
Step4.1. Maintain the non-trivial FT-RPs patterns with Top-K fault tolerant  

frequencies in the temporal top-K set. Let S denote the pattern that has the least 
frequency among the Top-K patterns currently. If FT_freqDSeq(S)> min_freq, set 
min-freq = FT_freqDSeq(S). Remove those patterns with fault-tolerant frequencies 
being less than the new min_freq from Minlen_Heap. 

Step4.2. Set P={Q| Q has maximum fault-tolerant frequency in Minlen_Heap} and 
remove P from Minlen_heap. Set l=|P|, l = l+1, jl=1, and recursively call Step3. 

Step4.3. Check whether P is non-trivial by calling procedure Non_Trivial(P, tem-
poral top-K set).   

Step5. Repeat Step 4 until Minlen_Heap is empty. 
Step6. Extract the first K patterns from the temporal top-K set to be the mining result. 

5   Performance Study 

We implemented TFTRP-Mine and RE-TFTRP-Mine algorithms using Borland C++ 
Builder 5.0. The experiments are performed on a 2.4GHz Intel Pentium IV PC ma-
chine with 512 megabytes main memory and running Microsoft XP Professional. 

In the first five experiments, data sequences are produced from a synthesis data 
generator. Two input parameters are required when running the data generator, where 
L denotes the length and E denotes the number of various data items in the generated 
data sequence. The scalabilities of TFTRP-Mine and RE-TFTRP-Mine algorithms on 
execution time are compared under various parameters setting. Moreover, the results 
of mining repeating patterns in real music objects without fault tolerance and with 
fault tolerance are compared in the last experiment. According to theses experiment 
results, the effectiveness of mining with fault tolerance is observed. 

In addition to the data parameters L and E defined previously, δI(the insertion fault 
tolerance), min_len(the minimum length constraint) and K(the desired number of  
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non-trivial FT-RPs to be mined) also influence the mining results and execution time 
of  the proposed algorithms. By varying one of these five factors (L, E, δI, min_len, 
and K) in each experiment, the scalabilities of TFTRP-Mine and RE-TFTRP-Mine on 
execution time are observed. Besides, in order to show the pruning effect of  
RE-TFTRP-Mine, the numbers of generated candidate patterns of two algorithms are 
also illustrated. In the following five experiments, min_freq is fixed to be 10. 

[Experiment 1] Changing the size of a data sequence (L)  
In this experiment, δI = 2, min_len = 8, K = 5 and E = 5 are given. L is varied from 
1000 to 5000. The experimental results in Fig. 1 show the execution efficiency of RE-
TFTRP-Mine algorithm outperforms the one of TFTRP-Mine algorithm. The reason 
is that the former does not need to generate all candidate patterns when finding top-K 
non-trivial FT-RPs. Moreover, the number of generated candidate patterns increases 
as the value of L is raised. Therefore, when L increases, the execution efficiency of 
TFTRP-Mine is slower and slower than the one of RE-TFTRP-Mine algorithm.  

[Experiment 2] Changing the number of various data items (E)  
Fig. 2 shows the execution times of the proposed two algorithms on data sequences 
with L=2000, where δI=2, min_len=8 and K=5 are inputted. When E increases from 5 
to 25, the generated candidate patterns also increases. Thus, the performance efficien-
cies of two algorithms decrease in this range. However, when E=30, the numbers of 
generated candidates in both algorithms become less than the ones generated when 
E=25 and the corresponding execution time of both algorithms is also lowered down. 
The reason is that more various data items may cause the data sequence becomes 
more “sparse”. Therefore, fewer FT-RPs are found and fewer candidate patterns are 
generated even there are more various data items. 

[Experiment 3] Changing insertion fault tolerance (δI)  
This experiment is performed on data sequences with L=2000, where E=5, 
min_len=8 and K=5 are inputted. As the results shown in Fig. 3, when δI increases, 
the number of generated candidate patterns grows exponentially because much more 
FT-RPs are found due to the relaxed constraints. Therefore, the execution time of two 
algorithms also increases as δI increases. However, RE-TFTRP-Mine still prunes huge 
amount of unnecessary candidates dramatically.  

[Experiment 4] Changing the minimum length (min_le)  
This experiment is performed on data sequences with L=2000 and E=5, where δI=2 
and k=5 are inputted. For the same data sequence, no matter what value the min_len 
is, the number of generated candidate patterns in TFTRP-Mine algorithm is the same 
(41,730) and the curve of execution time keeps almost steady. On the other hand, RE-
TFTRP-Mine algorithm finds all the FT-RPs with lengths equal to min_len before 
tuning the min_freq. Therefore, the number of generated candidates of algorithm 
increases as min_len increases. In addition, because the longer patterns usually have 
lower frequencies, the larger min_len is, the less number of non-trivial FT-RPs are 
discovered. Thus, the number of non-trivial FT-RPs in the data sequence is less than 5 
when min_len = 45 and 50. It implies that the setting of min_freq was not raised dur-
ing the execution of RE-TFTRP-Mine algorithm. In this situation, RE-TFTRP-Mine  
 



108 J.-L. Koh and Y.-T. Kung 

0
100
200
300
400
500

1000 2000 3000 4000 5000

ru
n_

tim
e 

(s
ec

.) TFTRP

RE-TFTRP

 
L 1000 2000 3000 4000 5000 

TFTRP 10295 41730 120075 348610 533770 
RE_TFTRP 8705 24300 24760 36090 41280 

Number of generated candidates 

Fig. 1. Result of Experiment 1 

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

ru
n_

tim
e 

(s
ec

.)

TFTRP

RE-TFTRP

 
E 5 10 15 20 25 30 

TFTRP 41730 70840 103110 112325 120780 111408 
RE_TFTRP 24300 38540 154825 56760 66140 46656 

Number of generated candidates 

Fig. 2. Result of Experiment 2 

0
500

1000
1500
2000
2500

1 2 3 4

ru
n_

tim
e 

(s
ec

.)

TFTRP

RE-TFTRP

 
δI 1 2 3 4 

TFTRP 5760 41730 394515 3434805 
RE_TFTRP 5465 24300 36600 76195   

Number of generated candidates 

Fig. 3. Result of Experiment 3 

algorithm generates the same candidate patterns as TFTRP-Mine does and needs 
additional cost to maintain the sorted FT-RPs and the top-Ks. So the execution time of 
RE-TFTRP-Mine is over the one of TFTRP-Mine when min_len is 45 and 50. 

[Experiment 5] Changing the setting value of K  
In this experiment, data sequences with L=2000 and E=5 are used as test data, where 
the run time parameters δI=2 and min_len=8 are given. Let max_K denote the number  
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of total non-trivial FT-RPs with min_len constraints discovered in this test data se-
quence. K is varied from max_K×1% to max_K×100%. Fig. 5.5 shows that the num-
ber of generated candidates in RE-TFTRP-Mine is the same with the one generated in 
TFTRP-Mine when K/max_K is more than 80%. This case occurs because the least-
frequency in the top 80% non-trivial FT-RPs is the same with min_freq. Therefore, 
the pruning strategy does not work and more processing cost of RE-TFTRP-Mine is 
required than TFTRP-Mine. However, the execution time of RE-TFTRP-Mine is 
about half of the time of TFTRP-Mine because RE-TFTRP-Mine prunes about two 
third of the candidate patterns when K/max_K is 1%. 

[Experiment 6] Performance evaluation on effectiveness 
In this experiment, five popular songs are selected as test data, whose total playing-
times are between 4 and 5 minutes. The run-time parameters min_freq = 3, K = 2 and 
min_len =8 are given. We compare the found repeating patterns under various setting 
of δI or δD with the actual motifs in the music object. The results show that no non-
trivial FT-RPs satisfying the min_len constraint could be found among the five music 
objects if fault-tolerant mapping is not allowed. When at most two insertion/deletion 
errors are allowed (δI or δD = 2), the found patterns are most close to the motifs in the 
music objects. It shows that mining repeating patterns with fault tolerance is necessary. 
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6   Conclusion and Future Works 

In this paper, two algorithms, named TFTRP-Mine and RE-TFTRP-Mine, are pro-
posed to mine top-K non-trivial fault-tolerant repeating patterns with lengths no less 
than minimum length constraints from data sequences. By extending the idea of ap-
pearing bit sequences, fault-tolerant appearing bit sequences are defined to represent 
the positions where candidate patterns appear in a data sequence with Inser-
tion/deletion errors. Both of two algorithms use the recursive formulas to obtain fault-
tolerant appearing bit sequences of a pattern systematically and then the fault-tolerant 
frequency of each candidate pattern could be obtained quickly. Besides, RE-TFTRP-
Mine adopts two additional strategies to improve the mining efficiency. The experi-
mental results show that RE-TFTRP-Mine outperforms TFTRP-Mine algorithm when 
K and min_len are small. In addition, when adopting fault tolerant mining, more im-
portant and implicit repeating patterns could be found for music objects.  
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Abstract. A common phenomenon of time-qualified data are tempo-
ral repetitions, i.e., the association of multiple time values with the
same data. In order to deal with finite and infinite temporal repeti-
tions in databases we must use compact representations. There have
been many compact representations proposed, however, not all of them
are equally efficient for query evaluation. In order to show it, we define a
class of simple queries on compact representations. We compare a query
evaluation time on our proposed multi-granular compact representation
GSequences with a query evaluation time on single-granular compact
representation PSets, based on periodical sets. We show experimentally
how the performance of query evaluation can benefit from the compact-
ness of a representation and from a special structure of GSequences.

1 Introduction

A temporal repetition takes place when the same data are associated with mul-
tiple time values. Table 1 shows a temporal repetition of a meeting of DB Group
that takes place every Monday in January 2005.

When a temporal repetition is infinite (or infeasible large), some finite rep-
resenter is used to store it in a database. Table 2 shows a representer for the
temporal repetition from Table 1 with our proposed compact representation
GSequences.

The name of GSequences stands for ‘granularity sequences’, because it consists
of finite sequences of periodicities over granularities.

We assume a point-based representation of time, when the time domain is
a discrete lineary-ordered set of time points forming the ‘bottom granularity’.
Additional granularities are partitionings of the bottom granularity defined with
functions, allowing non-regular granules, when it is necessary.

A periodicity over a granularity is a five-element tuple, where the first el-
ement refers to the granularity and the remaining part defines a periodical
repetition over the granularity. For example, periodicity 〈days, 2, 1, 10, 20〉 de-
fines a repetition of days described by the function f(x) = 2x + 1, where
10 ≤ f(x) ≤ 20.

When two or more periodicities are combined into a sequence, each periodic-
ity, except for the rightmost, is related to the following periodicity. We refer the

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 111–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Temporal Repetition of DB Group Meeting

Group Room Time
DB Group 204 2005-01-03 14:00
DB Group 204 2005-01-10 14:00
DB Group 204 2005-01-17 14:00
DB Group 204 2005-01-24 14:00
DB Group 204 2005-01-31 14:00

Table 2. Representer of DB Group Meetings using GSequences

Group Room Time
DB Group 204 (〈hours, 1, 0, 14, 16〉, 〈days, 1, 0, 1, 1〉, 〈weeks, 1, 0, ∗, ∗〉,

〈years, 1, 0, 2005, ∗〉)

rightmost periodicity as absolute and the rest of periodicities as relative. Infor-
mally, each relative periodicity is happening during each granule of the following
periodicy. For example, sequence (〈months, 1, 0, 1, 3〉, 〈years, 1, 0, 2005, 2006〉) de-
fines first three months during year 2005 and during year 2006.

If the limits of an absolute periodicity are unset, the represented repetition is
infinite. For relative periodicities, unset limits imply the limits of a granule of the
following periodicity. For example, 〈months, 2, 1, 1, ∗〉 represents an infinite repe-
tition of every second month starting from month 1. Sequence (〈hours, 3, 1, ∗, ∗〉,
〈days, 2, 1, 10, 20〉) is equivalent to (〈hours, 3, 1, 1, 24〉, 〈days, 2, 1, 10, 20〉), be-
cause every day has 24 hours.

There have been many compact representations created during the last two
decades [2, 4, 5, 6, 7, 8, 9, 10]. All of them can be used to store temporal repetitions
in databases, however, depending on a representation, different performance re-
sults might be achieved evaluating the queries. All related works listed do not
explore this particular issue.

Many temporal repetitions use common time granularities (e.g., hours, days,
years) and periodicity (e.g., every 3rd, every 10th starting from 2nd). As a re-
sult, most popular compact representations use periodicity and/or granularities.
Works [2, 5, 7, 8, 9, 10] combine multiple granularities in their proposed represen-
tation, whereas work [6] uses a single time granularity.

Most of the representations were shown to have the expressiveness equal to
eventually periodical sets [5, 6, 7, 8, 10]. An eventually periodical set consists of
a finite non-periodical subset and a periodical subset. A periodical set, conse-
quently, is a possibly infinite set, each element of which can be obtained by
adding or subtracting positive number p from some other element of this set.
For example, eventually periodical set {1, 3, 4, 5, 10, 15, 20, . . .} consists of finite
non-periodical subset {1, 3, 4} and infinite periodical subset {5, 10, 15, 20, . . .}.

Many of compact representations are based on algebraic expressions, where
set operations are most common [2, 4, 7, 8, 9, 10]. Both, compact representation
values and the relations between granularities, are defined with algebraic expres-
sions. As a result, proposed algorithms assume inductive inference which might
badly impact the performance of queries. However, the complexity of algorithms
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has been estimated only at the theoretical level and the real query evaluation
time on different compact representations has never been compared.

Some of the works mentioned address implementation issues, suggest query
evaluation algorithms or describe implemented prototypes. Work [3] describes
an implementation of the representation proposed in [7] in a real database for
use in temporal rules. Work [6] describes algorithms for the evaluation of rela-
tional operations on proposed representations. The work [8] describes an efficient
algorithm for the evaluation of joins on proposed compact representation. Work
[10] describes methods of simplification of representations at the symbolic level.
Work [1] describes a simplification algorithm for minimising representations of
periodical granularities.

We practically show that not all representations are equally efficient for query
evaluation. We use single-granular representation, referred as PSets, with expres-
siveness equal to eventually periodical sets to compare the query evaluation time
with GSequences. We define the compactness property of a representer and we
prove that a representer with GSequences is as much or more compact than a
representer with PSets of the same temporal repetition. The queries we consider
have two boundaries and the target granularity. An example of such a query
on a representer shown in Table 2 is ‘days with meetings between 2005-03-01
and 2005-05-31’. The experiments we run confirm that the structure and the
compactness of GSequences gives an advantage during query evaluation.

Section 2 defines compact representations GSequenses and PSets along with
all necessary concepts we use in these definitions. In section 3 we analyse the
compactness of both representations. Section 4 defines a class of simple queries
on compact representation and gives complexity estimation for query evaluation
algorithms on both compact representation. Section 5 contains the results of our
experiments. Section 6 finishes this article with conclusions and future work.

2 Compact Representations

2.1 Time Domain and Granularities

All related works we refer assume discrete lineary-ordered time domain. For our
representation we use the same assumption.

Definition 1 (time domain). A time domain T is a discrete, lineary ordered
set, infinite in the future and bounded in the past.

Example 1. Sample time values are 1, 3, 10, 55009440.

We define granularities as a partitioning of the time domain T .

Definition 2 (granularity). Let G = IN be an index set and let g ∈ G. A
mapping Mg : IN → 2T is a granularity with an index g if

1. ∀i ∈ IN : (Mg(i) �= ∅);
2. ∀i ∈ IN : Mg(i) is a finite set;
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3. ∀i, j ∈ IN : (i �= j ⇒ (Mg(i) ∩Mg(j) = ∅));
4. ∀i, j ∈ IN : (i < j ⇒ (∀m ∈Mg(i), n ∈ Mg(j) : m < n));
5.
⋃
i

Mg(i) = T .

The first and the second conditions require all partitions to be non-empty and
finite. The third condition disallows partitions to overlap. The fourth and the
fifth conditions require that there are no gaps between the partitions.

Example 2. According to Def. 2, proper granularities are days, weeks, Gregorian
months, Gregorian years, moon months, milliseconds, centuries, summer and
winter time periods, etc. Weekends, leap years, etc., are not granularities, because
they allow gaps.

Definition 3 (base granularity). A granularity Mb : IN → 2T is a base gran-
ularity iff ∀i ∈ IN(Mb(i) = {i}).

Example 3. If the base granularity is equal to ‘days’, granularities ‘weeks’ and
‘month’ group the time domain T into the partitions as it is shown in Fig. 1.

Our definition of granularity allows us to specify mapping Mg with function
μg→T : IN → T , or just μg, where μg(x) returns the first element of T of granule
x and μg(x + 1)− 1 returns the last element of T of granule x.

Fig. 1. Granularity as a Partitioning of the Time Domain T

In further sections we use also reverse mapping M−1
g that can be defined with

function μ−1
g→T : T → IN, or just μ−1

g , that returns index i ∈ IN of a granule of
granularity g for given t ∈ T if μg(i) ≤ t < μg(i + 1).

Example 4. For the base granularity equal to ‘days’, function μyears(x) returns
the first day of year x. Function μ−1

years(y) returns a year to which day y belongs.

μyears(x) = 365x + �x/4� − �x/100�+ �x/400�
μ−1

years(y) = 400� y

146097
�+

+100 min(3, �y mod 146097
36524

�) +

+4� (y mod 146097) mod 36524
1461

�+

+ min(3, � ((y mod 146097) mod 36524) mod 1461
365

�)
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A new granularity g can be defined using one already defined granularity h. In
other words μg(x) = μh(μg→h(x)) and μ−1

g (x) = μ−1
h (μ−1

g→h(x)). In this case to
define g we define only μg→h(x) and μ−1

g→h(x).

Example 5. If months are already defined with functions μmonths(x) and
μ−1

months(x), we can define years with μyears→months(x) = 12(x − 1) + 1 and
μ−1

years→months(x) = �x/12�+ 1.

2.2 Temporal Repetition and Compact Representation

Let A be some combination of non-temporal domains and let a denote some
element of A. Let T be the time domain.

Definition 4 (temporal repetition). A temporal repetition of some data a is
a relation ra ⊆ {a} × T .

Example 6. Table 3 illustrates a temporal repetition of a bus no. 2 in Bozen-
Bolzano. This temporal repetition is infinite, because buses are supposed to go
forever.

Table 3. Bus no. 2 Schedule in Bozen-Bolzano

No. Station Time
2 Stazione 1 2005-01-03 7:48
2 Stazione 1 2005-01-03 8:00
2 Stazione 1 2005-01-03 8:12
... ... ...
2 Stazione 1 2005-01-04 7:48
2 Stazione 1 2005-01-04 8:00
2 Stazione 1 2005-01-04 8:12
... ... ...

Definition 5 (compact representation). Let X be some domain. Let υ :
X → 2T be a function that takes an element of X and returns a subset of time
domain T . A compact representation is pair 〈X, υ〉, where X is called the domain
of the representation and υ is called the unfold operation of the representation.

In sections 2.4 and 2.5 we define two particular compact representations PSets
and GSequences, showing the use of this definition.

Definition 6 (relational unfold). Let r̄a ⊂ {a} ×X and R̄ =
⋃
a,i

r̄a,i be a set

of all possible r̄a,i. Let ra ⊂ {a}× T and R =
⋃
a,i

ra,i be a set of all possible ra,i.

A relation operation Υ : R̄ → R is relational unfold operation for the compact
representation 〈X, υ〉, if ∀r̄ ∈ R̄(Υ (r̄) = {〈a, t〉 | ∃x ∈ X(〈a, x〉 ∈ r̄ ∧ t ∈ υ(x))}).
Definition 7 (representer). A relation r̄ ⊂ {a}×X is a representer with the
domain X of a temporal repetition r if there’s such a relational unfold operation
Υ , that Υ (r̄) = r and r̄ is finite and |r̄| ≤ |r|.
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Example 7. Let r̄ = {〈a, x1〉, 〈a, x2〉} be some representer, where x1, x2 ∈ X . Let
υ(x1) = {2, 3, 4} and υ(x2) = {7, 9}. The result of Υ (r̄) is a temporal repetition
{〈a, 2〉, 〈a, 3〉, 〈a, 4〉, 〈a, 7〉, 〈a, 9〉}.

Definition 8 (compactness). The compactness of a representer r̄ ⊂ {a1} ×
. . .× {an} ×X is its size in bytes occupied in a database.

Example 8. Having attribute ‘Group’ as a fixed length character string of length
10, having an attribute ‘Room’ as a natural number and having granularity
indexes encoded by natural numbers, the representer given in Table 2 has a
length of 10 + 1 · s + 4 · 5 · s bytes, where s is a size of one natural number in
bytes.

2.3 Periodical Sets and Periodical Granularities

Definition 9 (periodical set). Set S ⊆ IN is a periodical set if there exists
some p ∈ IN, called period, and finite subset S′ ⊆ S, called repeating subset, such
that:

1. ∀i ∈ S \ S′(∃r ∈ S′, x ∈ IN(i = r + xp));
2. ∀i ∈ S(∃r ∈ S′, x ∈ IN(i = r + xp)⇒ i ∈ S \ S′).

The first condition of the definition ensures that all elements of set S \ S′ can
be obtained by consequently adding period p to the elements of subset S′ of S.
The second condition ensures that S′ is ‘minimal’. In other words, no element of
S′ can be expressed subtracting or adding the same period to another element
of subset S′.

Example 9. Set S = {2, 3, 6, 8, 13, 14, 17, 19, . . . , 46, 47, 50, 52, . . .} is a periodical
set with repeating subset S′ = {2, 3, 6, 8} and period p = 11.

With the appropriate base granularity many other granularities, including Gre-
gorian calendar granularities, are periodical.

Definition 10 (periodical granularity). Granularity Mg is a periodical gran-

ularity if
∞⋃

i=1

μg(i) is a periodical set.

Example 10. If the base granularity is ‘days’, Gregorian years form a periodical
set with a repeating subset of 400 elements (years) and the period equal to
146097 days. Gregorian months form a periodical set with a repeating subset of
400x12 elements (months) and the same period equal to 146097 days.

2.4 PSets

Definition 11 (periodicity). Let IN∗ = IN ∪ ∗. A periodicity is a five tuple
〈g, p, o, l, h〉, where g ∈ G is a granularity index, p, o ∈ IN are respectively a
period and an offset of a linear function f(x) = px + o and l, h ∈ IN∗ are
respectively lower and upper bounds on the value of f(x).
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Example 11. Sample periodicities are 〈minutes, 11, 2, 0, 200〉, 〈seconds, 11, 3, 0, ∗〉
and 〈days, 11, 6, ∗, ∗〉.

Definition 12 (XPS). The domain of the compact representation PSets XPS =
G × IN× IN× IN∗ × IN∗ is a set of all possible periodicities.

Definition 13 (υPS). Let x ∈ XPS and let x = 〈g, p, o, l, h〉.
– for l = ∗ ∧ h = ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈Mg(f))};
– for l = ∗ ∧ h �= ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈Mg(f) ∧ f ≤ h)};
– for l �= ∗ ∧ h = ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈Mg(f) ∧ l ≤ f)};
– for l �= ∗ ∧ h �= ∗:

υPS(x) = {t ∈ T | ∃i ∈ IN(f = pi + o ∧ t ∈Mg(f) ∧ l ≤ f ≤ h)}.

Example 12. Table 4 shows a fragment of a representer with PSets of the tem-
poral repetition of the bus no 2 shown in Table 3. The values of the rightmost
column encode a periodical set with a period 1 week = 10080 minutes, and re-
peating subset {7665, 7680, 7695}, where 7665 corresponds to 07:45 of the first
Saturday, 7680 to 08:00, and 7695 to 08:15.

Table 4. Representer of Bus no. 2 Schedule in Bozen-Bolzano using PSets

No. Station XPS

2 Stazione 1 minutes,10080,7665,*,*
2 Stazione 1 minutes,10080,7680,*,*
2 Stazione 1 minutes,10080,7695,*,*
... ... ...

2.5 GSequences

Definition 14 (XGS). Let P be a finite sequence of periodicities. The domain of
the compact representation GSequences XGS =

⋃
i

Pi is a set of all possible Pi.

To define υGS we introduce some helper functions. Function ξ : G × IN×G → IN
takes tuple 〈e, i, g〉, where e and g are granularity indexes and i is an index of a
partition of granularity e, and returns an index of a partition of granularity g:

ξ(e, i, g) =
{

μ−1
g (μe(i)), if μg(μ−1

g (μe(i))) ≥ μe(i);
μ−1

g (μe(i)) + 1, if μg(μ−1
g (μf (i))) < μe(i).

Let x be some element of XGS. Let x′ denote x without the leftmost peri-
odicity and let r1 ∈ x be the leftmost periodicity in x. For example, if x =
(〈days, 1, 0, 1, 1〉, 〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉, 〈years, 1, 0, 2005, 2005〉),
then x′ = (〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉, 〈years, 1, 0, 2005, 2005〉) and
r1 = 〈days, 1, 0, 1, 1〉.
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Let ῡ : XGS → 2G×IN be a function and let ῡ(P ) be defined as follows.

1. if (r1 = 〈g, p, o, l, h〉) ∧ (x′ = ∅):
– for l �= ∗ ∧ h �= ∗, ῡ(x) = {〈g, i〉 | l ≤ i ≤ h ∧ ∃j ∈ IN(i = pj + o)};
– for l = ∗ ∧ h �= ∗, ῡ(x) = {〈g, i〉 | 1 ≤ i ≤ h ∧ ∃j ∈ IN(i = pj + o)};
– for l �= ∗ ∧ h = ∗, ῡ(x) = {〈g, i〉 | i ≥ l ∧ ∃j ∈ IN(i = pj + o)};
– for l = ∗ ∧ h = ∗, ῡ(x) = {〈g, i〉 | i ≥ 1 ∧ ∃j ∈ IN(i = pj + o)};

2. if r1 = 〈g, p, o, l, h〉 ∧ (x′ �= ∅):
– for l �= ∗ ∧ h �= ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, l + ξ(e, k, g), h + ξ(e, k, g)))}
– for l = ∗ ∧ h �= ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, 1, h + ξ(e, k, g)))}
– for l �= ∗ ∧ h = ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, l + ξ(e, k, g), ξ(e, k + 1, g)))}
– for l = ∗ ∧ h = ∗,
ῡ(x) = {〈g, i〉 | ∃〈e, k〉 ∈ ῡ(x′)(〈g, i〉 ∈ ῡ(g, p, o, 1, ξ(e, k + 1, g)))}

Finally, υGS(x) = {t ∈ T | ∃〈b, i〉 ∈ ῡ(〈b, 1, 0, ∗, ∗〉∪x)(t = i)}, where b denotes
the base granularity.

Example 13. Let us take x = {〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉} as an exam-
ple. An expression ῡ(months, 1, 0, 1, 1) returns a set of one month {〈months, 1〉}.
An expression ῡ({〈weeks, 1, 0, ∗, ∗〉, 〈months, 1, 0, 1, 1〉}) returns a set of weeks
whose index is between ξ(months, 1, weeks) and ξ(months, 1, weeks).

3 Compactness Analysis

As it is shown in [2], periodicity 〈g, p, o, h, l〉 over periodical granularity g with
granularity period pg and granularity repeating subset S′

g forms periodical set
Sf with the period pf = pg and repeating subset S′

f , |S′
f | = |S′

g|/p, if the |S′
g| is

divisible by p.
In other case resulting periodical set Sf has period pf = pg·LCM(|S′

g|,p)
|S′

g| and
repeating subset S′

f , |S′
f | = LCM(|S′

g|, p)/p, where LCM stands for the least
common multiple.

Example 14. A periodicity 〈months, 3, 0, ∗, ∗〉 with the granularity period of
146097 days and the granularity repeating subset of 4800 months forms on T =
‘days’ a periodical set Sf with a period of pf = 146097 days and a repeating
subset of 146097/3 = 48699 elements.

For a periodicity 〈months, 11, 0, ∗, ∗〉 in the same conditions pf = 146097·11 =
1607067 and |S′

f | = (1607067 · 11)/11 = 146097 elements.

Lemma 1. For any representer r̄PS there’s a representer r̄GS of the same tem-
poral repetition, that is as compact as r̄PS.
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Proof. PSets is a trivial case of GSequences, when a sequence of periodicities
contains only one periodicity. Hence, any representer 〈g, p, o, l, h〉 ∈ XPS can be
constructed a representer (〈g, p, o, l, h〉) ∈ XGS of the same temporal repetition
and with the same compactness.

Lemma 2. For any periodical granularities g1, . . . , gm expression ῡGS ((〈g1, p1,
o1, l1, h1〉, . . ., 〈gm, pm, om, lm, hm〉)) returns a periodical set of elements of time
domain T .

The idea of the proof of Lemma 2 is that the resulting periodical set has a period
equal to the least common multiple of the periods of each 〈gi, pi, oi, li, hi〉.

Lemma 3. For any periodical granularities g1, . . . , gm representer r̄GS = {〈a1,
. . . , an, x〉}, where x = (〈g1, p1, o1, l1, h1〉, . . ., 〈gm, pm, om, lm, hm〉, is more com-
pact than a representer of the same temporal repetition with the domain XPS,
if the size of a periodical subset in ῡGS ((〈g1, p1, o1, l1, h1〉, . . ., 〈gm, pm, om, lm,
hm〉)) is bigger than m.

Theorem 1. For any representer r̄PS there’s a representer r̄GS of the same
temporal repetition, which is as compact as r̄PS or even more compact.

Proof. According to Lemma 1 for each representer with PSets there exists a
representer with GSequences which is as compact as the representer with PSets.
According to Lemma 3, if there is a periodical granularity g with periodical
subset |S′

g| > 1, there exists a representer r̄GS which is more compact than any
representer with PSets of the same temporal repetition.

4 Queries on Compact Representations

In this paper we investigate two types of queries on compact representations.
The first type of query has a form

π[ξ(b, time, g)](σ[C1 ≤ time ≤ C2](Υ (r̄))) , (1)

where where σ is a selection operation, r̄ is a compact representation, time is an
attribute of r̄ of compact representation domain, C1 and C2 are some constants of
the time domain, π is a projection operation, b is an index of the base granularity,
g is an index of some given granularity and ξ : G × IN× G → IN is a granularity
convertion function used in previous sections.

The second type of query has a form

σ[C1 ≤ time ≤ C2](Υ (r̄)) . (2)

This type of queries is a specific case of the first type with g = b.
We distinguish two different approaches of the evaluation of queries 1 or 2.

The naive approach is first to evaluate an operation Υ (r̄) and then to proceed
with a regular query on temporal repetition. This naive approach fails in cases
when a temporal repetition is infinite, because Υ (r̄) never stops.
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4.1 Query Evaluation on PSets

The approach we use to evaluate queries on PSets produces a temporal repeti-
tion already inside given bounds. The algorithm contains two nested cycles (see
Listing 1.1). The outer cycle goes through the tuples in a representer and the
inner cycle produces tuples of the resulting temporal repetition. We can evaluate
the complexity of this algorithm as O(ΥPS) = n2.

Listing 1.1. PSets Evaluation Algorithm

1 procedure ΥPS ( r̄ ,C1 ,C2 ,g )
2 f o r each tup le=(someA , p e r i o d i c i t y ) in r̄
3 υPS ( p e r i o d i c i t y , C1 ,C2 ,g ) ;
4 procedure υPS ( p e r i o d i c i t y ,C1 ,C2 ,g )
5 with p e r i o d i c i t y = ( e , p , o , l , h) do
6 [ a ; b ] = i n t e r s e c t i o n ( [ l ; h ] , [ C1 ; C2 ] ) ;
7 xmin = minimum argument value o f p∗x+o in [ a ; b ] ;
8 xmax = maximum argument value o f p∗x+o in [ a ; b ] ;
9 f o r x = xmin to xmax

10 r e s u l t = convert (p∗x+o→g ) ;
11 p r in t r e s u l t ;

4.2 Query Evaluation on GSequences

The query evaluation algorithm for GSequences is shown in Listing 1.2. It con-
sists of two procedures. The first procedure goes sequentially through the input
tuples and calls the second procedure for each tuple. The second procedure gener-
ates the tuples of the resulting temporal repetition recursively going through the
sequence of periodicities. The maximal depth of a recursion is equal to the length
of the sequence. For each periodicity the procedure runs the cycle through its
granularity values. Therefore, we can evaluate the complexity of the algorithm,
as O(ΥGS) = nn.

It seems that the performance of ΥGS should be worse than of ΥPS, however,
(1) the number of input tuples for υPS is normally bigger than for υGS, in order
to produce the same output, (2) we use some specifics from the input to reduce
the number of operations in υGS.

Sequential application of bounds. Because of a sequential structure of
GSequences given bounds C1 and C2 are applied starting from the rightmost
periodicity reducing the range for the following periodicities.

Example 15. Let us take a compact representation shown in Table 2 and a query
σ[2005-01-01 00:00 ≤ time ≤ 2005-01-31 23:59](Υ (r̄)). Evaluating this query the
bounds are applied first to the years and then to the weeks of remaining years
only, etc.
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Listing 1.2. GSequences Evaluation Algorithm

1 procedure ΥGS ( r̄ ,C1 ,C2 ,g )
2 f o r each tup le=(someA , gsequence ) in r̄
3 υGS ( gsequence , C1 ,C2 ,g , n u l l ) ;
4 procedure υGS ( sequence ,C1 ,C2 ,g , parent )
5 with sequence =(X, ( e , p , o , l , h ) ) do
6 i f parent i s s e t then o f f s e t = convert ( parent→e ) ;
7 e l s e o f f s e t = 0 ;
8 [ a ; b ] = i n t e r s e c t i o n ([ l+o f f s e t ; h+o f f s e t ] , [ C1 ;C2 ]) ;
9 i f parent i s s e t then

10 highparent = convert ( parent+1→e ) ;
11 [ a ; b ] = i n t e r s e c t i o n ( [ a ; b ] , [ a ; highparent −1]) ;
12 xmin = minimum argument value o f p∗x+o in [ a ; b ] ;
13 xmax = maximum argument value o f p∗x+o in [ a ; b ] ;
14 f o r x = xmin to xmax
15 i f X i s empty then
16 r e s u l t = convert (p∗x+o→g ) ;
17 p r in t r e s u l t ;
18 e l s e i f e = g then p r in t r e s u l t ;
19 e l s e υGS (X, C1 ,C2 ,g , p∗x+o ) ;

Hierarchical definition of granularities. We define new granularities using al-
ready defined granularities. This allows us to perform granularity convertion
operations without going to the base granularity (we avoid getting intermediate
results with very big indexes).

Example 16. Let us take a compact representation shown in Table 2 in a
database where the base granularity is equal to milliseconds. If both years and
weeks are defined or transitively defined in terms of days, an index of the first
week of the year can be calculated with the formula μ−1

weeks→days(μyears→days(i)).

Truncating sequences. When the target granularity is present in a sequence of
periodicities, we process a sequence only till this periodicity.

Example 17. Let us take a compact representation shown in Table 2 and a query
π[ξ(time, days)](σ[2005-01-01 00:00 ≤ time ≤ 2005-01-31 23:59](Υ (r̄))). Since
there’s a periodicity over days in the sequence of periodicities, the evaluation
process stops on this periodicity without processing the remaining periodicities.

5 Experiments

In this section we show the results of three experiments in which we compare
the performance of queries to GSequences and PSets representers.

In each experiment the same query (query 1 when the target granularity is
given or query 2 otherwise) is applied to GSequences and PSets representers of
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Fig. 2. Results of Experiment 1

the same temporal repetition. According to our assumptions, both representers
might have different number of input tuples, but the query results are always
identical.

Since it is not very convinient to control the number of output tuples through
the query parameters, we compare the query processing time to the given bounds.
In other words, horisontal axis in the following plots represents the difference
C2 − C1, or just C2 (upper bound) with C1 = 0.

In all experiments the base granularity is equal to ‘minutes’.

Experiment 1. A GSequences representer of a temporal repetition is illustrated
in Table 5. A PSets representer of the same repetition consists of 327,000 tu-
ples with a period equal to 210,378,241 minutes. The results of the experiment
show, that the huge size of a representer with PSets gives a big advantage to
GSequences.

Table 5. Representer with GSequences for Experiment 1

Some Domain Time
Some Value (〈minutes, 1, 0, 1, 10〉, 〈hours, 1, 0, 1, 10〉, 〈days, 1, 0, 1, 10〉,

〈months, 11, 0, ∗, ∗〉)

Experiment 2. In this experiment we used a real temporal repetition of a bus
no. 2 of Bozen-Bolzano. A representer with GSequences consists of 51 tuples. A
representer with PSets consists of 456 tuples. From the results of the experiment
showed in Fig. 3 it is obvious that the difference in compactness is not sufficient
for this kind of queries to beat the difference in complexity of the methods.

Experiment 3. For this experiment we took the same temporal repetition as for
Exp.1 and we set the target granularity equal to days. The results illustrated in
Fig. 4 show the advantage of truncating sequences.
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6 Conclusions

Compact representations are used to store temporal repetitions in databases.
It is essential that compact representations can be queried in the same way as
they were temporal repetition, and query evaluation algorithm should take an
advantage of querying compact representations.

In this paper we presented a compact representation of temporal repetitions
GSequences that combines periodicity with a use of multiple temporal granular-
ities. On this representation we showed that a query evaluation can benefit from
a structure of a compact representation. To support this result we experimen-
tally compared GSequences with other compact representation PSets with more
simple structure. We introduced the compactness property of compact represen-
tations. We proved that besides more sophisticated structure of GSequences it
has equal or better compactness than PSets. We also showed and proved experi-
mentally that a compactness of a representer can significantly impact the query
evaluation time.

In the future work we aim to implement more complicated queries containing
joins and aggregation operations.
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References

1. C. Bettini and S. Mascetti. An efficient algorithm for minimizing time granularity
periodical representations. In TIME, pages 20–25, 2005.

2. C. Bettini and R. D. Sibi. Symbolic representation of user-defined time granulari-
ties. In Proceedings of TIME’99, pages 17–28. IEEE Computer Society, 1999.

3. R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and temporal
rules in next generation databases. In Proceedings of the Tenth International Con-
ference on Data Engineering, pages 264–273, Washington, DC, USA, 1994. IEEE
Computer Society.

4. D. R. Cukierman and J. P. Delgrande. The sol theory: A formalization of structured
temporal objects and repetition. In Proceedings of TIME’04. IEEE Computer
Society, 2004.

5. L. Egidi and P. Terenziani. A mathematical framework for the semantics of sym-
bolic languages representing periodic time. In Proceedings of TIME’04. IEEE Com-
puter Society, 2004.

6. F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal data. In
PODS, pages 392–403, 1990.

7. B. Leban, D. D. McDonald, and D. R. Forster. A representation for collections of
temporal intervals. In Proceedings of AAAI’86, pages 367–371, August 1986.

8. M. Niezette and J.-M. Stevenne. An efficient symbolic representation of periodic
time. In Proceedings of the First International Conference on Information and
Knowledge Management, November 1992.

9. P. Ning, X. S. Wang, and S. Jajodia. An algebraic representation of calendars.
Ann. Math. Artif. Intell., 36(1-2):5–38, 2002.

10. P. Terenziani. Symbolic user-defined periodicy in temporal relational databases.
IEEE TKDE, 15(2), March/April 2003.



The COST Benchmark—Comparison and Evaluation of
Spatio-temporal Indexes

Christian S. Jensen, Dalia Tiešytė, and Nerius Tradišauskas
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Abstract. An infrastructure is emerging that enables the positioning of popula-
tions of on-line, mobile service users. In step with this, research in the manage-
ment of moving objects has attracted substantial attention. In particular, quite a
few proposals now exist for the indexing of moving objects, and more are under-
way. As a result, there is an increasing need for an independent benchmark for
spatio-temporal indexes.

This paper characterizes the spatio-temporal indexing problem and proposes
a benchmark for the performance evaluation and comparison of spatio-temporal
indexes. Notably, the benchmark takes into account that the available positions of
the moving objects are inaccurate, an aspect largely ignored in previous indexing
research. The concepts of data and query enlargement are introduced for address-
ing inaccuracy. As proof of concepts of the benchmark, the paper covers the appli-
cation of the benchmark to three spatio-temporal indexes—the TPR-, TPR*-, and
Bx-trees. Representative experimental results and consequent guidelines for the
usage of these indexes are reported.

1 Introduction

With the availability of mobile computing technologies, geo-positioning, and wire-
less communication capabilities, it has become possible to accumulate the changing
locations of populations of moving objects in real time. Consumer electronics are af-
fordable, current Global Positioning System (GPS) [1] receivers are capable of geo-
positioning with an accuracy of up to a few meters, the General Packet Radio Service
(GPRS) [2] and similar technologies have become common and relatively cheap means
of wireless data transfer. It is thus possible for an object to continually obtain and trans-
mit its current position to a central server.

Applications are emerging that require or may benefit from the tracking of the lo-
cations of moving objects. These occur in areas such as logistics, traffic management,
public transportation, and location-based services. Current applications usually track
only relatively small numbers of objects, but as the underlying technologies continue to
improve, applications that concern large numbers of objects are on the horizon.

The increasing interest in mobile location data has served as motivation for the devel-
opment of spatio-temporal indexes for the current and near-future positions of moving
objects. A number of spatio-temporal indexes have been proposed, such as R-tree-based
indexes, e.g., the TPR-tree [3], the TPR*-tree [4], the STAR-tree [5], and the REXP-
tree [6]; the quadtree-based index STRIPES [7], and the B+-tree-based Bx-tree [8], to
name but a few.
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This continuing proliferation of indexing techniques creates a need for a standard
procedure for performance evaluation and comparison. Although mathematical com-
plexity analysis is valuable, empirical evaluation [9] is indispensable for evaluation
and comparison of spatio-temporal indexing techniques. The current state of affairs is
that indexes being proposed are being evaluated empirically and are being compared
to, typically, one other indexing technique. The empirical studies reported are rarely
exhaustive and, not surprisingly, tend to focus on the favorable qualities of the index
being proposed. The availability of an independent benchmark specification establishes
an equal footing for obtaining experimental results and enables broader comparison.

This paper proposes a benchmark specification, termed COST, for the evaluation and
comparison of spatio-temporal indexes. The benchmark is independent in the sense that
it is proposed independently of a specific indexing technique. The benchmark aims to
provide a unified procedure that covers an extensive variety of possible and realistic
settings. In particular, the benchmark evaluates the index ability to accommodate un-
certain object positions. Queries and updates are considered, as are both I/O and CPU
performance.

The remainder of this paper is outlined as follows. Related work is covered in Sect. 2.
The addressed indexing problem is detailed in Sect. 3. Sections 4 and 5 contain the
benchmark specification. As proof of concepts, Sect. 6 reports on experimental results
that were obtained using the benchmark. Section 7 concludes and offers directions of
future work.

2 Related Work

We cover in turn existing benchmarks for spatio-temporal data, previous work on the
indexing of uncertain data, and past empirical evaluations of spatio-temporal indexes.

A number of benchmarks exist that measure transaction performance in traditional
database systems. For example, a set of benchmarks that evaluate system performance
and price is provided by Gray [10]. However, these benchmarks are not applicable to
spatio-temporal data.

Of relevance to moving objects, Theodoridis [11] provides a benchmark that includes
a database description and 10 non-predictive queries for the static and moving spatial
data. Myllymaki and Kaufman [12] also propose a benchmark, DynaMark, for moving
objects. The query and update performance measure is CPU time, as a main-memory
resident index is assumed. Future queries on anticipated future locations are not con-
sidered. Werstein [13] proposes a benchmark for 3-dimensional spatio-temporal data.
The benchmark is oriented towards general operating system and database system per-
formance comparison, including evaluation of the spatio-temporal and 3-dimensional
capabilities. Tzouramanis et al. [14] perform an extensive, rigorous experimental com-
parison of four types of quadtree-based spatio-temporal indexes, using a benchmark
specification when performing experiments with the four indexes. However, their pro-
posal concerns raster data, generated with the G-TERD benchmark tool.

The concept of data uncertainty for moving object positions has previously been
studied quite extensively (see, e.g., [15, 17, 18, 19]). While the bulk of this work has
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been conducted independently of indexing, some works (see, e.g., [16, 19]) offer in-
sights into the indexing of uncertain positions. The present paper goes further by
proposing a simple and yet effective method for storing and retrieving position data
with accuracy guarantees. Existing indexes can straightforwardly be extended to ac-
commodate such data.

Many authors of spatio-temporal indexes have compared their indexes to usually one
other competitive index (e.g., [3, 4, 7, 8]). However, these comparisons tend to focus
on exploring the properties of the new index being proposed; and with the new index
being the main topic, the experimental specifications are relatively limited and lack
independence.

The benchmarks covered above consider neither uncertain data nor accuracy guaran-
tees. DynaMark shares similarities with COST benchmark with respect to the generated
traffic data, but it lacks aspects to do with future positions. To the best of our knowledge,
no independent benchmark exists that has been designed specifically for the evaluation
of disk-based indexes for the current and near-future uncertain positions of moving
objects.

3 Spatio-temporal Indexing

This paper is concerned with the indexing of large amounts of current and near-future,
2-dimensional moving object positions, and predictive queries are of interest. In this
setting, position data are received from continuously moving objects capable of report-
ing their position and velocity. Mobile applications—e.g., those that provide location-
enabled services to mobile users—issue queries on this data.

3.1 Spatio-temporal Data and Queries

The objects, represented as 2-dimensional points, update their positions periodically. As
the server is recording the positions of a large amount of objects, updates should occur
as rarely as possible. The current and anticipated future positions of the objects can be
queried at any time. Therefore, continuous function that approximates the actual object
movements and enables predictive queries is derived from the position data received.

An appropriate approximation function should satisfy the following requirements:
(1) the parameters of the function can be obtained from the moving object; (2) the
function reduces the amount of updates; (3) predicted positions are helpful in answering
predictive queries; and (4) the function is easy to compute and its representation is
compact.

It is common to predict an object’s near-future position using a linear function of
time [3, 4, 7, 8]. An object’s position at time t is denoted by a 2-dimensional vector

−→
P ,

and its velocity is given by a 2-dimensional vector
−→
V . The function takes time as an

argument, and returns the object’s position:

−→
P (t) = −→P (tup) +−→V (tup)(t− tup) (1)

Here tup is the time of the last update, at which the object’s position was
−→
P (tup);−→

V (tup) is the velocity at time tup, and
−→
P (t) is the predicted position at time t.
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This function may be represented as a tuple (−→P (tref),
−→
V (tup)), where time tref is

an agreed upon, global reference time at which the object’s position is stored. When
an update of an object arrives at time tup, its position P (tref) at time tref is calculated
using (1).

The linear function satisfies the four requirements for the approximation function.
Velocity and position values are easy to obtain—they are output by GPS receivers [1],
and the velocity can also be estimated based on previous positions (first requirement).
The function’s value is calculated in a constant time, and the representation is com-
pact (fourth requirement). Studies show that using this function for vehicle positions,
the average number of updates is reduced by more than a factor of two for accuracy
thresholds below 200 meters, in comparison to the standard approach where the current
position is assumed to be given by the most recently reported position [17] (second
requirement). Finally, linear prediction offers better approximations of near-future po-
sitions than does constant prediction, yielding more reasonable answers to predictive
queries (third requirement).

Three types of queries that a spatio-temporal index should support can be distin-
guished [3]. Let t, t1, and t2 be time points and let qr, qr1 , and qr2 be 2-dimensional
rectangles.

Q1. Timeslice query Q1 = (qr, t) returns the objects that intersect with qr at time t.
Q2. Window query Q2 = (qr, t1, t2) returns objects that intersect with qr at some time

during time interval [t1, t2]. This query generalizes the timeslice query.
Q3. Moving window query Q3 = (qr1 , qr2 , t1, t2) returns the objects that intersect,

at some time during [t1, t2], with the trapezoid obtained by connecting rectangles
qr1 and qr2 at times t1 and t2, respectively. This query generalizes the window
query.

Figure 1 offers an example encompassing four objects and three queries in 1-dimen-
sional space. The arrows in the figure represent object movement.

The queries q1, q2, and q3 are timeslice,
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Fig. 1. Example of objects and queries in a
1-dimensional space

window, and moving window queries, respec-
tively. Query q3 has spatial ranges q3r1 =
[−20,−10], q3r2 = [−25,−10], and time
range [5, 6]. The result of the query depends
on when the query is issued. If issued before
time t = 3, the result is {o1, o4}. Otherwise,
the result is {o4}. Object o1 is updated at
time 3 and its predicted trajectory changes.
Its new trajectory does not intersect with the
query.

3.2 Update Policies

The inaccuracy of the moving object positions available at the server side stems from
two sources. The positions measured by the moving objects (e.g., using GPS) are in-
accurate, and the use of sampling introduces inaccuracy. Because the measurement
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inaccuracy is much smaller than the sampling inaccuracy in a typical setting, we as-
sume that the measurements are accurate and focus on the inaccuracy due to
sampling.

In particular, we assume an approach where, at any point in time, the actual position
of an object deviates from the position assumed on the sever side, the predicted position,
by no more than a chosen distance threshold thr . An update policy should be adopted
that satisfies the accuracy guarantee with as few updates as possible.

The so-called point-based update policy requires an object to issue an update when
the distance between the object’s current and its most recently reported positions
reaches the threshold value. With this policy, the server assumes that an object remains
where it was when it most recently reported its position. Frequent updates result.

To reduce the cost of updates a vector-based policy may be adopted [17], where
each moving object shares a linear prediction, as given by (1), of its position with the
server. When the distance between an object’s actual and predicted positions exceeds
the distance threshold thr , the object issues an update to the server. The point-based
policy is the special case of the vector-based policy, where the linear prediction function
is constant (

−→
V = −→0 , where −→0 is the zero vector).

P(ti)
thr P(ti+1)

thr

    
V(ti)P(ti)

P(ti+1)

(a) (b)
Ppr(ti+1)

Fig. 2. Point-based (a) and vector-based (b) update policies
with accuracy threshold thr

The point-based update pol-
icy is shown in Fig. 2 (a). Here,
the position

−→
P (ti) is updated

at time ti, and the actual posi-
tion remains in the circle with
center

−→
P (ti) and radius thr

for some time, yielding a pre-
dicted position of

−→
P (ti). At

time ti+1, the difference be-
tween the actual and predicted
positions reaches thr, and an update is issued.

Next, the vector-based policy is illustrated in Fig. 2 (b). First, at time ti, the object
reports its actual position

−→
P (ti) and velocity

−→
V (ti) to the server. The server’s predic-

tion is illustrated by the solid horizontal vector. The object shares this prediction with
the server. In addition, it repeatedly compares its actual position with the predicted po-
sition

−→
P pr. When at time ti+1, the object’s position is

−→
P (ti+1), the distance between

the two positions is thr , and an update is generated. Updates are sent only when needed
in order to maintain the accuracy guarantees.

As discussed in Sect. 3.1, the vector-based policy yields fewer updates than the point-
based policy for the same accuracy guarantees and therefore is preferable.

3.3 Query and Data Enlargement

The notions of precision (p) and recall (r) [20] are commonly used for measuring the
accuracy of a query result. The precision is the fraction of the objects in the result that
actually satisfy the query predicate, and the recall is the fraction of the objects that
satisfy the query predicate that are in the query result. Ideally, p = r = 1, meaning that
the query result contains exactly the objects that satisfy the query.
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However, the data are inaccurate—the positions of the objects are only known with
accuracy thr . It is thus not possible to achieve p = r = 1; however, perfect recall
can be achieved1 and is a desirable requirement for an index. Thus, the query result is
guaranteed to contain all objects that may satisfy the query predicate.

To achieve prefect recall, it is necessary to take the inaccuracy of the predicted posi-
tions into account. This may be done by means of either data or query enlargement.

Query enlargement addresses position inaccuracy by expanding the query area by
thr in all directions. If different objects have different thresholds, the maximum thresh-
old must be used. Perfect recall is achieved as all the objects that are actually in the
query area have predicted positions that are no further than thr away from their actual
positions.

The “fattened” query rectangle may be obtained as the Minkowski sum [21] of the
two sets. Each point pq that belongs to the query rectangle qr is added to each point ps
that belongs to the segment s of length thr :

qr ⊕ s = {pq + ps|pq ∈ qr ∧ ps ∈ s}

Figure 3 (a) shows query enlargement in a 2-dimensional space.

thr

y

x

V

thr

(a) (b)

Fig. 3. Example of query (a) and data (b) enlargement

Next, with data enlarge-
ment object positions are ex-
panded into spatial regions
with extent. In particular, an
object’s position becomes a
circle with radius thr , instead
of being a point. The center
of the circle is the predicted
position. The object’s actual
position is always inside the
circle. If the circle intersects
with the query area, the object must be included in the query result. Figure 3 (b) il-
lustrates data enlargement. The shaded area denotes the movement of the object.

A spatio-temporal index should support either query or data enlargement. However,
existing indexes tend to ignore position inaccuracy and simply assume that they know
the exact position of each object, meaning that thr = 0. Such indexes must be adjusted
to index positions with non-zero threshold values.

4 Benchmark Data and Settings

The workload for an index consists of a sequence of the updates and queries. The bench-
mark specification contains definitions of workloads and procedures of using them. The
desired properties of the workloads and workload generation are discussed first. Defi-
nitions of benchmark procedures, termed experiments, then follow.

1 We note that perfect recall for queries that concern future times is only possible when updates
that occur between the time a query is issued and the future times specified in the query cannot
affect the query result.
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4.1 Workload Parameters

A set of update and query parameters defines the benchmark workloads. The workloads
aim to simulate a wide range of situations in which an index may be used. The following
parameters are of interest:

Number of Objects. The number of objects largely determines the size of the index and
may be used to examine the scalability of the index.

Position and Velocity Skew. These parameters determine the distribution in space of
the object positions and velocities. They are highly related, as velocity skew leads to
position skew. An example of skew is the concentration of stationary vehicles in the
suburbs at night and in business districts during working hours, and many moving ve-
hicles during the morning and afternoon rush hours.

Update Arrival Pattern. The rate of updates depends on the chosen update policy as de-
scribed in Sect. 3.2. With the vector-based policy, the durations in-between updates vary
greatly. The update frequency depends on the movement trajectories and speeds of the
objects. This parameter allows examination of how an index accommodates different
frequencies of updates.

Position Accuracy Threshold. The distance threshold thr (defined in Sect. 3.2) affects
the update arrival rate and the query or data extents. By varying this parameter, the
index ability to support various update frequencies as well as data and query sizes can
be studied.

Query Parameters. The required query types, their spatial and temporal extents and
their time intervals are the query parameters of interest. The types of queries considered
are described in Sect. 3.1.

Workload Duration. The workload duration is measured as a number of updates exe-
cuted by the index. This parameter allows examination of how an amount of updates
affects the performance of an index.

4.2 Workload Generator

The workloads in the COST benchmark are generated using a workload generator that
extends the generator by Šaltenis et al. [22]. That generator was chosen as the starting
point because it is capable of easily creating workloads according to many of the pa-
rameters discussed in Sect. 4.1 and because it is fast in comparison to such generators
as CitySimulator [23, 24] and GSTD [25, 26], which use complex functions, e.g., func-
tions that control the interactions among the objects. We proceed to explain the original
generator, then describe the extensions implemented.

A workload intermixes queries and updates with a chosen proportion. An index is
then subjected to these operations. In the generator, object movement is either ran-
dom or network-based. To accommodate the latter, a number of “hubs” with random
positions and links between these form a complete, bi-directional, spatial graph. Ob-
jects move between hubs until the end of a simulation. The maximum speed of an
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object is chosen randomly from a set of maximum speeds. An object accelerates and
decelerates when moving from one hub to another. Updates are generated in average
intervals of UpdateInterval time durations. For any kind of data, these parameters can
be set:

Objects . Total number of moving objects.
Space. The extent of the space where the objects are moving.
Speed i, i = 1, ..., 50. Possible maximum speeds of the objects. For each object, its

maximum speed is chosen at random.
TotalUpdates . The number of update operations performed in the simulation.
UpdateInterval . The average duration between two successive updates of an object.
Hubs . The number of destinations between which the objects are moving. Value 0

implies uniform (random) distribution.
QuerySize. The maximum spatial extent of a query in percentages of the indexed

space.
QueryTypes . The fractions of timeslice, window, and moving window queries (see

Sect. 3.1). The sum of the three fractions must add up to 1.
QueryTime. The maximum temporal extents of window and moving window queries.
QueryWindow . The maximum duration of time that queries may reach into the future.
QueryingInterval . Querying frequency relative to update operations.
QueryQuantity. The number of queries generated at each query generation event.

The generator was extended, enabling it to choose between its original update policy
and the vector-based policy (as described in Sect. 3.2). The original policy was ex-
tended so that it is able to randomly select a different update interval for each object.
Specifically, the generator was extended to accommodate three parameters:

UpdatePolicy . Either the shared prediction based vector policy (0) or the original
time-based (1) policy is used.

Threshold i, i = 1, ..., 50. The threshold distance between the predicted and the actual
positions, used in the vector policy (UpdatePolicy = 0). Up to 50 thresholds may
coexist. For each object, its threshold is chosen at random.

UpdateInterval i, i = 1, ..., 50. The average duration between two successive updates
of an object (as in the original generator). Up to 50 update intervals are possible.
For each object, its average update interval is chosen at random. This parameter is
used only when UpdatePolicy = 1.

With the vector-based update policy, updates are generated when the distance be-
tween the actual position of an object and the predicted position reaches Threshold i.
An additional update is generated when an object reaches a hub.

4.3 Evaluation Metrics

The COST benchmark uses two types of performance metrics: the average number
of I/O operations per index operation, and the average CPU time per index operation
(update, query). One I/O operation is one read of a page from disk to main memory or
one write of a page to disk. Reads and writes from and to the available main memory
buffer are not counted. The CPU time for one operation is the time of CPU usage from
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the moment when the operation is issued to the moment when the result of the operation
is computed. I/O is typically considered to be the main cost factor in determining an
index’s performance, while the CPU time is a minor factor.

5 Definitions of Experiments

A benchmark experiment is defined by a set of workload parameters and disk page and
main memory buffer size settings. In each experiment, one parameter, or a set of related
parameters, as defined in Sect. 4.1, is varied. The set of experiments was chosen with
the objective of varying the important workload parameters from Sect. 4.1. Parameter
values are chosen so that the workloads cover a wide variety of situations. To ensure
that the benchmark stress-tests the indexes under study, some experiments use extreme
parameter values. The page and buffer size settings are kept constant for all experiments.

The default values for all workload parameters and settings are listed in Table 1. The
chosen values are commonly used in existing evaluations of spatio-temporal indexes
(e.g., [4, 8]). The default speeds are typical speeds of vehicles, and the number of hubs
simulates a real-world road network with a substantial number of destinations. The
page and buffer sizes are relatively small, the objective being to obtain the effects of
large indexes with relatively small volumes of data. For each experiment, described
shortly, only parameters with values that differ from the defaults are listed. Note that it is
possible to use only a subset of parameters Speed i, Threshold i, and UpdateInterval i,
i = 1, ..., 50, e.g., it is possible to assign the same speed to all objects by setting Speed1
and omitting parameters Speed i, i = 2, ..., 50.

All experiments measure the average CPU time and number of I/O’s per operation.

Table 1. Default workload parameters and settings used in experiments

Parameter Value Parameter Value
Page,Buffer 1 KB, 50 KB (50 pages) QueryInterval 400 updates
Objects 100 K QueryQuantity 2 (in total 1000)
Space 100, 000 × 100, 000 m2 QueryTime 10 s
Speed i, i = 1, ..., 4 12.5, 25, 37.5, 50 m/s QuerySize 0.25% of Space
TotalUpdates 200 K QueryWindow 50 s
Hubs 500 QueryTypes 0.6:0.2:0.2
UpdatePolicy 0 Threshold1 100 m

Experiment 1. Number of Objects Objective: Examine index scalability.
Parameter values: Points = 100, 200, ..., 1000K.
Number of workloads: 10.

Experiment 2. Position and Velocity Skew Objective: Examine the effects of position
and velocity skew.
Parameter values: Part 1 (very high skew): Hubs = 2, 4, ..., 20. Part 2 (average skew):
Hubs = 20, 40, ..., 200. Part 3 (low skew): Hubs = 500, 1000, ..., 5000, and 0 hubs
(uniform distribution).
Number of workloads: 10 for parts 1 and 2, 11 for part 3.
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Experiment 3. Maximum Speeds of Objects Objective: Examine the effects of vary-
ing maximum speeds as well as varying distributions of speeds among the objects. As
fast objects are more likely to be updated than slow ones, the update frequency increases
with increasing speeds.
Parameter values: Part 1 (distribution of speeds): All objects are assigned either speed
25 m/s or 200 m/s, and workloads are generated so that the fractions of objects with
speed 200 m/s are: 0.02; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus, all Speed i

are assigned either 25 m/s or 200 m/s, and for each workload, the smallest i is cho-
sen that allows us to obtain the needed fraction of fast objects. Part 2 (low maximum
speeds): Speed1 = 0.05; 2; 4; 6; 8; 10; 12; 14; 16; 18. Part 3 (high maximum speeds):
Speed1 = 30, 60, ..., 300m/s.
Number of workloads: 11 for part 1, 10 for the parts 2 and 3.

Experiment 4. Position Accuracy Threshold Objective: Examine the influence of
varying thresholds as well as the distribution of varying thresholds among the objects.
Note that the update rate depends on the threshold and that the simulation time increases
as updates become infrequent.
Parameter values: Part 1 (distribution of thresholds): All objects are assigned either a
threshold of 100 m or a 1000 m, and workloads are generated so that the fractions of ob-
jects with speed 1000m are : 0.02; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus all
Threshold i are assigned either 100 m or 1000 m, and for each workload the minimum
i is chosen that allows us to obtain the needed fraction of objects with large (and small)
threshold. Part 2 (equal thresholds for all objects): Threshold 1 = 100, 200, ..., 1000m.
Number of workloads: 11 for part 1, 10 for part 2.

Experiment 5. Update Arrival Interval Objective: Examine the influence of varying
update intervals as well as distribution of update intervals. The update frequency affects
the time duration of a workload.
Parameter values: UpdatePolicy = 1. Part 1 (distribution of update intervals): Simi-
larly to the two previous experiments, two values of a parameter, here UpdateInterval i,
are used—60 s (frequent) and 600 s (rare). The value of i is chosen so that workloads
are obtained where the fractions of objects with an interval of 600 s are: 0.02; 0.1; 0.2;
0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Part 2 (frequent updates): UpdateInterval1 =
20, 40, ..., 200 s. Part 3 (rare updates): UpdateInterval1 = 120, 240, ..., 1200s.
Number of workloads: 11 for part 1, 10 for parts 2 and 3.

Experiment 6. Index Lifetime Objective: Examine the effect of varying index lifetime
(in numbers of updates).
Parameter values: TotalUpdates = 100, 200, ..., 1000K.
Number of workloads: 10.

Experiment 7. Query Types Objective: Examine the differences in performance for
different types of queries: timeslice, window, and moving window queries.
Parameter values: QueryTypes = 1 : 0 : 0, 0 : 1 : 0, 0 : 0 : 1.
Number of workloads: 3.

Experiment 8. Query Parameters Objective: Examine the effects of varying spatial
extents, temporal extents, and time windows of queries.
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Parameter values: Part 1 (spatial extents): QueryTypes = 0 : 1 : 0, QuerySize =
0.05, 0.15, ..., 0.95%. Part 2 (temporal extents): QueryTypes = 0 : 1 : 0, QueryTime
= 0, 20, ..., 120 s. Part 3 (time windows): QueryTypes = 1 : 0 : 0, QueryWindow =
0, 20, ..., 120 s.
Number of workloads: 10 for part 1 and 7 for parts 2 and 3.

6 Application of the COST Benchmark

In order to ensure that the benchmark was well specified and yields useful results, it was
applied for evaluating and comparing three existing indexes, namely the TPR-, TPR*-,
and Bx-trees [3, 4, 8]. The TPR*- and Bx-trees were chosen because they are recent and
represent the state of the art, and the TPR-tree is the predecessor of a dozen proposals
for spatio-temporal indexes.

6.1 Introduction to the TPR-, TPR*-, and Bx-Trees

The TPR-tree (Time Parametrized R-tree) [3] and its descendant, the TPR*-tree [4], are
based on the R*-tree [27]. These indexes are adapted for time-parametrized data and
queries. Data objects are assigned to minimum bounding rectangles (MBRs) as in the
R*-tree. Additionally, the TPR- and TPR*-trees use linear functions of time to represent
the movements of the objects and MBRs.

Operations in the TPR-tree are handled similarly to the operations in the R*-tree,
except that the penalty metrics of the R*-tree (e.g., MBR enlargement) are generalized
to being integrals over a time period ranging from the current time and H time units
into the future (calculated based on the update rate).

The authors of the TPR*-tree have modified the TPR-tree by introducing new inser-
tion and deletion algorithms. An additional heap structure is used during insertions with
the objective of achieving better insertions. Instead of the integral used in the TPR-tree,
the TPR*-tree calculates penalty metrics based on sweeping regions (the area covered
by a moving MBR from the current time and H time units into the future).

The Bx-tree uses the B+-tree structure and algorithms to store and retrieve data.
Spatial data are transformed into 1-dimensional data using space-filling curves.

The Bx-tree partitions the time axis into intervals with a duration equal to the maxi-
mum duration in-between two updates of any object. Each such interval is further par-
titioned into n phases. For each phase, an index partition is created, at most n + 1
partitions existing at a time. The partition in which to insert an object is chosen accord-
ing to the object’s insertion time. As time passes, partitions expire, and new partitions
are created. Objects in an expiring partition are reinserted into the newest partition.

The index key of an object is calculated using the update time and position of the
object that is stored at the reference time of object’s partition. To achieve perfect recall
(with the assumption that the accuracy threshold is 0), queries are expanded according
to the maximum velocity of all objects and the query time. The objects that qualify for
the query according to their velocities are selected; all other objects are filtered out.

For the experimental evaluation, the TPR- and TPR*-trees were extended to support
data enlargement, and the Bx-tree was extended to support query enlargement. Enlarged
data and query objects are approximated to squares and rectangles, respectively.
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6.2 Experimental Evaluation Using the COST Benchmark

Implementations of the three indexes were obtained from their authors and modified
where needed in order to perform the benchmark experiments. The indexes require
a number of parameters to be set. For the Bx-tree, the maximum update interval is
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Fig. 4. Example experimental results obtained using the COST benchmark
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Fig. 5. An example of experimental results using the COST benchmark

120 s, there are 2 phases, the cell size is 100 × 100 m2. For the TPR and TPR*-trees,
H = 120 s.

Representative experimental results are provided in Fig. 4 and Fig. 5. The remaining
results are omitted due to space limitations. The experimental results in Fig. 4 show that
the indexes are sensitive to changing workloads. For example, high object speeds (more
than 75 m/s, Exp. 3.3) or rare updates (less than once in 160 s on average, Exp. 5.1
and 5.2) significantly degrade the query I/O performance of the Bx-tree. However, the
update performance of the Bx-tree tends to be more stable than for the TPR- and TPR*-
trees (Exp. 3.3, 5.1, and 5.2). When the threshold increases, the query and update per-
formances of the indexes degrade gradually (Exp. 4.1). However, when there is a high
percentage of objects with large thresholds, the query performance of Bx-tree degrades
significantly (Exp. 4.2). This is due to the resulting long update intervals and large query
expansions (Exp. 5.1 and 5.2).

The TPR- and TPR*-trees exhibit inadequate query performance when the index
size is large (in the benchmark experiments, above 600 K objects, Exp. 1). The Bx-tree
scales well for both query and update performance (Exp. 1).

Experiments that concern query types are shown in Fig. 5. The indexes are largely
insensitive to changing query types (Exp. 7). The Bx-tree has a higher overhead com-
pared to the other indexes when query spatial extent is small, but query performance
becomes similar for all indexes with larger queries (Exp. 8.1). Varying the temporal
extent from 0 to 120 s has only a small effect on query performance (Exp. 8.2).

The experiments demonstrate that the benchmark fulfills its purpose: it has uncov-
ered strengths and weaknesses of the indexes (only some of which were covered by
the papers that introduced the indexes). For example, the experimental results identify
situations in which the Bx-tree has lower query performance than the TPR-tree and
that were not covered by the paper presenting the Bx-tree [8]. As another example,
the benchmark shows that situations (not covered by the paper presenting the TPR*-
tree [3]) exist where the TPR-tree outperforms the TPR*-tree for updates.

Summarizing the experimental results, the TPR-, TPR*-, and Bx-trees appear each
to be the best choice in different situations, characterized by different workloads. The
Bx-tree seems to be a good choice in situations with large numbers of objects, which
degrade the performance of the TPR- and TPR*-trees. The Bx-tree also performs well
when the maximum interval in-between the updates is known; the maximum position
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accuracy threshold is low; and the speeds of objects do not exceed the usual speeds of
vehicles. In other cases, the TPR- or TPR*-trees, which most often exhibit very similar
query performance, should be chosen. With extremely long update intervals, the TPR*-
tree might be preferable over the TPR-tree.

The TPR- and TPR*-trees appear to be the most versatile indexes; however, the Bx-
tree is based on the B+-tree; which is already available in many DBMSs. Therefore, a
creation of a more robust version of the Bx-tree may be promising direction for research.

7 Conclusions and Future Work

A number of indexes for the current and near-future positions of moving objects exist,
and more are underway. This state of affairs creates an increasing need for a neutral and
well-articulated experimental setting for evaluating and comparing these indexes.

This paper proposes a benchmark, termed COST, that is targeted specifically to-
ward the evaluation of such indexes. The benchmark aims to make realistic assump-
tions about the experimental settings—data is inherently inaccurate, predictive queries
that reach into the future are covered, the indexes are assumed to be stored persistently
on disk. More specifically, an update technique is assumed where positions are guaran-
teed to be accurate within agreed-upon thresholds and where updates occur only when
necessary in order to satisfy the guarantees. The indexes may use either query or data
enlargement to account for the inaccurate data. The benchmark includes a workload
generator, definitions of experiments, and evaluation metrics. It considers a wide range
of workload parameters that cover many real-world situations.

As proof of concept and to evaluate the benchmark, it was applied to the TPR-,
TPR*-, and Bx-trees. The experiment demonstrates that the benchmark is well-specified
and is capable of covering a wide range of situations. Weaknesses and strengths of the
indexes were detected by examining the sensitivity of the indexes to workloads with
varying parameter values, including workloads with extreme settings. The experimental
results cover situations that were not covered in the papers that introduced the indexes,
due to more extensive experiments. The obtained results provide guidance as to when
each of the indexes should and should not be used.

The benchmark may be extended by inclusion of such aspects as index size in disk
pages, CPU time and numbers of I/O for bulkloading and bulk operations, and evalua-
tion of concurrent accesses. Further studies of existing spatio-temporal indexes are also
warranted, possibly including detailed studies of special cases and aspects specific to
individual indexes. Examples include detailed studies of overlaps among MBRs, growth
rates of MBRs, and the grouping of objects into MBRs in R-tree-based indexes. For the
Bx-tree, such studies may cover query enlargement aspects and migration loads. For
all indexes, it is of interest to investigate aspects such as tree depths and node fanouts.
Studies such as these have the potential to offer insights that may guide the development
of improved indexes.
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Abstract. Motivated by the increasing prominence of loosely-coupled systems,
such as mobile and sensor networks, the characteristics of which include inter-
mittent connectivity and volatile data, we study the tagging of data with so-called
expiration times. More specifically, when data are inserted into a database, they
may be stamped with time values indicating when they expire, i.e. when they are
regarded as stale or invalid and thus are no longer considered part of the database.
In a number of applications, expiration times are known and can be assigned at
insertion time. We present data structures and algorithms for online management
of data stamped with expiration times. The algorithms are based on fully func-
tional treaps, which are a combination of binary search trees with respect to a
primary attribute and heaps with respect to a secondary attribute. The primary
attribute implements primary keys, and the secondary attribute stores expiration
times in a minimum heap, thus keeping a priority queue of tuples to expire. A de-
tailed and comprehensive experimental study demonstrates the well-behavedness
and scalability of the approach as well as its efficiency with respect to a number
of competitors.

1 Introduction

We explore aspects of implementing an extension to Codd’s relational data model [5]
where each tuple in a relation is timestamped with an expiration time. By looking at a tu-
ple’s timestamp, it is possible to see when the tuple ceases to be part of the current state
of the database. Specifically, assume that, when a tuple r is inserted into the database,
it is stamped with an expiration time, texp(r). Tuple r is thus considered part of the
current state of the database from the time of insertion until texp(r). Expiration-time
semantics now ensures that operations, most prominently queries, do not see tuples that
have expired by the time associated with a query. Our study is motivated by the emer-
gence and increasing prominence of data management applications which involve data
for which the expiration time is known at the time of insertion, updates are frequent, and
the connectivity of the data sources that issue the updates is intermittent. Applications
which involve mobile networks, sensor networks, and the Internet generally qualify as
examples.

Data produced by sensors that measure continuous processes are often short-lived.
Consider a sensor network of temperature sensors that monitor a road network. It may
be assumed that a temperature measurement is valid for at most a fixed number of
minutes after it is measured, or the duration of validity may be determined by more
advanced computations in the sensor network. A central database receives temperature
measurements stamped with expiration times. A measurement from a sensor then auto-
matically disappears if the sensor does not issue a new temperature measurement before
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the old measurement expires. While a temperature sensor network may be relatively
static in nature, mobile devices that frequently log on to and log off from access points
form a more dynamic network. In such a context, it is natural to tag records that capture
log-ons with expiration times so that a session can be invalidated by the server after a
period of inactivity. Closely related examples are cookies and session keys used where
only stateless protocols like HTTP [20] are used for communication. Similarly, avail-
ability tactics like heartbeats [3], where devices periodically emit (heartbeat) messages
to indicate that they are still online, go together with expiration times in a natural way.
For a more detailed discussion about the role of expiration times in query processing
see [17].

By adding the notion of expiration time to a database management system (DBMS),
designers can help simplify software architectures and reduce code complexity while
retaining transparent semantics. A user of an expiration time-enabled SQL engine needs
not be aware of the new concept, as expiration time ∞ can be assumed for tuples for
which no expiration time is provided explicitly. A further benefit of the integration
of expiration times into a DBMS is that the number, and thus cost, of transactions
especially in distributed systems can often be reduced significantly because no explicit
delete statements to ‘clean-up’ previous transactions need be issued; since transaction
costs in these settings are often an important bottleneck, overall system performance
can increase significantly.

The contributions of this paper are as follows. (1) Motivated by the ubiquity of
loosely-coupled distributed systems with unstable connections such as mobile and sen-
sor networks, we argue that DBMS support for expiration time benefits applications, as
pointed out above. (2) The main technical contribution of this paper are online main-
memory algorithms and data structures that are capable of handling data expiration
efficiently on a variety of devices; this implies that expired data are automatically re-
moved as early as possible from the database without the need for user interaction. (3) A
comprehensive experimental study offers insight into resource consumption and other
performance characteristics such as scaling behaviour, response times, and throughput.

The remainder of the paper is structured as follows. The next section briefly outlines
the assumed (simple) extension to the relational model and discusses functional treaps
from an algorithmic point of view. Section 3 presents the results of a comprehensive
evaluation of the performance characteristics of treaps and a comparative study of the
performance of treaps with respect to various competing data structures; it also covers
a variety of functional issues in relation to expiration times and the use of treaps. After
a review of related work, the final section concludes the paper and identifies promising
directions for future research.

2 Treaps in Detail

2.1 Setting

We assume the following basic setting for our research: data sources emit tuples
stamped with expiration times. A relational view of these sources is provided, where
only current, i.e. unexpired, tuples are exposed to queries. Thus, expiration times can
be seen as a database-internal function texp : tuples → timestamps from tuples to
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timestamps. Assuming that a database dbexp of tuples with expiration times is given
and that the time associated with a query q is given by τq , then the tuples seen by q
are: { r | r ∈ dbexp ∧ texp(r) > τq}. It is a fundamental decision to associate expi-
ration times with tuples. Arguably, they could be associated with other constituents of
the relational model, including individual attribute values, attributes or other schema
elements. This design decision is motivated by a desire for clear semantics, simplicity,
and practicality [17, 18].

2.2 Overview

A treap is a combination of a tree and a heap: with respect to a (primary) key attribute, it
is a binary search tree; with respect to a second, non-key attribute, it is a heap. The idea
we elaborate on in the remainder of this paper is to use the key attribute for indexing
while managing expiration times using the second non-key attribute.

class Node;
class Inner extends < k, t, v > Node {

left child: Node;
key: k;
expiration: t;
data: v
right child: Node;

} /* Instantiate with: Inner(lc, k, t, c, rc) */
class Leaf extends Node {};

/* Instantiate with: Leaf */

Fig. 1. Treap node data type

We use the term (fully) functional [16]
for a data structure if an update of the
data structure produces a new version,
both physically and logically, without alter-
ing the original. Functional data structures
enable concurrent access through version-
ing [4]. In particular, by using a func-
tional treap then, as long as only one thread
updates the treap (like any other fully
functional data structure), concurrent (read)
access can be implemented with a minimum
of locking, which is desirable in a main-
memory environment.

The structure of a treap node is shown in Fig. 1. The layout of the tree is binary: each
node has a left and a right child, a key, and an expiration time; it also has a value field,
which may contain arbitrary data such as non-key attributes.

2.3 Example

We proceed to exemplify how functional treaps can be used to support expiration times
efficiently. Focus lies on eager removal of expired data.

Figure 2 shows the construction of a treap given the following sequence of (key,
expiration time) pairs to be inserted: (1, 7), (2, 6), (3, 6), (4, 0), (5, 7), (6, 6), (7, 8). A
pair (key, time) denotes a tuple with key ‘key’ and associated expiration time ‘time’.
Note that, for the time being, we assume that the key and the expiration time are sta-
tistically independent; in [18], we discuss in more detail what happens when we do not
make this assumption; we now just remark that we can use a hash function on the key to
achieve independence. The last step in Fig. 2 consists of removing the root node from
the treap, i.e. carrying out an expiration, for example at time 1. The algorithms that do
the actual work are discussed in the sequel.

Before presenting algorithms, however, we have a quick look at the notation used
in this paper. First, the functional nature is reflected in the code by the absence of
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insert (2,6) insert (3,6)insert (1,7)
(*)

insert (4,0)

insert (7,8)
insert (6,6)
insert (5,7)

remove (4,0)

(**)

 (2,6)  

 (1,7)   (3,6)  

 (2,6)  

 (1,7)  

 (4,0)  

 (2,6)  

 (1,7)   (3,6)  

 (4,0)  

 (2,6)   (6,6)  

 (1,7)   (3,6)   (5,7)   (7,8)  

  (1,7)

 (3,6)  

   (6,6)  

 (1,7)   (5,7)   (7,8)  

(2,6)

Fig. 2. Example treap

the assignment operator and, instead, the allocation of new objects with the new key-
word whenever an update is performed. The function new t (a1, a2, . . . , an) allocates
a new object of type t and initialises it by calling the respective constructor with the
arguments a1, a2, . . . , an. Second, extensive use of ML or Scala-style pattern match-
ing [15] is made to bind parts of complex, nested data structures to variables in a concise
manner avoiding combinations of nested if-statements. For example, assuming the class
definitions of Fig. 1, using the second treap in the first row of Fig. 2 (marked (*)) and
the find function of Fig. 3 then the first clause of Fig. 3 is executed as follows.

1 function find (node, key) =
2 match node with
3 | Inner ( , k, , item, ) when (key = k) → item
4 | Inner (left, k, , , right) →
5 if (key < k)
6 then find (left, key)
7 else find (right, key)
8 | Leaf → raise exception (Key is not in treap)

Fig. 3. Lookup of a primary key

Assume we want to find the node
with the key 1, i.e. we call ‘find
(treap, 1)’ where treap is bound
(using the constructor notation) to
‘Inner (Inner (Leaf, 1, 7, ⊥, Leaf),
2, 6,⊥, Leaf)’. If we match against
it the pattern ‘Inner ( , k, , item, )
when (key = k)’ (line 3, Fig. 3),
the following variable bindings are
created: k = 2, item = ⊥ (⊥ de-
notes a non-applicable variable in
our case, i.e. we do not use the data field in this example). The underscore ‘ ’ in a
constructor denotes a ‘don’t care’ variable that is present in the class, but for which no
binding is created. Since k is bound to 2 and the function argument key to 1, the when
clause evaluates to false and the pattern does not match. However, the pattern in line
4 matches, and the following bindings are created: left = Inner (Leaf, 1, 7, ⊥, Leaf),
right = Leaf, and k = 2. Since the if statement evaluates to true, function find is called
recursively and terminates successfully.

If a treap is well-balanced, i.e. structurally similar to a height-balanced binary tree,
it is guaranteed that we can execute look-up queries in logarithmic time. Treaps being
also heaps implies that nodes with minimal expiration times cluster at the treap root.
If the root node has expired, i.e. its expiration timestamp e is smaller than the current
time, we can simply remove it.This is advantageous because we can keep the amount of
stale data to a minimum using an eager deletion policy: as long as the root node is stale
we remove it. Since stale data cluster at the root, no search is required. Furthermore,
this strategy has the advantage that we essentially only need one procedure for both
expiration and deletion: indeed, expiration is implemented as a small wrapper.
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2.4 Operations on Treaps

This section introduces the most important operations on treaps. Since we are not aware
of any other work that presents algorithms for the functional variant of treaps, we de-
scribe the operations in some detail.

Maintaining Balance. Like many other balanced tree structures, the insert and delete
functions of treaps maintain balance through order-preserving node rotations. The insert
function only rotates nodes on the path from a leaf, namely the newly inserted node, to
the root. The delete function uses rotations to move an interior node to the leaf level
without violating the order of the tree. Due to the functional nature of our kind of
treap, rotations during inserts and deletes are implemented by slightly different code:
for insertion (Fig. 4), the local function that implements the rotations is called rebalance
(see second line in figure). We remark that it is the way the treap is rebalanced that
destroys locality and makes it hard to adapt treaps to paginated secondary memory data
structures.

Insertion. Insertion is a two-stage process. First, we insert a pair (key, time) as if the
treap was a functional binary tree on key. We then execute rotations to re-establish the
heap property (while retaining the binary tree property), which may have been violated.
Insertion works as displayed in Fig. 4; it illustrated in several places in Fig. 2.

function insert (tree, key, time, item) =
local function rebalance (node) =

match node with
| Inner(Inner(s1, u, t′, i′, s2), v, t, i, s3) when (t > t′) →
new Inner(s1, u, t′, i′, new Inner(s2, v, t, i, s3))

| Inner(s1, u, t, i, Inner(s2, v, t′, i′, s3)) when (t > t′) →
new Inner(new Inner(s1, u, t, i, s2), v, t′, i′, s3)

| → node;
match tree with
| Inner( , k, , , ) when (key = k) → tree
| Inner(left, k, t, i, right) →

if (key < k)
then rebalance (new Inner(insert(left, key, time, item), k, t, i, right))
else rebalance (new Inner(left, k, t, i, insert(right, key, time, item)))

| Leaf → new Inner(Leaf , key, time, item, Leaf)

Fig. 4. Insertion into treaps

The second phase allocates new memory as it re-establishes the heap property. This
fact and because the function runs through the tree twice (top to bottom for insertion
and bottom to top for rebalancing) may seem to make insertion a comparatively expen-
sive operation; however, since the first phase already populates the CPU caches with
the nodes needed in the second phase, the overhead is not too large. The performance
figure later in this paper quantify the cost of insertion relative to expiration. The amor-
tised cost of insertion is O(log n) time where n is the number of elements stored in the
treap [19]. Additionally, each insertion also allocates O(log n) memory by producing
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a new version of the data structure; however, since we use node-copying [4] to imple-
ment concurrency rather than provide access to historical versions of the data, memory
management automatically reclaims O(log n) memory per insertion once it is not used
by other threads anymore. Thus, for single-threaded applications the overall memory
requirements per insertion are not higher than for conventional treaps. In the case of
multi-threaded applications, old treap versions are reclaimed as soon the owning thread
terminates. For practical workloads, this usually implies that algorithms does not incur
a memory overhead.

Removal and Expiration. Like insertion, removal is a two-stage process [18]. The first
step consists of locating the node that contains a given key. The second step includes
executing rotations so that the node sifts down and eventually becomes a leaf. After this
has happened, it is simply discarded. Removal of a key is also exemplified in Fig. 2
(marked (**) in Fig. 2). Like insertion, it is purely functional. By repeatedly calling
the deletion function as long as the root node is expired, we can eagerly remove all
stale data from the treap. Since the removal algorithm returns a new version of the treap
just like insert, the discussion of resource requirements is similar to the discussion of
insertion.

Other Operations. Depending on the area of application, other operations on treaps
make sense as well. For example, we can use full traversals of a treap to create snap-
shots of the current state of the database for statistics, billing, etc. Furthermore, if the
less-than relationship between keys returns sensible values, range queries on keys can
be used to quickly extract ordered intervals from the indexed keys. These operations
are implemented exactly as for binary trees, so no code is provided here. However, a
performance evaluation of full traversals is presented in the next section.

Concurrency Issues. The tactics used to achieve concurrency is versioning [4], imple-
mented by the node-copying method [7]. This implies that each modification to the data
structure produces a new version; the previous version can be then garbage-collected
once all pointers to it become stale. Therefore, treaps are not ever-growing data struc-
tures since only, besides the most recent version, only versions currently in use are
kept in memory. Thus, only one thread is allowed to update the data structure, but any
number of threads can read from it. As pointed out earlier, this type of design pattern
can be implemented in a nearly locking-free manner and provides for concurrent op-
erations at the cost of increased memory allocation and deallocation but not increased
overall memory usage. Modern generational garbage collectors [6] are optimised for
this kind of allocation pattern and provide favourable performance. Despite the in-
creased memory allocation and deallocation activity the overall storage requirements
are asymptotically not higher than traditional single-version implementation (assuming
a ‘standard’ database setting with a finite number of threads all of which feature finite
running times).

3 Experiments and Evaluation

This section reports on empirical studies of the performance of treaps. We take the
following approach: First, we present the formal framework of our evaluation which
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header key expiration time left child right child data

32 bits 32 bits 32 bits32 bits 32 bits 32+ bits

Fig. 5. Physical layout of an internal treap node

allows to reproduce results. Then we examine the performance of treaps for a diverse
range of workloads. Lastly, we compare treaps to a number of competitors, including
Red-Black trees and AVL trees.

3.1 Experimental Setup

The experiments were carried out on a PC running Gentoo Linux on an Intel Pentium
IV processor at 1.5 GHz featuring 512 MB of main memory available; no hard disk was
used during the experiments. The CPU caches comprise 8 KB at level 1 and 512 KB
at level 2. The compiler used was gcc/g++ 3.2. The performance data from which the
graphs displayed in this section were gathered from experiments lasting over 42 hours
of runtime on a single machine. Figure 5 displays the physical layout of an internal treap
node in our implementation. We fixed the size of the data field to 32 bits for our experi-
ments. All relevant data are inlined, so to access a key or expiration time, we do not have
follow a pointer, but we can read it locally in the record. This has been done mainly to
improve cache utilisation [1]; in general, however, the data field may contain a pointer
to non-local data. In order to explore the full potential and the limitations of treaps, we
generated synthetic data to get the data volume needed to test the behaviour of treaps
in the limit. The sensor and network hardware available to us are unable to deliver the
data volumes necessary to determine the performance limitations of the data structure.
Figure 6 plots counts of tuples across time and exemplifies a workload we used.
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Fig. 6. Database size and operation for non-uniform
traffic

The dashed line indicates the num-
bers of tuples that arrive at each par-
ticular point in time. For example,
the peak at approx. 20,000 millisec-
onds denotes that 4,000 tuples ar-
rive during the respective interval and
have to be inserted into the treap.
Without support for expiration time,
the network traffic would approxi-
mately double, and each spike indi-
cating the arrival of new data would
be followed by a spike indicating the
deletion of the very data comprising
the first spike (assuming that all data
expire a fixed duration after their
insertion).

We use the B-Model data generator proposed by Wang et al. [22], which is well
suited for our purposes. This generator is capable of generating workloads while con-
suming only a fraction of available system resources. Thus, it provides enough
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performance not to flaw results. To make it fit our purposes, we extend the generator
to work with four input parameters rather than the original three parameters. The three
original parameters, b, l, and N , are the bias, the aggregation level, and the total vol-
ume, respectively; we refer to this model as BModel(b, l, N). The bias b describes the
roughness of the traffic, i.e. how irregular it is and how pronounced the peaks are. The
aggregation level l measures the resolution at which we observe the traffic. The param-
eter N equals the sum of all measurements and specifies the total amount of traffic. The
new, fourth parameter is a random variable describing the distribution of the expiration
times of arriving network traffic, i.e. the time interval we consider the BModel(b, l, N)
arriving items valid.

To get an impression of both maximum throughput and response to extremely bursty
traffic, we divided our experiments into two parts. We first consider uniform traffic,
i.e. BModel(0.5, l, N). This is done to capture how treaps respond to continuous high
workloads. Since the versioning semantics call for frequent allocations of memory,
we can expect efficient memory management to be a key factor. Next, we consider
BModel(b, l, N), b ∈ ]0.5, 1.0[, i.e. bursty traffic. This is done to estimate how well
treaps act under workloads with more or less pronounced peaks. In these settings, min-
imum and maximum throughput are of interest. Examining treaps in this context is
a first step towards the consideration of stochastic quality-of-service guarantees. For
experiments which try to illustrate scaling behaviour, N is the parameter used to gen-
erate databases of different size. However, when we talk about the size of a database,
e.g. about 4 M tuples in Fig. 7(a), we mean the average number of unexpired tuples
residing in the database, potentially after some bootstrap.

3.2 Discussion of Treap Performance

We now turn our attention to Figs. 7(a) through 8(b), which describe the performance
of the data structure under different stress patterns and for different workloads. We first
investigate the performance of updates; then we turn our attention to querying.

Insertions and Expirations. We first examine the behaviour of treaps under a uniform
workload with insertions into a four million tuple database, i.e. after an initial bulk load,
the database consists of four million tuples on average, with insertions and expirations
basically cancelling out each other.

Figure 7(a) shows the throughput for such a setting. The conspicuous peaks are
mainly due to comparatively cheap memory allocation cost after major garbage col-
lections. Notice that the dotted line representing expiration remains, once expirations
set in, above the dashed line representing insertions; thus, expirations are cheaper than
insertions for large databases. This reflects the structure of the insertion algorithm, re-
quiring to traversal from the root to a leaf and back. On the other hand, expiring the root
only requires sifting the node to the leaf level before discarding it. Thus, expirations also
require fewer memory allocations than insertions.

Since treaps only guarantee amortised performance, it is also interesting to learn
to what degree the costs of the individual operations differ. Due to the high through-
put, which may exceed 100,000 operations per second on our platform, is very hard to
monitor the cost of an atomic operation without influencing the result to a degree that
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Fig. 7. Performance impressions, resource consumption, and peak performance

renders it unusable. Therefore, we move to a higher level of aggregation and consider
the lengths of intervals containing a fixed number of insertions and expirations. This
number was fixed to 80,000 for the experiments. While this rather large number theo-
retically may obscure the variance in the costs of individual operations, we did not expe-
rience this problem and found it a good trade-off between unobtrusiveness and intuition.

In Fig. 7(b), the Probability Density Function (PDF) of such an analysis displayed.
We note that the local maximum of the solid line representing expirations at 0.0 in-
dicates that the system wants to expire data, but there is no stale data present. This
results in an operation with nearly zero cost. Figure 7(b) also shows that expirations are
cheaper than insertions by a factor of approx. two and that the overall cost of a joint op-
eration, insertions and expirations combined, is reasonable. Disregarding the phantom
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expirations of nearly-zero cost, one can assume that the execution time of 80,000 inser-
tions lies between about 1.0 and 1.4 seconds. This suggests that treaps behave reliably
and predictably in practical settings.

To provide some evidence that the performance peaks in Fig. 7(a) are indeed memory
management-related, we concentrate on the results reported in Fig. 7(c). This time, the
database contains 40,000 tuples on average. Now, the local maxima in the graph are
noticeably less pronounced than in the large database. It turns out that because of the
small size, major re-organisations of the storage space can be avoided, keeping the
cost of individual memory allocations on about the same level. This is also reflected in
the PDF displayed in Fig. 7(d). The bandwidths of insertions, expirations, and of the
joint PDF are smaller in both absolute and relative terms. Figure 7(e) and 7(f) concern
resource utilisation. It can be seen that most of the time, the treap is able to insert data
at about half the maximum possible rate and that memory management causes some
pronounced spikes. Again, for smaller databases the spikes remain less pronounced.

Uniform traffic can be considered the worst case for treaps in the sense that it always
has to deliver as much performance as possible. In the case of non-uniform traffic,
we can expect the system to consume few resources when there are few operations,
while running resource-intensively when the numbers of operations peak. This is also
demonstrated in Fig. 6. The straight line indicates the database size. Since we use an
eager expiration and removal policy, the line also reflects the number of valid, i.e. non-
expired, tuples in the database. A note on the choice of the parameter b = 0.695234 for
non-uniform traffic: we chose b in this range because it is typical for Web traffic [22], a
scenario which is probably closest to our area of application.

Retrieval. Concerning retrieval performance, Fig. 8(a) presents the cost profile of un-
correlated lookups while varying the database size. The graph shows that the number
of lookups per second decreases as the database size grows and is thus consistent with
O(log n) key lookup complexity. Figure 8(b) illustrates how expensive it is to traverse
a treap in an in-order fashion. Traversal is an interesting operation, as it can be used
for creating snapshots, computing joins, etc. The operation is linear in the size of the
database, but benefits from caching: the path from the treap root the current node is
very likely to be resident in the cache hierarchy. Thus, the operation is surprisingly fast;
traversing a one million tuple database takes about one-third of a second on our test

2e+05 4e+05 6e+05 8e+05 1e+06

1.
5

2.
0

2.
5

3.
0

Database Size (# tuples)

T
im

e 
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(a) Scaling of 100,000 uncorrelated lookups
for AVL trees, Red-Black trees, and treaps

2e+06 4e+06 6e+06 8e+06 1e+07

0.
1

0.
2

0.
3

0.
4

Database Size (# tuples)

T
im

e 
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(b) Scaling of complete in-order traversal of
AVL trees, Red-Black trees, and treaps

Fig. 8. Generated traffic; lookup and traversal in database containing up to 16 M tuples



Efficient Maintenance of Ephemeral Data 151

platform. This indicates that the versioning semantics of our treaps does not impede
full traversals since the number of arriving tuples is certainly limited. Figure 8 also dis-
plays the performance of the same operations on AVL trees and Red-Black trees, which
are what we compare treaps against in the following subsection.

3.3 Comparing Treaps to Competitors

To estimate the performance and resource consumption of the treap index relative to
other data structures, we compared the behaviour of treaps to a number of competing
approaches. We use the following methodology: Besides requiring appropriate competi-
tors to provide an index on the key attribute, we distinguish between structures which
support eager expiration and structures which do not. Eager expiration implies that we
can remove expired data in a timely fashion from the data structure so that, for exam-
ple, ON EXPIRATION triggers can fire as soon as the item becomes stale and not at
some arbitrary, later point in time. Thus, eager expiration calls for priority queue-like
access to the data in addition to the index on the key values. We achieved this by com-
bining the index structures with priority queues. Since our context requires us to work
with main-memory data structures, we chose AVL trees and Red-Black trees [11] as
competitors to treaps. To support expiration on these structures, we applied (1) peri-
odic cleansing strategies, and (2) priority queue-supported, eager expiration strategies
to both data structures. Since treaps may require us to apply a hash function to key
values and, thus, may not support range queries under certain circumstances, we also
compared the performance of treaps to main-memory hash tables [11]. Again, we use
plain hash tables as well as heap-supported hash tables for eager expiration.

Maintenance Costs. To measure how dynamic a database instance is at a given point
in time we look at how many tuples of a snapshot would expire during a given interval.
Formally, we introduce the notion of Rate of Expiration (RoE), which is defined as the
ration between expired data and the sum of expired and current data, in a given time
interval. Thus, the Rate of Expiration is number between 0 and 1 (or 0% and 100%)
which captures how dynamic or how static a particular database state is by relating
the number of tuples expirations in a given time interval to the size of the database.
Note that the RoE does not take into account insertions and expiration from insertions;
it only measures the decay of a database state. An RoE of 100% would imply that,
during the interval d, all data expire, whereas an RoE of 0% implies that there are
no expirations. We note that expiration time-enabled data structures in general appear
particularly useful when RoE is relatively low, i.e. a significant part of the database
does not expire in the interval of interest; high RoEs imply that the we have to dispose
of large parts of a database, which in turn implies that we have to scan a large part
of the data—those to be expired—which we can do anyway without supporting data
structures.

Figure 9 compares the cost of maintaining treaps to the cost of maintaining the other
well-known data structures which were adapted to support expiration time. The RoE
varies from very dynamic 100% to much more static 1%. It turns out that treaps never
perform significantly worse than the other data structures but scale much better, both in
terms of memory requirements and processor time, for databases with relatively small
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Fig. 9. Performance comparison to AVL and Red-Black Trees with/without supporting heaps

Rate of Expiration, which we consider a typical case. In more detail, Figs. 9(a)–9(c)
illustrate that treaps outperform AVL trees and Red-Black trees for RoEs of 5% and 1%,
whereas they incur only a small overhead for an RoE of 100%. Note that in this case
expiration is done on AVL and Red-Black using traversals at the end of each interval, but
no additional memory is needed for supporting data structures; thus, expiration is not
eager. However, eager expiration can be implemented with supporting heaps as shown
in Figs. 9(d)–9(f). Note that in these figures AVL and Red-Black trees are combined
with heaps to support eager expiration. However, this incurs a memory overhead for
these data structures so that, given a fixed-size main memory, a treap could index more
than twice the data size than the competitors. Nevertheless, treaps outperform the other
data structures in all cases although not as clearly as in the heap-less experiment.

Query Performance. This subsection considers the question what query performance
(rather than the cost of maintenance) treaps feature in comparison to AVL and
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Red-Black trees. As mentioned earlier, Fig. 8 shows the performance for two important
query primitives used frequently in data management: traversals and lookup queries. It
turns out that, as Fig. 8(a) shows, treaps consistently outperform Red-Black trees and
are en par with AVL trees with respect to point queries or lookups. For small databases
AVL trees exhibit a slightly better performance where treaps are slightly ahead for larger
databases. Similarly, for scanning the data set in sort order, treaps perform slightly
worse than both, Red-Black and AVL trees, for small databases; for large databases,
they are again ahead of Red-Black trees as Fig. 8(b) shows. However, the important
point here is that the probabilistic performance guarantees of treaps do not incur a sig-
nificant (if at all) penalty on query performance.

Further Issues. The full version of this paper [18] covers several practically relevant
issues. Most notably, it relaxes the assumption of statistical independence between key
values and expiration times, by introducing a hash function to enforce the indepen-
dence. Additionally, the full version also compares treaps to expiration time-enabled
hash tables and discusses main-memory performance issues. Many other issues are also
discussed in somewhat more detail than presented here.

4 Related Work

At the level of query languages and data models, which are not the focus of this paper,
the concept of expiration time relates to the concept of vacuuming [9]. With vacuuming,
it is possible to specify rules that delete data: when the preconditions, e.g. related to
time, in the head of a rule, are met, the data identified by the body of the rule are
logically deleted from the database. Like expiration time, vacuuming separates logical
deletion from physical deletion. But whereas expiration times are explicitly associated
with the tuples in the database, vacuuming specifies which data to delete in separate
rules. We believe that the techniques presented in this paper may be relevant for the
efficient implementation of time-based vacuuming. Stream databases [2], on the other
hand, allow users to specify query windows; in this sense, they take an approach which
is opposite to expiration times, which let the data sources declare how long a tuple is
to be considered current. Some works that refer to the term “expiration” are slightly
related to expiration time and thus this paper’s contribution. Expiration has been used
in the context of view self-maintenance: Here the problem is which data that can be
removed (“expired”) without this affecting the results of a predetermined set of queries
(views) [8].

The use of expiration time has been studied in the context of supporting moving
objects [21]. The idea is that locations reported by moving objects that have not been
updated explicitly for some time are considered inaccurate and should thus be expired.
The REXP-tree extends the R-tree to index the current and anticipated future positions
of two- and three-dimensional points, where the points are given by linear functions of
time and are associated with expiration times. We are not aware of any related research
on main memory based indexing that incorporates expiration time.

Okasaki [16] offers a very readable introduction to purely functional data structures.
Our primary data structure, the (functional) treap, is described and analysed in substan-
tial detail by Seidel and Aragon [19]; it was first introduced by McCreight [14]. Later,
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treaps were primarily seen and interpreted as randomised search trees [19]. Treaps have
been used in a number of contexts; however, we are not aware of any time-related appli-
cations. Heaps are a classical data structure in computer science [11]. In this paper, we
technically achieve concurrency on functional treaps through versioning [4] by imple-
menting the node-copying method [7]. In a database context, Lomet and Salzberg [13]
present versioning supporting variants of B-trees and discuss related issues. Finally, we
remark that distributed garbage collection also shares similarities with expiring data
in databases; especially eager collection is sensible when scarce resources have to be
freed up.

5 Conclusion and Future Work

This paper argues that expiration time is an important concept for data management in a
variety of application areas, including heartbeat patterns in mobile networks and short-
lived data. It presents a functional, or versioned, variant of the previously proposed treap
along with algorithms for supporting data with expiration time, and it argues that this is
an efficient main-memory index for data with expiration times. Through comprehensive
and comparative performance experiments, the paper demonstrates that its proposal
scales well beyond data volumes produced by current mobile applications and thus is
suited for advanced applications.

Data expiration is an important and natural concept in many volatile application
settings where traditional ACID semantics are not appropriate. Often, devices such as
mobile phones, PDAs, sensors, and RFID tags experience intermittent connectivity, but
also do not need a full-blown transaction system for many tasks. In these settings, data
management applications can benefit from the underlying platform being expiration
time-enabled. Benefits include lower transaction workloads, reduced network traffic,
and the ability to free memory occupied by stale data immediately.

Support in the underlying platform for expiration time also have the potential of
simplifying application logic by removing the need for “clean-up” transactions. The
paper demonstrates through experiments that a functional treap, which is a binary tree
with respect to a key and a heap with respect to the expiration time, is an effective tool
for handling expiration times in main-memory settings.

Several interesting directions for future research exist in relation to the support for
expiration time in data management. When data are not as short-lived as assumed in this
paper, it might be beneficial to develop strategies for extending standard secondary-
memory data structures, e.g. heap files, B-trees, and hash files, with expiration time
support. We anticipate that expiration for secondary-memory structures requires strate-
gies different from those presented in this paper. Furthermore, to take full advantage
of database management system technology, expiration times have to be sensibly inte-
grated into SQL’s isolation levels and transaction system.
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Abstract. Outlier analysis is an important task in data mining and
has attracted much attention in both research and applications. Previ-
ous work on outlier detection involves different types of databases such
as spatial databases, time series databases, biomedical databases, etc.
However, few of the existing studies have considered spatial networks
where points reside on every edge. In this paper, we study the interest-
ing problem of distance-based outliers in spatial networks. We propose
an efficient mining method which partitions each edge of a spatial net-
work into a set of length d segments, then quickly identifies the outliers in
the remaining edges after pruning those unnecessary edges which cannot
contain outliers. We also present algorithms that can be applied when
the spatial network is updating points or the input parameters of out-
lier measures are changed. The experimental results verify the scalability
and efficiency of our proposed methods.

1 Introduction

Outlier analysis, which aims to find a small number of exceptional objects in a
database, is an important data mining task. Methods have been developed for
different types of databases such as spatial databases [1, 2, 13, 17, 16, 19], time
series databases [10, 14], biomedical databases [21, 22], etc. In these methods,
the databases are typically considered static and relational, and the distance
used in identifying outliers is always measured by Euclidean distance.

However, in many real applications where spatial data are managed, spatial
objects are often added or removed, and the position and accessibility of spatial
objects are constrained by spatial networks [21]. Examples include road networks,
river networks, plane networks, rail networks, etc.

In general, a spatial network can be modeled as a graph where points are
located on the edges. These points can be static objects such as buildings, or
snapshots of mobile objects such as vehicles. Clearly, the actual distance between
any two points, called network distance, is measured by the length of the shortest
path connecting them in the network instead of Euclidean distance. Figure 1
depicts an example of a spatial network, where each node is denoted by a square,
each edge is associated with a distance label, and each point (object) is denoted
by a cross and lies exactly on an edge.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 156–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Mining outlying objects in a spatial network can provide very useful knowl-
edge to decision makers. For example, a road supervisor is interested to know
which(or how many) vehicles are most deviant to other vehicles in distance dur-
ing rush hour, or which roads or portions of a road have the least traffic. Such
outlier information can be used to analyze traffic patterns in a network and help
adjust the coverage of traffic volume.
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Fig. 1. An example of a spatial network

Due to the features of net-
work distance and the dynamics of
spatial networks, state-of-the-art
algorithms on mining outliers in tra-
ditional databases cannot be straight-
forwardly applied in spatial networks.
As shown in Figure 1, point P12, P19
and P26 are close to each other in
Euclidean distance(if not considering
network constraint). For instance, if
we apply the well-known cell-based
outlier detection method [12] to this
graph, P12, P19 and P26 will be
grouped into a small cell, and will
be treated as non-outliers. However,
since the only route to P26 in the net-
work is through the edge (n7, n4), and the remaining points have much larger
network distances to P26 than to any other point, so P26 is an outlier in the net-
work. This problem motivates us to design a novel method to find outliers in a
spatial network efficiently. Some recent work has been done on identifying graph
outliers [4, 8, 20], but the processed graph contains only nodes and edges, and
is different from a spatial network where additional points reside on the edges.
Furthermore, these existing methods basically aim to find exceptional nodes or
exceptional edges.

In this paper, we study the interesting problem of distance-based outliers
in spatial networks. We propose an efficient mining method which partitions
each edge of a spatial network into a set of length d segments, then quickly
identifies the outliers in the remaining edges after pruning those unnecessary
edges which cannot contain outliers. We also present algorithms for dynamical
settings where points in a spatial network are inserted/removed, and for settings
where the input parameters of outlier measures are changed. Our contributions
are as follows:

– We introduce the problem of distance-based outliers in spatial networks.
– We develop very efficient algorithms for mining outliers in spatial networks

in both static settings and dynamic settings, including when points in a
spatial network or input parameters of outlier measures are updated.

– We perform extensive experiments on both synthetic datasets and real
datasets.
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The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 introduces the preliminaries of outliers in spatial networks. Section 4
introduces the mining algorithm for static spatial networks. Section 5 introduces
the mining algorithm for spatial networks in dynamic settings. Section 6 presents
the performance analysis of these methods. We conclude the paper with a sum-
mary in Section 7.

2 Related Work

In the database point of view, recent research on outlier detection can be cate-
gorized into statistics-based, distance-based, density-based and clustering-based
approaches [9].

Outlier research has its roots in statistics [7, 3], and this early work can be
classified as distribution-based and depth-based. A distribution-based method
uses some kind of data distribution model such as Normal, which is mostly
univariate, to describe the properties of a dataset. It then tests for outliers
based on the postulated distribution. The problem of this method is that it
assumes that the dataset possesses some probability distribution beforehand.
In real applications, it is difficult to know the underlying data distribution. A
depth-based method uses computational statistics to represent data in different
depths and outliers are probably those data in lower depths. However, as such
a method relies on k-dimensional convex hulls computation with a lower bound
cost of Ω(nk/2), it is not efficient for high dimensions.

The concept of distance-based outliers, proposed by Knorr and Ng [12], de-
fines an object p being an outlier, if at most n objects are within distance d of p.
Outliers pertain to the global view of a dataset. A cell-based outlier detection ap-
proach that partitions a dataset into cells is also presented in the work. The time
complexity of this cell-based algorithm is O(N + ck) where k is dimension num-
ber, N is dataset size, and c is a number inversely proportional to d. For very large
databases, this method achieves better performance than depth-based methods.
However, it is still exponential to the number of dimensions. Ramaswamy et al.
extended the notion of distance-based outliers by using distance to the k-nearest
neighbor to rank outliers [19], where an efficient algorithm is given based on the
technique of partitioning dataset and distance bounding [18].

Some clustering algorithms such as CLARANS [15], DBSCAN [5], BIRCH
[25], and CURE [6] consider outliers, but only to the point of ensuring that
they do not interfere with the clustering process. Further, outliers are only by-
products in clustering algorithms, and generally, clustering algorithms cannot
be applied directly to a spatial network to find outliers.

Breunig et al. introduced the concept of local outliers, which assigns each
piece of data a local outlier factor (LOF) of being an outlier, depending on
its neighborhood[2]. This outlier factor can be used to rank objects according
to their outlierness. Computing the LOF of all objects in a database requires
O(n*runtime of a knn query). The outlier factors can be computed very effi-
ciently if OPTICS is used to analyze the clustering structure. A top-n based
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local outliers mining algorithm which uses the distance bound of a micro-cluster
to estimate density was presented in [11].

3 Preliminaries

Before we introduce mining algorithms for the spatial network outliers. Let us
revisit related concepts and notions of spatial networks and outliers, interesting
readers can see the details in [23, 12]. Let a spatial network be a weighted graph
G = (V, E, W ), and V is a set of nodes, and E is a set of edges. The function
W : E → R+ associates each edge with a positive weight. Without loss of
generality, W can be regarded as the distance in an edge. The position of a point
(i.e. object) p in the network can be expressed by < ni, nj , pos > where the
pos ∈ [0, W (e)] and e = (ni, nj). It shows p has pos unit away from the node ni

along the edge (ni, nj). As shown in Figure 1, P15 lies on the edge (n6,n2) and it
is 3.2 units away from n6 along the edge, so it is represented by < n6, n2, 3.2 >.
We assume the number of points in the spatial network G is N , and the edges
in the spatial network satisfies the triangle inequality.

Definition 1. Let p and q be two points whose positions are (na, nb, posp) and
(n′

a, n′
b, posq), respectively. The direct distance ddist(p, q) between points p and

q is defined by |posp−posq| if na = n′
a and nb = n′

b (i.e., p and q lie on the same
edge); otherwise, it is defined as ∞. Given a point p with position (na, nb, posp),
the direct distance ddist(p, na) between p and na is posp. The direct distance
ddist(p, nb) is defined by W (na, nb)− posp[23].

Note that ddist only works for two points lying on the same edge, while the ddist
of a point from a node works only when the point is lying on an edge adjacent
to the node.

Definition 2. Given nodes ni and nj, the network distance ndist(ni, nj) is
defined as the distance of the shortest path from ni to nj and vice versa[23].

Definition 3. Given points p and q, where p lies on the edge (na, nb) and q lies
on the edge (n′

a, n′
b), the network distance ndist(p, q) is the distance of the

shortest path from p to q. ndist(p, q) is defined by minx∈{a,b},y∈{a′,b′}(ddist(p, nx)
+ ndist(nx, ny) + ddist(ny, q)) if p and q lie on different edges; otherwise, ndist
(p, q) is the minimum of the previous quantity and ddist(p, q)[23].

Since the number of nodes in the spatial networks is much smaller than that of
points, so the network distance between each pair of nodes ni and nj can be
materialized with little cost and will be used frequently to speed up distance
comparisons in the stage of outliers detection. To facilitate efficient access, the
adjacency list and points are stored in two separate flat files indexed by B+-
trees[24], as shown in Figure 2 representing the spatial network of Figure 1.

Given a collection of N points that lie on a network, we aim to find a small
group of points according to the following criteria.
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Fig. 2. Data structure of the network and segment trees

Definition 4. Given user-defined parameters P and d, and a network distance
function F , a point o in a spatial network G is a distance-based outlier if at least
fraction P of points in G lie greater than network distance d from o.

4 Mining Outliers in Static Spatial Networks

In this section, we first present a naive index-based method to identify the out-
liers among the points in network. Then we propose a novel edge-segmentation
method which can significantly improve the performance of mining outliers.

4.1 A Naive Index-Based Method

For a point o in the spatial network G, the d-neighborhood of o contains the
set of points that are within distance d of o. The fraction P is the minimum
fraction of points in G that must be outside the d-neighborhood of an outlier.
Obviously, given P and d, the problem of identifying distance-based outliers in
the spatial network can be solved by answering a nearest neighbor search at each
point o.

We can build an index by employing a range search with a network distance
of d for each point o to find such outliers. If more than (1−P )N points are found
in the d-neighborhood, o is a non-outlier; otherwise, o is an outlier. When the d
becomes larger, each range search costs larger which degrades the performance
greatly, so the worst case of this method has the complexity of O(N2). Such an
index can be maintained for answering outlier queries multiple times.

4.2 An Edge-Segmentation Method

Before introducing our outliers mining algorithms, we first consider pre-
processing a spatial network. We partition each edge e = (ni, nj) into �w(e)

d � seg-
ments S1 =[ni, n

′
1), S2 =[n′

1, n
′
2), . . . , S�w(e)

d 	−1 =[n′
�w(e)

d 	−2
, n′

�w(e)
d 	−1

),
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S�w(e)
d 	 =[n′

�w(e)
d 	−1

, nj ] where each segment has a length of d, and n′
1, n′

2, . . .,

n′
�w(e)

d 	−1
are the positions of the segment ends. In practice, one end segment in

each edge such as S�w(e)
d 	 may not be of a length of exactly d, but an actual length

d∗ < d. As shown in Figure 3, edge (n1, n2) is equally partitioned into segments
[n1, n′

1), [n′
1,n

′
2), [n′

2,n
′
3), [n′

3,n
′
4) and [n′

4,n2]. The statistics information such as
the number of points in each segment is also maintained.

Now each edge segment of a spatial network can be categorized into one
of the following types: (1) Outlier Segment(OS) which consists of outliers; (2)
Non-outlier Segment(NS) which cannot contain any outlier; and (3)Undeter-
mined Segment(US) which may or may not have outliers. Without any pair-
wise distance computation during the outlier detection, an Outlier-Segments
returns objects that are outliers, or a Non-outlier Segments can be immedi-
ately pruned. The remaining outliers can be identified among the Undetermined
Segments.

Now the problem is how to quickly identify the type of an edge as Outlier-
Segment, Non-outlier Segment or Undetermined Segment.

d

’n1
’n2

’n3
’n4n1 n2

d d d d

Fig. 3. Edge segmentation

n’
1

3+  c2+  c1c

ddd

4n’
3n’

2n’
2n1n

Fig. 4. OS and NS

Definition 5. The smallest distance between segment Si =[na, nb] and segment
Sj =[nc,nd], sdist(Si, Sj), is min{ndist(na, nc), ndist(na, nd), ndist(nb, nc),
ndist(nb, nd)}. Segment Sj is adjacent to segment Si if the smallest distance
between Si and Sj, sdist(Si, Sj) < d.

Here, Sj refers to the segment adjacent to Si in either right side or left side. The
adjacent segments of Si are also called the d-neighborhood of Si.

Definition 6. The largest distance between segment Si =[na, nb] and segment
Sj =[nc,nd], ldist(Si, Sj), is max{ndist(na, nc), ndist(na, nd), ndist(nb, nc),
ndist(nb, nd)}. Segment Sj is complementary to segment Si if the largest dis-
tance between Si and Sj, ldist(Si, Sj) ≤ d.

Here, Si may also have multiple complementary segments. Specifically, if Si is
a segment with length d, there is no such complementary segment. If Sj is Si’s
complementary segment, it must be Si’s adjacent segment; but if Sj is Si’s
adjacent segment, it may not be Si’s complementary segment.

Lemma 1. Given segment Si, Sj, if Sj is not an adjacent segment to Si, then
any point p ∈ Si, q ∈ Sj must be more than d apart, i.e. ndist(p, q) > d.
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Lemma 2. Given ci points in segment Si and cj points in S′
is adjacent seg-

ments, Si is an outlier segment (OS) if ci+cj < (1 − P )N .

Lemma 3. Given ci points in segment Si and cj points in S′
is complementary

segments, Si is a non-outlier segment(NS) if ci+cj ≥ (1− P )N .

As shown in Figure 4, the number of points in segments [n′
1,n

′
2], [n′

2,n
′
3], [n′

3,n
′
4]

are c1, c2 and c3 respectively. If c2 ≥ (1 − P )N , none of points in [n′
2,n′

3] is an
outlier. If c1 + c2 + c3 < (1− P )N , all the points in [n′

2,n
′
3] are outliers.

Those segments which are neither outlier segments nor non-outlier segments
are undetermined segments(US).

Thus, we can scan the spatial network once, and partitioning edges of the
spatial network into segments of length d. Suppose there are m segments, and the
whole points are categorized into three types of segments:OS, NS and US. Since
the points in OS segments and NS segments can easily be identified as either
outliers or non-outliers, the remaining mining task is obviously to further check
those segments labeled as “US”. That is, each point p in such a ”US” segment
will be evaluated the distance only between the points in the d-neighborhood
of the segment where p resides. If none of the points is identified as an outlier,
the segment is labeled as “NS”, otherwise the segment is labeled as “US(O)”.
The pseudo-code of the mining algorithm is as follows.

Algorithm 1. An Edge-Segmentation Outlier Detection Method.
Input: A spatial network G = (V, E, W ) partitioned into m segments, N , d, P
Output: Outliers in G
Method:

1. FOR i = 1 to m DO Counti = 0
2. FOR each point p DO
3. Map p to its segment Si, increment Counti by 1;
4. FOR i = 1 to m DO
5. IF Counti+

∑
Sj is complementary to Si

Countj ≥ (1− P )N THEN
6. Label Si as “NS”;//Si is a Non-Outlier Segment

7. ELSE IF Counti+
∑

Sj is adjacent to Si
Countj < (1− P )N THEN

8. Label Si as “OS”;//Si is an Outlier Segment

9. ELSE//Si is an Undetermined Segment, needs to check its points one by one

10. FOR each object p ∈ Si DO
11. CountP = Counti;
12. FOR each object q ∈ Sj where Sj adjacent to Si DO
13. IF ndist(p, q) ≤ d THEN
14. Increment Countp by 1;
15. IF Countp ≤ (1− P )N THEN
16. P is an outlier, label Si as “US(O)”;//Si an outlier

17. IF Si is not labeled as “US(O)” THEN
18. Label Si as “NS”;
19. Output outliers in G;
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Step 1 takes m time(since there are m segments), where m � N is the total
number of segments. Step 2 to step 3 takes N time. For Step 4 to step 19,
the worst case happens when each segment contains at most N(1− P ) objects,
and each object in a segment is required to check up to N(1 − P ) objects in
each of the adjacent or complementary segments. As the number of adjacent
or complementary segments is bounded by m, hence, step 4 to step 19 takes
O(m(N(1 − P ))2) time. Thus the worst case time complexity is O(m(N(1 −
P ))2 + N) = O(m(N(1 − P ))2). Furthermore, based on the similar analysis in
[12], we know that since P is expected to be extremely close to 1 in practice,
especially for large datasets, so O(mN2(1−P )2) can be approximated by O(m),
thus under such circumstance the time complexity is O(m + N).

5 Mining Outliers in Dynamic Settings

In the previous section, we introduce an edge-segmentation method to efficiently
mine distance-based outliers in a static setting in which the whole points are
available in a spatial network. In this section, we will discuss the dynamic set-
tings for outliers detection in the following two cases:(1) the points are added
to or removed from edges, or (2) users may query the outliers with respect to
different input parameters d or p. In both cases, it requires to effectively main-
tain the existing segmentation structure and mine the changes of outliers in an
incremental way.

5.1 Mining Outliers When Points Are Updated

From the perspective of data management, points in the spatial network are
always updated in the case of m1 insertions or m2 deletions. Since the distance-
based outlier is dependent on N , so after updating, if the number of points is
changed to N ′ where N ′ = N + m1 − m2, each point in the spatial network
needs to check whether there are (1 − p)N ′ points within its d neighborhood
region. Thus we can apply the edge-segmentation algorithm to the updated
spatial network to find the changes of outliers. The problem is how to make
full use of the existing segmentation structure and avoid unnecessary distance
computation as much as it can?

It is clear that each segment is labeled either OS, NS or US after the outlier
detection in static setting. Such information can incrementally maintained in the
case of points deletion or insertion. Since the number of points is changed after
updating points, the type of each segment Si needs to be quickly updated based
on Lemma 2 and Lemma 3 given in the previous section.

The problem is that if Si is labeled as OS or NS, we obviously know that
the whole points in Si are either outliers or non-outliers, but for those unde-
termined segments(US) Si, we still need further check every point P in Si to
see if it is an outlier or not. To reduce the cost of such pairwise computation and
to improve the efficiency of incremental mining as much as possible, we store
the points in each edge into a binary tree, and the points of each segment can be
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Fig. 5. Data structure of the network and segment trees

further partitioned till a length of u. For segment Si, the points within it are
organized as a binary tree. That is, if the parent node covers points in subsegment
with length l, it will be expanded to two child nodes: the left child node covers
points in left half of subsegment with length l/2 and the right child node covers
points in right half. The tree expansion procedure starts with segment Si (root
node), and continues until one of following conditions is satisfied: (1)the node
does not cover any points in current subsegment; (2) the length of subsegment is
less than 2u. Figure 5 shows the example of organizing edge segments (d = 8) and
their subsegments corresponding to the network in Figure 1, into tree structures.
The points of each segment are maintained into a binary segment tree. Each node
in the tree is labeled (shown as ”L” in Figure 5) in one of three types. We observe
that the smaller the u, the larger size of the tree, and less number of points in
each subsegment in the lowest level of the tree. As shown in the Figure 5, the
tree only expands to the level 2 when u = 4, while it expands to the level 3(in
dashed box) if u = 2.

Now we can progressively check outlier points level-by-level instead
of one by one. If the current segment (subsegment) Si is labeled as US, the left
and right child subsegments of Si will be checked to see whether they are OS, NS
or US. Before checking Lemma 2 and Lemma 3, the number of points in current
subsegment, its adjusted adjacent subsegments, and its adjusted complementary
subsegments in same level of the trees should be obtained. Fortunately, all these
information is stored in the trees and we do not need to access the points again.
An example of progressive checking US segment is illustrated in Figure 6, where
d = 10 and u = 2. Note that the length of segment Si3 is d∗ = 6 since Si3 is the
last segment in the edge.

If segment Si2 is undetermined, its subsegment Si21 and Si22 are checked.
If subsegment Si21 is still undetermined, its subsegment Si211 and Si212 are
further checked. For different segment Sik, the range of its adjacent segments
(shown in dashed lines) and the range of its complementary segments (shown in
blacken lines) are adjusted correspondingly. We can see in Figure 6 that with the
decreasing of the subsegment length, the gap between these two ranges becomes
smaller and smaller, so does the chance that the subsegment is still labeled as
NS. The pseudo-code of the mining algorithm is as follows.
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Algorithm 2. A Dynamic Outlier Detection Method for Updated Points.
Input: Segment Trees of G = (V, E, W ) , N , d, P , m1 insertions, m2 deletions
Output: Outliers in G
Method:

1. FOR i = 1 to m1 + m2 DO
2. Update points in G and counts in corresponding segments and subsegments;
3. FOR i = 1 to m DO
4. IF Counti+

∑
Sj is complementary to Si

Countj ≥ (1− P )(N + m1 −m2) THEN
5. Label Si as “NS”; //Si is a Non-Outlier Segment

6. ELSE IF Counti+
∑

Sj is adjacent to Si
Countj < (1− P )(N + m1 −m2) THEN

7. Label Si as “OS”; //Si is an Outlier Segment

8. ELSE //Si is an Undetermined Segment, check its subsegments or points

9. SubsegmentCheck(Si);
10. Output outliers in G;

Procedure: SubsegmentCheck(Si)

1. IF Si is the subsegment in non-leaf node THEN
2. FOR k = 1 to 2 DO //check the left and right child subsegments of Si

3. IF Sik satisfies the condition of Lemma 3 or Lemma 2 THEN
4. Label Sik as “OS” or “NS”; //Sik is an Outlier/Non-Outlier Subsegment

5. ELSE //Sik is an Undetermined Subsegment, check its subsegments or points

6. SubsegmentCheck(Sik);
7. ELSE //Si is an Undetermined Subsegment in leaf node, check its points one by one

8. FOR each point p in Si DO
9. Countp = Counti;
10. FOR each point q ∈ Sj where Sj is adjacent to Si DO
11. IF ndist(p, q) ≤ d THEN
12. Increment Countp by 1;
13. IF Countp ≤ (1− P )(N + m1 −m2) THEN
14. p is an outlier, label Si as “US(O)”; //Si has outlier(s)

15. IF Si is not labeled as “US(O)” THEN
16. Label Si as “NS”;

Note that the only difference between algorithm 2 and algorithm 1 is that in algo-
rithm 2 if Si is undetermined we make use of the subsegment points count infor-
mation in binary trees to recursively check subsegments of Si (by the procedure
SubsegmentCheck(Si)) . The points scan does not happen unless the subsegment
in leaf node is still undetermined.

5.2 Mining Outliers When Parameter d or P Changes

As we know, the output of the distance-based outliers in a spatial network relies
on two parameters d and P . So how to choose the meaningful value of d or P is
crucial to the effectiveness of mining results. In practice, users have more expe-
rience and better understanding in using percentage P , i.e. the higher value of
P means higher degree of the outlierness. On the other hand, since many users
are not domain experts, they are not sure which value of d is suitable to the
mining algorithm. Instead, they are more likely choosing different values of d
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for the outlier mining algorithm and evaluate the effectiveness by comparing the
outliers with respect to different input parameters. As a result, it is necessary to
develop efficient incremental methods for answering outliers in case of updates
on d. Since d is always changed, the data structure used in the previous sec-
tion: a binary tree with multiple level for each edge is not suitable, under such
circumstance, we have to just keep one level in each binary tree.

Without loss of generality, we assume each time users input a new d′ = c · u,
where c is a positive integer. Specifically, this corresponds to changing the segments
based on the lowest level of subsegments with unit u described in Section 5.1.

Since each segment of length d consists of multiple subsegments where each
has length u, thus for any new distance threshold d′, it is not necessary to build
the new edge-segments from scratch by re-partitioning the edges into segments of
the new d′ for storage. Instead, we can only maintain the existing edge-segments
and each time ”virtually” infer the corresponding segments of the new length d′

when accessing the existing edge segments for outlier detection. Figure 7 shows

d = 10, d = 8, u = 2
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u u u u u u u u u u u u u
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level2

level1
s'i1
d'

u u

s'i2 s'i3 s'i4
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Fig. 7. Segments shifting when d changes to d′
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the example that given the edge segments Si1, Si2, . . . of length d where Sij

consists of subsegments with unit length u in leaf nodes, the new edge segments
S′

i1, S
′
i2, . . . of length d′ can be inferred by shifting the position of existing subseg-

ment to that of a new subsegment. By updating the counts in the new segment,
we can evaluate its new segment type accordingly. Those segments with label
“US” will be further checked to identify the outlierness of each belonging point.
Since the procedure outlier detection is similar to the previous subsection, we
omit the detailed description due to the limitation of space. We also have the
following interesting property for the inferred new edge segments.

Lemma 4. Suppose the edge segments of length d′ are inferred from edge seg-
ments of length d, if d′ > d and if segment S′

i of length d′ contains any segment
Sj of length d labeled as “NS”, S′

i is labeled as “NS”; if d′ < d and if any
segment S′

i of length d′ is contained in any segment Sj of length d labeled as
“OS”, S′

i is labeled as “OS”.

For the case of different values of P , there is no need to rebuild or infer the
new edge segments, but only updating the type of each segment by applying the
similar method in subsection 5.1 to reduce the unnecessary pairwise distance
computations. We have the following interesting property for the type of edge
segment in the case of new P ′.

Lemma 5. For the segment Si, if new percentage threshold P ′ > P , then Si

will still be “NS” if Si is “NS” w.r.t. P ; if P ′ < P , then Si will still be “OS”
if Si is “OS” w.r.t. P .

6 Experimental Evaluation

In this section, we evaluate the performance of our proposed techniques. We
implemented the naive index based method and the edge-segmentation method
for mining outliers. We also implemented the algorithms for mining outliers in
dynamic settings with the points being updated and when parameters changing.
All algorithms are written in C++ and the experiments were run on a PC
with a Pentium 4 CPU of 1.6GHz, a memory of 512Mb. We used the real road
networks of Canada which can be obtained from www.maproom.psu.edu/dcw/
and did some cleaning to form a connected network. In the network, there are
42582 nodes and 46731 edges. The Euclidean distance of the connected nodes is
set as the weights of the graph edges, and this is a natural way for the weight
setting when we simulate the traffic of the road networks.

On the road networks, we generated points that simulate real world traffic. We
start from a random node and use Dijkstra’s algorithm to traverse the network
and add points to the edges. The way to control the points generated is similar to
[24] which focuses on generating the points to form clusters but we expand it to
create the outliers. At the border of each cluster, we make the points especially
sparse so as to control outlier. By adjusting the magnification factor F and the
initial separation distance sinit[24], points are generated with different sparsity
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so that we can test different parameters for the outlier mining. For some fixed
d and P , we run the naive nested loop and segmentation based algorithms and
they all return the same results. It is also the same when we run our dynamic
mining algorithms or compute it from scratch without using the existing results
computed earlier. This proves the effectiveness of the algorithms, so we just focus
on investigating the efficiency and the scalability of the methods.
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Fig. 12. Dynamic methods(4)

To test efficiency and scalability, we gen-
erated sets of points with different cardi-
nality. The cardinality of the points set is
from 200k to 2000k where P is a fixed value
(0.9985). Figure 8 shows the runtime for
these different data sets. We can see that
the naive nested loop method is much slower
than the segmentation based method which
is almost linearly increased with the num-
ber of points. If 10% points is updated
on each set of points listed in Figure 9,
it shows that our incremental method runs
much faster than iterating the static segmen-
tation method on the updated points.

We use a set of 800k points to investigate the performance of proposed meth-
ods in the case of changing values of P and d. If d changes, we keep P as 99.5%;



Mining Outliers in Spatial Networks 169

while if P changes, d is kept as 20 units(outliers have been computed when
P = 99.5%). Both Figure 10 and Figure 11 show that the dynamic segmentation
methods perform better than static methods.

Interestingly, we observe in Figure 12 that when P increases, the sum of per-
centage of NS and US is almost 100% with respect to the very small percentage
of OS, which reflects the fact that the larger value of P , the less number of
outliers in the spatial network. The similar result can be obtained if we increase
the value of d since the larger value of d also leads to less number of outliers.

7 Conclusion

The achieved fruitful results in both research and applications have substantially
demonstrated the important role of outlier analysis in data mining area. Existing
work on outlier detection involves in different types of databases such as spatial
databases, time series databases, bio-medical database etc., while few of them
is applied on spatial networks where points reside in every edge. In this paper,
we explore the interesting problem of distance-based outlier in spatial networks
and propose an efficient mining method which partitions each edge of spatial
network into a set of length d segments, then quickly identify the outliers in the
remaining edges after pruning those unnecessary edges which cannot contain
outliers. We also study the dynamic settings in the spatial network, including
updating points or the input parameters of outlier measures are changed. The
experimental results verify the scalability and efficiency of our proposed methods.
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Abstract. Frequent pattern mining is an important data mining problem with
wide applications. The huge number of discovered frequent patterns pose great
challenge for users to explore and understand them. It is desirable to accurately
summarizing the set of frequent patterns into a small number of patterns or pro-
files so that users can easily explore them. In this paper, we employ a probability
model to represent a set of frequent patterns and give two methods of estimating
the support of a pattern from the model. Based on the model, we develop an ap-
proach to grouping a set of frequent patterns into k profiles and the support of
frequent pattern can be estimated fairly accurately from a relative small number
of profiles. Empirical studies show that our method can achieve compact and ac-
curate summarization in real-life data and the support of frequent patterns can be
restored much more accurately than the previous method.

1 Introduction

Mining frequent patterns or itemsets is a fundamental and essential problem in many
data mining applications, such as association rule mining, classification, and clustering
(e.g. [3, 7, 17]). There are a host of frequent pattern mining algorithms (e.g. [3, 9]) that
discover the complete set of patterns that occur in at least ξ (minimum support) fraction
of a dataset. The complete set of frequent patterns is often huge in number, which
makes the interpretability of frequent patterns very difficult. The concepts of closed
frequent patterns and maximal frequent patterns usually can help in reducing the output
size. However, they can only partly alleviate the problem. The size of closed frequent
patterns (or maximal frequent patterns) often remains to be very large and thus it is still
difficult for users to examine and understand them.

Recently, several proposals were made to discover k patterns or profiles. This allows
users to specify the value of k and thus only discover a small number of patterns or
approximation. The concept of top-k patterns is proposed by Han et al [10]. Although
this provides users the option to discover only the k most frequent patterns, this is not
a generalization of all frequent patterns satisfying a support threshold. k covering sets
was proposed by Afrati et al. [1] to approximate a collection of frequent patterns, i.e.
each frequent pattern is covered by at least one of the k sets. The proposal is interesting
in generalizing the collection of patterns into k sets. However, the support information is

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 171–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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ignored in the approximation and it is unknown how to recover the support of a pattern
from the k sets. Support is a very important property of a pattern and plays a key role
in distinguishing patterns.

Yan et al [19] proposed an approach to summarizing patterns into k profiles by con-
sidering both pattern information and support information; each cluster (profile) is rep-
resented with three elements: the master pattern, i.e. the union of the patterns in the
cluster, the number of transactions supporting the clusters, the probability of items of
the master pattern in the set of transactions supporting the pattern. The supports of fre-
quent patterns can be estimated from the k clusters. It is assumed in [19] that the items
in the master pattern are independent in each profile. The independence model is sim-
ple and easy to learn, but it is fairly inaccurate since items are usually not independent.
However, it is too expensive to consider n-dimensional probability distribution, where
n is the number of items.

In this paper, we adopt an alternative probability model to represent a profile com-
posed of a set of frequent patterns. Instead of assuming the independence among items
in [19], we consider the pairwise probabilities that are still easy to compute. From
the pairwise probabilities, we build simple Bayesian Network to estimate the
n- dimensional probability distribution, and thus can estimate the supports of the pat-
terns. Alternatively, we can also compute a rough support estimation for the patterns
directly from the pairwise probability. With the model, we can measure the similarity
between two profiles (and patterns) using Killback-Leibler divergence and a comple-
mentary distance score, and thus arrange all patterns into a set of (hierarchial) groups.
In the hierarchical tree, users can explore the frequent patterns in a top-down man-
ner as suggested in [19]. Our methods can successfully summarize patterns into tens
of profiles while the support of patterns can be recovered accurately. We conduct ex-
tensive experiments on several real datasets. Our method can summarize thousands of
patterns accurately using only tens of profiles on all real datasets we tested. Compared
with method in [19], our methods make great improvement in summarization quality
measured by restoration error.

The rest of this paper is organized as follows: Section 2 will give the problem state-
ment. In Section 3, we present the probability model ro represent profiles and methods
of estimating the supports of frequent patterns from the profiles. We introduce algo-
rithms for grouping frequent patterns into profiles in Section 4. The experimental results
are reported in Section 5. Section 6 discusses the related work. Finally we conclude this
paper in Section 7.

2 Problem Statement

Let I = {i1, i2, ..., in} be a set of items which represent attribute values in a transaction
database DB. A pattern (or itemset) X is a non-empty subset of I. Given a DB, the
support of a pattern X , denoted as sup(X), is the fraction of tuples in the DB which
contains X .

Definition 1. Frequent Pattern: Given a minimum support threshold ξ (0 ≤ ξ ≤ 1)
and a database DB, a pattern X is frequent if sup(X) ≥ ξ.
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Definition 2. Closed Frequent Pattern: A frequent pattern X is closed if there does not
exits a pattern X ′ such that X ⊂ X ′ and X is contained by the same set of tuples as X ′.

Closed frequent patterns are a lossless compression of frequent patterns and the com-
plete set of frequent patterns and their supports can be derived from the set of closed
frequent patterns. The size of closed frequent patterns is usually (much) smaller than the
size of frequent patterns. Hence, in this paper we summarize closed frequent patterns
as [19] while the proposed method equally applies to summarize frequent patterns.

Table 1. An example of database transactions

Transaction Number of transactions
acd 100
bcd 100
abcd 800

Table 1 shows a sample dataset, where the first column represents the transactions
and the second the number of transactions. For example, 100 transactions have only
items a, c, and d; and 100 transactions have only items b, c, and d. There are totally
1000 transactions in this example. If we set the minimum support at 50%, clearly pattern
< abcd > is frequent. Additionally, we know that all its subsets are frequent as well, i.e.
< a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd >. Among these 15 frequent
patterns, we can find 4 closed patterns according to the definition 2, which are <
cd, acd, bcd, abcd >. As one can see, the number of closed frequent patterns is much
less than that of frequent patterns.

We observe that in this example the supports of all the 4 closed patterns are very
close to each other and they are similar in terms of their items. We could summarize the
4 patterns into one fermentative pattern < abcd >.

Problem statement. Given a set of frequent closed patterns CP = X1, X2, ..., Xm that
are mined from database DB = t1, t2, ...tn, pattern summarization is to group the m
closed frequent patterns into k pattern profiles, each of which is represented with a
probability model.

3 Model of Profiles

Suppose that patterns X1, ... Xs are grouped together to form a profile. The profile can
be characterized with two important properties: one is master pattern χ = X1 ∪X2 ∪
... ∪ Xs generated by the union of the m patterns in the group; the other is the set of
transactions DBu = DBX1 ∪ DBX2 ∪ ... ∪ DBXs . Consider these information, we
propose a probability model to represent the profile.

Definition 3. Profile Model: Let X1, X2, ..., Xs be a set of patterns and DB′ =
∪iDBXi , i = 1, ..., s. A summarization profile over X1, X2, ..., Xs is a triple
Φ =< χ, ρ, θ >. χ = X1 ∪X2 ∪ ... ∪Xs is the master pattern of X1, X2, ..., Xm; ρ =
|DB′|/|DB| is defined as the support of the profile; suppose that χ = {x1, x2, ..., xt},
θ is composed of two parts:
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1. p(xi = 1) = |DBxi |/|DB′|, where xi ∈ χ and DBxi is the set of tuples in DB′

that contain item xi.
2. p(xi = 1, xj = 1) = |DBxi∪xj |/|DB′|, where xi, xj ∈ χ∧ i �= j and DBxi∪xj is

the set of tuples in DB′ that contain items xi and xj .

Given p(xi = 1), p(xj = 1) and p(xi = 1, xj = 1), one can obtain the probability
distribution of p(xi, xj) in the set of tuples DB′ using the inclusion-exclusion principle:
p(xi = 1, xj = 0) = p(xi = 1) − p(xi = 1, xj = 1); p(xi = 0, xj = 1) = p(xj = 1)
− p(xi = 1, xj = 1); and p(xi = 0, xj = 0) = 1− p(xi = 1) − p(xj = 1) +
p(xi = 1, xj = 1).

Table 2. An example of profile

a b c d ab ac ad bc bd cd
probability 0.9 0.9 1 1 0.8 0.9 0.9 0.9 0.9 1

Using the dataset in Table 1, we can build a pattern profile for < abcd >. Table 2
shows the profiles by deriving the distribution vectors for the sample datasets. For ex-
ample, p(a) = 100+800

1000 = 0.9. In addition, without accessing the original dataset, we
can infer that < abd > is less frequent than the < acd >. Pattern profile actually
provides more information than the master pattern itself; it encodes the distribution of
sub-patterns.

The k-set model in [1] represents the collection of patterns only with a master pattern
χ = X1 ∪ X2 ∪ ... ∪ Xs, and thus the support information is lost. In [1], the profile
is represented not only by the master pattern but also by the probability distribution of
items in χ in the set of transactions DB′ = DBX1 ∪ DBX2 ∪ ... ∪ DBXs . The key
difference of our model from that in [19] is that we include the pair-wise probability
distribution of items in DB′, while it is assumed that items are independent boolean
random variables in [19]. As to be shown, the pair-wise probability not only allows us
to build more accurate probability model to characterize the patterns in a profile, but
also provides better measures to group patterns into profiles.

3.1 Estimate Support Using Profiles

In this subsection, we will present two methods of estimating the support of a pattern
given a profile. The first is based on a simple Bayesian model derived from the pairwise
probability and then applies on chain rule to compute the joint probability of items in a
pattern; the second is simplified version of the first method.

Before presenting our methods, we first give some background on estimating the
probability. The support of a pattern in dataset DB can be regarded as the summary of
the probability that the pattern occurs in each transaction.

p(X |DB) =
∑

t∈DB

p(X |t) ∗ p(t)

where p(t) = 1/|DB| and p(X |t) = 1 if X ∈ t, 0 otherwise.
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We regard the probability of observing a pattern as the probability that the pattern is
generated by its profile times the probability of observing the profile from a transaction.

p(X |t) ≈ p(X |Φ, t) ∗ p(Φ|t) ≈ p(X |Φ) ∗ p(Φ|t),

where we assume the conditional independence p(X |Φ, t) = p(X |Φ). According to the
model, one can estimate the support for a given pattern X from the profile that it belongs
to. Given a profile Φ over a set of patterns X1, X2, ..., Xs, the estimated support for X
based on the profile Φ is

ŝ(X) = Φ.ρ ∗ p(X |Φ) (1)

where Φ.ρ = |DBX1 ∪ ... ∪DBXs |/|DB|.
The problem here is how to estimate the p(X |Φ). Our first approach to estimating

probability p(X |Φ) is to build a simple Bayesian network, a Chow-Liu tree model, for
each profile using the pairwise probability. We first compute the mutual information
between each pair of items in a profile, and then compute the minimum spanning tree
from the full graph whose nodes are the items and edges are the mutual information.
After obtaining the minimum spanning tree, i.e. a polytree Bayesian network, we can
use the Pearls’ belief propagation algorithm [15] to compute p(X |Φ).

The Chow-Liu tree approximates an nth-order distribution by a product of n -1 sec-
ond order component distributions. The Chow-Liu Tree structure is proved to be the
optimal one in the sense of Maximum Likelihood criterion [6]. Before introducing the
algorithm for building Chow-Liu tree model [6], we first give the formula to compute
mutual information between two variables:

I(X, Y ) =
∑

x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
(2)

Intuitively, I(X, Y ) measures the amount of information that random variable X con-
tains about Y (and vice versa). The higher of the value, the more correlated are the two
variables; I(X, Y ) = 0 if X and Y are independent.

We need to perturb the probabilities p(x, y), p(x) and p(y) to avoid zero probabili-
ties. For example, we compute p′(x) as follows:

p′(x) = λu + (1− λ)p(x) (3)

where λ is a constant, 0 < λ < 1, and u is the prior of x and can be the background
distribution of item x.

Algorithm 1 outlines how to learn a Chow-Liu tree structure for a profile Φ. In the
beginning, it computes the mutual information using Equation 2 between any pairs of
items in the profile Φ. In lines 4-10, it repeats until a Chow-Liu tree is discovered. The
algorithm in lines 4-10 aims to find a spanning tree with the maximal mutual informa-
tion, which can be implemented with Kruskal’s algorithm of Prim’s algorithm [8] for
finding minimum spanning tree.

Complexity analysis. In order to compute the mutual information of each pair, we need
to scan the database once to compute the probability. It takes O(f2n), where n is the
number of tuples supporting the profile i.e. Φ.ρ × |DB| and f is the size the largest
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Input: Transaction database DB
Profile Φ = < χ, ρ, θ >

Output: a Chow-Liu tree model.

1. let MI be the set of mutual information I(xi, xj) between any two items xi, xj in Φ.χ;
2. initiate a tree T (V, E), where each item in Φ.χ becomes one node in V and E = ∅;
3. initiate k = 0;
4. while k < |Φ.χ| − 1
5. select pair (xi, xj) such that xi, xj = argmaxxi,xj I(xi, xj);
6. if there is no cycle formed in T then
7. add edge (xi, xj) into T ;
8. E = E ∪ (xi, xj)
9. k = k + 1;
10. MI = MI\{(xi, xj)};
11. return T ;

Fig. 1. Algorithm CLtree

tuple. It takes O(d2) to compute the mutual information, where d is the size of Φ.χ.
If one adopts Kruskal’s algorithm to compute the minimum spanning tree (lines 4-10),
it takes O(d2logd); it takes O(d2 + dlogd) if one uses Prim’s algorithm [8]. Hence,
Algorithm 1 can finish in O(f2n + d2 + d2logd) using Kruskal’s algorithm.

After the Chow-Liu tree model is learned, we can compute p(X |Φ) based on the
chain rule and some specified order of the items in χ:

P (X |Φ) = p(x1, Φ)
∏

p(xi|xi−1, ..., x1, Φ) (4)

p(x1, Φ) is already in the profile Φ and the p(xi|xi−1, ..., x1, Φ), i = 2, ..., d (d is the
size of X) can be computed using the belief propagation algorithm [15]. The belief
propagation algorithm is a message-passing scheme that updates the probability dis-
tributions for each node in a Bayesian network in response to observations of one or
more variables, i.e. to compute the probability of xi after the values of xi−1, ..., x1 are
set as evidence. Hence,

∏
p(xi|xi−1, ..., x1, Φ) can be computed by taking the product

of belief measures. On a polytree (Chow-Liu tree is a polytree), the belief propaga-
tion algorithm converges in time proportional to the number of edges in the tree, i.e.
|Φ.χ| − 1. Note that there is no need to propagate the impact of each instantiation to
the entire polytree; the propagation are transmitted only to those variables in P (X |Φ).
Interested readers can refer to [15] for the algorithm details.

Our second method further approximates the nth-order distribution by replacing the
higher order conditional probabilities with second order ones:

P (X |Φ) = p(x1, Φ)
∏

p(xi|xi−1, Φ) (5)

The above formula approximates p(xi|xi−1, ..., x1, Φ) with p(xi|xi−1, Φ), and thus
learning Bayesian network is not required. The second method will be more efficient
than the first one. As to be shown in experiment, this simplified model can also improve
greatly the independent model in [19].
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The probability model of profiles provides a method of representing a set of patterns
in a compact way and methods of recovering their supports. The remaining problem is
how to group the set of patterns into k profiles.

4 Grouping Patterns

In this section, we first introduce the similarity measures between the profiles and then
describe a clustering algorithm using the similarity measures.

The key of clustering patterns into profiles with high quality is a good distance mea-
sure for the patterns and profiles as well. At the beginning of the clustering, each pattern
can be regarded as a profile with triple elements as described in the previous section.
Hence, one ideal distance measure between two profiles Φp and Φq should consider (1)
the overlapping of master patterns Φp.χ and Φq.χ; (2) the similarity of the probability
distribution of items in the two profiles, which can reflect the correlation between the
transactions that support the two profiles; (3) the support of the two profiles.

These three factors are correlated one another. Kullback-Leibler divergence (KL-
divergence) is widely used to compute the divergence between two probability distri-
butions and is also adopted in [19]. We choose KL-divergence to measure the distance
between two profiles since it considers the three factors, especially the first two, of the
profiles: if two patterns differ greatly in the items (of their master patterns), or the two
probability distributions differ greatly, the KL distance will be large; if the profiles are
similar in master patterns as well as probability, it is highly possible that their supports
are similar (Note that it is not sufficient).

The KL-divergence of two variable can be computed as follows:

KL(x||y) =
∑
x,y

p(x)log
p(x)
p(y)

(6)

When the p(x) and q(x) have zero probability, KL(x||y)= ∞. This can be avoided by
smoothing the p(x) and q(x) as Equation 3.

The smaller KL(x||y) value is, the more similar of the distributions of variables
x and y. In our profile model, there are distributions for pairwise variables and single
variables and they contain overlapping information. We consider three combinations to
compute the KL-divergence of the two profiles.

1. KL(Φp||Φq) =
∑

xi,xj∈C KL(p(xi, xj)||q(xi, xj)),
where C = Φp.χ ∪ Φq.χ;

The formula is simple and computes the KL-divergence using joint distribution for
every pair of items in the union of the master patterns of the two profiles.

2. KL(Φp||Φq) =
∑

xi,xj∈C KL(p(xi, xj)||q(xi, xj)) +
∑

xi∈D KL(p(xi)||q(xi)),
where C = Φp.χ ∩ Φq.χ if |Φp.χ ∩ Φq.χ| > 1; C = ∅ otherwise, and D =
Φp.χ ∪ Φq.χ− C;

The formula computes the KL-divergence using the joint distribution for common
pairs of items in the master patterns of the two profiles, and computes the KL-
divergence using the distribution of single item for items that appear only in one
master pattern of the two profiles.
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3. KL(Φp||Φq) =
∑

xi,xj∈Φp.χ∨xi,xj∈Φp.χKL(p(xi, xj)||q(xi, xj)) +
α× KL(p(Φp.χ)||q(Φp.χ)) + β × KL(p(Φq .χ)||q(Φq.χ)),
where α = 1 if |Φp.χ| = 1; 0 otherwise, and β = 1 if |Φq.χ| = 1; 0 otherwise.

The formula can be regarded as a combination of the above two methods: it employs
the pair wise distribution if a pair appears in at least one of the master patterns; it
employs the distribution for single item if the master pattern is a single item.

We introduce one complementary measure when two patterns have the same
KL-divergence score. This often happens especially when the profile is composed of
one pattern in the beginning of clustering. For example, consider three patterns X1 =
{abcd, 100}, X2 = {abef, 500} and X3 = {ab, 600}, where the pattern and its sup-
port are separated by comma. It is easy to verify that KL(X1||X2) and KL(X1||X3)
are the same whichever the three combination we use. In this example, suppose that
we want to cluster the three patterns into two groups. Intuitively we should group X2
and X3 together but not X1 and X2 although their KL-divergences are the same. This
is because X2 and X3 have similar number of support and thus their transactions that
support them likely have large overlapping. This example implies that KL-divergence
score alone may not be sufficient sometimes.

We can accurately compute the overlapping of two patterns (or profiles) Φp and
Φq by

D(Φp, Φq) = (DBΦp ∩DBΦq)/(DBΦp ∪DBΦq)

This measure is proposed in [18] to compute the similarity of patterns. But it takes
O(|DB|) to compute one pair of patterns and thus is relatively expensive. Instead,
we use a simplified score and find it achieves reasonably good results in all our
experiments.

D′(Φp, Φq) = |Φp.ρ− Φq.ρ|/max(Φp.ρ, Φq.ρ) (7)

where Φp.ρ, Φq.ρ are the support of Φp and Φq respectively.
In what follows, we will introduce how to cluster the patterns based on the two

measures introduced above. We adopt hierarchical agglomerative clustering to group
profiles. Hierarchical clustering is shown to obtain stable results in [19] in clustering
frequent patterns. But other clustering methods, such as K-means, can be adopted to
cluster profiles.

Hierarchical clustering can not only produce k profiles, but also generate a dendro-
gram which allows users to explore the k profiles in a top-down manner. Algorithm 2
outlines the hierarchical clustering method for profiles. In line 4, the algorithm com-
putes the pair-wise KL-divergence (Equation 6) and computes the complementary dis-
tance measure (Equation 7) in line 5. Note that we only compute the KL-divergence
score between Φi and Φj using KL(Φi||Φj) (i < j) although the KL score is not
symmetric. We found that the final clustering results are similar even if we compute
KL(Φj ||Φi). In lines 6-12, the algorithm repeats until the number of clusters becomes k.
At each iteration, the algorithm picks two clusters that have the smallest KL-divergence
score; if several pairs of clusters have the same smallest KL-divergence score, it picks
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Input: Transaction database DB
Pattern set X= {X1, X2, ...Xm}
Number of profiles K

Output: a set of pattern profiles Φ1, ..Φk .

1. initialize k = m clusters, each of which contains one pattern;
2. for each Φi

3. for each Φj , j < i
/* compute the pairwise KL divergence between Φi and Φj ;*/

4. DIST1ij = KL(Φi||Φj)
/* compute the complementary distance between Φi and Φj ;*/

5. DIST2ij = D′(Φi, Φj)
6. while k < K
7. select Φp and Φq such that DIST1pq is the smallest among

all DIST1ij and DIST2pq is the smallest among all DIST2ij

whose DIST1ij = DIST1pq;
8. merge clusters Φp and Φq to a new cluster Φr;
9. Φr.χ = Φp.χ ∪ Φq .χ
10. DBΦr = DBΦp ∪ DBΦq

11. update profile of Φr

12. compute similarity scores between Φr and other profiles
13. scan dataset to update the K profiles
14. return Φi (i = 1, ...K)

Fig. 2. Algorithm HCluster

the pair of clusters with the minimum complementary distance. In line 9, the algorithm
updates the master pattern of the new cluster by combining the master patterns from the
two clusters generating the new cluster. In line 10, the algorithm computes the combined
transactions supported by the new profile.

In line 11, the algorithm needs to update the probability of the new profile. One
method is to rebuild the accurate profile after two profiles are combined. However, this
is expensive since computing profile needs to scan the original dataset. Instead, we
approximate the probability p(x,y) of the profiles (we approximate p(x) similarly):

p(x, y|Φr) =
Φp.ρ

Φp.ρ + Φq.ρ
p(x, y|Φp) +

Φq.ρ

Φp.ρ + Φq.ρ
p(x, y|Φq) (8)

Complexity analysis.The initial KL-divergence computation takes O(m2d2), where
m is the number of patterns and d is the size of the maximum master pattern of all
profiles. The computation of initial complementary distance takes O(m2). For each
cluster Φp, we maintain a distance list between Φp and other clusters and sort them
in non-descending order. When a new cluster is generated, we create and sort a dis-
tance list for it in time O(mlogm). Thus the hierarchical clustering itself can be done
in O(m2logm). Since we adopt the approximation as Equation 8 to compute the pro-
file of the merged cluster, and thus we do not need to scan the dataset. It can be up-
dated in O(d2) time. Finally, we scan the dataset to update the K profiles, which takes
d2nK .
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Quality evaluation. From a high quality profile, one should be able to estimate the sup-
port of a frequent pattern as close as possible. In this paper, we adopt the same quality
measure as that used in [19], namely restoration error:

J =
1
|T |

∑
X∈T

|ŝ(X)− s(X)|
s(X)

(9)

where T is the set of frequent patterns to be evaluated. Restoration error is the aver-
age relative error between the estimate support of a pattern and its real support. It is
desirable that the restoration error is small, and thus profiles can provide an accurate
estimation.

Given a pattern, it may be covered by the master patterns of several profiles. Hence,
we need to estimate these supports for it. However, we only select the maximum one by
following the method in [19].

ŝ(X) = maxΦi ŝ(X |Φi)(i ∈ [1, k]) (10)

We realize that there are other options to make the selection. For example, given a
pattern and several profiles whose master patterns cover the pattern, we can pick the
profile whose master pattern is the most similar to the given pattern to estimate support
for the given pattern.

5 Empirical Study

In this section, we report the performance evaluation of our summarization method.
The algorithms were implemented with C++. All the experiments were conducted on
2.4GhZ, 512M memory Intel PC running Linux.

We used three real-life datasets:

– Mushroom. The Mushroom dataset consists of 8124 hypothetical mushroom sam-
ples with 119 distinct features; each sample has 23 features. This is a dense dataset
and is available from the UCI machine leaning repository 1.

– BMS-Webview1. The BMS-Webview [22] is a web click-stream dataset. The
dataset consists of 59602 web sessions (transactions) with 497 distinct product
pages (items).

– BMS-POS. The BMS-POS [22] contains seven years worth of point-of-sale data
from a large electronic retailer. Each item represents a product category and each
transaction is a customer’s purchase transaction consisting of all the product cat-
egories purchased at one time. The dataset consists of 515597 transactions with
1657 distinct items.

We first evaluate the three combinations of computing KL-divergence given in
Section 4, then compare our methods with the existing method, and finally evaluate
the effect of probability model on clustering results and restoration error. We employed
restoration error as the evaluation metric as [19] does.

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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5.1 Comparison with Existing Method

Before we compare with the exiting summarizing method, we first evaluate the three
combinations in Section 4 of computing the KL-divergence score. We apply the three
combinations to compute the KL divergence in the clustering algorithm while using the
Equation 5 to estimate the supports of frequent patterns. Figure 3 shows the results on
the dataset BMS-Webview1. The combination 2 and combination 3 consistently out-
perform combination 1 while the difference between combination 2 and 3 is trivial. We
have obtained qualitatively similar results on the other two datasets. One possible rea-
son for the worse performance of combination 1 is that it considers some pairs of items
that do not appear in the same profile, i.e. such pairs do not represent any profile, and
thus it is not meaningful to compute the divergence of such pairs.
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Fig. 3. The effect of different combinations to compute KL score on BMS-Webview1

We compare our algorithms against the latest work in [19] in terms of restoration
error. The algorithm summary denotes the summarization method in [19]. According to
the results of comparing three combinations given in Section 4, we use third combina-
tion to compute the KL divergence score for our methods. Furthermore, the algorithm
summary+ denotes the summarization method that uses the Equation 5 to estimate the
support of a pattern; and the algorithm summary++ employs the Equation 4 to estimate
the support of a pattern.

We generated a set of 688 frequent closed patterns from Mushroom dataset by setting
minimum support at 25% (The same set of frequent closed patterns was used in [19]).
The maximum length of frequent patterns is 8. Figure 4 shows the average restora-
tion error over the closed frequent patterns. Compared with the summary [19], both
summary+ and summary++ can reduce the restoration error by at least 50%. The 688
patterns can be successfully summarized into 10 profiles with reasonable good quality:
the average restoration error is less than 0.1.

We generated a set of 4195 frequent closed patterns from BMS-Webview by setting
minimum support at 0.1% (the setting is the same as in [19]) and the maximum length
of pattern is 6. Figure 5 shows the average restoration error over the set of closed fre-
quent patterns. Both summary+ and summary++ outperform the summary by several
times in terms of restoration errors. The summary++ can reduce the restoration error of
summary+ by 50%. The 4195 patterns can be successfully summarized into 50 profiles
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Fig. 4. Restoration Error for Mushroom
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Fig. 5. Restoration Error for BMS-Webview1
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Fig. 6. Restoration Error for BMS-POS

with reasonable good quality: the average restoration error is 0.11 for summary+ and
0.05 for summary++ while it is 0.82 for summary. The restoration error is only 0.20 for
summary+ and 0.09 for summary++ compared with 0.92 for algorithm summary when
we cluster patterns into 10 profiles.

We generated a set of 6646 frequent closed patterns from BMS-POS by setting mini-
mum support at 0.4% and the maximum length of frequent patterns is 6. Figure 6 shows
the average restoration error over the set of closed frequent patterns. Both summary+
and summary++ outperform the summary by several times in terms of restoration er-
rors. The summary++ can reduce the restoration error of summary+ by 50%. The 6646
patterns can be successfully summarized into 50 profiles with reasonable good quality:
the average restoration error is less than 0.1 (0.096 for summary+ and 0.053 for sum-
mary++). The restoration error is only 0.142 for summary+ and 0.077 for summary++
compared with 0.752 for the summary when we summarize patterns into 10 profiles.

5.2 The Effect of Probability Model

In this subsection, we try to distinguish the effect of profile model on the quality of
support restoration (Section 3) and the quality of the clustering results (Section 4) al-
though the support restoration is closely related to clustering quality. We group the set
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of frequent patterns based on the model of algorithm summary, then build our proba-
bility model in each profile by accessing the dataset and use the Equation 5 to restore
the support information. This is a hybrid of summary and summary+. We have found
that it will yield qualitatively similar results if we make a hybrid from summary and
summary++.
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Fig. 7. Mushroom
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Fig. 9. BMS-POS

Figures 7-9 show the comparisons of the hybrid method with the summary and sum-
mary+ on three datasets. We use the same setting for three datasets as that in the last
subsection. The line of hybrid method lies between the those of summary and sum-
mary+. This means that the support estimation methods based on the probability model
in Section 3 alone cannot achieve the improvement of summary+ over summary. This
implies that the clustering based on the probability model in Section 3 results in better
clusters of frequent patterns than [19]. In other words, the probability model of this pa-
per characterizes the frequent patterns better than the model in [19] does, and thus the
calculated distances between clusters based on such model are more effective.

As a summary, both summary+ and summary++ greatly outperform summary. Sum-
mary++ usually can improve summary+ by 50% in terms of restoration accuracy while
summary+ is simple and is fast in terms of computation.
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6 Related Work

Frequent pattern mining has received much attention in the past decade. Many frequent
pattern mining algorithms have been proposed (e.g. [3, 9]). The number of frequent
patterns can be very large and many of these frequent patterns may be redundant. To
reduce the frequent patterns to a compact size, mining frequent closed patterns (e.g.
[13]) has been proposed, which is a lossless compression of frequent patterns. Lossless
here means that all frequent patterns together with their supports can be recovered from
the closed patterns. Another lossless compression patterns of frequent patterns has been
proposed to mine non-derivable frequent patterns [5].

There have been some other proposals to mine a subset of all frequent patterns.
These methods are lossy in the sense that not all information about frequent patterns
can be recovered. Maximal frequent pattern (e.g. [2]) is one of the most typical concepts
in this category. In maximal frequent pattern, all frequent sub-patterns are removed,
and thus the number of patterns is greatly reduced. However, the support information
of all the sub-patterns are lost and maximal patterns can be large in number. Other
lossy compression proposals include error-tolerant patterns [20], top-k patterns [10],
condensed frequent pattern base [16], compressed frequent pattern sets [18].

The closest work to our study is the k approximation frequent sets [1] and k sum-
marizing profiles [19]. The k approximation frequent sets use k frequent itemsets to
cover a collection of frequent itemsets while trying to minimize the negative positive
patterns; the set of frequent patterns can be deducted from the k approximate frequent
sets. However, the support information of patterns is lost. The k summarizing profiles
use a simple independence probability model to represent a set of patterns and cluster
the profiles. One salient feature of k summarizing profiles is that support information
can be restored relatively accurately. In this paper, we improve the probability model to
represent model and propose new methods to derive support using our proposed prob-
ability model. Our profile model is also related to the probabilistic models developed
in [14] for query approximation, where frequent patterns and their supports are used to
estimate query selectivity, and independence model and Chow-Liu tree model are used
for query approximation.

There are also many proposals about mining interesting rules with various interest-
ingness measures [12]: post-processing to remove uninteresting rules [11], mining inter-
esting rules [4], mining non-redundant association rules[21], and mining top-k covering
rule groups [7]. There studies are very different from the pattern summarization.

7 Conclusion and Discussions

In this paper, we have revisited the pattern summarization problem. We proposed a
probability model to represent a set of frequent patterns and two methods of estimating
the support of a pattern from the model. With the model, we can arrange all patterns
into a set of (hierarchial) clusters and thus users can explore the patterns in a top-down
manner. Our methods can successfully summarize patterns into tens of profiles while
the supports of patterns can be recovered reasonably accurately. Empirical studies show
that our method can achieve accurate summarization in real-life data and the supports
of frequent patterns can be restored more accurately than the previous method.
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In future, we plan to investigate the application of other distance measure, such as
Jensen-Shannon divergence, to compute the similarity of profiles and other clustering
methods, such as the co-clustering based on information theory. We also plan to ap-
ply for clustering algorithms and co-clustering algorithm to the transaction database
directly to obtain some clusters of items (one item could be in multiple clusters) and
build a probability model for each cluster. It would be interesting to investigate the
quality of such clusters to estimate the supports of frequent patterns.

References

1. F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent sets. In Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 12–19, 2004.

2. R. Agarwal, C. Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns. In
Proc. of KDD, 2000.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB’94), pages 487–499, Sept. 1994.

4. R. J. Bayardo and R. Agrawal. Mining the most intersting rules. In Proc. of ACM SIGKDD,
1999.

5. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proceedings of
the 6th European Conference on Principles of Data Mining and Knowledge Discovery, 2002.

6. C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14:462–467, 1968.

7. G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for
gene expression data. In Proceedings of the ACM SIGMOD international conference on
Management of data, 2005.

8. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990.
9. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc.

2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), 2000.
10. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top.k frequent closed patterns without min-

imum support. In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM), 2002.

11. B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered associations. In ACM
KDD, 1999.

12. E. R. Omiecinski. Alternative interest measures for mining associations in databases. IEEE
Transactions on Knowledge and Data Engineering, 15(1):57–69, 2003.

13. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In Proc. 7th Int. Conf. Database Theory (ICDT’99), Jan. 1999.

14. D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query
approximation on binary transaction data. IEEE Transactions on Knowledge and Data En-
gineering, 15(6):1409–1421, 2003.

15. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

16. J. Pei, G. Dong, W. Zou, and J. Han. Mining condensed frequent-pattern bases. Knowl. Inf.
Syst., 6(5):570–594, 2004.

17. J. Wang and G. Karypis. SUMMARY: Efficiently summarizing transactions for clustering.
In Proceedings of the 2004 IEEE International Conference on Data Mining (ICDM), 2004.

18. D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In VLDB,
2005.



186 G. Cong et al.

19. X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a profile-based ap-
proach. In Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, 2005.

20. C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets
in high dimensions. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, 2001.

21. M. Zaki. Generating non-redundant association rules. In Proc. 2000 Int. Conf. Knowledge
Discovery and Data Mining (KDD’00), 2000.

22. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms.
In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2001.



Mining Spatio-temporal Association Rules, Sources,
Sinks, Stationary Regions and Thoroughfares in Object

Mobility Databases

Florian Verhein and Sanjay Chawla

School of Information Technologies, University of Sydney, NSW, Australia
{fverhein, chawla}@it.usyd.edu

Abstract. As mobile devices proliferate and networks become more location-
aware, the corresponding growth in spatio-temporal data will demand analysis
techniques to mine patterns that take into account the semantics of such data. As-
sociation Rule Mining has been one of the more extensively studied data mining
techniques, but it considers discrete transactional data (supermarket or sequen-
tial). Most attempts to apply this technique to spatial-temporal domains maps
the data to transactions, thus losing the spatio-temporal characteristics. We pro-
vide a comprehensive definition of spatio-temporal association rules (STARs)
that describe how objects move between regions over time. We define support in
the spatio-temporal domain to effectively deal with the semantics of such data.
We also introduce other patterns that are useful for mobility data; stationary re-
gions and high traffic regions. The latter consists of sources, sinks and thorough-
fares. These patterns describe important temporal characteristics of regions and
we show that they can be considered as special STARs. We provide efficient al-
gorithms to find these patterns by exploiting several pruning properties1.

1 Introduction

The need for spatio-temporal data mining and analysis techniques is growing. Some
specific examples include managing cell phone networks and dealing with the data gen-
erated by Radio Frequency Identification Tags. Mining such data could detect patterns
for applications as diverse as intelligent traffic management, sensor networks, stock
control and wildlife monitoring. For example, consider the movement of users between
cells of a mobile phone (or similar) network. Being able to predict where users will go
would make cell hand-over decisions easier and improve bandwidth management. Also,
since most people own a mobile phone these days, the data could be used for fast and
inexpensive population movement studies. Local governments would find the ability to
answer questions such as “how much is this park being used?”, “which areas are con-
gested?” and “what are the main routes that people take through the city” useful. The
latter query would help design better pedestrian and vehicle routes to take into account
the main flows of people.

We therefore consider a set of regions, which may be any shape or size, and a set
of objects moving throughout these regions. We assume that it is possible to determine
which objects are in a region, but we do not know precisely where an object is in that

1 This research was partially funded by the ARC Discovery Grant, Project ID: DP0559005.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 187–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



188 F. Verhein and S. Chawla

region. We do not assume that objects are always somewhere in the region set, so in the
example of a mobile phone network, turning the phone off poses no problems for our
methods. We are interested in finding regions with useful temporal characteristics (thor-
oughfares, sinks, sources, and stationary regions) and rules that predict how objects will
move through the regions (spatio-temporal association rules). A source occurs when the
number of objects leaving a region is high enough. A sink has a high number of objects
entering it. A thoroughfare is a region through which many objects move - that is, many
objects enter and leave. A stationary region is where many objects tend to stay over time,
while a STAR describes how an object moves between regions. Together, these patterns
describe many mobility characteristics and can be used to predict future movements.

We take the approach of mining our patterns on a time window by time window
basis. We think this is important because it allows us to see the changing nature of the
patterns over time, and allows for interactive mining - including changing the mining
parameters. Even though the patterns we consider occur in a spatial settings, they are all
temporal patterns because they describe objects movements over time, as well as cap-
turing changes in the way the objects move over time. To understand this, consider each
pattern set ξi as capturing object movements over a ‘short’ period of time. In our algo-
rithms this is the interval pair [TIi, T Ii+1]. That is, ξi captures how the objects move
between the time intervals TIi and TIi+1. Then, as the algorithm processes subsequent
time intervals, the patterns mined at these points will in general change, forming a se-
quence of pattern sets < ξi, ξi+1, ... >. This change in the patterns that are output can
be considered longer term changes. Such changes in the patterns describe the changes
in the objects behavior over time. Another way to think about this is to consider the
objects motion as a random process. If the process is stationary, we would expect the
patterns to remain the same over time. If the process is not stationary, the patterns will
change with time to reflect the change in the way the objects move.

There are a number of challenges when mining spatio-temporal data. First, dealing
with the interaction of space and time is complicated by the fact that they have dif-
ferent semantics. Secondly, we also need to deal with these semantics effectively. This
includes considering the effects of area and the time-interval width not only on the the
patterns we mine, but also in the algorithms that find those patterns. Finally, handling
updates efficiently in a dynamic environment is challenging - especially when the algo-
rithm must be applied in real time. We adopt a data stream model where spatial data
arrives continuously as a sequence of snapshots S1, S2, ..., and the model that we mine
must keep up with this. Unless sampling techniques are used, such algorithms cannot do
better than scale linearly with time. Since processing the spatial snapshots is expensive
in general, we focus our attention there. We deal with exact techniques in this paper,
but it is possible to use probabilistic counting techniques together with our algorithms,
as demonstrated in one of our experiments.

2 Contributions

We make the following contributions:

– We give a rigorous definition of Spatio-Temporal Association Rules (STARs) that
preserve spatial and temporal semantics. We define the concepts of spatial coverage,
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spatial support, temporal coverage and temporal support. Because these definitions
retain the semantics of the spatial and temporal dimensions, it allows us to mine data
with regions of any size without skewing the results. That is, we successfully extend
association rules to the spatio-temporal domain.

– We define useful spatio-temporal regions that apply to objects moving through such
regions. These are stationary regions and high traffic regions. The latter may be fur-
ther broken into sources, sinks and thoroughfares. We stress that these are temporal
properties of a spatial region set, and show that they are special types of STARs.
We also describe a technique for mining these regions efficiently by employing a
pruning property.

– We propose a novel and efficient algorithm for mining the STARs by devising a
pruning property based on the high traffic regions. This allows the algorithm to
prune as much of the search space as possible (for a given dataset) before doing the
computationally expensive part.

Our algorithms do not assume or rely on any form of index (such as an R-tree, or
aggregated R-tree) to function or to obtain time savings. If such an index is available,
the algorithms will perform even better. Our time savings come about due to a set of
pruning properties, which are spatial in nature, based on the observation that only those
patterns that have a support and confidence above a threshold are interesting to a user
(in the sense that they model the data).

The rest of the paper is organized as follows. In Section 3 we survey related work
and place our contributions in context. In Section 4 we give several related definitions
of STARs that highlight some of the differences in interpreting STARs. We close the
section with a detailed example to illustrate the subtleties. In Section 5 we define hot
spots, stationary regions and high traffic regions. In Section 6 we describe our algorithm
for mining STARs. The results of our experiments on STAR mining are described in
Section 7. We conclude in Section 8 with a summary and directions for future work.

3 Related Work

There has been work on spatial association rules (examples include [1, 2]) and temporal
association rules (examples include [3, 4]) but very little work has addressed both spatial
and temporal dimensions. Most of the work that does can be categorised as traditional
association rule mining [5] or sequential association rule mining applied to a spatio-
temporal problem, such as in [6].

The work by Tao et al. [7] is the only research found that addressed the problem
of STARs (albeit briefly) in the Spatial-Temporal domain. As an application of their
work they show a brute force algorithm for mining specific spatio-temporal association
rules. They consider association rules of the form (ri, τ, p) ⇒ rj , with the following
interpretation: “If an object is in region ri at some time t, then with probability p it will
appear in region rj by time t + τ”. Their algorithm is a brute force technique that takes
time quadratic in the number of regions. They use FM-PCSA sketches [8] for speed,
have a simple STAR definition and ignore the spatial and temporal semantics of the
data (such as the area of the regions or the time interval width).
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Other interesting work that deals with spatio-temporal patterns in the spatio-temporal
domain includes [9, 10, 11, 12, 7]. Mamoulis et al. [12] mine periodic patterns in ob-
jects moving between regions. Wang et al. [10] introduce what they call flow patterns,
which describe the changes of events over space and time. They consider events oc-
curring in regions, and how these events are connected with changes in neighbouring
regions as time progresses. Ishikawa et al. [11] describe a technique for mining object
mobility patterns in the form of markov transition probabilities from an indexed spa-
tio temporal dataset of moving points. In this case, the transition probability pij of an
(order 1) markov chain is P (rj |ri) where ri and rj are regions, which is the confidence
of a spatio-temporal association rule, although this is not mentioned by the authors.
Tsoukatos et al. [9] mine frequent sequences of non spatio-temporal values for regions.

The work we have listed above is quite different from ours. Tao et al. [7] consider
a simple spatio-temporal association rule definition, and the algorithm for finding the
rules is brute force. Patterns that can be interpreted as STARs are considered by [11, 10],
but they focus on very different research problems. The algorithm of [11] will find all
transition probabilities, even if they are small. Amongst other things, our algorithm
makes use of the fact that users will not be interested in rules below a support threshold,
and uses this to prune the search space. And most importantly, none of the related work
consider the spatial semantics of the regions, such as area, nor do they consider spatial
support or similar concepts.

Dealing with the area of regions correctly is important for interpretation of the re-
sults. Many authors implicitly assume that the spatial regions can be specified to suit
the algorithm. However, this is usually not the case. Cells in a mobile phone network
are fixed, and have a wide range of sizes and geometries depending on geographic and
population factors. Data mining applications have to be developed to work with the
given region set, and we cannot ignore the influence of different sized regions. In the
case of mining mobility patterns of moving objects (including sources, sinks, station-
ary regions, thoroughfares and STARs), ignoring area will skew the results in favour of
larger regions because they will have more objects in them on average. By taking the
region sizes into account, we avoid skewing the results and make our STARs compara-
ble across different sized regions. Finally, although it is possible to scale most patterns
by the area after they have been mined, this is undesirable because it prevents pruning
of the search space. Our algorithms deal with the spatio-temporal semantics such as
area effectively throughout the mining process and prune the search space as much as
possible.

No previous work could be found, despite our efforts, that considers sources, sinks,
stationary regions and thoroughfares. We think these patterns are very important be-
cause they capture temporal aspects of the way that objects move in space.

4 Spatio-temporal Association Rules

Given a dataset T of spatio-temporal data, define a language L that is able to express
properties or groupings of the data (in both time, space, and object attributes). Given two
sentences ϕ1 ∈ L and ϕ2 ∈ L that have no common terms, define a spatio-temporal as-
sociation rule as ϕ1 ⇒ ϕ2. For example, the rule “late shift workers head into the city in
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the evening” can be expressed as LateShiftWorker(x)∧InRegion(OutsideCity)∧
T ime(Evening) ⇒ InRegion(City) ∧ T ime(Night). To evaluate whether such a
spatio-temporal rule is interesting in T , a selection predicate q(T, ϕ1 ⇒ ϕ2) maps the
rule to {true, false}. The selection predicate will in general be a combination of sup-
port and confidence measures. For example, if the support and confidence of a rule R1
are above their respective thresholds, then q(T, R1) evaluates to true.

The language L can be arbitrarily complex. We consider the special case where
objects satisfying a query move between regions. A query q allows the expression of
predicates on the set of non spatio-temporal attributes of the objects. We explore a
number of definitions of such STARs in this section to highlight subtleties. We deal
only with the STAR of Definition 2 outside this section, so the reader can safely focus
on this on the first reading, without missing the main ideas of the paper.

Definition 1. STAR (alternatives): Objects in region ri satisfying q at time t will:

(a) appear in region rj for the first time at time t + τ . Notation: (ri, t, @τ, q)⇒ rj .
(b) be in region rj at time t + τ . Notation: (ri, t, τ, q)⇒ rj .
(c) appear in region rj by (at or before) time t + τ . Notation: (ri, [t, τ ], q) ⇒ rj .

Note that (a) distinctly defines the time in rj at which the objects must arrive. (b) is less
rigid and allows objects that arrived earlier than time t + τ to be counted as long as
they are still present at time t + τ . (c) counts the objects as long as they have made an
appearance in rj at any time within [t, t + τ ]. We generalise (c) in our final definition:

Definition 2. STAR: Objects appearing in region ri satisfying q during time interval
TIs will appear in region rj during time interval TIe, where TIs ∩ TIe = ∅ and TIs

is before2 TIe. Notation: (ri, T Is, q) ⇒ (rj , T Ie).

Note that all the definitions are equivalent when TIs = t, TIe = t + 1 and τ = 1.
We are interested in the rules that have a high confidence and high support . We will
use the notation ri ⇒ rj or ζ for a STAR when we are not concerned with its exact
definition. We will consider the problem of more rigorous support definitions that are
more appropriate in a spatio-temporal setting later.

Definition 3. Define support of a rule ζ, denoted by σ(ζ), to be the number of objects
that follow the rule, and the support (with respect to q) of a region r during TI , denoted
by σ(r, T I, q), to be the number of distinct objects within r during TI satisfying q.

Definition 4. Define the confidence of a rule ζ whose antecedent contains region ri dur-
ing TI , denoted by c(ζ), as the conditional probability that the consequent is true given
that the antecedent is true. This is the probability that the rule holds and is analogous
to the traditional definition of confidence and is given by c(ζ) = σ(ζ)/σ(ri, T I, q).

We illustrate the above definitions with an example.

Example 1. Consider Figure 1(a) which shows the movement of the set of objects S =
{a, b, c, d, e, f, g} in the time-frame [t, t + 3] captured at the four snapshots t, t + 1, t+
2, t + 3. Assume that q = ‘true′ so that all objects satisfy the query.

2 We actually mine rules where TIs and TIe are adjacent, but it is easy to generalise our methods
so that this restriction does not hold.
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(a) (b)

Fig. 1. Example data for STAR mining

Consider the STAR ζ = (r1, t, @1, q) ⇒ r2. From the diagram, {b, c, e} follow
this rule, so the support of the rule is σ(ζ) = 3. Since the total number of objects that
started in r1 is 5 = σ(r1, t, q) = |{a, b, c, d, e}|, the confidence of the rule is c(ζ) = 3

5 .
For ζ = (r1, t, @2, q) ⇒ r2 we have σ(ζ) = 2 because {a, d} follow the rule, and
c(ζ) = 2

5 . For ζ = (r1, t, @3, q)⇒ r2 we have σ(ζ) = 0 because no object appears in
r2 for the first time at time t + 3.

The STAR ζ = (r1, t, 1, q) ⇒ r2 is equivalent to ζ = (r1, t, @1, q) ⇒ r2. But
for ζ = (r1, t, 2, q) ⇒ r2 we have σ(ζ) = 4 because {a, b, c, d} follow the rule (for
this STAR definition we count them as long as they are still there at time t + 2), and
c(ζ) = 4

5 . For ζ = (r1, t, 3, q)⇒ r2 we have σ(ζ) = 4 since {a, b, d, e} follow the rule
(we don’t count c because it is no longer in r2 at time t + 3), and c(ζ) = 4

5 .
(r1, [t, 1], q) ⇒ r2 = (r1, t, 1, q) ⇒ r2 = (r1, t, @1, q) ⇒ r2. For ζ = (r1, [t, 2], q)

⇒ r2 we have σ(ζ) = 5 because {a, b, c, d, e} satisfy the rule. e satisfies even though
it has left by t + 2. Since all objects from r1 have made an appearance in r2 by t + 2
we must have σ((r1, [t, k], q)⇒ r2) = 5 for all k ≥ 2. For ζ = (r1, [t + 1, 1], q)⇒ r2
we have σ(ζ) = 2 and c(ζ) = 2

2 = 1.
The STAR ζ = (r1, [t, t], q)⇒ (r2, [t+1, t+k]) is equivalent to (r1, [t, k], q)⇒ r2

for k ≥ 1. For the STAR ζ = (r1, [t, t + 1], q) ⇒ (r2, [t + 2, t + 3]) we have 5
distinct objects ({a, b, c, d, e}) appearing in r1 during [t, t + 1] and 6 distinct objects
({a, b, c, d, e, g}) appearing in r2 during [t + 2, t + 3]. The objects following the rule
are {a, b, c, d, e} so the support of the rule is 5 and its confidence is 5

5 = 1. For ζ =
(r1, [t + 1, t + 2], q)⇒ (r2, [t + 3]) we have σ(ζ) = 3 and c(ζ) = 3

4 .

Counting the objects that move between regions is a simple task. The main idea is that
if S1 is the set of objects in r1 at time t and S2 is the set of objects in r2 at time t + 1
then the number of objects moving from r1 to r2 during that time is |S1∩S2| (assuming
objects don’t appear in more than one region at a time).

4.1 Extending Support into the Spatio-temporal Setting

Defining support in a spatio-temporal setting is more complicated than we have consid-
ered so far. Specifically, the size of any spatial atom or term in the rule should affect the
support. That is, given the support in Definition 3, two rules whose only difference is the
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area of the region in which they apply will have identical support. Consider Figure 1(b)
where r1 ⊂ R1, and objects {a, b, c, d} move from r1 to r2 between time t and t + 1.
Then the rules r1 ⇒ r2 and R1 ⇒ r2 have the same support3. However, among these
sets of equivalent rules we would prefer the rule covering the smallest area because it is
more precise. A similar issue arises when we wish to compare the support of rules that
cover different sized regions. Consider again Figure 1(b). The support of r1 ⇒ r2 is 4
and σ(r3 ⇒ r4) = 2 while σ(R1 ⇒ R2) = 6 which is higher than the other rules but
only because it has a greater coverage. This leads to the conclusion that support should
be defined in terms of the coverage of a rule.

Definition 5. The spatial coverage of a spatio-temporal association rule ζ, denoted by
φs(ζ), is the sum of the area referenced in the antecedent and consequent of that rule.
Trivially, the spatial coverage of a region ri is defined as φs(ri) = area(ri).

For example, the coverage of the rule r1 ⇒ r2 is area(r1) + area(r2). This remains
true even if r1 = r2 so that STARs with this property are not artificially advantaged
over the others. We solve the problem of different sized regions by scaling the support
σ(ζ) of a rule by the area that it covers, to give spatial support.

Definition 6. The spatial support, denoted by σs(ζ), is the spatial coverage scaled
support of the rule. That is, σs(ζ) = σ(ζ)/φs(ζ). The spatial support of a region ri

during TI and with respect to q is σs(ri, T I, q) = σ(ri, T I, q)/φs(ri).

Consider again Figure 1(b) and assume the ri have unit area and the Ri are completely
composed of the ri they cover. Then we have σs(r1 ⇒ r2) = σ(r1 ⇒ r2)/φs(r1
⇒ r2) = 4/2 = 2, σs(r3 ⇒ r4) = 2/2 = 1 and σs(R1 ⇒ R2) = σ(R1 ⇒
R2)/φs(R1 ⇒ R2) = 6/4 = 3

2 . The rule R1 ⇒ R2 no longer has an advantage, and
in-fact its spatial support is the weighted average of its two composing rules.

We do not need to scale confidence because it does not suffer from these problems.
Indeed, increasing the size of the regions in a rule will on average increase both σ(ζ)
and σ(ri, T Is), so larger regions are not advantaged. Confidence is also a (conditional)
probability, so scaling it by spatial coverage would remove this property.

In a spatio-temporal database we must also consider the temporal support and tem-
poral coverage.

Definition 7. The temporal coverage of a rule ζ, denoted by φt(ζ), is the total length
of the time intervals in the rule definition.

For example, the temporal coverage of the rule (ri, T Is, q)⇒ (rj , T Ie) is |TIs|+|TIe|
where |TI| is an appropriate measure of the time interval width.

Definition 8. The temporal support of a rule ζ, denoted by σt(ζ), is the number of time
interval pairs TI ′ = [TIs, T Ie] over which it holds4.

Note that we did not perform scaling by temporal coverage. In short, this is because
we view the temporal coverage as being defined by the user and so each rule mined

3 Since {a, b, c, d} follow the rules, the support is 4 in both cases.
4 Of course, we then omit TIs and TIe from the notation of ζ.
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will necessarily have the same temporal coverage. A more complicated reason presents
itself when we consider mining the actual rules. For example, assume the temporal
coverage of a rule ζ is τ . We have at least two options, either we count the temporal
support of the rule during [t, t + τ ], [t + 1, t + 1 + τ ], [t + 2, t + 2 + τ ], ... or during
[t, t + τ ], [t + τ, t + 2τ ], [t + 2τ, t + 3τ ], .... Scaling by temporal coverage would only
make sense in the second case. If we assume an open timescale (one that has no end, or
is sufficiently large that we can assume this) then the number of opportunities to gain
a support count (that is, for the rule to hold) in the first case does not depend on the
size of τ . That is, the temporal coverage is not a factor. Note that temporal support only
applies to the case where a user is interested in which STARs re-occur over time (and
hence STARs which rarely occur are not interesting).

The reader should note that the definitions of STARs that we give apply to a specific
time interval and describe how objects move during that time. This is quite general in
the sense that the mined STARs can be analysed for changes over time, for periodicities,
or simply aggregated in time (using temporal support) to find recurrent patterns.

Both temporal and spatial coverage are defined by the user or the application. Spatial
coverage is inherent in the size of the regions. Temporal coverage is more flexible and
determines the window for which rules must be valid, but this choice is the same for all
rules. When mining STARs we attempt to find rules that have a spatial support above
a threshold, minSpatSup and confidence above minConf . If the user is interested in
summarising STARs over time, we additionally output only those rules with temporal
support above minTempSup.

5 Hot-Spots, High Traffic Areas and Stationary Regions

Definition 9. A region r is a dense region or hot spot with respect to q during TI
if density(r, T I, q) ≡ σs(r, T I, q) ≥ minDensity, where minDensity is a given
density threshold. We also define r as dense during TI ′ = [TIi, T Ii+1] if it is dense
during both both TIi and TIi+1.

We define a region r to have high traffic (with respect to some query q) if the number of
objects that satisfy q and are entering and/or leaving the region is above some threshold.
A stationary region is one where enough objects remain in the region. These patterns
are a special type of STAR. They are also easy to find. Consider two successive time
intervals TI1 and TI2. Then the number of objects (satisfying q) that are in r in TI2
that were not there in TI1 is the number of objects that entered r between TI1 and
TI2. Let S1 be the set of objects (satisfying q) that are in r during TI1, and let S2 be
the corresponding set for TI2. We are clearly looking for |S2 − S1|, where− is the set
difference operation. Similarly, the number of objects leaving r is |S1 − S2| and the
number of objects that remain in r for both TI1 and TI2 is |S1 ∩ S2|.
Example 2. Consider again Figure 1(a) during TI ′ = [[t, t], [t + 1, t + 1]] ≡ [t, t + 1]
and assume the threshold is 3. {e, b, c} enter r2 during TI ′, so r2 is a sink and because
they came from r1, r1 is a source. During TI ′ = [t + 1, t + 2], {g, b, c} remain in r2 so
it is a stationary region during TI ′. If the threshold is 2, it would also be a thoroughfare
because {a, d} enter while {e, f} leave during TI ′. r2 is also a stationary region during
[t + 2, t + 3] because {a, b, d} stay there.
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To express high traffic regions as STARs, note that if we let ∗ be the set of regions
excluding r but including a special region relse, then the number of objects entering
r during TI ′ = [TIi, T Ii+1] is just the support of (∗, T Ii, q) ⇒ (r, T Ii+1). We need
relse to cater for the case that an object ‘just’ appears (disappears) from the region set.
We model this as the object coming from (going to) relse . This situation would happen
in the mobile phone example when a user turns his/her phone on (off). We now formally
define high traffic areas and stationary regions.

Definition 10. A region r is a high traffic region with respect to query q if the number
of objects (satisfying q) entering r (ne) or leaving r (nl) during TI ′ = [TIi, T Ii+1]
satisfy

α

φs(r)
≥ minTraffic : α = ne or nl

where minTraffic is a given density threshold and φs is given by definition 5. Note
that ne ≡ σ((∗, T Ii, q)⇒ (r, T Ii+1)) and nl ≡ σ((r, T Ii, q) ⇒ (∗, T Ii+1)).

Such regions can be further subdivided. If ne/φs(r) is above minTraffic we call
that region a sink. If nl/φs(r) is above minTraffic we call it a source, and if a region
is classified as both a sink and a source we call it a thoroughfare.

Definition 11. If the number of objects remaining in r, denoted by ns, satisfies ns

φs(r) ≡
σ((r, T Ii, q) ⇒ (r, T Ii+1))/φs(r) ≥ minTraffic then we call r a stationary
region. A stationary region may or may not be a high traffic region.

Note that if we define area(∗) = 0 then the definition of high traffic areas is a statement
about the spatial support of special types of STARs. For stationary regions however, we
get as a consequence of Definition 5 that ns

φs(r) = 2 · σs((r, T Ii, q) ⇒ (r, T Ii+1)). We
define nα/φs(r) : α ∈ {e, l, s} as the spatial support of these patterns.

The following theorem allows us to prune the search space for finding high traffic
regions and stationary regions.

Theorem 1. If minTraffic ≥ minDensity then:

1. The set of sources during [TIi, T Ii+1] are a subset of dense regions during TIi

2. The set of sinks during [TIi, T Ii+1] are a subset of dense regions during TIi+1
3. The set of stationary regions during [TIi, T Ii+1] are a subset of the regions that are
both dense during TIi and during TIi+1.

Proof. Due to lack of space, it has been omitted. Please see [13].

As a consequence, if minTraffic ≥ minDensity then the set of thoroughfares dur-
ing [TIi, T Ii+1] is a subset of the regions that are dense at time TIi and at time TIi+1.
These properties prune the search for high traffic regions, so we can find high traffic
regions by setting minDensity = minTraffic, mining all hot-spots and then mining
the hot-spots for high traffic areas.

6 Mining Spatio-temporal Association Rules

In this section we exploit the high traffic area mining techniques to develop an efficient
STAR mining algorithm for the STARs of definition 2 (omitting q for simplicity).
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Fig. 2. Illustration of the complete mining proce-
dure

As a motivation to why this is
useful, assume a set of regions R.
Then there are |R|2 possible rules for
each TI ′, since there are |R| starting
regions and |R| finishing regions. Us-
ing a brute force method, this would
require |R|2 counts of the number of
objects in a region. Our algorithms ad-
dress this quadratic time component.

The reader may find it useful to
refer to Figure 2 while reading the
following. We exploit the following
theorem:

Theorem 2. Let sizeFactor = maxk(area(rk))+mink(area(rk))
maxk(area(rk)) .

If sizeFactor · minSpatSup ≥
minTraffic then during TI ′ = [TIi, T Ii+1]:

1. The set of consequent regions of STARs with spatial support above minSpatSup is
a subset of the set of sinks, C.
2. The set of antecedent regions of STARs with spatial support above minSpatSup is
a subset of the set of sources, A, and
3. The set of STARs whose consequent and antecedent are the same and have a spatial
support above minSpatSup correspond to a subset of stationary regions, with equality
when 2 ·minSpatSup = minTraffic.

Proof. Due to lack of space, it has been omitted. Please see [13].

The steps to mine STARs of definition 2 with spatial support above minSpatSup and
confidence above minConf during the time interval TI ′i = [TIi, T Ii+i] are as follows:

1. Set minDensity = minSpatSup · sizeFactor and mine all hot-spots during TIi

and during TIi+1 to produce the set Hi and Hi+1.
2. Set minTraffic = minSpatSup · sizeFactor and find the set of high traffic

areas and stationary regions from Hi and Hi+1. Denote the set of sources by A,
the set of sinks by C, the set of thoroughfares by T and the set of stationary regions
by S. Recall from Theorem 1 that A ⊂ Hi, C ⊂ Hi+1, S ⊂ Hi ∩ Hi+1 and
T = A ∩ C ⊂ Hi ∩Hi+1.

3. By Theorem 2, A contains all candidates for the antecedent of STARs, C contains
all the candidates for consequents of STARs and S contains all the STARs where
the antecedent is the same as the consequent. Using this we evaluate the rules corre-
sponding to the elements of A×C−S×S and S for spatial support and confidence5.
We keep all rules that pass these tests.

5 Note that S may or may not be contained in A∪C and may in fact be disjoint. This is why we
need to evaluate all of S for STARs. Since some overlap may occur, we save repeated work by
evaluating A × C − S × S rather than A × C.
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We then apply the above procedure for the next successive set of timestamps TI ′i+1 =
[TIi+1, T Ii+2] and so on. We therefore generate a sequence of pattern sets (hot-spots,
high traffic areas, stationary regions and STARs) < ξi, ξi+1, ξi+2, ... > over time. If
desired, we aggregate the patterns by counting the number of intervals TI ′ for which
each of the the patterns hold. If the total number of these (its temporal support as defined
earlier) is above the threshold minTempSup after the procedure is complete, we output
the pattern. The TI are given by a schedule algorithm that splits up the timestamps into
a stream of time intervals. There are many possible choices for this algorithm, two
examples of which we have considered in section 4.1.

If regions are of different sizes, then in the worst case situation where a very large
region and a very small region exist the pruning will be least efficient. In the limit-
ing case we obtain the choice which gives the lower bound minchoice of region geometry

sizeFactor = 1. On the other hand, the best pruning occurs when all the regions are
the same size, in which case sizeFactor = 2 and set of stationary regions corresponds
exactly to the set of STARs with the same antecedents and consequents. In this case we
set 2 ·minSpatSupport = minTraffic = minDensity in the procedure above and
we don’t need to check the rules corresponding to S for support.

An optional pruning method may be applied that takes into account an objects maxi-
mum speed or other restrictions on its movement. That is, a STAR will not exist between
two regions ri and rj if they are so far apart that it is impossible to reach rj from ri

during the time interval TI ′. Define a neighbourhood relation N(Ri, Rj) that outputs
the subset S of Ri×Rj such that S = {ri, rj : N(ri, rj) = 1, ri ∈ Ri, rj ∈ Rj}. Here,
Ri, Rj are sets of regions, and N(ri, rj) is 1 if and only if ri and rj are neighbours. By
‘neighbours’ we mean that rj can be reached from rj during TI ′. This relation allows
restrictions such as ‘one way’ areas, inaccessible areas, and maximum speed of objects
to be exploited for further pruning the search space. If such a relation is available, we
now need only to evaluate N(A, C)− S × S.

The reader should note that |A × C − S × S| ≤ |R × R|, and that the amount
by which it is smaller depends on the data and minSpatSup. We effectively prune the
search space as much as possible given the dataset and mining parameters before doing
the computationally expensive part. Our experiments show that this time saving is large
in practice, even for very small spatial support thresholds.

Finally, to tie up the theory, we define the temporal support of a hot-spot as the
number of TI ′s for which the region is dense. Consequently, the reader should note
that the hot-spots, stationary regions, high traffic areas and STARs all have spatial and
temporal support defined for them, and apply over two successive time intervals TI ′ =
[TIi, T Ii+1].

7 Experiments

7.1 Efficiency and Scalability

We generated four datasets for our experiments consisting of 10, 000 points, each mov-
ing through [0, 1)2 at timestamps 0, 0.01, 0.02, ..., 1 according to the rules x ← x + X ,
y ← y + Y where X ∼ uniform(−0.01, 0.05) and Y ∼ uniform(−0.01, 0.1). We
use TI ′ = [t, t + 1], [t + 1, t + 2], .... Toroidal adjustment was used so objects wrap



198 F. Verhein and S. Chawla

around the unit square when they reach its boundary. The initial distributions were
Gaussian with mean 0.5. Our four datasets differed only in the variance of the initial
distributions, with σ2 ∈ {0.05, 0.1, 0.2, 0.3} corresponding to what we shall call our
Compact, Medium, Sparse and Very Sparse datasets. The speed and the randomness of
the motion has the effect of spreading the objects out rather quickly over the workspace,
so all the datasets become sparse toward the end of the timestamps. Indeed, the datasets
were chosen to thoroughly exercise our algorithm. We used six region configurations in
n× n grids where the number of regions was varied (36, 81, 144, 225, 324, 441), while
keeping the total area covered constant at 154 = 50625. [13] provides more detail.

We evaluate the performance gains of the algorithm over a brute force algorithm
performing the same task on the various datasets, using different parameter settings.
We did not use a neighbourhood relation to further prune the search space in these ex-
periments. We varied the spatial support threshold: minSpatSup ∈ {0.05, 0.075, 0.1}.
Due to our region configuration (which gives sizeFactor = 2), and using the results
from the theory, we always have minSpatSup · 2 = minDensity = minTraffic.
We used minConf = 0.0 and minTempSup = 1.

The choice of a very low spatial support threshold (minSpatSup = 0.05) was made
so that many rules were mined for all the datasets, and that a high proportion of regions
would be dense and high traffic regions according to the corresponding thresholds. For
example, for the 15 by 15 region set, minSpatSup = 0.05 corresponds to a region
being dense (high traffic) if at least 22.5 objects occupy it (move into it or out of it).
Since there are 10, 000 objects and only 152 = 225 regions, on average each region
would have more than 44 objects in it, more than sufficient for the support thresholds.
Furthermore, since objects will move on average more than 2/3 of the way across a
region during each timestamp, there will be plenty of objects moving between regions
to provide support for high traffic regions and STARs.

For the compact and medium dataset case (Figure 3(a) and (b)), the time taken by the
pruning algorithm for all support thresholds grows significantly slower than the brute
force approach. For the very sparse dataset (Figure 3(d)), the time for both algorithms
grow at a similar rate for minSpatSup = 0.05, but the pruning algorithm is still sig-
nificantly faster. Recall that for this low setting of the support threshold, almost every
region becomes dense and a high traffic region. For the higher support thresholds, the
pruning algorithm is able to prune more regions and subsequently performs much bet-
ter. The other datasets fall between these two cases. Recall that the more regions are
pruned, the smaller the quadratic component of the algorithm is. In all cases it can be
seen that pruning is very beneficial and that the amount the search space can be pruned
is determined by the properties of the dataset and the support thresholds. Since users
will be looking for patterns with high support, this is ideal.

7.2 Performance When Using Sketches to Handle Real-Time Streaming Data

Handling millions of objects moving in real time, streaming data is generally not pos-
sible due to time and space considerations. We used FM-PCSA sketches [8] to reduce
processing time and space at the cost of accuracy. Using the compact dataset we were
able to achieve precision and recall values of 67% using only 8% of the space and less
than 38% of the time of exact methods. Since the size of FM-PCSA sketches scale
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(a) Compact Dataset (b) Medium Dataset

(c) Sparse Dataset (d) Very Sparse Dataset

Fig. 3. Results on the different datasets with different support settings

logarithmically in the number of objects, they can be used to handle millions of objects.
By increasing their size, errors can be reduced. More detail can be found in [13].

7.3 Finding Patterns in Noisy Data

In this experiment we generate a dataset with a known pattern and add noise to it.
We used a 10 × 10 region layout. 100 objects were spread evenly (10 per region)
over one row of the grid and made to move with a constant velocity of one region
(0.1 of the unit square) per time stamp to the right. The grid was toroidal, so objects
leaving on one side emerge on the other. We then added various numbers N of uni-
formly distributed objects to the region layout, moving with various speeds. We used
N ∈ {1000, 2000, 3000, 4000, 5000}, and the distribution defining the objects’ change
in location was X ∼ Y ∼ uniform(−α, α) with α ∈ {0.05, 0.1, 0.15, 0.2}. The
datasets were generated in the unit square, which was scaled up so that each (square)
region had an area of 100. With a minSpatSup ≤ 0.05 therefore, this creates the same
10 STARs at each time interval. We set minSpatConf = 0.

We first set minSpatSup = 0.05 (and hence minTraffic = minDensity = 0.1),
thus ensuring a recall of 1, and examined the effect of the ‘noisy objects’ on precision.
As illustrated in Figure 4(a), precision fell for all datasets as the number of objects
was increased. We also note that the way the noisy objects moved impacted on the
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(a) Precision vs the amount of randomly
moving objects (noise) for various mobility
distributions. Recall is 1 in all cases.

(b) Precision vs Recall for uniform
(−0.1, 0.1), obtained by varying the
minSpatSup

Fig. 4. Results for mining a pattern in noisy data

false positives. Objects that moved fast or slow created fewer false positive STARs. The
worst drop in precision (supported by further experiments with finer grained variation
of α) was for objects moving with uniform(−0.1, 0.1). This meant that they moved
enough on average to move between regions, but not enough to move too far away and
thus ‘dilute’ their support.

Overall, the results were quite good: for a recall of 1 we achieved precision above
0.98 for all datasets with 2000 or fewer noisy objects. That is, when the number of noisy
objects was twenty times the number of objects creating the target pattern (this meant
there were two times as many noisy objects in regions of the STARs than objects sup-
porting the desired pattern). For most of the datasets the performance for 3000 or more
noisy objects was not very good. We therefore sacrifice our perfect recall score for some
increases in precision by increasing minSpatSup. Generally, increasing minSpatSup
will reduce recall but increase precision. We use the hardest dataset for this. That is,
with the noisy objects moving with uniform(−0.1, 0.1). Figure 4(b) shows the result-
ing precision-recall curve. Clearly, even for the 5000 noisy object case we are able to
achieve precision and recall above 0.85, which is an excellent result. That is, with noisy
objects 50 times the number of objects supporting the desired pattern, moving over an
area 10 times the area of the desired pattern, with α set to maximise the false positive
rate, we are still able to get precision and recall above 0.85.

8 Conclusion

We have introduced rigorous definitions of important spatio-temporal patterns while
retaining the semantics of space and time. Most notably, we have effectively extended
association rule mining to the spatio-temporal domain. Furthermore, we presented effi-
cient algorithms for finding these patterns in object mobility datasets. These algorithms
prune the search space as much as possible before doing the computationally expen-
sive part. By mining the patterns on a time interval by time interval basis, we can not
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only find current patterns in streaming data, but also see how these patterns evolve over
longer periods of time. This will be the focus of future work.

References

1. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns:a summary of results.
In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases
SSTD01. (2001)

2. Huang, Y., Xiong, H., Shekhar, S., Pei, J.: Mining confident co-location rules without a
support threshold. In: Proceedings of the 18th ACM Symposium on Applied Computing
ACM SAC. (2003)

3. Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: SAC
’00: Proceedings of the 2000 ACM symposium on Applied computing, ACM Press (2000)
294–300

4. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association
rules. Data Knowl. Eng. 44 (2003) 193–218

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of
20th International Conference on Very Large Data Bases VLDB, Morgan Kaufmann (1994)
487–499

6. Mennis, J., Liu, J.: Mining association rules in spatio-temporal data. In: Proceedings of the
7th International Conference on GeoComputation. (2003)

7. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using
sketches. In: 20th International Conference on Data Engineering, IEEE (2004) 214–225

8. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base applications. Journal
of Computer Systems Science 31 (1985) 182–209

9. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: SSTD ’01:
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases, London, UK, Springer-Verlag (2001) 425–442

10. Wang, J., Hsu, W., Lee, M.L., Wang, J.T.L.: Flowminer: Finding flow patterns in spatio-
temporal databases. In: ICTAI. (2004) 14–21

11. Ishikawa, Y., Tsukamoto, Y., Kitagawa, H.: Extracting mobility statistics from indexed
spatio-temporal datasets. In: STDBM. (2004) 9–16

12. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining,
indexing, and querying historical spatiotemporal data. In: KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
New York, NY, USA, ACM Press (2004) 236–245

13. Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary
regions and thoroughfares in object mobility databases (technical report 574). Technical
report, School of IT, University of Sydney, NSW, Australia (2005)



Document Decomposition for XML Compression:
A Heuristic Approach

Byron Choi

Nanyang Technological University
kkchoi@ntu.edu.sg

Abstract. Sharing of common subtrees has been reported useful not only for
XML compression but also for main-memory XML query processing. This method
compresses subtrees only when they exhibit identical structure. Even slight irreg-
ularities among subtrees dramatically reduce the performance of compression
algorithms of this kind. Furthermore, when XML documents are large, the chance
of having large number of identical subtrees is inherently low. In this paper, we
proposed a method of decomposing XML documents for better compression. We
proposed a heuristic method of locating minor irregularities in XML documents.
The irregularities are then projected out from the original XML document. We
refered this process to as document decomposition. We demonstrated that better
compression can be achieved by compressing the decomposed documents sepa-
rately. Experimental results demonstrated that the compressed skeletons, for all
real-world datasets, to our knowledge, fit comfortably into main memory of com-
modity computers nowadays. Preliminary results on querying compressed skele-
tons validate the effectiveness our approach.

1 Introduction

XML has been the defacto standard for data exchange on the web. While XML has been
useful for passing small messages between heterogeneous applications [15], XML has
also been used to represent large amount of data [19, 12, 8, 13]. However, a major draw-
back of this use of XML is the increase in the size of data, due to the verboseness of
XML syntax. What is desirable is an efficient compression technique for XML.

The main reason for storing data as XML is that (part of) the documents may need
to be queried efficiently later. The two kinds of compression techniques, “syntactic”
and “semantic”, perform differently regarding query processing. “Syntactic” compres-
sion (e.g., [22]) treats data as a sequence of bytes. While syntactic compression often
produces good compression performance on a wide range of datasets, the semantics
of data is often lost during compression. This often reduces query performance on the
compressed data. An alternative is to derive a “semantic” compression technique, e.g.,
[14, 4]. Typically, such technique compresses data based on its semantics. The seman-
tics embedded in the compressed data has been reported useful for query evaluation
[4, 3]. In this paper, we shall focus on semantic compression. It should also be remarked
[10] that applying semantic compression followed by syntactic compression often re-
sults in better overall compression and query performance.

At the core of the “semantic” XML compression technique [4], it is a procedure of
compressing/sharing identical subtrees. Its performance depends on the number and the

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 202–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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size of identical subtrees being shared. However, when XML documents are large, the
chance of having large identical subtrees is inherently low. Unfortunately, in practice,
we encounter a case where the compressed instance produced by [4] is larger than the
size of the memory of a commodity computer nowadays. Worse still, query evaluation
on compressed XML [4, 3] assumed the compressed instance was stored in main mem-
ory. This necessitates further investigations on XML compression techniques.

To illustrate the problem studied in this paper, we present a real-world example and
show the result of our proposed solution. Consider the simplified MEDLINE bibliogra-
phy dataset [19] shown in Figure 1. A MEDLINE document contains a large number of
citations, although four citations are shown in the example. Each citation has an ab-
stract, a title, a list of authors and a list of keywords, among other things. We shall
illustrate the compression presented in [4, 3] with this document.

Consider a depth-first traversal on the document. Suppose that during this traversal
we also generate a tree in which each of the text nodes is replaced by a marker (#)
indicating the presence of text nodes in the original document. We refer this tree to
as the skeleton of the document. Consider the first two author (author) nodes. Once
we have replaced the text nodes by the markers, these nodes exhibit identical struc-
ture. Therefore we can replace them by a single structure and put multiple edges from
the citation/Alist node on top of the author node. Moreover, since these Alist-
author edges occur consecutively, we can indicate this with a single edge together
with a note of the number of occurrences. Thus, working bottom-up, we compress the
skeleton into a DAG as shown in Figure 2. Multiple consecutive edges are indicated
by an annotation (n), and an edge without annotation occurs once (in the DAG). This
technique has been known as subtree-sharing [4, 3].

The edges in the middle of Figure 2 illustrate the reason of inefficient subtree-
sharing. The citation nodes are not compressed because each citation node has
a slightly different author list and keyword list. In fact, the identical sub-structures in
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Fig. 3. (a) The reduced document of Figure 1 and (b) its compressed skeleton
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Fig. 4. (a) The outlier document of Figure 1 and (b) its compressed skeleton

citation dominate the others. Since the citation nodes are not compressed, the
dashed edges are also necessary.

In this paper, we proposed an improved compression algorithm for XML. Our
technique is inspired by projected clustering techniques for data mining applications
(see Section 4). Our technique projects out the subtrees which stop [3] from com-
pressing an input XML. The projected subtrees are grouped in an outlier document.
The remaining document formed the reduced document. We call this process document
decomposition.

Let us return to the simplified MEDLINE document. Suppose that we decompose the
document at P , where P = {/Medline/citation/Alist,/Medline/citation/
KWlist}. It means that we shall project out the subtrees underneath P and group them
in an outlier document. The reduced document and the outlier document are shown in
Figure 3 (a) and Figure 4 (a), respectively. We shall compress the reduced and the out-
lier documents by using [3] individually. The compressed skeletons of the reduced and
the outlier documents are presented in Figure 3 (b) and Figure 4 (b), respectively. Note
that the compressed skeletons contain neither the bold nor the dashed edges. The com-
plicated edges in the middle of Figure 1 are encoded by data values. That is, they are
no longer embedded in the compressed skeleton. Consequently, the decomposed docu-
ments can be compressed efficiently. However, we need to store these (uncompressed)
edges on disk. Furthermore, there is a tradeoff between skeleton compression and query
processing. Queries involving both the reduced and the outlier documents require extra
joins to recover the relationship between the two documents. In this paper, we proposed
a heuristic method to determine these edges.

The main contributions of this paper are listed as follows.

– We propose an algorithm for XML compression by decomposing an XML document
into a reduced and an outlier document. The decomposition causes irregular sub-
trees to be grouped in the outlier document and leaves the subtrees remaining in
the reduced document fairly similar. We noted that the decomposed-compressed
skeletons of real-world XML documents fit in main memory comfortably.
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– We proposed a query-rewriting algorithm for evaluating queries on the decomposed
documents by leveraging existing query evaluation algorithms [3].

– We present experimental results on the effectiveness of the compression and pre-
liminary experimental results on query evaluation on decomposed skeletons.

The remainder of this paper is structured as follows. Section 2 contains notations
used and background information of this paper. Section 3 presents the representation,
the construction and query evaluation of decomposed XML. Section 4 presents our
heuristic algorithm for determining good decomposition. Section 5 shows an experi-
mental study of our proposed algorithm. We discuss some related work in Section 6.
Conclusions and future work are presented in Section 7.

2 Notations and Background

In this section, we list some notations used in the paper. We consider the compres-
sion algorithm VEC presented in [3] in this paper. Consider an XML document T .
VEC(T ) ≡ (G, V ), where G is the compressed skeleton of T and V is the represen-
tation for data nodes. A cut is the set of edges at where the decomposition occurs. We
consider the cut to be specified by a set of simple downward paths P , which can also be
considered as “projections” of subtrees. Thus, we may refer P to the cut. Suppose the
DTD of T is available. The possible variations in subtree structure will be essentially
1 indicated by stars “*”. Denote the set of stars in the DTD to be S. For identifying
irregularities, projections make sense at stars only. In addition, we assume that the cuts
in T are not nested. Justifications shall be provided followed by the discussion of our
solution in Section 4. Given a projection P , we decomposed an XML document into the
reduced document T P

r and the outlier document T P
o . We may omit P from the nota-

tion if it is clear from the context. Similarly, we denote the decomposed, compressed
document as DVEC: DVEC(T ,P ) ≡ (VEC(Tr), VEC(To)) ≡ ((Gr, Vr), (Go, Vo)).

The main challenge of our problem is to determine P at which the document is
decomposed. The search space of the problem is O(2|S|). This daunting complex-
ity indicates that there is a need to develop heuristics for the problem. In addition,
the number of subtrees in the document is O(2|T |), where |T | is the number of
nodes in T .

3 Document Decomposition

Consider a projection P of an input document T determined by the heuristic proposed
in Section 4. We discussed the construction of the compressed reduced and outlier doc-
uments in one scan of T in Section 3.1 and Section 3.2. Section 3.2 contained no new
ideas but completed the discussions on compression VEC on our simplified MEDLINE

document. In Section 3.3, we re-write queries on T into queries on T P
r and T P

o and
discuss how [4, 3] is used for efficient query evaluation. Technique presented in this
section can be applied recursively to support multiple decompositions.

1 For simplicity, we skip the discussions on “?”.
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3.1 Construction of the Reduced and the Outlier Documents

In this subsection, we present an algorithm for producing the reduced document Tr and
the outlier document To of a given P , shown in Figure 5. The algorithm consists of a
single depth first traversal of the original document T . The construction of To and Tr

and the compression algorithm VEC can be easily incorporated into a single traversal of
T . We decoupled the discussions of the two for simplicity.

The details of the algorithm is as follows. During the traversal of the document, we
maintained the parent n′ of the current node n and the path p from the root to n. We use
a boolean variable top to indicate whether the current node belongs to Tr and rlast to
record the last consecutive subtrees crossing the “boundary” of a path in P . A counter
#ordinal is used to record the number of cut edges encountered.

Initially, Tr and To are empty. Line 12-13 show the simplest case where the traversal
does not cross the cut: if top is true (resp. false), we continue to construct Tr (resp.
To). If the traversal crosses the boundary of the projection (Line 01-10), we modified
Tr (Line 02-06) and To (Line 07-10) as follows. First, we remove the cut edge from
Tr (Line 03). Denote n.l as the tag of a node. If n does not form consecutive l nodes

Procedure decompose(T , P )
Input: A doc. tree T and a projection P
Output: Tr and To

Tr = empty; To = empty; top = true; ordinal# = 0; rlast = null

Depth first traversal on T :
On entry of a node n:
Denote p to be the path from the root to n and (n′,n) to be an edge in T
01 if path to n′ ∈ P //across the boundary
02 top = false
03 remove (n′,n) from Tr //due to Line 14
04 if the last child of n′ is not an ordinal number

//for the reduced doc.
05 append a new ordinal node w. ordinal# o and the edge (n′, o) to Tr

06 ordinal#++; top = false
//for the outlier doc.

07 merge last subtree(rlast,To)
08 create o′ as a clone of o
09 create artificial nodes r; append o′ to olist of r; create an edge (r, n)
10 rlast = r

else
11 append n and (rlast, n) to To

else
12 if top == true append n and (n′, n) to Tr

13 else append n and (n′, n) to the rlast-subtree

On exit of a node n:
if p ∈ P then top = true

Fig. 5. Construction of T r
P and T o

P , the decompose procedure
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with previously visited children of n′ (Line 04), we create a new ordinal (text) node o
with a unique ordinal number #ordinal (Line 05) and append o to Tr. The construc-
tion of the outlier To involves grouping subtrees based on their structure. If the guard
condition in Line 03 ensures that n does not form consecutive l-subtrees with rlast, this
implies rlast has been completely traversed. We use the merge last tree procedure
to append rlast to a group, in To, according to its structure. The grouping can be ef-
ficiently implemented by hashtables [4]. Then we create a new r node and append its
corresponding ordinal number to r. r is set to be the new rlast-subtree. If the guard
condition is satisfied, we continue to build the rlast-subtree (Line 11). The algorithm
requires exactly one scan on T and maintains one rlast-subtree in main memory during
the scan.

3.2 Compression of the Reduced and the Outlier Documents

The reduced and the outlier documents are yet another XML documents. Existing XML

compression techniques can be directly applied to compress these documents. We re-
sume our discussion on compressing the skeleton of XML [4]. Skeleton compression
is also implemented in a depth first traversal of T . The implementation requires a
main-memory hashtable of subtrees encountered during the traversal. On the exit of
a node n, i.e., the entire subtree rooted at n is traversed, we probe the hashtable and
check if such a subtree (structure) is encountered before. If this is the case, we com-
press/share the subtree by adding a reference to the existing subtree in G, the com-
pressed skeleton. Otherwise, we insert n into both G and the hashtable. For example,
the outlier document shown in Figure 4 (a) is compressed to the structure shown in
Figure 4 (b).

The data nodes are handled as follows. When a data node is encountered during the
traversal, we append the data node to a container (vector) which is uniquely identified
by the root-to-leaf path. For instance, at the end of the traversal, the data nodes in the
outlier document shown in Figure 4 (a) are listed below.

/root/r/author: [JC, BC, WF, FG, JS, RH, SV]
/root/r/keyword: [NASA,ARC,NASA,ARC,Non-NASA,Biology,Non-NASA]
/root/r/@olist: [1, 5, 2, 8, 3, 7, 4, 6]

We shall discuss the implementation of the containers for ordinal numbers together
with query processing in the next subsection. It should also be remarked that the com-
pression algorithm can be readily incorporated into the decompose procedure. Neither
the reduced document nor the outlier document is fully materialized.

3.3 Query Evaluation on Decomposed Documents

In this subsection, we illustrate how a query on a document is rewritten into a query on
its decomposed documents. Subsequently, query evaluation on compressed XML [3] is
reused for evaluating queries on decomposed documents.

Denote the query evaluation of [3] as eval. Consider a path query p, /e1/e2/.../en.
The evaluation of p on VEC(T ) are rewritten into a query on DVEC(T ,P ) as follows.
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eval(p,VEC(T ))
≡ eval(p, DVEC (T , P ))
≡ eval(p, DVEC.1)

∪ eval(F (/e1, DVEC (T , P ))/e2/.../en, DVEC.2),
∪ eval(F (/e1/e2, DVEC (T , P ))/e3/.../en, DVEC.2), ...
∪ eval(F (/e1/e2/.../en−1, DVEC (T , P ))/en, DVEC.2),

where F (p, DVEC (T , P )) = for $x in DVEC.2/root
where $x/@o = eval(DVEC.1,p/text())
return $x/r

≡ eval(p, DVEC.1)

1..n−1 eval(F (/e1/../ei, DVEC (T , P ))/ei+1/.../en, DVEC.2)

The rewritten query on the right hand side of the formula comprises two parts. The
first part states that the result of eval(p,VEC(T )) includes the results found in the re-
duced document, i.e., DVEC.1 while the second part states that the result of
eval(p,VEC(T )) also includes the ones found in (1) evaluating /e1/e2/.../ei in DVEC.1
followed by (2) evaluating /ei+1/ei+2/.../en on the outlier document, i.e., DVEC.2. This
requires joins, denoted as F , of the intermediate results from (1) and (2) on ordinal
numbers, which recover cross edges between DVEC.1 and DVEC.2.

Implementation. The overhead introduced by the rewriting involves exactly joins on
ordinal numbers and projections on $x/r. The joins are often needed, e.g., queries with
descendant steps “//”. Hence, it is desirable to pre-compute the joins as well as the
projection in F . A clustered index is built on the result of the joins [20]. That is, we
do not store the containers for ordinal numbers but the join result in F . Consequently,
F are implemented as a scan on the index, as opposed to a few joins on-the-fly. Cost
estimation techniques can be incorporated to further optimize the joins. We plan to
incorporate these techniques into our method in future.

4 Heuristic Algorithm for Determining a Cut

In previous sections, we illustrated the idea of document decomposition and showed
how decomposition may improve compression. The key of the problem is to determine
a good cut P of an input document T . The pseudo-code of our algorithm for this issue
is shown in Figure 6. The overall algorithm can be roughly divided into four phases.
(1) We infer a “schema” S from the input document T . (2) As we construct S, we
construct histograms N to summarize the structural property of T (Line 01). We reduce
the number of stars in S in this phase. (3) Based on the histograms on reduced S and
our cost function, we use a simulated-annealing procedure (Line 02) to progressively
search for a good cut. (4) Finally, we refine the solution obtained (Line 03).

Next, we present a detailed discussion on the four phases of our proposed solution.
The meaning of the parameters in Figure 6 are discussed as we proceed.

Phase 1. Schema inference phase. As remarked earlier, the major variations of the
structure are indicated by the stars in DTDs. We shall consider stars as “structural di-
mensions” of a subtree and subsequently represent a subtree as a data point in a multi-
dimensional space. In this phase, we shall determine all possible stars in a document.
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Input: T , an XML tree; θsup θH , θC , θS , K
θsup: the minimum support of major stars; θH : the minimum entropy of major stars;
θC : the weight of the query part of Formula 1; θS : the weight of the storage part of Formula 1;
K: the number of scans used in the refinement phase
Output: S : a set of stars where decomposition occurs,
01 (S , N ) = infer major stars(T , θsup, θH) //Phase 1 and 2
02 S = simulated annealing(S , N , θC , θS) //Phase 3
03 for i from 0 to K //Phase 4

N2i = recover order(S , 2i)
S = simulated annealing(S , N2i , θC , θS)

04 return S

Fig. 6. Algorithm determine cut(T)

When the DTD of a document is present, we obtain the stars for free. Otherwise,
we infer the probable stars from the document. First, we construct a prefix tree of the
document. (The prefix tree will also be used in later phases.) A node in a prefix tree
represents a prefix occurred in a document and is associated with the support, sup, of
the prefix in the document. Second, we define a support ratio between each pair of
parent-child nodes (A, B) to estimate the possible location of stars. There are three
possible cases for the support ratio:

1. The support ratio is between 0 to 1. This implies B is probably A’s optional child;
2. The support ratio is 1. This often implies a one-to-one relationship;
3. The support ratio is greater than one. This often indicates a one-to-many relation-

ship. We regard the edges in this class as star edges.

There are exceptions of the above implications. Consider a pathological document
in which half of the A nodes do not have B-child and half of the A nodes have exactly
two B-children. The support ratio indicates a false one-to-one relationship. However,
such exceptions are rare, in practice.

Example 1. We illustrate the support ratio with an example shown in Figure 7. The
prefix tree is derived from the XML document shown in Figure 1. The support of the
node is indicated inside the square bracket and the support ratio is indicated on the
edge. We use a “*” to indicate the location of stars.

Phase 2. Initialization phase. A subtree can be readily summarized by a vector: each
star is associated with an entry in the vector and the value of the entry is the number of
repetitions of the star edge in the subtree. For example, consider again the citation

Medline

citation

title [4] Alist [4]

author [6]

abstract KWlist[4]

keyword

[4]

[4]

[1]
*

* *

[6]

4

1 1 11

1.5 1.5

Fig. 7. The prefix tree of T in Figure 1
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subtrees in the document shown in Figure 1. The vector of the subtrees are (2, 2), (1, 1),
(2, 1) and (1, 2), respectively. Alternatively, subtrees can be viewed as data points in a
structural-dimensional space.

Consider a depth first traversal on a given document T again. The vector of partially-
traversed subtrees are kept in main memory which requires O(d|S|) space. Typically,
the number of stars |S| in a prefix tree is small. However, large |S| causes problems:
(1) Summary structures are built for each stars later; when |S| is large, large amount of
memory is required; (2) A search in a high dimensional space is often inaccurate [2].
Unfortunately, we find a real-world case where S is large: The prefix tree of TREEBANK

(linguistic dataset) contains thousands of stars. This motivates us to distinguish major
and minor stars (dimensions) in the initialization phase. Subsequent search focuses on
the major stars only. This phase consists of two methods.

The first method is to skip processing the stars with small support. A star with small
support may lead to small impact on overall compression. Though simple, this method
has been found effective. For example when we considered the minor stars to be the
ones with a support smaller than 0.5% of the total number of edges in T , the method
prunes more than 95% stars in the prefix tree of TREEBANK.

Another method involves computing the information content of a star (structural
dimension). Specifically, we compute the entropy H of a (local) histogram N of a star s

∈ S as: -
∑
x∈B

pxlog(
1
px

), where B is the set of bins in the histogram, each bin represents

a class of subtrees, px is the probability of encountering x in N , where x ∈ B and
two s-subtrees belong to the same bin (class) if and only if they have the same number
of outgoing s-edges. We build such histogram of each star in S in one scan of T and
compute the entropy of such histograms at the end of the scan. Large entropy implies
the corresponding (star) edges in T are inherently incompressible and are considered
candidates of irregularities in T . The intuition is to project out these irregularities from
T which may leave the reduced subtree more compression-friendly. On the contrary, in
later phases, we skip the stars with an entropy smaller than a threshold.

Specifically, we use two parameters θsup and θH to specify the minimum support
and entropy of a major star. Any star with a support (resp. entropy) smaller than θsup

(resp. θH ) is considered a minor star. We shall remove minor stars from S and pass
a reduced S to the next phase for determining good cuts. We refer this process to as
reduction of structural dimensions of subtrees.

We remark that the histograms constructed in this phase summarize local structural
information only. This method is sound: The entropy of histograms with global infor-
mation is at least as large as the one with local information. The reduction based on
local information, though space-efficient, may exclude some globally optimal cuts.

Phase 3. Simulated-annealing phase. Similar to most data-mining algorithms, our
algorithm consists of a simulated-annealing phase which progressively improves the
quality of the solution. We represent a subtree as a vector/data point in the reduced di-
mensions. For each star, a histogram of reduced vectors is constructed. Our search finds
a set of stars Pcur whose decomposition cost is minimized, in the reduced dimensions.

Initially, we randomly choose a Pcur. We assume that the stars in Pcur are not nested.
This property is preserved as the search proceeds. (Nested stars in Pcur are nested
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cuts, which interact and cause a model inaccurate.) The simulated-annealing process is
guided by the cost (a.k.a. energy) function defined in Formula 1 and 2.

energy(T,P ) = θC ×
s∈P∪{r}

s.sup + θS ×
s∈P∪{r}

|s.N | × s.sup × f(s, P ), (1)

f(n, P ) =

1 if n �= r

s∈P (1 − f(s)) where
f(s) = a∈A(s) a.sup/S(a).sup

where A(s) = s.ancestors and S(a) = a.siblings ∪ {a} if n = r
(2)

The cost function models the query cost and the storage cost of a cut P . The parameter
θC and θS are used to model the relative importance of the query cost and the storage
cost, respectively. Below describes the meaning of the formulae for these costs.

Query cost. The query cost is linearly proportional to the total number of edges across
the cut. The reason is that when a query involves multiple decomposed skeletons, joins
are required to reconstruct (part of) the skeletons. With modern join algorithms, the
joins can be implemented with runtime linear to the number of edges across the cut.
Hence, we have

∑
s∈P∪{r}

s.sup in Formula 1.

Storage cost. The storage cost models the size of the compressed skeletons after de-
composition. Assume that the size of compressed skeleton is proportional to the num-
ber of structurally distinct subtrees in T . Furthermore, as we shall see in experiments,
nested projections often lead to small advantages in compressions. Since such projec-
tions are typically hard to estimate accurately and indeed complicated our model, we
assume nested projections are not allowed. Based on these assumptions, we define the
storage cost as follows. (1) The space required to store s-subtrees is proportional to
the size of the histogram of s |s.N | and the number of s-subtrees sup. Hence we have∑
s∈P

|s.N | × s.sup. (2) To model the size of the reduced document (i.e., the r-subtree),

we need to model the effect of projecting out P on the r-subtree. We define an additional
function f for this purpose. Consider an edge (n1, n2) in a prefix tree. We assume the
storage required to store n2-subtrees is proportional to f (n2), the percentage of n2.sup
among all children of n1, i.e., n2.sup/S(n2).sup, where S(n2) is the siblings of n2
together with n2. We model the cost of storing n1 after projecting out n2-subtree to be
1 - f (n2). Since we want to compute the effect of projecting out s-subtrees on the root
r, we “propagate” the effect to the root by multiplying the value of f (a) for all a in the
ancestors of s. Therefore, we yield Formula 2.

The two costs described above interact in a non-trivial manner: (1) A star s with a
small depth often implies a small sup and a small query cost. (2) However, the number
of structurally distinct s-subtrees, |s.N |, could be large. (3) Projecting s has proximate
impact on the compression of r, modeled by f (r, P ). The reverse of the three conditions
applies to stars with a large depth.

Phase 4. Refinement phase. In this phase, we handle the node order (Line 04 of
Figure 6). The order of nodes may cause (1) false negatives when the entropy of N
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is small but identical subtrees occur mainly alternately or (2) false positive when the
entropy of N is large but consecutive identical subtrees are frequently found. Possi-
ble false positives/negatives can be detected by additional scans on T : Similar to string
compression, we construct histograms of k-consecutive s-subtrees. The order of XML

is recovered as the value of k increases. The stars with sharp increase (resp. decrease)
in entropy as k increases are the candidates of false positives (resp. negatives).

Complexities. The construction of prefix tree and the initialization phase are imple-
mented in one scan of T . The simulated-annealing phase requires a scan of T for
building histograms in the reduced dimension. Depending on the importance of the
ordered-ness in determining the cut for T , another K scans on T are needed in the
refinement phase. Hence, the I/O cost of the algorithm is (2 + K)× |T |.

5 Experimental Evaluation

We conducted an experimental evaluation on the proposed document decomposition
and the heuristic algorithm. We focused mainly on the quality of the cuts returned by the
heuristics presented in Section 4 and briefly studied query performance on decomposed
documents. To evaluate the query performance on decomposed documents, we used the
query modules in [3]. We have implemented a prototype of the heuristics and decom-
position algorithm in C/C++. The prototype is run on a LINUX box running REDHAT

9.0. The CPU was 1.8GHz PENTIUM 4, while the system had 2GB of physical memory.
We allowed the heuristics five tries and a maximum 100K search steps. We defined a
variable I , ranges from 0 to 1, whose value is directly proportional to the maximum
number of stars (paths) allowed in a cut. We considered the stars with the support less
than 0.5% of the total number of edges in the document as minor stars. θC and θS are the
weights of the query component and the storage component of Formula 1, respectively.

Experiments on different datasets. We have applied the heuristics/decomposition
algorithm on a few XML datasets: the Penn TREEBANK linguistic dataset, the XML

benchmark XMARK with scaling factor 1, the computer science bibliography dataset
DBLP, Shakespeare plays in XML, protein dataset SWISSPROT, MEDLINE biological
dataset, and the SKYSERVER astronomical dataset. I and θS /θC are 1. We summa-
rized our results in Table 1. T |V |, G|V | and, G

|V |
r,o are the number of nodes in skeleton

Table 1. Compression result

Doc T |V | G|V | G|E| G
|V |
r,o G

|E|
r,o

TREEBANK 7.1M 475K 1.3M 475K+0K 1.3M+0M
XMARK 1.7M 73K 381K 15K+45K 44K+272K

DBLP 2.6M 4.4K 225K 1.0K+0.4 83K+1K
Shakespr. 180K 1.5K 32K 0.5K+0.5K 2.6K+2.2K

SWISSPROT 3M 59K 778K 2K+7K 33K+241K
ML (3 yr) 36M 586K 5.8M 9.5K+219K 324K+2.1M
ML (all) NA NA NA 54K + 2.8M 6.9M + 66M

SKYSERVER 5.2G 372 371 372+0 371+0
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without compression, compressed skeleton and decomposed-compressed skeletons, re-
spectively. Similarly, we use |E| to denote the number of edges in these three structures.

We begin our discussions with the simple cases. The results from TREEBANK and
SKYSERVER show that document decomposition produces negligible or no improve-
ment on compression. TREEBANK contains numerous linguistic trees, where each tree
often exhibits a unique structure. Almost all stars in the prefix tree of TREEBANK are
minor. Hence document decomposition does not yield more common subtrees, when it
is compared to the one without. In contrast, SKYSERVER dataset encodes a large rela-
tion; its prefix tree contains one star. The heuristics correctly returns an empty cut.

For the remaining datasets except XMARK, the heuristics returned cuts which im-
proved compression over already compressed skeletons by using five tries only. The
number of nodes in decomposed skeletons ranges from 15% (SWISSPROT) to 66%
(Shakespeare) of that of original compressed skeleton; And the number of the edges in
decomposed skeletons is reduced to 15% (Shakespeare) to 41% (MEDLINE) of the orig-
inal compressed skeleton. Furthermore, by decomposing (all) MEDLINE dataset (39G
bytes), we can store its compressed skeletons in main memory of a commodity com-
puter, which was impossible before.

When the heuristics is applied to XMARK, we observed that the heuristics hits false
local maxima frequently. The reason can be illustrated with the example shown in
Figure 8. Figure 8 (a) shows a simplified XMARK data, in which open and closed auc-
tions contain lists of paragraphs, specifically listpar-subtrees. Common subtree-sharing
does not perform efficiently on listpar-subtrees because there are many distinct para-
graph structures in XMARK. Hence, we encountered the complicated edges shown in
Figure 8 (b). The heuristics sometimes places /XMark/closed auction (alone) into
the cut because this would separate some problematic subtrees from the original doc-
ument. However, after this decomposition, both documents contain the problematic
subtrees (see Figure 8 (c)). To project out all listpar-subtrees from XMARK, a path like
//listpar is needed. Unfortunately, listpar is recursive. This means //listpar specifies
nested cuts, which is not modeled by our formulas. Worst still, listpar-subtrees appear
at a few places in XMARK’s prefix tree which lead to many false local maxima in the
search space. Since the current heuristics does not model correlation between stars, the
search skips such local maxima by chance only.

XMark

1 2 111

open_auction closed_auction

XMark

1’ 2’

listpar listpar

1’ 2’

closed_auction

1’ 2’

open_auction

XMark

listpar listpar listpar listpar

open_auction closed_auction

2

listparlistpar listpar listpar listpar listpar

(a) (b) (c)

Fig. 8. Problematic case in XMARK: (a) sketch of XMARK; (b) compressed skeleton without
decomposition; (c) compressed skeletons with decomposition

Experiments on parameters. We conducted another set of experiments to study the
effects of some parameters of our method on XMARK and DBLP datasets. We reported
the average of the local maxima returned by five tries of the heuristics. We fixed θC /θS

to be 1 and varied the cut size by varying I . When I is 0, there is no decomposition.
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I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 73K 58K 66K 64K 58K 68K

G
|E|
r,o 381K 303K 339K 315K 300K 329K

Fig. 9. Dec. skeleton size vs cut size (XMark)

I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 4.4K 2.1K 1.5K 2.0K 1.2K 1.6K

G
|E|
r,o 225K 153K 65K 130K 59K 134K

Fig. 10. Dec. skeleton size vs cut size (DBLP)

θC /θS 0.01 0.1 1 10 100

G
|V |
r,o 71K 74K 70K 74K 71K

G
|E|
r,o 360K 370K 351K 372K 356K

|C| 35K 38K 35K 32K 32K

Fig. 11. Dec. skeleton size vs θC /θS (XMark)

θC/θS 0.01 0.1 1 10 100

G
|V |
r,o 3K 2.8K 2.9K 2.9K 3.6K

G
|E|
r,o 163K 156K 166K 164K 195K

|C| 1.2M 932K 944K 810K 808K

Fig. 12. Dec. skeleton size vs θC /θS (DBLP)

For both XMARK and DBLP datasets, we noted that the effectiveness of our approach
increases as the value of I increases until I is close to 1. The size of the search space
of the heuristics increases as I increases. Thus, the heuristics has a higher chance of
returning good cuts. However, when I is close to 1, the search space, hence the number
of local maxima, becomes too large. In such cases, the quality of cuts returned by the
heuristics reduces. The results from XMARK and DBLP datasets exhibited similar trends.
However, the average case of DBLP (Figure 10) is relatively closer to the results in
Figure 1, which were obtained from the best of the five tries. This can be explained by
the problematic case in XMARK discussed earlier.

Consider each pair of adjacent columns in Figure 9 and Figure 10. We obtained the
best compression improvement when I was switched from 0 to 0.2. The improvement
between other consecutive columns was relatively minor. This indicated that in practice,
if decomposition helped compression at all, a small number of stars was sufficient.

In the next experiment, we altered the value of θS and θC and observed the quality
of cuts returned by the heuristics. I has been set to 0.8. The numbers reported are the
average of local maxima returned by five tries. In addition, we reported the number
of edges across the cut |C|. The results were summarized in Figure 11 and Figure 12.
The heuristics reports better compression but worse |C| as θC /θS decreases. The trend
is not observable from the results of XMARK dataset as it contains poorly-compressed
subtrees (e.g.,listpar) not modeled by the cost function.

Figure 13 presented the effect of applying decomposition recursively on DBLP

dataset. Consider the first decomposition. The number of nodes and edges in the de-
composed skeletons are reduced to 23% and 37% of their original values. However,
extra storage is needed to store 359K edges crossing the cut in data vectors. When
decomposition is applied on the reduced document, further improvement on compres-
sion (40% for the nodes and 70% for the edges) can be achieved with an overhead of
storing 116K cross edges. Not surprisingly, when the outlier document is further de-
composed, the improvement on compression is negligible: The heuristics aimed at sep-
arating compression-unfriendly subtrees from the original skeleton and grouped them
in the outlier document. Furthermore, the decomposition of the outlier document re-
quires storing additional 153K edges. This experiment showed that the compression
improvement of our method reduces as more decompositions are applied.
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# dp. G
|V |
r,o G

|E|
r,o |C|

0 4.4K 225K 0
1 1.0K + 0.6K 83K + 2K 359K
3 (0.6K + 48) + (25K + 0.1K) + 359K +

(0.5K + 36) (2K + 67) (116K + 153K)

Fig. 13. Efficiency of recursive cuts on DBLP Fig. 14. Performance of XMark queries
involving cross edges

Experiments on XMARK queries. We conducted an experiment on querying XMARK

dataset with or without decomposition. The paths in the cut returned by our heuristics
are listed below.

/site/regions/europe/item/incategory

/site/regions/namerica/item/incategory

/site/people/person/watches/watch

/site/open auctions/open auction/annotation/description/parlist/listitem

/site/closed auctions/closed auction/annotation/description/parlist/listitem

Except Q6, Q7, Q15, Q19, all queries in XMARK benchmark [17] can be evaluated
by using the reduced document alone and hence query performance is improved by
evaluating the queries on smaller skeletons. We summarized the performance of the
queries involving cross edges in Figure 14. Q1, Q2 and Q3 are renaming of the relevant
path queries in Q6/Q19, Q15 and Q7 in [17], respectively.

Sort-merge join algorithm is used for the joins on data vectors encoding the cross
edges. The result of Q1 and Q3 are similar. The outlier skeleton participates the query
because of the descendant step in the path queries. The join on the cross edges intro-
duces a significant overhead on query processing. We noted retrospectively that the
outlier skeleton is small and the queries on the outlier skeletons are evaluated to empty
sets. In this case, the join could be eliminated by evaluating the corresponding path
queries on the two skeletons prior to the join. By doing so, query performance on skele-
tons with and without decomposition were comparable. The selectivity of Q2 is low.
The join in Q2 required less time than the joins in Q1 and Q3. In addition, path evalu-
ation on the decomposed skeletons is faster simply because smaller skeletons are being
processed.

6 Related Work

XML compression techniques can be roughly categorized into syntactic technique and
semantic technique. The compression technique considered in this paper is a semantic
compression technique derived from sharing of common subtrees [4, 3]. Semantic com-
pressions have also been proposed to support data mining applications [1, 10, 11]. The
objective of their schemes is to compute representative tuples of a relation. However,
[1, 10, 11] assumed relational data and their support on XML remains unexplored.



216 B. Choi

Closest to our work is the STORED system [7]. The system transforms XML into a
set of relations and subsequently, store, query and manage XML in a relational database
system. The major distinction between our scheme and STORED is that we shred XML

to XML, as opposed to relations. Note also that an extreme of our method, full decom-
position, yields the edge table of an input document, where skeleton compression is
no longer relevant. At the core of STORED is a data-mining algorithm for typical tree
structures [21] in a set of trees. However, without projections, as discussed in [7], [21]
would generate a relational schema that covers only a small portion of the data. Due to
the impedance mismatch of the tree model and the relational model, storing the outliers
(irregular or dissimilar structures) in relations can be space-inefficient. In comparison,
we treat the outliers as an XML document and compress them with XML compression.

There is a host of work on mining transactional data [9]. Typically, a database con-
sists of a set of transactions, each of which represents a set of items. There is a natural
connection between our algorithm and this class of algorithms. Subtrees can be readily
regarded as transactions. Unfortunately, the number of subtree structures in a document
is O(2|T |). We tackled this problem by pruning the minor subtrees (stars) through a
coarse estimation followed by a scalable way of summarizing the subtree structures.

Finally, efforts are spent on syntactic XML compressors [6, 16, 5, 18]. [6, 16, 18, 5]
treat XML data as tokens of elements, attributes and text. Customized syntactic com-
pression is derived for handling these data separately. These techniques (e.g., arithmetic
coding, dictionary-based static coding) are fundamentally different from ours.

7 Conclusions and Future Work

We have proposed a heuristic approach of decomposing XML document for yielding
better compression. By using our method, we have not encountered a real-world dataset
whose decomposed-compressed skeletons could not be fit into the main memory of a
commodity computer, which was not the case before. Despite the improvement on com-
pression, the new compressed representation may introduce overhead on query process-
ing. This paper presented an experimental study on the decomposition and the heuristic
algorithm and preliminary results on querying decomposed-compressed skeletons.

We have planed to extend our algorithm for optimizing compression in the presence
of query workload and statistics to optimize queries. We are investigating on applying
the decomposition as a data partition algorithm of distributed XML query processing.
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Abstract. XML is a de-facto standard for exchanging and presenting
information on the Web. However, XML data is also recognized as ver-
bose since it heavily inflates the size of the data due to the repeated
tags and structures. The data verbosity problem gives rise to many chal-
lenges of conventional distributed database technologies. In this paper,
we study the XML dissemination problem over the Internet, where the
speed of information delivery can be rather slow in a server-client archi-
tecture which consists of a large number of geographically spanned users
who access a large amount of correlated XML information. The problem
becomes more severe when the users access closely related XML frag-
ments, and in this case the usage of bandwidth is inefficient. In order to
save bandwidth and process the queries efficiently, we propose an archi-
tecture that incorporates XML compression techniques and exploits the
results of XPath containment. Within our framework, we demonstrate
that the loading of the server is reduced, the network bandwidth can be
more efficiently used and, consequently, all clients as a whole can benefit
due to savings of various costs.

1 Introduction

XML has become the standard for data exchange on the Web, and database
servers are employed to store large amounts of XML documents, such as
XML digital libraries and XML dissemination systems. In these applications,
XML repositories are employed to support queries from many clients. However
XML data are verbose due to their repeated tags and structures. Most XML doc-
uments in the servers are compressed in order to reduce the storage size. Many
previous works have studied techniques for efficient evaluation of XML path ex-
pression [11, 14], and other works have focused on different kinds of XML com-
pression technologies [1, 6, 9, 10, 12, 13, 19]. However, these works do not consider
how to process compressed XML documents in XML subscribe/dissemination
applications, such as the RSS (Really Simple Syndication) news distribution sys-
tem, which supports processing multiple queries imposed by a group of clients.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 218–232, 2006.
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Fig. 1. Architecture of a Co-operative Framework

Assume that there are co-operative relationships among clients, as Fig. 1 shows.
The server keeps the compressed large-scale XML document, and clients co-
operate to obtain information or news from the server. In this scenario, it is
important to adopt distributed techniques and XML compression approaches to
save bandwidth in result delivery. For example, the server is in London and users
from Beijing pose queries to the server. After query processing and result pub-
lication, some results on the users’ local machines may be reusable in response
to the subsequent queries posed from Shanghai.

One might also find that distributed SQL query techniques in traditional
RDB have been extensively studied [2] and applied in server-client architectures.
However, these conventional database techniques are not directly applicable to
distributed XML query processing, especially over compressed XML documents.
To our knowledge, this is the first paper to address the problem of efficiently
processing XML queries over a co-operative framework with XML compres-
sion techniques. The main contributions of this paper can be summarized as
follows:

– We propose a co-operative framework for multi-query processing over
compressed XML data. We study how to process these XML queries in
Internet-scale XML data dissemination applications, such as the RSS news
dissemination system.

– We exploit XML compression technology to reduce the system’s bandwidth
consumption. Though some previous works have studied various XML com-
pression techniques, none of them has studied how to handle co-operative
clients to gain efficient dissemination on the Web.

– We develop a special index structure QIT, which helps the server to process
queries efficiently and helps clients to obtain results from compressed XML
fragments reserved by other clients. This technique is shown to benefit all
clients as a whole, since the average network cost is greatly reduced.
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– We carry out an empirical study. Our experimental results show that the
proposed methods are efficient and practical.The loading of the server is re-
duced, the network bandwidth can be more efficiently used and consequently,
all clients as a whole can benefit due to savings in various costs.

The rest of the paper is organized as follows. Related work is introduced in
Section 2. Section 3 describes the preliminaries. Sections 4 and 5 present our
approaches of building the index structure on the server side and processing
queries over compressed XML. Section 6 gives the experimental results related
to the efficiency of our framework. Finally, Section 7 concludes and discusses
future work.

2 Related Works

Recently, several methods have been proposed for query optimization of an
XML document [14], in which the structural index is an efficient approach for
path/structure queries. There are also some research results [15, 16] that combine
a structure index with keyword search for XML document retrieval. For exam-
ple, the index introduced in [16] integrates both the advantages of a structural
index and inverted lists. However, there is no previous work on efficient multi-
query processing over compressed XML documents. We need to establish a better
framework that is able to handle both structure and text queries in a smaller
storage space. There are a few XML compression techniques [1, 6, 9, 10, 12, 13, 19]
that can be classified into two categories according to whether the encoded doc-
ument can be queried directly or not. XMill [6], which is an example of the first
category, aims to minimize the size of the XML document as much as possi-
ble and achieves the highest compression ratio of all compressors. XGRIND [1]
and XPRESS [9], two examples of homomorphism compressors in the second
category, both support directly querying of compressed data by retaining the
document structure after compression. XGRIND uses dictionary encoding and
Huffman encoding for tags and data separately, whereas XPRESS adopts re-
verse arithmetic encoding and diverse encoding methods depending on the data
type, which allows XPRESS to achieve a better compression ratio and higher
query efficiency than XGRIND. In this paper, we design our framework based
on XPRESS techniques to disseminate compressed XML documents over the
co-operative server-client architecture.

3 Preliminaries

XPath, widely accepted as the core component of XML query languages, is
adopted as our query language. We constrain our XPath in XP {/,//,∗} in this
paper. The grammar of XP {/,//,∗} is given as:

q → l| ∗ |.|q/q|q//q (1)

where “l” is the label of XML document, “∗” is a wildcard and “.” denotes
current tag. “/” and “//” means child and descendant, respectively.
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There exists containment relationships among different queries in XP {/,//,∗},
and it is necessary to exploit this containment relationship to speed up the
publication of the query result. If query QA contains query QB after computing,
we can send QA’s result to corresponding client CA and ask CA to send QB’s
result to client CB to avoid the server sending QB’s result to both CA and CB .
This approach reduces the server’s load and saves the server’s bandwidth.

Definition 1 (Containment of XPath). For XPath Q1 and Q2, if the result
of Q1 is always contained in the result of Q2 for every XML instance, we say
Q1 is contained by Q2, and denote this fact as Q1 ⊂ Q2.

The containment of the XP {/,//,∗} expression is a CO-NP problem, and [7]
gives an efficient but not complete PTIME algorithm to compute the contain-
ment. Each XPath expression can be expressed as a one-arity pattern tree, and
vice versa (as Fig. 2 shows, p and p′ are pattern trees of XPp and XPp′ respec-
tively). Thus XPath expressions can be translated into tree patterns, and the
containment is evaluated based on the homomorphism between the correspond-
ing pattern trees. When there is a homomorphism between pattern trees, there
also exists a containment relationship between these XPath queries.[7]

Definition 2 (Pattern Homomorphism). For two tree patterns p and p′, if
there exists a homomorphism h : p′ → p, then p ⊂ p′.

And one can determine in O(|p||p′|) whether a homomorphism exists [7]. Fig. 2
is an example of one homomorphism from pattern tree p′ to p. Thus, the query
XPp′ contains the query XPp.

a

c
d

a c

ab

p   = a

b
*

a c

b

=   p ' 

X P p :   / a [ / / c ] / d [ c ] / / a [ a ] / b X P p ' :   / a [ / / b ] / * [ c ] / / a / b 

Fig. 2. A homomorphism from p′ to p

Based on the containment relationship in Definition 2, we design a query-
index in order to store these relationships. Fig. 3 shows that a query index tree
is built on the server side to store this containment among queries.

On the other hand, in order to minimize the document’s size and save band-
width, we adopt an XML compression approach. We choose XPRESS [9] to be
the compression tool in our framework. We also extend “intervals” technique to
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QA   =   / a 
    Q B  =   / a / c / d 
    Q C  =   / a / * / d 
    Q D  =   / a / / e 
    Q E  =   / a / d / q 
    Q F  =   / a / c / * / e 
    Q G  =   / a / d 
    Q H  =   / a / * / d / e 
    Q I =   / a / d / q / e 

Q A, b e g i n , e n d , P / I 

Q A:   Q u e r y   I D 
b e g i n :   b e g i n g   p o i n t   i n   d o c 
e n d :   e n d i n g   p o i n t   i n   d o c 
P / I :   p r e c i s e   o r   i m p r e c i s e 

Q C, b e g i n , e n d , P / I Q D, b e g i n , e n d , P / I Q G , b e g i n , e n d , P / I 

Q B, b e g i n , e n d , P / I Q F, b e g i n , e n d , P / I Q H, b e g i n , e n d , P / I Q E, b e g i n , e n d , P / I 

Q I, b e g i n , e n d , P / I 

C o m p r e s s e d   d o c   a t   s e r v e r 

Fig. 3. An Example of QIT (Query Index Tree)

speed up the query processing. The “intervals”, which are used to encode tags
in XPRESS, are helpful to process the query on the compressed document. The
containment among “intervals” indicates the containment of the suffix for simple
paths, thus “intervals” technique can be used in complex query processing. The
interval of a tag is computed based on the probability of this tag in the XML doc-
ument, and each tag in the document has a simple path that contains its parent
and ancestors. For a simple path /p1/p2/. . . /pn, assuming that the probability
of pi is probi, the original interval before compression of pi is [MINio, MAXio)
and the compressed interval is [MINi, MAXi), where

MINio =
i−1∑
k=1

probk, MAXio =
i∑

k=1

probk (2)

MINi = MINio + probi ∗MINi−1, MAXi = MINio + probi ∗MAXi−1 (3)

For example, there are “a”, “b”, and “c” three different elements in an XML
document. Assuming their probabilities are 0.3, 0.3 and 0.4, and their original
intervals before compression are [0.0, 0.3), [0.3, 0.6) and [0.6, 1.0) respectively.
For query QA: //c, whose interval is [0.6, 1.0), and query QB: /a/c, with interval
[0.6 + 0.4 ∗ 0.0, 0.6+ 0.4 ∗ 0.3), that is [0.6, 0.72), because [0.6, 0.72) is contained
in [0.6, 1.0), QB’s results is contained in QA’s result. Thus, by interval encoding
approach, the containment relationship of XPath expressions can be obtained
by the computation of interval values. We will further discuss in Section 5 how
to use intervals for compressed XML fragments dissemination.

4 Building QIT and Sub-index

In this section we discuss the concept of QIT, which exploits the containment
relationship for XPath expressions in order to avoid server sending repeated
result fragments and to support more efficient multi-query evaluation.
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4.1 Query Index Tree

Definition 3 (Query Index Tree). A Query Index Tree (QIT) is an index in
a server. Suppose that there are n XPath queries Q1, Q2, . . .Qn. According to
the containment relationship among these queries, the query tree is defined as:

1. The root is marked as the queried document D; all the queries are its
descendants.

2. Each node has a set of descendants (except the leaf node) whose queries are
contained by the query of current node.

3. Each node is represented by “(Qid, begin, end, P/I)”, where Qid denotes
the query submitted by a client; “begin” and “end” record the locations of
the result fragments in the original document; “P/I” means if the result is
precise or imprecise, where an imprecise result means that the result is not
exact for user’s query and is a larger one.

QIT reveals the containment among queries and compressed result. The result
locations, which are the values of “begin” and “end”, in QIT is for queries
processing at intermediate clients. As Fig. 3 shows, clients from CA to CI submit
queries from QA to QI . According to the containment among these queries, the
corresponding QIT is obtained according to Definition 3. In next section, we will
describe the algorithm for building QIT.

4.2 QIT Construction in the Server

The main goal of QIT is to build a hierarchical structure among queries based on
their containment relationship. This problem is analogous to building hierarchy
classification tree, such as Yahoo taxonomy. If query QA contains query QB, QA

is the parent of QB. In Fig. 4a, QA contains all the other queries. Thus, node QA

is the root as shown in Fig. 4b. In Fig. 4c, queries from QB to QI are classified into
three classes. Then, the larger queries which contain smaller ones in each class is
determined, shown in Fig. 4d. Finally, queries are organized as a tree in Fig. 4e.

We use stacks to implement this procedure where each stack represents one
class, and the algorithm is described in Algorithm 1.

Q A Q B Q C

Q D Q E Q F

Q G Q H Q I

Q A

Q B Q C Q D

Q E Q F Q G

Q H Q I

Q A

Q B

Q C

Q D Q E

Q F Q G

Q H Q I

a . S u b m i t t e d 
  q u e r i e s 

b . q u e r y Q A  c o n t a i n s 
o t h e r   q u e r i e s 

c .   c l a s s i f y 
o t h e r   q u e r i e s 

Q A

Q B

Q C Q D

Q EQ F

Q H Q I

Q A

Q B

Q C Q D

Q F

Q G

Q H

Q I

Q G

Q E

d .   r e p e a t   t h e 
c l a s s i f i c a t i o n   p r o c e s s 

e .   a l l   q u e r i e s   a r e   c l a s s i f i e d 
a n d   Q I T   i s   b u i l t 

Fig. 4. Procedure of Building QIT
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Algorithm 1. BuildingQIT (Query Set QS, node R)
Input: QS is a set containing simplified queries; node R is current root
Output: QIT tree

1: set up a new stack and add the first query into it;
2: for each query Q in QS do
3: for each existing stack S do
4: if Q contains S’s top then
5: S.push(Q);
6: continue to check whether other stack tops are contained by Q and combine

them;
7: else if Q is contained by S’s top then
8: push Q into S and keep current top unchanged;
9: break;

10: end if
11: end for
12: if Q has not classified into existing stacks then
13: set up a new stack and push Q into it as top;
14: tops of current stacks become the children of R;
15: end if
16: end for
17: for each stack S′ do
18: if S′ has elements other than top then
19: BuildingQIT (queries in this stack expect top, top of this stack);
20: end if
21: end for

Initially, an empty stack is built and the first query is pushed into the stack.
When a new query comes, we compare it to the tops of all current stacks. If
this query is contained by the top query of a stack, it will be classified into that
stack and the current stack top will remain unchanged (Steps 7–9). If this query
contains the top query of a stack, we not only put it as the current stack top,
but also continue to compare it with other stack, because there might exist other
stack tops contained by this query. If that happens, we combine these two stacks
and put this query as the new top (Steps 4–6). If there is no stack top that has
containment with the current query, we have to set up a new stack for it (Steps
12–14). After all queries have been processed, each stack is a separate class. For
the class that has more than one query, we recursively classify the queries and
build the hierarchy according to the containment relationship (Steps 17–21).
Then, the whole QIT is constructed.

The time complexity for BuildingQIT is O(n2) in the worst case, which hap-
pens when there is no containment relation among all the queries.

4.3 Sub-index Construction for Clients

In the procedure of result delivery, the naive traditional approach in the dis-
tributed environment is to evaluate queries in the server and extract the results
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for each client. However, this approach is time consuming and creates heavy
loading on the server. Our framework is able to reduce the server workload and
bandwidth with the help of intermediate clients to transmit some compressed
results according to the containment described in QIT.

In order to obtain child queries’ results at intermediate(inner) clients in QIT
as quickly as possible, a sub-index is present for each client. This sub-index
is to record the result location of subsequent queries. Each result fragment sent
to an intermediate client is always affiliated with the corresponding sub-index.
When intermediate clients need to publish their offspring’s results contained in
their own result fragments, the corresponding sub-index will help the clients to
locate and extract required results quickly.

Definition 4 (Sub-index). A sub-index of query Q is the sub-tree rooted at Q
in the QIT. This index includes all the result-location information of node Q’s
children in the QIT.

For example, in Fig. 4e, when we send QD’s result to client CD, the sub-tree
rooted at node QD will be attached. This sub-tree includes all result-location
information for QD’s children. When client CD receives the result fragment, it
scans the sub-index first, and extracts the corresponding part for clients CF and
CH (rather than decompressing the XML fragments and evaluating queries QF

and QH), and then extracts sub-indices for CF and CH , respectively. This ex-
plains how and why a sub-index helps efficient query processing over compressed
XML fragments.

5 Multi-query Evaluation

In this section, we discuss two issues related to query evaluation in our frame-
work. One is how to evaluate queries using QIT over compressed XML docu-
ments. The other is how to support intermediate clients to locate results and
corresponding sub-indices for its child clients. These two problems are related to
how to use QIT for query processing. Here, our algorithm for query evaluation
based on QIT is presented.

After compressing the XML document using XPRESS [9], the information on
compression related to process queries is reserved. We use an “Interval Table”
to keep the mapping of simple paths to the intervals. Each simple path in the
document has a unique interval, which can be obtained from this Interval Table.

XPath expressions in our algorithm are considered as P , P1//P2, P1/ ∗ /P2,
P1//P2/∗/P3, P1/∗/P2//P3, . . . , where Pi is a simple path like /pi1/pi2 . . . /pin,
and pij is a label in the XML document. Thus, the Pi can be translated into
“intervals” by using the Interval Table.

For XPath query containing double slash, such as P1//P2, it is translated
into a group of intervals. Thus, XPath query P1//P2 is separated into P1 and
P2 by “//”, and interval values of these two parts are obtained from the Interval
Table. For example, “/a/b//c/d” will be separated into “/a/b” and “/c/d”, and
intervals of “/a/b” and “/c/d” will be looked up in the Interval Table.
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Algorithm 2. TestNodes(Interval I, QuerySet QNodes, Boolean B,
Structure PS)
Input: I is the given interval; QNodes is a set containing the query nodes which have
not been tested; B indicates test all children in QNodes (“true”) or only complex
ones (“false”); PS is the structure of I ’s tag.
Output: add matched children into PS.SatNodes and partly matched children into
PS.WaitNodes.

1: for each query Qc in QNodes do
2: if (Qc is a simple path) && (I is contained Qc’s interval) then
3: add Qc into PS.SatNodes;
4: TestChildren( I , Qc.children, “true”, PS);
5: else if (Qc contains “∗” or “//”) && (I is contained by Qc’s first interval)

then
6: add (Qc,2) into PS.WaitNodes;
7: TestChildren( I , Qc.children, “false”, PS);
8: end if
9: end for

For XPath query containing wildcard, such as P1/ ∗ /P2, it is separated into
P1, “∗”, P2, where Pi = /pi1/pi2 . . . /pin (i = 1, 2). Then, we translate these
three parts into their corresponding intervals. For example, “/a/b/ ∗ /c/d” is
transformed into “/a/b”, “∗” and “/c/d”.

XPath queries encoded into intervals by using Interval Table can be evaluated
directly on the compressed document.

Before introducing the QueryEvaluation algorithm in Algorithm 3, we in-
troduce four data structures.

UnsatNodes keeps the root of the sub-trees that cannot be matched with the
current tag. Once the root cannot be matched, all its descendants cannot be
matched according to the containment relationship.

WaitNodes For nodes whose queries contain “∗” or “//”, if parts of their in-
tervals have been matched at or before this tag, WaitNodes keeps the next
parts of unsatisfied intervals, and these parts will be tested with coming
tags.

SatNodes keeps the query nodes that are matched with the current tag.
PathStack is a stack that keeps structures that contains the current tag, and

its UnsatNodes, SatNodes and WaitNodes.

In Algorithm 3, a null PathStack is initially set up, and all child nodes of QIT’s
root are inserted into UnsatNodes of the root element(Steps 1–4). In processing
of a start tag (encoded into an interval), WaitNodes and UnsatNodes of its
parent element will be checked (Step 7). The nodes in these two structures will
be classified into simple paths and complex ones. For each query in WaitNodes,
the interval of the specific part is tested (Step 11), and when matched, its next
interval of this query will be inserted into WaitNodes of the current tag (Step 16).
However, it is possible that this part is the final part of the corresponding query.
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Algorithm 3. QueryEvaluation(Compressed doc Doc, Query tree QIT)
Input: Doc is the compressed XML doc; QIT contains all submitted queries
Output: QIT containing all result locations

1: initiate PathStack into empty;
2: create a path structure rootPS for root element of Doc;
3: insert all children of QIT ’s root into rootPS.UnsatNodes;
4: push rootPS into PathStack;
5: begin to parse Doc:
6: for each coming interval I of start tag T do
7: set parentPS as the top of PathStack;
8: create a path structure PS for T ;
9: TestNodes(I , parentPS.UnsatNodes, “true”, PS); {call Alogorithm 2}

10: for each element (Qt, loc) in parentPS.WaitNodes do
11: if I is contained by the locth interval of Qt then
12: if locth interval is the final interval of Qt then
13: add Qt into PS.SatNodes.
14: TestNodes(I , Qt.children, “true”, PS);
15: else
16: add (Qt,loc + 1) into PS.WaitNodes;
17: TestNodes(I , Qt.children, “false”, PS);
18: end if
19: end if
20: end for
21: push PS into PathStack;
22: end for

Then this query has been totally matched at this tag and should be inserted into
SatNodes of current tag(Step 13). Besides, the child nodes of this node in QIT
need to be checked recursively (Steps 14 and 17).

For UnsatNodes, Algorithm 2 is called at step 9. In Algorithm TestNodes,
for each query, its interval can be evaluated with current tag directly, and once
satisfied, the child nodes of this query in QIT are checked recursively (Steps
2–4). For complex queries that contain “∗” or “//”, the first interval will be
tested. Once satisfied, the following interval is inserted into WaitNodes and its
children which have complex queries are checked recursively (Steps 5–7).

6 Experiments

In this section, we describe the implementation of this prototype and test our
approach on the well-known XML benchmark XMark [21], whose compression
ratio by XPRESS approach is approximately 60%. We conducted all the exper-
iments on a platform with a machine of Pentium IV, 3.2 G CPU and 2 GB of
RAM. This platform is used to simulate a distributed environment, where clients
are simulated as threads and each client submits one query to the server. The
number of clients ranges from 10 to 70.
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The size of the original documents is varied from 1KB to 100MB, and the
number of queries ranges from 20 to 1000. The queries used in our experiment are
extracted randomly from the paths contained in the original XML document. We
study these parts of our framework as follows. The first is to test the efficiency
of query processing on the server side in Sections 6.1 and 6.2. The second is
to verify the efficiency of reducing the server’s load in Section 6.3. Finally, we
compare our approach with a direct XML processing strategy in Sections 6.4
and 6.5, which demonstrate the overall benefits of our approach in terms of cost
savings.

6.1 Time Performance of Building QIT

The objective in this experiment is to study the time cost of using BuildingQIT
versus the synthetic data-set when running on the server side. We vary the
query number and observe the CPU time changes when running BuildingQIT
algorithms, in which the building time includes the cost of determining the con-
tainment relationship and constructing QIT trees for all queries.

As shown in Fig. 5, the time spent on building the query tree is roughly lin-
early scalable to the number of queries submitted to the server. It also indicates
that the time used to build the QIT tree is negligible compared to processing
XPath over a large-scale XML document when the clients increase. We also com-
pare QIT to BloomFilter [17] on building time in order to study the efficiency of
the QIT algorithm. BloomFilter is known to be highly efficient as a new tool used
in XML filtering. The results confirm that the QIT building time is comparable
to the building time in BloomFilter approach.
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6.2 Performance of Query Evaluation

We now study the efficiency of query evaluation on the server side. As shown
in Fig. 6, for each specified document size, the time spent on query evaluation
is stable, even though the query number varies greatly from 20 to 1000 and the
XML document size varies from 1MB to 100MB. This desirable feature is due
to the use of QIT which is built for all queries. After translating the XPath ex-
pression into its corresponding encoded interval, the queries over the compressed
document are transformed into computation of interval value according to QIT.
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In order to obtain the “begin” and “end” information for QIT, the compressed
document is parsed only once, thus the query processing time by our approach
depends mainly on the document size.

6.3 Workload of Server

The experiments in this section are executed in the simulated distributed archi-
tecture. We fix the XML document to 1MB size and limit the client number to
70. We show the efficiency of our approach in reducing the server’s load during
the result publication. In Fig. 7, three kinds of size ratios are used to examine
the load effect of the server. The parameters are explained as follows:

Sout is the size of server’s output; Tout is the total data size published in
the network; Uout is the size of the uncompressed results that will be sent by
traditional approach without compression; Dout is presented for comparison to
XML filtering in Sub/Pub mode [3, 4, 17] where the server will send the whole
document once it is proved to match the query. Dout is thus the document size
multiplied by query number.

As shown in Fig. 7, when the client number is small and when there is a
low containment ratio existing among queries, most of the results should be
processed and sent out by the server. In this case the Sout/Tout approaches 1.
When the client number is 10, Sout/Uout is close to the compression ratio of
XPRESS. When the client number becomes larger, the containment ratio will
also increase. As a result, the publication load of the server will be shared by
the intermediate clients. Then, the server’s load in the whole network is reduced.
Compared with the uncompressed cases, the server’s load in our system has the
advantages gained by XML compression and clients’ co-operative transmission.
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6.4 Comparison with Simple XML Processing Strategy

In order to gain better insight into the benefits of our approach, we compare our
approach with the simple strategy, which has neither QIT nor co-operation
among clients. For each submitted query, the server directly evaluates on the
original XML document. Here, we adopt SAXParser to parse the document, and
then to obtain the matched results for queries. The XML document used in this
experiment is fixed at 1MB.
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In a distributed server-client network, performance of a system will be deter-
mined not only by the query processing time, but also by the publishing time
of results or the response time to the client. We use the parameter average
waiting time given below in order to figure out the average response time for
a client to receive the query result.

AverageWaitingT ime =
∑

(Tfi − Ts)
n

(4)

where Tfi is the time when the ith client finishes receiving its result, Ts is the
time the server begins to publish the first result, and n is the number of clients.

As shown in Fig. 8, the server evaluates queries in a linear fashion when using
the simple strategy, thus the waiting time of clients increases linearly with the
total number of clients which submit queries. In our approach, query results are
published by both the server and intermediate clients in a multi-thread fashion.
In addition, the reduced size of the results by compression in our approach
enhances the overall performance.

6.5 Overall Cost Savings

We have already demonstrated how the performance of our system can be en-
hanced by exploiting the containment relationships existing in submitted queries.
The worst case is that no containment can be used and the server has to evaluate
and publish all results as the simple strategy. Whereas we still have the advantage
of bandwidth savings due to the XML compression even in worst case. We now
formulate the cost in the worst case W and the cost A in our approach as follows.

W =
n∑

i=1

(Tpi + Tri) (5)

where Tpi and Tri indicate the query processing time and result publication
time for the ith client, respectively.

And we use A to indicate the actual condition of our approach.

A = Tqit + Tp +
n∑

i=1

Tri (6)

whereTqit is theQIT-building time ofAlgorithm1,Tp is the query processing time
of Algorithm 3, and Tri denotes the time of result publication to the ith client.

We establish a parameter called the saving ratio as follows:

S =
W −A

W
(7)

The saving ratio for querying on a 1MB-size XML document is shown in
Fig. 9. When the number of clients increases, the containment ratio increases
and so does the saving ratio. As intermediate clients help the server to publish
the contained results in our approach, the response time of the whole network
decreases. We also note in Fig. 9 an interesting phenomenon that the efficiency
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of query processing improves when more clients participate in asking and dis-
tributing query results.

7 Conclusions and Future Work

In this paper, we tackle the problem of how to process queries efficiently over
a server-client architecture that consists of a large number of geographically
distributed users who access a large amount of correlated XML information.
We present a framework that is able to save bandwidth and process the queries
efficiently. The underlying idea is to take advantage of XML compression technol-
ogy and the containment relationships among queries in a co-operative client-
server environment to publish XML results on the network. We also discuss
some techniques to support query processing in the server side and client sides.
Experimental results show that our approach is efficient in Internet-scale XML
dissemination. In the future work, we will discuss dynamical maintenance of QIT
and extend our scope of queries further to include more expressive XML queries
such as XQuery. An orthogonal problem related to fast information dissemina-
tion is that we need to exploit the use of cache to aid the sharing of XML data
that have been obtained by clients.
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Abstract. It is difficult to index XML in practice, as there is a great deal
of structure that can be included in an index. Using feedback from the
database user’s queries can assist the indexer by highlighting the exact
structure in which the user is interested. In this paper, adaptive index
structure for XML documents is presented which captures the structure
given by branching path expressions, a very important class of queries.
By leveraging existing infrastructure, the structure can handle updates
both to the underlying data, and to itself, with little additional cost.

1 Introduction

While the Extensible Markup Language (XML) has found practical application
in numerous domains, its tree-based data model poses many challenges to effi-
cient query evaluation. Early approaches to query evaluation over XML focused
on constructed summaries of the XML document using bisimulations. There are
now many indexes, such as the DataGuide [4], 1-, 2- and T-index [9], M(k)-
index [5], A(k)-index [8], D(k)-index [11], and F/B index [6]. Most of these
indexes can only handle a small subset of queries (typically variants of simple
path expressions). While some update algorithms have been proposed [13, 7],
updating is still a major limitation of this approach. Also, many of these indexes
also have poor worst case size. The other major approach to XML query eval-
uation is through the use of joins, such as the structural join [1] and the twig
join [2]. These operators take as input sorted sets containing all nodes in the
database satisfying a predicate (such as an element label), and output all results
satisfying a structural test.

It is natural to ask whether or not these two approaches can be combined
over their common domain, tree structured XML data. Queries for which a graph
index does not contain an exact answer can be evaluated using a straightforward
combined approach: with each node in the graph index, we store the set of
corresponding document nodes, sorted in document order. Using these sets as
input, we can apply the various join based algorithms to evaluate a given query.
This will be faster than a join on the complete document if the input sets are
smaller, and if there are not too many matches in the index for the query.

There is clearly a tradeoff between index size and query efficiency. Our goal
is to improve the performance of existing join operations, such as the twig join,
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by leveraging the additional structural information captured by graph synopses.
The key insight which allows us to construct a workable solution to this problem
is that while XML allows huge variation in the kinds of queries that can be asked,
in reality the user is only interested in a very small subset of those queries.

We develop a graph index which captures the structure present in a query
workload through the use of adaptive update operations. Updates to our index
can be implemented as a side-effect of query evaluation, reducing their cost
significantly. In contrast to other graph indexes, our index has the advantage of
giving the user explicit control over the size of the index. Our index can also
handle updates to the underlying database.

The rest of our paper is organized as follows. After the preliminaries in Sec-
tion 2 and 3, two new join operators are presented in Section 4. The basic index
structure is given in Section 5. In Section 6 we evaluate our scheme empirically,
and Section 7 concludes the paper.

2 Related Work

Graph indexes for XML data have a relatively long and rich tradition, and
hence there are many varieties. The DataGuide [4] was one of the first: it can
answer simple path queries exactly and is easily updatable, but in the worst case
suffers from a size exponential in the number of nodes in the database. Other
indexes, such as the 1-index, 2-index, and T-index [9], can answer slightly more
complicated queries, but these indexes can also be very large in practice, and
only address relatively simple queries.

Due to the fact that long and complicated, but infrequently queried, path
expressions often contribute to the complexity of these graph structures, recent
work has focused on indexes which answer restricted classes of simple path ex-
pressions. For instance, the A(k)-index [8] uses a restricted form of bisimilarity,
k-bisimilarity, which reduces the index size, at the cost of storing exact answers
to only simple paths of length up to k. In a later work, Kaushik et al [7] demon-
strated how to update many types of graph synopses efficiently, including the
1-index, A(k)-index, and F/B-index; Yi et al [13] have given update algorithms
with quality guarantees for the 1-index and A(k)-index.

The above indexes only handle a very limited set of queries; if we wish to han-
dle branching path queries, then we must use an F/B index. As shown by Kaushik
et al [6], this is the smallest possible graph index that answers all branching path
queries exactly. Unfortunately, it can be very large, and in practice this is the
case more often than not. While Kaushik et al provided some ways of reducing
the size of the index at some cost in efficiency, even with these improvements
the index can remain large. Also, while Kaushik et al [7] demonstrated how to
update the F/B-index, there are no guarantees on the quality of the resulting
index and thus degradation over time can be expected.

Closest to our work are the adaptive indexes previously developed in the
literature, such as the D(k)-index [11] and the M(k)-index [5], both osu which
extend the A(k)-index. Chung et al [3] presented a workload-aware path index,
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APEX, which can adapt to changes in the query workload. However, these can
only handle simple path expressions.

In contrast to the above, our work supports more complicated queries and
gives the user direct control over the size of the index. Moreover, it can reflect
changes to the underlying database.

An alternative method of querying XML data is through the use of join al-
gorithms. One of the most important of these was the structural join, proposed
by by Al-Khalifa et al [1], which they demonstrated was asymptotically opti-
mal. This operator can answer single-step ancestor-descendant queries, and can
be chained together to answer general branching path queries. More recently, a
holistic twig join algorithm has been proposed by Bruno et al [2] which substan-
tially outperforms chained structural joins. Our work provides a new framework
within which these join algorithms can be used with significant performance
improvements.

3 Background

Given an alphabet of element labels Σ, we shall model XML documents as a
tuple D = 〈VD, ED, λD〉, where 〈VD, ED〉 is a finite, unranked, ordered, labelled
tree with vertex set VD and edge set ED, and λD : V → Σ maps nodes in the
tree to their element label. We disregard IDREF edges and attributes. , and will
drop subscripts on variables when there is no ambiguity.

An important encoding method for XML data is the region algebra approach,
in which each node x is assigned an integer range [sx, ex], where sx is the start
tag, ex is the end tag, and sx < ex. Region algebras allow the efficient determi-
nation of ancestor-descendant queries, by requiring that a node x is an ancestor
of a node y if and only if sx < sy < ex. In this paper, we will disregard updating
such encodings, as this is well-researched (e.g., [12]). We shall assume that each
node has a persistent identifier through which we can access its start and end
tags (along with other structural information such as its label); recent research
has shown how this can be accomplished [12].

Finally, this paper makes use of an important fragment of XPath, the branch-
ing path expressions, which satisfy the grammar q := a//q | a[q] | //a, where
a ∈ Σ is any element label. For instance, the query //a[//b]//c returns all nodes
labelled c that have an ancestor node labelled a, which have at least one de-
scendant labelled b. An intuitive way of thinking about such queries is as twigs,

b c

cc

aaa

b bd

r

c

a

Fig. 1. A branching path query and its result set on a document
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which are query trees with a single special node, the match node, indicating
what the result should be. To find the result of the query, we find all matches
of the query in the document tree, and return the nodes in these matches which
correspond to the match node. Figure 1 gives the twig query for //a[//b]//c and
the corresponding result set for a small XML document — the match node in
the query and matched nodes in the document are circled. We will also represent
a query q as a tuple 〈Vq, Eq, λq〉, where 〈Vq , Eq〉 is the graph representing the
query, and λq : Vq → Σ is a map giving the label of each node.

4 Split Operations

We now present two join operators which are key to updating the index. These
joins are modifications of the standard structural join [1], which takes two in-
put sets of nodes A and D, both sorted into document order, and returns the
sorted set A �� D = {(a, d) | ∀a ∈ A, ∀d ∈ D, a is an ancestor of d}. Instead
of returning pairs of nodes, our join operators return either only the matching
ancestors or the matching descendants, plus the sets of non-matching ancestors
or descendants, again in document order.

Our first join operator, the F-Join, is given in Algorithm 1. This join operator
can be used to determine the matching ancestors of a structural join. We have:

F-Join
F-Join(A, D)
// Given two sorted input sets of nodes, return the smallest set
// Am ⊆ A such that A �� D = Am �� D, as well as its
// complement Ām, both sorted in document order.
1: Am ← ∅, Ām ← ∅, S ← ∅
2: while (¬At-End(A) ∧ ¬At-End(D)) ∨ ¬Empty(S) do
3: if Should-Pop(Current(A), Current(D), S) then
4: x ← Pop(S)
5: if Empty(S) then
6: Ām ← Ām ∪ {x.node} ∪ x.cache

7: else
8: Top(S).cache ← Top(S).cache ∪ x.cache

9: else if Start(Current(A)) < Start(Current(D)) then
10: Push({node = Current(A), cache = ∅})
11: Advance(A)
12: else
13: for each x ∈ S from bottom to top do
14: Am ← Am ∪ {x.node}
15: Ām ← Ām ∪ x.cache

16: S ← ∅
17: Advance(D)
18: while ¬At-End(A) do
19: Ām = Ām ∪ {Current(A)}
20: Advance(A)

Should-Pop (A, D, S)
1: return ¬Empty(S)∧

(At-End(A) ∨ Start(A) > End(Top(S)))∧
(At-End(D) ∨ Start(D) > End(Top(S)))

Algorithm 1.
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Theorem 1. Algorithm 1 returns the smallest set Am ⊆ A such that A �� D =
Am �� D, and Ām = A−Am, both sorted in document order, in worst case time
O(|A| + |D|), which is asymptotically optimal.

Proof. (Sketch): Our algorithm maintains a stack of ancestor nodes, which rep-
resents all possible ancestors of the current descendant. If the top-most of these
ancestor nodes matches a descendant node (that is, it is an ancestor of a node in
the descendant set), then we can output all of them as matched ancestor nodes
— this happens in lines 14–15.

For unmatched nodes, the algorithm is complicated by the difficulty in deter-
mining whether nested ancestor nodes are unmatched. For instance, if we have
two ancestor nodes a and a′, such that a is an ancestor of a′, then if we de-
termine that a′ is a unmatched ancestor node, this does not necessarily mean
that a is unmatched. Thus, to output unmatched nodes in document order, we
cannot output a′ immediately upon finding that a′ is unmatched. For this rea-
son, for each node in the stack we maintain a cache of nodes that we know are
unmatched; lines 6 and 15 give the two cases where we output them.

Our second join operator, the B-Join, is given in Algorithm 2, and returns the
matching and non-matching descendants in the structural join. We have:

Theorem 2. Algorithm 2 returns the smallest set Dm ⊆ D such that A �� D =
A �� Dm, and D̄m = D−Dm, both sorted in document order, in worst case time
O(|A| + |D|), which is asymptotically optimal.

Proof. Correctness relies on the verification of the four conditional statements.
If the condition at line 3 is true, then the current ancestor node comes after
the current descendant node, and hence the descendant node is unmatched. If

B-Join
B-Join(A, D)
// Given two sorted input sets of nodes, return the smallest set
// Dm ⊆ D such that A �� D = A �� Dm, as well as its complement
// D̄m, both sorted in document order.
1: Dm ← ∅, D̄m ← ∅
2: while ¬At-End(A) ∧ ¬At-End(D) do
3: if Start(Current(A)) > End(Current(D)) then
4: D̄m = D̄m ∪ Current(D)
5: Advance(D)
6: else if End(Current(A)) < Start(Current(D)) then
7: Advance(A)
8: else if Start(Current(A)) < Start(Current(D)) then
9: Dm = Dm ∪ Current(D)

10: Advance(D)
11: else
12: D̄m = D̄m ∪ Current(D)
13: Advance(D)
14: while ¬At-End(D) do
15: D̄m = D̄m ∪ Current(D)
16: Advance(D)

Algorithm 2.
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the condition at line 6 is true, then the current ancestor node comes before the
current descendant node, and hence we must advance to the next ancestor node.
If the condition at line 8 is true, then the current ancestor node is an ancestor of
the current descendant node, and hence we have a match. Otherwise, the current
ancestor node is a descendant of the current descendant node, and hence the
descendant node cannot be matched.

Since each descendant node is placed into one of the sets Dm and D̄m, and
the output sets are sorted (since we only ever advance the cursors), correctness
is now clear. Moreover, the number of iterations through the loop is bounded by
O(|A|+ |D|), and the second loop has complexity O(|D|); hence, the total time
is O(|A| + |D|).

5 The Index Structure

5.1 Basic Definition

In this section, we give an overview of our index structure. First, we give our
definition of a graph synopsis:

Definition 1 (Graph Synopsis). A graph synopsis of an XML document D
is a tuple S(D) = 〈VS , ES , t, e〉, where:

1. 〈VS , ES〉 is a graph;
2. t : VS → 2VD gives the target sets for each v ∈ VS ;
3. ∀vs ∈ VS , ∀ud, vd ∈ t(vs), λD(ud) = λD(vd);
4.
⋃̇

v∈VS
t(v) = VD (the union is disjoint);

5. e : ES → {possible,normal,F,B,FB} is a map giving the type of each edge;
6. ∀us, vs ∈ VS , if 〈us, vs〉 ∈ ES and e(〈us, vs〉) �= possible, then there exists

ud ∈ t(us), vd ∈ t(vs) such that ud is an ancestor of vd in D;
7. ∀ud, vd ∈ VD, if ud is an ancestor of vd in D, then there exists us, vs ∈ VS

such that ud ∈ t(us), vd ∈ t(vs), and 〈us, vs〉 ∈ ES.

Our definition varies from the standard definition of a graph synopsis. Our graph
synopsis is closer to the transitive closure of such a synopsis, because the inclu-
sion of an edge between two nodes in the synopsis implies an ancestor-descendant
relation in the database, not a parent-child relation. Our reason for doing this is
that it allows us to preserve more structural information during index updates,
since we are interested in branching path queries with ancestor-descendant edges.

The other major difference in our definition of a graph synopsis is that each edge
is labelled, which has important implications for query processing. The presence
of a “possible” edge indicates that there is a possible linkage between nodes in the
target sets of the two nodes, as opposed to the definite linkage given by a normal
edge. The remaining edge types are related to two important concepts that we
borrow from previous work, namely forward and backward stability [10]:

Definition 2 (Stability). Consider two nodes u and v from a graph synopsis
S(D), with 〈uS , vS〉 ∈ ES. Then:
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1. The edge 〈uS , vS〉 is “backwards” stable (B-stable) if and only if for all vD ∈
t(vS), there exists a node uD ∈ t(uS) that is an ancestor of vD.

2. The edge 〈uS , vS〉 is “forwards” stable (F-stable) if and only if for all uD ∈
t(uS), there exists a node vD ∈ t(vS) that is a descendant of uD.

Thus, the remaining edge types denote whether we know whether that edge is
forward stable, backward stable, or both. Note that a normal or possible edge
might actually be forward or backward stable (or both): the edge type only
reflects that fact if the index has been able to deduce it.

5.2 Overview of Approach

A sketch of our approach is found in Algorithm 3. The idea is to start with the
coarsest possible graph synopsis; during query evaluation, we collect statistics
which help us determine the structure that the user is interested in. Every k
queries (for some user-defined constant k), we choose to split nodes in the index
using this information, so as to focus on the structure that the user is querying;
when the index grows beyond some upper bound U , we then combine nodes in
the index to reduce its size. The issue then becomes how to detect what structure
the user is interested in, and how to split and merge the nodes efficiently.

Overview of the Adaptive Index

1: I ← Initialize-Index(D), i ← 0
2: while database is still running do
3: q ← next query to be evaluated
4: Evaluate-And-Collect-Statistics(I, q)
5: if i ≡ 0 (mod k) then
6: Split(I)
7: if index size ≥ U then
8: while index size > L do
9: Merge(I)

10: i ← i + 1

Algorithm 3.
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Fig. 2. A sample adaptive index

Figure 2 gives an example of our approach. Given the sample XML document
in Figure 2(a), the initial index is the coarse graph synopsis of Figure 2(b).
Figures 2(c) and 2(d) demonstrate the effect of various split operations on the
graph (we will discuss how these split operations occur later).
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5.3 Index Construction

The initial bulk construction of the index is straightforward, and can be done
in a single pass. The pseudocode is given in Algorithm 4; this algorithm can be
implemented in a single preorder traversal of the document, maintaining only a
stack that grows with the depth of the document. Since at each node we perform
an amount of work proportional to the depth of the stack (due to line 3), the
total amount of work for a document of n nodes and depth d is O(nd); as the
depth is generally very small this algorithm runs in linear time in practice.

Initialize-Index
Initialize-Index(D = 〈VD, ED , λ〉)
// Given an XML document, construct the initial index.
1: VS ← Σ, ES ← ∅, (∀v ∈ VS) tS(v) ← ∅
2: for each v ∈ VD in document order do
3: ES ← ES ∪ {〈λ(u), λ(v)〉 | ∀u ∈ Ancestors(v)}
4: t(λ(v)) ← t(λ(v)) ∪ {v}
5: return S = 〈VS , ES, tS〉

Algorithm 4.

5.4 Query Evaluation

We now consider the evaluation of a query q on a graph synopsis S(D). This is
not as easy as evaluating a query using join operators on the traditional inverted
list index, since there can be multiple matches of a given query in our index.
Evaluating a query involves finding all embeddings into the synopsis:

Definition 3 (Embedding). An embedding of a query q into a synopsis S(D)
is a map m : Vq → VS satisfying:

– ∀u, v ∈ Vq, if 〈u, v〉 ∈ Eq then 〈m(u), m(v)〉 ∈ ES.
– ∀v ∈ Vq, λq(v) = λS(m(v)).

We use exhaustive search to find the set of all embeddings of a query into the
graph synopsis. The query could then be evaluated by taking the input sets
for the join to be the target sets of the nodes given by the embedding, and
returning the union of the results from all embeddings. We can increase the
evaluation performance by taking advantage of stability, due to the following:

Lemma 1. Given two nodes u and v from a graph synopsis S(D), we have:

1. If 〈u, v〉 is B-stable, then evaluating the query λ(u)//λ(v) on the sets t(u)
and t(v) returns the set t(v).

2. If 〈u, v〉 is F-stable, then evaluating the query λ(u)[λ(v)] on the sets t(u) and
t(v) returns the set t(u).

The idea is best seen when evaluating the query //a[//c] on Figures 2(b) and 2(c).
In Figure 2(c), because the edge between a and c is F-stable, we can immediately
return the target set of node a as the result of the query; on the other hand, in
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Figure 2(b), we must perform a join to filter out any nodes that do not occur in
the result set.

For a general twig query, we can trim the query using the graph synopsis. An
edge 〈q1, q2〉 in the query is labelled F or B stable according to the following:

– If q1 is the match node of the query, then we label 〈q1, q2〉 F-stable.
– If q2 or one of q2’s descendants is the match node, then we label 〈q1, q2〉

B-stable.
– If neither q1 nor any of its descendants is the match node of the query, then

we label 〈q1, q2〉 F-stable.

The labelling of edges in the query as B or F stable is consistent with the kind
of joins that would be required to answer that query. Once we have annotated
the twig query, we can trim nodes from the query using Algorithm 5: if the
embedding of a query q maps an edge in the query to an edge in the index which
preserves F- or B-stability, then we can delete that edge if it leads to a leaf node.

Trim-Query
Trim-Query(q, m, S(D))
// Trim a query q given an embedding m into a synopsis S(D).
1: repeat
2: for each q2 ∈ Vq such that q2 is a leaf node do
3: q1 ← Parent(q2)
4: if Is-F-Stable(〈q1, q2〉) then
5: if Is-F-Stable(〈m(q1), m(q2)〉) then
6: Delete q2 from q

7: break
8: else if Children(q1) = {q2} then
9: if Is-B-Stable(〈q1, q2〉) then

10: if Is-B-Stable(〈m(q1), m(q2)〉) then
11: Delete q1 from q, replacing it with q2
12: break
13: until no changes to the query occur

Algorithm 5.

5.5 Splitting Nodes

We now describe how to update the index to capture structure the user is query-
ing. The process involves choosing two nodes u and v in the synopsis, such that
〈u, v〉 ∈ ES , and splitting the node u (respectively v) into two nodes so that one
of the resulting nodes is F-stable with respect to v (respectively B-stable with
respect to u). We will first discuss the actual splitting process, before turning to
the question of how to determine which nodes to split.

Suppose we have two nodes u and v in the graph synopsis, and we wish to
split u into two nodes u1 and u2 such that u1 is F-stable with respect to v (the
case of performing a B-split is similar and is omitted). To split the nodes, we use
the F-Join algorithm (see Algorithm 1) to split the target set of u into the two
targets sets of u1 and u2. If the target set of u1 is empty, then none of the nodes
in the target set of u were ancestors of nodes in v, and hence the edge can be
removed. If the target set of u2 is empty, then the edge 〈u, v〉 is F-stable. We note
that the F-Join algorithm can be used to answer join queries, and hence we can
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actually simultaneously evaluate a query and update our index, thus reducing
the update cost to virtually nil.

Otherwise, we copy the edges incident on u over to u1 and u2 as follows: for
any edge e = 〈x, u〉, we add edges e1 = 〈x, u1〉 and e2 = 〈x, u2〉. If e is B-stable,
then we make both e1 and e2 B-stable. Otherwise, e1 and e2 are marked possible.
Similarly, for any edge e = 〈u, x〉, we add edges e1 = 〈u1, x〉 and e2 = 〈u2, x〉.
If e is F-stable, then we make both e1 and e2 F-stable. Otherwise, e1 and e2
are marked possible. Finally, we make the edge 〈u1, v〉 F-stable, and ensure that
there is no edge from u2 to v.

As an example of node splitting, consider Figure 2. Figure 2(c) is equivalent
to Figure 2(b) after it has undergone an F-split on node a with respect to node
c. In this case, all nodes in t(a) are ancestors of nodes in t(c), and hence the edge
is already F-stable. After this split, we then perform a B-split on the nodes b
and c, with the result in Figure 2(d). In this case, we do need to split the nodes.
The edges out of the c nodes are possible since we cannot be sure whether each
c node has a relationship with the a node.

The final issue is how to determine which nodes should actually be split. We
collect two sets of statistics about the workload, one for F- and one for B-stable
splits; each is stored as a two dimensional integer array, indexed by nodes in the
synopsis. The data stored in an entry 〈u, v〉 represent the amount of “work” the
query processor performs which involves the nodes u and v in an F- or B-stable
fashion. In our case, we used a very simple definition of work: the amount of work
is the number of nodes in the target set that participated in computing the result
(e.g., for twig joins, these would be the nodes from each target set that occur
somewhere in a result tuple). Our experiments demonstrate the effectiveness of
this definition.

We found that this statistic was quite easy to approximate for both structural
joins and twig joins. As a simple example, suppose that we are answering the
query //a[//b]//c using composed structural joins. Suppose that we have three
nodes a, b, and c, corresponding to each node in the query in the obvious way.
One way of evaluating the query would be to join a and c in a F-stable way, and
then join a and b in a B-stable way. For each pair of nodes, the information we
collect is simply the number of nodes that end up in the result set at each step.

We use this information to split nodes as follows: when we decide to split a
node, we find the largest entry in both the F-stable and B-stable arrays. We
then perform an F-split or B-split on those two nodes, depending upon which
array the entry occurs in. After each split, we reset the array entries to zero; this
allows us to handle changes in the query workload dynamically.

5.6 Merges

At some point, the index structure will grow to a size that is unacceptable to
the database user. In this case, we can merge nodes in the index until we reach a
satisfactory size. We assume the user gives us two constants, L and U , such that
|Σ| ≤ L < U , which represent lower and upper bounds on the index size (the
index must have size at least |Σ| because that is the size of the coarsest graph
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synopsis). When the index size reaches U , we repeatedly merge nodes until we
obtain an index of size L.

Given two nodes u and v in the graph synopsis such that λ(u) = λ(v), merging
them to create a new node w is straightforward. The target sets can be merged
together in linear time using a standard merge algorithm — this can be delayed
until a query is performed, in which case the new target set can be constructed
on the fly. Incoming edges into u and v are added to w in the following way:

1. If there is an edge 〈x, u〉 but no edge 〈x, v〉, then 〈x, w〉 has the same type
as 〈x, u〉.

2. If 〈x, u〉 is a possible edge, and 〈x, v〉 is a possible edge, then 〈x, w〉 is a
possible edge.

3. If 〈x, u〉 or 〈x, v〉 is F-stable, then 〈x, w〉 is F-stable.
4. In all other cases, 〈x, w〉 is a normal edge.

For outgoing edges, case 3 is replaced with the analogous condition for
B-stability.

The question then becomes how to determine which nodes u and v should
be merged. Intuitively, we wish to merge nodes together which are frequently
involved in similar queries, since this will save some effort. Recall that during
the evaluation of a query q over a synopsis S(D), we obtain the set M of all
embeddings between q and S(D). The sets Mv = {m(v) | m ∈ M} represent the
set of all nodes in S(D) that each v ∈ Vq is mapped to. In terms of evaluating this
particular query, merging nodes appearing together in these sets makes sense.

Hence, we maintain a two-dimensional integer array, with the array indexes
being the nodes in VS , which counts the number of times two nodes u, v ∈ VS

occur together in some set Mw. When we need to merge nodes, we merge the
most frequently occurring pair in this array. In the rare event that every query
has a unique embedding into S(D) (and hence the array will be identically zero),
we simply merge randomly chosen pairs of nodes having the same label.

5.7 Updates

We handle updates by storing for each element label a pointer to a special update
node in the index. This pointer, initially null, points to the last synopsis node
with an identical label created during an update. When a node is inserted and
the pointer is null, we create a new synopsis node in the index, add a possible
edge from every other node in the synopsis to this node, and set the pointer to
this node. The further insertion of nodes then results in their addition to the
target set of this update node. When the update node is split or merged, we
reset the pointer to null.

This simple update scheme can be improved through several optimizations. If
we have schema information, then we can restrict the addition of edges to only
those synopsis nodes which can be an ancestor of this node. Also, the most com-
mon kinds of updates in practice are bulk insertions of documents or document
fragments. In this case, it is much better to create a coarse graph synopsis of the
newly inserted data (using Algorithm 4) and combine this with the index. Edges
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now only need to be added to the root of the document fragment, and hence we
can capture structure more efficiently than with the node-by-node approach.

Deletions are handled more straightforwardly: when a node is deleted, we
simply iterate through all target sets in the index and remove the node from
each of them. If deletions are frequent, then this scheme can be improved by
caching a list of deleted nodes. When evaluating queries over the index, we filter
out any nodes that occur in the deleted list; once the deleted list reaches a
suitable size, we then iterate through the target sets and delete all the nodes in
the list simultaneously.

6 Experimental Evaluation

We now turn to the experimental evaluation of our adaptive index. All exper-
iments were implemented in C++, and were conducted on a Pentium M 1.7
GHz PC with 1 GB of memory and 60 GB of hard drive space, using the Mi-
crosoft Windows XP Professional operating system. Our implementation is sim-
ple; for instance, we performed node splits instantly, instead of waiting for the
next appropriate query. Thus, our experiments actually overestimate the cost of
maintaining our index; a more complete implementation would be more efficient.

We chose a variety of data sets, of varying complexity and structure (their
most relevant characteristics are summarized in Table 1): DBLP, SwissProt and
XMark. These data sets exhibit a wide range of structural properties and thus
are a good test for our adaptive index. Due to lack of space we have omitted the
results for DBLP, on which our index performed even better than for the others.

6.1 Generating a Query Workload

One of the most important aspects of our experiments is to generate a realistic,
but random, query workload. We restricted our queries to branching path queries
having between l and u nodes (in our case, we chose the values l = 3 and u = 5
as queries are generally fairly small in practice).

There are two kinds of query workloads we are interested in testing: positive
and negative query workloads, which have high and low selectivity respectively.
Negative queries are easy to generate: we can simply generate random twigs
over the label set of the data set (the vast majority of random twigs have zero
selectivity in practice). We do not include results for negative queries since we
found that our scheme handled them very easily. To generate positive queries, we

Table 1. Characteristics of experimental data sets

DBLP SwissProt XMark
Size (MB) 150.68 109.50 113.06
Element Count 3760416 2977031 1666315
Maximum Depth 6 5 12
Average Depth 3.00 3.57 5.56
F/B Index Size 2896 699619 432851
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make use of the F/B-index of the data set, which contains the exact answers for
all branching path queries. We omit details due to lack of space, but essentially
we picked random subtrees of the F/B-index as queries.

In practice, it is often the case that a small percentage of queries account
for a large number of the actual queries to the database. Thus, in the following
experiments, we chose a random subset Qh ⊆ Q of “hot” queries (in our case,
|Qh| = 0.2|Q|). We draw queries from Q by choosing each query using the
following procedure: 70% of the time, we choose a query uniformly and randomly
from Qh, the remaining 30% of the time we choose a query randomly from
Q−Qh.

6.2 Experiment 1: Testing Adaptibility

In this experiment, we verified that the basic principle of our index is indeed
correct and results in a performance improvement. We created a query workload
Q as described in the previous section, and initialized our adaptive index. We
then repeatedly queried the adaptive index with queries drawn from Q, and
allowed the index to split as required. We did not restrict the index size in this
experiment, so merge operations were not used; similarly, we kept the data set
static, and hence updates were also not an issue. We performed split operations
every k = |Q| queries. While we tested our index with queries workloads of size
50, 100, and 200, we do not include the similar results for |Q| = 50 and |Q| = 100
due to space limitations.

Every |Q| queries, we tested the index’s performance by measuring the time
taken to query a bag of |Q| queries drawn from Q — to ensure consistency, we
used the same bag of queries for every test, and disabled statistics collection
during the test so that it did not impact upon the index splitting behavior. We
also measured the cost of updating the index during each block of |Q| queries.

Figure 3 gives the results for our data sets, for query workloads of size 200. The
time taken during query evaluation is represented as a relative value, where 1.0 is
the time taken to evaluate the queries using a structural join-based approach. We
also give in the same graph the number of nodes in the index, which increases
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as split operations are performed. As can be seen, in each case the adaptive
index relatively quickly provides a significant performance improvement of up to
60%, which is particularly impressive given how efficient the unoptimized join
operators already are in evaluating branching query expressions. Even at the end
of the experiment, all of the indexes are still very small compared to a typical
graph index, with less than 150 nodes in all cases.

6.3 Experiment 2: Controlling Index Size

In this experiment, we test the impact of limiting the index’s size on its per-
formance. The previous experiment demonstrated that the indexes remain very
small for even a fairly long-running database; nevertheless, restrictions on size
are of course very useful. We chose to limit the index size for each data set to
the following bounds: DBLP [60, 75), SwissProt [100, 120), and XMark [90, 110).

Apart from the size restriction, the experimental setup was identical to that
of Experiment 1. The results are shown in Figure 4 (we again omit the similar
results for smaller query workloads due to lack of space). As can be seen, while
the merge operation might adversely impact the performance in the short-term,
the impact is not overly significant and is quickly corrected. It is hardly surprising
that merging nodes reduces the performance of the index, given that we are
forced to lose structural information.
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6.4 Experiment 3: Testing Updatability

In this experiment, we test the impact of updates on the index. Our experimental
setup was the same as Experiment 2, except that 30% of the way through the
experiment, we appended a randomly generated document to the database, in-
creasing its size by approximately 10% (we appended the document for simplicity
only; where the document is inserted has no impact on the index’s performance).
Due to the ease with which random documents can be generated using XMark,
we restricted this experiment to that data set only. Also, due to the larger num-
ber of nodes involved in the index, we also increased the lower and upper bounds
to 140 and 180 respectively, which are more realistic bounds given that XMark
has 74 unique elements.



Adaptively Indexing Dynamic XML 247

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90  100
 60

 80

 100

 120

 140

 160

 180

R
el

at
iv

e 
T

im
e 

T
ak

en

In
de

x 
S

iz
e

Number of queries / 100

Query Performance on XMark, 100 queries, L = 140, U = 180

Query Performance
Query Performance + Index Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90  100
 60

 80

 100

 120

 140

 160

 180

R
el

at
iv

e 
T

im
e 

T
ak

en

In
de

x 
S

iz
e

Number of queries / 200

Query Performance on XMark, 200 queries, L = 140, U = 180

Query Performance
Query Performance + Index Overhead

Fig. 5. Updating the index for the XMark data set

Our results are given in Figure 5 (we omit the results for |Q| = 50 for space
reasons). The update point can be seen in the large jump in the number of
nodes in the index. As can be seen, the updates have little adverse impact on the
performance of the index; in fact, it is clear that the primary performance impact
comes from the merge operation that occurs later. Intuitively this makes sense,
since adding additional nodes does not reduce our knowledge of the structure of
the underlying database, whereas taking them away does.

7 Conclusion

In this paper, we have described a new adaptive index scheme for XML doc-
uments which can efficiently process branching path expressions. The scheme
optimizes the use of join operators, such as structural and twig joins, by captur-
ing additional structural information from the query workload. By only what is
needed, the index is able to efficiently evaluate branching path expressions using
a fraction of the number of nodes that the F/B index would use. The index can
also handle updates to the underlying database in an effective manner.
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Abstract. As business and enterprises generate and exchange XML data more
often, there is an increasing need for searching and querying XML data. A lot
of researches have been done to match XML twig queries. However, as far as
we know, very little work has examined the efficient processing of XML twig
queries with not-predicates. In this paper, we propose a novel holistic twig join
algorithm, called TwigStackList¬, which is designed for efficient matching an
XML twig pattern with negation. We show that TwigStackList¬ can identify a
large query class to guarantee the I/O optimality. Finally, we run extensive exper-
iments that validate our algorithm and show the efficiency and effectiveness of
TwigStackList¬.

1 Introduction

In the recent years, business and enterprises generate and exchange XML data more
often. The XML data can be very complex and deeply nested. Therefore, there is a lot
of interest in query processing over data that conforms to a tree-structured data model
([2, 7]). Efficiently matching all twig patterns in an XML database is a major concern
of XML query processing. Among them, holistic twig join approach has been taken
as an efficient way to match twig pattern since it has shown effectiveness by reducing
the intermediate result ([2, 3, 4, 5]). We observe that, the existing work on holistic twig
query matching only consider twig queries without not-predicate, such as:

Q1: suppliersDatabase/supplier[.//store]//part

This twig pattern is written in XPath [15] format. It selects part elements which are
descendants of supplier elements having at least one descendent element store.

However, in real applications, XML queries is more complex and may contain
logical-NOT predicates (or not-predicates), such as:

Q2: suppliersDatabase/supplier[NOT (.//store)]//part

The query selects part elements which are descendent of supplier elements having no
descendant element store. Therefore, it is important for us to specify an algorithm to
efficiently solve the twig patterns with not-predicates.

In general, the not-predicates can be used in a nested manner, such as:

Q3:suppliersDatabase/supplier[NOT (.//store[NOT (location=′′Singapore′′)])]/part

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 249–263, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Examples of XML Queries

It selects part elements which are descendent of supplier elements having no de-
scendent element store that is not in Singapore. In another word, if the supplier only
contains store that is in “Singapore”, its descendent part is in the answer to query Q3.

We call the general twig queries with not-predicates as NOT-twig queries. The
queries without not-predicates are called normal-twig queries. The graphical represen-
tations of NOT-twig Q1, Q2, and Q3 are shown in Fig. 1(a), (b) and (c).

To match a twig query with not-predicates, a naı̈ve method is to decompose it into
several normal-twig queries (without not-predicates). Each decomposed normal-twig
queries are individually evaluated using the existing method, and the final result can be
calculated based on the results of the individual decomposed quires. Each not-predicate
in the NOT-twig produce an additional decomposed query.

For example, we can evaluate query Q2 by solving the following two queries:

Q4: suppliersDatabase/supplier//part

Q5: suppliersDatabase/supplier[.//store]//part

Existing holistic algorithms, TwigStack [2] or TwigStackList [7] can be used to find the
answers of Q4 and Q5, shown in Fig. 1(d) and (e). The query Q2 can be evaluated by
calculating the difference of two answering set for Q4 and Q5. Clearly, this naı̈ve ap-
proach is not optimal in most cases. For example, the elements in supplier and part has
to be accessed twice in order to evaluate the two decomposed queries from query Q2.

Jiao et al. [6] proposed a holistic path join algorithm for path query with not-
predicates. However, it cannot answer the problem of twig pattern with not-predicates.
To the best of our knowledge, this paper is the first that address the problem of XML
NOT-twig matching.

In this paper, we developed a new algorithm to match NOT-twig queries holistically
without decomposing them into normal-twigs. The contributions of our work are:

– We discuss the problem of sub-query matching and propose a novel holistic twig
join algorithm, namely TwigStackList¬, based on the new concept of Negation Chil-
dren Extension (for short NCE). Unlike naı̈ve method, this approach ensures that
all elements in the XML documents are scanned no more than once.

– We demonstrate that in a NOT-twig, when all the positive edges below branching
nodes are ancestor-descendant relationships, the I/O cost is only proportional to the
sum of sizes of the input and the final output. Therefore, our algorithm can guaran-
tee the I/O optimality for a very large query set. Furthermore, even when there exist
positive parent-child relationships below branching nodes, the intermediate solu-
tions output by TwigStackList¬ are guaranteed to be smaller than the naı̈ve method.
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– We present experimental results on a range of real and synthetic data, and query
twig patterns. The results validate our analysis and show the superiority of TwigSta-
ckList¬ in answering twig patterns with not-predicates.

The rest of the paper is organized as follows. Section 2 studies the related work.
Section 3 defines the representation of twig queries with not-predicates and discusses
the problem of sub-query matching. Section 4 explains our algorithm TwigStackList¬,
and proves its correctness. Section 5 presents the performance study and the experimen-
tal results. Finally, section 6 concludes the paper.

2 Related Work

With the increasing popularity of XML data representation, XML query processing and
optimization has attracted a lot of research interest. In this section, we summarize the
literature on matching twig queries efficiently.

Zhang et al. [16] proposed a multi-predicate merge join (MPMGJN) algorithm based
on (DocId, Start, End, Level) labeling of XML elements. The Twig join algorithms
by Al-Khalifa et al. [1] gave a stack-based binary structural join algorithm. The later
work by Bruno et al. [2] proposed a holistic twig join algorithm, TwigStack, to avoid
producing a large intermediate result. However, this algorithm is only optimal for
ancestor-descendent edges. Therefore, Lu et al. [7] developed a new algorithm called
TwigStackList, in which a list data structure is used to cache limited elements to identify
a larger optimal query class. Chen et al. [3] studied the relationship between different
data partition strategies and the optimal query classes for holistic twig join. Recently, Lu
et al. [8] proposed a new labeling scheme called extended Dewey to efficiently process
XML twig pattern.

In order to solve complex twig queries, Jiang et al. [4] researched the problem of
efficient evaluation of twig queries with OR predicates. Lu et al. [9] studied how to
answer an ordered twig pattern using region encoding. Jiao et al. [6] proposed a holistic
path join algorithm for path query with not-predicates.

In the recent years, two new algorithms, ViST [13] and PRIX [10], are proposed to
transform both XML data and queries into sequences, and answer XML queries through
subsequence matching. Their methods avoid join operations in query processing. How-
ever, to eliminate false alarm and false dismissal, they resort to time consuming opera-
tions (post-processing for false alarm and multiple isomorphism queries processing for
false dismissal [12]).

3 Preliminaries

3.1 XML Data Model

We model XML documents as ordered trees. The edges between the tree nodes can be
parent-child (for short PC) or ancestor-descendant (for short AD).

Many state of the art join algorithms on XML documents are based on certain num-
bering schemes. For example, the binary XML structural join in [1, 16], and the twig
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join in [2] use (startPos: endPos, LevelNum). It is an example of using region encoding
to label elements in an XML file. Fig. 2 shows an example XML data tree. startPos and
endPos are calculated by performing a pre-order (document order) traversal of the doc-
ument tree; startPos is the number in sequence assigned to an element when it is first
encountered and endPos is equal to one plus the endPos of the last element visited. Leaf
elements have same startPos and endPos. LevelNum is the level of a certain element in
its data tree.

Formally, element u is an ancestor of element v iff startPos(u) < startPos(v) and
endPos(u) > endPos(v). Similarly, element u is the parent of element v iff startPos(u)
< startPos(v), endPos(u) > endPos(v), and levelNum(u) + 1 = levelNum(v).
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Fig. 2. XML data tree with region encoding
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3.2 NOT-Predicate and Node Operations

Each NOT-twig query has a corresponding tree representation, which contains all the
nodes in the query, {n1,n2,...nm}. Each node ni and its ancestor (or parent respectively)
nj , are connected by an edge, denoted by edge(ni, nj). The tree edges can be classified
into one of the following four types: (1) positive ancestor/descendant edge, represented
as “||”; (2) positive parent/child edge, represented “|”; (3) negative ancestor/descendant
edge, represented as “||¬ ”; (4) negative parent/child edge, represented as “|¬”.

A negative edge corresponds to an edge(ni,nj) with a not-predicate in XQuery ex-
pression. It includes negative parent/child edge and negative ancestor/descendant edge.
In this case, node nj is called a negative child of node ni. Similarly, a positive edge
corresponds to an edge(ni,nj) without not-predicates in XQuery expression. Node nj

is considered to be a positive child of node ni.
As an example, consider the NOT-twig in Fig. 3(b), edge(B, C) and edge(C, D) are

negative ancestor/descendant edge, edge(B, H) is negative parent/child edge. Node B
has three children, in which node G is a positive child, node C node H are negative
children.

Given a query tree Q, a not-predicate is a subtree in Q such that the edge between
the root of the subtree and its ancestor (or parent respectively) is a negative edge. We
call the root of the subtree a negative child of its ancestor (or parent respectively).

As an example, the NOT-twig in Fig. 3(a) has one not-predicates (rooted at node
C), and the NOT-twig in Fig. 3(b) has three not-predicates (rooted at node C, D and



TwigStackList¬: A Holistic Twig Join Algorithm for Twig Query 253

H). The not-predicates are nested, therefore, we can see that not-predicate C contains
not-predicate D.

In the following, we define some operations on query tree nodes. isRoot(n),
isLeaf(n), and isOutputNode(n) respectively checks if a query node n is a root, a leaf
node, or an output node. is Neg Child(n) checks if the edge between node n and its
ancestor (or parent respectively) has a not-predicate.

neg children(n) and pos children(n) respectively returns all the nodes that are the
negative and positive children of n. parent(n) returns the parent node of n, and the
function children(n) gets all child nodes of n. Therefore, we have neg children(n)∪
pos children(n) = children(n). Function AD neg children(n) and PC neg children(n)
returns all the negative AD child or negative PC child nodes of n. Similarly, func-
tion AD pos children(n) and PC pos children(n) returns all the positive AD child or
PC child nodes of n.

3.3 Sub-query Matching and the Output Elements

In this paper, a node refers to a query node in twig query pattern and element refers to
a data node in XML data tree. A NOT-twig matching problem can be decomposed into
recursive sub-query matching problems.

Given a NOT-twig query Q, a query node n and a XML data tree D, we say that an
element en(with the tag n) in the XML data tree D satisfies the sub-query rooted at n
of Q iff:

(1) n is a leaf node of NOT-query Q; OR
(2) For each child node ni of n in Q:

– (case i) If ni is a positive PC child node of n, there is an element eni in D such that
eni is a child element of en and satisfies the sub-query rooted at ni in D.

– (case ii) If ni is a positive AD child node of n, there is an element eni in D such
that eni is a descendant element of en and satisfies the sub-query rooted at ni in D.

– (case iii) If ni is a negative PC child node of n, there does not exist any element
eni in D such that eni is a child element of en and satisfies the sub-query rooted at
ni in D.

– (case iv) If ni is a negative AD child node of n, there does not exist any element
eni in D such that eni is a descendant element of en and satisfies the sub-query
rooted at ni in D.

We classify the nodes in a NOT-twig query into the following categories:

Definition 1 (output node, non-output node, output leaf node, leaf node). A node
ni in a NOT-twig query is classified as an output node if ni does not appear below
any negative edge; otherwise, it is a non-output node. An output node with no positive
children is called a output leaf node. A query node without any children is called a leaf
node.

For the NOT-twig in Fig. 3(b), {A, B, G} and {C, D, E, F ,H} are the sets of output
nodes and non-output nodes. Note that G is the output leaf node and {D, F , G, H} are
the leaf nodes.
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The output elements for a NOT-twig query is defined in the following:

Definition 2 (Output elements for a NOT-twig Query). Given an XML document D
and a twig query with K output nodes, {n1, n2... nk}. A tuple < e1,..., ek > is defined to
be a matching answer for the query iff (1) ei has the same type (tag name) as ni; (2) for
each pair of elements ei and ej in the tuple, ej is a descendant (or child respectively)
element of ei in D if edge(ni, nj) is a AD (or PC respectively) edge; and (3) Any output
node ek (with tag K) satisfies sub-query rooted at node k .

For example, consider the document in Fig. 4(a), we want to match the NOT-twig in
Fig. 4(b). < A1, B1 > is not a matching answer since A1 doesn’t satisfy the sub-query
rooted at A since it has a chid C1 that satisfy the sub-query rooted at C. However, < A2,
B2 > is a matching answer.

For the NOT-twig in Fig. 4(c), both < A1, B1 >, and < A2, B2 > are matching
answers, because A1 is an ancestor of B1, A2 is an ancestor of B2, and all of A1, B1,
A2, B2 satisfies the sub-query matching.

4 Negation Twig Join Algorithm

In this section, we present TwigStackList¬, an algorithm for finding all the matching
answers of a NOT-twig query against an XML document. We should know that although
TwigStackList¬ shares similarity with the TwigStackList algorithm in the previous work
[7], it makes an important extension to handle the NOT-twigs.

4.1 Notation and Data Structures

For each node n in the query twig, a data stream Tn is associated with it. Stream is a
posting list (or inverted list) accessed by a simple iterator. An XML document is parti-
tioned into streams and an additional region coding label is assigned to each element in
the streams. All elements in a stream are of the same tag and ordered by their startPos.
We can only read the elements in a stream once from head to tail. Cursor cn to access
to the current element in Tn.

Our algorithm uses two types of data structure: list and stack. A chain of linked
stacks is used to compactly represent partial results of individual query root-leaf paths.
Lists Ln are used to cache limited number of items in the main memory, when the
algorithm look-ahead read some elements. For each output node, we associate a list Ln

and a stack Sn with it. Since non-output nodes do not contribute to the final solution,
they don’t have stacks associated with them. Therefore, we only maintain a list for each
non-output node. At every point during computation: the nodes in stack Sn and Ln are
guaranteed to lie on a root-leaf path in the database, which means each element is an
ancestor or parent of that following it. Thus, the size of Sn and Ln are bounded by the
maximum depth of the XML document. For each list Ln, we declare an integer variable
pn, as a cursor to point to an element in the list Ln.

Based on the data structure definition, we can now define the concept of head
element:



TwigStackList¬: A Holistic Twig Join Algorithm for Twig Query 255

Definition 3 (head element). In TwigStackList¬, for each node in the query, if list
Ln is not empty, we say that the element indicated by the cursor pn of Ln is the head
element of n. Otherwise, we say that element pointed by cn in the stream Tn is the head
element of n.

In our algorithm, we use the function getElement(n) to get the head element of a query
node n.

4.2 Negation Children Extension

We introduce a new concept: Negation Children Extension (for short NCE), which is
important to determine whether an element likely be involves in the results of a NOT-
twig query.
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Fig. 5. Sub-optimality example

Given an NOT-twig query Q and a dataset D, we say that an element en (tag n) in
XML database D has a Negation Children Extension (for short NCE) based on the
following conditions:

1. If in Q, query node n has no positive PC child or it is not an output node, the
element en has a NCE iff it satisfies the sub-query rooted at n; OR

2. If in Q, query node n has positive PC child ni and n is an output node, there is an
element e′n (with tag n) in the path from en to eni such that e′n is the parent of eni

and eni also has NCE. The checking for the positive AD child, negative PC child
and AD child nodes remains the same as sub-query matching.

The concept is different from sub-query matching method discussed in Section 3.3,
since holistic algorithm cannot guarantee optimality when processing positive PC rela-
tionships. When the nodes are output nodes, we can eliminate the useless intermediate
results using join operation, similar to the method used in TwigStackList. Condition
(2) of NCE is based on this property. However, if the node is non-output nodes, the
positive PC relationship has to be checked before the intermediate results are generated.

For example, consider the XML document and the two queries in Fig. 4(a), (b) and
(c). Observe that (1) For both query 1 and query 2, B1, B2 and D1 has NCE since they
are leaf nodes. (2) For query 1, C1 has NCE , since D1 is a descendant of C1. However,
for query 2, C1 doesn’t have NCE. It is because since D1 is a descendant of C1 in the
XML document, C1 doesn’t satisfy the sub-query rooted at C. (3) For query 1, since C1
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has NCE, we can safely say A1 has no NCE. It is because C1 is a child of A1 and in the
NOT-twig, node C is a negative PC child of node A. A1 doesn’t satisfy the sub-query
rooted at A. (4) For query 2, in the XML document, there are no element with tag C
that has NCE. Also, A1 has a descendent B1 with NCE. Therefore, A1 has NCE. (5)
For both query 1 and query 2, A2 has NCE since A2 has a descendent B2 with NCE,
and does not have any child with the tag C.

In the previous algorithm, both TwigStack and TwigStackList might output useless in-
termediate results when a branching node has at least one PC children. Now, we discuss
the effect of this sub-optimality problem based on the concept PC-Branching node:

Definition 4 (PC-Branching node). In a NOT-twig, a node n is called PC-Branching
node if n has more than one positive children, among which at least one is a PC child.

If a PC-Branching node is also an output node, we call it output PC-Branching node.
Otherwise, it is called non-output PC-Branching node.

When we match a NOT-twig, the sub-optimality is caused by PC-Branching nodes in
the query. If the PC-Branching node is an output node, the algorithm can use the method
in TwigStackList and eliminate the useless intermediate results using join operation.

However, when the PC-Branching node is a non-output node, the useless interme-
diate result may result in false output. For example, the XML document and query are
shown in Fig. 5(a) and (b), the query node B is a non-output PC-Branching node. Ini-
tially, the algorithm scans A1, B1, C1 and D1. Since only the first element of a stream
is read, there is no way for the algorithm to decide if B1 has an child element D2.
If the XML dataset does not has element D2, the previous methods (TwigStack [2] or
TwigStackList [7]) will still assume that B1 has a child with tag D. In this case, the ele-
ment A1 cannot contribute to the final results and is deleted from the potential solution
list. This operation is wrong since we will lose a matching answer A1. Therefore, our
algorithm solve negative PC child nodes differently. For a non-output PC-Branching
node (of the type n), we need to use join operation to find the elements en with NCE
before generating intermediate results. For example, to match the NOT-twig in 5(b),
we search for elements of type B that has an descendent element Ci and a child ele-
ment Di. Since there is no matching element, we then conclude A1 is in the matching
answers.

In our algorithm, we use the function isNonBranching(n) to test if an node n is a
non-output PC-Branching node.

4.3 Algorithm: TwigStackList¬
The main algorithm of TwigStackList¬ (represented in algorithm 2), which computes
answers to a NOT-tiwg, operates in two phases. In the first phase (line 1-12), the indi-
vidual query root-leaf paths are output. In the second phase (line 13), these solutions
are merged-joined to compute the matching answers to the whole query.

getNext(n) is an important procedure call in the main algorithm of TwigStackList¬.
It returns a node n′ (possibly n′ = n). Assume that element en′ is the head element of
node n′. In our algorithm, the element en′ has NCE.

In line 2, if the node is a non-output PC-Branching node, we call TwigStackList
Copy¬. This function is a copy of TwigStackList¬ but matches the sub-query Qn (rooted
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at node n). It uses the same data streams C as the calling function, but terminates when
the getStart(n) >getEnd(Parent(n)). Therefore, we only want to find the elements that
are a potential descendants of the element getElement(Parent(n)). The final results are
inserted to the list of n, Ln.

Algorithm 1. getNext(n)
1: if(isLeaf(n)) return n
2: if(isNonBranching(n)) TwigStackListCopy¬(Qn,getEnd(Parent(n)))
3: foreach node ni in pos children(n) do
4: gi=getNext(ni)
5: if(gi �= ni) return gi

6: Posnmax=maxargni∈children(n)getStartPosnmax

7: Posnmin=maxargni∈children(n)getStartPosnmin

8: while (getEnd(n) < getStart(nmax)) proceed(n)
9: foreach node ni in neg children(n) do

10: while(getStart(ni) <getStart(n)) proceed ni

11: gi=getNext(ni)
12: if(gi �= ni)
13: if(getEnd(ni) <getStart(gi)) return ni

14: else return gi

15: if(is Neg AD Child(ni))
16: while(getElement(n) is the ancestor of getElement(ni)) proceed(n)
17: if (getStart(n)>getStart(nmax)) return nmin

18: if(nmax! = null) MoveStreamToList(n,nmax)
19: foreach node ni in PC neg children(n)) do
20: while(cn.start < getStart(ni)) do
21: if(cn.end>getEnd(g)) Ln.append(cn)
22: advance(Tn)
23: if(there is an element ei in Ln such that ei is the parent of getElement(ni) )
24: delete elements ei and getElement(ni)
25: foreach node ni in PC pos children(n) do
26: if(there is an element ei in list Ln such that ei is the parent of getElement(ni) )
27: if(ni is the only child of n) move the cursor pn of list Ln to point to ei

28: else return ni

29: return n

Line 3-8 check for positive PC child nodes for output nodes (details discussed in
TwigStackList). Line 9-15 check for negative child nodes of n. We recursively call
for every ni ∈ neg children(n). If any returned node gi is not ni , we return gi, if
getStart(gi)<getEnd(ni) (line 9). Otherwise, if the return value is ni, we proceed(ni)
in the main algorithm and call getNext(n) again. If gi=ni and the head element of node
n is the ancestor of the head element of node ni (ni is a negative AD child of n in the
NOT-twig), the algorithm concludes the head element of n doesn’t appear in the final
answers(line 16).

If node n has at least one positive child, line 18 calls MoveStreamToList to push
elements en into the list of node n. Then, line 19-24 check the negative PC relationship
in condition (iv) of NCE. We push the potential parent of element eni into the list of n
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(line 21). In line 20-21, we make sure the elements are nested from top to end in the
list. If we can find an element that is a negative child of an element in the list Ln, the
parent element is deleted from the list (line 24). Finally, line 25-28 check the condition
(ii) of NCE.

Now we discuss the main algorithm of TwigStackList¬ (in Algorithm 2). First of all,
line 2 calls getNext to identify the next element to be processed. If returned node is non-
output nodes, the algorithm just proceed the node in line 12. Otherwise, the algorithm
check the output nodes the same way as TwigStackList.

Example 1. Consider the XML data and query shown in Fig. 4(a) and (b) again. Ini-
tially, the stream cursors are pointed to A1, B1, C1 and D1. In the first call of get-
Next(A), the element A1 is first pushed into the list LA (in line 18 of getNext), then
deleted from the list (in line 24 of getNext), since C1 has NCE and is a child of A1.
After the second call of getNext, the cursors of A and B are forwarded to A2, B2, and
the cursors of C and D are pointing to the end of the stream. The following steps push
A2 to stack and output the intermediate result < A2,B2 >. For this query, no merging
operation is needed.

Algorithm 2. TwigStackList¬
1: while(¬ end( )) do
2: nact=getNext(root)
3: if(!nact.isNonOutputNode( ))
4: if(¬ isRoot(nact)) cleanParentStack(nact,getStart(nact))
5: if(isRoot(nact) ∨¬ empty(Sparent(nact)))
6: clearSelfStack(nact,getEnd(nact))
7: moveToStack(nact,Snact ,pointertotop(Sparent(nact))
8: if(isOutputleaf(nact))
9: showSolutionsWithBlocking(Snact ,1)

10: pop(Snact )
11: else proceed(nact)
12: else proceed(nact)
13: mergeAllPathSolutions( )

Example 2. We now consider the same XML data, but change the query to Fig. 4(c).
Initially, the stream cursors points to A1, B1, C1 and D1. In the first call of getNext(A),
the node C is returned. It is because C1 is first pushed into the list (in line 18 of getNext),
then deleted from the list (in line 24 of getNext) since leaf node D1 is a child of C1 in the
XML data. We advance the stream of C and reach the end of the stream. Therefore, in
the next call of getNext, the element A1 is pushed to stack and output the path solution
< A1,B1 >. We call getNext again to advance stream A, and push element A2 into
stack SA. The path < A2,B2 > is then output by the algorithm.

4.4 Analysis of TwigStackList¬
In the section, we show the correctness of our algorithm and analyze its efficiency. Some
proofs are omitted here due to space limitation.
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Lemma 1. For an arbitrary node n in the NOT-twig query we have getNext(n)=n′.
Then the following properties hold:

1. n′ has the NCE
2. Either (a) n=n’ or (b) parent(n) does not have NCE due to the node n′.

Lemma 2. Suppose getNext(n)=n′ returns a non-output query node. The head element
does not contribute to any matching solutions, since it is not an output node. The Algo-
rithm just proceed the node.

Lemma 3. Any element e that is inserted to stack Sn satisfy the not-predicates of the
query. That is, if n has a negative descendant n′ in query, then there is no element en′

in stream Tn′ such that en′ is a descendant of en. If element e has a negative PC child
em (node type m. m is the negative PC child of node n in the query), e is deleted in line
24 of algorithm 1.

Lemma 4. In TwigStackList¬, when any element e is popped from stack , e is guaran-
teed not to participate a new solution any longer.

Theorem 1. Given a NOT-twig Q and an XML database D. Algorithm TwigStackList¬
correctly returns all matching answers for Q on D.

Proof. Using Lemma 2, we know that when getNext returns a query node n in getNext,
if the stack is empty, the head element en does not contribute to any matching solutions.
Thus, any element in the ancestors of n that has positive child en with NCE is returned
by the getNext before en. If n is negative child, we guarantee that each element en with
NCE in the list Ln is checked to remove their corresponding parent elements by using
lemma 3. Furthermore, with lemma 4, we can maintain that, for each node n in the
query, the elements that involve in the root-leaf path solution are all in the stack Sn.
Finally, each time that n = getNext(root) is an output leaf node, we output all solution
for en (line 9 of TwigStackList¬).

We now analyze the optimality of TwigStackList¬. For the normal-twig join algorithms,
TwigStack [2] is optimal for AD only twig patterns; TwigStackList [7] although identi-
fies a larger optimal class than TwigStack, can not guarantee optimality for PC edges
in non-branching node. In [3], the author proved that it is difficult to find an optimal
normal-twig pattern matching method, since we cannot determine only from the first
elements of various streams if any first element is in the match to a given twig pattern.

However, our algorithm can identify a larger optimal class than TwigStackList for
NOT-twigs. In particular, the optimality of TwigStackList¬ allows the existence of
parent-child relationship in more than one negative branching edges, as illustrated
below.

For example, we want to match the NOT-twig in Fig. 6(c) to the dataset in
Fig. 6(a). If the naı̈ve method uses TwigStackList to solve the problem, we removes
the not-predicates and change the query to Fig. 6(b). In order to solve it, TwigStackList
first scans A1, C1 and B1, and pushes element A1, A2 and A3 into the list LA. How-
ever, since we can only read the head of a stream at a time, when we advance B, we
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could not decide whether A1 has a child tagged with C. Therefore, this algorithm will
output one useless solution < A1,B1 >.

If we use TwigStackList¬ to directly match query 2 (in Fig. 6(c)). We first push
element A1, A2 and A3 into the list LA. Then, we can immediately identify that A3
has a child C1. Since there is an not-predicate on edge(A,C), A3 is removed from the
list. We advance C and since C2 is a child of A2, A2 is deleted from LA. We advance
C again, since A1 doesn’t have any child element with the tag name C. We output the
path < A1,B1 > as output.

We use the similar method to match the NOT-twig in Fig. 6(d). After we push A1,
A2 and A3 into the stack LA, we can identify that A1 has a child B1. Since there is an
not-predicate on edge(A, C), A1 is removed from the list. B is advanced to B2. Since
it is a child of A2, A2 is deleted from the list. B is advanced to B3, which is a child of
A3, A3 is also deleted from the list. Therefore, there is no matching answers to query 3.

Thus, this example shows that our algorithm may guarantee the optimality for
queries with parent-child relationship negative branching edge.

Theorem 2. Consider an XML database D and an NOT-twig query Q without
non-output PC-Branching nodes. The worst case I/O complexity of TwigStackList¬
is linear in the sum of the sizes of input and output lists. The worst-case space com-
plexity of this algorithm is that the number of nodes in Q times the length of the longest
path in D.

5 Experimental Evaluation

We implements two naive twig join algorithms, naı̈ve-TwigStack (for short NTS) and
naı̈ve-TwigStackList (for short NTSL), to be compared with our algorithm, twigstack
list¬. The naive methods use the straightforward query decomposition approach. This
approach first decomposes the NOT-twig into queries without not-predicates. The de-
composed queries are then matched individually (using TwigStack [2] or TwigStackList
[7], respectively) and the NOT-twig solution is calculated by the set-difference of the
decomposed query results.

In our experiment, we use the following two metrics to compare the performance of
the three algorithms.
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– Intermediate path solutions: This metric measures the total number of interme-
diate path solutions. For the naı̈ve methods, the total number is the sum of the
intermediate results of all the decomposed queries.

– Execution time: We calculate this metric using the average time elapsed to answer
a query with ten individual runs.

5.1 Experimental Setup

We use JDK 1.4 with the file system as a simple storage engine. All experiments run
on a 1.7G Pentium IV processor with 768MB of main memory and 2GB quota of disk
space, running windows XP system. We used three real-world and synthetic data sets
for our experiments. The first one is a real dataset: TreeBank [11]. The file size is 82M
bytes with 2.4 million nodes. The second one is the well-known benchmark data: XMark
[14]. The size of file is 115M bytes with factor 1.0. The third one is a Random data set.
We generated random uniformly distributed data trees using two parameters: fan-out,
depth. We use seven different labels (tag: a, b, c, d, e, f and g) to generate the data sets.
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We tested five twig queries (in Fig. 7) in TreeBank, and three twig queries (in Fig. 8)
in XMark and Random data set separately. The queries give a comprehensive compari-
son of the three algorithms, since the queries have different structures and combinations
of positive and negative edges.

5.2 Performance Study

Fig. 9 shows the results on execution time in the three datasets. We can observe from
the three figures that TwigStackList¬ is more efficient than the two naı̈ve methods for all
the queries. It is because the naı̈ve methods have to match more than one decomposed
queries and generate more intermediate results.
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An interesting observation is made when we test the queries in XMark database.
Query Q(f), Q(g), Q(h) have the same query nodes and structure, but the number of not-
predicates is different. We can see from Fig. 9(b) that for TwigStackList¬, the time to
match the three queries is almost constant. However, the results for NTS and NTSL show
that when we increase the number of not-predicate, the total execution time increases
linearly. It is because as we increase the number of not-predicates, we are increasing
the number of decomposed queries that the naı̈ve method need to match.

For each NOT-twig, the number of decomposed queries and the the intermediate
results are listed in Table 1. The last column shows the number of path solutions in
the matching answers. The results show that TwigStackList¬ is sub-optimal if there are
PC-Branching nodes in the queriy, e.g PP in Q(b), V P in Q(d), a in Q(i).

In Table 1, we can see that the number of intermediate results output by our
TwigStackList¬ is always less than the results output by NTS and NTSL. It is because
when we output the intermediate results in TwigStackList¬, we already considered the
not-predicates. Thus, the number of useless intermediate paths is largely reduced.

Therefore, according to the experimental results, we can conclude that our new
algorithm TwigStackList¬ could be used to evaluate twig pattern with not-predicates
because it has obvious performance advantage over the straightforward approaches:
NTS and NTSL. TwigStackList¬ guarantees the I/O optimality for a large query
class.

Table 1. The number of intermediate path solutions

Query Dataset Decomposed
Queries

NTS NTSL TwigStackList¬ Useful Solutions

Q(a) Treebank 2 31197 31197 31143 31143
Q(b) Treebank 2 64053 61646 60356 58405
Q(c) Treebank 3 355981 355981 14484 14484
Q(d) Treebank 3 78857 78675 1789 1508
Q(e) Treebank 3 215595 209652 78326 67312
Q(f) XMark 2 181066 171392 22870 21050
Q(g) XMark 3 228009 224027 12057 12057
Q(h) XMark 4 308708 306602 7476 7476
Q(i) Random 3 152 114 58 36
Q(j) Random 3 1701 1461 138 138
Q(k) Random 4 1731 1120 837 436
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6 Conclusion and Future Work

In this paper, we proposed a new holistic twig join algorithm, called TwigStackList¬,
to process NOT-twig query. Although holistic twig join has been proposed to solve
normal-twig patterns, applying it to NOT-twig matching is nontrivial. We developed
a new concept Negation Children Extension to determine whether an element is in the
results of a NOT-twig query. We also make the contribution by identifying a large query
class to guarantee I/O optimality for TwigStackList¬. The experimental results show
that our algorithm is more effective and efficient than the naı̈ve method.

In the future, we will improve the algorithm based on the following two issues: one
is to design an efficient index scheme that might change the format of the input data.
Another possible issue to improve our algorithm is to identify a larger optimal query
class for NOT-twig matching.
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Abstract. Upon performing XPath queries on XML documents that are stored 
in relational databases, the execution of path expressions with steps of the star 
operator ‘*’, which can be mapped to arbitrary names of either elements or 
attributes, has not been treated seriously in the literature. This paper presents 
schemes of acquiring path identifiers of query expressions that have steps of 
star operators in addition to steps of element names and attribute names. The 
contribution of this paper can be summarized as follows. First, we show that 
path identifiers of “/@*” and “//@*” can be obtained from the relation Path that 
holds path identifiers of path expressions in XML documents; by extending the 
relation Path, path identifiers of “//*” can be obtained from the extended 
relation; and some of “/*”s can be handled with the same way as “//*”. Second, 
to obtain path identifiers of “/*” from the extended relation Path, we propose a 
new reserved character ‘$’ that extends the string-pattern of the LIKE operator 
of SQL. The reserved character ‘$’ followed by the restricting character string 
‘[^patterns]’ matches arbitrary number of arbitrary characters except for the 
characters listed in the restricting character string. 

1   Introduction 

XML [1] has been evolved as a standard format for expressing data, data exchanges, 
and data searching over Internet. A number of query languages for XML documents, 
such as XML-QL [2], XQL [3], XPath [4], and XQuery [5] have been proposed by 
the World Wide Web Consortium. As far as database management systems are 
concerned, the research on XML can be classified into two groups: one is publishing 
relational data as XML [8], [9] and the other is storing XML documents on database 
management systems and retrieving XML documents by querying the stored 
documents [6], [7], [10], [11], [12]. The latter can be classified further depending on 
whether the stored documents follow some specific DTD [13] or XML Schema [14]. 
This paper is concerned with publishing XML documents by issuing XPath queries on 
the stored XML documents that do not follow any DTD or XML Schema. In this 
                                                           
* This work was supported by KOSEF Grant (R01-2000-000-00403-0). 
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context, the input XML documents are shredded into relations, and users can view the 
XML documents as XML trees and issue XPath queries against the XML trees. The 
system then translates XPath queries into SQL queries over those relations. 

XRel [10], [11] introduced the concept of the path identifier as auxiliary retrieval 
information in addition to the stored XML documents. A path identifier is assigned to 
each path expression that represents a path in the XML tree starting at the root 
element node and ending at a specific node corresponding to an element or attribute. 
The path-based approach involves storing pairs of path expressions and path 
identifiers in a separate relation named Path. The processing of XPath queries using 
path identifiers reduces the number of joins performed on the relations that stores the 
actual data of the XML tree since it eliminates the cost of finding the intermediate 
element nodes on the path. In addition, XRel retrieval has the advantage that its 
performance is independent of the path length specified in the query expression. The 
work reported with XTABLES [12], [15] has also adopted the concept of a path 
identifier. 

XPath queries can involve the star operator ‘*’ that can be mapped to arbitrary 
names of either elements or attributes in conjunction with the delimiters ‘/’ or ‘//’. The 
possible combinations include “/*” that maps arbitrary child element names, “//*” that 
maps arbitrary descendant element names, “/@*” that maps arbitrary child attribute 
names, and “//@*” that maps arbitrary descendant attribute names. XRel recommend-
ded the following two-phase procedure for the efficient processing of XPath 
expressions containing star operators. In the first phase, once a star operator is found 
in an expression, relation Path is used to find the path identifiers of the path up to and 
excluding the first step of the star operator in the expression. In the second phase, this 
step and all the remaining steps in the expression are supposed to be translated into 
join operations on the related relations. However, this approach does not take full 
advantage of using the path identifiers.  

Chan et al. [21] introduced the layer axis as a scheme of minimizing star operators 
and also proposed its implementation by utilizing levels and heights of the nodes in 
the XML trees corresponding to the input XML documents. Although this scheme 
was proposed for the processing of star operators on any context node of the XML 
tree, it fails to find path identifiers for the whole XPath query. For example, for the 
XPath query “//a/b//*/*/e/f”, the layer axis has the benefit of processing a partial  
path for “//*/*/e”. The nodes that satisfy the path identifiers can work as context 
nodes for further processing of XQuery queries as in the XPath accelerator [7] and  
Chan et al. [21]. 

In this paper, steps in XPath expressions are classified into two types: name-steps 
and star-steps. Name-steps are the steps that specify either specific element names or 
attribute names (possibly prefixed with @); star-steps are the steps that specify the 
star operator ‘*’ that matches any element name or attribute name (possibly prefixed 
with @). We consider ‘/’ and ‘//’ as the only delimiters of steps for XPath 
expressions. Given that we have eight combinations of delimiters and steps: “/name”, 
“//name”, “/@name”, “//@name”, “/*”, “//*”, “/@*”, and “//@*”. The goal of this 
paper is to find path identifiers of path expressions that are linear paths and are 
composed of the above eight combinations of delimiters and steps. Query expressions 
of twig patterns and other axes such as sibling, ancestor, etc are not in the scope of 
this paper.  
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The contribution of this paper can be summarized as follows. First, using relation 
Path, we suggest a method of retrieving path identifiers of “/@*” and “//@*” in query 
expressions, and by extending relation Path, we introduce a scheme that finds path 
identifiers of “//*” from the extended relation and show that some “/*”s can be 
handled the same way as “//*”s. Second, for the string match operation LIKE of SQL, 
we propose a new reserved character “$” that enables retrieving path identifiers of 
“/*” in query expressions from the extended relation Path. The reserved character “$” 
must be followed by some restricting characters and can be matched by any number 
of characters that are not listed in the restricting character set.  

In this paper, we consider two different modes of XPath query evaluation [15]: the 
select mode and the reconstruct mode. The select mode (i.e., “node-selecting XPath 
queries” in [21]) takes the information of elements or attributes that satisfy the queries 
from the related relations, while the reconstruct mode (i.e., “standard XPath queries” 
in [21]) generates an XML document with the sub-trees that have as their roots the 
elements or attributes that satisfy the queries.  

The rest of this paper is organized as follows. In Section 2, we describe the 
database schemas that are used in this paper for storing XML documents. In Section 
3, we introduce four new schemes, denoted as PE, POE, PRE, and PME, for finding 
path identifiers of query expressions with star operators. We ascertain the effect of 
finding path identifiers for different lengths of steps in Section 4. In Section 5, our 
new reserved character ‘$’ for the string-pattern of the LIKE operator of SQL is 
introduced and we conclude this paper in Section 6. 

2   Database Schema 

For storing contents of input XML documents and the search information on them, 
our database schema consist of the following four relations: Doc_Name, Path, Edge, 
and Element. Fig. 1 illustrates three hypothetical input XML documents. 

The XML tree [11] of an XML document is an ordered tree of nodes and edges, 
where nodes of the tree represent root node, element nodes, attribute nodes, text nodes 
of the document, edges connecting the root node to the element node for the 
document element, element nodes to their child element nodes, their child text nodes  
 

<A>
   <B C=”CCC”> 
     <E> EEE </E> 
     BBB 
   </B> 
   <G>GGG</G> 
   AAA 
</A>

<X>
   <Y> YYY </Y> 
   XXX 
</X>

<A>
   <G> 
      <H M=”MMM”> 
         <N> 
            <K> KKK </K> 
            NNN 
         </N> 
         HHH 
      </H> 
      ggg 
   </G> 
   <B C=”CCC” D=”DDD”/>
   aaa 
</A>

(a) sample1.xml (b) sample2.xml (c) sample3.xml  

Fig. 1. Examples of input XML documents 
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Fig. 2. XML trees 

DOCID DOCNAME
1 sample1 
2 sample2 
3 sample3  

PATHID PATHEXP PATHID PATHEXP 
1 #/A 7 #/X#/Y
2 #/A#/B 8 #/A#/G#/H
3 #/A#/B#/@C 9 #/A#/G#/H#/@M 
4 #/A#/B#/E 10 #/A#/G#/H#/N
5 #/A#/G 11 #/A#/G#/H#/N#/K
6 #/X 12 #/A#/B#/@D 

 

  Fig. 3. Relation Doc_Name  

 

                           Fig. 4. Relation Path  
 

and the attribute nodes for their attributes. Edges of each node that connect child 
nodes of the node have orders from left to right according to the order of appearance 
of elements or texts for the child nodes within the document. Every node in an XML 
tree except for the attribute nodes has its own node identifier for its identification 
information. Serial numbers starting from 0 are allocated to nodes of the root, 
elements and texts for their node identifiers while traversing the XML tree in the 
depth first order. Fig. 2 illustrates XML trees for the XML documents of Fig. 1. The 
number on top of each node in Fig. 2 signifies the node identifier allocated to that 
node. Note that attribute nodes having attribute names and attribute values, as 
properties of their enclosing element nodes, have the same node identifiers as their 
enclosing element nodes.  

For each input XML document, one record of <docid, docname> pair is stored in 
relation Doc_Name. Docid is the document identifier that is allocated to the document 
and docname represents the name of the document, which is the file name of the input 
XML document in our current implementation. The document identifier starts from 1 
and is incremented by one whenever a new XML document is inserted. Fig. 3 
illustrates the contents of relation Doc_Name for the three XML documents in Fig. 1. 

From the XML tree of every input XML document, for all the paths starting from 
the root element node to arbitrary element node or attribute node, relation Path stores 
<pathid, pathexp> pair for every different path expression, where pathid means the 
path identifier and pathexp signifies the path expression. Serial numbers starting from 
1 are allocated to new paths upon storing path expressions in relation Path. Path 
expressions in relation Path have “#/” right before every element name and “#/@” 
right before every attribute name [11]. Fig. 4 illustrates the contents of relation Path 
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for the XML documents in Fig. 1. It has 12 records. By using path identifiers, 
multiple join operations and/or recursive queries are replaced by a SQL string match 
operation using the XPath expression string, after applying the replacement function 
f% of XRel, against the pathexp attribute in relation Path. The function f% replaces 
occurrences of ‘/’ in the input string by “#/” and occurrences of ‘//’ by “#%/”.  

For each node in the XML tree, relation Edge stores a record that consists of  
<docid, id, parent_id, end_desc_id, pathid, type, value, …> [12][16]. In the 
information, docid represents the document identifier of the document to which the 
node belongs, id means the node identifier of the node, parent_id signifies the node 
identifier of the parent node of the node, end_desc_id means the node identifier of the 
last descendant node such that it is the maximum number among the node identifier of 
the node and the node identifiers of the descendant nodes of the node, pathid 
identifies the path identifier of the node, type represents the type of the node, value 
holds element name, attribute name, attribute value, or string-value of the text 
depending on the type of the node. Other database attributes in relation Edge 
represent orders among sibling elements and sibling attributes. Since queries using 
these fields are not related to the topic of this paper, discussions about them are not 
treated in this paper. Fig. 5 illustrates some records of relation Edge. It has 31 records 
for the XML documents in Fig. 1. 

Fig. 5. Relation Edge 

To expedite the retrieval of root element nodes that satisfy XPath queries, we put 
relation Element that keeps the information of element nodes of XML trees. 
Therefore, relation Element is a subset of relation Edge and does not have the 
database attribute type. Relation Element for the XML documents of Fig. 1 has 12 
records. 

3   Processing Star-Steps 

The replacement function f% of XRel can be applied only to the name-steps. Note 
that the function f% replaces occurrences of ‘/’ in the input string by “#/” and 
occurrences of ‘//’ by “#%/”. This section classifies the star-steps into two groups: 
those that can be performed on relation Path and those that need an additional 
relation. 

DOCID ID PARENT_ID END_DESC_ID PATHID TYPE VALUE … 

1 1 -1 8 1 ELEM A … 
1 2 1 5 2 ELEM B … 
1 2 1 5 3 AT_N C … 
1 2 1 5 3 AT_V CCC … 
1 3 2 4 4 ELEM E … 
1 4 3 4 4 TEXT EEE … 
1 5 2 5 2 TEXT BBB … 

… … … … … … … … 
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3.1   Path Identifiers of Star-Steps 

We first identify the characteristics of partial paths that can be converted into the 
string match operation of SQL queries. 

Observation 1. For the leading consecutive n + 1 (n  0) steps of XPath query 
expressions, assume that path identifiers of the leading partial paths of n steps can be 
found from relation Path.  

(1) If the n + 1st step is “//*”, the step can be replaced by “#/%” in the LIKE 
clause of SQL query and then the replaced one is applied either to all path 
expressions in relation Path whose last steps are elements if the step “//*” is 
the last step in the query expressions or to all path expressions in relation 
Path otherwise. 

(2) If the n + 1st step is “/@*” (and “//@*”), the step can be replaced by 
“#/@%” (and “#%/@%”, respectively) in the LIKE clause of SQL query 
and then be applied against all path expressions in relation Path.  

According to Observation 1, to find path identifiers of the query expressions with the 
star-step “//*”, we have modified relation Path to have an additional database 
attribute, path_type, such that path expressions having elements as their last steps 
hold 0 and those having attributes as their last steps hold 1 for the database attribute. 
Fig. 6 illustrates the contents of relation Path augmented by the database attribute 
path_type to relation Path of Fig. 4. In the rest of this paper, relation Path means 
relation Path augmented by the database attribute path_type. 

PATHID Path_Type PATHEXP PATHID Path_Type PATHEXP 
1 0 #/A 7 0 #/X#/Y 
2 0 #/A#/B 8 0 #/A#/G#/H 
3 1 #/A#/B#/@C 9 1 #/A#/G#/H#/@M 
4 0 #/A#/B#/E 10 0 #/A#/G#/H#/N 
5 0 #/A#/G 11 0 #/A#/G#/H#/N#/K 
6 0 #/X 12 1 #/A#/B#/@D 

            Fig. 6. Relation Path augmented by path_type 

For example, in the case of the XPath query expression “/A//*/F/@V”, path 
identifiers of it can be obtained from relation Path by the SQL query “pathexp like 
‘#/A#/%#/F#/@V’”. However, in the case of “/A//*”, since the last step is “//*”, the 
SQL query should be “pathexp like ‘#/A#/%’ and path_type = 0”. 

Observation 2. In the XPath query expressions, for the star partial path Wn 

consisting of n (n > 0) consecutive star-steps of elements, let us denote Wn  as (i) ESn 
if all steps in Wn are “/*”, (ii) DSn if at least one step in Wn is “//*” and at least one 
step in Wn is “/*”, and (iii) FDSn if all steps in Wn are “//*”.1 In the XPath query 
expressions, the following formulas hold.  

                                                           
1

 ES, DS, and FDS stand for Exact_Star, Descendant_Star, and Full_Descendant_Star, 
respectively. 
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(1) DSn = FDSn.  
(2) ESn //name = DSn /name = DSn //name = FDSn //name = FDSn /name.  
(3) ESn //@name = DSn /@name = DSn //@name = FDSn //@name = FDSn 

/@name.  
(4) ESn //@* = DSn /@* = DSn //@* = FDSn //@* = FDSn /@*.  
(5) ESn-1 FDS1 = DSn, where n > 1. 

Even though Observation 1 does not present any mapping method for the star-step 
“/*”, Observations 2-1 ~ 2-4 illustrate that some “/*”s have the same meaning as 
“//*”. For example, the query expression “/A/*//*/B/C/*/*//G/*//@*” can be modified 
into “/A//*//*/B/C//*//*/G//*/@*” such that, by applying f% to the name-steps and 
Observation 1 to the star-steps, it can be translated into the SQL query “pathexp like 
‘#/A#/%#/%#/B#/C#/%#/%#/G#/%#/@%’”. Observation 2-5 illustrates that DSn on 
query expressions has the same meaning as the concatenation of ESn-1 and FDS1. 

Observation 3. Let’s denote a partial path of a query expression that consists of n (n 
> 0) consecutive “/*”s as ESn. Suppose that the immediately preceding step (if any) of 
ESn is not a star-step and the immediately following step (if any) of ESn is not a star-
step of element. The schemes of Observation 2 do not specify how to convert “/*” in 
ESn into “//*” if ESn is either the last partial path in the query expression or 
immediately followed by either “/name”, “/@name”, or “/@*”. 

Observation 3 introduces some patterns of “/*”s that cannot be converted into “//*”s. 
Consider the query expression “/*//*/B/*/*/E//G/*//*/K/*”. Both the leading partial 
path “/*//*” and the partial path “/*//*” between “/G” and “/K” of the expression can 
be converted into “//*//*” according to Observation 2-1. However, both the partial 
path “/*/*” between “/B” and “/E”, and the partial path “/*” after “/K” belong to the 
partial paths that are mentioned in Observation 3, that is, the “/*”s in the partial paths 
cannot be converted into “//*”. 

We denote partial paths that consist of some consecutive “/*”s that cannot be 
converted into the same number of consecutive “//*”s as StringMatch_improper(SMI, 
in short) partial paths and all other partial paths as StringMatch_proper(SMP, in 
short) partial paths. The name SMP partial paths come from the fact that they can be 
converted into the string match SQL queries according to the replacement function f% 
and Observations 1 and 2. In the above query expression, partial paths “/*//*/B” and 
“/E//G/*//*/K” are SMP partial paths and partial paths “/*/*” between “/B” and “/E”, 
and “/*” after “/K” are SMI partial paths.  

We denote the scheme that finds path identifiers of the leading SMP partial paths 
(if any) in query expressions from relation Path based on both f% and Observations 1 
and 2, and then processes the remaining steps by the join operations on relation 
Element or Edge (depending on the last step of the expressions) as scheme PE 
(acronym of Path and Element). 

3.2   SMI Partial Paths 

XPath query expressions can be decomposed into one leading SMP partial path (if 
any) and the rest (if any) that has some SMI partial paths. The path identifiers of the 
leading SMP partial path can be obtained from relation Path. The rest of the query 
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expressions can be viewed as either a sequence of steps with the parent/child and 
ancestor/descendant relationships or a sequence of <SMI partial path, SMP partial 
path> pairs. Based on the former view, we introduce two schemes POE and PRE; and 
based on the latter view a scheme PME is introduced in this section. For the 
explanation of these three schemes, we propose the notion of the XML path tree that 
is explained next.  

For the set of path expressions of one XML document, if elements and attributes of 
each path expression are represented as nodes and parent/child relationships between 
steps of each path expression are represented as edges, they constitute a tree. 
However, their representation for the set of path expressions of all the stored XML 
documents might constitute a forest. In the forest, once a virtual node is put and edges 
are connected from the virtual node to every root node of the forest, the forest 
becomes a tree. We denote the tree as an XML path tree. Except for the root node of 
the XML path tree, each node in the tree has its own name of either element or 
attribute and the path identifier that corresponds to its path expression. The root node 
of the XML path tree has null as its name and 0 as its path identifier. Fig. 7 illustrates 
the XML path tree for the XML documents in Fig. 1. In Fig. 7, the number marked 
above each node shows the path identifier of the node and the string within each node 
represents either element name or attribute name of the node. 
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                      Fig. 7. XML path tree                                  Fig. 8. MXL path_range tree 

3.2.1   Scheme POE 
Scheme POE (acronym of Path, OneStep, and Element) is the same as scheme PE 
except for using additional relation OneStep for finding path identifiers of leading 
steps with the parent/child relationship only in the remaining steps of scheme PE. 
Relation OneStep stores information of every edge in the XML path tree. The 
information of each edge is kept from the viewpoint of the child node of the edge and 
consists of <pathID, parent_pathID, path_type, name>. The database attributes 
pathID, parent_pathID, path_type, and name represent the pathID of the child node, 
the pathID of the parent node, the type of the child node (0 for the element node and 1 
for the attribute node), and the name of the child node, respectively. The number of 
entries in relation OneStep is the same as that of relation Path.  

Once path identifiers of some steps (possibly null) are given and the path 
expression is extended by a single step with the parent/child relationship (i.e., the 
delimiter ‘/’) such as “/name”, “/*”, “/@name”, and “/@*”, the path identifiers of the 
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extended path expression can be found at relation OneStep. In that, the path_type of 
the step has to be specified in the SQL query. Relation OneStep cannot be used for the 
steps with the ancestor/descendant relationships (i.e., the delimiter ‘//’). Nevertheless, 
since some delimiters of ‘//’ can be transformed into ‘/’ according to Observation 2, 
some steps with delimiters ‘//’, after converting their delimiters into ‘/’, can be 
processed at relation OneStep.  

3.2.2   Scheme PRE 
The XML path tree keeps the information of the parent/child relationships among 
nodes in the tree. In addition to that, to provide the ancestor/descendant relationships 
among nodes in the XML path tree, each node in the XML path tree can be extended 
to have a range. The range of each node consists of <nodeID, end_desc_nodeID> 
pair. The nodeID is the node identifier that is unique to each node and is assigned to 
each node of the tree while searching nodes of the tree by the depth-first search order. 
The root node of the tree is assigned 0 as its node identifier. The end_desc_nodeID of 
each node is the maximum value between the node identifier of the node and the node 
identifiers of the descendant nodes (if any) of the node. With the provisions of the 
range of each node, the descendant nodes of the node are those whose node identifiers 
are greater than the nodeID of the range and also less than or equal to the 
end_desc_nodeID of the range. The extended tree is denoted as the XML path_range 
tree. Fig. 8 illustrates the XML path_range tree for the XML path tree of Fig. 7. 

Scheme PRE (acronym of Path, OneStep_Range, and Element) is the same as 
scheme PE except for using additional relation OneStep_Range for finding path 
identifiers of the whole remaining steps. Relation OneStep_Range stores information 
of every edge in the XML path_range tree. Like relation OneStep, the information of 
each edge of the XML path_range tree is recorded in relation OneStep_Range from 
the viewpoint of the child node of the edge and consists of <pathID, parent_pathID, 
path_type, name, nodeID, end_desc_nodeID>. The number of entries in relation 
OneStep_Range is the same as that of relation Path. 

3.2.3   Scheme PME 
For each node in the XML path tree, there could be a set of element nodes that are 
reachable from the node by walking down one or more star-steps with the delimiter 
‘/’. We call the context node and the set of element nodes reachable with k star-steps 
from the node the ground node and the root nodes of k-StepSubtrees of the ground 
node, respectively. The root nodes of k-StepSubtrees of a ground node might 
formulate some sub-trees of the XML path tree. For example, in the XML path tree of 
Fig. 7, if the element node ‘A’ is taken as a ground node, the number k can be 1, 2, 3, 
or 4. Fig. 9 illustrates k-StepSubtrees of the ground node ‘A’ with 2 as the value of k. 
In the Fig., the thick-circled nodes within the inner box represent the root nodes of the 
k-StepSubtrees and the thick-circled and shaded nodes below the box represent 
descendant nodes of them. 

For each non-leaf node in the XML path tree, having it as a ground node, for every 
k that is between 1 and the height of the ground node in the tree, and for every node in 
the set of nodes in the sub-trees of k-StepSubtrees, relation MultiStep_Subtree  
keeps the information of <ground_pathID, star_count, target_pathID, path_type,  
 



 Efficient Schemes of Executing Star Operators in XPath Query Expressions 273 

 

Fig. 9. The k-StepSubtrees of node ‘A’ with k = 2 

from_root_path>. In that, ground_pathID, star_count, target_pathID, path_type, and 
from_root_path mean the path identifier of the ground node, the number k, the path 
identifier of the node that is reached, the type of the node that is reached, and the 
partial path to get to the node from some root of the k-StepSubtrees of the ground 
node, respectively. For example, the k-StepSubtrees of Fig. 9 can be mapped into 
relation MultiStep_Subtree as five entries. All the entries have 1 as ground_pathID 
and 2 as star_count. Relation MultiStep_Subtree for the XML path tree of Fig. 7 has 
60 entries. Among them, 50% of them are entries with ground_pathID of 0. 

Scheme PME (acronym of Path, MultiStep_Subtree, and Element) is the same as 
scheme PE except for using additional relation MultiStep_Subtree for finding path 
identifiers of the whole remaining steps. In scheme PME, XPath query expressions 
are decomposed into one SMP partial path and a sequence of <SMI partial path, SMP 
partial path> pairs. By using relation MultiStep_Subtree, the acquisition of path 
identifiers for every <SMI partial path, SMP partial path> pair based on the given 
ground path identifier can be done as follows. First, for the SMI partial path, when the 
number of the star steps is k, set “star_count = k” in the SQL query. Second, based on 
the Observations 1 and 2, the string match SQL query for the SMP partial path can be 
processed exactly the same way as relation Path. Accordingly, if the last step in the 
SMP partial path is “//*”, “path_type = 0” has to be given into the SQL query.  

4   Performance Evaluation 

We have implemented the schemes in this paper and carried out performance 
experiments over various XPath query expressions. We used Intel Pentium 4 CPU of 
1.70 GHz with 768 MB of main memory as the hardware specification, Windows 
2000 Server as the operating system, and Oracle 9i[18] as the database management 
system. We utilized Java as the system development language and JDBC as the 
connection interface between XPath query processing system and the database 
management system.  

For each XPath query, two modes of execution, both the select mode and the 
reconstruct mode, were considered such that for each mode the query was converted 
into an SQL query and then its performance was evaluated. Each query has been 
executed five times and the average value of the execution times has been taken. To 
minimize effects of the previous queries to the next query, several queries have been 
executed in some mixed way. In this experiment, to clarify differences in the 
execution time among the schemes for the same XPath query, the time for parsing 



274 Y.C. Park et al. 

XPath queries and converting them into SQL queries, the time for binding result 
columns of result tuples into host variables, and the time for displaying host variables 
on the screen have been excluded from the measurement of the query execution time. 
Instead, we measured only the times for executing the following two statements: “rs = 
stmt.executeQuery(SQL_stmt);” that executes the SQL statement that is already 
created; and “while (rs.next()) {count++;}” that fetches all the result tuples. 

We stored 37 plays of Shakespeare [17] in XML documents into the relations of 
this paper after parsing them using Oracle XML Development Kit [19]. The 
documents take 7.6 MB, have 179,689 elements, no attribute, and 147,442 texts in 
total. In the documents, the numbers of some elements are extremely larger than those 
of other elements. For example, the number of element LINE is 107,833; the number 
of element SPEAKER is 31,081; and the number of element SPEECH is 31,028. It 
took about 16 minutes to parse the whole XML documents and store them into the 
relations. Relations Doc_Name, Element, Edge, Path, Onestep, Onestep_Range, and 
Multistep_Subtree take 37, 179689, 327131, 57, 57, 57, and 525 records, respectively.  

In this performance evaluation, six schemes (E, PE_Org, PE, POE, PRE, and 
PME) are compared. Scheme E does not utilize path identifiers and finds root 
elements that satisfy query expressions by using relation Element. Scheme PE_Org 
finds path identifiers of the leading name-steps in query expressions from relation 
Path and then processes the remaining steps by join operations on relation Element. 
Other schemes are explained in Sections 3. To clarify the relative effectiveness of 
each scheme, we performed the experiment with the following three classes of XPath 
queries: (1) with SMP partial paths only, (2) with the leading SMP partial path and 
some SMI partial paths, and (3) without any leading SMP partial path.  

Table 1 illustrates some XPath queries with SMP partial paths only. Because of the 
characteristics of the queries, path identifiers of the whole paths can be retrieved from 
relation Path in scheme PE. Schemes POE, PRE, and PME are not shown in the table 
because their additional relations are not used for the queries such that they have 
exactly the same results as scheme PE. 

Table 1. XPath queries with SMP partial paths only 

For the XPath queries in Table 1, schemes E and PE_Org made very similar 
results. In the select mode, the more ‘/*’s are put in the query expressions, the more 
execution time has been required. However, in scheme PE, the more star-steps are 
involved, the more query execution time has been diminished. Scheme PE has shown 
the following remarkable effects compared with scheme PE_Org: for query Q4, the 
performance has been improved by 94.7% (and 87.4%) in the select mode (and  
 

Execution time (sec): Select/Reconstruct mode 
XPath Queries 

E PE_Org PE 

Number of 
result tuples 

Q1: /PLAY/*//STAGEDIR 0.750/2.399 0.750/2.378 0.607/1.912 6,258/12,516 
Q2: /PLAY/*/*//STAGEDIR 0.818/2.412 0.841/2.370 0.602/1.815 6,255/12,510 
Q3: /PLAY/*/*/*//STAGEDIR 0.964/1.703 0.860/1.565 0.235/0.826 1,967/3,934 
Q4: /PLAY/*/*/*/*//STAGEDIR 2.094/2.232 2.070/2.292 0.110/0.289 618/1,236 
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Table 2. Queries with a leading SMP partial path and some SMI partial paths 

PEE POE PRE PME PEE POE PRE PME  

Fig. 10. The performance graph for Table 2 

reconstruct mode, respectively).2 In the rest of this experiment, method PE_Org will 
not be discussed anymore. 

Table 2 illustrates some XPath queries with both a leading SMP partial path and 
some SMI partial paths, and Fig. 10 shows the performance graph for Table 2. In 
those queries, after the leading SMP partial path, queries Q5 and Q6 have steps of the 
parent/child relationship only and queries Q7 and Q8 have steps of parent/child and 
ancestor/descendant relationships. 

For the XPath queries that do not have any leading SMP partial path, except for the 
fact that leading star-steps of the queries cannot be executed in relation Path, their 
execution characteristics are very similar to those of Table 2. 

Through this performance evaluation, we have got the following observations: (1) 
once the path identifiers are used only for some leading steps and the rest steps are 
processed directly at relation Edge, the effect of using path identifiers are limited, and 
(2) the effect of using path identifiers is dependent on the selectivity of the result 
tuples. In other words, we agree upon the opinion of indexing method PRIX [22] that 
has the bottom-up processing strategy compared to the top-down processing of 
indexing scheme of ViST [23]. 

As we have seen in the performance evaluations, scheme PME has shown the best 
performance. Note that scheme SME provides path identifiers of path expressions that 

                                                           
2 Let the execution time of scheme A be x and that of scheme B be y. We say that the execution 

time of scheme B is improved by ((x – y)/x) * 100% compared with that of scheme A. 

Execution time (sec): Select/Reconstruct mode 
XPath Queries 

E PE POE PRE PME 

Number of 
result tuples 

Q5:/PLAY/ACT/SCENE/*/*
/STAGEDIR 

1.992/ 
2.263 

1.944/ 
2.321 

0.125/ 
0.310 

0.123/ 
0.315 

0.115/ 
0.294 

618/ 
1,236 

Q6:/PLAY/ACT/*/SPEECH
/*/STAGEDIR 

1.912/ 
2.147 

1.916/ 
2.144 

0.116/ 
0.319 

0.113/ 
0.322 

0.112/ 
0.298 

618/ 
1,236 

Q7:/PLAY/ACT/*/SPEECH 
//STAGEDIR 

0.742/ 
1.356 

0.745/ 
1.366 

0.729/ 
1.164 

0.247/ 
0.685 

0.237/ 
0.651 

1,960/ 
3,920 

Q8: /PLAY/*/*/SPEECH// 
STAGEDIR 

0.763/ 
1.294 

0.768/ 
1.367 

0.740/ 
1.268 

0.245/ 
0.693 

0.242/ 
0.659 

1,967/ 
3,934 
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are composed of the given eight combinations of delimiters and steps. Once we can 
get path identifiers for the whole XPath query expressions from relation Path, the 
performance could be better than any of the schemes in this paper. In the next section, 
to make mapping the star-step of element with the delimiter ‘/’ in XPath query 
expression to its corresponding string match operation of SQL, we propose a new 
reserved character ‘$’ that extends existing LIKE operation of SQL. 

5   Proposal of a New Reserved Character ‘$’  

The string-pattern of the LIKE operator of SQL supports the reserved character ‘%’ 
that matches arbitrary number of arbitrary characters. For example, finding character 
strings that end with “BCD” and have at least one ‘A’ before that sub-string can be 
performed by “like ‘%A%BCD’”.  However, finding character strings that end with 
“BCD” and have exactly one ‘A’ before that sub-string, such as “ABCD”, 
“MAKBCD”, and “AKBCD”, cannot be performed by using ‘%’. To make this 
possible, we need some reserved character that matches arbitrary number of 
characters except for the character ‘A’. 

For that purpose, we propose a new reserved character ‘$’ that extends the existing 
string-pattern of the LIKE operator. The reserved character ‘$’ must be followed by 
the restricting character string ‘[^patterns]’. 3  The pattern ‘$[^patterns]’ matches 
arbitrary number of arbitrary characters except for the characters listed in the 
restricting character string. Once the reserved character ‘$’ is supported, by utilizing 
‘$[^A]’ that matches arbitrary number of characters except for the character ‘A’, 
finding character strings that end with “BCD” and have exactly one ‘A’ before that 
sub-string can be performed by “like ‘$[^A]A$[^A]BCD’”. 

Observation 4. For the leading consecutive n + 1 (n  0) steps of XPath query 
expressions, assume that path identifiers of the leading partial paths of n steps can be 
found from relation Path. Suppose that the reserved character ‘$’ is provided. Once 
the leading n + 1st step is a star-step of element with the delimiter ‘/’, the step can be 
mapped into “#/$[^#]” in the LIKE clause of SQL query and then the mapped one is 
applied either to all path expressions in relation Path whose last steps are elements if 
the step “/*” is the last step in the query expressions or to all path expressions in 
relation Path otherwise. 

Provided that the reserved character ‘$’ is supported, based on both the result on 
name-steps from [11] and the result on star-steps from Observations 1 and 4 of this 
paper, the mapping of steps in the XPath query expressions into some string match 
operations on relation Path can be summarized as Table 3. Table 3 means that, if the 
reserved character ‘$’ is supported, path identifiers of the paths with all name-steps 
and star-steps can be obtained from relation Path. For example, path identifiers of the 
XPath query expression “/A/*/*/D” can be obtained by “pathexp like 
‘#/A#/$[^#]#/$[^#]#/D’” and path identifiers of  “/A/*/*/D/*” can be obtained by 
“pathexp like ‘#/A#/$[^#]#/$[^#]#/D#/$[^#]’ and path_type = 0”. 

                                                           
3  The SQL Server [20] supports ‘[patterns]’ for listing characters to be permitted and 

‘[^patterns]’ for listing characters to be restricted. 
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Table 3. Mapping of steps into string-patterns 

6   Conclusion and Future Works 

With the star-steps in XPath query expressions, depending on the length of steps 
whose path identifiers can be found, the query execution times vary tremendously. 
For finding path identifiers of path expressions with the given eight combinations of 
delimiters and steps, saying “/name”, “//name”, “/@name”, “//@name”, “/*”, “//*”, 
“/@*”, and “//@*”, this paper proposed a new reserved character ‘$’ for the string-
pattern of the LIKE operation of SQL and presented the mapping of steps of XPath 
query expressions into string match operations of SQL. Once the reserved character 
‘$’ is supported, since path identifiers of XPath query expressions can be obtained 
from relation Path, besides the fact that no additional relation is necessary to find path 
identifiers, since path identifiers for the whole path can be found from relation Path, 
the performance of the query execution can be always better than the scheme PME 
that has the best performance among schemes presented in this paper. Part of our 
ongoing research is developing efficient execution algorithms for XPath expressions 
with the star operator while supporting all XPath axes. 
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Abstract. Speeding up query evaluation in large XML repositories becomes a 
challenging and all-important problem with vast XML-related applications aris-
ing. In this paper, we present SCALER1, an efficient algorithm for XML query 
answering based on UDFTS2 and effective twig structure matching scheme. 
UDFTS not only constructs a one-to-one correspondence between trees and se-
quences but also maintains critical parent-child relationships for twig structure 
matching. With SCALER, XML queries can be performed by subsequence 
matching without breaking twigs into sub paths and evaluating these paths indi-
vidually. Thus, costly join operations can be avoided elegantly. We also show 
the correctness of query answering by eliminating false dismissals and false 
alarms naturally in SCALER. By a thorough experimental study on various 
real-life data, we prove the efficiency and scalability of SCALER over the pre-
vious known alternative. 

1   Introduction 

With the rapid growth for the last decade, XML has become one of the most impor-
tant collections of knowledge that the human being ever had. It is used as a standard 
for information representation and exchanging in commercial and scientific applica-
tions [5].  To exploit the power of XML, a database system should handle the major 
issues of storing, indexing and querying XML documents. How to efficiently query 
XML documents is one of the key problems in XML database system. Much research 
has been undertaken on providing flexible indexing and query mechanisms to extract 
data from XML documents [14, 22, 21, 11, 10, 19]. Due to the semi-structured nature 
of XML, XML documents are often modeled by tree hierarchies. As well, XML query 
languages (e.g., XPath [3] and XQuery [4]) are typically expressed by linear paths or 
twig patterns which comply with tree hierarchical structure. As an example, a twig 
query given in XPath is as follow:  

Professor[Paper/Conference=”DASFAA”]/Name  
                                                           
* The work was supported by the National Natural Science Foundation of China under Grant 

No.60573094, Tsinghua Basic Research Foundation under Grant No.JCqn2005022 and 
Zhejiang Natural Science  Foundation under Grant No.Y105230. 

1  SCALER stands for SequenCe bAsed XML QuEry AlgoRithm. 
2  UDFTS stands for Unique Depth-First Traversal Sequence. 
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The query qualifies XML documents by specifying a twig pattern composed of four 
elements Professor, Paper, Conference and Name, as well as a value predicate Con-
ference=”DASFAA”. It is to find the names of all professors who published papers on 
“DASFAA”.  

The research for indexing and querying XML documents recent years mainly con-
tributes two classes of approaches on answering XML queries.  

Structural Index: It facilitates traversing through the hierarchy of XML documents 
by referencing the structural information of the documents. The representative works 
on structural index are DataGuide[14], 1-index[22], A(k)[18], D(k)[8], M(k)[16], 
APEX[10], F&B index[19].These indexing mechanisms can prune search space for 
processing of path and twig queries.   

Coding Schemes: This class of approaches follows the strategy of encoding each 
element by its positional information within the hierarchy of XML document. With 
the help of effective tree traversal order or textural positions of start and end tags, the 
encoding scheme provides facilitation to identify parent-child and ancestor-
descendant relationships between XML elements without traversing the entire tree 
hierarchies. The coding schemes mainly are addressed in Region Code: Dietz[11], 
Li2Moon(XISS)[21], Zhang coding[7], Bit-vector coding[Li 13], Dewey coding[17], 
PBiTree coding[28], as well as our former work BBTC[13], an update-aware coding 
scheme. Upon these coding schemes, many structural join algorithms have been de-
veloped to efficiently process path and twig queries [1, 6, 9, 21, 7].  

However, most of previous approaches based on above two classes of methodolo-
gies process a twig query by breaking it into sub paths, evaluating these paths sepa-
rately and finally joining the results. With the purpose to avoid costly join operations 
in query evaluation, we propose a novel XML query processing algorithm, SCALER. 
In our algorithm, the first pass is “sequencing”, in which XML documents are trans-
formed into UDFTSs which not only constructs one-to-one correspondences between 
trees and sequences but also maintains critical parent-child relationships for twig 
structure matching. The second pass is twig structure matching for finding all the 
documents satisfying the twig pattern.  

Our Contributions: The contributions of this paper can be summarized as follows: 

 First, we propose a sequencing method, UDFTS, which keeps one-to-one 
correspondences between trees and sequences. It captures the parent-child 
and sibling ordering constraints within the sequence representations which 
provide great facilitations in twig structure matching. It unifies structure and 
content nodes into the same sequencing method, which avoids additional cost 
of accessing structure and content respectively. UDFTS is also linearly scal-
able in terms of original XML document’s size.  

 Second, we develop a novel and efficient XML query answering algorithm 
SCALER, which treats twig query as a holistic query unit without breaking it 
into several sub paths for further evaluation. Benefited from UDFTS, 
SCALER effectively accommodates tree connectedness checking and twig 
structure matching in one pass without false dismissals and false alarms in 
query answers. It provides a significant enhancement in query performance 
through this “one pass”. 
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 Third, once-scan indexing technique is proposed upon UDFTS, which is a 
simple and effective way to establish index hierarchy with the convenience 
supplied by parent-child relationships in UDFTS.  

 Last, a thorough performance study is conducted to evaluate SCALER’s effi-
ciency and scalability in comparison with two state-of-the-art algorithms, 
PRIX[25] and ViST[26].  

The reminder of this paper is organized as follows. Section 2 gives related work 
about sequence based query answering research. We formalize the twig query prob-
lem in our paper in Section 3. Section 4 presents our algorithm SCALER. Perform-
ance study is described in Section 5. Finally we conclude in Section 6.  

2   Related Work 

Much research effort has been focused on efficient XML indexing and query process-
ing. As a core operation in XML data management, finding all occurrences of a query 
pattern in XML documents attracted more and more attentions. Exploiting sequencing 
techniques to speed up complex query evaluation is a new idea in XML query proc-
essing which is proposed recently. It provides significant performance enhancement 
over traditional methods. We will give brief introductions and discussions on the 
recent proposed works PRIX[25] and ViST[26]. Within the discussions of their draw-
backs, we will elaborate the motivations of our approach. In our previous work [12], 
we also propose an approach for XML data mining based on sequencing technique.  

PRIX: Rao et al. proposed prüfer sequences based indexing and querying method to 
evaluate XML query. It transforms XML documents and queries into prüfer se-
quences without false alarms and false dismissals. Four-pass refinement phases are 
performed to obtain correct answers including subsequence matching, connectedness 
refinement, twig structure refinement and leaf nodes matching refinement.  

However, there are some limitations in prüfer sequencing. First, the prüfer se-
quencing is not a naturally connectedness-aware sequencing method, which doesn’t 
maintain the parent-child relationship information between elements. As a result, 
during query processing, an additional connectedness refinement pass is introduced in 
PRIX. Second, PRIX can’t unify the representations of non-leaf nodes and leaf nodes, 
as the prüfer sequences can only represent non-leaf nodes. For a complete twig match, 
another leaf nodes matching refinement needs to be applied. From the discussions on 
functionality and performance issues above, we concern that prüfer sequencing maybe 
not the best sequencing method for XML query answering. 

ViST: It is a dynamic index method for querying XML data by tree structure, which 
uses tree structure as the basic unit of query to avoid expensive join operations. It 
provides a unified index on both content and the structure of XML documents.  

But query answering in ViST may result in false alarms. As Figure 1, the structure-
encoded sequence of query Q is a subsequence of the sequences of Doc1 and Doc2. 
However, the pattern Q only occurs in Doc2, and the query processing component 
should be aware to detect the false alarms for further elimination in query  
answers. In the work [27], constraint sequencing is proposed to solve this problem.  
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Fig. 1. False Alarms in ViST  

Actually, it hints that a more natural and effective sequencing method should be 
investigated to facilitate the twig matching process. That’s why we propose our algo-
rithm to enhance the performance of XML query answering.  

3   Preliminaries 

Tree Sequencialization. Our approach starts with a valid and effective sequencing 
method for tree hierarchy. Ad hoc sequencing methods such as depth-first and Prüfer 
code have been used for XML indexing [18, 8]. The prüfer code [24, 25] is a succinct 
tree encoding method. In which, an n-node tree is labeled arbitrarily from 1 to n. We 
encode the tree by deleting the leaf node which has the smallest label and appending 
the label of its parent to the sequence. So the Prüfer sequence for the tree in Figure 2 
is (2, 6, 3, 6, 6). While if we use depth-first traversal (called DFT in this paper) 
method, we can get the sequence as (P, R, T, D, T, N).  

                                

Fig. 2. A Sample Tree Structure                                 Fig. 3. The False Sequencing in DFT 

However, DFT can’t guarantee the one-to-one correspondences between trees and 
sequences. Figure 3 gives the example that two different trees are represented in the 
same depth-first traversal sequence.  

Though there are some drawbacks in representing tree hierarchies by DFT, the 
DFT sequences still provide satisfied property which maintains the parent-child and 
sibling orders in left-to-right manner within their corresponding sequences. For ex-
ample, the parent-child pair (R, T) in Doc1 is located in left-to-right order of sequence 
D1, as well as the sibling pair (R, D). This nice feature is quite useful in our algorithm 
SCALER which will be demonstrated in following sections.  
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XML Twig Query Problem. Formally, the XML twig query answering can be stated 
as follows: Given a collection of XML documents and a twig query Q, find all the 
documents that Q occurs. Here Q can be expressed by involving wildcards ’//’ and ‘*’.  

4   SCALER: An Efficient Sequence Based Algorithm for XML 
Query Answering  

The whole XML twig query answering involves two passes. One is sequencing both 
XML documents and twig queries into UDFTSs, and the other is twig structure 
matching on UDFTSs.  

4.1   UDFTS: Unique Depth-First Traversal Sequence  

Given a set of input XML documents Docs = {Doc1, Doc2, …, Docn}, the first step of 
SCALER is to transform the tree hierarchy of an XML document into a sequence 
representation. In our algorithm, we adopt the depth-first traversal as our framework. 
Figure 4 depicts the input XML documents set in our running example, while Table 1 
shows the corresponding sequences set generated by depth-first traversing the tree 
nodes of each document. Following we use DFTS to denote a sequence generated by 
DFT method.  
 

 

Fig. 4. An Example of XML Documents  

Table 1. An Example of DFTSs 

 

False Sequencing Problem. It is evident that a DFTS preserves much structural in-
formation of the original XML document, such as the sibling ordering and ancestor-
descendant ordering. That is, a node always appears before its descendants and its 
right siblings in the DFTS. However, DFTS representation does not preserve the  
complete structure information of an XML document. For example, if a node B appears 
before a node A in a certain DFTS, we cannot tell whether B is an ancestor or a left 
sibling of A. Thus, a DFTS cannot uniquely represent an XML document, and two 



284 Q. Qian et al. 

different XML documents may have the same DFTS. Figure 5(1) and Figure 5(2) are 
apparently two different tree structures, whereas they have the same DFTS. A ramifica-
tion from this problem is that the tree structure cannot be reconstructed from its DFTS. 
For example, the DFTS w.r.t. the XML document shown in Figure 5(3) is “PRRTD”, 
we cannot determine which node among "P", "R" and "R" is the parent of "T".  

 
(1)                                (2)                                (3) 

Fig. 5. XML Documents Sequencing in DFTS and UDFTS 

To solve the above false sequencing problem, we propose a unique sequence repre-
sentation method under the depth-first traversal framework. The unique sequence 
representation of an XML document in our method is denoted by UDFTS. Given an 
XML document, let its DFTS be (L1, L2, …, Ln), its UDFTS is defined as (L1(P1), 
L2(P2), …, Ln(Pn)), where Pi is a code used to uniquely identify the parent of Li (i.e., Pi 
is a unique code of Li’s parent). In UDFTS, the code of L1 is defined as 1 and the code 
of Li is determined by the pre-order coding scheme under the depth-first traversal 
framework. Thus, the code of Li equals i. In addition, the code of L1’s parent (i.e., P1) 
is defined as -1. Figure 5 shows the UDFTSs of the corresponding XML documents.  

Because a UDFTS preserves both the parent-child relationships and sibling ordering 
information, it uniquely represents an XML document and can be used to reconstruct 
the tree structure of the XML document. This sequencing method also facilitates  
once-scan index establishment for efficient parent-child and ancestor-descendent iden-
tification. Figure 6 shows the facilitation of parent-child checking in SCALER.  

 

Fig. 6. Parent-Child Checking in UDFTS 

Algorithm UDFTSBuilder is presented as follow, which is efficient in transforming 
both XML documents and XML queries into UDFTSs and once-scan index building.  

It should be noted that the UDFTS construction and once-scan index are finished in 
the same phase with only once Depth-First Traversal of XML document. Extra cost 
about data scan on index building is saved by the nice feature of UDFTS. The detail 
structure about once-scan index is addressed in Section 4.4. 
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Algorithm:   UDFTSBuilder(doc,udfts,osi) 
Input:       doc, an XML document  
Output:      udfts, the UDFTS of doc 
             osi, once-scan index 
[1] udfts := φ ;  
[2] osi := φ ; 
[3] root := Root(doc);  
[4] addNode(udfts, root, -1); 
[5] nextNode := DFT(doc, root); 
[6] parentNode := root; 
[7] while(nextNode!= null) 
[8]  parentPreordercode := PreorderCode(doc,parentNode); 
[9]  addNode(udfts, nextNode, parentPreordercode); 
[10] addToOSI(osi, parentNode, nextNode); 
[11] nextNode := DFT(doc, nextNode); 
[12] parentNode := Parent(doc, nextNode); 
[13]end while 

4.2   Twig Structure Matching in SCALER 

First, we elaborate the definition of subsequence in SCALER, which is the foundation 
of SCALER and can be stated below.  

Definition 1: (Subsequence). Given two UDFTSs S1= (L1(P1), L2(P2), …, Ln(Pn)) and 
S2= (l1(p1), l2(p2), …, lm(pm)) (m n), S2 is a subsequence of S1, if 

1. for each li(pi) (0<i m) in S2 , there exists  Lj(Pj) (0<j n) in S1, s.t. li=Lj and 
l(pi)=L(Pj);  

2. for any two pairs label-equal nodes Li=lm, Lj=ln, (i<j) in S1, then m<n in S2.  

For example, in Figure 7, UDFTS(Q) is a subsequence of UDFTS(Doc2) but not a 
subsequence of UDFTS (Doc1). Because for condition 1 in Definition 1, “T(2)” in 
UDFTS(Q) has parent label “R” but the node “T(4)” has parent label “S” in 
UDFTS(Doc1) which is conflicted with condition 1. In fact, Definition 1 proposes 
two consistent constraints on L and P in subsequence finding, which guarantee the 
equivalence between labels and its parent labels.   

Upon the common sense stated in Definition 1, we move on to illustrate the algo-
rithm SCALER by following definitions and theorems.  

 

Fig. 7. An Example of Subsequence 
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Definition 2: (Leaf Item). For a given UDFTS S= (L1(P1), L2(P2), …, Ln(Pn)), Li a 
leaf item iff ¬ ∃ Pj=i  (i<j n) .  

Definition 3: (Valid Sequence). Let UDFTS S = (L1(P1), L2(P2), …, Ln(Pn)). If for 
each Li (1<i n), Pi<i, then S is a valid sequence.  

Definition 4: (Valid Local Item). Given a local item L(P) w.r.t. a UDFTS (L1(P1), 
L2(P2), …, Ln(Pn)), L(P) is called a valid local item if ∃ Lm (1 m n), s.t. m=P.  

For example, the two XML documents in Figure 8 can be converted into two UDFTS. 
Suppose "P(-1)D(1)" is the current subsequence, where item P's pre-order code is 1, 
item D's is 2. As Figure 8(2) shows, for local item T, its parent is node R with pre-
order code 3, which is greater than D's pre-order code, thus, T is not a valid local item 
and cannot be used to expand the subsequence "P(-1)D(1)".  

 

Fig. 8. An Example of Valid Local Item 

Definition 5: (Valid Subsequence). Let UDFTS S = (L1(P1), L2(P2), …, Ln(Pn)) be a 
subsequence of a tree T’s UDFTS(T), S is a valid subsequence, if for any item Li(Pi) 
(1<i n), it is a valid local item for the subsequence (L1(P1), L2(P2), …, Li-1(Pi-1)).  

In fact, the definition 5 shows how to identify the connectedness of each node in 
UDFTS through valid local item checking. However, from another angle, a valid 
subsequence of S also can be obtained by deleting zero or more leaf items from S. 
Basing on the observation in definition 5, we can guarantee to introduce no dismissals 
in finding subsequences of UDFTS.  

Theorem 1: (Valid Subsequence Checking). If twig query Q is a subgraph of tree T, 
then UDFTS(Q) is a valid subsequence of UDFTS(T).  

For example, in figure 7, because query Q is a subgraph of Doc2, thus Q is a valid 
sequence of UDFTS(T) according to the statement in Theorem 1. Being the case, the 
correct valid subsequence also can be deduced by deleting the leaf item “S” in 
UDFTS(Doc2). But UDFTS(Q) can’t be produced from UDFTS (Doc1) because Q is 
not a subgraph of Doc1.  

Theorem 1 gives us theoretic evidences to prove UDFTS’ advantages in twig struc-
ture matching. In practice, we need following operational Theorem 2 to conduct our 
algorithm. As an advantage of UDFTS, connectedness between nodes is naturally 
indicated within the parent-child information. Beneficially, we can easily perform the 
matching of twig structure including structure and value nodes in one pass, which is 
handled in two passes in PRIX.  
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Definition 6: (Structural Consistency). Given two UDFTSs Sa and Sb, Sa = (LA1 

(PA1), LA2(PA2), …, LAn(PAn)) and Sb = (LB1(PB1), LB2(PB2), …, LBn(PBn)), struc-
tural consistency happened between Sa and Sb iff LAi=LBi and PAi=PBi (1 i n).  

In Figure 9, for Doc3, S3’ which is obtained after subsequence recoding is a valid 
subsequence of UDFTS(Doc3). As well, we know S3’ is structural consistency with 
Sq, which is determined by Definition 6. Oppositely, S1’ doesn’t have structural con-
sistency with Sq, because of the different parent codes of node E and F. Intuitively, 
Figure 9 indicates the twig query structure Q is contained in Doc3. We can see struc-
tural consistency is an important and useful principle in evaluating XML query on 
UDFTS. Finally, we step forward to give Theorem 2, an effective theorem to solve 
the XML twig query problem completely.  

 

Fig. 9. An Example of Structural Consistency 

Theorem 2: (Answer for Twig Query). Given a twig query Q and an XML document 
Doc. Doc is said to be the answer of twig query Q, if there is at least one subsequence 
S of UDFTS(Doc) which is  

1. a valid subsequence of UDFTS(Doc);  
2. structural consistency with UDFTS(Q).  

Actually, the key observations of Theorem 2 are the following. First, the subsequence 
S must be a connected tree structure. Second, the twig structure of S must be the same 
as Q, which is guaranteed by Definition 6. The complete algorithm SCALER for 
XML query answering is described as follows.  
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Algorithm:   SCALER(docUDFTS, qUDFTS, OSI) 
Input:       docUDFTS, the UDFTS of an XML document  

qUDFTS, the UDFTS of an XML twig query Q 
OSI, Once-Scan Index 

Output:      Query Answers Set for Q  
No answer if return φ   

[1] resultSequenceQueue := φ ; 
[2] qNextNode := FirstNode(qUDFTS);  
[3] firstSequence := new Sequence(qNextNode);        
[4] AddSequence(resultSequenceQueue, firstSequence); 
[5] while(qNextNode!=null) 
[6]    length := CurrentLength(ResultSequenceQueue); 
[7]    while( length > 0 ) 
[8]       nextSequence := GetFirstSequence( 
[9]                               resultSequenceQueue); 
[10]      lastItem := GetLastItem(nextSequence); 
[11]      rightQNode := NextNode(qUDFTS,qNextNode); 
[12]      childItemSet := GetChildren(lastItem,  
[13]                                  rightQNode, OSI); 
[14]      for each child in childItemSet 
[15]          if(ValidLocalItem(nextSequence, child)) 
[16]             newChild := Recode(nextSequence,child); 
[17]             if(newChild!=null and newChild  
[18]                                     == rightQNode)  
[19]                AppendNode(nextSequence, child);  
[20]                AddSequence(resultSequenceQueue,  
[21]                                       nextSequence) 
[22]      end for 
[23]      RemoveFirstSequence(resultSequenceQueue); 
[24]      length--; 
[25]   end while 
[26]   qNextNode:=NextNode(qUDFTS, qNextNode); 
[27] end while 
[28] return resultSequenceQueue; 

 
Fig. 10. An Example of Twig Query Answering Using SCALER 
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The key idea of SCALER algorithm is about valid local item checking, valid sub-
sequence expanding, and structural consistency testing. In the algorithm description, 
line 12 describes the function “GetChildren” for getting all children of “lastItem” with 
OSI efficiently. Line 15 is the valid local item checking process based on Definition 
4. The “recode” is performed by replacing the parent code of one node with the posi-
tion of its parent node in the new generated subsequence. Figure 10 gives an example 
to explain the algorithm. For query Q, Doc1 is the correct answer while Doc2 is not. 
Four steps in the Figure 10 show the step-by-step changes in ResultSequenceQueue. 
At last, we find the final matched subsequence for Doc1 is same as UDFTS(Q).  

4.3   Wildcard Query Support 

In order to process twig queries with wildcards “//” and “*”, we classify the issue into 
the following three different situations. 

1) “//” at the beginning of twig query 
This kind of query is easy to be handled as our method allows occurrence finding 

at anywhere in the UDFTS of a tree. For example, for query “//P/D/T”, we can firstly 
match node “P” at anywhere in the document’s UDFTS without root-start matching 
constraint.  

2) “//” at the middle of twig query  
For “//” in the middle of twig query’s UDFTS, we extend our Valid Local Item 

and checking scheme in Definition 4. Here we propose a more flexible definition of 
Valid “//” Item.  

Definition 7: (Valid “//” Item). Given a local item L(P) w.r.t. a UDFTS (L1(P1), 
L2(P2), …, Ln(Pn)), L(P) is called a Valid “//” Item if ∃ Lm (1 m n), s.t. Lm is L’s 
ancestor.  

During the matching process of node “//” in twig query, we use Valid “//”  
Item checking to replace Valid Local Item checking in Definition 4. This new check-
ing process can be efficiently implemented by our once-scan index discussed in  
Section 4.4.  

3) “*” at the middle of twig query 
It could be noted that the node “*” in twig query actually represents all the Valid 

Local Items for the one-node UDFTS before it. For example, given twig query 
“P/D/*/T”, the “*” indicates the Valid Local Items for the node “D”. As a result, sub-
sequence matching is performed by enumerating all the Valid Local Items for further 
processing. This enumeration process is also benefited from our once-scan index 
proposed in Section 4.4.  

4.4   Once-Scan Indexing Technique 

In order to achieve high performance in twig matching for XML query processing, all 
the UDFTSs are indexed on parent-child relationships which are always the first class 
of citizen to be accessed during the valid subsequence expanding. Especially, one nice 
feature of UDFTS is that parent-child and sibling orders in tree are maintained in  
left-to-right orders in UDFTS. Based on this observation, we figure out our once-scan 
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index, which only once scan is needed on UDFTS to establish. During the scan from 
left to right in UDFTS, we can record the information of nodes’ pre-order codes, child 
nodes and sibling nodes. Figure 11 shows an example about once-scan index. Each 
node entry in index can have both in and out links which can be used in two directions 
when identifying parent-child relationships between tree nodes. 

 

Fig. 11. An Example of Once-Scan Index 

In once-scan index, we keep the pointers to denote the parent-child relationships, 
which are sufficient to discover all the ancestor-descendant relationships by perform-
ing transitive index accessing efficiently.  

5   Performance Evaluations 

In this section, we compare the performance of SCALER, PRIX and ViST. We use 
C++ in implementing these algorithms. For ViST, the symbol-prefix pairs in the 
structure-encoded sequences were directly stored in the D-Ancestorship B+ tree. We 
carry out our experiments on a Windows2000 machine with an AMD 2.0MHz CPU 
and 1G MB RAM. 

5.1   Datasets 

In our experiments, we use public XML data DBLP [20] and XML benchmark data 
XMARK [29]. Table 2 presents the major characteristics of these two datasets with 
the terms of element number, document size, attribute number, max-depth and se-
quence number.  

Table 2. Characteristics of Two Datasets 

Dataset 
Item 

XMark DBLP 

Number of Elements 101,271 133,755 
Document Size (MB) 35.6 52.4 
Number of Attributes 18,140 101,980 
Max-depth 12 7 
Number of Sequences 12,846 52,437 
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5.2   Queries 

Table 3 shows the queries for performance testing on XMark and DBLP. These que-
ries have different characteristics in terms of selectivity, presence of values and twig 
structure.  

Table 3. XML Queries 

Query Expression DataSet 
Q1 /site//item/[location=’USA’]/mail/data[text=’06/09/2001’] XMark 
Q2 /site//person/*/age[text=’40’] XMark 
Q3 /site//person/*/city[text=’Toronto’] XMark 
Q4 //closed auction[seller/person=’person11052’]/date[text=’09/19/2000’]    XMark 
Q5 /inproceedings/title DBLP 
Q6 /book/[key=’Maier’]/author DBLP 
Q7 /*/author[text=’David’] DBLP 
Q8 //author[text=’James’] DBLP 
Q9 //inproceedings[./author=’Jim Gray’][./year=’1995’] DBLP 

Q10 //www[./editor]/url DBLP 
Q11 //title[text=’Semantic Analysis Patterns’] DBLP 

5.3   Experimental Results 

We first demonstrate the scalability of SCALER with regard to varying the query 
complexity and data size. Figure 12 exhibits the performance under different queries 
and data conditions. For Figure 12(a), we can see that it takes more time to process 
longer queries, because longer queries require larger amount of index traversal. It also 
shows that our algorithm SCALER scales up sub-linearly with the increase of query 
complexity. As well, for varying data size, SCALER is scalable with ascending data 
size in Figure 12(b).  

 

(a) DBLP Query: varying lengths                      (b) DBLP Query: varying data size 

Fig. 12. Query Response Times for XML Datasets 

    Figure 13 summaries the performance in comparison among SCALER, PRIX and 
ViST. We test twig queries Q1, Q2, Q3, Q4 on XMark, as well as Q5 to Q11 on 
DBLP. Obviously, we can see SCALER performs significantly better than ViST and  
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(a) XMark                                                                 (b) DBLP 

Fig. 13. Query Response Times for Three Methods  

 
Fig. 14. Time for Sequences Building on XMark Datasets  

PRIX. Through simplifying the twig structure matching process, the advantages of 
UDFTS become significant in comparing with prüfer sequencing in PRIX method. 
    Figure 14 shows the performance difference in sequencing XML documents be-
tween UDFTS and PRIX. The result shows UDFTS performs better in sequencing 
XML documents. Actually, because of the natural and efficient Depth-First Traversal 
of a tree, UDFTS achieved better performance and scalability than PRIX.  
    For our experimental datasets XMark and DBLP, Figure 15(a) shows the index 
sizes of SCALER and ViST. Figure 15(b) shows the linear building index time of 
SCALER, which is more efficient than the index construction in ViST.  

  

                            (a) Index Size (MB)                              (b) Building Index Time (min) 

Fig. 15. Index Size and Building Index Time for DBLP Datasets 
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6   Conclusions 

In this paper, we introduce an efficient and scalable approach for XML query answer-
ing. By transforming both XML documents and XML queries into UDFTSs, finding 
the occurrences of a twig query becomes equivalent with subsequence matching on 
UDFTS which is elegantly proved in our statement. We also provide the algorithm 
SCALER to match twig queries by valid local item and structural consistency check-
ing. Benefited from once-scan indexing mechanism in SCALER, we achieve convin-
cible performance enhancement in XML twig query answering. The performance 
study provides rich evidences to show SCALER’s advantages in efficiency and scal-
ability over previous known alternatives. 
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1 Introduction

In  many  modern  application ranges,  e.g. spatio-temporal  query processing of moving
objects [9], sensor databases [8] or personal identification systems [28], usually only un-
certain data is available. For instance, in the area of mobile services, the objects contin-
uously change their positions so that exact positional information is almost impossible
to obtain. In the area of multimedia databases, e.g. image or music databases, or in the
area of personal identification systems based on face recognition and fingerprint analy-
sis, there often exists the problem that a feature value cannot exactly be determined. This
uncertain data can be handled by assigning confidence intervals to the feature values, or
by specifying probability density functions indicating the likelihoods of certain feature
values. In other application areas such as the clustering of distributed feature vectors
[13], only approximated (uncertain) information is transmitted to a central server site due
to security aspects or limited bandwidth. Let us note that the distance-range join can act
as a preprocessing step to speed up clustering.

In order to join these uncertain object representations by traditional join methods, the
similarity between the objects has to be measured by one numerical value, i.e. the com-
plete probabilistic distance information is aggregated by only one distance value. Obvi-
ously, aggregation goes hand in hand with information loss. For instance, we have no
information about the degree of uncertainty of such a single distance value. Even if we

Abstract. An important database primitive for commonly used feature databases
is the similarity join. It combines two datasets based on some similarity predicate
into one set such that the new set contains pairs of objects of the two original sets.
In many different application areas, e.g. sensor databases, location based services
or face recognition systems, distances between objects have to be computed based
on vague and uncertain data. In this paper, we propose to express the similarity
between two uncertain objects by probability density functions which assign a
probability value to each possible distance value. By integrating these probabilistic
distance functions directly into the join algorithms the full information provided
by these functions is exploited. The resulting probabilistic similarity join assigns
to each object pair a probability value indicating the likelihood that the object
pair belongs to the result set. As the computation of these probability values is
very expensive, we introduce an efficient join processing strategy exemplarily for
the distance-range join. In a detailed experimental evaluation, we demonstrate the
benefits of our probabilistic similarity join. The experiments show that we can
achieve high quality join results with rather low computational cost.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 295–309, 2006.
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had one, it would be of no use because traditional join algorithms cannot handle this ad-
ditional information.

In this paper, we propose to use probabilistic distance functions to measure the simi-
larity between uncertain objects. Contrary to traditional approaches, we do not extract
aggregated values from the probabilistic distance functions but enhance the join algo-
rithms so that they can exploit the full information provided by these functions. The

sulting probabilistic similarity join assigns a probability value to each object pair indi-
cating the likelihood that the pair belongs to the result set, i.e. these probably values
reflect the trustability of the result. In applications where wrong results have fatal con-
sequences, e.g. medical treatment, users might only look at very certain results, whereas
in commercial advertising, for instance, all results might be interesting. In this paper, we
propose a solution for a probabilistic similarity join which is practically very important,
the problematic distance-range join. 

Probabilistic distance-range joins can be used in the area of location based services
but also in many different other areas. For instance, like their non-probabilistic counter-
parts, they can serve as basic operations for data mining algorithms. Based on the result
set of the probabilistic distance-range join, we can efficiently generate a density based
clustering of uncertain data. We could group those objects together into one cluster which
have a probability value higher than 0.5 that their distance is lower than a certain thresh-
old value. 

In this paper, we first present the theoretical foundations of probabilistic similarity
joins, and then show how to compute them based on the generally applicable concept of
monte-carlo sampling. Thereby, each uncertain object is described by a set of sample
points. In order to guarantee efficient join processing, we group the sample points of one
uncertain object into k clusters. Minimal bounding boxes of these clusters are then used
to identify and skip unnecessary distance computations in a filter step. For the dis-
tance-range join, the filter step has an additional advantage. Often an incremental pro-
cessing of the join query is desired which returns the results in descending order of their
probabilities, i.e. the most promising results are returned first. Our approach allows us
to determine an upper-bound probability value for each object pair in the filter step which
can then be used to return the first results very early. 

The remainder of this paper is organized as follows: In Section 2, we present the re-
lated work in the area of similarity join processing and query processing of uncertain
data. In Section 3, we show how we can carry out a non-probabilistic similarity join on
uncertain data. In Section 4, we propose our probabilistic similarity join, which is eval-
uated in detail in Section 5. We conclude this paper in Section 6 with a short summary
and a few remarks on future work.

2 Related Work

In the past decade, a lot  of work has been done in the field of similarity join processing.
Recently some researchers have focused on the area of query processing of uncertain
data. However, to the best of our knowledge no work has been done in the area of join
processing of uncertain data. In the following, we present related work on both topics,
similarity join processing and query processing of uncertain data.

296 H.-P. Kriegel et al.

 re-



2.1 Similarity Join
A join groups  tuples of two relations R and S into  pairs if a join predicate is fulfilled.
In a similarity join, the join predicate is based on the similarity between the objects stored
in the relations. This similarity is measured by a distance function d: O O  IR0

+ , e.g.
the Euclidean distance between two feature vectors. The most popular similarity join op-
eration is the distance range join. The distance range join R S of two multidimen-
sional or metric sets R and S is the set of pairs where the distance of the objects does not
exceed a given parameter :

Definition 1  istance-range join ( -join)
The distance range join R S of two finite sets R and S is the set R S := {(r, s)
R  S: d(r, s) }.

The distance range join can be applied in density-based  clustering  algorithms which
often define the local data density as the number of objects in the -neighborhood of some
data object. These clustering algorithms can beneficially be expressed by a self-join us-
ing the distance-range paradigm [3].

Most related work on efficient join processing is related to the spatial intersection
join. These algorithms which are often based on multidimensional index structures can
easily be adapted to distance based predicates for multidimensional point databases in-
stead of the intersection of polygons. The most common technique is the R-tree Spatial
Join (RSJ) [4] which processes R-tree like index structures built on both relations R and
S. The RSJ algorithm traverses the indexes of R and S synchronously. When a pair of
directory pages (PR, PS) is under consideration, the algorithm forms all pairs of the child
pages of PR and PS having distances of at most . For these pairs of child pages, the al-
gorithm is called recursively, i.e. the corresponding indexes are traversed in a depth-first
order. Various optimizations of RSJ have been proposed such as the BFRJ-algorithm
[12] which traverses the indexes according to a breadth-first strategy. 

If no multidimensional index is available, it is possible to construct the index on the
fly before starting the join algorithm. Several techniques for bulk-loading multidimen-
sional index structures exist [5, 14]. The seeded tree method [19] joins two point sets
provided that only one is supported by an R-tree. The partitioning of this R-tree is used
for a fast construction of the second index on the fly. The spatial hash-join [20, 23] de-
composes the set R into a number of partitions which is determined according to given
system parameters.

A join algorithm particularly suited for similarity self joins is based on the -kdB-tree
[25]. Koudas and Sevcik proposed the Size Separation Spatial Join [16] and the Multi-
dimensional Spatial Join [15] which make use of space filling curves to order the points
in a multidimensional space. 

2.2 Query Processing of Uncertain Data

Many studies have  focused on  the  management  of  uncertain  data  and  on providing
probabilistic queries on databases with uncertain data. A survey of the research area
concerning uncertainty and incomplete information in  databases is given in [1] and [22]. 

Probabilistic Similarity Join on Uncertain Data 297

. D



ronments [9, 26]. Similar to the approach presented in this paper, the approaches in [8,
9, 26] model uncertain data by means of probabilistic density functions (pdfs). In [26],
for instance, moving objects send their new positions to the server, iff their new positions
considerably vary from their last sent positions. Thus, the server always knows that an
object can only be a certain threshold value away from the last sent position. The server,
then assigns a pdf to each object reflecting the likelihood of the objects possible posi-
tions. Based on this information the server performs probabilistic range queries. Like-
wise, in [9] an approach is presented for probabilistic nearest neighbor queries. Note that
both approaches assume non-uncertain query objects. Thus, they cannot be used as foun-
dation  for  a  join  on uncertain  objects  where both  query  and  database  objects  are

 uncertain.
Furthermore, most recently [10] an approach was proposed dealing with spatial

query processing not on positionally uncertain data but on existentially uncertain data.
This kind of data naturally occurs, if, for instance, objects are extracted from uncertain
satellite images. The approach presented in this paper does not deal with existentially
uncertain data but with positionally uncertain data which can be modelled by probability
density functions. 

Definition 2 ncertain object representation
Let o D IRd be an object from a database. An uncertain object representation is a
function ouncertain: IRd  , for which the following condition holds: 

In the following, we will show that the above definition is a generalization of existing
object description techniques used to describe uncertain data. 

Modelling Distributed Feature Vectors.  In [13],  feature vectors were grouped  to-
gether to small clusters at client site. Then each cluster is represented by a feature vector
and a covering-radius and this information was transmitted to the server. If we assume
that V is the volume of the hyper-sphere belonging to the micro-cluster of object o, the
uncertain object representation ouncertain assigns to each feature vector contained in the
hyper-sphere a value of 1/V and to each feature vector outside of the hyper-sphere a value
of 0. Note that all objects within such a micro-cluster have the same uncertain object 

resentation. 

IR0
+  

ouncertain v vd
IR d

1=

Recently, a lot of work has been published in the area of management and query pro-
cessing of uncertain data in sensor databases [8] and especially in moving object envi-
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generate for each feature vector a conservative approximating box. If we assume that V
is the volume of the box belonging to object o, the uncertain object representation ouncertain
 assigns to each feature vector co ntained in the box a value of 1/ V  and to each feature
vector outside of the box a value of 0 (cf. Figure 1a). In this case, the uncertain object
descriptions are different for the different objects. 

Modelling  Moving Objects.  Technical  problems with the GPS system, or outdated
positional information force the server to approximate moving objects by one- or two-di-
mensional Gaussian probability density functions ouncertain (cf. Figure 1b). If we assume
that the exact positions of the moving objects are available [27], the probability density
functions ouncertain correspond to dirac-delta functions which assign to the exact position
a value of infinity and to all other positions a value of 0. 

Modelling  Sensor  Data.  Many applications  use  sensors for monitoring values like
wind speed, pressure or temperature. Due to continuous changes, a central database has
at each time only approximated information of each of these attributes. In [8], it was sug-
gested to model each of these values by appropriate density functions, which corre-
sponds to a 1-dimensional uncertain object representation according to Definition 2 (cf.
Figure 1c). 

If clear from the context, we simply write o for the uncertain object representation
ouncertain from now on. As already mentioned there exists a lot of work in the area of query
processing on these uncertain object representations, but, to the best of our knowledge,
there does not exist any work in the literature which tackles the complex problem of join-
ing these uncertain objects. 

3 Non- robabilistic Similarity Join on Uncertain Data

Traditional join algorithms require distance functions which express the similarity be-
tween two objects by exactly one numerical value. Based on these traditional distance
functions, the join algorithms decide for each object pair unambiguously whether it be-
longs to the result set or not. Usually, this decision is based on ’sharp’ object representa-
tions, i.e. the objects are assumed to be certain. 

In this section, we introduce distance functions which do not express the similarity
between two objects by a single numerical value. Instead, we propose distance functions
expressing the similarity between two objects by means of a probability density function
which we call probabilistic distance function. This function describes the probability
distribution of all possible distances between two objects. A one-dimensional example
is depicted in Figure 2. Figure 2a shows two uncertain objects o and o’ according to Def-
inition 2. The distance between these two objects is described by a probabilistic distance
function. 

In [18], an approach for distributed clustering of high-dimensional feature vectors
was introduced. In order to save transmission cost, only certain dimensions of a feature
vector were transmitted to the server. For the dimensions which were not transmitted,
the server can limit the possible values by an interval. Thus, the server can individually

p
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If the distance = d(o,o’) between two objects can exactly be determined, the proba-
bilistic distance function fd is equal to the dirac-delta-function , i.e. fd(o, o’)(x) = (x-
[7]. Thus, the traditional approach can be regarded as a special case of Definition 3. Let
us point out that the probability distribution of each uncertain data item is considered
independent.

As traditional join algorithms can only handle distance functions which yield a unique
distance value, we propose to extract the expected distance value from these probabilistic
distance functions. The expected distance value Ed: O O  IR0

+  represents the proba-
bilistic distance function by one single value 

ure 2b). 
Although, this expected distance value expresses the distance between two uncertain

objects in an appropriate way, similarity joins based on this distance measure might be
misleading. Look at the example shown in Figure 3 depicting 4 uncertain objects oA, oB,
oC and oD having different uncertainties. On the right hand side of Figure 3 the corre-
sponding probabilistic distance functions of the object pairs are shown. This example
demonstrates that both objects oB and oD are within the -range of object oA, when simply
using the expected distances. Although, the probabilities that the objects oB and oC are
within the -range of oA are very similar, oB belongs to the result set and oC not. Further-

Ed o o' x fd o o' x xd
–

=

Ed o o' fd o o' d–=
distance

0

distance density function

probability

fd(o,o’)

a)

b)

position 
0

probability ouncertain o’uncertain

x

ouncertain x o'uncertain x – xd–   +
ouncertain x o'uncertain x + xd–

}

ouncertain(x)
o’uncertain(x+ )

x+

|area| = 1

Definition 3 robabilistic distance function
Let d: D D  IR0

+  be a distance function, and let  denote the prob-
ability that d(o, o’) is between a and b. Then a probabilistic density function fd: D D 
( IR0

+  ) is called a probabilistic distance function if the following condition
holds:

P a d o o' b

IR0
+  

P a d o o' b fd o o' x xda
b=

Fig. 2. Probabilistic distance function in an uncertain feature space. b) probabilistic distance func-
tion, a) reflecting the distance between two one-dimensional uncertain objects.

more, although the expected distance between the uncertain objects oA and oB is lower
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4 Probabilistic Similarity Join on Uncertain Data
As  outlined  in  Section 3,  a non-probabilistic similarity join on uncertain data has some
limitations which are overcome by the probabilistic similarity join introduced in this sec-
tion. The probabilistic similarity join is based on a direct integration of the probabilistic
distance functions rather than using only aggregated values. Our new probabilistic sim-
ilarity join assigns to each object pair a probability value reflecting the likelihood that
the object pair belongs to the join result set.

Definition 4  robabilistic similarity join 
Let R and S denote two relations, and let d denote any similarity join predicate based on
a given distance function d. Furthermore, let P(r d s) denote the probability that r d s
is true for an object pair (r, s)  R  S. Then, the probabilistic similarity join R S con-
sists of object pairs (r, s)  R  S for which P(r d s) > 0 holds, i.e. 

R S = {(r, s, P(r d s)) | P(r d s) > 0} R S  [0,1]

4.1 Theoretical Foundations 

In  this  section, we  shortly  show how we can theoretically compute the probability  val-
ue P(o d

dr o’)1 underlying the probabilistic distance-range join. 

Lemma 1. Let  IR0
+ and let d be an arbitrary distance function between feature vec-

tors. For each pair of uncertain object representations (o, o’), we can compute the prob-
ability P(o d

dr o’) based on their probabilistic distance function fd (o, o’) as follows:

1  In the remainder of the paper d
dr denotes the join predicate  of the distance-range join.

Fig. 3. Distance-range join based on the expected distance

oA

oB

oC

oD

distance
0

probability

fd(oA,oB)
fd(oA,oC)

fd(oA,oD)

prob

prob

P o d
dro' fd o o' x xd

–
=

than the expected distance between the objects oA and oD, the probability that oB is within
the -range of oA is much smaller than the probability for oD. To sum up, similarity joins
based on the expected distances are not able to take the uncertainty of the object repre-
sentations into account and thus fail to produce meaningful results. 

Proof Lemma 1 directly follows from the definition of the distance-range join (cf. Def-
inition 1) and the definition of the probabilistic distance function (cf. Definition3). �
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4.2 Computational Aspects
Although for  some  uncertain object representations  it  would be possible to compute
the probabilistic similarity join directly on Lemma 1, we propose to compute it based on
the generally applicable concept of monte-carlo sampling. In many applications the un-
certain objects might already be described by a discrete probability density function, i.e.
we have the sample set already. If the uncertain object is described by a continuos prob-
ability density function, we can easily sample according to this function and derive a set
of samples. In the following, we assume that each object o is represented by a set of s
sample points, i.e. o is represented by s different representations {o1, ..., os}. After having
described how to organize these discrete object representations within a database (cf.
Section 4.2.1), we show how to compute the probabilistic distance-range join (cf. Section
4.2.2) based on these discrete object representations. 

4.2.1. Database Integration of Uncertain Data  
In order to reduce the complexity of
variants which are based on groups of samples. Thereby two samples oi and oj of the same 
object o are grouped together to one cluster, if they are close to each other. We can generate 
such a clustering on the object samples by applying the partitioning clustering algorithm 
k-means [21] individually to each sample set {o1, ..., os}. Thus, an object is no longer

 approximated by s samples, but by k clusters containing all the s sample points of the 
object (cf. Figure 4a). 

Definition 5 Clustered bject epresentation
Let {o1, ..., os } be a discrete object representation. Then, we call the set {{o1,1, ...,
o1,n 1

},..., {ok,1, ..., ok,nk
}} a clustered object representation where 

{o1, ..., os} and n1+...+ nk = s. 

We store these clustered object representations in R-tree [11] like index structures.
Thereto, we determine the minimum bounding rectangle MBR(Ci(o)) of each cluster

. .
. .. .

Fig. 4. Database Integration of Uncertain Data
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Ci(o) = {oi,1, ..., oi,n i
}, and the minimum bounding rectangle MBR(o) of o = {o1, ..., os }.

Then, we store the clustered object representations as depicted in Figure 4b in a standard
index structure suitable for managing spatially extended objects. In the following sec-
tion, we assume that there exist two functions mindist and maxdist which return the min-
imal and the maximal distance between two rectangles, between two points, or between
a point and a rectangle (cf. Figure 4c).

4.2.2. Distance Range Join  
Managing the uncertain objects in R-tree like index structures (cf. Figure 4) enables  us

 to carry out a distance-range join based on a parallel R-tree run as described in [4]. In general, 
we can use this approach without any changes regarding the way we use the hierarchical 
directory structure for pruning branches in the R-tree. The only difference is on the leaf level 
where we assign a probability value to each object pair. Figure 5a shows the algorithm for

 computing such a probability value.
Definition 4 requires that the result set of the probabilistic similarity join contains all

objects having a probability value higher than 0. Sometimes, it is desirable that this result
set is sorted in descending order of the probability values. A straightforward approach
would be to determine the complete result set, and then sort it. The disadvantage of this
approach is that we have to wait rather long for getting the first element of the result set.
In the following, we present an approach which allows us to determine the first element
of the sorted result set very efficiently. The basic idea is to adapt the optimal multi-step
k-nearest-neighbor approach presented in [24] to our needs.

First, we carry out an approximated probabilistic distance-range join based on a par-
allel R-tree run and on the probability function presented in Figure 5b. Note that, espe-
cially for high sample rates s, this function can be computed much more efficiently than
the one presented in Figure 5a. Obviously, for the result set of this approximated join the
following lemma holds.
Lemma 2. Let R S denote the result set of a probabilistic similarity join based on
the probability function presented in Figure 5a, and let R S denote the result set of
a probabilistic similarity join based on the probability function presented in Figure 5b.
Then the following statement holds:
(r, s, pdr,exact(r,s)) R S (r, s, pdr,filter(r,s)) R S: pdr,exact(r,s) pdr,filter(r,s)

Proof  As both join variants run through the R-tree directory in the same way, they only
differ in the computation of the probability values of object pairs. If we assume an object
pair (r,s), the value pdr,filter(r,s) (cf. Figure 5b) is always equal to or larger than pdr,exact(r,s)
(cf. Figure 5a), as mindist (MBR(Ci(s)), MBR(Ci’(r))) maxdist (MBR(Ci(s)),
MBR(Ci’(r))) holds. Furthermore, if mindist (MBR(Ci(s)), MBR(Ci’(r)))  holds, then
for all sample points si,j and ri’,j’ the distance dist(si,j,ri’,j’) is also larger than . 

Next, we sort the set R S in descending order according to the filter probability
values. In the refinement step, we incrementally walk through this sorted list and com-
pute the exact probability values pdr,exact(r,s) as shown in Figure 5a. If the filter probabil-
ity value pdr,filter of the currently considered join candidate pair is smaller or equal to the
maximal exact probability value computed so far, we can immediately report the object
pair having the maximal exact probability value. If we have already refined further object

dr exact
prob

dr filter
prob

dr exact
prob

dr filter
prob

  

dr filter
prob
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pairs can be reported before starting the next refinement. Obviously, this process can it-
eratively be continued until the user decides that he has received  enough object pairs. 

FUNCTION pdr,exact /* computes the exact probability */
INPUT: 
o = {{o1,1, ..., o1,n 1

},...,{ok,1, ..., ok,n k
}}clustered_uncertain_object, 

o’ = {{o’1,1, ..., o’1,n’ 1
},..., {o’k,1, ..., o’k,n’ k

}}clustered_uncertain_object
OUTPUT: numerical value p [0..1];

BEGIN
IF mindist (MBR(o), MBR(o’)) >  THEN

RETURN 0
ELSE IF maxdist (MBR(o), MBR(o’))  THEN 

RETURN 1
ELSE BEGIN

probability := 0;
FOR i = 1 TO k DO

FOR i’ = 1 TO k DO
IF maxdist (MBR(Ci(o)), MBR(Ci’(o’)))  THEN

probability := probability +  ni . n’i’
ELSE 

FOR j = 1 TO ni DO
FOR j’ = 1 TO n’i’ DO

IF dist (oi,j , o’i’,j’)  THEN
probability := probability + 1;

RETURN probability / s2; 
END;

END.

a)

FUNCTION pdr,filter /* computes the filter probability */
INPUT: 
o = {{o1,1, ..., o1,n 1

},...,{ok,1, ..., ok,n k
}}clustered_unertain_object, 

o’ = {{o’1,1, ..., o’1,n’ 1
},..., {o’k,1, ..., o’k,n’ k

}}clustered_uncertain_object
OUTPUT: numerical value p [0..1];

BEGIN
IF mindist (MBR(o), MBR(o’)) >  THEN

RETURN 0
ELSE IF maxdist (MBR(o), MBR(o’))  THEN

RETURN 1
ELSE BEGIN

filter_probability := 0;
FOR i = 1 TO k DO

FOR i’ = 1 TO k DO
IF mindist (MBR(Ci(o)), MBR(Ci’(o’)))  THEN

filter_probability := filter_probability +  ni . n’i’
RETURN filter_probability / s2; 

END;
END.

b)

Fig. 5. Probability functions underlying the distance-range join. a) Computation of the exact prob-
ability, b) Computation of the filter probability

pairs for which the exact probability value is equal or higher than pdr,filter, then all these
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5 Experimental Evaluation

In  this  section, we  examine the  effectiveness, i.e. the quality, and the efficiency  of  our
proposed probabilistic similarity join approach. The efficiency of our approach was mea-
sured by the number of required distance computations which dominate the overall
runtime cost. The depicted cost concerning the probabilistic distance-range join exper-
iments reflect the overall number of required distance computations. 

5.1 Experimental Setup

The following experiments  are based on artificial datasets, each consisting of a set of
3- and 10-dimensional uncertain feature vectors. Additionally, we also applied our ap-
proaches to two distributed real-world datasets PLANE and PDB where the feature vec-
tors were described by multi-dimensional boxes according to [18]. 

ARTd(u) datasets. Each  of  these  artificial  datasets  contains 1000 uncertain objects
distributed equally in a d-dimensional normalized data space. Thereby the parameter u
denotes the grade of uncertainty of the objects in the dataset. The uncertainty of the ob-
jects, i.e. the maximal variance of the feature values, is measured relatively to the data
space. In our experiments, we used two different settings for the uncertainty. For the
ART3 data set, u = ’low’ denotes an uncertainty of 3% of the data space and u = ’high’
denotes an uncertainty of 5% of the data space. For the ART10 data set, u = ’low’ denotes
an uncertainty of 3% of the data space and u = ’high’ denotes an uncertainty of 4% of the
data space. 

PLANE dataset. The real  world  dataset PLANE  consists of 1000 high-resolution 3D
CAD objects provided by our industrial partner, an American airplane manufacturer.
Each object is represented by a 42-dimensional feature vector which is derived from the
cover sequence model as described in [17]. The average uncertainty of the PLANE data
set is 1% of the data space.

PDB  dataset. This  3D protein structure  dataset is a real world dataset derived from
the Brookhaven Protein Data Bank (PDB) [6]. The 1000 objects are represented by 3D
shape histograms [2] resulting in a 120-dimensional feature vector per object. The aver-
age uncertainty of the PDB data set is 4% of the data space.

For the sampling of the possible object positions we assumed an equal distribution
within the corresponding uncertainty areas. All d-dimensional datasets are normalized
w.r.t. the unit space [0,1]d. As distance measure we used the L1-distance (Manhattan dis-
tance). We performed a self-join on the datasets where the -distance was set to 3% of
the dataspace for all datasets, except of the PDB dataset for which we set . If not
stated otherwise, the size of the sample set of each uncertain object is initially set to 25
samples which are approximated by 7 clusters. 

5.2 Experiments on the Sample Rate
In  the  first experiments, we examined  the quality of  our  similarity  join  approaches by
varying the number of used samples per object. We noticed that for sample rates higher
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Papprox(r d s) > 0} based on sample rates sr < 100. The used error measure Errdr for the
distance-range joins is defined as follows: 

Errdr(Rapprox, Rexact) = 

Figure 6a shows the error of the probabilistic distance-range join for a varying sample
rate sr. The figure shows clearly that the error decreases rapidly with increasing sample
rates. At a sample rate sr = 10 the error is less than half the size compared to the error at
s = 1 for all datasets. Furthermore, comparing the artificial datasets with high uncertain-
ties (ARTd(high)) to those with low uncertainties (ARTd(low)), we can observe that a
higher uncertainty leads to a higher error.  

In the next experiment, we investigated how the sample rate influences the cost of
the join processing. Figure 6b shows the number of distance computations required to
perform the join for varying sample rates. We set the number k of clusters to 5 for a
sample rate sr higher than 5, otherwise we set k = sr. The cost increase superlinear with
increasing sample rates s. For high sample rates, the good quality (cf. Figure 6a) goes
along with high join cost (cf. Figure 6b). In particular, the join processing on datasets
with high uncertainty (ARTd(high)) does not only lead to a lower quality of the results
but is also more expensive than the processing on more accurate datasets (ARTd(low)).
Altogether, we achieve a good trade-off between the quality of the results and the re-
quired cost when using a sample rate of sr = 25. 

5.3 Experiments on the Efficiency

In this subsection, we examine  the  runtime  performance of our probabilistic join
approach. At first, we consider the runtime behavior for different sample rates s and
varying number of clusters k. The experimental results are depicted in Figure 7. On the
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Fig. 6. Influence of the sample rate sr. a) Error, b) Number of distance computations.

than 100 the resulting probability values do not change any more considerably. There-
fore, we used the probabilistic similarity join result Rexact = {(r, s, Pexact(r d s))|
Pexact(r d s) > 0} (cf. Definition 4) based on 100 samples as reference join result for mea-
suring the error of the probabilistic similarity join results Rapprox= {(r, s, Papprox(r d s)) |
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high, i.e. a lot of cluster pairs have to be refined. Very small clusters (k = s) also lead to
an expensive join processing, because we have to compute a lot of distances between
pairs of clusters when refining the object pairs. The best trade-off for k can be achieved
somewhere in between these two extremes. As depicted in Figure 7, the optimal setting
for k depends on the used sample rate. Generally, the higher the used sample rate s, the
higher is the optimal value for k. 

In the next experiments, we demonstrate the advantages of the filter step when
enabling a ranked output of the results in descending order of their probabilities. As
mentioned in Section 4.2.2, the proposed filter step enables an early output of the first
join results. Figure 8a depicts the performance of the ranked distance-range join w.r.t.
the probabilities of the results. Only 25% of the distance computations are required to
output all certain results, i.e. results having a probability higher than 95%. Only 70% of
the distance computations are required to output all results having a probability higher
than 50%. The join cost w.r.t. the number of returned results are depicted in Figure 8b.
Only 45% of the distance computations are required to return the first 10% of the result
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Fig. 7. Runtime performance for varying number of sample clusters
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one hand, when using only one cluster per object (k = 1), we have only a few clusters for
which we must compute the distances between them. On the other hand, the refinement
of these clusters is very expensive. When using one cluster per object, the cluster covers
the entire uncertain object, i.e. it has a large extension. The probability that the -range
value is between the mindist value and the maxdist value of a pair of such clusters is very
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6 Conclusions

Similarity  query  processing  on uncertain data  is  an  important emerging topic in
many modern database application areas. In this paper, we introduced the general con-
cept of probabilistic similarity joins on uncertain objects which assign to each object
pair a probability value indicating the likelihood that it belongs to the result set. In
particular, we introduced in detail how to compute these probability values for the dis-
tance-range join. We showed how this similarity join can effectively be carried out
based on the generally applicable concept of monte-carlo sampling. In order to improve
the efficiency of the proposed probabilistic similarity join, we determined appropriate
approximations of the object samples by means of clustering. Based on these approxi-
mations, the proposed probabilistic distance-range join algorithm also supports an in-
cremental report of the join results ranked in descending order of their probability

 values. In a detailed experimental evaluation based on artificial and real-world data sets, we
demonstrated that the incremental probabilistic distance-range join allows to report the
most significant join results very early. 

In our future work, we plan to extend our probabilistic algorithm to further similar-
ity join predicates, e.g. the nearest-neighbor and reverse-nearest neighbor predicates.
Furthermore, we will show that probabilistic similarity joins can beneficially be used as
a basic operation for various data mining algorithms, e.g. clustering and classification
algorithms, which have to process uncertain data. 
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Abstract. In many applications, uncertainty and ignorance go hand in hand. 
Therefore, to deliver database support for effective decision making, an 
integrated view of uncertainty and ignorance should be taken. So far, most of 
the efforts attempted to capture uncertainty and ignorance with probability 
theory. In this paper, we discuss the weakness to capture ignorance with 
probability theory, and propose an approach inspired by the Dempster-Shafer 
theory to capture uncertainty and ignorance. Then, we present a rule to combine 
dependent data that are represented in different relations. Such a rule is required 
to perform joins in a consistent way. We illustrate that our rule is able to solve 
the so-called problem of information loss, which was considered as an open 
problem so far. 

1   Introduction 

Today, we distinguish several data models to represent and query data, such as the 
relational data model, object-oriented data models, XML data models, etc. Through 
the years a number of efforts has been devoted to capturing uncertainty in the context 
of relational databases [2,3,6,8,9,12,13,14,16]. Despite these efforts not all issues 
have been satisfactorily solved in the context of relational databases, while modelling 
uncertainty in other types of databases, such as XML databases is still in its childhood 
[1,7,10].  These approaches, except [13], are based on probability theory, and as a 
consequence they inherit the limitations of this theory. Probability theory is very 
suitable to capture uncertainty but not suitable to model ignorance. This has been 
noted and discussed in [2]. To overcome these limitations, Barbara et al. [2] 
introduced the so-called notion of missing probability, which is actually a way to 
model ignorance. However their approach suffers to a number of problems as will be 
illustrated in the next section. 

Since uncertainty and ignorance go hand in hand in many applications, we feel that 
databases should support them in an integrated way.  Suppose we have a document of 
which 80% is clearly visible and 20% of the document is damaged. This document 
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contains an enormous amount of addresses, including addresses that give rise to 
suspicion. From the visible part, we can derive that 70% of the addresses is “normal” 
and 30% of them are  considered as suspicious. So, if we have an arbitrary address A 
that comes from the visible part of the document, we know the distribution among 
normal and suspicious addresses, and therefore we are able to estimate whether A is a 
normal or a suspicious address. However, we will remain in uncertainty of the actual 
status of A, until we have checked in the document the details about A. For the 
damaged part of the document, we do not have any clue about the distribution of 
normal and suspicious addresses, therefore we are ignorant with regard to the 
addresses in this part of the document. If we want to estimate whether an arbitrary 
address B, of which it is unknown to what part of the document it belongs, is normal 
or suspicious, then we need to combine uncertainty and ignorance. Note, that 
estimating whether B is normal or suspicious on the basis of the distribution function 
that pertains only to the visible part will be unreliable. Therefore, to deliver database 
support for effective decision making, an integrated view of uncertainty and 
ignorance should be taken.  

In this paper, we present how uncertainty and ignorance can be modelled in a 
relation, which consists of a set of tuples, and each tuple is a list of attribute values. 
Our approach is inspired by the Dempster-Shafer theory [5,11,15], but differs on main 
points of this theory (see Section 3). Then, we focus on how two relations, in which 
uncertainty and ignorance are captured can be combined in a consistent way to 
support joins in databases. We note that a join is an important operation to answer 
user queries posed on a relational database. The goal of this paper is to present the 
intuitive ideas behind our rule to combine dependent data and to show that we are 
able to solve the so-called problem of information loss (see Section 2), which was 
posed as an open problem in [2]. Therefore we will restrict ourselves in this paper to 
the combination of two relations. For the generalization of the rule to more than two 
relations we refer to a forthcoming paper and for the theoretical foundation of our 
model to capture uncertainty and ignorance in relational databases, we refer to [4]. 

The remainder of this paper is organised as follows.  In Section 2, we discuss our 
problem definition in more detail and discuss why probability theory fails to solve the 
problem. Then, in Section 3, we briefly introduce our approach to model uncertainty 
and ignorance in databases. Then, in Section 4, we define our combination rule to 
combine dependent data represented in two different tables. In Section 5, we illustrate 
the application of our combination rule. Finally, Section 6 concludes the paper. 

2   Problem Definition 

In relational databases, a relation is defined over some attributes. An attribute takes a 
single value from a predefined domain. In our approach, we allow an attribute to take 
a set of values from a predefined domain D, and a function will be associated  
with this set, expressing the degree of uncertainty and ignorance among the elements  
in a set. 

By means of the following example, which is similar to an example in [2], we 
introduce our problem definition in more detail. Suppose we want to predict the 
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planting behaviour of farmers. Therefore, we need to model some data about the 
weather and some data about the planting behaviour of farmers in the past. Let us 
assume that for the weather the possible outcome is either wet or dry. Now the KNMI 
(Royal Dutch Meteorological Institute) has collected evidences that it will be a dry 
season with probability 0.6 and another set of evidences is pointing to a wet season 
with a probability of 0.2. Since the probability of a dry and a wet season sum up to 
(0.6 + 0.2 =) 0.8, the remaining 0.2 actually implies ignorance with regard to the 
weather. In [2] , the authors model ignorance by assigning the probability of 0.2 to the 
set {wet, dry}. The semantic of this solution is that we do not make any statement 
how the probability of 0.2 is distributed among the elements of the set {wet, dry}. In 
the left table of Figure 1, the weather data is modelled. Furthermore, we have the 
following statistics for a dry season: 30% of the farmers planted turnips and 70% of 
them planted wheat if they expected a dry season. If farmers expected a wet season, 
they planted turnips. In the right table of Figure 1, we have modelled this data. 

    

source weather  weather plant 

dry 
0.3 [turnips] 
0.7 [wheat] 

 
KN MI 

 
0.6 [dry] 
0.2 [wet] 

0.2 [dry, wet] 
 

 

wet 1.0 [turnips] 

 

Fig. 1. Two base relations to model weather data 

To gain insight in the planting behaviour of a farmer in the next season, the tables 
of Figure 1 need to be joined. To combine the probabilities, we may use the 
conditional rule of Bayes, namely, Pr(weather=“w”, plant=“p”) = Pr( plant=“p” | 
weather=“w”)*Pr(weather =“w”), which results in Figure 2. 

The first tuple in Figure 1 is telling us that the probability that it will be a dry 
season and a farmer will plant turnips is 0.18 and the probability that it will be a dry 
season and a farmer will plant wheat is 0.42. Note, the joined table contains answers 
to questions like: what is the probability that turnips/wheat will be planted next 
season? 

source                             weather    plant 

KNMI (0.6*0.3 =) 0.18  [ dry        turnips] 
(0.6*0.7 =) 0.42  [ dry        wheat] 

KNMI (0.2 *1.0 =)  0.2  [ wet       turnips] 
  

Fig. 2. Result of a join between the base relations depicted in Figure 1 

As can be verified from Figure 2, ignorance (the probability of 0.2 assigned to 
{dry, wet}) has no influence on the join result. So, we have this information in one of 
our tables, but it is not used during the join, hence we have information loss.  
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From the above-mentioned example we observe the following. First of all, 
probability theory is not equipped to handle ignorance. For example, probability 
theory does not provide us the possibility to model the situation that 60% of the 
collected evidences points to a dry season and 20% to a wet season. Intuitively, we 
like to model this as Pr(dry) =0.6 and Pr(wet) = 0.2. However, this is in contradiction 
which one of the fundamental rules in probability theory. A corollary of the basic 
axioms of probability theory is the rule 1)()( =¬+ AA PrPr . Let A  represent the 

event “dry” season, thus 6.0)( =APr . Actually, the probability of the event “wet” 

season is now determined and should be 4.06.01)( =−= Pr wet  which is in 

contradiction with the collected evidences that are pointing to 0.2. Perhaps one might 
think that this problem can be solved by modelling an outcome space as  = {(wet), 
(dry), (wet, dry)} and defining a probability function p:  → [0,1]. In Appendix 1, we 
show that this does not lead to a solution. 

Second, the approach proposed by Barbara et al. [2] leads to information loss and 
the embedding of their approach in probability theory is dubious, since it is in 
contradiction with the axioms of this theory (see also [4]).  

Third, modelling ignorance by assigning a mass to a whole set of events, instead of 
(equally) distributing the mass among the elements of the set, is an attractive option 
and is pursued in this paper.  

From the observations, we learn that ignorance and uncertainty are strongly 
intertwined. Therefore, for data management purpose, we need a theory in which 
these notions are embedded in an integrated way. In the next section, we propose our 
approach to capture uncertainty and ignorance. 

3   Modelling Uncertainty and Ignorance in Databases 

In this section, we start by introducing some basic notions from Dempster-Shafer 
theory [11] to capture uncertainty and ignorance in a single relation. However, to 
combine data from two different relations we need to extend the theory. We will 
discuss the extension in Section 3.2. 

3.1   Basics of Dempster-Shafer Theory 

We propose to attach a mass function, called basic probability assignment (bpa) to a 
set of attribute values in a relation.  Based on this function, we will define the notion 
of ignorance. 

[Def. 2.1] Let X be a set and }|{ XSSDx ⊆= , then a function ]1,0[: →xDm  is a 

bpa whenever .1 and 0)( ==∅
∈ xDS

m(S)m  

The quantity )(Sm expresses a relative confidence in exactly S and not in any 

(proper) subset of S. The total confidence in S, which we call belief, is the sum of the 
probability assignments committed to all subsets of S. The following definition 
describes the relation between a belief function and basic probability assignment. 
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[Def. 2.2] For a given bpa m, a belief function, called Bel, is defined over any xDS ∈  

as
⊆

=
SS

SmSBel
'

)'()( . Note, a bpa induces a belief function and conversely.  

To define the notion of ignorance, we first define plausibility. 

[Def. 2.3] The plausibility of any set xDS ∈ is defined as )(1)( SBelSPl ¬−= . 

[Def. 2.4] The degree of ignorance for a set S is defined as )()()( SBelSPlSIg −= .  

Now, we are able to model smoothly the data collected by KNMI in our example 
introduced in Section 2, without being in conflict with the axioms that belief functions 
should satisfy [15]. Note, for two sets 1S and 2S , the following should hold for a 

belief function Bel: )()()() (
21212 1 SSBelSBelSBelSSBel IU −+≥ . 

Recall, in example 1, the KNMI collected evidences to predict whether it will be a 
dry or a wet season, and 60% of the evidences was pointing to a dry season, 20% to a 
wet season, and the remaining 20% of the evidences was neither pointing to a wet nor 
a dry season. This can be modelled as follows: m({dry}) = 0.6, m({wet}) =0.2, and 
m({dry, wet}) = 0.2. The corresponding belief function to m is: Bel({dry}) 
= 0.6, Bel({wet}) =0.2, and Bel({dry, wet}) = m({dry}) + m({wet}) + m({dry,  
wet}) = 1.0.  

The plausibility for a dry season is: 1)dry}{(1)dry}({ −=¬−= BelBelPl )wet}({l  

8.0= , and the ignorance with regard to a dry season is )dry}({)dry}({ = PlIg  

2.06.08.0)dry}({ =−=− Bel . We note that this is in line with our intuition, since 

60% of the evidences are pointing to a dry season and 20% of the evidences leave us 
in ignorance because they are neither supporting a dry nor a wet season. So, an 
optimistic estimation for a dry season is 0.8. A similar reasoning can be hold for the 
prediction of a wet season.     

3.2   Extending the Dempster-Shafer Theory 

As can be seen from Figure 2, the combination of the base relations of Figure 1 leads 
to a relation , in which we like to obtain a bpa defined on a set that in  turn consists to 
two distinct sets  namely  Dweather ={dry, wet} and Dplant ={turnips, wheat}.  Therefore, 
we need to extend the notion of bpa’s to two distinct sets. Furthermore, the data in the 
weather table should be interpreted as that turnips will be planted with a bpa of 0.3, 
given the fact that it will be a dry season. So this means that the bpa defined on plant 
is dependent on the attribute weather. Therefore, we introduce the notion of 
dependent bpa. We start extending the Dempster-Shafer theory by defining a bpa on 
different sets.  

[Def. 2.5] Let X and Y be two distinct sets and }|{ XSSDx ⊆= and |{ QQDy =  

}Y⊆ . A function ]1,0[: →× yx DDm  is a combined bpa on xD and yD  whenever (1) 

∅=∅==  Qor   if ,0),( SQSm and (2) 
∈ ∈

=
x y

DS DQ
 m(S,Q) 1  . A combined 

bpa will be denoted as c-bpa in the following. 
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Analogous to definitions 2.2 and 2.3, the belief and plausibility on xD  and yD are 

defined as follows. 

[Def. 2.6] Let m be a c-bpa defined over 2 distinct sets xD and yD , the belief in (S,Q), 

in which yx DQDS ∈∈  and , is defined as 
⊆′ ⊆

′′=
SS QQ

QSmQSBel ),(),(
'

. 

The plausibility in the pair (S,Q) is defined as ),(1),( QSBelQSPl ¬¬−= . 

[Def. 2.7] Let m be a c-bpa defined over two distinct sets xD  and yD , and xm a bpa 

defined on xD , then m is called dependent on xm whenever ⊆∈∃ sDS
iSx :  

=
∈

QSm
yDQ i 1),(  and 0)( >ix Sm . In the following we will denote a dependent 

bpa m on xm as )|(.| Sm xy . 

The intuition behind Def 2.7 is the following. The fact that a set xDS ∈ exists for 

which holds  ⊆ =
∈s QSm

i yS DQ i 1),( means that we are talking about a “world” 

S, in which we distinguish all kinds of events Q, i.e., we reason about events Q given 
the world S or a subset of S. The fact 0)( >ix Sm  implies that we have evidences that 

a world S exists, and therefore it is worthwhile to reason in world S. 
Let us illustrate the notion of dependent bpa by means of our KNMI example, in 

which wet}{dry,weather =D ; and the bpa  0.6  {dry})(weather ==m ,  {wet})(weather =m  

0.2 = and 0.2   wet}){dry,(weather ==m .  

Then, the c-bpa m(dry, turnips) = 0.7 and m(dry, wheat) = 0.3 is dependent on 

weatherm  since m(dry, turnips) + m(dry, wheat) =1.0 and 0 {dry})(weather >=m . Note, 

in this case S = {dry}. If we formulate m as 7.0dry) | (turnipsweather|plant =m and 

3.0dry) |(wheat weather|plant =m , then it is clear that it represents the first tuple in the 

right table of Figure 1.  
The class of relational schemes that we consider in the remainder of this paper 

consists of a set of base relations, in which bpa’s are defined on single attributes. 
Furthermore, we assume that there is a non stochastic attribute that serves as key and 
uniquely identifies a tuple in a base relation. All other attributes in the relation, 
including their bpa’s, are dependent on the key. The relations introduced in Figure 1 
are typically the base relations that we consider.  

4   A Combination Rule 

This section is devoted to the combination of a bpa xm defined on a domain xD and a 

dependent bpa, )|(.| Sm xy  defined on two domains xD  and yD . In the following, a 

subset xi DSS ∈⊆ or yj DQ ∈  is called a focal element of a belief function if 

0)|(or    0)( | >> SQmSm jxyix . Consider two belief functions xBel  and xyBel | , with 
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               )( iSxm               )|(| SjQxym

   0                               1.0        0                              1.0 
                                  xm                                   xym |   

Fig. 3. Graphical representation of a bpa and a dependent bpa  

xm

)|(| SQm jxy

1.0

1.0)( iSxm

xym |

0.0
 

Fig. 4. Graphical representation of the combination of a bpa with a conditional bpa 

corresponding bpa’s xm and )|(.| Sm xy . Let piSi ,...,2,1 , =  and qjQ j ,...,2,1, =  be 

the focal elements of xBel and xyBel | , respectively. A graphical representation of both 

belief functions is given in Figure 3, in which the bpa’s of the focal elements are 
depicted as segments of a line segment of length 1.  

In Figure 4, it is shown how the two bpa’s can be orthogonally combined to obtain 
a square. The area of the total square is exactly 1. The area of a rectangle is the c-bpa 
value assigned to the combination of the focal elements SQS ji | and . 

Let us focus on answering the following question: what is the meaning and result 
of the combination of the focal elements iS and SQ j | in Figure 4? The result of the 

combination of these two elements is either the pair ),( ji QS or ,*)( iS , in which * 

represents the whole domain yD . We use the wildcard symbol, since the 

interpretation of the pair ,*)( iS  is that the first element is iS , while the second 

element could be any subset of yD . We distinguish three situations for providing an 

explanation for obtaining either the pair ),( ji QS or ,*)( iS . In the following, the sets 

SQS ji | and are focal elements, and, as said before, xi DSS ∈⊆ and yj DQ ∈ . 

In the first situation, we assume ∅=∩ iSS , then the result of the combination of 

iS  and SQ j |  is the pair ,*)( iS . Since the intersection between S and iS results in an 

empty set, xm does not have any focal elements that supports set S, and therefore no 
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statement can be made about the support for jQ . So, we have support for iS   due to 

xm  and no support for a specific subset of yD  on the basis of iS . Therefore, we 

conclude the pair ,*)( iS  and the contribution to the exact support for this pair on the 

basis of )( ix Sm  and )|(| SQm jxy  is computed by multiplying those values.  In the 

following ⊕ symbolizes the combination operator.  We note that the value of 
,*)(| ixyx Smm ⊕  is equal to the size of the area of the shaded rectangle in Figure 4. 

Let us illustrate this situation by means of our running KNMI example. Suppose 
we want to combine 0.2  {wet})(weather ==m and 7.0dry) | (turnipsweather|plant =m . 

Note, 0.2  {wet})(weather ==m means that we have evidences for a wet season. 

However, 7.0dry) | (turnipsweather|plant =m implies that there is support for planting 

turnips assuming that it will be dry. Since wet is in contradiction with dry, the 
conclusion should be that we have evidences for a wet season and no statement can be 
made about what to plant. Therefore, we conclude that the combination leads to 

14.07.0*2.0){wet},*(| ==⊕ weatherplantweather mm . 

In the second situation, SSi ⊆ , and therefore ∅≠∩ iSS . Then, the result of the 

combination of iS  and SQ j |  is the pair ),( ji QS . In this case, we have support for 

set iS  which is expressed by means of xm  since 0)( >ix Sm . Therefore, we have also 

support for set S, since S contains iS . Consequently, we conclude support for jQ . The 

contribution to the exact support for pair ),( ji QS , i.e., ),(| jixyx QSmm ⊕ , on the 

basis of  )( ix Sm  and )|(| SQm jxy , is again computed by multiplying the values 

)( ix Sm  and )|(| SQm jxy . 

In the last situation, ∅≠∩ iSS  and SSi  ⊄ .  Then, the result of the combination of 

iS  and SQ j |  is the pair ),( ji QS  as well. Assume that T is the non empty set of the 

intersection between S and iS . Since 0)( >ix Sm  and we do not know anything about 

how this value is distributed among the elements or subsets of iS , an option is to 

assign support to and to reason about T. Note, that this can be done for each subset of 

iS that might be of interest. Since T ⊆ S and we have support for T, this implies 

support for S. Consequently, we may conclude support for set jQ , since 

0)|(| >SQm jxy  and we have support for S via T. Again, the bpa value for ),( ji QS  is 

computed as follows: ),()(),( || SQmiSmQSmm jxyxjixyx =⊕ .   

We illustrate the last situation by means of our running example, where 
0.6  {dry})(weather ==m , 0.2  {wet})(weather ==m , and 0.2   wet}){dry,(weather ==m . 

Consider the following two dependent bpa‘s: 7.0dry) | (turnips1
weather|plant =m and  

3.0dry) |(wheat 1
weather|plant =m  and 1.0 wet)|(turnips2

 weather|plant =m , representing the 

first and the second tuple in the right table of Figure 1 respectively.  
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Combining 0.2   wet}){dry,(weather ==m  with 1
weather|plantm  results into: weatherm  

⊕   turnips)(dry,1
 weather|plant m =0.2*0.7=0.14 and   wheat)(dry,1

 weather|plant weather mm ⊕  

=0.2*0.3=0.06. We note that 0.2   wet}){dry,(weather ==m implies support for the set 

{dry, wet}. However we do not know how the mass of 0.2 is distributed among the 

elements of {dry, wet}. Since for 1
weather|plantm , a dry weather is of interest, a possible 

distribution is the computed 1
 weather|plant weather mm ⊕ . In 2

 weather|plant m , a wet weather is 

of interest. Then, the combination of 0.2   wet}){dry,(weather ==m with 2
 weather|plant m  

results in 0.2 turnips)(wet,2
 weather|plant weather =⊕ mm . So, the combination of 

0.2   wet}){dry,(weather ==m may result in different possible distributions depending 

on the set of weather that is of interest for a dependent bpa. This is in line with our 
intuition. 

Let us formulate now our combination rule, in which sum up the rectangles that 
contribute to the bpa of a pair ),( ji QS .  

  +

≠

=⊕

∈
∅=∩ ∅≠∩

∅≠∩

else)|(*)()|()(

* if)|()(

),(
||

|

|

y

i i

i

DQ
SS SS

xyixxyix

j
SS

jxyix

jixyx SmSmSQmSm

QSQmSm

QSmm  (1) 

As discussed in the foregoing, the combination of iS  and SQ j |  results in 

,*)( iS whenever ∅=∩ SSi .  In the case, ∅≠∩ SSi the pair ,*)( iS  can be obtained 

due to a combination of iS and S|* as well. Therefore, the else part of combination 

rule consists of two expressions. 
The following proposition considers a special case of our combination rule. As will 

be illustrated in the next section, it appears that this special case is sufficient to solve 
the open problem posed in [2]. 

[Prop. 1] Let xm be a bpa defined over xD , and fixS  be a fixed set in a dependent  

c-bpa )|(.| fixxy Sm , which  is defined over xD  and yD . Then equation (1) reduces to 

   
∅≠∩

=⊕
else)(

 if)|()(
),( |

|
ix

fixifixjxyix
jixyx Sm

SSSQmSm
QSmm  (2) 

[Proof.] The intersection of iS and fixS is either empty or not empty. If the intersection 

between iS and fixS  results in a non empty set then our combination rule, i.e., equation 

(1) reduces to 
 

≠
=⊕

else)|(*)(

* if)|()(
),(

|

|
|

fixxyix

jfixjxyix
jixyx SmSm

QSQmSm
QSmm  

which is equal to )|()(),( || fixjxyixjixyx SQmSmQSmm =⊕ . 
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If the intersection between iS and fixS  results in an empty set, then our 

combination rule, i.e., equation (1) reduces to 
∈

=⊕
yDQ

xyixjixyx mSmQSmm )(),( ||  

fixSQ )|(  According to Def 2.7,
∈

=
yDQ

fixxy SQm 1)|(| since )|(.| fixxy Sm is a 

dependent c-bpa. 
Therefore, 

)()|()()|()(),( ||| ix
DQ

fixxyix
DQ

fixxyixjixyx SmSQmSmSQmSmQSmm
yy

===⊕
∈∈

.    

5   Illustrative Examples 

In this section, we illustrate how our combination rule can be applied to support a join 
in relational databases. As noted before, a join is an important operator and combines 
data that is stored in different relations. We restrict ourselves to equi-joins due to the 
page limitations. Example 5.1 in this section is literally adopted from [2]. This 
example was posed as an open problem by its authors. We will illustrate how this 
problem can be solved by applying our combination rule. We start by elaborating on 
the value that a join attribute should assume after performing a join. 

A traditional equi-join, is expressed by ARAR .. 21 = , in which A is an attribute that 

appears in both relations 1R  and 2R . In this case, two tuples from the different 

relations are composed to a joined tuple if they have the same value for attribute A.  
Since in our extended relational model an attribute in 1R  as well as in 2R may consist 

of a set of values, the question arises: what value attribute A should assume after a 
join?  

Let 21  and AA be the sets that contain the values for attribute A in relation 1R  

and 2R  respectively. Then, the set 21 AA ∩  contains data that can be found in both 

relations. So, a joined tuple on the basis of A pertains to the set 21 AA ∩ . Therefore, 

we define the value for attribute A after a join as the set 21 AA ∩ . By means of 

examples, we illustrate how our combination rule can be applied in performing joins. 
The following example, adopted from [2], shows the results that we intuitively expect 
from a join in a relational model that is capable to deal with uncertainty and 
ignorance. 

[Example 5.1] Consider the following instances of two relations 1R  and 2R . 
 

    21                                                               RR  
Z A  A B 

z 0.4 [ 1a ]  
1a  0.7 [ 1b ] 

 0.6 [*]   0.3 [ 2b ] 

.
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Each relation consists of two attributes. Attributes Z and A are the keys of  1R  and 2R  

respectively. As argued in [2], intuitively, the join between these relations on attribute 
A should result for pair ),( 11 ba  in probability1 range between 0.28 and 0.7 and for 

pair ),( 21 ba in probability range between 0.12 and 0.3.  How to obtain these values 

was left as an open problem in [2].  

In the next example, we illustrate how we can obtain these desired values by applying 
proposition 1, which is a special case of our combination rule. Then, in Example 5.3 
we discuss a more complicated case. 

[Example 5.2] From the relations of example 5.1, it is clear that we have the 
following bpa defined on attribute A in relation 1R : 4.0})({ 11 =am and 6.0(*)1 =m . 

Recall that * represents the whole domain of an attribute. In relation 2R , we have a c-

bpa defined over the attributes A and B and which is dependent on 1m . This bpa looks 

as follows: 7.0}){|}({ 111|2 =abm  and 3.0}){|}({ 121|2 =abm . From now on we omit 

the brackets for a set, if it is clear that we are dealing with a set. Although it seems 
that the bpa on attribute A in 1R  is treated differently than the bpa on attribute B 

in 2R , this is not the case. Due to space limitations, we informally touch on this issue 

in this paper.  Actually 1m  is dependent on the bpa of key Z via {z}. Since there is no 

uncertainty about z and no other relations contains attribute Z, we can define the bpa 
on A in 1R as an independent bpa 1m . Note that this reasoning does not hold for 

attribute B in 2R , since there is uncertainty about attribute A in 1R .    

The combination of 1m  and )|(.1|2 Sm , in which S is a subset of or equal to the 

domain of attribute A, is sketched in Figure 5. On the horizontal and vertical axis the 
bpa 1m  and the dependent bpa )|(.1|2 Sm  are depicted respectively. We note that here 

the set S is a fixed set that consists of }{ 1a , and therefore Proposition 1 is applied. 

In Figure 5, for the sake of clarity, each rectangle contains the (new) combined pair 
of sets together with its corresponding bpa value. For example, the combination of the 
bpa values of the elements )( 1a  (with value 0.4) and  )|( 11 ab  (with value 0.7) results 

in a bpa of 0.4*0.7 = 0.28 for pair ),( 11 ba  (lower left rectangle in Figure 5). We note 

that the support for pair ),( 11 ba  is in line with our intuition. According to 

7.0)|( 111|2 =abm  there is support for 1b  whenever there is support for 1a . Since 

0)( 11 >am there is indeed support for 1a , and, therefore there is support for 1b . A 

similar reasoning holds for the support of pair ),( 21 ba . 

The combination of the bpa values of (*) and )|( 11 ab  results in a bpa of 0.7*0.6 

=0.42 for pair )(*, 1b  for the following reason. The intersection between {*} and  

}{ 1a  is the set }{ 1a . So, the combination of the elements (*) and )|( 11 ab  is )(*, 1b . 

Note that 6.0(*)1 =m means that there is support for the whole domain of attribute A.  

 

                                                           
1 We note that probability is the term that is used by the authors in [2].  
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(b2|a1) 

(b1|a1) 

(a1,b2) 
  0.12 

(a1,b1) 
 
   0.28 

1.0 

(*) 1.0 

(*,b1) 
 
   0.42 

0 

0.7 

(*,b2) 
  0.18 

(a1) 0.4 1m  

)|(.1|2 Sm  

 

Fig. 5. Graphical representation of the combination of 1m and )|(.1|2 Sm  

Z         A   B 
z      0.28 [ 11 , ba ] 

0.12 [ 21 , ba ] 
0.42 [ 1*, b ] 
0.18[ 2*, b ] 

            (a)   

 Bel Pl 
[ 11 , ba ] 0.28 0.7 

[ 21 , ba ] 0.12 0.3 

[ 1*, b ] 0.7 0.7 

[ 2*, b ] 0.3 0.3 

 (b)
 

Fig. 6. (a)  Join result between  R1 and R2  and  (b) Corresponding belief and plausibility values 

However, no statement can be made about the distribution of 0.6 among the subsets of 
the domain of A. Since now the subset }{ 1a is of interest, we consider this set as 

option.  A similar reasoning holds for the support of pair )(*, 2b . 

Consequently, the join between relations R1 and R2 is given in Fig. 6(a) and the 
corresponding belief and plausibility values for the different pairs are given in  
Fig 6(b). 

The belief and plausibility values for attributes A and B are in line with the 
intuition as proposed in [2]. Note, that in this example we have support for the set }{ 1a  

with a bpa value of 0.4 and support for the set }{ 1b  with value 0.7, given that there is 

support for }{ 1a  . Therefore, we have a belief of 0.4*0.7 = 0.28 for the pair ( 11 , ba ). 

However, it might be that the support for }{ 1a  is 1.0, since a bpa value 0.6 is assigned 

to the set {*}, which contains the set { 1a }. Therefore, intuitively, the plausibility that 

pair ( 11 , ba ) may occur is 1.0*0.7 = 0.7. 

[Example 5.3] Consider the snapshots of two relations called ship and description.  

ship description

name type type max-speed

Frigate 0.7 [20-knots]

0.3 [30-knots]

Maria 0.6 [Frigate]

0.3 [Tugboat]

0.1[*] Tugboat 1.0 [15-knots]
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The relation ship describes the type of a ship that an observed ship might be. For 
example, intelligence has been gathered to conclude that Maria may be either a Frigate 
with confidence 0.6 or a Tugboat with confidence 0.3, while some evidences leave us 
in doubt about the type of Maria. Therefore, 0.1 is assigned to all possible types of 
ships. The relation description describes the maximal speed and the confidence in this 
speed under the condition that the type of a ship is known before-hand. So, the bpa 
assigned to the attribute max-speed is dependent on type. Perhaps unnecessarily, we 
note that if we want to answer a question like “What is the maximum speed of 
Maria?”, we have to perform a join between above mentioned relations. 

To compute a join between the relations ship and description on the attribute max-
speed, we have to perform two combinations, namely a combination of the tuple of 
ship with the first tuple of description, and a combination of the tuple of ship with the 
second tuple of description.  

The combination of the tuple (Maria {0.6 [Frigate], 0.3 [Tugboat], 0.1 [*]}) of ship 
with the tuple (Frigate, {0.7 [20-knots], 0.3 [30-knots]}) of description results in the 
left part of Figure 7.  Note, Frigate is a fixed set in the left part of Figure 7, while in 
the right part of Figure 7 Tugboat is a fixed set. On the horizontal axis the bpa of 
attribute type of relation ship is depicted, called shipm , and on the vertical axis the 

dependent bpa Fr-ship | descm  corresponding to the first tuple of relation description is 

depicted. For a similar reasoning as in Example 3.2, the bpa pertaining to relation ship 
is modeled as an independent bpa. The combination of the bpa values of the pairs 
(Tugboat) and (30-knots | Frigate) results in a bpa value 0.3 *0.7 =0.21 for the pair 
(Tugboat,*) (lower middle rectangle in the right part of Figure 7). In this case, we 
have support for Tugboat, but this definitely does not mean support for Frigate, and 
therefore there is no support for a specific set of values of max-speed. For the 
combination of the bpa’s of the remaining sets, a similar reasoning can be followed as 
in Example 3.2. 

The combination of (Maria {0.6 [Frigate], 0.3 [Tugboat], 0.1 [*]}) of relation ship 
with the second tuple (Tugboat, {1.0 [15-knots]}) of relation description results in the 
right part of Figure 7.   

Fr-ship | descm

(Tugboat, *) 
0.09 

(*, 30- 
knots) 
0.03 

(20-knots  
| Frigate) 

(30-knots  
| Frigate) 

1.0 

0.7 

(Frigate, 
30-knots) 

0.18 

(Frigate, 
20-knots) 

0.42 

(Tugboat, *) 
0.21 

(*, 20- 
knots) 
0.07 

Tu-ship| descm

   0   (Frigate)  0.6  (Tugboat) 0.9    (*)  1.0 
                                                                     shipm  

(*, 15- 
knots) 

 
0.1 

 

(15-knots  
| Tugboat) 

   0   (Frigate)  0.6  (Tugboat) 0.9    (*)  1.0 
                                                                     shipm

(Tugboat, 
15-knots) 

 
0.3 

(Frigate, *) 
 
 

0.6 

1.0 

 

Fig. 7. Graphical representation of the combination of the bpa’s corresponding to ship and 
description 
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Name           type      max-speed 

Maria 0.42  [Frigate, 20-knots] 
0.18 [Frigate, 30-knots] 
0.3        [Tugboat, *] 
0.07        [*, 20-knots] 
00.3       [*, 30-knots]  

Maria 0.6          [Frigate,*] 
0.3        [Tugboat, 15-knots] 
0.1         [*, 15-knots] 

  (a) 
    

 Bel Pl 
mship ⊕  mdesc | ship-Fr   

[Frigate, 20-knots] 0.42 0.49 
[ Frigate, 30-knots] 0.18 0.21 

[Tugboat,*]   0.3       0.4 
[*, 20-knots] 0.49 0.49 
[*, 30-knots] 0.21 0.21 

mship ⊕  mdesc | ship-Tu   
[Frigate,*] 0.6 0.7 

[Tugboat, 15-knots] 0.3 0.4 
[*, 15-knots] 0.4 0.4 

       (b) 
 

Fig. 8. (a) Join result between ship and description and (b) Corresponding Bel and Pl values 

The result of the join between the relations ship and description together with the 
corresponding belief and plausibility values is given in Figure 8.   

We note that the belief and plausibility values are in line with our intuition. For 
example, the belief of 0.42 that Maria is a Frigate and has a maximum speed of 20-
knots can be understood by the fact that the bpa for a Frigate recorded in the relation 
ship is 0.6 and the bpa that the maximum speed is 20-knots for a Frigate is 0.7 
(recorded in the relation description). The plausibility value of 0.49 for the same pair 
can be understood by the fact that a bpa of 0.1 is assigned to each possible subset of 
ships in relation ship, implying ignorance. It might be the case that the bpa of 0.1 
belongs to Frigate. Therefore, the plausibility that a ship is a Frigate with a maximum 
speed of 20 knots is (0.6 + 0.1)*0.7 = 0.49. 

6   Conclusion and Further Research 

Many researchers have pointed out that there is a need to handle uncertainty and 
ignorance in database applications. Most of the efforts applied probability theory to 
capture uncertainty and ignorance. As has been argued in Section 2, probability 
theory is suitable to capture uncertainty but not to capture ignorance.  In this paper, 
we have proposed a framework to capture uncertainty and ignorance in an integrated 
way. Although our framework can be tailored to different type of data models, we 
elaborate it for the relational model. We assume that an attribute can assume a set of 
values instead of a single value. And we assign, inspired by the Dempster-Shafer 
theory [5,11,15], a so-called basic probability assignment (bpa) to an attribute.  
However, the properties of the Dempster-Shafer theory appeared insufficient to 
support joins. Therefore, we extended the theory with the notion of a “dependent” 
bpa. Such a bpa provides us the possibility to take dependencies between data into 
account. Based on the notion of dependent bpa, we came up with a combination rule  
to combine a bpa, 1m , with a bpa that is dependent on 1m . As has been shown, the 

application of this combination rule solves the problem of information loss that occurs 
as a consequence of joins. Until now, the problem of information loss was posed as an 
open problem in the literature [2]. Furthermore, in our model we have a clear 
semantics of ignorance.   

A topic for further research is the formalization of the basic operators in the 
context of our model. The study of aggregation operators and nested operators is also 
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a topic for further research. Furthermore, in the context of optimization our extended 
model gives cause for the study of a number of issues, such as the control of the 
complexity behavior of our combination rule, query optimization and so on. 
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Appendix 

Perhaps one might think that the KNMI problem of Section 2 can be solved by 
probability theory by choosing a suitable model for the outcome space. One could 
argue to choose the outcome space as follows  = {[wet], [dry], [wet, dry]}. Then we 
can use probability theory to reason about this space. We define now a probability 
function p:   [0,1]. Let say p([dry]) = 0.6, p([wet]) = 0.2, and p([dry, wet]) =0.2. If 
we compute the probability of the union of wet and dry, then p([dry] U [wet]) = 
p([dry]) + p([wet]) = 0.8, which is in contradiction with  p([dry, wet]) =0.2. 
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Abstract. In emerging data stream applications, data sources are
typically distributed. Evaluating multi-join queries over streams from
different sources may incur large communication cost. As queries run
continuously, the precious bandwidths would be aggressively consumed
without careful optimization of operator ordering and placement. In this
paper, we focus on the optimization of continuous multi-join queries over
distributed streams. We observe that by partitioning streams into sub-
streams we can significantly reduce the communication cost and hence
propose a novel partition-based join scheme - PMJoin. A few partitioning
techniques are studied. To generate the query plan for each substream,
a heuristic algorithm is proposed based on a rate-based model. Results
from an extensive experimental study show that our techniques can suf-
ficiently reduce the communication cost.

1 Introduction

Many recently emerging applications, such as network management, financial
monitoring, sensor networks, stock tickers etc, fueled the development of con-
tinuous query processing techniques over data streams. In these applications,
the data sources are typically distributed, e.g. the network hosts or routers in
network management. Collecting all the data to a centralized server may not be
cost-effective due to the high communication cost. Clearly, a distributed stream
processing system is inevitable. Unlike traditional DBMS, where the process-
ing in each node involves expensive I/O operations, stream processing systems
often perform main memory operations. These operations are relatively inex-
pensive in comparison to the communication cost. As both the queries and data
streams are continuous, a lot of existing work, such as [2], focus on minimizing
the communication cost, especially when the source nodes are connected by a
wide-area network. Furthermore, as the streams are continuous and unbounded,
a rate-based cost model has to be used.

In this paper, we focus on multi-way window join query which is an important
and expensive type of continuous queries. These queries may involve multiple
streams from different source nodes. Let us look at an example drawn from the
network management application.

Example 1. We want to monitor the traffic that passes through three routers and
has the same destination host within the last 0.5 seconds. Data collected from

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 325–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Distribution (tuples/ second)

Si S1 S2 S3 S1,2 S1,3 S2,3

λi 100.2 50.07 50.03 9.003 7.001 2.0008
λa

i 0.1 0.03 50 0.003 5 1.5
λb

i 0.1 50 0.01 5 0.001 0.5
λc

i 100 0.04 0.02 4 2 0.0008
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Fig. 1. Communication cost of plans

the three routers feed three streams s1, s2 and s3 to three processing nodes n1,
n2 and n3. The content of each stream tuple includes the destination host ip dest
of a data packet and possibly other information. This task can be represented in
a three-way window join query S1 �S1.dest=S2.dest S2 �S2.dest=S3.dest S3 where
the window size of each stream is 0.5 seconds. �

In Table 1, λi denotes the rate of stream Si and λa
i denotes the rate of tuples

from Si whose value in the dest attribute is a. Furthermore, Si,j is the result
stream of Si � Sj and its rate is denoted as λi,j . The minimum communication
cost that can be achieved under different schemes are as follows:

1. Centralized scheme: The best plan in this category is to send both S2 and
S3 to n1. If we assume the tuple size of every stream is 1 byte, then this scheme
results in communication cost of λ2 + λ3 = 100.1(bytes/sec).

2. Distributed scheme: In this category, the best plan is to send S3 to n2 first
and then ship the result S2,3 to n1. If we assume the tuple size of a join result
tuple is the sum of the two input tuples, we can derive the communication cost
of this plan as λ3 + λ2,3 × 2 ≈ 54.03(bytes/sec).

3. Partitioned-based scheme: taking a closer look at the problem, we can
find that the arrival rates of tuples vary with different values in the joining
attributes. Furthermore, the popularity of the values in different streams also
vary. Hence the optimal plans for these tuples are also different. For exam-
ple in Table 1, dest = a is popular in S3 while it is unpopular in the other
two streams. Hence the best plan for these tuples is to ship them from S2
to n1 to join with S1 and then the resulting tuples are sent to n3 to join
with S3. This results in the cost of 0.036 (bytes/sec). However, for those tu-
ples with dest = b, the best plan is totally different: those tuples from S3
should be sent to n1 and then to n2. By exploiting this characteristic, the
minimum communication cost that we can get for Example 1 is approximately
0.07 (bytes/sec).

In this paper, we focus on the static optimization of multi-join queries. Static
optimization can be applied to applications where the stream’s characteristics
are relatively stable and their changes are predictable. Moreover, given that our
problem has not been previously studied, it is important to examine how static
optimization can be performed before extending the work to a dynamic context.
To summarize, our main contributions are as follows:



PMJoin: Optimizing Distributed Multi-way Stream Joins 327

– We formulate the problem and propose a heuristic-based optimization al-
gorithm to decide the join operation locations and the tuple routing orders
based on a rate-based cost model.

– To further reduce the communication cost, we propose a novel join scheme:
PMJoin. We also study different partitioning strategies (e.g., rate-based,
hash, etc).

– We fully implemented the system and run a simulation study. The study
shows the efficiency of our techniques.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 presents the proposed techniques. In Section 4, we perform exten-
sive performance studies on our implementation. Section 6 concludes the paper.

2 Related Work

Distributed processing of multi-way join have already been extensively studied
in the context of traditional relational database systems. [13] provides a thor-
ough survey on this area. The optimizers in Distributed INGRES [9] and System
R* [14] consider both CPU and I/O cost as well as the communication cost of
processing a whole dataset. In these systems the I/O cost are so high that they
cannot be omitted. SDD-1 [7] uses heuristics to optimize the utilization of semi-
join. Semi-join is useful when a tuple is much larger than a single attribute and
the selectivity is low. However, semi-join is not readily applicable to window
join processing. This is because streams are normally continuous and queries
should be evaluated in a nearly real time manner. For example, a tuple ti may
be pruned away because there is no matching tuples in the opposite window.
However, new tuples may arrive at the opposite window which may match ti.
Extra complicated mechanisms have to be introduced to ensure the correctness.
As shown in our study, we believe our PMJoin, together with the optimization
heuristics, is a promising alternative to reduce the communication cost. Our
techniques can also be adapted for traditional passive data processing whose
performance needs further study. The above-mentioned systems and a consider-
able amount of work (e.g. [8, 16, 21]) have also exploited horizontal fragmentation
of relations to increase the parallelism and consequently to reduce the response
time. Static and dynamic data allocation [3, 17, 20] try to allocate replications to
reduce communication cost or to balance the load on servers. However, none of
the above techniques exploit generating different plans for different partitions.
Furthermore, a rate-based cost model has to be used in our problem.

[12] studies techniques for the evaluation of window join queries over data
streams. [19, 10] examine the processing of multiple joins over data streams.
[4, 15, 5, 6] investigate the static and adaptive ordering of operators for contin-
uous queries over data streams. However, all these studies focus on centralized
processing. There are also several recent efforts devoted to extending centralized
schemes to distributed context. [1] proposes the design of a distributed stream
system. [2] studies the operator placement problem for stream processing. How-
ever, these approaches assume there is an already optimized query plan and then
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allocate the operators, while our approach does not impose such an assumption.
Furthermore, they do not explore partitioning of the streams to further optimize
the plans. In [18], the operators are assumed to have been allocated, and the
proposed scheme adaptively decides the routing order of the tuples.

3 Distributed Multi-join

In this section, we first formulate the problem and then present the scheme to
generate a query plan for each substream. It also applies to the case without
stream partitioning. Then we study how stream partitioning can be applied to
minimize communication cost.

3.1 Problem Formulation

In our system, there is a set of geographically distributed data stream sources Σ =
{S1, S2, · · · , S|Σ|} and a set of distributed processing nodes N = {n1, n2, · · · ,
n|N |} interconnected by a widely distributed overlay network. Since the data
stream sources in practice may not have the ability to communicate with mul-
tiple nodes, we separate the data sources from the processing system by assigning
nodes as delegations of data sources. Streams are routed to the various processing
nodes through their delegated nodes. A multi-way window join query may involve
streams from multiple nodes. For simplicity, we assume the queries do not involve
stored tables.

As mentioned before, our main concern is to minimize the communication cost.
We adopt the unit-time cost paradigm and hence communication cost of a process-
ing scheme Ω can be computed as C(Ω) = Amount of communications (in bytes)

Observation period .

The formal problem statement is: Given a m-way window join (∀m < |Σ|)
query Q, which involves a set of streams Σ and they are located at a set of nodes
N , find a join scheme Ω so that the total communication cost C(Ω) is minimized.

3.2 Join Operation Locations and Tuple Routing Orders

Before processing the queries, we have to first decide the placement of the join
operators. Then we have to route the streams and the intermediate result streams
(if necessary) around the nodes. In this subsection, we focus on how to decide
the location of the join operations as well as the routing order of the tuples for
each substream. Since it also applies to streams without partitioning and we treat
each substream independently, we use the term “stream” instead of “substream”
in the following discussions. The evaluation of the join operations allocated to
each node can use any of the existing centralized join optimization and process-
ing techniques, e.g. [19, 10]. In this paper, we assume the join operations in each
node are evaluated using MJoin [19]. In this technique, one in-memory index
structure, e.g. hash tables, is built for each joining stream. The joining stream
could be a source stream or an intermediate result stream generated by another
node. When a tuple from a joining stream arrives, it would be inserted into
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its corresponding index structure, and be used to probe other index structures
one by one to evaluate the query. The optimization of the probing order has
already been studied in centralized processing literatures [4, 6, 19] and would
not be considered in this paper.

Notations and Cost Model. Let the set of streams and the set of nodes
involved in the query Q be Σ and N , respectively. The set of streams that are
located in ni ∈ N is denoted as Σi. The result stream of Si � Sj is denoted
as Si,j and the result stream of Si,j � Sk is denoted as Si,j,k and so on. If two
streams are located at one node, we say that they are co-located. A function
coli,j is defined as follows:

coli,j =
{

0 : Si and Sj are co-located
1 : otherwise (1)

We adopt a rate-based cost model similar to the one developed in [5]. The
arrival rates of streams Si and Si,j are denoted as λi and λi,j , respectively.
Let Wi and Wj be the expected number of tuples in the window of Si and Sj ,
respectively. For a tuple-based window, Wi is equal to the window size Ki, while
for a time-based window, Wi is equal to λi · Ti, where Ti is the window size. To
estimate λi,j , we note that for every unit time, λi tuples from Si and λj tuples
from Sj would be used to probe the windows of Sj and Si, respectively. Out of
the λi ·Wj + λj ·Wi pairs of tuples, f × (λi ·Wj +λj ·Wi) matches are expected
to be found, where f is the join selectivity. Therefore the expected number of
tuples generated by Si � Sj per unit time can be estimated as

λi,j = f × (λi ·Wj + λj ·Wi) (2)

The tuples in the active window of the result stream Si,j are composed of
those result tuples that are the join results of the tuples in the active window
of Si and Sj . Hence the expected number of tuples in the active window of Si,j

can be computed as
Wi,j = f ·Wi ·Wj (3)

Eqs. (2) and (3) can be recursively applied to obtain the values for multiple
joins. Furthermore, it should be noted that the output rate and the window of
the join result of a set of streams are independent of how the join is performed.
Hence for a given distributed query plan, we can compute its unit-time com-
munication cost by computing the rates of the streams that are sent over the
network.

A Heuristic Algorithm. Given the above cost model, we can use a specific
searching algorithm to search a specific solution space. For example, we can use
dynamic programming to select an optimal plan from all the left deep tree plans.
The computation complexity of the algorithm is O(n!). However, as we will see
soon, the search algorithm has to be applied several times in our partition-based
join approach. Hence we will propose a much cheaper algorithm which runs in
O(n2) time. Algorithm 1 shows the proposed stream join optimization algorithm.
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Algorithm 1. StreamJoinOpt(Σ, G)
Input: Σ: A set of streams;
G: A join graph over Σ;
begin1

for each ni ∈ N do2

Sort Σi in increasing arrival rates;3

for j = 0; j < |Σi|; j + + do4

for k = j + 1; k < |Σi|; k + + do5

if λΣi[j]�Σi[k] < λΣi[j] then6

Label the join between Σi[j] and Σi[k] as local;7

Σi[j] ← Σi[j] � Σi[k];8

Σi ← Σi − Σi[k];9

Sort Σ in increasing arrival rates;10

while |Σ| > 1 do11

Σp ← the slowest stream Si;12

Σ− = Si;13

repeat14

cost ← MaxNumber;15

for each stream Sj joinable with any stream in Σp do16

if C(Σp + Sj) < cost then17

k ← j;18

cost ← C(Σp + Sj);19

label the edges that connect any stream in Σp and Sj as pending;20

if case (1) is chosen then21

assign all the pending join operations to the node of Sj ;22

Sp ← Collapse Σp and Sk to one node ;23

Σp ← Sp;24

else25

Σp+ = Sk; Σ− = Sk;26

until |Σp| = 1;27

Insert Σp into Σ;28

end29

The input of the algorithm is the set of streams Σ involved by the query as well
as the join graph representation G of the query. A join graph consists of a set of
vertices each representing a stream and a set of edges each representing a join
operation between the two connected streams. Furthermore, each vertex in the
graph is annotated with the source node of the corresponding stream. We use
the following example to illustrate.

Example 2. A query joins 5 streams: S0, S1, S2, S3 and S4 which are spread over
3 nodes. Figure 2(a) shows the join graph of this query. The location of each
stream is drawn around each vertex. The selectivities of the join operations are
also drawn around the corresponding edges. Columns 2 − 6 in Table 2 list the
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Fig. 2. Processing steps for an example query

Table 2. Parameters of streams

Si S0 S1 S2 S3 S4 S2,3 S0,2,3

λi 10 35 25 30 15 15 9
Wi 100 350 250 300 150 75 30

1

S2 S3

S0

S4 S

Fig. 3. The plan tree

arrival rates λi and the expected number of tuples in the window Wi of these
source streams.

For brevity, we assume that tuples from every stream (either a source stream
or an intermediate result stream) have the same sizes in the following discus-
sions. The adoption of this assumption does not lose any generality as we can
always incorporate the tuple sizes in the calculation of cost without changing
the algorithm.

At the first step (lines 2 - 9) of the algorithm, we find whether there is any lo-
cally evaluable join operation which can result in a stream whose rate is smaller
than both joining streams. Evaluating these joins locally tends to reduce the
potential communication cost if some of the streams need to be shipped out to
other sites. For Example 2, there are two locally evaluable joins: S0 � S1 and
S2 � S3. By using Equations (2) and (3), λS0�S1 and λS2�S3 can be estimated
as 70 and 15, respectively. Hence we choose to allocate S2 � S3 to n1 and we
label the corresponding edge with n1. For ease of processing, once a join opera-
tion is allocated, we would collapse the two connected vertices in the join graph
and the resulting vertex represents their join result stream. By applying this to
Figure 2(a), we can derive Figure 2(b). The rate and window size of S2,3 are also
listed in column 6 of Table 2.

In the second part (lines 10 - 28) of the algorithm, we employ a heuristic
approach to allocate the remaining join operations. There are two nested loops
in this part. For each iteration of the outer loop, we will determine the location
of a subset of join operations. First, we pick a stream with the smallest rate,
say Si. This is because it may result in less communication cost if Si has to be
transmitted over the network. Next, to evaluate the join between Si and each of
the other streams Sj that are joinable with Si, we have two cases:
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1. Send Si to the node of Sj . The potential communication cost of this case is
equal to the sum of the cost of sending Si to the node of Sj and the potential
cost of sending out the result stream of Si � Sj , i.e. λi · coli,j + λi,j . The
second term is to count the potential cost of sending out the result stream
to perform other join operations.

2. Send both Si and Sj to a third site. The potential cost of this case is λi +λj .

For each stream, the case with smaller cost is used. We greedily choose a stream
Sk with the smallest estimated cost and move it from Σ to Σp. If case (1) is
chosen for Sk, that means the join operation is already allocated. We will remove
streams Si and Sk from Σ and add the result stream Si,k to Σ and start a new
iteration. Correspondingly, in the join graph, we will collapse nodes Si and Sk

into one node Si,k. However, if case (2) is chosen for Sk, that means the join
operation is still pending for allocation. We will search for another stream Sl

that is joinable to any stream in Σp with the smallest cost. The cost estimation
is similar to the above analysis. To ease the presentation of the algorithm, we
define the following function:

C(Σp + Sj) = min{
∑

Si∈Σp

λi + λj ,
∑

Si∈Σp

λi · coli,j + λΣp,i} (4)

For example, in Figure 2(b), we first add the slowest stream S0 to Σp. Then
for the three joinable streams S1, S2,3 and S4, using Eqs. (2), (3) and (4), we
can find that C(Σp +S2,3) is the smallest. Furthermore, case (1) should happen,
i.e. S0 will be sent to node n1 to perform the join with S2,3. Hence we label
the edge between S0 and S2,3 with n1. Then we collapse nodes S0 and S2,3
to one node S0,2,3. This results in Figure 2(c). The rate and window of S0,2,3
is computed using Eqs. (2) and (3) and listed in column 7 of Table 2. Now a
new iteration of the outer loop in the second part of the algorithm has to be
started. The currently slowest stream is S0,2,3, hence it is added to Σp. Among
the two joinable streams S1 and S4, the potential cost of adding S4 is smaller.
This time, case (2) is chosen, i.e. S0,2,3 and S4 have to be sent to a third site.
We label the edge between node S0,2,3 and S4 with a P to indicate that the join
operation is pending for allocation. Then the last stream S1 has to be chosen
and S1 and S0,2,3 have to be sent to n0 to perform the joins. Now the two join
operations can be labeled with n0. Then all the join operations have already
been allocated.

The output plan of Algorithm 1 can be represented using a tree. In the tree,
each leaf node is a source stream and each intermediate node is an MJoin op-
erator. Each MJoin operator is located in one node and has two or more in-
put streams. We order these streams in the order such that the right most
stream (or abbreviated as the right stream) have the same location with the
MJoin operator. That means all the other input streams of this MJoin oper-
ator would be sent over to the location of the right stream to perform the
join operations. Figure 3 shows the tree representation of the output plan of
Example 2.
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3.3 Stream Partitioning

In a partition-based scheme, each stream Si may be partitioned into D sub-
streams S1

i , S2
i , . . . , SD

i based on the values on the joining attribute. This is
based on the observation that the arrival rates of tuples with different values
may vary much inside each single stream. Hence the optimal scheme for these
tuples are different. We denote the rate of a substream Sk

i as λk
i .

PMJoin. In this subsection, we will look at how the partition-based join can
be applied to a multi-way equijoin query whose join predicates are specified on a
single attribute, say attr. This kind of queries is common in a lot of applications,
such as Example 1 in Section 1. Furthermore, these could also be a subset of
predicates in a multi-way join query that are specified on the same attribute.
We propose a scheme that is called Partition-based Multi-way Join (PMJoin) to
evaluate this set of join predicates. Every stream involved in these join predicates
is partitioned into multiple substreams on attr. The substreams of all the streams
can be grouped into D groups. The kth group of substreams is {Sk

1 , Sk
2 , . . . , Sk

|N |}.
For each group of substreams, we can use Algorithm 1 to decide the allocation
of the join operations.

We illustrate the plan of PMJoin by using Example 1. First, based on the
value of the dest attribute, we partition each stream into three substreams Sa

i ,
Sb

i and Sc
i . These streams are grouped into three groups. Then for each group

of substreams, we use Algorithm 1 to optimize the plan. The resulting plans for
the three groups of substreams are shown in Figure 4.

Sa
1Sa

3Sa

3Sb
1Sb

2Sb

3Sc
2Sc

1Sc

2

Fig. 4. Plans for the substreams in Example 1

To get the lowest cost, we can partition each stream into as many substreams
as possible. For example, we can put tuples with each distinct value in the joining
attribute into one substream. Let the number of these values be R then we could
partition the stream into R substreams. However, it is clear that with more
partitions, more plans have to be generated and it complicates the processing.
So we adopt a more flexible approach where the number of partitions can be
specified as any D. This can be viewed as clustering the above finest substreams
(i.e., one substream per value) into D partitions. In the following discussions, we
refer to these finest substreams as FStreams. FSk

i stands for the kth FStream
from stream Si. And the unique attr value of the tuples of a FStream is called
the value of the FStream. We consider three approaches:

1. Hash partition. A hash function can be applied to hash the values of the
FStreams into one of the D buckets. The FStreams in each bucket compose a
substream. This is actually a random partitioning method.
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2. Range partition. Divide the data range into D sub-ranges. FStreams whose
values fall into the ith sub-range compose the ith substream.

3. Rate-based partition. The above two approaches ignore the arrival rates
of the various FStreams. A good partitioning method should put those groups
of FStreams whose optimal plans are similar to each other in one partition.
In this way, the generated plan for that partition would be good for all its
FStreams. Here we use an approximate approach to estimate the similarity
of the optimal plans of two groups of FStreams. For each group of FStreams,
{FSk

1 , FSk
2 , . . . , FSk

|N |}, we sort them in increasing order of their arrival rates.
Then we create a vector Vk where the ith element indicates the position of FSk

i in
the above sorted list. For example, if we have a sorted list as 〈FSk

3 , FSk
1 , FSk

2 〉,
then Vk = 〈2, 3, 1〉. So the distance between the kth and the lth groups of
FStreams is measured by the distance between Vk and Vl, which is measured
as |Vk − Vl|. The intuition is that the more similar the sorted lists of the two
groups of FStreams are, the more similar their optimal plans would be. Now we
can employ any clustering techniques to cluster the groups of FStreams into D
clusters. In this paper, we adopt the k-Means approach [11].

To apply all the above mechanisms, we need to know the rate of each FStream.
To reduce the cost of maintaining such statistics, we can use traditional his-
togram approaches. Only statistics of histogram buckets are maintained, and
the rates of an FStream is estimated based on the statistics of the bucket it
belongs to.

Multi-join on different attributes. For a generic multi-join query whose
joins involve multiple attributes, our approach works as follows. We first run
Algorithm 1 to determine the plan for the scheme without partitioning. Given
the output plan of Algorithm 1, we will try to find out several sets of join
predicates where we can apply PMJoin.

We call a MJoin operator to be partitionable on attr if the join predicates in the
Mjoin operator are all (equalities) on the same attribute attr. The procedure to
find the subset of join predicates to apply partitioning works in two steps. In the
first step, from the output plan of Algorithm 1, we try to aggressively determine
the subsets of join predicates that can be partitioned by using
Algorithm 2. The algorithm starts from the root. If the current operator is found
to be partitionable on an attribute, say attr, it would be marked as a PMJoin
operator. Then if any child of the current operator is also partitionable on attr,
it would merge that child with the current operator. Note that after the merge,
the prior grandchildren would become children of the current operator. These new
children would also be searched to see if they can be merged. After the merging
attempt, we recursively call the algorithm on each child of the current operator.

In the second step, we try to select some of the PMJoins from those found
by the above algorithm. Note that the output stream of a PMJoin consists of a
number of substreams that would be located at several sites. For example, the
result stream S1,2,3 of Example 1 consists of three substreams that are located
at n1, n2 and n3. Now suppose the result stream has to join with another steam,
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Algorithm 2. FindPartition(Oi)
Input: Oi: an MJoin operator ;
R: an boolean array, R[i] is true if Oi is the right child of its parent;
begin1

if !R[i] AND Oi is partitionable on an attribute attr then2

Mark Oi as PMJoin ;3

for each child operator Oj of Oi do4

if Oj is partitionable on attr then5

Merge Oj to Oi;6

for each child operator Oj of Oi do7

FindPartition(Oj);8

end9

say Si, on another attribute. If PMJoin is used to join S1,2,3 and Si, we have to
repartition the substreams of S1,2,3 that are located at the three nodes. Further-
more, the substreams of Si may have to be sent to all these three nodes. This
results in high communication cost. Therefore, we opt to impose two constraints
on the application of PMJoin. (1) The input streams of a PMJoin should be
located at a single node. That means a PMJoin cannot be the child of another
PMJoin. (2) The right child of a MJoin operator cannot be a PMJoin operator.
Otherwise, the other input streams of the MJoin operator have to be sent over
to the output nodes of that PMJoin.

Our heuristic, which is given below, favors those PMJoins that have high input
stream rates. This is because they may provide more opportunities to reduce the
communication cost by using PMJoin.

1. Sort all the PMJoins on the total input stream rates.
2. Remove the one with the largest input stream rate.
3. Remove the parent PMJoin (if any) from the sorted list, and restore it back

to one or more MJoin operators.
4. If the list is not empty go to step 2.

4 Performance Study

In this section, we present a performance study of our techniques. We fully
implemented the system using Java. To ease the control of experiments, we use a
discrete event simulation package JavaSim to simulate the distributed processing
effect. For each experiment, we would collect the total communication cost for
every second. Without loss of generality, we assume that tuples from all the
streams and the join result tuples have the same sizes. Hence we only count
the number of tuples that are transmitted over the network. Without loss of
generality, we assume the joining attributes are of integer values and the windows
are all time-based windows specified in seconds. All the arrival rates are specified
in the unit of tuples/second. To model different data frequencies, we use various
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Fig. 5. Performance of the Heuristic Algorithm

types of distributions. The value distributions are chosen from the following
distributions: (1) Uniform distribution, (2) Normal distribution with the mean
being the mid value and varied standard deviation, (3) Zipf distribution with the
skew parameter θ varied from 0.1 to 1.5, (4) Self-Similar with the skew parameter
h varied from 0.1 to 0.9. (For integers 1 . . .N , the first h ·N integers gets 1−h of
the weight.) To examine the performance of our heuristic algorithm, we compare
it with two algorithms: (1) Simple: send the other streams to the location of the
stream with the highest rate; (2) Optimal: exhaustively enumerate the possible
plans and choose the best one.

4.1 The Heuristic Optimization Algorithm

In the first experiment, we consider the following different situations: (1) streams
with lower arrival rates have smaller window sizes (LASW); (2) streams with
higher arrival rates have smaller window sizes (HASW). Both situations would
be studied under two senarios: similar data distribution (SD) and different
data distributions (DD). For the similar distribution scenarios, we randomly
choose 10 zipfian distributions with the skew parameters varied from 0.1 to 0.3.
For the case with different distributions, we randomly choose 10 distributions
from all those listed above. We vary the data ranges from 1-10 to 1-100000.
Note that query selectivities would be smaller with larger data ranges. Each
stream is from a different node. Figure 5 presents the results of this experiment.
From the figures, we can see that the communication cost of the Simple ap-
proach is constant to various data ranges. That is because this approach simply
chooses to send all the other 9 streams to the location of the fastest stream.
Thus, the communication cost is equal to the sum of these 9 streams. For the
heuristic and the optimal approach, when data range is small, the communi-
cation cost are the same as that of Simple. The reason is the selectivities of
the join operations are high and any intermediate result streams would have
relatively large rates. Hence the best plan here is the same as Simple. How-
ever the communication cost of the heuristic and optimal approach drops with
the increase in data ranges. That is because the join operations become more
selective, hence it brings more benefits to perform distributed processing to
minimize the communication cost. Furthermore, we can see that our heuristic
algorithm performs very close to the optimal approaches under the 4 different
situations.
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In the second experiment, we study the effect of the number of streams. We fix
the data range at 1-1000 and all the arrival rates at 100 tuples/second. We vary
the number of streams and randomly choose the window sizes from 10 to 100
seconds. Data distributions are also randomly chosen. We compare our heuristic
algorithm with the Simple method and the Optimal algorithm. Due to the long
running time of the Optimal algorithm, we can only get the results up to 14
streams. The results are presented in Figure 6. We can see that the cost of the
Simple method increases proportionally as the number of streams increases. The
improvements of the heuristic approach and Optimal approach over the Simple
method is larger with larger number of streams. That is because more steams
provide more opportunities to optimize allocation of join operations to reduce
the communication cost. Furthermore, we can see that the heuristic approach is
very close to the Optimal algorithm.

In the third experiment, we examine the effect of the number of streams on
each node, which is handled by the first step of our heuristic algorithm. We fix
the number of nodes in this experiment to 5. The streams are randomly allo-
cated to the nodes and their arrival rates are varied from 100 to 500. The other
configurations are similar to the earlier experiment. We compare our heuris-
tic to (a) Optimal: the optimal scheme and (b) Local: the one with the first
step replaced by simply joining all the local streams. When the total number of
streams increases, the average number of streams in each node also increases.
The results are shown in Figure 7. We can see that our heuristic works bet-
ter than Local. That is because it would only perform those joins that would
reduce the rates, while Local would perform also those that may increase the
rates.

4.2 PMJoin

In the first experiment, all the join predicates are equalities on a single attribute.
Hence PMJoin can be used here. We use 10 streams with arrival rates varying
from 10 to 1000 and window sizes randomly chosen from 10 to 100. We fix the
data range of all the streams to 1-1000. Each stream is located at one node. We
vary the partition number of our partition functions to examine the sensitivity
of the PMJoin. Note that when the partition number is equal to 1, it is the same
as the scheme without partitioning. When the partition number is the same as
the data range, there is only one value in each partition. To examine the effect
of the different partition methods, we study two cases: (1) the values in a “hot
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Fig. 8. Performance of PMJoin

spot” is randomly spread over the data range (Random Hot Spot: RHS); (2)
the values are contiguously located in the data range (Contiguous Hot Spot:
CHS). Under each case, we also study two senarios: similar distribution (SD)
and different distribution (DD) mentioned in Section 4.1. The results are shown
in Figure 8. When streams have similar distributions, PMJoin has only moderate
improvement over the non-partitioning approach. That is because the frequent
values among the streams are similar. That means most of the substreams would
have similar plans as that of the non-partitioning scheme. However, in the case
of different distributions, we found that large communication cost can be saved
even when the streams are partitioned into only two substreams. The reason is
the optimal plans of the substreams are much different from each other. PMJoin
optimizes their plans independently, hence results in less communication cost.
Furthermore, as we can see, finer granularities of the partition function can result
in larger improvements.

Furthermore, in Figure 8(a), range partition works the best most of the time.
That is because in this situation, the groups of FStreams in a contiguous range
would have similar optimal plans. Rate-based partition works better only when
there are two partitions. The bad performance of Rate-based partition is due to
the fact that the data distributions are all zipfian distributions. When there are
more than two partitions, most of the groups of FStreams would have the same
sorted list and hence the same vector Vk. So the distances between them are
all 0. As a result, the k-Means clustering algorithm randomly places them into
different partitions. However, for the other three conditions, rate-based partition
works persistently the best. This is attributed to its ability to identify those
groups of FStreams that have similar optimal plans. Range partition loses its
advantage because those groups of FStreams having similar optimal plans are not
contiguous. It works worse than hash partition when the hot spot is randomly
spread over the data range.

One may worry that PMJoin would bring too much routing overheads due to
its more complicated routing mechanisms (each substream has a different routing
order). Here we conduct another experiment to measure its overhead. The con-
figurations are the same as the experiment above. We use our implementation to
compare the routing cost of PMJoin with different number of partitions. Figure 9
shows the cpu time used for routing in each second. Surprisingly, most of the
time, PMJoin has even lower routing cost than the scheme without partitioning
(i.e. partition number = 1). This can be attributed to the ability of PMJoin to
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Fig. 9. Routing overhead comparison

minimize the communication cost. Because fewer tuples are routed in PMJoin,
its routing cost is smaller. PMJoin is more powerful in the case of different data
distribution, hence its routing cost is much lower than the scheme without par-
titioning in this case. In addition, a better partitioning scheme further reduces
more routing cost.

In the third experiment, we study the sensitivity of PMJoin to the num-
ber of streams. The distributions of the streams are randomly selected which
is similar to the “Different Distributions” above. The results are presented in
Figure 10. We only present the results when the partition number is 1, 500 and
1000, respectively. The others would lie between them. We can see that with
increasing number of streams, PMJoin has larger improvement over the scheme
without partitioning. Rate-based partition works the best under various number
of streams. Range partition works better than hash partition for contiguous hot
spot, while the reverse is true for randomly spread hot spot. Interestingly, with
the increase in the number of streams, the cost of the scheme without partition-
ing increases while those of most of the PMJoin schemes decrease. Note that the
distributions of the streams in this experiment are different, hence with more
number of streams, the selectivity of the query is decreased. That means more
tuples can be dropped before reaching the output, which can save the communi-
cation cost. PMJoin provides more opportunities to exploit this effect by using
different plans for different group of substreams.
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4.3 Multi-joins on Different Attributes

In this section, we examine our techniques for multi-join queries whose equality
predicates involve different attributes. We compare our heuristics to select the
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PMJoin operator with two other approaches: (1) Random: replace the step 1 and
2 in the heuristic with a random selection; (2) Alternative: choose from those
not selected by the heuristic algorithms. We randomly select 20 streams with
different distributions. Their arrival rates vary from 100 to 1000 tuples/second
and their window sizes vary from 10 seconds to 100 seconds. These streams
are randomly allocated to 10 nodes. 200 random queries are generated with the
number of joining attributes varied from 3 to 7. We get the average resulting cost
of these queries under the three approaches. Figure 11 shows the results under
different data ranges. In all the cases, the scheme without partitioning performs
the worst. With larger data ranges (i.e. lower selectivity), the partition-based
scheme is more beneficial. Furthermore, our heuristic outperforms the other two
approaches.

5 Conclusion

In this paper, we studied the optimization of multi-join queries over distributed
data streams. We proposed a heuristic optimization algorithm to minimize the
communication cost. Furthermore, a partition-based join scheme: PMJoin was
presented. Different partition techniques were discussed and heuristics to utilize
PMJoins were also proposed. Our performance study showed that our tech-
niques can sufficiently reduce the communication cost of the system. Although
we propose the techniques under the context of distributed stream processing,
the techniques can also be adapted to traditional distributed database systems.
Further performance study in this context is required.

References

1. D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In CIDR,
2005.
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10. L. Golab and M. T. Özsu. Processing sliding window multi-joins in continuous

queries over data streams. In VLDB, 2003.



PMJoin: Optimizing Distributed Multi-way Stream Joins 341

11. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1998.
12. J. Kang et al. Evaluating window joins over unbounded streams. In ICDE, 2003.
13. D. Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 2000.
14. G. M. Lohman et al. Query processing in r*. In Query Processing in Database

Systems. Springer, 1985.
15. S. Madden et al. Continuously adaptive continuous queries over streams. In SIG-

MOD, 2002.
16. D. Shasha and J. T.-L. Wang. Optimizing equijoin queries in distributed databases

where relations are hash partitioned. ACM Trans. Database Syst., 1991.
17. J. Sidell et al. Data replication in mariposa. In ICDE, 1996.
18. F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In

VLDB, 2003.
19. S. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate of multi-way

join queries over streaming information sources. In VLDB, 2003.
20. O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.

ACM Trans. Database Syst., 1997.
21. C. T. Yu et al. Partition strategy for distributed query processing in fast local

networks. IEEE Trans. Software Eng., 1989.



Clustering Peers Based on Contents for Efficient
Similarity Search

Yanfeng Shu and Bei Yu

School of Computing,
National University of Singapore, Singapore

{shuyanfe, yubei}@comp.nus.edu.sg

Abstract. Similarity search is becoming a norm in most real-life applications
such as digital asset management systems. In such systems, users typically want
to retrieve documents or objects similar to terms specified in the query or query
examples. In this paper, we present a system for supporting similarity search in
P2P networks that retains many desirable properties of existing P2P systems. To
support efficient search, peers are formed into clusters based on their contents
and clusters are organized as a structured overlay. Optimizations are employed to
improve search performance. The experimental results confirm the effectiveness
of our proposed system architecture.

1 Introduction

Peer-to-peer (P2P) has become a promising paradigm for developing large-scale dis-
tributed systems. In recent years, many P2P systems have been successfully deployed,
and they can be broadly classified into two kinds: unstructured and structured. Unstruc-
tured P2P systems use simple protocols on network organization and administration:
peers are organized randomly, and each peer maintains its own data. Naturally, their
maintenance cost is low. Unfortunately, most systems perform their search based on
flooding techniques. Consequently, they have to search a large portion of the network,
making the system unscalable or compromising the quality of the results as a trade-off
for a more efficient search. In other words, these unstructured systems offer no perfor-
mance guarantee.

Different from unstructured systems, structured P2P systems enforce network struc-
ture and data placement within the network. For example, in Chord [23], peers are or-
ganized into a logical ring, and a data object is always assigned to the first peer whose
identifier is the next or the same key in the identifier space. Thus, they are efficient in lo-
cating peers and data. However, their maintenance cost is high when there are frequent
node membership and data changes. Also, they mainly support exact-key lookups while
more complex search abilities are necessary for supporting most real-life applications.
For example, in Information Retrieval, a user wants to retrieve documents containing
terms or features that are most relevant to his queries.

In this paper, we examine the problem of supporting similarity search in P2P net-
works, and propose a P2P system architecture that retains many desirable properties
of both unstructured and structured P2P systems while supporting efficient similarity
search. For instance, in our system, by maintaining data by itself, each peer has more
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autonomy; by forming peers into clusters, maintenance becomes easier, and by orga-
nizing clusters in a structured way, queries can be routed more efficiently. The main de-
sign goal is to keep the maintenance cost caused by node membership or data changes
low, while enabling efficient similarity search. Our approach is novel in three ways.
First, we introduce the concept of Representative Points (RPs), which is used to char-
acterize peers’ contents. Based on RPs, peers with similar contents can be clustered
together. Second, we propose several methods to organize clusters in a structured way.
This “structured” property of our system brings about two benefits: one is efficient clus-
ter formation. When a new peer joins the network, it can locate its cluster quickly. The
other is efficient query routing. Given a query, a peer can route it to a relevant clus-
ter within a few hops. Third, we employ effective optimization strategies for similarity
search. When a query reaches a relevant cluster, nearby clusters may also need to be
searched to improve search results. The main task of our optimization is to reduce the
number of clusters to be searched as much as possible without compromising result
quality. We have conducted extensive simulation studies to examine the effect of vari-
ous parameters on the search performance, and our results confirm the effectiveness of
our system.

The rest of the paper is organized as follows: we discuss related work in Section 2;
we present the design details of our system in Section 3; we provide the results of our
performance study in Section 4.2; and finally, we conclude the whole paper in Section 5.

2 Related Work

There has been much work done on P2P search. In the following, we discuss some of
the work according to the overlay type.

2.1 Search in Unstructured Networks

Early unstructured systems (e.g., Gnutella) mainly depend on flooding for search. Thus,
they have no performance guarantee. Also, they have limited search capability. For ex-
ample, in Gnutella, queries are restricted to strings that can be contained in filenames.
Thus, work based on the unstructured overlay mainly focuses on improving search per-
formance or search capability [18, 12, 22, 7, 6, 14, 13]. [14] and [13] are most similar to
our work, in that peers with similar contents are clustered together to support similar-
ity search. However, both [14] and [13] depend on flooding for cluster formation. For
example, in [13], when a new peer joins the network, it broadcasts a query to ask for
signatures of peers within its neighborhood, and then establishes an attractive link with
the one whose signature is most similar to its signature.

2.2 Search in Structured Networks

Structured P2P systems can be classified into two main kinds: DHT-based and skip-list
based. DHT-based systems, such as Chord [23] and CAN [19], use a distributed hash
table to distribute data over the network. One main difference among DHT systems
is in their identifier space and neighbor definition. For example, in Chord, two peers
are neighbors if the difference of their identifiers is 2i (i = 1..m) in one-dimensional



344 Y. Shu and B. Yu

identifier space (0..2m − 1), while in CAN, two peers are neighbors if their coordinate
spans overlap along d−1 dimensions and abut along one dimension in a d-dimensional
coordinate space. Skip graphs [1] and SkipNet [11] are two skip-list based systems. In
skip graphs1, each node is a member of multiple doubly linked lists at several levels.
The bottom-level list consists of all nodes ordered by their keys. At upper levels, the
list to which a node belongs is controlled by the node’s membership vector, which is
generated randomly. Specifically, a node is in the list Lw at level i, if and only if w is a
prefix of its member vector of length i. Each node stores the addresses and keys of its
left and right neighbors at each level. When searching, a node first checks its neighbors
at the highest level. If there is a neighbor whose key is not past the search key, the search
request is passed to the neighbor; otherwise, neighbors at a lower level are checked.

There is a great amount of work done on extending structured systems and thus
supporting complex queries. For example, range queries are supported in [5, 2, 9, 21],
and keyword queries are supported in [20, 16, 25, 24]. As one main application area
of our work is Information Retrieval, we describe work on this aspect in more detail.
Within the work in the context of keyword query search, pSearch [25] is most similar to
ours in that contents are organized around their semantics. The main difference is that in
pSearch, each semantic vector (corresponding to each document) needs to be published
into CAN’s space while in our work, there is no data publishing; instead, we introduce
RPs to characterize peers’ contents and form peers with similar RPs into clusters. The
rest of the work [20, 16, 24] publishes keywords into Chord’s space, with the difference
in the decision about which keywords need to be published.

2.3 Search in Unstructured/Structured Networks

Some work has been reported on search on both unstructured and structured overlays,
such as [17, 27, 15, 3]. By observing Gnutella’s query processing and PIERSearch’s
(based on DHT systems) in latency and result quality, [17] proposes a hybrid system
for keyword search, where Gnutella is used to locate popular items, and PIERSearch
is used to handle rare items. [27] shares the spirit of [17]: Instead of indexing all data
items owned by each peer, only a portion of them are registered with the index. Also,
by the index, peers with shared interests can be clustered together. In SSW [15], peers
are formed into semantic clusters, which are organized into a small world network.
There are two main differences between SSW and our work: first, in SSW, the system
has full control of data placement, while in our work, each node has full control of its
data. With this increasing node autonomy, the system has more complexity in dealing
with cluster formation. Second, in SSW, a search is finished when a query reaches its
destination cluster (the cluster which covers the query) and nodes in the destination
cluster are searched, while in our work, nearby clusters of the destination cluster are
also searched to improve search results. Compared to SSW, our work focuses more on
similarity searches. SETS [3] is most similar to our work. In SETS, each peer’s con-
tent is represented by a peer vector, and peers with similar contents are arranged into
a topic-segmented overlay (a small-world network). The main difference is, in SETS,
peers are clustered by a central site, which has full knowledge about topic segments.
Thus, during search, the similarity between the query vector and each topic centroid is

1 As our system uses skip graphs to organize clusters, we describe it in more detail.
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computed, and top R segments are selected. In contrast, there is no such central site in
our system. That is, a peer has little knowledge about which clusters are most similar to
the query. The problem with a central site is that it presents a single point of failure and
a performance bottleneck. On the other hand, the flexibility and scalability provided
by decoupling global information from the central site demand more sophisticated and
efficient search strategies.

3 System Design

The basic idea of our system design is to cluster peers that have similar contents so that
relevant information can be retrieved with a few hops around the neighborhood. Though
the idea is straightforward, we need to address several issues in order to make it work
effectively. The first main issue we need to address is the formation and organization
of clusters. This issue is important, as it directly decides system scalability. In most
previous work, either a centralized method [3] or a fully decentralized method [14, 13]
is used for cluster formation. Both approaches are not scalable: The former may suffer
from performance bottleneck. The latter may overload the network when there are a
large number of peers in the network. In our system, we employ a hybrid method: Each
cluster makes its own decision on how and when to form new clusters, and within a
cluster, peers may need to exchange messages with each other. By organizing clusters
in a structured way, a new peer can find its cluster efficiently. The other main issue is
efficient support for similarity search. In query processing, a query is first routed to a
relevant cluster, and subsequently forwarded to nearby clusters. It is therefore important
for a system to be able to decide which clusters to search first and return the results of
a certain degree of quality as soon as possible. Before describing these issues in more
detail, in the following, we first introduce an important concept for peer clustering:
Representative Points(RPs).

3.1 Representative Points (RPs)

Individuals tend to have certain interests and share data of certain topics. For exam-
ple, a researcher may only be interested in papers on computer science while a doctor
may only be interested in medical science papers. The data can therefore be associated
with some representative points in the data space. We call such points that character-
ize peers’ contents Representative Points – RPs. We do not place any restriction on the
techniques used by peers to summarize data. For Information Retrieval, a peer can de-
rive its RP as follows: First, each document is represented as a term vector by a Vector
Space Model(VSM) [4], where each element is the term weight computed by TF*IDF
(term frequency * inverse document frequency). Then each term vector is converted
into a semantic vector with much lower dimentionalities by Latent Semantic Indexing
(LSI) [8]. By normalizing the sum of all semantic vectors of its documents, a peer gets
its RP. Instead of a single RP, multiple RPs may be derived for each peer and they can
be obtained by using a data clustering algorithm such as K-Means. With multiple RPs,
a peer may need to join multiple clusters. Without loss of generality, in what follows,
we assume that each peer has only one RP.
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3.2 Cluster Overlay

In this part, we describe how clusters are formed and organized. We also describe how
an overlay with clusters is maintained.

Construction. Suppose each peer data item corresponds to a point in a data space, each
cluster covers a subspace, and a peer only joins the cluster whose space covers its RP.
The first peer in the network forms the only cluster with itself as a member. As more
peers join the network, the cluster is split. We assume cluster size, the maximum number
of peers within a cluster, is known system-wide.

We split clusters on the basis of similarity: When a cluster is split, two sub-clusters
are generated, and we always assign a peer to the sub-cluster which is more similar to
the peer. The similarity between a cluster and a peer is computed by some similarity
function (e.g., cosine score or euclidean distance ) between the cluster centroid (com-
puted by averaging its current members’ RPs) and the peer’s RP. Specifically, we split
a cluster as follows: First, two peers which are most dissimilar in the cluster to be split
are chosen as the first peers of two sub-clusters. The selection of seeds is philosophi-
cally similar to most splitting process in which overall coverage and overlap are to be
minimized; for example, the splitting in the R-tree [10]. Subsequently, for each peer
not yet in either sub-cluster, the similarity between the peer and the centroid of each
sub-cluster is computed, and the one with the greatest difference between its similari-
ties to sub-clusters is selected next and assigned to the more similar sub-cluster whose
centroid will be recomputed. After all peers are assigned, the cluster is split along the
dimension which has the maximum span between the centroids of its two sub-clusters.

Currently, in our system, peers within a cluster are simply organized randomly. Each
peer maintains a few links to peers within the same cluster, called intra-cluster links.
The number of intra-cluster links is fixed at the outset, and flooding is used as the
main strategy for searching within a cluster. Besides maintaining links to peers within
its own cluster (i.e., intra-cluster links), each peer in a cluster also maintains a few
links to peers in other clusters, called inter-cluster links. We may maintain inter-cluster
links as defined in CAN. Two clusters have links (i.e., a peer in one cluster has a link
to a peer in the other cluster), if they are spatial neighbors, i.e., their spaces overlap
in d-1 dimensions and abut in one dimension in a d-dimensional space. We call such
links spatial links. Alternatively, we may maintain inter-cluster links as defined in skip
graphs. Each cluster has a randomly generated membership vector, and cluster ids are
used as keys in skip graphs. Two clusters have links, if they are neighboring at any
level of skip graphs. We call such links skip links. The cluster id is derived as follows:
When a cluster is split, if one of its sub-clusters covers the space at the left of split
dimension, the cluster id of the sub-cluster will be attached with “0”; otherwise, the
cluster id of the sub-cluster will be attached with “1”. For the initial cluster in the
network, the cluster id is “”. By comparing cluster ids sequentially, clusters in a network
can be ordered. Figure 1 gives an example of these two kinds of inter-cluster links that
could be maintained in a network (the data space is two−dimensional). From the figure,
we can see that, if spatial links are maintained, cluster C3 would have five spatial
links, connecting itself to C1, C2, C4, C5, and C7 respectively; and if skip links are
maintained, it would have three skip links, which connect itself to C2, C4, and C6
respectively.
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Fig. 1. An example of inter-cluster links in a 2-d space. (a) the cluster overlay (solid lines repre-
sent spatial links, while dashed lines represent skip links); (b) the corresponding skip graphs for
organizing clusters.

While intra-cluster links facilitate query forwarding within a cluster, inter-cluster
links facilitate query forwarding across clusters. Compared to intra-cluster links, inter-
cluster links are more important for efficient similarity search, as they decide how a
query can be routed to relevant clusters efficiently. For inter-cluster links, spatial links
can facilitate similarity search greatly as they link clusters which are within close prox-
imity in the data space. Skip links, on the other hand, may not do as well as spatial links
for similarity search. As most skip links are randomly decided, they do not necessarily
connect to nearby clusters. For example, in Figure 1, by skip links, C3 only directly
connects to two of its spatially close clusters. However, skip links incur much lower
maintenance cost as compared to spatial links. Also, routing between any two clusters
by skip links can be performed efficiently. Detailed comparison between spatial links
and skip links will be given in our performance study. In the following, we mainly con-
sider skip links as inter-cluster links, and present how we use them for similarity search.
The case for spatial links as inter-cluster links can be dealt with as well.

Maintenance. Since each peer maintains its own data, there is no data publishing; thus,
the corresponding maintenance cost that would otherwise be incurred is avoided. When
there are data changes, a peer’s RP may be affected, though compared to data changes,
RP changes may not be so frequent. Periodically, a peer monitors its data changes and
recomputes its RP when there are many changes (all is done locally). When a peer finds
its RP not covered by the current cluster, it leaves and then rejoins the network. Be-
fore leaving, the peer notifies its neighbors, which will rebuild the corresponding links.
The link reconstruction is very simple: The departing peer need only provide informa-
tion about some other peers within its cluster. A peer that leaves the network follows
the same process. In case of peer failure (detected by ’heartbeats’), a peer rebuilds its
links by asking other peers within its cluster which have information about the clus-
ters with which the peer wants to rebuild links. In summary, the clustering and use of
representative points not only simplify network maintenance but also improve network
robustness.

If a cluster disappears (i.e., the peer which leaves or fails is the only one in its cluster),
maintenance proceeds as described in skip graphs [1]. That is, each cluster maintains a
redundant cluster list of length 2r, which includes the closest r left and r right clusters
along the bottom level list in the skip graphs. If a cluster disappears, it is replaced by a
cluster with the first live left or right cluster in its redundant cluster list. A background
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stabilization process runs periodically at each peer to fix neighbors at the upper levels
in the skip graphs.

3.3 Similarity Search

Similarity search in our system involves three main steps: routing across clusters, flood-
ing within a cluster, and searching clusters in the neighborhood. Given a query, a peer
first checks whether its cluster covers the query. If not, it routes the query to the cluster
which covers the query; otherwise, it floods the query within its own cluster. Mean-
while, it forwards the query to nearby clusters which may contain data relevant to the
query. The pseudo-code of the search algorithm is given in Figure 2.

P .SimilaritySearch(q, SP , CQ)
//SP is the search space, whose initial value is the whole space
//CQ is the cluster queue, including clusters to be searched

1. if q.key is not covered by the space of P ’s cluster
2. Routing(q, SP , CQ)
3. else
4. flooding q within the cluster

//search nearby clusters
5. for i = P.clusterId.length() − 1 downto 0

//get a nearby cluster C’s id by P ’s clusterId b0...bl

6. C.clusterId=b0...bi

7. get C.space by the split history
8. if SP ⊇ C.space
9. insert C into CQ;
10. while CQ is not empty or q is not satisfied
11. get C from CQ;
12. forward SimilaritySearch(q, C.space, CQ − C) to C

Fig. 2. The basic similarity search algorithm

Routing across clusters. Each peer maintains a split history of its cluster, which records
the split dimension and position of each split. As we have described, all clusters can be
ordered by their cluster ids. By comparing the query with its split history, a peer can
decide how to route a query via its skip links (see Figure 3 for the pseudo-code). If the
cluster id of the query’s destination is smaller than its cluster id, the peer will check
its left skip links. If the cluster id of the query’s destination is larger than its cluster id,
the peer will check its right skip links. When checking the links, the link which is at
the highest level is always tried first, followed by links at the lower levels. This process
continues until the destination cluster is reached.

Flooding within a cluster. When q arrives at its destination cluster, it will be flooded
to all peers within the cluster. Each query has a unique id, and each peer maintains a
query queue. If a peer has seen a query before, it simply discards the query; otherwise,
it adds the query into its query queue, and then forwards the query to other peers within
the same cluster via its intra-cluster links. Meanwhile, it searches its data, computes
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P .Routing(q, QR, CQ)
1. if q.key is covered by P.clusterSpace
2. q arrives at its destination
3. else for i = 0 to P.splitHistory.length − 1
4. if A.clusterId[i] = 0

and q.key[splitHistory[i].splitDim > splitHistory[i].splitPos
5. forward q via right inter-cluster links
6. else if A.clusterId[i] = 1

and q.key[splitHistory[i].splitDim <= splitHistory[i].splitPos
7. forward q via left inter-cluster links

Fig. 3. Routing procedure

similarities between the data and the query, and returns top k results, or results whose
similarities exceed certain threshold.

Searching nearby clusters. As clusters are constructed only by peers’ RPs, it may be
possible that nearby clusters which are spatially nearby or semantically close to the
destination cluster also contain relevant data. Thus, after q reaches its destination clus-
ter, “nearby” clusters also need to be searched. For example, in Figure 1, suppose C3
is q’s destination cluster. After searching C3, we need to search all its nearby clusters,
i.e., C1, C2, C4, C5, and C7, to improve search results.

Two problems need to be solved for searching nearby clusters. The first problem is
how to find a cluster’s nearby clusters. As we mentioned earlier, most skip links are
randomly decided, and they do not necessarily connect to nearby clusters. The second
problem is which clusters to be searched first, given a set of nearby clusters. For a set
of nearby clusters, some may be more relevant to q than others. By searching the most
relevant clusters first, we can return results with a certain degree of quality without
having to search irrelevant clusters.

We address the first problem by analyzing the relationship between two clusters in
the network. If two clusters, C1 and C2, are directly generated from the splitting of the
same cluster C, then they are nearby, i.e., spatially nearby (based on Eulicidian distance)
or semantically close (based on cosine similarity); otherwise, they may not be nearby.
Suppose C1 is further split, its sub-clusters and C2 are only possibly nearby. With this
property, for a cluster “b1...bi−1bi” (its cluster id is “b1...bi−1bi”), we check the follow-
ing nonoverlapping i clusters which may be nearby to it, “b1...bi−1bi”, “b1...bi−1”, ...,
and “b1”. And then forward q to each of these clusters, where the process is continued
until q is satisfied (e.g., no more results are required), or all clusters in the network have
been searched. Note that each nearby cluster may in fact contain some sub-clusters. To
limit the search space, when q is forwarded, we attach the space of each nearby cluster
(SP in Figure 2) with the query message. Though a cluster has little knowledge about
whether a nearby cluster is further split or not, it can compute the nearby cluster’s space
by the cluster’s id according to its split history.

For the second problem, i.e., the sequence of nearby clusters to be searched, we
address it by ordering clusters according to their ”closeness” to q, and searching the
cluster which is the closest first. The closeness of a cluster is decided by the closeness
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of its peers to q. For a peer p, its closeness to q is noted as Close(p, q). We measure
closeness either in terms of the spatial distance or in terms of the cosine similarity. Note
that Euclidean distance and cosine similarity produce the same ranking for normalized
vectors. For all peers in a cluster C whose space is [ll, hr] (ll and hr are the low-left
point and high-right point of the space respectively), their closenesses to q are bounded
by Close(ll, q) and Close(hr, q). We use Close(ll, q) to represent the closeness of C
to q. If a cluster has the smallest closeness value when closeness is measured in terms
of the spatial distance, or has the largest closeness value when closeness is measured
in terms of the cosine similarity, it is regarded as the closest. It is easy to compute a
nearby cluster’s closeness to q, since we can know its space as described before. When
q is forwarded to a nearby cluster which is further split, it is always forwarded to the
sub-cluster which is closest to q. With each query message, a cluster queue (CQ in
Figure 2) is attached, which includes all clusters to be searched in the sequence of
their closeness to q. When a cluster is searched, its nearby clusters will be inserted in
the queue.

Following the above example, for C3 whose id is “0011”, we check the following
clusters whose ids are “0010” (C2), “000” (C1), “01” (C4), and “1” respectively, and
forward q to each of these clusters by skip links. Among these clusters, cluster “1”
is further split. If q is forwarded to cluster “1” randomly, it may be possible that q
reaches a sub-cluster which is not the closest to C3, e.g., C6 or C8 (suppose closeness
is measured in terms of the spatial distance in this example). To avoid this, when q is
forwarded to a cluster, it is always forwarded to the cluster which covers a point that
has minimal spatial distance to q. Thus, when C3 wants to forward q to cluster “1”, it
first finds such a point. Suppose the whole space is [(0, 0), (1, 1)], the first split position
is 0.6 at dimension 0, and q is (0.5, 0.5), the space of cluster “1” will be [(0.6,0), (1,1)],
and the point which has minimum distance to q in cluster “1” will be (0.6, 0.5). C3 then
forwards q to the cluster which covers (0.6, 0.5), e.g., C7 (suppose the low-left point of
C7’s space is (0.6,0.4)).

4 Performance Study

In this section, we evaluate the system via extensive simulations, and present the exper-
imental results.

4.1 Experimental Setup

We generate different synthetic datasets with different data dimensionalities and data
distributions, for a given number of peers in the network and a given number of data
objects per peer. The data distribution is decided by the distribution of RPs and the
distribution of data in each peer, both of which are based on multivariate normal dis-
tribution. When generating data, we first generate RPs for peers, which follow a nor-
mal distribution with variance σ2

1 (the distribution mean is a random point in the data
space); then we generate data for each peer, which also follow a normal distribution
whose mean and variance are the peer’s RP and σ2

2 respectively. By varying σ2
1 , we can

control the peer distribution in the space, and by varying σ2
1 , we can control the data

similarity at each peer. Table 1 summarizes parameters and their default values for the
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Table 1. Parameters used in the experiments

Description Default value
N Network size (number of peers in the network) 6000
M Cluster size (number of peers in a cluster) 30
m Avg. outdegree within a cluster 4
n Number of data items per peer 50
d Dimensionality of data 10
σ2

1 Variance of peer (RP) distribution in the space 0.04
σ2

2 Variance of data distribution in each peer 0.04

evaluation on synthetic datasets. For each peer, we randomly generate 10 queries, and
results are averaged over all peers. Euclidean distance is used as the similarity function.

The following metrics are used to evaluate the performance: (1) Average lookup
hops. The average number of hops for a query to reach its destination cluster. (2) Rout-
ing cost. We differentiate two kinds of routing costs: inter-cluster routing cost, which
is the average number of messages for routing a query across clusters, and intra-cluster
routing cost, which is the average number of messages sent within clusters. We are inter-
ested in the aggregate inter-cluster and the aggregate intra-cluster routing costs during a
search. (3) Maintenance cost. The average number of links (neighbors) each peer needs
to maintain, which includes the average number of inter-cluster links and the average
number of intra-cluster links. (4) Processing cost. The percentage of peers which are
probed to evaluate a query and return results. (5) Result quality. The quality of returned
results. We measure result quality in terms of the percentage of retrieved results among
top k results in the whole network (in the experiments, we use 10 for k).

4.2 Experiment Results

We first compare these two kinds of inter-cluster links by measuring their effects on
overlay performance and search performance respectively. For overlay performance
measurement, we test average lookup hops and maintenance costs with both links by
varying network size, data dimensionality, and cluster size. For search performance
measurement, we test average aggregate inter-cluster and average aggregate intra-
cluster routing costs, and processing costs incurred for a search to reach a certain result
quality.

Average lookup hops. Figure 4 shows the results on average lookup hops. In (a) and (b),
the cluster size is set to be the default value (30), and the cluster size is varied in (c).
As shown in the figure, the number of average lookup hops with skip links increases
logarithmically with network size, and changes little with dimensionality. The number
of average lookup hops with spatial links is much affected by the dimensionality: when
dimensionality is high, the number of hops needed for a query to reach its destination
cluster is small; however, when dimensionality is low (< 4), the number of hops needed
becomes big. This is mainly because the number of hops with spatial links needed for
a query to reach its destination cluster largely depends on the number of neighbors
maintained by each peer. As will be shown next, in a network with spatial links, each
peer needs to maintain a large number of neighbors when dimensionality is high. When
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Fig. 4. Average lookup hops
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Fig. 5. Maintenance cost
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Fig. 6. Search performance

the cluster size increases, the number of average lookup hops decreases accordingly due
to fewer number of clusters, as reflected in (c).

Maintenance cost. The maintenance cost is measured in terms of the average number
of inter-cluster links maintained by each peer (the average number of intra-cluster links
maintained by each peer is fixed). As shown in Figure 5, much higher maintenance cost
is incurred when spatial links are maintained, especially when dimensionality is high.
For skip links, maintenance cost increases logarithmically with network size, which is
little affected by dimensionality. The effect of cluster size on the maintenance cost is
shown in (c). For both links, maintenance costs decrease with larger cluster size.

Search performance. Figure 6 shows the search performance of both spatial and skip
links, where (a) reflects average aggregate inter-cluster routing costs, (b) reflects aver-
age aggregate intra-cluster routing costs, and (c) reflects processing costs, which are
incurred to achieve a certain result quality. To decrease routing costs (esp. inter-cluster
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routing costs), we employ the following strategy: whenever a peer receives a query, it
checks whether a cluster in the cluster queue (attached with the query message) can be
reached directly by its inter-cluster links, and attached the related routing information
of the cluster to the query message if such a cluster exists, which can facilitate the future
routing to the cluster.

As shown in the figure, for a certain result quality, intra-cluster routing costs and pro-
cessing costs incurred for both links are nearly the same. However, there is a relatively
big gap between inter-cluster routing costs for both links. This is mainly because of
the following reasons: firstly, each peer with spatial links maintains much more neigh-
bors, and thus a search request can be routed from one cluster to another at less cost.
Secondly, spatial links connect to nearby clusters while skip links do not necessarily
connect to nearby clusters, and thus more routing costs are needed for skip links to
reach the same result quality.

From the above experiments, we can see that, there involves a tradeoff as for which
kind of inter-cluster links is chosen. Though spatial links have good performance in
average lookup hops and aggregate routing costs, they incur much maintenance cost,
as each peer in the network with spatial links needs to maintain a large number of
neighbors (though this is alleviated a little with larger cluster size), especially when
the data dimensionality is high. Skip links, on the other hand, are little affected by
the data dimensionality, and each peer in the network with skip links only needs to
maintain a few number of neighbors. This makes skip links more suitable for large-
scale distributed information retrieval where the data dimensionality is typically high
and the network is typically dynamic. However, skip links incur more routing costs than
skip links.

Next, we vary the cluster size and data distribution, and measure their effects on
the search performance. As similar trends for spatial links are observed in all measure-
ments, we only give results for skip links.

The effect of cluster size. Figure 7 shows the effect of cluster size on the search per-
formance. The cluster size M is varied from 10 to 50. As shown in (a), as cluster size
increases, the result quality decreases, though not significantly. When the cluster size is
increased from 10 to 50, by probing 20% peers, the result quality is decreased by about
8% i.e., 8% less results are correctly retrieved. This is mainly because larger cluster
size leads to less focussed clusters. Thus more clusters (peers) are probed to achieve a
certain result quality.
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Fig. 7. The effect of cluster size
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Fig. 8. The effect of data distribution

Figure 7(b) and (c) show the effect of cluster size on routing cost. As shown in the
figure, as cluster size increases, inter-cluster routing cost decreases, while intra-cluster
routing cost increases, for a certain result quality. This is because, with larger cluster
size, each cluster becomes less focussed, thus more clusters need to be probed to achieve
a certain result quality, which results in more intra-cluster messages; on the other hand,
with larger cluster size, there are less clusters in the network, thus less messages are
required for inter-cluster routing to reach a relevant cluster, and even more clusters
need to be probed to reach a certain result quality, the total messages for inter-cluster
routing are still decreased.

Thus, the choice of cluster size also involves a tradeoff. Given a certain result quality,
we need to find an appropriate cluster size which is small enough to achieve the result
quality we want with less peers probed, but is large enough not to incur much inter-
cluster routing cost, which may dominate the total routing cost with small cluster size.

The effect of data distribution. Figure 8 shows the effect of data distribution on result
quality, where (a) reflects the effect of RP distribution, and (b) reflects the effect of
data distribution in each peer. In (a), we fix the data distribution at each peer and vary
the distribution of RPs by increasing σ1 from 0.1 to 0.5, while in (b), we fix the RP
distribution and vary the data distribution at each peer by increasing σ2 from 0.1 to 0.5.
From the figure, we find that, both RP distribution and data distribution in each peer
have great effect on the result quality. A certain result quality can be achieved with less
peers probed by either increasing σ1, or decreasing σ2. The reason is, with larger σ1,
RPs are distributed more uniformly in the data space; since each peer uses its RP to join
the network, peers become more distributed in the network, and thus clusters become
more focussed in some sense for a certain cluster size. The same reasoning applies to
data distribution at each peer. With smaller σ2, the content of each peer becomes more
focussed, and thus clusters become more focussed.

This experiment, from another perspective, also illustrates that, the effectiveness
of our system may be affected by the data distribution. We have already evaluated
our system on real datasets (AP Newswire documents in TREC [26] CDs 1 and 2),
and our results show that our system is still effective. Due to space constrains, we omit
them here.
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5 Conclusion

In this paper, we have presented a system for similarity search in P2P networks. Our
system retains many desirable properties of current P2P systems, and supports similarity
search efficiently. By introducing Representative Points, peers are clustered according
to their contents. By organizing clusters into a structured overlay, queries can be routed
efficiently. Given a query, a peer need only route it to relevant clusters. Optimizations
are employed to further improve search performance. Extensive simulation study has
been done, and the results show the effectiveness of our system.
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Abstract. Structured peer-to-peer systems are popular solutions for large scale 
distributed computing and query processing. Heterogeneity among peers calls 
for peer virtualization to maintain a simple, yet powerful peer-to-peer overlay 
network. Nevertheless, peer virtualization generates a huge number of virtual 
peers and causes the unnecessary communication overhead in the routing 
process. In this paper, we propose a new peer-to-peer routing algorithm that 
reduces the number of hops of message forwarding and improves the 
performance of routing. We study the new and previous algorithms from the 
analytical perspective and through simulations. It shows that the average 
number of hops per query is improved by 15% to 25% in our algorithm. In 
addition, we propose a Top-k peer selection algorithm for load balancing to find 
out the top k best available nodes in the P2P network with 2(N-1) messages 
within 2O(logN) hops. (N is the number of physical nodes.) The load balancing 
scheme is based on multiple factors which could be optimized on cost, 
proximity, reputation and other factors.        

1   Introduction 

Peer-to-peer (P2P) research is a popular topic for the past several years. Distributed 
hash table (DHT) based P2P systems [8,9,10,12] have constituted the main-stream 
since Year 2000. As these P2P systems try to utilize all available resources in P2P 
network, load balancing and peer heterogeneity are two important issues to be 
addressed.  

Peer heterogeneity focuses on the physical capabilities of a peer including comput-
ing, storage and bandwidth. It is an unavoidable situation that we had to handle in 
today’s P2P computing environment as most peers are connected through the Internet. 
Intuitively peer virtualization is one way to address the heterogeneity among peers. In 
peer virtualization, a peer is a virtual concept and not exactly a physical node. The 
idea is to allocate more virtual peers to a more powerful physical peer instead of 
viewing all physical peers as being the same. This makes sense as the physical nodes 
with more capacities are assigned more load. 

Recently a few peer virtualization schemes [2, 3, 7 and 13] are proposed. In [2, 3], 
the number of virtual peers assigned to a node is proportional to its capacity. [7] 
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proposes a scheme to adapt the number of virtual peers in a node according to its load 
situation. [13] proposes a peer virtualization scheme to utilize the proximity among 
peer nodes in order to reduce the overhead of transferring the load from one peer node 
to another peer node.  

During load balancing, the system moves one or more virtual peers from the 
overloaded physical node to another physical node. When peer virtualization is more 
fine-grained, the average size of load allocated to each virtual peer is smaller. Therefore 
we have a more accurate estimate of load being moved and the consumption of network 
bandwidth used to move load will be more efficient in this process.  

One problem of these peer virtualization schemes is that they generate a much 
larger number of virtual peers than the number of physical peers. But the routing 
algorithm among peers still route the messages according to the virtual peers. The 
routing message may bounce back and forth among physical peers. This causes the 
unnecessary communication overhead in the routing process. The routing overhead is 

measured by overheadR . As we know, 
baseline

Virtual
overhead Hop

Hop
R = , in which VirtualHop  

is the average number of hops for a query in the virtualized P2P network and 

baselineHop  is the average number of hops for a query in the physical P2P network. 

Figure 1 shows the routing overhead that peer virtualization causes. The number of 
physical nodes is set to 1,000. The baseline calculation is based on Chord [10]. We 
can see that the routing overhead dramatically increases as peer virtualization 
generates a large number of virtual peers.  

On the other hand, all these schemes ignore the shared information among virtual 
peers in the same physical peer node, to the best of our knowledge. We argue that 
such shared information could be used to improve the routing among peers. For 
example, the routing tables (i.e. finger tables in Chord [10]) and neighbor lists of all 
virtual peers residing at the same node could be searched to find the closer next node 
to the destination peer. Even if some existing schemes might utilize some of the 
shared information, which we do not see from their publications, they did not explore 
how the routing process is affected by the sharing, the degree of peer virtualization 
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and the degree of peer heterogeneity. For example, if virtual peers residing at the 
same node share all information, could we get a better routing performance if the 
number of virtual peers residing at the same node increases more as they will share 
more information and have a larger combined routing table?  

Based on this information, we propose a new routing algorithm for the virtualized 
P2P network, which improves the average number of hops per query by 13% to 25% 
depends on the degree of peer heterogeneity and peer virtualization. 

One of main problems in load balancing is to identify where the extra load should 
be assigned. Previous load balancing schemes need to periodically exchange load and 
capacity information when there are no overload nodes. In addition, they ignore many 
factors including the cost for capacity in different nodes. In reality, the cost is 
different depending on the reputation and reliability of the nodes.  We propose a new 
scheme in which we could find the top k best available nodes with only 2(N-1) 
messages within 2O(logN) hops while we do not need to periodically exchange the 
load and capacity.  (N is the number of physical nodes.) Moreover, our top k nodes 
could base on multiple factors such as load, cost, distance, reliability, reputation and 
security level. In addition, these factors are based on the latest information available 
in the P2P network. 

The primary contributions of our work presented in this paper are as follows. 

1) We propose a new routing algorithm for the virtual P2P network that impro-
ves the average number of hops per lookup by 13% to 25%. 

2) We analytically show the optimality of the Chord protocol in physical P2P 
network, and compare the expected number of hops per query with our 
routing algorithm in a virtualized P2P network from analytical perspective 
and through simulations. 

3) We propose a Top-k peer selection algorithm to find out the top k best 
available under-loaded nodes in the current P2P network with 2(N-1) 
messages within 2O(logN) hops. With this algorithm, peers only need to 
exchange load and other information when overloaded nodes send the 
request instead of periodically updating this information. The load balancing 
scheme is based on multiple factors which could be optimized on cost, 
proximity, reputation and other factors. 

This paper is organized as follows.  In Section 2, we introduce peer heterogeneity, 
peer virtualization, and load balancing. Section 3 provides the system model. Section 4 
describes the new routing/query algorithm and top-k nodes algorithms. Section 5 
provides the theoretical analysis. Section 6 presents the simulation results. Section 7 
compares the related work. Section 8 contains a summary and future work.    

2   Peer Heterogeneity and Load Balancing 

2.1   Peer Heterogeneity and Virtualization 

Typically peer nodes have different computing capabilities including CPU, memory, 
storage and network bandwidth. When we allocate the load, e.g., publish the 
resource’s information, it would be natural to assign more load, e.g., publish larger 
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number of resource objects, to the sites with more capabilities. As [6] mentioned, peer 
virtualization is one way to address peer heterogeneity. Existing approaches [3, 2] 
assign a static number of virtual peer identifiers to a node according to the capabilities 
of the node when the node joins the overlay network. One of the problems in these 
approaches is, after we assign these virtual peers to a node, the node always keeps 
these virtual peers no matter how the capabilities and the load of the node changes. 
Intuitively, the number of virtual peer identifiers assigned to the node at the first time 
may not be appropriate. Furthermore, in a dynamic environment, the capabilities and 
the load of a node may change dramatically. [7] proposes a scheme to adapt the 
number of virtual peers in a node according to its load situation. 

Our peer virtualization scheme combines the adaptive approach proposed in [7] 
with node categories discussed in the following. In our adaptive design, the number of 
virtual peers assigned to a node dynamically changes depending on the load and 
capabilities of the node. We mainly focus on three capabilities: computing capability 
such as CPU and memory, storage capability such as disk spaces, and network 
capability including network bandwidth. We classify physical nodes based on 
computing, storage and network capabilities of nodes. When overload/hotspots occur, 
the overloaded node sends the load balancing request so the number of virtual peers 
assigned to a physical node may dynamically change. When the load of a node 
reaches a certain threshold in one or all three capabilities, e.g. when the CPU load 
exceeds 90%, we should reduce the number of virtual peer identifiers associated with 
the node.  

2.2   Load Balancing 

We can represent the capacity of a node p as Capacityp(c,s,b) and the load as 
Loadp(c,s,b). There is load threshold Tp(c, s, b).  In the above terms, c denotes 
respectively computing capacity/load/threshold, s denotes storage capacity/ load/ thre-
shold and b denotes network bandwidth capacity/load/threshold respectively. If 
Loadp(c,s,b)> Tp(c, s, b), node p is overloaded. For the virtual peer i in the node p, the 
load is denoted as Loadp,i(c,s,b). 

Adapting an overloaded node to normal condition or achieving a state where every 
physical node is lowered below the threshold is called load balancing. The specific 
implementation of adaptation is to utilize the algorithm for a virtual peer to join or 
leave the virtual P2P network. That is, removing a virtual peer is equal to a virtual 
peer leaving the network, and adding a virtual peer is equal to a virtual peer identifier 
joining the network. The problems that we need to answer are therefore “Which 
virtual peers should be moved?” and “Where should these virtual peers be moved to?”  

For the first problem, we want to find out the set of virtual peers in node p that 
minimize the load moved while satisfying the goal of reducing the load of overloaded 

node to normal. So we want to find out (Ip,1, …Ip,n,) that minimize 
1

,Load
n

i
ip

=

 

),,( bsc so that  Loadp(c,s,b)< Tp(c, s, b) in which Ip,i is the ith virtual peer in the 

node p. 
For the second problem, we propose the top k peer selection algorithm to find the 

top k best nodes, which satisfy certain criteria, in the P2P network. “How to decide 
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k?” is not the focus in this paper.  But a rule of thumb is to choose k that equals to the 
number of virtual peers needed to be moved from p. We can get this information from 
the answer to the first problem. 

A top-k peer selection query includes two kinds of criteria: Selection Criteria (SC) 
and Optimization Criteria (OC). SC is the criteria that peers must meet. OC is the 
criteria that the query should optimize. A sample query is described informally as 
follows.  

   SELECT top k peers  
Selection Criteria:     
             T(c,s,b) - Load(c,s,b) > mLoad(c,s,b) 
   AND  Security_level > 0 
   AND Reliability >99% 
   AND   Location = ‘USA’ 
   AND  Reputation >=’****’ 
   AND Cost < $1,000 
   AND   Distance < 500 miles 
Optimization Criteria:   )(CostMIN  

In the above top k query, mLoad(c,s,b) is the additional capacity available to 
accommodate a virtual peer. So the peer should have enough spare capacity, the 
security level should be above 0, the reliability should be above 99%, the peer is 
located at USA, the reputation should be equal or above 4 stars, the cost for 
mLoad(c,s,b) is less than the budget $1,000 and the distance to the overloaded node is 
less than 500 miles. We want to select top k peers that satisfy the above condition and 
have the cheapest cost per capacity unit. This is a cost-based load balancing scheme. 

By using the optimization criteria in the above top k query, we essentially transfer 
our load balancing scheme into a multi-dimension multi-criteria decision problem. 
For example, if we want a proximity aware scheme, we could use MIN(Distance) as 
the optimization criterion. If we need a reputation-based scheme, we could use 
MAX(Reputation) as the optimization criterion. 

3   System Model 

Structured P2P systems such as DHT based P2P systems provide an upper bound on 
the number of messages so that they guarantee the answer if the result is in the P2P 
network. As we can see from [3, 8, 9, 10, 11, 12], this feature is based on the design 
of identifiers in the distributed hash tables. There are two identifiers in a virtualized 
P2P system: peer identifier and resource identifier. In order to map a resource 
identifier to a peer identifier, both identifiers are carefully designed in an m-bit 
identifier ring modulo 2m, where m is a system parameter (m=24 in our study) and 2m 

is the identifier space, so that a peer node can be identified when a resource identifier 
is known. (A resource identifier could be seen as a keyword in Chord.) The identifier 
ring is depicted in Figure 2. A physical node could be associated with multiple virtual 
peer identifiers. P, P’’, P’’’ are three physical nodes. Virtual peers P1, P2, P3, P4 and P5 
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are located in node P. Virtual peers P1
’, P2

’, P3
’, P4

’ and P5
’ are located in node P’. 

Virtual peers P1
’’ and P2

’’ are located in node P’’. 
There are two layers of P2P networks in our system. One is the virtualized P2P 

network that we use to publish/lookup resource objects. The other is the physical 
network that we use to do load balancing. Our top k peer algorithm is executed in the 
physical P2P network that has a much smaller number of peers than the virtualized 
P2P network. We use the new routing algorithm in the virtualized P2P network and 
Chord protocol in the physical one. 

3.1   Peer Virtualization Data Model 

Now we discuss the system model. Let Ip denote a peer identifier, Ir denote resource 
identifier, Np denote the number of peer identifiers, Nr denote the number of resource 
identifiers. Usually Nr >> Np.  

Properties: Properties(Ip) of a peer identifier Ip describe the address, port, 
capabilities, node class and load information. 

Predecessor: Predecessor(Ip) of a peer identifier Ip is the maximum peer identifier 
that is less than Ip in the peer identifier ring.  

Successor Node Set: SuccessorSet (Ip) of a virtual peer identifier Ip is defined as: 

 SuccessorSet (Ip) = { Ipi | Ipi  = SUCC_NODE (Ip, i) (0<=i<r)} 

in which SUCC_NODE (x, i) returns the ith minimum peer identifier which satisfies 
two conditions: i) it is greater than x in the peer identifier ring and ii) the node 
associated with this peer identifier x is different from the nodes that are already in the 
successor node set, and r is the number of successive nodes maintained.  

Routing Table: RoutingTable (Ip) of a peer identifier Ip for node p is defined as: 

RoutingTable (Ip) = { (Ipi, Address(Ipi)) | Ipi  = MIN_NODE ((Ip+2i-1) mod 2m) 
(0<=i<=Np)} in which MIN_NODE (x) returns the minimum peer identifier which is 
greater than or equal to x in the peer identifier ring, and Address (x) returns the 
physical IP address of the peer identifier x. 

Peer Identifier Descriptor: PeerDescriptor(Ip) of a peer identifier can be defined as 
{Ip, Properties (Ip), Predecessor (Ip), SuccessorSet (Ip), RoutingTable (Ip)}.  

Node Descriptor: NodeDescriptor(p) of a node p is defined as  

{(Ipi, PeerDescriptor(Ipi)) | Ipi is one of virtual peers residing in node p.}        

In our discussion, all comparisons assume modulo 2m operations unless otherwise 
specified. If peer p’ is said to be closer to peer p than p’’ to p, that means p’ is in the 
clockwise path from p’’ to p in the identifier ring. (This is a very important point to 
understand the algorithms.) The routing table is used to route the information among 
virtual peer nodes. The successor node set is used for fault tolerance. As we will 
discuss in the routing algorithm, the successor node set could also be utilized to speed 
up routing. 
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4   Algorithm 

4.1   Routing  

In previous DHT protocols such as Chord, only the routing table of the peer identifier 
is used for the routing protocol. In our system, we utilize both the routing table and 
successor node set of all peer identifiers in the node for the routing of a message. As 
we previously discussed, we assign different numbers of virtual peers to a node 
according to the capabilities and the load of the node. A node p is associated with the 
node descriptor NodeDescriptor(p). The idea to speed up the routing process is to 
utilize the shared information in the node descriptor as the computation in the local 
node is much cheaper than the message communication among nodes. A typical 
situation of routing is to locate the proper peer identifier Ip given a resource identifier 
Ir. The algorithm to find the next peer identifier Ip’ to which the request is forwarded 
from the current node p is described in Algorithm 1. FIND_CLOSEST_NODE () 
returns the peer identifier, which is the clockwise closest peer in the identifier ring to 
the destination peer.       

Algorithm 1. Finding the next peer identifier (Routing algorithm) 

0 Routing (Ir, Ip, p) { 
1 If (Ir == Ip) return (Ip, p); // find the peer identifier and the node  
2 Else { 
3  (Ip’, p’) = (Ip, p) // initialize 
4  For (i=0; i < GetNumberOfPeerIDs(p); i ++) { 
5  // Find the closest peer identifier (Ip’’, p’’) in the routing table of this peer identifier 
6                   (Ip’’, p’’) = FIND_CLOSEST_NODE (Ir, p.PeerIDs(i).RoutingTable); 
7          // Find the closest peer identifier (Ip’’, p’’) in the successor node set  
8          // of this peer identifier  
9                             (Ip’’’, p’’’) =FIND_ CLOSEST_NODE(Ir, p.PeerIDs(i).SuccessorSet); 
10                // Compare (Ip’, p’) with (Ip’’, p’’) and (Ip’’’, p’’’) to find the closet  
11               // peer identifier in these three identifier pairs. 
12         // Assign the closest peer identifier and its node to (Ip’, p’); 
13  (Ip’, p’) = FIND_ CLOSEST_NODE (Ir, {(Ip’, p’), (Ip’’, p’’), (Ip’’’,p’’’)});  
14  } 
15  return (Ip’, p’); } } 

In this paper, the old routing algorithm refers to Chord routing algorithm in the 
virtualized P2P network. The new routing algorithm refers to our routing algorithm. 
The key difference between this routing algorithm and the old one is the loop from 
Line 4 to Line 14. The old routing algorithm will not search the routing tables and 
successor node sets of all virtual peer servers residing in the same node. This routing 
algorithm is not limited to our peer virtualization scheme. If a peer virtualization 
scheme does not maintain a successor node set for each virtual peer, the routing 
algorithm could ignore Line 9. 

Now we use an example to compare the new routing algorithm and the old routing 
algorithm. In Figure 2, a query request for resource Ix is made to the virtual peer P1. 
PATH 1 (P1->P’2->P4->P’4->P’’1) shows the routing path in the old routing algorithm, 
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which only searches the routing table of the virtual peer. PATH 2 (P1-> P’4->P’’1) 
shows the routing path if we search all the routing tables of all virtual peers residing 
at the same node. PATH 3 (P1-> P’’1) shows the routing path of the new routing 
algorithm, which searches all the routing tables and successive Node Set of all virtual 
peer servers residing in the same node. As we can see from Figure 2, PATH 1 needs 4 
hops to reach the destination, PATH 2 needs 2 hops to reach the destination and 
PATH 3 only needs one hop to reach the destination. 

Hypothesis 1: Let PATH (p’, p, Ir) be the routing path from p’ to p and PATH (p’’, p, 
Ir) be the routing path from p’’ to p. Let Distance (p’, p, Ir) be the number of hops of 
PATH(p’, p, Ir) and Distance(p’’, p, Ir) be the number of hops of PATH(p’’, p, Ir).   

If p’ is closer to p than p’’ is close to p in the clockwise direction, we have 
 Distance (p’, p, Ir) <= Distance (p’’, p, Ir)  

The hypothesis is correct if p’ and p’’ are virtual peers that reside in the same 
physical node p* since our routing algorithm will search routing tables and successor 
sets in p* to find the same or closer next peer so that Distance (p’, p, Ir) <= Distance 
(p’’, p, Ir).  Is it correct in all cases? We will discuss the details in Section 5.  

Hypothesis 2: If virtual peers residing at the same node share all information, could 
we get a better routing performance if the number of virtual peers residing at the same 
node increases more as they will share more information and have a larger combined 
routing table? Is it possibly better than Chord routing algorithm in the physical P2P 
network? 

Intuitively it could be true. But we will use the simulation to verify part I of 
Hypothesis 2 and verify Part II in an analytical approach.  

4.2   Top-K Peer Selection Algorithm 

As we discussed in Section 2.2, one of main problems in load balancing is to find the 
appropriate nodes to transfer the extra load. Previous approaches need to maintain 
metadata information about load periodically in P2P system even if there are no over-
loaded nodes. Moreover, they could not find out the best available peers satisfying the 
requirement of an overloaded node. 
    In order to find top k physical under-loaded peers that optimize the optimization 
criteria, we need to have global information. Broadcast is one way to get this informa-
tion. But regular broadcast approaches such as Gnutella [5] usually flood messages 
into the whole P2P network and it is uncertain when the query will end. 
    As we use Chord protocol in the physical P2P network, we already maintain a 
finger (/routing) table in each physical node. So why cannot we reuse these informa-
tion to assist broadcasting?  
    Here we present a clever broadcast approach. The idea is to broadcast the messages 
to the nodes in the finger table. In the routing process, the message will be forwarded 
to only one node in its finger table. In the broadcast process, the message will be 
forwarded to multiple nodes in its finger table. The specific algorithm is presented as 
follows. 
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Algorithm 2. Top-k Peer Selection 

Input: the overloaded node p, a Top-k query including Peer Selection Criteria (SC) 
and Optimization Criteria (OC), 
Output: Top-k peers that satisfy SC  
Phase I: Broadcast 

1. p broadcasts the top k peer query into each node in its finger table.  
2. Each node p’i receiving a top-k peer query will check itself to see whether it 

satisfy the requirement of peer selection criteria. If yes, it will add itself into 
its qualifying peer list. 

3. p’i will forward the top k peer query to the nodes in its finger table if these 
node identifiers fall into the identifier space between p’i and p’(i+1) 
(clockwise). If the number of queries p’i forwards fno>0, and the number of 
responses p’i receives rno<fno, p’i will wait for the response from the nodes 
that it sends the query. Otherwise, p’i enters the next phase. 

Phase II: Aggregation 
4. After p’i collected all responses, it picks the top k peers from its qualifying 

peer list based on the selection criteria that we want to optimize. It could be 
cost, load, proximity, reputation or other criteria. 

5. p’i sends top k peers back to the source that it receives the request from. 
6. p receives all responses from all nodes in its finger table, and picks the top k 

peers from all responses.  

In this algorithm, the nodes select the top k peers based on the local information, 
peer selection criteria and optimization criteria in the query request. So the system 
does not need periodically exchange the dynamic metadata information such as load. 

Theorem 1. Top-k peer selection algorithm takes exactly 2(N-1) messages with 
2O(logN) hops. (N is the number of physical nodes.) 

Proof. Let’s first look at the broadcast phase. In this phase, every node other than p 
receives exactly one top-k query request. In aggregation phase, every node other than 
p sends a top-k query response back to the node that it receives the request from.  So 
the algorithm will cost exactly 2(N-1) messages.  

Based on Chord protocol, we know that the maximum number of hops that p is 
needed to reach any other nodes is O(logN). As the maximum number of hops for p to 
receive a top-k result is also O(logN). The maximum number of hops for the 
algorithm is 2O(logN).  

Theorem 2 (Correctness). Top-k peer selection algorithm selects the top k peers, 
which satisfy the Selection Criteria (SC) and Optimization Criteria (OC), in the whole 
P2P network.  

Proof. The assumption here is that the attributes in selection criteria and optimization 
criteria do not change during the top-k peer selection. This is reasonable as the 
process needs only 2(logN) hops. As we select these top k peers from all peers, the 
aggregation phase guarantees that there are no better peers available to satisfy SC and 
OC. Under the above assumption, we know that the algorithm selects the best k peers. 
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5   Theoretical Analysis 

In this section, we will focus on the theoretical analysis of our algorithms.  

Claim 1. Chord routing algorithm in the physical P2P network can be decomposed 
into a knapsack problem. 

Proof. In Chord, each node maintains, in the steady state, a table of nodes at a fixed 
distance from that node. The distance from the start to the end node then becomes the 
knapsack; we want to fill the space provided with the lowest number of hops as we 
can.  

Claim 2. Chord routing algorithm is optimal with its finger table in the physical P2P 
network. 

Proof. Chord uses, at its base, a greedy algorithm, always taking as big steps as it can 
as soon as it can.  Since Chord's finger table consists of nodes that are distant by 
powers of 2, this algorithm always finds the optimal route for that finger table. 

Now let us look at part II of Hypothesis 2.  
Our routing algorithm is also a greedy algorithm always taking as big steps as it 

can at each step since Algorithm 1 picks the closest next node from the routing tables 
of all virtual peers. However, the hops we can make are dependent on the hops  
we've already made, and the hop-sizes are no longer powers of two, so a greedy 
algorithm may not be optimal.  Combining with the conclusion in Claim 2, the answer 
is “No”. 

Next we try to verify Hypothesis 1. Hypothesis I could be rephrased into the 
following question. Question 2: Will the new routing algorithm that combines routing 
tables amongst virtual peers residing in the same physical peer, always perform at 
least as well as the Chord algorithm without sharing routing table combination? 

The answer is “no”. Here is a counter-example.  In a 24 identifier space, 0 needs 
only 1 hop to reach 8. 1 needs 3 hops to reach 8. So we can see that the new routing 
algorithm is not better than the previous algorithm in all cases, but we believe the 
average number of hops per query by using our new routing algorithm should be 
better than the old one. (We also verified this in the simulation section.) 

In order to determine the number of hops taken by various key-based routing 
algorithms, it is necessary to build a mathematical model of the algorithm.  

We start by making a number of simplifying assumptions. First, we assume that 
the number of active physical nodes N=2n  for some positive integer n, and the address 
space is much larger than the number of physical or virtual nodes (which is a 
reasonable assumption, since Chord uses an address space of size 2160). We further 
assume that the nodes are equally spaced around the address space. While this does 
not really reflect the actual state of affairs, it does allow us to examine the behavior of 
the system in the average case. This allows us to view the address space as 
continuous, but broken up into 2n discrete, equal sections. While the sections will not 
be, in reality, equal, the random behavior of the algorithms allows us to make this 
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approximation, since the more the number of nodes present in the system, the more it 
will approach this ideal.  

When we introduce virtual nodes, we will make the assumption that the number of 
virtual nodes M = 2m’ for some positive integer m’. The degree of peer virtualization 

(PVR) we represent as 
N

M=γ .  

In order to measure the expected behavior of the system, we introduce a random 
variable X. X represents a random target in the address space that we will attempt to 
locate using the algorithm (assuming a source location of 0, without loss of 

generality). We are interested then in XH , the number of hops required to reach X 

from 0.  

Theorem 3. In Chord, the expected number of hops required to reach a random target, 

)( XHE , is n
2
1 .   

Proof. In order to find this, we must count the number of possible targets for each 

potential pH X = , which we call C(p). For p = 1, clearly, C(1) = n. More generally, 

C(p) = 
p

n . This number is difficult to analyze, but the fact that it is symmetrical 

around n
2

1 gives an expected value for XHp = , nHE X 2
1

)( = . This result is 

also verified in the simulation results in Chord [10]. 

Lemma 1. In Chord with node virtualization, the expected number of hops,  

)( XHE = )log(
2
1

'
2
1 γ+= nm .  

The proof of this theoretic is similar to the proof above, since peer virtualization 
results in an identical number of hops as if each of the virtual nodes were a physical 
node.  

For comparison, we define an algorithm like Chord, called Random. The 
difference is that, instead of maintaining a finger table of nodes at fixed distances, 
Random nodes maintain finger tables of size k of nodes at random points around the 
address space. At each step, if the target is not within its finger table, the algorithm 
picks a random target.  

Theorem 4. In Random, the expected number of hops, )( XHE , is 
k

N
.  

Proof. At each step of Random's trip around its address space, its probability of 
reaching its target is 

N

k , since the current node has a size k finger table, and there is 

a 
N

1  chance that each particular target is the correct one. This therefore is a 

straightforward Poisson distribution, and )( XHE is 
k

N .  
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6   Performance Evaluation 

In this section, simulations are done to demonstrate and validate our design. The 
experiment data is a collection of keywords, which originally come from 80,000 
HTML documents collected from 1,000 websites. The total number of different 
keywords is around 21,000,000. In addition, 160,000 search terms collected from a 
real world search engine are used to measure the performance of queries.  

The hop length of the routing is the number of hops of the routing path of a query.  
It is the average hop length from many sample queries. In our simulation, we measure 
160,000 queries to find the average hop length of the queries. For each query, we 
randomly choose a virtual peer as the initiator node. We measure the number of hops 
for each query and find the average number of hops per query from 160,000 sample 
queries.  

Let hopR  denote the hop length ratio, hopHIR  be the hop improvement ratio, 

PVR be the peer virtualization ratio, PHR be the peer heterogeneity ratio. We have  

new

old
hop Hop

Hop
R = ,      11 −=−=

new

old
hophop Hop

Hop
RHIR , 

and 
PeersPhysicalofNumberTotal

PeersVirtualofNumberTotal
PVR =  

As we can see from the above formula, PVR will always be equal to or greater  
than 1. 

In order to evaluate the impact of peer heterogeneity, we use two distributions for 
nodes: Gaussian distribution and Real distribution. In Gaussian distribution, we use 
PVR as the mean and PVR/3 as the standard deviation. Of course, the number of 
virtual peers in a physical node will always be greater than 0.  Real distribution is the 
real world distribution that we deduced from the statistics analysis of 1000 websites. 
It gives the probability of 0.1%, 1%, 0.6%, 1%, 4.2%, 7.6%, 17.4%, 33.5%, 22.6% 
and 12% for capacities of 900, 700, 450, 350, 250, 175, 125, 75, 30 and 1. Peer 
Heterogeneity Ratio (PHR) is the ratio to measure the degree that the system assign 
load according to their peer heterogeneity. This ratio is between 0 and 1. If PHR = 0, 
the system views each node as being the same. This transfers into a uniform 
distribution with PVR=1. If PHR = 1, the system utilize the peer heterogeneity at the 
utmost degree. 

In the simulation, we want to study the routing overhead, the average number of 
hops per query and routing improvement ratio with respect to peer virtualization ratio, 
peer heterogeneity ratio and the number of physical nodes. In addition, we want to 
verify Hypothesis 2. 

6.1   Routing Overhead Comparison  

Following up Figure 1, Figure 3(a) shows the routing overhead of two algorithms for 
1000 physical nodes with Gaussian distribution. Routing overhead in both algorithms 
increases as PVR becomes larger since the total number of virtual peers 
(M=PVR*1000) also increases. We can see that the new routing algorithm reduces the 
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Fig 4. Impact of peer heterogeneity ratio 
(Real Distribution, # of nodes =1000) 
 

routing overhead by 30% compared to the old one. As we previously explained, 
therouting message may bounce between two nodes in the old routing algorithm when 
we use virtual peers. The new routing algorithm removes the bouncing among peers 
and utilizes routing tables and successor sets of all virtual peers in the node to 
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improve the routing. Nevertheless, the routing overhead is still big in the new 
algorithm. As 

overheadR  is always greater than or equal to 1, there is always routing 

overhead as long as there is peer virtualization. The baseline case could be seen as the 
optimal case. 

Figure 4(a) shows the similar pattern for routing overhead of the two algorithms. 
The routing overhead increases as PHR increases since the total number of virtual 
peers increases becomes larger. The routing overhead in the new algorithm is 
improved by 0% to 27% compared to one in the old algorithm. This improvement 
increases as the PHR increases. 

6.2   Comparison of Average Number of Hops Per Query  

We can deduct the average number of hops per query from our theoretical analysis. 
From Theorem 3, we can know physical theoretical value of the average number of 
hops per query in a P2P network  

LogNPTV
2

1=     

in which N is the number of physical nodes. From Lemma 1, we can know virtual 
theoretic value of the average number of hops per query in a P2P network 

(
2

1

2

1
LogPVRLogNMVTV +== )

 

in which M is the number of virtual peers.  
We now look at the average number of hops per query in the two algorithms.  

Figure 3(b) shows that the average number of hops increases when PVR   increases. 
The average number of hops in the new algorithm is always equal or better than one in 
the old algorithm. The two algorithms always outperform the virtual theoretical case. 
As the number of physical nodes is set to 1000, the physical theoretic value is a 
constant. After PVR>=10, the old algorithm underperforms the physical theoretical 
case. While the new algorithm trails the physical theoretical case after PVR>=40. So 
after PVR>=40, the average number of hops per query falls between the physical 
theoretic value and the virtual theoretical value. Figure 4(b) shows the similar pattern 
as Figure 3(b). As PHR changes from 0 to 1, the average number of hops increases in 
both algorithms and the new algorithm always outperforms the old algorithm. 

6.3   Impact of Peer Virtualization Ratio 

Now we look at the impact of peer virtualization ratio. At first, we want to explain 
why PVR could be 100 or more in the simulation. The purpose is to see whether the 
load balance performance could be better when you have more virtual peers as each 
virtual peer is allocated a smaller number of load, assuming the load would be 
distributed uniformly.  Figure 3(a) and (b) shows that the routing overhead and  
the average number of hops per query increase as PVR increases. This occurs as  
the number of virtual numbers dramatically increases. Figure 3(c) demonstrates that 
the new routing algorithm improves the average routing hop length of a query by 13% 
to 23% compared to the old algorithm. When PVR is smaller, the hop improvement 
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ratio is better. As PVR increases, the total number of virtual peers increases but the 
size of each routing table does not change so the hop improvement ratio drops.  

6.4   Impact of Peer Heterogeneity Ratio 

Now we look at the impact of peer heterogeneity ratio. Figure 4(a) and (b) shows that 
the routing overhead and the average number of hops per query increase as PVR 
increases. This occurs as the increase of PHR incurs a larger number of virtual 
numbers. Figure 4(c) demonstrates that the new routing algorithm improves the 
average routing hop length of a query by 14% to 19% compared to the old algorithm. 
When PHR is smaller, the hop improvement ratio is better. As PHR increases, the 
total number of virtual peers increases but the size of each routing table does not 
change so the hop improvement ratio drops. 

6.5   Impact of the Number of Physical Nodes 

Figure 5(a) shows that the performance of two algorithms are between the physical 
theoretical case and the virtual theoretical case as PVR=50. As the number of physical 
nodes increases, the average number of hops in four situations also increases.  
The performance of the new algorithm is very close to the physical theoretical case. 
Figure 5(b) shows that the performance of two algorithms are between the physical 
theoretical case and the virtual theoretical case as PHR=1. As the number of physical 
nodes increases, the average number of hops in four situations also increases.  In both 
figures, the new algorithm outperforms the old algorithm. 

Overall the simulations verify that our routing algorithm always have a smaller 
expected number of hops per query than the previous routing algorithms. Routing 
overhead increases as PVRs increases. In order to control routing overhead, we need 
to control PVR. As we can see from the results, the answer to Hypothesis 2 is “no”. 
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7   Related Work 

A few peer virtualization schemes [2, 3, 7, 13] are proposed to address load balancing 
and peer heterogeneity among peers. In [2, 3], the number of virtual peer servers 
assigned to a node is proportional to its capacity. [7] proposes a scheme to adapt the 
number of virtual peer servers in a node according to its load situation. [13] proposes 
a peer virtualization scheme to utilize the proximity among peer nodes in order to 
reduce the overhead of transferring the load from one peer node to another peer node. 
But they did not explore sharing information among virtual peers and study how the 
various factors affect the performance of the routing process. Super peer approach 
[11] separates super peers from simple peers so that super peer will have more 
responsibilities such as routing and computing. Nonetheless, this does not solve load 
balancing among super peers, as there is capacity heterogeneity among super peers. 
[14] proposes online load balancing algorithms  that guarantee a constant imbalance 
ratio for horizontal range partitioning. Top-K algorithm [1] proposes a top-k query 
retrieval in a super-peer HyperCuP topology. But it does not have any connections 
with load balancing and it is designed for the specific topology.  Our load balancing 
scheme such as top-k peer selection algorithm is not a replacement of other load 
balancing schemes. Rather it could be combined with other schemes to find a good 
match. For example, our scheme could be used when the overload/hotspots are not 
frequent. It provides a very useful mechanism to find the optimal k peers based on the 
design objective function.  

8   Conclusion  

In this paper, we propose a new routing algorithm for the virtual P2P network that 
improves the average number of hops per lookup by 13% to 25%. We analytically 
show the optimality of Chord protocol in physical P2P network, and compare the 
expected number of hops per query with our routing algorithm. We propose a top k 
load balancing algorithm to find out the top k best available under-loaded nodes in the 
current P2P network with 2(N-1) messages within 2O(logN) hops. With this algor-
ithm, peers need to exchange load and other information only when overloaded nodes 
send the request instead of periodically updating this information. 
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Abstract. As networks continue to grow in size and complexity, dis-
tributed network monitoring and resource querying are becoming in-
creasingly difficult. Our aim is to design, build, and evaluate a scalable
infrastructure for answering queries over distributed measurements, at
reduced costs (in terms of both network traffic and query latency) while
maintaining required precision. In this infrastructure, each network node
owns a set of numerical measurements and actively maintains bounds on
these values cached at other nodes. We can answer queries approximately,
using bounds from nearby caches to avoid contacting the owners directly.
We focus on developing efficient and scalable techniques to place, locate,
and manage bounded approximate caches across a large network. We
have developed two approaches: One uses a recursive partitioning of the
network space to place caches in a static, controlled manner, while the
other uses a locality-aware distributed hash table to place caches in a
dynamic and decentralized manner. In this paper, we focus on the latter
approach. Experiments over a large-scale emulated network show that
our techniques are very effective in reducing query costs while generat-
ing an acceptable amount of background traffic; they are also able to
exploit various forms of locality that are naturally present in queries,
and adapt to volatility of measurements.

1 Introduction

Consider a network of nodes, each monitoring a number of numeric measure-
ments. These measurements may be related to performance, e.g., per-node
statistics such as CPU load and the amount of free memory, or pairwise statis-
tics such as latency and bandwidth between nodes. Measurements may also be
application-specific, e.g., progress of certain tasks, rate of requests for particular
services, popularity of objects in terms of number of recent hits, etc. Such mea-
surements are of interest to distributed monitoring systems (e.g., Ganglia [8])
as well as systems requiring support for querying distributed resources (e.g.,
PlanetLab [12] and the Grid [6]).

We consider the problem of efficiently supporting relational-style queries over
these distributed measurements. For example, a network administrator may want
to issue periodic monitoring queries from a workstation over a remote cluster

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 374–388, 2006.
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of nodes; a team of scientists may be interested in monitoring the status of
an ongoing distributed simulation running over the Grid. The results of these
monitoring queries may be displayed in real time in a graphical interface on
the querying node, or used in further analysis. As another example, consider
relational-style querying of distributed resources. Suppose there are two sets
of nodes. A query may request pairs of nodes (one from each set) satisfying
the following condition: Both nodes have low load (which can be expressed as
relational selection conditions), and the latency between them is low (which
can be expressed as a relational join condition). Such queries are typical in
resource discovery, e.g., when a Grid user wants to select a data replica and a
compute server among candidate replicas/machines to perform a job, or when
a distributed systems researcher wants to select some nodes on PlanetLab with
desired load and connectivity requirements for running experiments.

With increasing network size and complexity, the task of querying distributed
measurements has become exceedingly difficult and costly in terms of time and
network traffic. Processing a query naively (by simply contacting the nodes re-
sponsible for the requested measurements) is very expensive, as we will demon-
strate in our experiments. If kept unchecked, network activities caused by the
queries could interfere with normal operations and lead to unintended artifacts
in performance-related measurement values. These problems are exacerbated by
periodic monitoring queries, by queries that request measurements from a large
number of nodes, and by queries that return a large result set.

We seek to develop a better infrastructure for distributed network querying,
by exploiting optimization opportunities that naturally arise in our target appli-
cations: (1) Approximation: For most network monitoring and resource querying
applications, exact answers are not needed. Approximate values will suffice as
long as the degree of inaccuracy is quantified and reported, and the user can
control the degree of inaccuracy. Small errors usually have little bearing on how
measurements are interpreted and used by these applications; at any rate, these
applications already cope with errors that are inevitable due to the stochastic
nature of measurements. (2) Locality: Many types of localities may be naturally
present in queries. There is temporal locality in periodic monitoring queries and
queries for popular resources. There may also be spatial locality among nodes
that query the same measurements; for example, a cluster of nodes run similar
client tasks that each check the load on a set of remote servers to decide which
server to send their requests. Finally, there may be spatial locality among mea-
surements requested by a query; for example, a network administrator monitors
a cluster of nodes, which are close to each other in the network.

We have built a distributed querying infrastructure that exploits the opti-
mization opportunities discussed above. The first opportunity can be exploited
by bounded approximate caching [10] of measurement values. To ensure the qual-
ity of approximation, the system actively updates a cache whenever the actual
value falls outside a prescribed bound around the cached value. The effectiveness
of bounded approximate caching has been well established [10]. In this paper, we
focus on developing efficient and scalable techniques to place, locate, and manage
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bounded approximate caches across a large network, so that locality, the second
opportunity mentioned above, is also exploited in an effective manner.

The naive approach is to cache queried measurements just at the querying
node. Unfortunately, this approach is not very effective in our setting. First,
queries from other nodes have no efficient way of locating these caches. Second,
bounded approximate caches are more expensive to maintain than regular caches,
because nodes with the original measurements must actively update bounded
approximate caches when their bounds are violated. For regular caches, because
of low cache maintenance overhead, one can take an aggressive approach of
caching every miss and discard it later if it turns out to be not beneficial. The
naive approach may well work if such an aggressive approach is feasible. However,
we do not have such luxury for bounded approximate caching; we must carefully
weigh its cost and benefit before deciding to cache a measurement, because of
the costs incurred in establishing, maintaining, and tearing down a bounded
approximate cache. With the naive approach of caching only at the querying
node, since caching only benefits the querying node itself, it is unlikely that this
benefit will outweigh the cost of caching.

Therefore, we need to find an effective way to aggregate the benefits of caching
by making caches easier to locate and more accessible to querying nodes. We
would also like to exploit locality in query workload by encouraging the same
node to cache measurements that are frequently queried together, and by encour-
aging a measurement to be cached close to nodes that are querying it. Moreover,
we need to base our caching decision on a cost/benefit analysis that seeks to
minimize the overall foreground traffic (for queries) and background traffic (for
cache updates and maintaining statistics for caching decisions) in the system. Ac-
complishing these goals in a scalable manner, without relying on central servers
and access to global knowledge of the system, is a challenging task.

We have developed two approaches. The first approach uses a recursive parti-
tioning of the network space to place caches in a static, controlled manner, and
is described briefly in Section 2. The second approach (described in Section 3)
uses a distributed hash table (DHT) such as [14] to place caches in a scalable,
dynamic and decentralized manner. Both approaches are designed to capture var-
ious forms of locality in queries to improve performance. We show how to make
intelligent caching decisions using a cost/benefit analysis, and we show how to
collect statistics necessary for making such decisions with minimum overhead.
Using experiments running on ModelNet [16], a scalable Internet emulation en-
vironment, we show in Section 4 that our solution significantly reduces query
costs while incurring low amounts of background traffic; it is also able to exploit
localities in the query workload and adapt to volatility of measurements.

Although we focus on network monitoring and distributed resource querying
as motivation for our work, our techniques can be adapted for use by many other
interesting applications. In [3], we briefly describe how to generalize the notion
of a “query region” from one in the network space to one in a semantic space.
For example, a user might create a live bookmark of top ten Internet discussion
forums about country music, approximately ranked according to some popularity
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measure (e.g., total number of posts and/or reads during the past three hours),
and have this bookmark refreshed every five minutes using a periodic query.
In this case, the query region is “discussion forums about country music,” and
the popularity measurements of these sites are requested. Generalization would
allow our system to select a few nodes to cache all data needed to compute
this bookmark, and periodic queries from users with similar bookmarks will be
automatically directed to these caches.

2 System Overview

Data and queries. Our system consists of a collection of nodes over a network.
Each node monitors various numerical quantities, such as the CPU load and the
amount of free memory on the node, or the latency and available bandwidth
between this and another node. These quantities can be either actively mea-
sured or passively observed from normal system and network activities. We call
these quantities measurements, and the node responsible for monitoring them
the owner of these measurements.

A query can be issued at any node for any set of measurements over the
network. The term query region refers to the set of nodes that own the set of
measurements requested. Our system allows a query to define its region either
by listing its member nodes explicitly, or by describing it semantically, e.g., all
nodes in some local-area network, or all nodes running public HTTP servers. By
the manner in which it is defined and used, a query region often exhibits locality
in some space, e.g., one in which nodes are clustered according to their proximity
in the network, or one in which nodes are clustered according to the applications
they run. For now, we will concentrate on the case where regions exhibit locality
in terms of network proximity, which is common in practice. In [3], we briefly
discuss how to handle locality in other spaces.

For a query that simply requests a set of measurements from a region, the re-
sult consists of the values of these measurements. Our system allows a query to
specify an error bound [−δ−q , δ+

q ]; a stale measurement value can be returned
in the result as long as the system can guarantee that the “current” mea-
surement value (taking network delay into account) lies within the specified
error bound around the value returned. To be more precise, suppose that the
current time is tcurr and the result contains a measurement value vt0 taken
at time t0. The system guarantees that vt, the value of the measurement as
monitored by its owner at time t, falls within [vt0 − δ−q , vt0 + δ+

q ] for any time
t ∈ [t0, tcurr − lag ], where lag is the maximum network delay from the querying
node to the owner of the measurement (under the routing scheme used by the
system). More discussion on the consistency of query results in our system can
be found in [3].

Beyond simple queries, our system also supports queries involving relational
selections or joins over bounded approximate measurement values. Results of
such queries may contain “may-be” as well as “must-be” answers. The details of
the query language and its semantics are beyond the scope of this paper.
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Bounded approximate caching. As discussed in Section 1, the brute-force
approach of contacting each owner to obtain measurement values is unnecessary,
expensive, and can cause interference with measurements. Caching is a natural
and effective solution but classic caching is unable to bound the error in stale
cached values. Instead, we use bounded approximate caching, where bounds on
cached measurement values are actively maintained by the measurement owners
(directly or indirectly).

The owner (or a cache) of a measurement is referred to as a cache provider
(with respect to that measurement) if it is responsible for maintaining one or
more other caches, called child caches, of that measurement. Each cache entry
contains, among other information, the cached measurement value and a bound
[−δ−, δ+]. A cache provider maintains a list of guarantee entries, one for each of
its child caches. A guarantee entry mirrors the information contained in the cor-
responding child cache entry, and is used to ensure that the guaranteed bounds
of child caches are maintained. We require the bound of a child cache to contain
the bound of its provider cache.

Whenever the measurement value at a cache provider changes, it checks to see
if any of its child caches need to be updated with a new value and bound. If yes,
the provider notifies the affected child caches. The cache entries at these child
caches and the guarantee entry at the provider are updated accordingly. This
process continues from each provider to its child caches until we have contacted
all the caches that need to be updated. This update of bounded approximate
caches is similar to the update dissemination techniques described in [15]. We
use a timeout mechanism to handle network failures (see [3] for details).

The choice of bounds is up to the application issuing queries. Tighter bounds
provide better accuracy, but may cause more update traffic. There are sophisti-
cated techniques for setting bounds dynamically and adaptively (e.g., [11]); such
techniques are largely orthogonal to the contributions of this paper. Here, we
focus on techniques for selecting bounded approximate caches to exploit locality
and the tradeoff between query and update traffic, and for locating these caches
quickly and efficiently to answer queries. These techniques are outlined next.

Selecting and locating caches. We have developed two approaches to select-
ing and locating caches in the network. The first is a controlled caching approach
and is described in [3]. The idea is to use a coordinate space such as the one
proposed by Global Network Positioning (GNP) [9] for all nodes in the network,
and perform controlled caching based on a hierarchical partitioning of the GNP
space. Each owner preselects a number of nodes as its potential caches, such that
nearby owners have a good probability of selecting the same node for caching,
allowing queries to obtain cached values of measurements in large regions from
fewer nodes. The selection scheme also ensures that no single node is responsible
for caching too many measurements, and that the caches are denser near the
owner and sparser farther away; therefore, queries from nearby nodes get better
performance. We show in [3] that this approach does quite well compared to the
naive approach of contacting the node responsible for the requested measure-
ments. This approach, however, exploits some but not all types of locality that
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we would like to exploit and also restricts the amount of caching at any node by
design. There is also a concern of scalability because some nodes carry poten-
tially much higher load than other nodes. Nevertheless, because of its simplicity,
the GNP-based approach is still viable for small- to medium-sized systems.

This led us to develop a new approach which has a number of advantages
over the first one and is the focus of this paper. This second approach uses
a locality-aware DHT to achieve locality- and workload-aware caching in an
adaptive manner. Not only do nearby owners tend to select the same nodes for
caching (as in the controlled approach), queries issued from nearby nodes for
the same measurements also encourage caching near the querying nodes. With
the use of a DHT, the system is also more decentralized than in the controlled
approach. We use DHTs because the technology scales to a large number of
nodes, the amount of state at each node is limited, it uses no centralized directory,
and it copes well with changing network conditions. The downside is a lesser
degree of control in exploiting locality, and more complex protocols to avoid
centralization. This approach is presented next.

3 DHT-Based Adaptive Caching

Background on DHTs. An overlay network is a distributed system whose
nodes establish logical neighbor relationships with some subset of global partic-
ipants, forming a logical network overlayed atop the IP substrate. One type of
overlay network is a Distributed Hash Table (DHT ). As the name implies, a DHT
provides a hash table abstraction over the participating nodes. Nodes in a DHT
store data items; each data item is identified by a unique key. An overlay routing
scheme delivers requests for a key to the node responsible for storing the data
item with that key. Routing proceeds in multiple hops and is done without any
global knowledge: Each node maintains only a small set of neighbors, and routes
messages to the neighbor that is in some sense “closest” to the destination.

Pastry [14] is a popular DHT that takes network proximity into account while
routing messages. A number of properties of Pastry are relevant to our system.
The short-hops-first property, a result of locality-aware routing, says that the
expected distance traveled by a message during each successive routing step
increases exponentially. The short-routes property says that the average distance
traveled by a Pastry message is within a small factor of the network distance
between the message’s source and destination. The route-convergence property
concerns the distance traveled by two messages sent to the same key before their
routes converge. Studies [14] show that this distance is roughly the same as the
distance between the two source nodes. These properties provide us a natural
way to aggregate messages originated from close-by nodes.

Overview of caching with pastry. Our basic idea is to leverage a locality-
aware DHT such as Pastry in building a caching infrastructure where two types of
aggregation naturally take place. One type of aggregation happens on the owner
side: Close-by owners select same caching nodes nearby, allowing us to exploit
the spatial locality of measurements involved in region-based queries. The other
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type of aggregation happens on the querying node side: Close-by querying nodes
can also find common caches nearby, allowing us to exploit the spatial locality
among querying nodes.

Suppose that all nodes route towards a randomly selected root using Pastry.
The Pastry routes naturally form a tree T (with bidirectional edges) exhibiting
both types of aggregation, as illustrated in Figure 1. Queries first flow up the
tree following normal (forward) Pastry routes, and then down to owners following
reverse Pastry routes. Nodes along these routes are natural candidates for caches.
Our system grows and shrinks the set of caches based on demand, according to a
cost/benefit analysis using only locally maintained information. The operational
details of our system are presented next. We do not discuss cache updates because
the process is similar to that described in Section 2 (see [3] for details).

Initialization. A primary objective of the initialization phase is to build the
structure T . While Pastry itself already maintains the upward edges (forward
Pastry hops), our system still needs to maintain the downward edges (reverse
Pastry hops). To this end, every node in T maintains, for each of its child
subtree in T , a representation of the set of nodes found in that subtree, which
we call a subtree filter. Subtree filters are used to forward messages on reverse
Pastry paths, as we will discuss later in connection with querying. Nodes at
lower levels can afford to maintain accurate subtree filters because the subtrees
are small. Nodes at higher levels, on the other hand, maintain lossy subtree
filters implemented with Bloom filters [1].

During the initialization phase, after the overlay network has been formed,
each node in the system sends an INIT message containing its IP address towards
the root. Each node along the path of this message adds the node IP to the
subtree filter associated with the previous hop on the path. As an optimization,
a node can combine multiple INIT messages received from its children into a
single INIT message (containing the union of all IP addresses in the messages
being combined), and then forward it.

Querying. When a query is issued for a set of measurements, the querying node
routes a READ message towards the root via Pastry. This message contains the
IP address of the querying node and the set of measurements requested (along
with acceptable bounds). When a node N receives a READ message, it checks to

Fig. 1. Two-way aggregation with Pastry Fig. 2. Splicing: add/remove a cache
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see if it can provide any subset of the measurements requested. If yes, N sends
back to the querying node a READ REPLY message containing these measurement
values (with cached bounds and timestamp, if applicable). If all requested mea-
surements have been obtained, we are done. Otherwise, let O denote the set
of nodes that own the remaining measurements. N checks each of its subtree
filters Fi: If O∩Fi �= ∅, N forwards the READ message to its i-th child with the
remaining measurements owned by O∩Fi (unless the READ message received by
N was sent from this child in the first place). Note that messages from N to
its children follow reverse Pastry routes. Finally, if the READ message received
by N was sent from a child (i.e., on a forward Pastry route), N also forwards
the READ message to its parent unless N is able to determine that all requested
measurements can be found at or below it.

As a concrete example, Figure 1 shows the flow of READ messages when node
N1 queries measurements owned by O1, O2, and O3, assuming that no caching
takes place. If node N2 happens to cache measurements owned by O1 and O2,
then messages 7 through 9 will be saved. It is possible to show that our system
attempts to route queries towards measurement owners over T in an optimal
manner. We do not discuss the effect of false positives in Bloom filters in this
paper; the reader is referred to [3] for details.

Adding and removing caches. Each node in our system has a cache controller
thread that periodically wakes up and makes caching decisions. We first describe
the procedures for adding and removing a cache of a measurement.

Suppose that a node N decides to start caching a particular measurement m.
Let Pm denote the first node that can be N ’s cache provider on the shortest
path from N to the owner of m in T . Let Cm denote the subset of Pm’s child
caches whose shortest paths to Pm go through N . An example of these nodes is
shown in Figure 2. After N caches m, we would like Pm to be responsible for
updating N , and N to take over the responsibility of updating Cm, as illustrated
in Figure 2 on the right. Note that at the beginning of this process, N does not
know what Pm or Cm is. To initiate the process, N sends a SPLICE IN message
over T , along the same path that a READ request for m would take. Forwarding
of this message stops when it reaches Pm, the first node who can be a cache
provider for m. We let each cache provider record the shortest incoming path
from each of its child caches; thus, Pm can easily determine the subset Cm of its
child caches by checking whether the recorded shortest paths from them to Pm

go through N . Then, Pm removes the guarantee entries and shortest paths for
Cm; also, Pm adds N to its guarantee list and records the shortest path from
N to Pm. Next, Pm sends back to N a SPLICE IN OK message containing the
current measurement value and timestamp stored at Pm, as well as the removed
guarantee entries and shortest paths for Cm. Upon receiving this message, N
caches the measurement value, adds the guarantee entries to its guarantee list,
and records the shortest paths after truncating their suffixes beginning with N .
Finally, N sends out a SPLICE IN OK message to each node in Cm to inform it
of the change in cache provider. The cache removal procedure uses SPLICE OUT



382 B. Chandramouli, J. Yang, and A. Vahdat

and SPLICE OUT OK messages. It is similar to cache addition and slightly simpler
(see [3] for a detailed description).

It can be shown that, in the absence of false positives in subtree filters, a
cache update originated from the owner would be sent over a minimal multicast
tree spanning all caches if update messages were routed over T .

Caching decisions. Periodically, the cache controller thread at N wakes up and
makes caching decisions. For each measurement m that N has information about,
the thread computes the benefit and cost of caching m. We break down the benefit
and cost of caching m into four components: (1) Bread(m) is the benefit in terms
of reduction in read traffic. For each READ message received by N requesting m,
if m is cached at N , we avoid the cost of forwarding the request for m, which will
be picked up eventually by the node that either owns m or caches m, and is the
closest such node on the shortest path from N to m’s owner in T . Let dm denote
the distance (as measured by the number of hops in T ) between N and this node.
The larger the distance, the greater the benefit. Thus, Bread(m) ∝ dm × Hm,
where Hm is the request rate of m at node N . (2) Bupd(m) is the net benefit in
terms of reduction in update traffic. It’s computation requires the maintenance
of a large number of parameters; hence we approximate it to be proportional to
the reduction in update cost from the cache provider Pm’s perspective (see [3] for
details). (3) Cupd(m) is the cost in terms of resources (processing, storage, and
bandwidth) incurred by N for maintaining its child caches for m. (4) Ccache(m) is
the cost incurred by N for caching m (other than Cupd (m)). We omit the details
of these last three components and refer the interested reader to [3].

Given a setM of candidate measurements to cache, the problem is to determine
a subsetM′ ⊆M that maximizes

∑
m∈M′

(
Bread(m) + Bupd(m)

)
subject to the

cost constraints that
∑

m∈M′ Cupd (m) ≤ Tupd , and
∑

m∈M′ Ccache(m) ≤ Tcache .
Here, Tupd specifies the maximum amount of resources that the node is willing to
spend on maintaining its child caches, andTcache specifies the maximum cache size.
This problem is an instance of the multi-constraint 0-1 knapsack problem. It is ex-
pensive to obtain the optimal solution because our constraints are not small inte-
gers; even the classic single-constraint 0-1 knapsack problem is NP-complete. So,
we use a greedy algorithm by defining the pseudo-utility of caching m as

Bread(m) + Bupd(m)
Cupd(m)/Tupd + Ccache(m)/Tcache

.

It is basically a benefit/weighted-cost ratio of caching m. The greedy algorithm
simply decides to cache measurements with highest, non-negative pseudo-utility
values above some threshold. Caches are added and removed as described earlier.

Maintaining statistics. We now turn to the problem of maintaining statistics
needed for making caching decisions. For measurements currently being cached
by N , we can easily maintain all necessary statistics with negligible overhead by
piggybacking the statistics on various messages. A more challenging problem
is how to maintain statistics for a measurement m that is not currently cached
at N . Maintaining statistics for all measurements in the system is simply not
scalable. Ignoring uncached measurements is not an option either, because we
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would be unable to identify good candidates among them. In classic caching,
any miss will cause an item to be cached; if it later turns out that caching is
not worthwhile, the item will be dropped. However, this simple approach does
not work well for our system because the penalty of making a wrong decision
is higher: Our caches must be actively maintained, and the cost of adding and
removing caches is not negligible.

Fortunately, from the cost/benefit analysis, we observe that a measurement
m is worth caching at N only if N sees a lot of read requests for m or there are a
number of frequently updated caches that could use N as an intermediary. Hence,
we focus on monitoring statistics for these measurements, over each observation
period of a tunable duration. For example, the request rate Hm is maintained
by N for each m requested during the observation period; request rates for
unrequested, uncached measurements are assumed to be 0. Our techniques to
estimate update rates and dm over the observation period are more complex.
More details on scalable maintenance of statistics are described in [3].

Overall, the space needed to maintain statistics for uncached measurements
is linear in the total number of measurements requested plus the total number
of downstream caches updated during an observation period. Thus, the amount
of required space can be controlled by adjusting the observation period length.

4 Experiments and Results

Experimental setup. We have implemented the GNP- and the DHT-based ap-
proaches. We conduct our experiments over ModelNet [16], a scalable and highly
accurate Internet emulation environment. We emulate 20,000-node INET [4]
topologies with a subset of nodes participating in measurement and querying
activities. We report results for subsets with 250 nodes acting as both owners
and querying nodes. These nodes are emulated by twenty 2.0GHz Intel Pentium
4 edge emulation nodes running Linux 2.4.27. All traffic passes through a 1.4GHz
Pentium III core emulation node running FreeBSD-4.9.

While all results in this paper use an emulated network, we have also deployed
our system (with around 50 nodes) over PlanetLab [12]. Note that the number
of owners and querying nodes in our experiments is not constrained by the
system’s scalability, but rather by the hardware resources available for deploying
it over an emulated network. The advantage of deploying a full system over an
emulated network is that it ensures that all costs are captured and we do not
inadvertently miss out any important effects or interactions. As future work, we
plan to develop a simpler simulation-based evaluation, which would allow us to
demonstrate larger experiments at the expense of some realism.

Workloads. We wish to subject our system to workloads with different char-
acteristics that may represent different application scenarios. To this end, we
have designed a workload generator to produce a mix of four basic types of
“query groups.” The four types of query groups are: (1) Near-query-near- owner
(NQNO): A set of nq nearby nodes query the same set of no owners that are
near one another (not necessarily close to the querying nodes). This group should
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benefit most from caching, since there is locality among both querying nodes and
queried owners. (2) Near-query-far-owner (NQFO): A set of nq nearby nodes
query the same set of no owners that are randomly scattered in the network.
There is good locality among the querying nodes, but no locality among the
queried owners. (3) Far-query-near-owner (FQNO): A set of nq distant nodes
query the same set of no owners that are near one another. This group exhibits
good locality among the queried owners, but no locality among the querying
nodes. (4) Far-query-far-owner (FQFO): A set of nq nodes query the same set
of no owners; both the querying nodes and the queried owners are randomly
scattered. This group should benefit least from caching.

A workload [a, b, c, d] denotes a mix of a NQNO query groups, b NQFO query
groups, c FQNO query groups, and d FQFO query groups. All query groups are
generated independently. Each workload is further parameterized by nq and no,
the number and the size of queries in each group, and p, the period at which the
queries will be reissued.

In this paper, we experiment with synthetic measurements, each generated by
a random walk where each step is drawn from a normal distribution with mean
0 and standard deviation σ. If σ is large, bounds on this measurement will be vi-
olated more frequently, resulting in higher update cost. Synthetic measurements
allow us to experiment with different update characteristics easily. Experiments
with real node-to-node latency measurements demonstrate the effectiveness of
bounded approximate caching, and are presented in [3].

4.1 Results for the DHT-Based Approach

Advantage of caching. To demonstrate the advantage of caching, we run a
workload W1 = [1, 1, 1, 1] for 1000 seconds, with nq = 4, no = 10, and p = 16 sec-
onds. Effectively, during each 16-second interval, there are a total of 16 nodes
querying a total of 40 owners, with each query requesting 10 measurements. This
workload represents an equal mix of all four types of query groups, with some
benefiting more than others from caching. The measurements in this experiment
are synthetic, with σ = 7. Bounds requested by all queries are [−10, 10]. Dur-
ing the experiment, we record both foreground traffic, consisting of READ and
READ REPLY messages, and background traffic, consisting of all other messages
including splice messages and CACHE UPDATE messages.

Figure 3 shows the behavior of our system over time, with the size of each
cache capped at 100 measurements (large enough to capture the working set
of W1). We also show the behavior of the system with caching turned off. The
message rate shown on the vertical axes is the average number of messages
per second generated by the entire system over the last 16 seconds (same as
the period of monitoring queries). From Figure 3, for cache size 100 we see
that after a burst of foreground traffic when queries start running, there is an
increase in the background traffic as nodes decide to cache measurements. Once
caches have been established, the foreground traffic falls dramatically due to
the caches. As the set of caches in system stabilizes, the background traffic also
reduces to mostly CACHE UPDATE messages. On the other hand, with caching
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Fig. 3. Traffic vs. time Fig. 4. Traffic vs. cache size Fig. 5. Adapt to volatility

turned off (cache size 0) we see that the foreground traffic remains very high at
all times (there is no background traffic). The high foreground traffic outweighs
the benefit of having no background traffic. In sum, caching is extremely effective
in reducing the overall traffic in the system.

Figure 4 compares the performance of the system under different cache sizes
(in terms of the maximum number of measurements allowed in the cache of each
node). We show the total number of foreground and background messages gen-
erated by the system over the length of the entire experiment (1000 seconds). As
the cache size increases, the overall traffic decreases, although the benefit dimin-
ishes once the caches have grown large enough to hold the working set. Another
interesting phenomenon is that for very small cache sizes, the background traffic
is relatively high because of more splice operations caused by thrashing. Never-
theless, our system is able to handle this situation well.

Adapting to volatility in measurements. In this experiment, we use the
same workload W1 with cache size 100. We gradually increase the volatility of
measurements by increasing the standard deviation σ of the random walk steps
every 500 seconds. For the requested query bound of [−10, 10], we effectively
increase the update rate from 0.0 to 3.0 updates per second. The result of this
experiment is shown in Figure 5. Initially, with a zero update rate, there is
no cost to maintaining a cache, so all frequently requested measurements are
cached, resulting in low foreground and background traffic. As we increase the
update rate, however, the background traffic increases. This increase in cache
update cost causes nodes to start dropping cached measurements; as a result,
the foreground traffic also increases. Eventually, the update rate becomes so high
that it is no longer beneficial to cache any measurements. Thus, the background
traffic drops to zero, while the foreground traffic increases to the level when there
is no caching (cf. Figure 3). To summarize, our system only performs caching if it
leads to an overall reduction in total traffic; consequently, the total traffic in the
system never rises above the level without caching. This shows that our system
is able to adapt its caching strategy based on the volatility of measurements.

Aggregation effects. The next two sets of experiments demonstrate that our
system can exploit locality in both querying nodes and queried owners. To illus-
trate aggregation on the querying node side, we perform a series of experiments
using five workloads, [0, 0, 2, 2], [1, 0, 2, 1], [2, 0, 2, 0], [2, 1, 0, 1], and [2, 2, 0, 0],
where the percentage of queries issued from nearby nodes increases from 0% to
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Fig. 6. Traffic vs.
percentage of queries
from nearby nodes.

Fig. 7. Traffic vs.
percentage of queries
to nearby owners.

Fig. 8. Comparison
of average query la-
tency.

Fig. 9. Comparison
of total traffic.

100%. We set nq = 5 and no = 4 for these five workloads. From the results in
Figure 6, we see that the total traffic reduces as the percentage of queries from
nearby nodes increases. Figure 7 shows the second set of experiments that il-
lustrate owner-side aggregation by using five workloads where the percentage of
queries requesting nearby owners increases from 0% to 100%. We again see that
the total traffic reduces as the percentage of queries requesting nearby owners
increases. These experiments show that our system derives performance benefits
by exploiting locality both among querying nodes and in query regions.

Comparison with the naive and GNP approaches. Figure 8 compares the
average query latency (as measured by the average time it takes to obtain the
requested measurement, after all caches have been created) for a simple workload
that exhibits locality among querying nodes. For baseline comparison, we also
measure the average query latency of a naive approach, where each querying
node simply contacts the owner directly for the measurement. From the figure,
we see that the DHT-based approach has the lowest query latency, while the
GNP-based approach performs a little worse, but both outperform the naive
approach. Figure 9 compares the total network traffic generated by the system
while processing a workload in which five querying nodes repeatedly query a
faraway set of 12 nearby owners over 480 seconds, using the naive, GNP-based,
and DHT-based approaches. Again, the DHT-based approach outperforms the
other two approaches as it exploits querying node side locality effectively.

5 Related Work

Network monitoring. A large number of network monitoring systems have
been developed by both the research community and commercial vendors. As-
trolabe [17] is a system that continuously monitors the state of a collection
of distributed resources and reports summarized information to the its users.
Ganglia [8] is a system for monitoring a federation of clusters. While our work
also considers the network monitoring problem, we focus on supporting set-
valued queries approximately rather than aggregation queries. Our approach of
bounded approximate caching and methods for locality-aware, cost-based cache
management offer better flexibility and adaptability than these systems, which
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are preset to either push or pull each piece of information. Our techniques can
be used to enhance these and other existing network monitoring systems.

Data processing on overlay networks. PIER [7] is a DHT-based massively
distributed query engine that brings database query processing facilities to new,
widely distributed environments. For network monitoring, also one of PIER’s
target applications, we believe that bounded approximate caching meshes well
with PIER’s relaxed consistency requirement, and our DHT-based caching tech-
niques can also be applied to PIER. Locality-aware DHTs have been used to
build SCRIBE [2], a scalable multicast system, and SDIMS [18], a hierarchical
aggregation infrastructure. Our DHT-based approach also uses a locality-aware
DHT, but for the different purpose of selecting and locating caches; in addition,
we use reverse DHT routes to achieve aggregation effects on the owner side.

Approximate query processing for networked data. The idea of bounded
approximate caching has been explored in detail by Olston [10], along with tech-
niques such as adaptive bound setting, source cooperation in cache synchroniza-
tion, etc. We apply bounded approximate caching in this paper, but we focus
on how to select caches across the network to exploit locality, and how to lo-
cate these caches quickly and efficiently to answer queries. We also extend the
approximate replication scheme by allowing guarantees to be provided not only
by the owner, but also by any other cache with a tighter bound.

Web caching and web replication. Web caching [13] is often done by ISPs
using web proxy servers. Web replication [13] refers to data sources spreading
their content across the network, primarily for load balancing. In both cases,
the cache content is stored exactly and most often relatively stable content (e.g.
images) is replicated at static locations. They do not deal with the problem of
rapidly updating data; this means that they can afford to establish a large num-
ber of caches/replicas. Our system deals with replication of dynamic measure-
ments and therefore update costs are high. We reduce update costs by caching
bounded measurements, and balance update and query costs by caching at dy-
namically chosen nodes in the network.

6 Conclusions

In this paper, we tackle the problem of querying distributed network measure-
ments, with an emphasis on supporting set-valued queries using bounded ap-
proximate caching of individual measurements. We focus on efficient and scalable
techniques for selecting, locating, and managing caches across the network to ex-
ploit locality in queries and tradeoff between query and update traffic. We have
proposed, implemented, and evaluated a DHT-based adaptive caching approach
and compared it with a GNP-based controlled caching approach. Experiments
over a large-scale emulated network show that our caching techniques are very
effective in reducing communication costs and query latencies while maintaining
the accuracy of query results at an acceptable level. The DHT-based approach
is shown to adapt well to different types of workloads. In addition to temporal
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locality in the query workload, the approach is able to exploit spatial localities
in both querying nodes and measurements accessed by region-based queries.

Although the results are promising, techniques described in this paper repre-
sent only the first steps towards building a powerful distributed network querying
system. As future work, we plan to investigate the hybrid approach of combin-
ing query shipping and data shipping, and consider more sophisticated caching
schemes such as semantic caching [5].
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Abstract. Navigational applications on Object-Relational DBMSs (ORDBMSs)
access objects in the database related to one another via reference and collection
attributes. When accessing an object, the applications first look up the object
cache in the client and, if the object does not exist, fetch the object from the
server. Prefetching is to identify the objects that are highly probable to be ac-
cessed in the future by the applications and to save these objects in the object
cache in advance. Since prefetching reduces the number of high cost fetches, it
is crucial for the performance of the applications. The prefetch method proposed
by Han et al. [7] reduces the number of fetches by orders of magnitude compared
with the previous methods. However, overall performance enhancement is not as
significant as reduction of fetches. Since the performance of prefetching is de-
termined by the number of disk accesses in the server as well as the number of
fetches. In this paper, we propose a technique for minimizing the number of disk
accesses to enhance the performance of the prefetch method proposed by Han et
al. We propose a method for creating materialized views based on the type-level
path access logs proposed by Han et al. [6]. We call the materialized view as the
type-level access pattern view. We then present an algorithm for minimizing the
number of disk accesses when prefetching the objects from the database in the
server by using the type-level access pattern view. We perform a series of exper-
iments using a variety of databases to show that the technique proposed in this
paper significantly enhances the overall performance of the navigational applica-
tions. We show that the proposed technique reduces the number of disk accesses
by up to 33.0 times and enhances the performance by up to 21.4 times compared
with the original prefetch method by Han et al.

Keywords: navigational application, prefetch method, type-level path access log,
type-level access pattern view.

1 Introduction

Object-Relational DBMS (ORDBMS) is an extension of Relational DBMS (RDBMS)
incorporating the object-oriented features such as type, object, method, reference, and
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inheritance [10]. ORDBMS represents the inter-related objects as complex objects via
the reference and collection attributes. The applications on ORDBMS access the com-
plex objects in the client and fetch the related objects from the database in the server
when necessary. The applications are generally called navigational applications, and
the examples are XML applications, Geographical Information Systems (GIS), and
CAD/CAM systems.

When an object is requested by the navigational applications or external users,
the applications first check if the object is in the object cache in the client. If exists,
the applications just access the object. If not, the applications send the request to fetch
the object to the server, and the server accesses the object from the database and then
sends it to the client.

Due to the above characteristics of the navigational applications, they require a lot of
object fetches between the client and server. Since the cost of object fetch is very high
in the navigational applications, the frequent object fetches severely degrade the overall
performance of the applications [2, 7]. To overcome the problem, many researches on
prefetching for reducing the number of object fetches have been performed. Prefetching
is to identify the objects that are highly probable to be accessed by the applications in the
future and to save them in the object cache in advance [2, 8, 11]. The previous prefetch
methods can be categorized into four groups: (1) page based, (2) object-level/page-level
access pattern based, (3) user hint based, and (4) context based prefetch methods [7].
Recently, there are researches on applying the prefetch idea to web applications [5] and
query optimization [3].

Han et al. [7] proposed a prefetch method based on the notions of type-level access
locality and type-level access pattern in the navigational applications on ORDBMS.
The type-level access locality is the phenomenon that the types of objects accessed
by the applications appear repeatedly, and the type-level access pattern is the pattern of
object types appearing repeatedly. Han et al. [7] showed the superiority of their prefetch
method based on the type-level access pattern over the context based prefetch method
[2], which had been the most efficient one before, through a series of experiments. That
is, their prefetch method reduced the number of object fetches by up to 97.8 times,
and enhanced the overall performance of the navigational applications by up to 6.39
times.

As can be seen in the result of experiments by Han et al. [7], the enhancement ratio of
the overall performance of navigational applications is not as significant as the reduction
ratio of the number of object fetches. In general, the two most important factors deciding
the performance of prefetching are the number of object fetches and the number of disk
accesses in the server. Even though the number of object fetches is reduced significantly,
if the number of disk accesses remains unchanged, the overall performance would not
be enhanced as much. For example, assuming that the costs of object fetches and disk
accesses are equal, even when the number of object fetches is improved ten times (the
number is reduced to 10%), the overall performance is improved only about two times(

1+1
0.1+1 ≈ 2

)
. In this paper, we propose a technique for enhancing the performance

of the prefetch method proposed by Han et al. [7] by minimizing the number of disk
accesses. The major contributions of this paper are as follows:
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(1) For the iterative pattern, which is the most frequent type-level access pattern, we
propose a method for creating materialized views based on the type-level path ac-
cess logs proposed by Han et al. [6]. We call the materialized view as the type-level
access pattern view.

(2) We present an algorithm for minimizing the number of disk accesses when pre-
fetching the objects from the database in the server by using the type-level access
pattern views.

(3) We perform a series of experiments using a variety of databases to show that the
technique proposed in this paper significantly enhances the overall performance of
navigational applications. We show that the proposed technique reduces the number
of disk accesses by up to 33.0 times and enhances the performance by up to 21.4
times compared with the original prefetch method by Han et al. [7].

The rest of this paper consists of the following. In Section 2, we briefly explain the
type-level access pattern based prefetch method proposed by Han et al. [7]. In Section 3,
we present the algorithms for creating the type-level access pattern views and for effi-
cient prefetching using the views. In Section 4, we perform extensive experiments to
show the superiority of the proposed technique over the prefetch method by Han et al.
[7]. Finally, we conclude this paper in Section 5.

2 Type-Level Access Pattern Based Prefetching

We define several terms in Section 2.1, and explain the prefetch algorithm and the type-
level path access log in Section 2.2 and Section 2.3, respectively. Figure 1 shows the
example database schema used throughout this paper.

2.1 Terminologies

The general pattern of accessing objects by the navigational applications is that the ap-
plications first obtain the root objects to determine the navigational scope by executing
SQL query statements and then access related objects via the reference and collection
attributes from the root objects. The set of root objects for starting the navigation is
called navigational root set, and is denoted by Ω. For example, the navigational root
set can be constructed by executing a statement “SELECT * FROM Professor WHERE
Salary ≥ $100,000” on the database shown in Figure 1.

The type-level path (TLP) of an object o is the sequence of attributes referenced to
access the object o starting from root objects. Han et al. [7] assumed the navigational
root set as a virtual collection attribute of a virtual object to express the type-level path
of the root objects, and denoted the virtual collection attribute as aΩ . For example,
assuming Course objects in Figure 1 as the root objects, the type-level path of Professor
objects o is aΩ.has sections.is taught by.

The type-level path graph (TLPG) for a navigational root set Ω is a directed graph
in which each node represents the type of the objects accessed in navigation and each
edge the attributes referenced. The type-level path graph is created and extended while
the navigational application accesses the related objects from the navigational root set
Ω; whenever an object of a new type is accessed in navigation, the corresponding edge
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Fig. 2. Accessed Objects and the Type-Level Path Graph

and node are appended to the graph. The type-level path graph is used to detect the
repetitive type-level access patterns. All the nodes corresponding to the types of the
objects accessed in navigation are connected directly or indirectly from the root node
which corresponds to Ω. Figure 2 shows a simple example. Figure 2(a) shows the ob-
jects accessed in the database shown in Figure 1, and the object number indicates the
access order of the objects. Figure 2(b) is the TLPG(Ω) generated while accessing the
objects in navigation. Table 1 summarizes the notations used throughout this paper.
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Table 1. Summary of Notations

Notation Description
o an object

TLP(o) type-level path of an object o
Ω a navigational root set

TLPG(Ω) type-level path graph for a navigational root set Ω
TLAG(Ω) type-level path access log graph for a navigational root set Ω

2.2 Prefetch Algorithm

When the navigational applications access the related objects, they tend to repetitively
access the same attributes of the objects. Han et al. [7] defined the phenomenon as the
type-level access locality and the repetitive pattern of accessing the attributes in the
related objects as the type-level access pattern. Prefetch algorithm selects the objects to
prefetch using the type-level access patterns.

There can be diverse forms of type-level access patterns depending on the naviga-
tional applications. In this paper, we deal with the iterative pattern, which is the most
frequent type-level access pattern for prefetching. The iterative pattern is the type-level
access pattern that generates type-level paths that appear repetitively when accessing
the objects via the collection attributes in complex objects.

We explain how the prefetch algorithm works for the iterative pattern with the exam-
ple shown in Figure 2. At first, the navigational application retrieves objects for specific
courses by executing an SQL query statement, and the returned objects constitute the
root objects in the navigational root set Ω. In Figure 2(a), the object o1 is the root ob-
ject. Next, the application accesses the objects corresponding to the sections for each
course and then the objects for the professor and TA for each section. In the database in
Figure 1, since the attribute has sections of type Course is a collection attribute, one
Course object can contain one or more Section objects.

When the navigation is started from the navigational root set Ω, the TLPG(Ω) con-
sists of only the edge aΩ and the root node Course corresponding to the type of root
objects. The TLPG in Figure 2(b) is generated while the application accesses the root
object o1 and the related objects o2 ∼ o4; when the object o2 is accessed, the TLPG(Ω)
is appended with the edge has sections and node Section, and when the objects o3
and o4 are accessed, it is appended with the edges is taught by and has TA and the
nodes Professor and TA. Next, when the navigational application tries to access the Sec-
tion objects o5 next to o2, since the type-level path aΩ.has sections of o5 is already
contained in the TLPG(Ω), the application detects the iterative pattern by the collection
attribute has sections. The application marks the edge in the TPLG as the iterative pat-
tern edge, and prefetches objects o5 ∼ o10 based on the iterative pattern. The prefetched
objects are transferred to the client at the same time.

2.3 Type-Level Path Access Log

In most cases, the navigational applications reference the small subset of attributes
of the objects accessed in navigation. The unit of prefetching in the existing prefetch
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methods including the one by Han et al. [7] is an object. However, if the size of the ob-
jects is greater than the size of the attributes actually referenced by the navigational ap-
plications, it can cause the overhead on transferring data between the client and server.
Han et al. [6] proposed the notion of type-level path access log for prefetching only
the attributes that are highly probable to be actually referenced by the applications. For
the object o having the type-level path P from the navigational root set Ω, the set of
attributes actually referenced by the navigational application is defined as the access
log for type-level path P and denoted as {a1, . . . , an}, where ai(1 ≤ i ≤ n) are the
attributes of object o that are actually referenced in the navigation.

The navigational applications use type-level path access log graph (TLAG) to de-
tect the repetitive type-level path access logs. The TLAG is an extension of the TLPG
explained in Section 2.2, and each node corresponding to the type-level path P in the
TLAG is associated with an access log for the path P . Figure 3 shows a TLAG extended
from the TLPG in Figure 2(b). The rounded rectangle in the figure represents the access
log for the type-level path corresponding to each node.

3 Type-Level Access Pattern View

In this section, we propose a prefetch technique using the materialized views for en-
hancing the performance of the type-level access pattern based prefetch method pro-
posed by Han et al. [7]. In this paper, the type-level access pattern view for the iterative
pattern is called the iterative pattern view. A type-level access pattern view is created
for each of the type-level access patterns newly detected by the navigational application,
and is used for prefetching objects according to the similar type-level access patterns
detected by the application. In Sections 3.1 and 3.2, we explain on creating and match-
ing the iterative pattern view, respectively.

3.1 Creating the Iterative Pattern View

The iterative pattern view is a materialized view that stores the objects accessed based
on the iterative pattern. Since a type-level access pattern corresponds to an edge in
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the TLAG marked as the iterative pattern edge, an iterative pattern view is created for
the TLAG subgraph rooted by the node pointed by the iterative pattern edge. First, a
type corresponding to each of the nodes in the TLAG subgraph is defined so that the
type should contain the attributes in the access log of the corresponding node. The type
is called the navigational view type in this paper. Next, an iterative pattern view of the
navigational view type corresponding to the root node of the TLAG subgraph is defined.
Optionally, an index on the object identifier (OID) of the root objects can be constructed
for efficient retrieval of the iterative pattern view objects.

In this paper, we use the nested type to combine an object o and the objects related
via the collection attributes of object o in a single object. The nested type is the type
defined in the other type, and the collection attribute is defined as the nested set type in
the iterative pattern view. The following Rules 1 and 2 are for defining the navigational
view types corresponding to the nodes of the TLAG subgraph and the iterative pattern
view for the TLAG subgraph, respectively 1.

Rule 1 . Let A be the type of the node pointed by an edge a in the TLAG subgraph,
B1, . . . , Bn be the types of the nodes pointed by the edges b1, . . . , bn from the node A,
and B′

1, . . . , B
′
n be the navigational view types corresponding to the nodes B1, . . . , Bn,

respectively. And let c1, . . . , ck be the remaining attributes except the attributes b1, . . . ,
bn in the access log of the node A, and T1, . . . , Tk be the types of the remaining at-
tributes, respectively. The navigational view type A′ corresponding to the node A is
defined as follows:

CREATE TYPE {
oid REF TYPE(A)
c1 T1;
. . .
ck Tk;
b1 ITER(b1, B′

1);
. . .
bn ITER(bn, B′

n);
} A′;

where REF TYPE(A) represents the OID type for the objects of type A. ITER(bi, B′
i)

(1 ≤ i ≤ n) is replaced either with SETOF(B′
i) if bi is a collection attribute, or with B′

i

if it is a reference attribute. �

Rule 2 . In addition to the settings in Rule 1, let R be the type of the root node of
the TLAG subgraph, r be the edge pointing to the node R, and R′ be the navigational
view type corresponding to the node R defined by the Rule 1. The iterative pattern
view for the TLAG subgraph and the index on the iterative pattern view is defined as
follows:

1 The syntax used to define the navigational view type and the iterative pattern view in Rules
1 and 2 follows the one proposed by Stonebraker and Moore [10], and most of the recent
commercial database systems provide the statements for the similar features [9].
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CREATE VIEW view name OF R′ AS
ITER ATTR COL(r);

CREATE INDEX idx name ON view name(oid);

ITER ATTR COL(a) ::=
SELECT

REF(O),
c1, . . . , ck,
ITER ATTR(b1), . . . , ITER ATTR(bn)

FROM A O

ITER ATTR REF(a) ::=
A′(REF(A), c1, . . . , ck, ITER ATTR(b1), . . . , ITER ATTR(bn)) ,

where O is the alias for the objects of type A, and REF(A) or REF(O) represents the
OID of the object O of type A. If a is a collection attribute, ITER ATTR(a) is re-
placed with SETOF(ITER ATTR COL(a)); otherwise, it is replaced with ITER ATTR
REF(a). �

Figure 4 shows the iterative pattern view for the TLAG shown in Figure 3 on the as-
sumption that the edge aΩ pointing to the root node of the TLAG is marked as the
iterative pattern edge. In Figure 4(a), the navigational view types are defined for each
of four nodes in the TLAG, and the nested set type is defined for the collection attribute
has sections of navigational view type course t. Figure 4(b) shows the iterative pattern
view v1 of the root type course t defined in Figure 4(a) and the index v1 idx defined
on the attribute oid of the view v1. The SELECT statement for defining the iterative
pattern view v1 contains the nested SELECT statement to retrieve all the section t ob-
jects connected from the collection attribute has sections. We focus on creating the
type-level access pattern views in this paper, and the general management of the views
is not mentioned since it is studied in the existing literatures [1, 4].

3.2 Matching the Iterative Pattern View

In this section, we explain on finding the iterative pattern view among those in the
database that best matches the type-level access pattern detected by the navigational
application. In this paper, the problem to find the matching iterative pattern view to
be used for prefetching is defined as the graph matching problem between the TLAG
corresponding to the type-level access pattern detected by the application and the TLAG
for the iterative pattern view in the database. We need the following definition to solve
the problem:

Definition 1 . For a path P = a1..ak and the TLAG T , the path P is defined as the
reachable path in T if both of two conditions below are satisfied:
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CREATE TYPE {
oid REF Course;
has sections SETOF(section t);

} course t;

CREATE TYPE {
oid REF Section;
is taught by professor t;
has TA ta t;

} section t;

CREATE TYPE {
oid REF Professor;
p name VARCHAR(50);

} professor t;

CREATE TYPE {
oid REF TA;
ta name VARCHAR(50);

} ta t;

(a) Navigational View Types

CREATE VIEW v1 OF course t AS /* Iterative Pattern View */
SELECT

REF(C),
SETOF(

SELECT
REF(S),
professor t(REF(S.is taught by), S.is taught by.p name),
ta t(REF(S.has TA), S.has TA.ta name)

FROM C.has sections S)
FROM Cource C;

CREATE INDEX v1 idx ON v1(oid);

(b) Iterative Pattern View and the Index

Fig. 4. Iterative Pattern View for the TLAG in Figure 3

Condition (1). The type of the attribute a1 is one of the attribute types of the root node
of the TLAG T .

Condition (2). There exists a node reachable through the path a1..ak−1 from the root
node of TLAG T and the access log of the node contains the attribute
ak. �

We need the following idea to define the matching of iterative pattern views. Let PS =
aΩ..as be the type-level path of the root node of the subgraph S of a TLAG T . Among
all the possible subgraphs of TLAG T , the graphs SΩ(= T ), S1, . . . , Ss−1 rooted by
the nodes of the type-level paths aΩ , aΩ.a1, . . . , aΩ..as−1, respectively, are called the
supergraphs of S. By extending the idea of supergraph, S itself can be regarded as a
supergraph of S. The following Definition 2 defines the matching of iterative pattern
views using the ideas of reachable path and supergraph.

Definition 2 . For a subgraph S of a TLAG T and a TLAG TV for an iterative pat-
tern view V , let b1, . . . , bk be all the attributes in the access logs in S. It is defined
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that the TLAG TV matches the subgraph S, if either one of two cases below is
satisfied:

CASE (1). All the paths P1, . . . , Pk to the attributes b1, . . . , bk from the root node of S
are reachable paths in TV .

CASE (2). Among the graphs SΩ, . . . , Ss, which are the subgraphs of the TLAG T
and the supergraphs of S at the same time, there exists a graph Si(Ω ≤ i ≤
s) satisfying the CASE (1) above. That is, all the paths P i

1, . . . , P
i
k to the

attributes bi
1, . . . , b

i
k from the root node of Si are reachable paths in TV . �

By extending the idea of supergraph to regard S itself as a supergraph of S, two cases
in Definition 2 can be merged into one. Figure 5 shows the subgraph S of the TLAG T
and the TLAGs TV for the iterative pattern views matching S. In Figure 5(a), SΩ and
S1 are the supergraphs of S. Each TLAG in Figure 5(b) matches S, S1, and SΩ and
satisfies CASE (1), (2), and (2) in Definition 2, respectively.
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Procedure ViewMatchingAlgorithm
Input:

T : TLAG
S: Subgraph of T

Output:
V : Matched View

begin
(1) CandidateViews = φ;

/* Find the candidate views that match S based on Definition 2. */
(2) for each TLAG TV for an iterative pattern view V in the database begin

/* CASE (1) */
(3) isMatching = CheckMatch(S, TV );
(4) if isMatching == TRUE begin
(5) CandidateViews = CandidateViews ∪ {V };
(6) continue;
(7) end if

/* CASE (2) */
(8) for each path P ′ from the root of T to the root of S begin
(9) S′ = SuperGraph(P ′, S);
(10) isMatching = CheckMatch(S′ , TV );
(11) if isMatching == TRUE begin
(12) CandidateViews = CandidateViews ∪ {V };
(13) break;
(14) end if
(15) end for
(16) end for

/* Get the minimum cost view from the candidate views. */
(17) V = MinCost(S, CandidateViews);
(18) return V ;
end.

Fig. 6. Iterative Pattern View Matching Algorithm

Figure 6 shows the algorithm that returns an iterative pattern view V that best
matches the given subgraph S of a TLAG T based on Definitions 1 and 2. The
algorithm first finds all the iterative pattern views matching the given subgraph S in
the lines (1) ∼ (16), and then selects an iterative pattern view with the minimal cost in
the lines (17) ∼ (18). To find all the matching iterative pattern views, for each of the
TLAGs TV for the iterative pattern views in the database, the algorithm checks if CASE
(1) in Definition 2 is satisfied in the lines (3)∼ (7), and CASE (2) in the lines (8)∼ (15).
The function CheckMatch(S, TV ) in the lines (3) and (10) returns TRUE if CASE (1) in
Definition 2 is satisfied for the given subgraph S and TLAG TV , or FALSE otherwise.
The function SuperGraph(P ′, S) in the line (9) returns a supergraph of S rooted by the
node having the type-level path P ′. The function MinCost(S, CandidateViews) in the
line (17) returns an iterative pattern view with the minimal cost among those contained
in CandidateViews. Using a complicated method for computing the cost of a view in the
function could cause the overhead on the performance of the navigational application.
In this paper, we define the cost of a view as the number of disk pages occupied by the
view, and select the view with the smallest size as the minimal cost view.
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4 Performance Evaluation

In this section, we perform a series of experiments to compare the performance of the
prefetch method based on the type-level access pattern view proposed in this paper
(denoted as ViewPrefetch) and the original prefetch method proposed by Han et al.
(denoted as TypePrefetch) [7]. In Sections 4.1 and 4.2, we explain the environment and
the result of our experiments, respectively.

4.1 Experiment Environment

We performed two groups of experiments evaluating the performance of (1) the nav-
igational application on the database in Figure 1 and (2) the XML database applica-
tion. Since the performance of the navigational applications is affected by the degree
of clustering of the objects, we performed the experiments (1) and (2) on the clustered
database (denoted as ClusteredDB) and the non-clustered database (denoted as Non-
ClusteredDB) separately. The objects in the ClusteredDB are stored in the order that
they are accessed by the navigational application, and those in the NonClusteredDB are
stored in a random order.

In the experiment (1), the number of all the professors is 20,000, and the number of
those whose salaries are above $100,000 is 1,000 (5% of selectivity). All the professors
own a car, and the number of car manufacturers is 100. The XML data used in the exper-
iment (2) are the bibliography data for a publishing company. We defined a navigational
view type for each element in DTD, and mapped the asterisk (*) representing multiple
sub-elements as the collection attribute 2. In the experiment (2), the number of all the
XML objects in the XML database is 40,000, and the arbitrary 2,000 XML objects
(5% of selectivity) among them are chosen and transformed into XML documents. The
XML application starts navigation from the root objects in the database corresponding
to the root elements in DTD, and accesses the objects connected from the root objects
directly or indirectly according to the hierarchical architecture of the DTD. Then the
application generates XML documents by integrating the XML tags corresponding to
the accessed objects.

We implemented both of the prefetch methods ViewPrefetch and TypePrefetch on the
ODYSSEUS [13], an ORDBMS under development at KAIST. The hardware platforms
are Sun Ultra-2 Workstation for the client and Sun Ultra-60 Workstation for the server.
The size of object cache in the client is 8MB, and the size of page buffer in the server is
16MB. To remove the buffering effects by the Operating System, we used our own disk

manager that accesses directly the raw disks. We computed the ratios TypePrefetch
ViewPrefetch of the

number of disk I/O’s and the execution times for each of the experiments. We performed
each of the experiments five times and presented the average value as the final result.

4.2 Experiment Results

Figure 7 shows the result of experiment (1). In the figure, the Y axis represents the value
TypePrefetch
ViewPrefetch , i.e., the improvement ratio of ViewPrefetch compared with

2 The XML data and DTD are obtained from http://www.cs.wisc.edu/niagara/data.html. In our
experiment, we generated additional XML data based on the DTD.
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Fig. 7. Experiment Result of the Navigational Application
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Fig. 8. Experiment Result of the XML Application

TypePrefetch. The execution time is the wall clock time measured from the start to the
finish of the navigational applications, and contains the time for CPU operations, object
fetches, and disk accesses. In Figure 7, ViewPrefetch is improved than TypePrefetch by
up to 2.07 times for the number of disk accesses and 2.34 times for the execution time in
the ClusteredDB. ViewPrefetch is improved by up to 33.0 times and 21.4 times, respec-
tively, in the NonClusteredDB. The reason that the improvement ratios in the NonClus-
teredDB are much more significant than in the ClusteredDB is that the objects accessed
by TypePrefetch are gathered in small number of disk pages in the ClusteredDB while
those are scattered over the diverse disk pages in the NonClusteredDB.

Figure 8 shows the result of experiment (2), and the Y axis represents the ratio
TypePrefetch
ViewPrefetch as in Figure 7. In the figure, ViewPrefetch is improved than TypePrefetch

by up to 1.69 times for the number of disk accesses and 1.80 times for the execution
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time in the ClusteredDB. ViewPrefetch is improved by up to 23.0 times and 21.4 times,
respectively, in the NonClusteredDB. The reason that the improvement ratios in the
NonClusteredDB are much more significant than in the ClusteredDB is the same as in
the experiment (1). Since most of the databases of the real-world navigational appli-
cations are the NonClusteredDB, the applications can obtain significant performance
enhancement by using the prefetch technique proposed in this paper.

5 Conclusions

In this paper, we proposed a technique to enhance the performance of the prefetch
method based on the type-level access pattern proposed by Han et al. [7]. The ratio of
the performance enhancement of the prefetch method by Han et al. compared with the
context based prefetch method [2] was not as significant as the reduction ratio of the
number of object fetches. Since the performance of prefetching is determined by the
number of disk accesses in the server as well as the number of fetches, even though
the number of fetches is reduced significantly, the overall performance would not be
enhanced as much, if the number of disk accesses remains unchanged.

The major contributions of this paper are as follows. (1) For the iterative pattern, we
proposed the methods for creating type-level access pattern views based on the type-
level path access log graphs. (2) We presented the algorithm to find the type-level access
pattern view that best matches the type-level access pattern detected by the navigational
application. (3) We performed a series of experiments using the databases having the it-
erative pattern and the XML database to evaluate the overall performance enhancement
obtained by the proposed prefetch technique. The experiments were performed on the
clustered and non-clustered databases separately.

Through extensive experiments, we showed that the proposed technique reduced the
number of disk accesses by up to 33.0 times and enhanced the overall performance of
the navigational application by up to 21.4 times compared with the original prefetch
method by Han et al. Since most of the databases of the real-world navigational ap-
plications are non-clustered ones, the applications can obtain significant performance
enhancement by using the prefetch technique proposed in this paper.
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Abstract. Recently, on-demand streaming service of continuous media
(CM) becomes crucial for successful Internet businesses. To ensure qual-
ity service of online CM streams, the Sweep scheme was proposed to
provide high I/O throughput as well as hiccup-free playback. When this
scheme is applied in the system using the zoned disk, however, it may
suffer from significant bandwidth losses because of its inherent schedul-
ing inflexibility. Since disk zones in a multi-zone disk have different data
transfer rates, much slack time occurs when data requests are made to
read data blocks located in inner disk zones. Such slack time cannot
be efficiently reclaimed in Sweep. In this paper we propose an EDF-style
variant of the Sweep scheme, called the Dynamic Sweep Scheme, in order
to handle slack time that increases in the zoned disk.

1 Introduction

Recently, on-demand streaming service of continuous media (CM) such as dig-
itized videos and audios becomes a fundamental factor for successful Internet
businesses. To ensure quality service of online CM streams, a CM server is re-
quired to deliver CM data to a client’s device while meeting temporal constraint
of serviced CM streams. When a CM stream with playback rate p starts its play-
back at time s, the CM server has to read at least p× (t− s) worth of data until
time t [1]. From such temporal constraint, every CM stream issues continuous
data requests (for short, C-requests) which are given with deadlines depending on
its playback rate. By yielding feasible schedules meeting C-requests’ deadlines,
the CM server prevents undesirable interruptions of playback, called hiccups.

To provide hiccup-free playbacks in the CM server, much literature has
proposed disk scheduling algorithms suitable for the process of C-requests
[2, 3, 4, 5, 6, 7]. Among them, cycle-based approaches are popularly accepted for
the concurrent service of a variety of CM streams [4, 5, 6, 7]. In these approaches,
the disk head is scheduled based on a fixed-size period called a cycle so that ev-
ery CM stream reads its per-cycle data in each cycle and consumes them during
the very next cycle. Here, the per-cycle data is the data that should be read
during a cycle and its size is given by multiplying the playback rate with the
cycle size. Since all the serviced CM streams have the same scheduling period,
i.e., the cycle, a cyclic disk scheduler can easily provide hiccup-free schedules for
C-requests with deadlines.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 404–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The cycle-based approaches can be roughly categorized into three schemes
of Sweep, Fixed-Stretch, and Grouped Sweep Scheme [4, 5]. Among them, the
Sweep scheme outperforms others due to its high seek-time optimization. In this
scheme, all of CM streams issue C-requests at the beginning of each cycle, and
a sweep of the disk head completes the process of these issued C-requests within
the same cycle. Since a large amount of data are retrieved in a disk sweep using
the SCAN algorithm, Sweep can reduce disk bandwidth losses caused by frequent
disk seeking, thereby providing high I/O throughout for the presentation of CM
streams [3, 4, 5].

Although this scheme provides hiccup freeness as well as low seek-time over-
head, it has a problem in that slack time cannot not be utilized in efficient man-
ner. The slack time is one arising because of a time gap between the reserved
disk time and the actual time used to process a C-request. As the reserved disk
time is chosen against the worst-case disk time to prevent deadline misses, such
slack time inevitably arises in cycles. Moreover, since the zoned disk is usually
used in the modern computing system, the amount of slack time tends to in-
crease with growing differences among the data transfer rates of different disk
zones [10].

The zoned disk is a disk type in which more than one disk zone is built in a disk
plate, and the outer zones from the disk spindle have larger sizes of disk tracks
than inner ones [10]. Because of a longer track length and a constant revolution
speed of the disk plate, the outer zones have higher transfer rates, compared to
inner zones. Since the reservation of disk time is based on the worst-case data
transfer rate of the innermost zone, significant slack time occurs whenever we
process C-requests asking for data blocks in outer zones.

In this paper, we propose an EDF-style variant of the Sweep scheme, called the
Dynamic Sweep Scheme (DSS), to handle slack time that increases in the zoned
disk. To this end, we enable a CM stream to prefetch more data than its per-
cycle data by using slack time, thereby expanding its scheduling period. Because
the expanded period contributes to less bandwidth usage of CM streams, the
proposed DSS can play back a larger number of CM streams than in the Sweep
scheme. The various sizes of scheduling periods entail a complicated situation
where the numbers and deadlines of C-requests being issued in the same cycle
are not fixed, differently from the Sweep scheme. To cope with varying workloads
and deadlines of C-requests in every cycle, the DSS adopts the earliest deadline
first (EDF) algorithm for disk scheduling, and uses a new mechanism for ad-
mission control. Since our DSS also provides hiccup-freeness as well as high I/O
throughput, this scheme can be used to guarantee quality streaming service in
the multimedia system.

The rest of the paper is organized as follows. In Section 2, we give a brief
technical background for this research, including storage model and the ear-
lier Sweep scheme. Section 3 presents the proposed algorithm, and Section 4
shows that the DSS outperforms other scheme. Lastly, we conclude this paper in
Section 5.
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2 Technical Background

2.1 Track-Sized Data Clustering

A modern disk drive has a large internal cache memory and can cache a whole
data passed beneath its disk head while synchronizing with rotation of the disk
plates [8]. Such a disk drive can significantly reduce the rotational delay time
when it reads a large size of data strip that is continuously stored within a
disk track. If it reads a whole disk track of data, the time of data transfer plus
rotation delay is bounded by one revolution time [8, 9]. To fully utilize such a
characteristic, the scheme of track-sized data clustering is widely accepted to
store CM data on the disk. In this scheme, only one kind of CM data is saved in
a disk track and its disk location is continuous within the disk track. By using
this track-sized data clustering, we can provide high I/O utilization and flexible
disk management of CM data.

When CM data is managed in the track-sized cluster policy, each C-request
is enforced to request a continuous data strip stored in a single disk track. The
data strip requested by a C-request can be addressed with a location identifier
of (Offset1, Offset2, X). Here, X is id of the target disk track, and Offset1
and Offset2 are the start and end positions of requested data in track X ,
respectively. Therefore, if a CM stream has to read its data stored across n disk
tracks of X1, X2, . . . , Xn, the same number of C-requests should be issued for
each disk track. The C-requests for X1 and Xn may request part of a disk track,
while others ask for a whole of disk track each.

2.2 Revisiting the Sweep Scheme

As before mentioned, the Sweep scheme enforces CM streams to issue C-requests
at every beginning of the cycle, and processes them in that cycle. To serve the
C-requests without deadline miss, this scheme admits CM streams while disk
time to read all the per-cycle data of them is not greater than the cycle length.
For this, the notion of the worst-case scan time is used. Let WCST (η) be the
lowest upper bound of disk time taken to read η disk tracks through a disk scan.
Since a C-request always asks for data continuously located in a disk track, a
scan time for processing η C-requests is never greater than WCST (η). From
this, we can have the admission capacity K of Sweep by solving WCST (K) ≤
Lcycle < WCST (K + 1), where Lcycle is the cycle length. By admitting CM
streams so that their workloads are managed within admission capacity K, the
Sweep scheme can serve CM streams without hiccups.

To see this in detail, consider a CM stream S that has per-cycle data size of
D. Let the size of the innermost track be T|1|. Then, S can read its per-cycle
data by issuing W C-requests in each cycle, if W = �D/T|1|�. Here, we call the
integer W the workload value of S, which is disk bandwidth needed to serve
S. By managing the sum of workload values of admitted CM streams below K,
hiccup-freeness is preserved. For this, a new CM stream with workload value
W is admitted only when W +

∑n
i=1 Wi ≤ K, where Wi are workload values of

already admitted CM streams.
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Although the Sweep scheme can process Wi C-requests for Si in every cycle, it
cannot utterly eliminate the occurrence of hiccups of CM streams in some cases.
To see this, consider a CM stream S that requests 0.7T|1| size of per-cycle data
and has its workload value of size one. Suppose that the data of S is stored in the
disk tracks of X1, X2, . . . , Xη, and those tracks are all located in the innermost
zone. In this case, S is made to issue a C-request to read its first per-cycle data
that is addressed with (0, 0.7T|1|, X1). The second per-cycle data of S is located
across two disk tracks of (0.7T|1|, T|1|, X1) and (0, 0.4T|1|, X2), and thus S needs
two C-requests to read that data although its size is not greater than T|1|. Such a
problem frequently arises when we manage CM data as the track-sized segments.

Against the problem, the Sweep scheme can adopt a simple prefetch scheme
that performs read-ahead whenever fragmentation of per-cycle data across mul-
tiple tracks may cause the need for an extra issue of a C-request. The followings
are steps for this prefetch, where Track(X) denotes the size of track X .

(1) Let (Offset1, Offset2, X) be the location identifier of the data strip asked for by a
C-request.

(2) If (T rack(X) − Offset2) < (D mod T rack(X))
(3) ThenModify that identifier of (Offset1, Offset2, X) into (Offset1, T rack(X),X).

/* Prefetch is applied for the read-ahead of the data in (Offset2, T rack(X), X) */
(4) Else Use the location of (Offset1, Offset2, X) without modification. /* Prefetch

is not used */

Figure 1 illustrates an example where the prefetch scheme is applied for the
CM stream S above. In this example, read-ahead arises in cycles i, i + 1, and
i + 3, and the read-ahead data sizes are 0.3T|1|, 0.6T|1|, and 0.2T|1|, respectively.
By means of such read-ahead, S can read its per-cycle data by issuing only one
C-request in a cycle.

(0, T|1|, X1)
cycle i

⇒
(0, T|1|, X2)
cycle i + 1

⇒
(0,

T|1|
10 , X3)

cycle i + 2
⇒

(
T|1|
10 , T|1|, X3)
cycle i + 3

⇒ · · ·

Fig. 1. A prefetch example for a CM stream that has 0.7 · T|1| size of per-cycle data.

According to Ruemmler [8], a seek-time to reposition the disk head across l
cylinders, denoted by seek time(l), can be modeled as follows:

seek time(l) =
{

C1 + C2
√

l if l ≤ L,
C3 + C4 ∗ l otherwise,

where Ci is disk parameters and L is a boundary from which the seek-time
increases linearly with l.

Since seek time(l) is a convex and non-decreasing function, the overall seek
time for a disk scan is maximized when requested data are evenly distributed
over disk cylinders [9]. With track-sized clustering, we make each of C-requests
ask a data script located in a single disk track. Therefore, the upper bound of a
scan time to process η C-requests, denoted by T u(η), is given by:
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T u(η) = η ∗Revolution T ime + (η + 1)seek time(� Ncyl

η + 1
�) (1)

where Ncyl is the total number of disk cylinders.
This means that T u(η) is the worst-case time for a disk sweep to process any

set of η C-requests. Therefore, we can use T u(η) as WCST (η) that was used for
computing admission capacity K in Section 2.2.

3 The Proposed Dynamic Sweep Scheme

3.1 Motivations to This Research

A. Slack time in the zoned disk
Although the Sweep scheme provides hiccup-freeness as well as high seek-
optimization, it still suffers from a large amount of bandwidth wastes in disk
scheduling. This results from differences between disk time reserved to a CM
stream against worst-case disk operations and actually used disk time. For ex-
ample, consider a CM stream S1 that requests per-cycle data of size 0.6T|1|, where
T|1| is the track size of the innermost zone. Assume that S1’s data is stored in η
disk tracks of X1, X2, . . ., Xη, and Track(X1) = T|1|, Track(X2) = 1.2T|1|, and
Track(X3) = 1.5T|1|, respectively.

When we schedule S1 from cycle i, the data read by S1 looks like that in
Fig. 2. During the five cycles below, S1 reads two disk tracks of X1 and X2,
along with part of X3. In this schedule, the simple prefetch scheme is applied
for S1 in cycles i and i + 2, and thus S1 is able to read per-cycle data by issuing
a single C-request.

Fig. 2. The data read by a CM stream with per-cycle data of size 0.6 · T|1|.

In Fig. 2, the total size of the data read by S1 is 3T|1|, although bandwidth
reserved to S1 is enough to read five disk tracks of X1 to X5, whose total size
is equal to or larger than 5.7T|1|. This means that around 50% of bandwidth
is wasted by S1 with respect to its reserved bandwidth. Such a waste of band-
width is inevitable as long as we take the cycle-based approach that schedules
C-requests in the unit of a cycle.

To solve this problem in the cycle-based approach, we propose a new method
capable of expanding the scheduling period by using slack time in the zoned disk.
Image a situation where S1 reads more data using the slack time in Fig. 2, and
becomes to cache around 2T|1| size of data in memory until the end of cycle i+3.
The amount of this data is enough to fulfill S1’s data requirement during three
cycles, and thus we could expand the scheduling period of S1 from one cycle to
three cycles at that point. Simultaneously, image that S1 is made to issue two
C-requests per three cycles to read 1.8T|1| size of data, i.e., its new per-period
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data. This change of the pattern of C-request issuing reduces the bandwidth
requirement of S1. By assigning the saved bandwidth that can issue a C-request
per three cycles to other CM streams, our proposed method can serve a larger
number of concurrent CM streams than in Sweep.

To enable period expansion, we introduce the concept of the DRP (Data
Request Pattern) for each CM stream served in our system. The DRP consists
of two integers k and p that indicate the number of issued C-requests and the
length of the scheduling period of a CM stream, respectively. When a CM stream
has a DRP 〈k, p〉, it can issue k C-requests with a scheduling period of p cycles.

We also call the fraction of k/p the workload rate that is proportional to the
amount of bandwidth usage of the corresponding CM stream. This workload rate
is used for admission control in our method. When a CM stream is newly admit-
ted with workload value W , its DRP becomes to be 〈W, 1〉, and its workload value
and the workload rate remain the same until it expands the scheduling period.

B. The mechanism of period expansion
To expand a scheduling period without hiccups, we need to read more data in
advance for the CM stream trying to make period expansion. If a CM stream
S with DRP 〈W, 1〉 intends to expand its DRP into 〈k, p〉, (p > 1), then S has
to cache data that is enough for p cycles’ consumption. That is, if S wants to
expand its scheduling period at time t, then S needs cached data of size d× p at
least, where d is the per-cycle data of S. After such a period expansion, S will
issue k C-requests at t, which must be processed by t + p× Lcycle. Since S has
cached data capable of being consumed during p cycles, it does not experience
hiccups if the newly issued C-requests are processed within p cycles.

Fig. 3. Algorithm for the aggressive prefetch scheme for a CM stream

To efficiently utilize slack time, we use the aggressive prefetch scheme of Fig. 3.
The algorithm in Fig. 3 is for a CM stream S with DRP 〈k, p〉, and this algorithm
is executed at the beginning points of the scheduling period of S. In Fig. 3, the
disk tracks to be read for S are denoted by Y1, Y2, Y3, . . . , Yη, and Track(Yi) is
the size of Yi. k′ (k′ < k) is the number of C-requests to be issued for S and
those C-requests should be processed in the time of p×Lcycle. Each CM stream
may have cached data of size 2 × p × d in Fig. 3, and thus the total memory
requirement is around M =

∑n
j=1(2× dj × pj), where dj × pj is per-period data

size of Si.
To show how to expand a scheduling period, we use the example of Fig. 2

again. As before, we assume that the per-cycle data of S1 is 0.6T|1|, and its
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Cycle i Cycle i+1 Cycle i+2

Time
Ei-1

Requested data = (0, T|1|, X1)
Data consumption = 0

Size of cached data = 1 T|1|
Total size of read data = T|1|

Requested data = (0,1.2T|1|,X2)
Data consumption= 0.6 T|1|

Ei Ei+1 Ei+2

Requested data = None
Data consumption = 0.6 T|1|

Cycle i+3

Requested data = (0,1.5T|1|,X3)
Data consumption = 0.6T|1|

Ei+3

Size of cached data = 1.6 T|1|
Total size of read data = 2.2T|1|

Size of cached data = 1.0 T|1|
Total size of read data = 2.2T|1|

Size of cached data = 1.9 T|1|
Total size of read data = 3.7 T|1|

Fig. 4. Disk scheduling for S1 with per-cycle data of size 0.6T|1|

current DRP is 〈1, 1〉. When S1 is scheduled according to the aggressive prefetch
scheme, we have the schedule of Fig. 4. Here, we assume that S1 issues its first
C-request at point Ei−1.

The sizes of cached data and the total sizes of read data are depicted for
the points of Ej (i ≤ j ≤ i + 3). Since the scheduling period of S1 is a cycle
in size, the aggressive prefetch algorithm is executed at every Ej . Look at the
situation of Ei+1. At this point, S1 has cached data of size 1.6T|1| and thus it
could expand its scheduling period to the length of two cycles since the cached
data can be consumed for two cycles. Such period expansion requires that S1
issue two C-requests with a period of two cycles. In this case, we have no saving
of disk bandwidth from this period expansion. Therefore, we do not execute
period expansion at this point. Instead, S1 does not issue a new C-requests at
Ei+1 by conforming to the aggressive prefetch algorithm of Fig. 3. Due to data
consumption in cycle i+2, the size of S1’ cached data decreases by 0.6T|1|, which
is the size of its per-cycle data. Next, by issuing a C-request reading X3 in cycle
i + 3, S1 becomes to cache 1.9T|1| worth of data at Ei+3. Then, we can expand
the scheduling period of S1 into a length of three cycles so that a new DRP 〈2, 3〉
is given to S1. This period expansion saves bandwidth capable of reading a disk
track per three cycles, and the new DRP still meets data requirement of S1 since
2T|1|

3 > 0.6T|1|. From the point of Ei+3, S1 is scheduled with DRP 〈2, 3〉.

3.2 System Components

Fig. 5 shows the proposed CM server that consists of a stream management
component (SMC) and a disk scheduling component (DSC). The former is re-
sponsible for admission control, transferring retrieved data to clients’ devices,
issuing of C-requests, and expansions of scheduling periods. By creating a ses-
sion context for each serviced CM stream, the SMC keeps track of the playback
status of that. The latter component is to process C-requests issued by the SMC
so as to load the requested data into proper memory space. For this, the DSC
repetitively selects a proper number of C-requests from the C-request queue and
then processes them through a disk scan.

We assume that these two components are implemented as different processes
and they run in parallel. While the DSC is busy in doing a disk scan, the SMC
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C-requets queue

Selection of up to K C-requests
using the EDF algorithim

Execution of a disk scan that
processes the selected C-requests

(location,  slot ID, deadline) ....

data pumpping

Disk Scheduling Component

Stream Management Component

Memory Slot Pool

free alloc (2)

alloc (1)

alloc (id)

alloc (1)

alloc (id)

alloc (id)

free

Module for Issuing
C-Requests

Data Transfer Module 

Pool of Session Contexts

stream 1

Admission Control

Module for
Period Expansions

Internet

alloc (id)

alloc (id)

...

..

Fig. 5. The architecture of the proposed CM server

can do its tasks. For cooperation between these components, the IPC (Inter-
Process Communication) mechanism are used for implementation. C-requests
are put into the request queue lying between the SMC and DSC.

A data object representing a C-request includes a location identifier of the
requested data strip, the given deadline, and the id of the used memory slot. The
slot id indicates the memory address where the read disk track is loaded. Before
issuing a C-request, the SMC allocates a free memory slot from the memory slot
pool. The memory slot pool comprises of the fixed-size memory slots and the
slot size is equal to that of a disk track in the outermost disk zone.

3.3 Scheduling Based on the DRP

A. EDF-style disk scheduling
A DRP specifies how many and how often C-requests are issued for a corre-
sponding CM stream. More specifically, the use of a DRP 〈k, p〉 requires that k
C-requests be issued with a period of p cycles. Assume that streams S1, S2, and
S3 having DRPs of 〈1, 1〉, 〈3, 2〉, and 〈5, 3〉, respectively, issue their C-requests
at Ei−1, which is the end of cycle i− 1. The C-requests from these streams are
as in Fig. 6(a), where Cn(j) for Si represents the nth C-request of Si whose
deadline is Ej . Since every C-request should be served prior to the beginning of
its next scheduling period, a C-request issued at Ei with a scheduling period of
p cycles is given with its deadline of Ei+p. As known from Fig. 6(a), the total
number of issued C-requests and their deadlines are not fixed. This is different
from the Sweep scheme in which the number of issued C-requests is not changed
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S1:{C1(i)}

S3:{C1(i+2),C2(i+2),      ,C5(i+2) 

S2:{C1(i+1),C2(i+1),C3(i+1)} Ei-1

Ei

Ei+1

Ei+2

Ei+3

(a) Periodic issuing of C-requests 

S1:{C1(i)}

S3:{C1(i+2),C2(i+2), ...,C5(i+2)}
S2:{C1(i+1),C2(i+1),C3(i+1)}

Cycles

Time

S1: {C2(i+1)}

S1:{C3(i+2)}

S2:{C7(i+5),C8(i+5),C9(i+5)}

S3:{C6(i+5),C7(i+5),     , C10(i+5) 

S1:{C4(i+3)}

S1:{C5(i+4)}

S2:{C4(i+3),C5(i+3),C6(i+3)}

Enqueued C-requests Selected C-requests

at Ei-1

at Ei

at Ei+1

at Ei+2

at Ei+3

...

...

S1:{C2(i+1)}

S3:{C2(i+2),C3(i+2), ...,C5(i+2)}
S2:{}

S1:{C3(i+2)}

S3:{}
S2:{C4(i+3),C5(i+3),C6(i+3)}

S1:{C4(i+3)}

S3:{C6(i+5),C7(i+5), ...,C10(i+5)}
S2:{}

S1:{C5(i+4)}

S3:{C10(i+5)}
S2:{C7(i+5),C8(i+5),C9(i+5)}

S1:{C1(i)}

S3:{C1(i+2)}
S2:{C1(i+1),C2(i+1),C3(i+1)}

S1:{C1(i+1)}

S3:{C2(i+2),C3(i+2), ...,C5(i+2)}
S2:{}

S1:{C1(i)}

S3:{}
S2:{C4(i+3),C5(i+3),C6(i+3)}

S1:{C4(i+3)}

S3:{C6(i+5),C7(i+5), ...,C9(i+5)}
S2:{}

S1:{C5(i+4)}

S3:{C10(i+5)}
S2:{C7(i+5),C8(i+5),C9(i+5)}

(b) A feasible schedule for (a) 

Fig. 6. Periodic issues of C-requests and process of them

for the same set of CM streams and the C-requests issued in a cycle have the
same deadline, i.e., the end of that cycle.

In turn we describe our disk scheduling algorithm that is used to process
C-requests. Suppose that we have the admission capacity of K = 5, and thus
process up to five C-requests in each cycle. By applying the EDF algorithm,
we can get a feasible disk scheduling as in Fig. 6(b). In Fig. 6(b), the enqueued
C-requests represent the ones waiting for process at each beginning of the cycles.
For example, at Ei−1, there exist nine enqueued C-requests, while five ones are
waiting for the service at Ei.

The selected C-requests at Ej(i−1 ≤ j ≤ i+3) represent C-requests that are
selected to be processed during Ej to Ej+1. This selection of C-requests is based
on deadline urgency, that is, we use the EDF algorithm to give scheduling order
to the enqueued C-requests. By making the number of selected C-requests equal
to or less than admission capacity, i.e., five, the selected C-requests are always
processed prior to the next cycle.

Let Wj(i) be the number of enqueued C-requests having deadline Ei at the
point of Ej . Then, situations when we miss deadlines of any C-requests are clas-
sified into two cases; (i) Ej(j + 1) > K, or (ii) Ej(i) > 0 for any i ≤ j. From
this observation, we can have the following criterion for the hiccup-freeness in
our CM server. We call this a hiccup-prevention condition.

Criteria 1. For every j > 0, the followings should be satisfied:
Wj(j + 1) ≤ K and Wj(j − l) = Wj(j − l + 1) = . . . = Wj(j − 1) = Wj(j) = 0,
where l is the largest one of pi.

B. Admission control
To make the hiccup-prevention condition hold all the time, a mechanism for
admission control is required to manage workloads of C-requests below admission
capacity. Recall that the workload rate is computed as k/p in the case of a DRP
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〈k, p〉, and the value of a workload rate determines the amount of reserved disk
bandwidth. Since the workloads of CM streams depend on their workload rates,
our proposed mechanism for admission control is executed to make sure that∑

wi ≤ K, where wi is the workload rate of Si.
We call this condition the admission condition, and it is a sufficient condition

for preserving the hiccup-prevention condition. Based on the admission condi-
tion, we admit new CM streams. When a playback request for a CM object is
issued and its workload value is W , we check if W +

∑
wi ≤ K. If this is true,

the CM stream is admitted; otherwise, it will be made to wait for the time any
serviced CM stream ends its playback.

The admission condition is driven from the schedulability feature of the origi-
nal EDF algorithm that schedules periodic tasks using CPU time. In this sched-
uler, a period CPU task is specified by the needed CPU time, the length of
its period, and the first release time. When a periodic CPU task τ has C and
P as required CPU time and period, respectively, the CPU utilization of τ is
computed by C/P . While the sum of CPU utilization of scheduled tasks is not
greater than 1, the original EDF scheduler can schedule all the tasks without
deadline miss. If we would map a CM stream onto such a CPU periodic task, a
CM stream with 〈k, p〉 can be considered a periodic CPU task with the needed
CPU time of k/K and a period of p seconds. From this mapping, the CPU utiliza-
tion of admitted CM streams is computed as 1

K ·
∑

ki/pi, for DRPs 〈ki, pi〉. By
maintaining 1

K ·
∑

ki/pi ≤ 1, i.e.,
∑

ki/pi ≤ K, we can preserve hiccup-freeness
of C-requests. The formal proof can be found in [5].

The admission condition above should be held while we are doing period ex-
pansion. Let wj

i be the workload rate of Si after Si has expanded its scheduling
period j times. In this notation, w0

i represents the workload value that is calcu-
lated for Si at admission time. To satisfy the admission condition all the time,
we always perform the period expansion such that w0

i > w1
i > w2

i > . . . > wj
i

during j times of period expansions. In other words, we allow period expansion
only when it can contribute to reduction of bandwidth usage by diminishing the
value of corresponding workload rate. Because of such period expansion, we can
always preserve our admission condition while DRPs are being expanded.

3.4 Analysis of Memory Usage

In this section, we estimate the size of main memory that is required to build
the memory slot pool of our CM server. The memory slot pool is comprised of
the same sized slots and its size is equal to the track size of the outermost zone.
Since a CM steam with DRP 〈k, p〉 may cache up to 2k disk tracks, its maximum
requirement for main memory corresponds to 2k · T|Z|, where T|Z| is the track
size in the outermost zone. From this, the maximum memory requirements of
{S1, S2, . . . , Sη}, denoted by MUB, is given as follows:

MUB = UpperBound(2× T|Z| ×
η∑

i=1

ki) = 2× T|Z|×UpperBound(
η∑

i=1

ki), (2)

where 〈ki, pi〉 is the DRP of Si.
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Because of our admission control, the sum of workload rates of the admitted
CM streams is kept below K. From this, we have the inequality below:

η∑
i=1

(ki/pi) ≤ K. (3)

To prevent shortage of memory slots, we give an upper bound on the size of
scheduling periods of CM streams. By setting this upper bound to MaxP , we
have the following equality:

pi ≤ MaxP (4)

From (3) and (4), we can drive the inequality below.

η∑
i=1

ki ≤
η∑

i=1

(ki ·
MaxP

pi
) = MaxP ·

η∑
i=1

(ki/pi) ≤MaxP ×K. (5)

From (2) and (5), we can get MUB of (2) as follows:

MUB = 2× T|Z| × UpperBound(
n∑

i=1

ki) ≤ 2× T|Z| ×MaxP ×K. (6)

From (6), we have a theoretical upper bound of MUB that is equal to 2×T|Z|×
MaxP ×K. In reality, the actual memory size for servicing CM streams is much
less such an upper bound. This comes from two observations. First, since many
CM streams share disk bandwidth and memory slots are released, the actual
memory requirement for cached data is much less than MUB. Here, a released
memory slot means that it no longer contains cached data to be consumed, since
overall data have been consumed by an involved CM stream. This release of
memory slots contributes to the reduction of memory requirement in the system.
Second, since the size of memory slot is for the outermost zone, the number of
used memory slots is usually less than 2k for DRP 〈k, p〉. This is because a
smaller number of memory slots can save the cached data of size 2×d×p, where
d× p is the per-period data size.

3.5 Algorithms for the Proposed DSS

A. Algorithm for the Stream Management Component (SMC)
Fig. 7 shows the algorithm that is performed by the SMC during the interval of
Ei−1 to Ei. During that time, the SMC does its jobs such as admission control,
period expansion, and issuing of C-requests. The new C-requests are managed
in the queue of Qreq, and information regarding the C-requests of Qreq is sent
to the DSC so that it can produce feasible disk schedules for those C-requests.

The step for admission control is described in lines 3 to 14. A user request for
playback is extracted and its workload value is computed based on its per-cycle
data size. With the workload value, the SMC checks if it is admissible. If there is
available bandwidth to admit this request, the SMC creates a data object that rep-
resents a corresponding scheduling context as in line 9. Such a stream context is
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Fig. 7. Algorithm for the session management component which is performed during
the interval of [Ei−1, Ei]

expressed by Obj, and the set of active stream contexts is denoted by SCM . To
initialize Obj, its deadline and DRP is set to Ei and 〈W, 1〉, respectively, as in
line 11. If the user request is not admissible for bandwidth shortage, the SMC quits
the actions of admission control and gets into a blocking state until the point of
Ei − ε. Here, ε is a time for executing the remaining lines of 15 to 22. Since the
rest lines can be done in a quick time, the size of ε lies below 1 msec, by using
a Pentium-III class processor. In step 16, the SMC selects every session context
with Obj.deadline = Ei to expand scheduling periods and issue new C-requests.
In line 18 the deadline of the session context is modified by considering its schedul-
ing period, that is, Obj.deadline is set to Ei+Obj.p. Lastly, the C-requests in Qreq

are sent towards the DSM in line 22. Then the DSM updates its C-request queue.
The DSM selects at mostK C-requests out of the EDF C-request queue and serves
them in a disk scan that ends before Ei+1. While that disk scan is in process, the
algorithm of Fig. 7 will be executed again at Ei.

B. Algorithm for period expansion
We here describe the detailed algorithm for the step in lines 15 to 21 of Fig. 7. For
any CM stream with DRP 〈k, p〉 to expand its scheduling period, it is required
to satisfy two conditions: (i) its cached data is large enough to be consumed
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Fig. 8. The detailed algorithm for period expansion and issue of C-requests

during p′ cycles (p′ > p), and (ii) if its expanded DRP is denoted by 〈k′, p′〉,
then the new workload rate, i.e., k′/p′, must be less than the previous one of
k/p. If stream Obj has such integers of k′ and p′, satisfying the conditions above,
it will be classified into Sexpand; otherwise, it will be put into Snormal in line 6
of Fig. 8. The step for building Sexpand and Snormal is given in lines 2 to 7.

Issuing of C-requests for Snormal is done in lines 9 to 14. The number of
C-requests to be issued is determined based on the aggressive prefetch scheme
in line 10. To issue C-requests, we need to allocate the same number of memory
slots, on which requested disk tracks are loaded by the DSC. The number of
memory slots available for Snormal and Sexpand is computed as MemUsed in
line 8, where Nfree denotes the number of free memory slots in the memory
pool. Among Nfree, 2 · �K − W� memory slots are not used for Snormal and
Sexpand. Instead, they are reserved to admit new CM streams during the next
cycles. By reserving those memory slots, we can avoid memory shortage at the
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admission time. Recall that we assign 2W memory slots to a CM stream that is
admitted with workload value W .

In lines 15 to 23, we execute the step of period expansion for Sexpand. While
expanding scheduling periods, shortage of memory slots may not enable period
expansions of any CM streams in Sexpand. In the face of memory slot shortage, we
expand the DRPs of Obj with the largest value of (Obj.k·p′−k′·Obj.p

Obj.p·p′ )/(p′−Obj.p),

favorably over others with smaller ones. These two values, (Obj.k·p′−k′·Obj.p
Obj.p·p′ ) and

(p′−Obj.p), represent the reduced quantity in workload rate and the additional
requirement for memory slots in the presence of period expansion, respectively.

4 Performance Evaluations

The simulator runs with a realistic disk model based on IBM SCSI disk drive,
whose physical characteristics are given in Table 1. The disk drive has 17 disk
zones in a disk plate. Its outermost zone has 750 sectors per disk track, while
the innermost has around half of them. The size of a memory slot is adjusted to
that of zone 1 of the table.

Table 1. Disk parameters: IBM Ultrastar 73LZX

Parameters Base Values
Sector size 512 bytes

No. of cylinders 20,847
No. of disk zones 17
Sectors in zone 1 750
Sectors in zone 17 390

seek time(d) 1.85 + 0.07
√

d ms, If d < 383
5.47 + 2.5 × 10−4d ms, Otherwise

In our simulations, the users’ requests for playback is assumed to arrive by
following the Poisson process, and both of playback rates and playback durations
arise with the uniform distributions. In the case of playback rates, we assume
that they are randomly distributed in the range of [250 Kbps, 700 Kbps]. This
range covers most of requirements of video clips and music that are now being
serviced in the Internet, except for very high-quality video streams. To be more
realistic, our simulator will handle an environment where rather lower playback
rates are required. Since the Web sites usually service CM streams with lower
playback rates, we also use the range of [250 Kbps, 500 Kbps]. To differentiate
between these two ranges of playback rates, we denote the wider one by Pwide

and the lower one by Plow, respectively. The playback durations are distributed
in the range of [3 minutes, 5 minutes] and the cycle length is fixed as one second.

Fig. 9 shows the supported workloads with respect to the varying sizes of used
main memory. SWEEP and DSS(l) represent the Sweep scheme and the DSS
with MaxP = l, respectively. With the increasing memory size, the maximum
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Fig. 9. Maximum workloads with respect to varying memory sizes
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Fig. 10. Average response time with memory of 300 Mbytes

workloads supported by SWEEP and DSS(x) are calculated. In Fig. 9(a), the
maximum workload supported by DSS(3) is around the arrival rate of 87 per
minute, which is three times as large as that of SWEEP. In the case of DSS(11),
it supports up to the arrival rate of 115 per minute with memory size of 450
Mbytes. In Fig. 9(b), the supported maximum workloads are given for Pwide. As
known from Fig. 9(b), the DSS for Pwide requires more memory and supports a
lower arrival rate than in Plow.

Fig. 10 depicts the average response time to the varying arrival rates of play-
back requests. The response is the interval between the arrival time of a playback
request and its start time for playback. In SWEEP and DSS, the start time for
playback coincides with the end point of the cycle in which the first per-cycle
data is read for a corresponding CM stream. The simulation in Fig. 10 was
performed with memory of 300 Mbytes. In the modern computing system, this
memory size is a small one for the service of CM streams. The average response
time is around 1.5 seconds before the simulator is overloaded. Because the max-
imum workload guaranteed by SWEEP is very low, the average response time
grows very fast after the arrival rate exceeds 25 per minute.
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5 Conclusion

In this paper we proposed a noble disk scheduling scheme able to reclaim slack
time that usually arises because of differences between reserved disk time and
actually used one. Since slack times from such time gaps increase in the zoned
disk, it is important to efficiently use slack time for a good I/O throughput. For
this, the proposed scheme takes an approach that allows serviced CM streams
to expand their scheduling periods from a cycle to a longer one. To schedule
concurrent CM streams with different scheduling periods, the proposed scheme
runs based on a more flexible scheduling algorithm and a new mechanism for
admission control. The proposed scheme guarantees a better performance than
in the Sweep scheme, while meeting the deadlines of issued C-requests.
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Abstract. Database outsourcing is an important emerging trend which
involves data owners delegating their data management needs to an ex-
ternal service provider. Since a service provider is almost never fully
trusted, security and privacy of outsourced data are important concerns.
A core security requirement is the integrity and authenticity of out-
sourced databases. Whenever someone queries a hosted database, the
results must be demonstrably authentic (with respect to the actual data
owner) to ensure that the data has not been tampered with. Further-
more, the results must carry a proof of completeness which will allow
the querier to verify that the server has not omitted any valid tuples
that match the query predicate. Notable prior work ([4][9][15]) focused
on various types of Authenticated Data Structures. Another prior ap-
proach involved the use of specialized digital signature schemes. In this
paper, we extend the state-of-the-art to provide both authenticity and
completeness guarantees of query replies. Our work analyzes the new ap-
proach for various base query types and compares it with Authenticated
Data Structures. We also point out some possible security flaws in the
approach suggested in the recent work of [15].

1 Introduction

Database outsourcing [7] is a prominent example of the general commercial
trend of outsourcing non-core competencies. In the Outsourced Database (ODB)
Model, a third-party database service provider offers adequate software, hard-
ware and network resources to host its clients’ databases as well as mechanisms
to efficiently create, update and access outsourced data.

The ODB model poses numerous research challenges which influence overall
performance, usability and scalability. One of the biggest challenges is the se-
curity of hosted data. A client stores its data (which is usually a critical asset)
at an external, and potentially untrusted, database service provider. It is thus
important to secure outsourced data from potential attacks not only by mali-
cious outsiders but also from the service provider itself. The two pillars of data
security are secrecy and integrity. The central problem in the context of secrecy
[5, 8] is how to allow a client to efficiently query its own data – which is hosted
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by a third-party service provider – while revealing to the provider neither the
actual query nor the data over which the query is executed. In contrast, this
paper focuses on the integrity of query replies for queries posed for outsourced
databases. We want to ensure that query results returned by the server are:
(i) correct - the tuples in the result set have not been tampered with, and (ii)
complete - no valid tuples have been omitted from the result set.

Other relevant prior work [4][15][6] examined integrity issues in outsourced
databases and suggested solutions using Authenticated Data Structures. Another
recent paper [12] investigated the notion of signature aggregation which enables
bandwidth- and computation-efficient integrity verification of query replies. How-
ever, signature aggregation mechanism ensures only correctness of query replies.
In this paper, we extend [12] by proposing new techniques to provide complete-
ness guarantees. We provide a detailed study of the applicability of our tech-
niques for various base type queries. We also compare our approach with prior
results which use Authenticated Data Structures.

Scope. We assume the relational data model, i.e., data owners and service
providers manage data using a typical RDBMS and that queries are formu-
lated using SQL. We want to provide efficient mechanisms to ensure correctness
and completeness (to be defined shortly) of range selection queries, projections,
joins and set operation queries. We specifically do not address queries that
involve data aggregation (exemplified by arithmetic operations, such as SUM
or AVERAGE) which usually return a single value as the answer to the posed
query.

Organization. The rest of this paper is organized as follows: Section 2 moti-
vates our work. Section 3 discusses Authenticated Data Structures approach,
followed by Section 4 which describes signature aggregation. This section also
proposes the extensions to achieve completeness guarantees. Section 5 describes
our approach by considering various query types. Section 6 presents the analy-
sis. We outline some directions for future work and conclude in sections 7 and 8
respectively.

2 Motivation

This paper addresses the integrity of outsourced data in the ODB model. (We
note that data secrecy in ODB is orthogonal to integrity.) Specifically, we focus
on integrity-critical databases which are outsourced to untrusted servers and are
accessed over insecure public networks. We assume that servers can be malicious
and/or incompetent and, thus, might be processing and storing hosted data
incorrectly. Furthermore, since it is difficult, in general, to guarantee absolute
security of large on-line systems, we assume that the server can be compromised,
e.g., by a worm or virus attack. Therefore, we need efficient mechanisms to
reduce the level of trust placed in the server and provide integrity guarantees to
the clients. From a technical perspective, candidate solutions must include the
following properties:
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Correctness. Whenever a client queries outsourced data, it expects a set of
tuples satisfying all query predicates. It also needs assurance that the results
have been originated by the actual data owner and have not been tampered
with either by an outside attacker or by the server itself. Note that the reply size
(in terms of tuples) can vary between zero and n, where n is the total number of
tuples in the database. Thus, a query reply can potentially be any one of the 2n

tuple subsets. Correctness enables secure and efficient authentication of tuples
contained in all possible query replies.

Completeness. Whenever a client queries outsourced data, it expects to obtain
all tuples satisfying query predicates. Completeness implies that the querier can
verify that the server returned all such tuples. Note that, a server, which is
either malicious or lazy, might not execute the query over the entire database
and return no – or only partial – results.

3 Prior Work

We now summarize the general approach of using authenticated data structures
to provide authentication of query replies and discuss two related bodies of work
that use this approach, in the contexts of “Third-Party Publication” and “Edge
Computing”, respectively.

The basis for these two bodies of work is the seminal work by Merkle [11].
This work introduced a data structure called a “Merkle Hash Tree” (MHT)
which is intended to authenticate a set of n values x1, x2, ..., xn. MHT is con-
structed as a binary tree where the leaves correspond to the hashes of the n
values. Thus, a leaf associated with element xi contains h(xi), where h() is a
cryptographic one-way hash function, such as SHA [13]. The values of non-leaf
nodes correspond to the hash of the concatenation of its two children (main-
taining their order). A node with children v1 and v2 is assigned h(v1||v2). The
tree root is signed using a public key signature scheme (e.g., RSA or DSA).
An MHT can be used to securely and efficiently prove that an element (leaf)
is in the set with the help of a verification object (VO). A VO is a collec-
tion of log(n) internal tree nodes which allow the verifier to re-compute the
root of the MHT the signature of which can be verified. Although an MHT
can be very large, one only needs the signed root and a short (logarithmic in
the number of leaves) VO in order to verify that a particular leaf element is
part of the tree. For example, the VO for leaf node 5 in Figure 1 contains
5, h1andh34 as well as the root signature. The verifier computes: h′

2 = h(5),
h′

12 = h(h1||h2) and h′
1234 = h(h′

12||h34) and then checks the root by verifies its
signature.

3.1 Authentic Third Party Data Publication

In [4] and several related publications, Devanbu, et al. focus on Third-Party
Publication. We refer to this approach as the Authenticated Data Structures
(or AuthDS) approach. In this setting, like in ODB, data owners publish their
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h1 h2 h4h3

h12=h(h1 ||h2) h34=h(h3 ||h4)

root =h1234=h(h12 ||h34)

3 5 96

Fig. 1. MHT Example: shaded nodes represent the verification object for leaf value 5

content at untrusted third-party service providers. Notable contributions of this
work are two-fold: (1) It demonstrates how to construct efficient and compact
verification objects if a pre-computed authenticated data structure for that type
of query exists. The terms efficient and compact generally mean logarithmic com-
plexity in terms of the database size. (2) Instead of using standard binary tree
MHTs as authenticated dictionaries, balanced and I/O efficient data structures,
such as B-trees, are used.

Discussion. One limitation of the AuthDS approach is the need to pre-compute
and store a potentially large number of authenticated data structures, in
order to efficiently answer queries. Without pre-computed trees, the AuthDS
approach cannot provide small verification objects. More importantly, without
pre-computed trees for each sort-order, it becomes impossible to prove complete-
ness of query replies. This results in significant setup costs for the owner and
high storage overhead for the server. Also, storing multiple trees for the same
relation increases the cost of updates.

3.2 Authenticating Query Results in Edge Computing

In a recent paper, Pang, et al. [15] focused on authentication in edge computing
applications. In it, a trusted central server outsources parts of the database to
proxy servers situated at the edge of the network. The data structure used here
is a VB-tree, which is basically a modified MHT built using a B-Tree where –
instead of signing only the root – all leaf nodes as well as all internal nodes are
also signed. (We refer to this work as the VB-tree approach). As a result, ver-
ification objects are independent of the database size and hence, “potentially”
much smaller. In comparison, the most efficient VO in the AuthDS approach [4]
is logarithmic in the size of the entire database.

Discussion. The VB-tree approach does not address the completeness problem.
Also, since a single VB-tree is used, there is no easy way to extend this scheme to
provide completeness guarantees. The proposed scheme replaces a conventional
cryptographic hash function used to compute the digests of individual values in
a MHT with a computationally more expensive, homomorphic function which
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essentially computes a discrete exponentiation in a finite field. This function is
insecure and can lead to forgery attacks as shown below:

The digest is computed as h(x) = gx mod q. The modulus q is chosen
as q = 2r for some random r. This choice is insecure because computing
discrete logs in multiplicative, algebraic groups (thus reversing the func-
tion h) is known to be hard if q is a large prime of at least 512 bits. If q,
however, is a composite integer, then the problem of computing discrete
logarithms is polynomially reducible to the combination of integer fac-
torization of q and computing discrete logarithms in Z∗

p for each prime
factor p of q. Now in the current context, since q is chosen as 2r, h()
can be reversed efficiently which can lead to forgery attacks. We refer
the interested readers to [10] for details on solving discrete-logarithm
problems.

Also, the experimental analysis of [15] assumes that the size of a signed digest
is 16 bytes. It demonstrates that, with this overhead, the overall approach is
efficient in terms of storage and VO size. However, a 16-byte signed digest is
insecure, since there is no cryptographically strong digital signature scheme
that produces signatures of only 16 bytes in size. For example, RSA, which is
the most well-known signature scheme, has a signature size of at least 128 bytes
(1024 bits). 1 If we repeat the calculations with a digest size of 128 bytes and
recompute storage overheads, the VB-tree approach becomes quite expensive in
terms of both computation and storage.

Furthermore, VB-tree approach can be very expensive in terms of VO veri-
fication time for queriers, especially, for projection queries. This is because the
verification object includes signed digests for all the attributes that are filtered
out as well as all the tuples that do not belong to the query result set but
do fall inside the enveloping tree 2 for a given query. In order to authenticate
the query results, the scheme requires the querier to verify the signatures of
all these filtered attributes and tuples that are not part of the actual result
set. Clearly, receiving (recall that a signature is at least 128 bytes long) and
verifying (a single RSA signature verification takes 0.16 msec on P3-977 MHz
machine) all these signatures can be computationally very expensive for the
querier.

Finally, VB-tree approach builds a single B-tree for each table (which is com-
puted on the sorted order of the primary key of that table). If the query predicate
requires searching on a non-key attribute, then the result set is no longer a set of
contiguous tuples. This translates to an increase in the height of the enveloping
tree and can result in extremely high bandwidth and computation overheads.
1 A DSA signature is at least 40 bytes (320 bits) long, but verification of a DSA

signature is more expensive computationally (It takes 0.16 msec to verify a RSA
signature whereas it takes 8.52 msec to verify a DSA signature on a P3-977 MHz
machine).

2 The enveloping tree is the smallest subtree within the VB-tree that envelops all the
result tuples of the query
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Recall that the VO verification involves verifying the signatures of all the tuples
that are not part of the actual result set but do fall inside the enveloping tree.

4 Digital Signature Aggregation and Chaining (DSAC)

The main disadvantage of AuthDS is the relatively high overhead associated
with building, storing and updating complex index structures. We now propose
an alternative approach that is efficient for most base-level queries, without
requiring any complex data structures. We refer to our approach as the Digital
Signature Aggregation and Chaining - DSAC.

A natural and näıve alternative to AuthDS is to use digital signatures at the
granularity of individual tuples. The data owner signs each tuple before storing
it at the server’s site. The server stores the tuple signature along with each
tuple. In response to a query, the server simply sends the matching tuples and
their signatures to prove integrity and authenticity of the result. Although this
näıve solution provides a proof of correctness, it has some drawbacks: first and
foremost, the resultant VO (which contains a set of signatures corresponding to
each tuple in the result set) is neither bandwidth- nor computation-efficient for
the querier. Further, there is no easy way to provide a proof of completeness. In
the remainder of this section, we develop modifications and enhancements that
address the drawbacks of the näıve strategy described above.

Remark. If the outsourced data is static or archival in nature, correctness and
completeness can be provided easily, as described in Appendix A. However, in
this paper, we focus on the more general (and challenging) case of dynamic
databases.

4.1 Correctness

The ideal VO for providing correctness would involve minimal querier compu-
tation overhead and constant (in terms of integrity information) querier band-
width overhead. The work in [12] proposed two signature schemes that enable
such ideal (or near-ideal) solutions. These signature schemes allow us to aggre-
gate multiple individual signatures into one unified signature, verifying which
is equivalent to verifying ALL individual component signatures. The size of the
aggregated signature equals that of a single plain digital signature (which is
constant), irrespective of either the database size or the query reply size. In the
ODB model, when the server receives a query, it executes the query to obtain the
tuples matching the query predicate as well as their corresponding signatures.
The server combines these individual signatures into a single aggregated signa-
ture and returns the result set comprised of the tuples along with the aggregated
signature. Upon receipt, the querier simply verifies the latter.

The first signature scheme proposed in [12] is the Condensed-RSA signature
scheme. Condensed-RSA allows aggregation of a single signer’s signatures which
is possible due to the fact that RSA is multiplicatively homomorphic. The second
is the Aggregated-BGLS scheme due to Boneh, et al. [3] which allows signatures
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produced by multiple signers to be aggregated into a single quantity. Appendix B
discusses these schemes briefly.

4.2 Completeness

Both signature schemes in [12] offer efficient proofs of correctness, however, they
provide no completeness guarantees. In this section, we propose novel extensions
to achieve query completeness. To achieve this goal, we propose secure linking of
tuple-level signatures to form a so-called signature chain.3 In order to construct
the signature chains, we modify the tuple signature generation algorithm in the
following way:

Definition 1. Signature of a tuple r is computed as:

Sign(r) = h(h(r)||h(IPR1(r))|| . . . h(IPRl(r)))SK

where h() is a cryptographic hash function such as SHA, || denotes concatena-
tion, IPRi denotes the immediate predecessor tuple along dimension i, l is the
number of searchable dimensions of that relation and SK is the private signing
key of the data owner.

The immediate predecessors of a tuple are computed as follows: (1) Sort the
tuples in increasing order along each searchable dimension (i.e., according to the
attribute value for each searchable attribute); (2) The immediate predecessor of
a given tuple along a given dimension is a tuple with the highest value for that
attribute that is less than the value of the given tuple (highest lower bound)
along that attribute.4 Thus, each tuple has as many immediate predecessors as
there are searchable attributes, i.e., l.

To provide completeness, a tuple signature is computed by including the
hashes of all immediate predecessor tuples, thereby explicitly chaining (link-
ing) the signatures. We illustrate this with an example in figure 2. Suppose
that there are three searchable attributes. First, the tuples are sorted along
each dimension. Consider tuple R5. According to the figure, the immediate pre-
decessors of R5 along dimensions A1, A2 and A3 are: R6, R2 and R7, respec-
tively. Now, compute the signature of R5 as:5 Sign(R5) = h(h(R5)||h(R6)||h(R2)
||h(R7))SK .

With signatures chained in the above fashion, the server answers a range query
by releasing all matching tuples, the two boundary tuples which are just beyond
the query range (to provide a proof of completeness) as well as the aggregated
signature corresponding to the result set. The signature chain proves to the
querier that the server has indeed returned all tuples in the query range. For
range (or exact value) queries that result in no matches, the server composes
3 Not to be confused with hash chains.
4 If the attribute values of two tuples are the same, it is necessary to use an additional

mechanism (for example: use the tuple id) to break the tie.
5 The signature scheme here can be either condensed-RSA or aggregated-BGLS.

Therefore, we do not specify the details of the SIGN algorithm.
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− +R6 R5 R7 A1

− +R2 R5 R6 A2

− +R7 R5 R12 A3

Fig. 2. Signature Chain

an Empty Proof by returning only the two boundary tuples that subsume the
non-existent value or range.

5 Operational Details

We now describe the overall procedure for computing authentic replies.

5.1 Selection

A selection query σC(R) is denoted as follows: σC(R) = {t|t ∈ R and C(t)}
where R is a relation, C is a condition of the form Aiθc, Ai is an attribute of R,
c is a constant value and θ ∈ {=, �=, <,≤, >,≥}.

Given a selection query, the server computes a result set which is a set of
contiguous (along that dimension) tuples. (It could also be an empty set.) Below,
we outline our technique for composing a VO for selection queries.

+Ra-1 Ra Rb+1 Ai− Rb

TsTn Tn

Ru Rv

The server composes the query reply as follows:

1. computes the tuple set Ts consisting of all the tuples that match the query
posed. Ts = {Ra, . . . , Rb}

2. computes the set Tn consisting of immediate predecessor and successor nodes
of the first and last nodes respectively along the search dimension (i.e., the
boundary tuples). Tn = {Ra−1, Rb+1}. These values are required to prove
completeness. We note that the server needs to release only the relevant
attributes’ value in plain text and simply send the hashes of the remaining
attributes. We assume that the relation R has r attributes {A1, ..., Ar} and
C is a condition on attribute Ai. In this case, the server only needs to reveal
Ra−1.Ai and Rb+1.Ai in plaintext and send the hashes h(Aj) for the other
(r− 1) attributes of Ra−1 and Rj+1. Thus it is possible to prevent exposure
of data (i.e., pertaining to the tuples that are beyond the query result set)
to potentially unauthorized queriers.
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3. obtains the corresponding signatures {Sign(Ra), . . . , Sign(Rb+1)}6
4. aggregates individual signatures: σ=Aggregate(Sign(Ra), . . . , Sign(Rb+1))
5. for each tuple in Ts and tuple Rb+1, collects the hashes of immediate pre-

decessor tuples along all other searchable dimensions {A1, . . . , Ai−1, Ai+1,
. . . , Al}, where l is the number of searchable attributes. Then for each tuple
Ri, server computes 2 values: H1(Ri) = h(IPR1(Ri))|| . . . h(IPRi−1(Ri))) and
H2(Ri) = h(IPRi+1(Ri))|| . . . h(IPRl(Ri))) Therefore, Tm = {H1(Ra), H2(Ra),
. . . , H1(Rb+1), H2(Rb+1)} Specifically, the size of Tm is ((l− 1) ∗ (b + 1− a) ∗
|hash|) where |hash| is the hash value of each of these tuples and is usually
160 bits long. Thus the result set contains {Ts, Tn, Tm, σ}.

5.2 Join

A basic join operation R ��C S involves two relations R and S where C is a condi-
tion of the form AiθAj , Ai and Aj are attributes of relation R and S respectively
and θ ∈ {=, �=, <,≤, >,≥}. Both AuthDS and VB-tree approaches assume that
all join queries are known a priori and require additional pre-computed B-trees
to ensure authentication.

In the discussion that follows, we focus mainly on the equi-join operation.
Given a query of the type R ��Ar=As S, proving correctness is relatively simple
using our approach. The server executes the join query and computes the list
of tuples (t ∈ R and s ∈ S) that match the equality predicate and obtains the
corresponding signatures of t and s from R and S respectively. Server combines
all individual signatures of tuples in the result set to compute the aggregated
signature of the entire result set. Note that the aggregated signature is sufficient
to prove correctness.

However, proving completeness of a join query is not straight-forward. The
querier needs to be assured that all tuples matching the equality predicate from
R and S are present in the result set Ts. One way, albeit quite inefficient,
to accomplish this is to pick the smaller relation (say S) and for each tuple
s (or each contiguous set of tuples) in the set S − Ts, show an empty proof
that s (more precisely s.As) does not exist in R. Note that if the server needs
to show empty proofs for m tuples, server, instead of releasing m individual
signatures, aggregates the m signatures into a single condensed/aggregated sig-
nature. Such a proof is clearly linear in the size of S. It remains an interesting
open problem to modify the signature chaining mechanism to yield efficient com-
pleteness proofs which are linear in the size of the result set for arbitrary Join
queries.

Using DSAC approach, it is possible to construct more efficient proofs of
completeness if the join queries are known a priori. Then, while computing the
signature of a tuple that is part of a join query result set, the hash of its imme-
diate predecessor which is also in result set of the same join query is included
in the tuple signature. This creates an explicit signature chain corresponding

6 Note that it is necessary to include Sign(Rb+1) to check for completeness. However,
Sign(Ra−1) is not required since hash of Ra−1 is included in Sign(Ra).
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to the join query. Now, when a pre-computed A �� B query is executed, the
server simply sends an aggregated signature that represents the signature chain
of A �� B. Note that, unlike the other two approaches, pre-computing a join
query in our approach does not entail additional storage overhead.

5.3 Set Operations

Union: Ts = U ∪ V . Server aggregate individual signatures for all tuples of
U and all tuples of V to obtain a single signature for U ∪ V ; if U and V are
intermediate results of a query evaluation or subsets of some other relations
R and S, collects boundary tuples for U and V ; finally constructs the VO as
described above for selection queries.

Intersection: Ts = U ∩ V . To prove completeness and correctness, the server
needs to convince the querier that each tuple in Ts is present in both U and V .
Our approach is similar to that of AuthDS: the server picks the smaller of the
two sets (say U) and for each element in U − Ts the server sends back empty
proof that that element (tuple) does not exist in V . This proof is linear in the
size of U . It shows that the result is correct and every element in (U − (U ∩ V ))
is not in V ; thus, the result is complete.

5.4 Projections

πL(R) is the projection of relation R onto the list L where L is typically a list
of (some of the) attributes of R. πL(R) = {< t.Aj , ..., t.Ak > |t ∈ R} where
Ai’s are attributes of relation R. In order to support projections, a tuple hash
is computed as: h(t) = h(h(t.A1)||h(t.A2)|| . . . ||t.h(Ak)). In other words, instead
of hashing the entire tuple, we hash each attribute, concatenate the resulting
hashes and hash them once again. Then, we compute a tuple signature of tuple
as described in section 4.2. This way, the server needs to send only the hashes
(instead of actual plaintext values) for each filtered attribute. Unfortunately,
this basic solution is not very efficient in terms of bandwidth since it requires
us to send individual hashes for each filtered attribute (It is necessary to send
individual values to allow the querier to recompute the tuple signature since
the tuple hash is computed by concatenating these individual attribute hash
values.).

One way to lower bandwidth overhead involves the owner generating
attribute-level, instead of tuple-level, signatures. Although this increases the
owner’s load, projection queries become more efficient. We give a brief description
of this variant below. However, the full details are beyond the scope of this paper.
The owner generates the hash of attribute Ai of tuple t as h(t.Ai) = h(t.ID||t.Ai)
where t.ID denotes the unique identifier of tuple t. Moreover, the owner gener-
ates individual signature chains along each searchable attribute as before. Since
the signatures are generated at the attribute level, in response to a projection
query, only the requested attribute values along with the relevant signatures
chains will be returned by the server.
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Owner Server

stmt = Insert tuple r into table T stmt−−−−−→
Tins = {(Rik , Rik+1),

∀i ∈ {1, l}, Th, σ}
Tins←−−−−− Rik .Ai < r.Ai < Rik+1 .Ai

Verify σ,
Tsig = Sign(r), Sign(Rik+1)∀i ∈ {1, l}

Tsig−−−−−→
Update T with r and Tsig

Fig. 3. Protocol to insert a new tuple into a table

5.5 Database Updates

Insertion. To insert a tuple r into table T (refer to figure 3), the owner sends
the new tuple to the server. The server calculates the actual position of insertion
along all l chains (where l is the number of searchable attributes) by examining
the values of the individual attributes. The server computes the set of pairs of
adjacent tuples {(Rik

, Rik+1)} for inserting the new tuple, collects the signatures
of all successor nodes Rik+1 , aggregates these individual signatures to obtain
σ and sends back these values (Tins) to the data owner. Note that since the
server returns pairs of adjacent tuples {(Rik

, Rik+1)} along all l dimensions along
with the signatures of all Rik+1 nodes, the owner can verify for herself that the
position for inserting the new tuple is indeed the correct one. Th contains the
additional hashes required to recompute the signatures of the successor nodes7.
Upon successful verification of σ, the owner computes the tuple signature for
r by including the immediate predecessors’ (i.e., all Rik

) hash values and also
updates the signature chains for the successor nodes (i.e., all Rik+1) by including
r’s hash value (along with the other appropriate hashes from Th). The owner
then sends back all l + 1 new signatures Tsig.
Deletion. Performing a delete is similar to insert operation and is a multi-round
protocol. Due to space restrictions, we only present a high-level description of
the protocol. Owner specifies the tuple(s) to be deleted. Server isolates parts
of all the l signature chains that get affected by this operation and sends back
sets of tuples that surround the tuple to be deleted back to the owner. Once
again, since the signatures are all linked the owner can verify that the server
indeed has returned the relevant parts of all the signature chains. The owner
recomputes the signatures of the successor node of the node to be deleted, along
each dimension, by replacing the hash of the node to be deleted with the hash
of its predecessor and returns the l new signatures back to the server.
7 Note that each of the successor node Rik+1 has l “immediate predecessor nodes”.

When the predecessor along one dimension changes due to the new insertion, it
becomes necessary to recompute the signatures of each of Rik+1 . In order to do this,
the hashes corresponding to the other l − 1 dimensions need to be sent back to the
owner.
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6 Analysis

In this section, we analyze costs and overhead factors associated with DSAC and
then compare its performance with AuthDS and VB-tree approaches. We begin
by summarizing the notation used in this section.

n Total number of tuples in the relation
s Number of tuples in the result set
t Total number of attributes in the relation
l Total number of searchable attributes; 1 ≤ l ≤ t

|sign| Size of a digital signature: 128 bytes for RSA,
64 bytes for BGLS

|hash| Size of a hash. Default = 20 bytes

We first illustrate the bandwidth and computation advantages of DSAC over
the näıve approach of sending and verifying individual tuple signatures. In our
experiments, tuples are signed with the RSA signature scheme using a 1024-bit
public modulus. The experiments were conducted on a P3-977MHz Linux PC.
We used the popular OpenSSL library[14] to implement all cryptographic func-
tions. Figure 4(a) compares the time (in msec) for query verification for varying
size of the result set. We can see that signature aggregation greatly reduces the
computational overhead required to verify the integrity of the result set.

Figure 4(b) contrasts measured bandwidth overhead for the näıve approach
with that in DSAC. Recall that the näıve approach does not provide complete-
ness guarantees. In DSAC, since the signatures are chained, we need to send
additional hashes. Specifically, when the search predicate involves a particular
attribute Ai, for each tuple in the result set, we need to send additional hashes
corresponding to the immediate predecessor tuples along the remaining (l − 1)
searchable attributes. We show the overhead for varying sizes of the result set
(in records), for l = 5. It is easy to see that although DSAC incurs additional
overhead to provide completeness, it still is much more bandwidth efficient than
the näıve approach.

Storage Costs. In AuthDS scheme, to obtain an efficient VO on the order of
O(log|n|) in size and, more importantly, to prove completeness of a range query,
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a separate B-tree for each search order is required. Therefore, for l searchable
attributes, a total of l separate B-trees need to be pre-computed and stored at
the server. Furthermore, to support other, more advanced queries, such as joins,
the scheme requires separate data structures for each possible query. Storing
these trees can result in enormous storage overhead. Also, storing multiple trees
for the same relation increases the cost and complexity of the update operations
since each update operation results in recomputing the tree hashes and the root
signatures for all the trees and potentially some tree re-balancing operations.

In VB-tree scheme, each attribute value of a tuple is signed by the owner and
each tuple is also signed in its entirety. Finally, a single VB-tree is constructed per
table where individual nodes of the tree are also signed. This incurs a substantial
storage overhead of O(n ∗ t ∗ |sign|+ t ∗ |sign|) in addition to the cost of storing
the VB tree itself. Thus, VB-tree is significantly more expensive than DSAC
in terms of storage. Furthermore, as with AuthDS approach, VB-tree requires
separate pre-computed data structures in order to support Join queries.

In comparison, DSAC incurs fixed storage overhead of one signature per tuple
irrespective of the number of searchable attributes or the number of queries to
be supported.

VO Size. In AuthDS, the VO size for a selection/projection query is:V Osize =
|s| ×

∑k
i |hash| + (2 log |n| − 1) × |hash| + |sign| + 2(|tuple|) where {Ai . . . Ak} are

the filtered attributes of each tuple. 2(|tuple|) corresponds to 2 boundary tuples
which are released to prove completeness and |sign| corresponds to the size
of the signature of the root. Note that |s| ×

∑k
i |hash| measures the hashes

corresponding to filtered attributes and (2 log |n|−1)×|hash|measures additional
hashes that must be sent to re-compute the root of the B-tree.

In VB-tree, the VO size for a selection/projection query is: V Osize = |s| ×∑k
i |sign| + (2 log |s| − 1) × |sign| where log |s| is the height of the enveloping

tree and {Ai . . . Ak} are the filtered attributes of each tuple. Note that this VO
cost assumes that the search is being done on the primary key. In this case,
a set of contiguous tuples is returned and the additional overhead is O(log|s|)
signed digests. However, if the search is on a non-primary key attribute, then
the enveloping tree can become quite large and signed digests corresponding to
all tuples that are not part of the result set need to be returned.

For the proposed DSAC approach, the VO size is expressed as: V Osize =
|sign| + |s| × (

∑k
i |hash| +

∑l−1
1 |hash|) + 2(|tuple|). We send back a condensed/

aggregated signature to verify the correctness and completeness of the result
set. Figure 5 shows the VO size overheads for the AuthDS, VB-tree and DSAC
approaches. As can be seen from the figure, VB-tree approach incurs very high
bandwidth overheads. DSAC approach is as efficient as the AuthDS approach
while requiring the storage of a single signature per record.

Our scheme incurs an overhead of (|s| ×
∑l−1

1 |hash|) for guaranteeing com-
pleteness. This is because we need to include the hashes of the immediate pre-
decessor tuples along every searchable attribute while computing the signature
of a tuple. It is possible to reduce this overhead by trading storage efficiency to
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gain bandwidth efficiency by using multiple signature chains. Another way to
reduce this overhead would be to generate attribute level signatures as outlined
in the prior section. We note that it is possible to reduce the VO size while
maintaining a single signature chain by utilizing secure hashing techniques de-
scribed in [1][2]. These incremental hashing techniques compute the hash of a
message by breaking the message into smaller blocks and combining the hashes
of individual blocks by using a “compression function”. We would like to men-
tion that this family of hash functions may be adapted for use in our scheme in
order to send back a single “compressed” hash for each tuple. Furthermore, the
same technique can also be used to reduce the bandwidth overhead associated
with Projection queries. The detailed description of this technique is out of the
scope of the current work.

Query Verification Costs. Query verification in both AuthDS and DSAC ap-
proaches involve computing simple hashes and combining them and verifying a
single signature to verify the correctness and completeness of the result set. In com-
parison, VB-tree involves performing a number of signature verifications
(since the scheme returns “signed” digests). Since signature verification is very ex-
pensive as compared to hashing, this scheme is computationally more expensive.

In summary, as compared to the VB-tree approach, the proposed DSAC
scheme is clearly more efficient in terms of computation, storage, bandwidth
and also provides a richer set of features. When compared to AuthDS, DSAC
is more efficient in terms of storage and is similar in efficiency for VO size and
verification costs. Both AuthDS and DSAC handle same set of queries and both
require expensive signature recomputations for tuple inserts and deletes. How-
ever, as tuples are inserted and deleted over time, AuthDS involves additional
intensive operations, such as re-balancing (one or more) b-trees in addition to
re-calculating signatures for all roots.

7 Future Directions

Another desired property of ODB integrity is to ensure freshness of query replies.
Freshness means the assurance that the query reply was generated with respect
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to the most recent snapshot of the database. One possible mechanism to provide
freshness involves using a single Merkle Hash Tree – referred to as an FTree –
for the entire relation. The root of the FTree is signed by the data owner and
is assumed to be published and/or sent to all the queriers. Querier can verify
freshness by verifying the owner’s signature. The signature of the root is refreshed
periodically (by the owner) in accordance with a system-wide freshness policy,
thus ensuring that the data is fairly recent. As part of our future work, we plan
to study this problem in depth. We also plan to conduct a detailed study of the
applicability of our approach to other more advanced query types.

8 Conclusions

This work explored the problem of authenticity and integrity of query replies
in outsourced databases. In particular, we developed a new approach (DSAC)
based of signature aggregation and chaining which achieves authentication of
query replies. The main contributions of this work are the proposed signature
chaining mechanism which provides evidence of completeness of query result set
and the analysis which sheds light on the applicability of our scheme for various
query types in the relational model. We also compared our approach to the
state-of-the-art in authenticated publishing.
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A Static Data

If the outsourced data is static or archival in nature, e.g., a census database,
proofs of completeness can be provided quite easily as follows:

(1)Sort all tuples in increasing order along each searchable dimension, i.e.,
according to the attribute value for each searchable attribute. (2) Compute a
signature of each tuple by signing the “Running Hash” of all the tuples in the
chain from the starting node to the current tuple as described below.

Assume that there is only one searchable dimension. (This solution is appli-
cable for multi-dimensional queries as well.) The owner sorts tuples in ascending
order along this dimension to obtain: {R1, R2, . . . , Rn}. Owner then includes
two boundary values: (−∞, +∞) in the table and computes the signatures of
R1 through Rn as: Sign(Ri) = h(Ri||h(Ri−1|| . . . ||h(−∞) . . .))SK . At the end,
it computes the signature of +∞. The tuples and their signatures are stored at
the server as before. Now, in order to prove both completeness and correctness
of a range {Ri, Rj}, the server simply releases tuples {Ri, Rj}, running hash of
Ri−1, and Sign(Rj). Since the signatures are computed on running hashes, it
can be easily seen that the reply set provides a concise proof of correctness and
completeness. Note that, we do not require any signature aggregation in this
scenario.

B Signature Aggregation

B.1 Condensed-RSA

The RSA [16] signature scheme is multiplicatively homomorphic which makes it
suitable for combining multiple signatures generated by a single signer into one
condensed signature. We use the term condensed in the context of a single signer
and aggregated in the context of multiple signers. Clearly, former is a special
case of the latter. A valid condensed signature signifies to the verifier that each
individual signature contained in the condensed signature is valid, i.e., generated
by the purported signer. Aggregation of single-signer RSA signatures can be
performed incrementally by anyone in possession of individual RSA signatures.
By incrementally, we mean that the signatures can be combined in any order
and the aggregation need not be carried out in a single operation. In standard
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RSA signature scheme, a party has a public key pk = (n, e) and a secret key
sk = (n, d). A standard RSA signature on message m is computed as: σ = h(m)d

(mod n) where h() denotes a cryptographically strong hash function (such as,
SHA-1). Verifying a signature involves checking that σe ≡ h(m) mod n.

Condensed-RSA Signature Scheme. Given t different messages {m1, ..., mt}
and their corresponding signatures {σ1, ..., σt} generated by the same signer, a
Condensed-RSA signature is computed as the product of all t individual signa-
tures: σ1,t =

∏t
i=1 σi (mod n) The resulting aggregated (or condensed) signature

σ1,t is of the same size as a single standard RSA signature. Verifying an aggre-
gated signature requires the verifier to multiply the hashes of all t messages and
checking that: (σ1,t)

e ≡
∏t

i=1 h(mi) (mod n).

B.2 BGLS

Boneh, et al. in [3] construct an interesting aggregated signature scheme that
allows aggregation of signatures generated by multiple signers on different mes-
sages into one short signature based on elliptic curves and bilinear mappings.
This scheme (BGLS) operates in a Gap Diffie-Hellman group (GDH). Refer to
[3] for a detailed discussion on the signature scheme and its proof of security.
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Abstract. XQuery becomes a standard of the XML query language. Just like in
SQL, XQuery allows nested expressions. To optimize XQuery processing, a lot
of research has been done on normalization, i.e., transforming nested expressions
to equivalent unnested ones. Previous normalization rules are classified into two
categories - source-level and algebra-level - depending on whether a construct
is specified by using a query language or an algebraic expression. In implemen-
tation point of view, we contend that the source-level rule is preferable to the
algebra-level rule because algebras used for normalization are hard to be directly
exploited in a typical DBMS. However, a complete set of source-level rules is
yet to be developed. In this paper, we propose source-level rules for normaliz-
ing XQuery expressions and present an implementation mechanism. We show
that our rules are correct and complete according to the nesting types classified
by Kim. Our mechanism is easily implementable since it adapts the well-known
Query Graph Model (QGM) representation. We have successfully implemented
this mechanism into our XML DBMS named Odysseus/XML.

1 Introduction

Recently, XML has emerged as a standard for representing, storing, and exchanging
data on the Internet. Various query languages for XML data, such as XQL [9], XML-
QL [1], XPath [13], and XQuery [14], have been proposed accordingly. Among them,
XPath and XQuery, both proposed by World Wide Web Consortium (W3C), are the
most widely used ones.

XPath supports a path expression that designates a specific element or attribute in
XML data. XQuery encompasses XPath and supports a FLWR expression that is similar
to a select-from-where expression in SQL. A FLWR expression is composed of
the for, let, where, and return clauses. Each clause in a FLWR expression can
include another FLWR expression, thus allowing nested expressions [14].
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Processing queries that contain nested expressions tends to be time-consuming since
nested expressions can be repeatedly executed. Thus, a lot of research effort has been
devoted to normalization, i.e., transforming nested expressions to equivalent unnested
ones. In his seminal paper, Kim [5] opened the area of unnesting nested queries in
the relational context. With the advent of the XQuery language, several normalization
rules [2] [6] [7] have been reported also in the XML context.

Previous normalization rules are classified into two categories – source-level and
algebra-level – depending on whether a construct is specified by using a query lan-
guage or an algebraic expression. Examples of the former include the ones proposed by
Kim [5] and Manolescu et al. [6], and those of the latter the ones proposed by Fegaras
et al. [3] and May et al. [7]. We note that the algebras used for the latter – the monoid
calculus [3] and the NAL-Algebra [7] – are very complex since nested expressions are
represented in an algebraic form. The strengths and weaknesses of the two categories
are as follows. The source-level rule is intuitive, but is rather error-prone (e.g., the fa-
mous count bug [4]). In contrast, the algebra-level rule is not intuitive due to those
complex algebras, but is less error-prone [7].

In implementation point of view, we contend that the source-level rule is preferable
to the algebra-level rule. The reason is twofold. First, those algebras used for normal-
ization are hard to be directly exploited in a typical DBMS since they are quite dif-
ferent from well-known relational algebra. Second, algebra optimization is typically
based on heuristics (e.g., selection as early as possible), and thus, does not guaran-
tee optimality [12]. Nevertheless, to implement normalization of XQuery using the
source-level rule, a complete set of source-level rules is yet to be developed. Source-
level rules proposed earlier are not quite complete. For example, the normalization
rules proposed by Manolescu et al. [6] cannot handle nested expressions in the where
clause.

In this paper, we propose source-level rules for normalizing XQuery expressions
and present an implementation mechanism. The main advantages of our approach are
summarized as follows. First, our rules are complete according to the nesting types clas-
sified by Kim [5], and their correctness is proven. That is, we support all of the nesting
types: Type-A, Type-N, Type-J, Type-JA, and Type-D. Especially, supporting Type-D is
a unique capability of our rules. Second, our mechanism is easily implementable since
it adapts the well-known Query Graph Model (QGM) [8] representation. We present
detailed algorithms for normalization in Section 5. This mechanism has been success-
fully implemented into our XML DBMS named Odysseus/XML 1, showing validity of
our approach.

The rest of this paper is organized as follows. Section 2 introduces the XQuery lan-
guage. Section 3 summarizes prior work on normalization rules for XQuery. Section 4
proposes our normalization rules and proves their correctness. Section 5 presents our
implementation mechanism. Finally, Section 6 concludes this paper.

2 Preliminaries

In this section, we briefly review the XQuery [14] language and present a few exam-
ple queries. XQuery is an XML query language that is being standardized by W3C.
The basic unit of XQuery is an expression. We introduce the FLWR expression and
comparison expression [14].

1 Odysseus/XML is part of the Odysseus DBMS family [11] that has been under development
at KAIST since 1990.
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– A FLWR expression consists of the for, let, where, and return clauses. The
for, where, and return clauses correspond to the from, where, and select
clauses in SQL, respectively. The let clause allows us to substitute an expression
with a variable.

– A comparison expression compares the results of two expressions (i.e., E1 op E2)
and returns true or false. E1 and E2 produce either a single value or a sequence
of values. In contrast to SQL, XQuery allows us to compare two sequences. Given
two sequences E1 and E2, E1 op E2 is true if there exists at least one pair (x, y)
such that x op y is true where x ∈ E1 and y ∈ E2.

Now, we present a few example queries to facilitate understanding of XQuery.
Figure 1 shows three XML documents used throughout this paper. Departments.xml
represents the information of departments in a company; Projects.xml that of projects
being carried out by departments; WorksOn.xml that of employees involved in projects.

<Departments>
<Dept>

<DNO> D2 </DNO>
<DName> Research </DName>
<DLoc> Bellaire </DLoc>
<DLoc> Houston </DLoc>
<Emp>

<SSN> 123456789 </SSN>
<EName> John </EName>

</Emp>
<Emp>

<SSN> 333445555 </SSN>
<EName> Franklin </EName>

</Emp>
</Dept>

</Departments>

<Projects>
<Proj>

<PNO> P1 </PNO>
<PName> Newbenefits </PName>
<PLoc> Houston </PLoc>
<DNO> D2 </DNO>

</Proj>
<Proj>

<PNO> P2 </PNO>
<PName> Reorganization </PName>
<PLoc> Bellaire </PLoc>
<DNO> D2 </DNO>

</Proj>
</Projects>

<WorksOnList>
<WorksOn>

<SSN> 123456789 </SSN>
<PNO> P1 </PNO>
<Hours> 32.5 </Hours>

</WorksOn>
<WorksOn>

<SSN> 333445555 </SSN>
<PNO> P2 </PNO>
<Hours> 40.0 </Hours>

</WorksOn>
</WorksOnList>

Departments.xml Projects.xml WorksOnList.xml

<Departments>
<Dept>

<DNO> D2 </DNO>
<DName> Research </DName>
<DLoc> Bellaire </DLoc>
<DLoc> Houston </DLoc>
<Emp>

<SSN> 123456789 </SSN>
<EName> John </EName>

</Emp>
<Emp>

<SSN> 333445555 </SSN>
<EName> Franklin </EName>

</Emp>
</Dept>

</Departments>

<Projects>
<Proj>

<PNO> P1 </PNO>
<PName> Newbenefits </PName>
<PLoc> Houston </PLoc>
<DNO> D2 </DNO>

</Proj>
<Proj>

<PNO> P2 </PNO>
<PName> Reorganization </PName>
<PLoc> Bellaire </PLoc>
<DNO> D2 </DNO>

</Proj>
</Projects>

<WorksOnList>
<WorksOn>

<SSN> 123456789 </SSN>
<PNO> P1 </PNO>
<Hours> 32.5 </Hours>

</WorksOn>
<WorksOn>

<SSN> 333445555 </SSN>
<PNO> P2 </PNO>
<Hours> 40.0 </Hours>

</WorksOn>
</WorksOnList>

Departments.xml Projects.xml WorksOnList.xml

Fig. 1. Examples of XML documents

Query 1 is a path expression, which searches for employees named “John.” Here, a
bracket represents a predicate. Query 2 is a FLWR expression, which finds the location
of the “Research” department. In Query 2, the for clause binds each Dept element to
the variable x; the where clause checks whether x/DName is equal to “Research;” the
return clause outputs x/DLocs that satisfy the condition in the where clause.

QUERY 1: Search for employees named “John.”
document(“Departments.xml”)/Departments/Dept/Emp[EName=“John”]

QUERY 2: Find the location of the “Research” department.
for $x in document(“Departments.xml”)/Departments/Dept 

where $x/DName = “Research”
return $x/DLoc

We note that XQuery allows nested expressions [14]. That is, each clause in a FLWR
expression can include another FLWR expression. A surrounding FLWR expression is
called an outer FLWR expression, and a nested one an inner FLWR expression. Query 3
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is an example query that contains a nested expression. In Query 3, the inner FLWR
expression returns the DNO’s of the departments having at least one project, and the
outer FLWR expression the names of those departments.

QUERY 3: Find the names of the departments that have at least one project.
for $x in document(“Departments.xml”)/Departments/Dept 

where $x/DNO = (for $y in document(“Projects.xml”)/Projects/Proj 
return $y/DNO) 

return $x/DName

3 Related Work

In this section, we explain prior work on normalization rules for nested XQuery expres-
sions. These rules transform nested XQuery expressions to equivalent unnested ones.
As stated before, normalization rules are classified into the source-level rule and the
algebra-level rule. The former is specified by using a query language, and the latter by
using an algebraic expression.

The Source-Level Rules: Manolescu et al. [6] have proposed source-level normaliza-
tion rules for XQuery. Their normalization aims at facilitating the translation of XQuery
into SQL. We explain some notations used in the reference [6]. For each rule, $x and $y
are variables, and En is an expression. En($x) means that the variable $x appears inside
the expression En.

Rule 1 unnests nested expressions in the for clause. It first merges the for clauses
of the outer and inner FLWR expressions, and then, the where clauses of those two
FLWR expressions using the and operator. Next, it replaces the variable $y, to which
the inner FLWR expression is bound, with the expression E4($x, $z) in the return
clause of the inner FLWR expression.

for $x in E1,
$y in (for $z in E2($x)

where E3($x, $z)
return E4($x, $z))

where E5($x, $y)
return E6($x, $y)

for $x in E1,
$z in E2($x)

where E3($x, $z)
and E5($x, E4($x, $z))

return E6($x, E4($x, $z))

for $x in E1,
$y in (for $z in E2($x)

where E3($x, $z)
return E4($x, $z))

where E5($x, $y)
return E6($x, $y)

for $x in E1,
$z in E2($x)

where E3($x, $z)
and E5($x, E4($x, $z))

return E6($x, E4($x, $z))

RULE 1[6]: Unnesting nested expressions in the for clause

Rule 2 unnests nested expressions in the return clause. It first merges the for
clauses of the outer and inner FLWR expressions, and then, the where clauses of those
two FLWR expressions using the and operator. Next, it replaces the return clause of
the outer FLWR expression with that of the inner FLWR expression.

for $x in E1
where E2($x)
return (for $y in E3($x) 

where E4($x, $y)
return E5($x, $y))

for $x in E1,
$y in E3($x)

where E2($x)
and E4($x, $y)

return E5($x, $y)

for $x in E1
where E2($x)
return (for $y in E3($x) 

where E4($x, $y)
return E5($x, $y))

for $x in E1,
$y in E3($x)

where E2($x)
and E4($x, $y)

return E5($x, $y)

RULE 2[6]: Unnesting nested expressions in the return clause



A Practitioner’s Approach to Normalizing XQuery Expressions 441

This work is the first attempt to normalize XQuery expressions. However, the rules
are not complete because nested expressions in the where clause and in an aggregation
function are not considered.

The Algebra-Level Rules: May et al. [7] have proposed algebra-level normalization
rules for XQuery. These rules are based on the NAL-Algebra proposed by the same au-
thors. This approach first translates an XQuery expression into an algebraic expression.
Of course, this algebraic expression contains nested expressions. Then, normalization
rules shown in Figure 2 are applied so as to produce an algebraic expression without
nested expressions. These rules can handle Type-A, Type-N, Type-J, and Type-JA, but
cannot handle Type-D.

χg:f(σA1θA2 (e2))(e1) = e1Γg;A1θA2;fe2

χg:f(σA1=A2 (e2))(e1) = ΠA2
(e1 =��

g:f(ε)
A1=A2

(Γg;=A2;f (e2)))
χg:f(σA1θA2 (e2))(e1) = ΠA1:A2(Γg;θA2;f (e2)) if e1 = ΠD

A1:A2(ΠA2(e2))

χg:f(σA1εa2 (e2))(e1) = ΠA2
(e1 =��

g:f(ε)
A1=A2

Γg;=A2;f (μD
a2(e2)))

χg:f(σA1εa2 (e2))(e1) = ΠA1:A2(Γg;=A2;f (μD
a2(e2))) if e1 = ΠD

A1:A2(ΠA2(μa2(e2)))
σ∃x∈(Πx′(σA1=A2 (e2)))p(e1) = e1 �A1=A2∧p′ e2

σ∀x∈(Πx′(σA1=A2 (e2)))p(e1) = e1 �A1=A2∧¬p′ e2

Fig. 2. Unnesting equivalences [7]

As shown by Figure 2, their algebra is quite different from the well-known relational
algebra. In addition, May et al. do not propose a method of re-translating a normalized
algebraic expression into a normalized XQuery expression. Thus, these rules are hard
to be directly exploited in a typical DBMS.

4 Normalization Rules for XQuery Expressions

In this section, we propose our source-level normalization rules. Section 4.1 classifies
nesting types of XQuery expressions. Section 4.2 shows completeness of our normal-
ization rules. Section 4.3 proposes normalization rules for each nesting type.

4.1 Classification of Nesting Types

We classify nesting types in XQuery using the classification done by Kim [5] for SQL:
Type-A, Type-N, Type-J, Type-JA, and Type-D. These nesting types are classified de-
pending on the existence of correlation and aggregation in the same manner as in SQL.
We define correlation and aggregation in Definitions 1 and 2.

DEFINITION 1: Correlation exists if a variable in the for clause of an outer FLWR
expression appears in the where clause of an inner FLWR expression.

DEFINITION 2: Aggregation exists if an inner FLWR expression is used as an argument
of the count, avg, max, min, or sum functions.

Based on the definitions above, all of the nesting types except Type-D are easily de-
scribed as shown by Table 1.
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Table 1. Descriptions of Type-A, Type-N, Type-J, and Type-JA

Type-JAType-Jyes

Type-AType-Nno

yesno
aggregation

correlation

Type-JAType-Jyes

Type-AType-Nno

yesno
aggregation

correlation

An XQuery expression of Type-D has two inner FLWR expressions connected by an
operator in the where clause of the outer FLWR expression. At least one of the inner
FLWR expressions must have correlation. Zero or more inner FLWR expressions may
have aggregation. Thus, Type-D does not belong to any category in Table 1; it falls into
either (i) no aggregation and yes correlation or (ii) yes aggregation and yes correlation.
This definition is also the same as that for SQL.

4.2 Completeness of Normalization Rules

XQuery allows nested expressions in the for, where, and return clauses. Hence,
we subdivide those nesting types into three sub-categories depending on the clause
where nested expressions occur.

Table 2 summarizes the nesting types considered in this paper. Type-D in the for
and return clauses is not available by definition. The cells with a white circle indicate
the rules proposed by Manolescu et al. [6]. The cells with a black circle indicate the rules
proposed in this paper. The rule in a parenthesis deals with the corresponding nesting
type.

Table 2. Classification of nesting types of XQuery FLWR expressions

N/A(Rule 11)N/AType-D

(Rule 10)(Rule 9)(Rule 8)Type-JA

(Rule 2)(Rule 7)(Rule 1)Type-J

(Rule 2)(Rule 6)(Rule 1)Type-N

(Rule 5)(Rule 4)(Rule 3)Type-A

returnwhereforType Clause

N/A(Rule 11)N/AType-D

(Rule 10)(Rule 9)(Rule 8)Type-JA

(Rule 2)(Rule 7)(Rule 1)Type-J

(Rule 2)(Rule 6)(Rule 1)Type-N

(Rule 5)(Rule 4)(Rule 3)Type-A

returnwhereforType Clause

◦: Normalization rule proposed in the literature [6]
•: Normalization rule proposed in this paper

Table 2 shows that our normalization rules are complete according to the classifi-
cation by Kim [5]. That is, we support all of the nesting types (i.e., Type-A, Type-N,
Type-J, Type-JA, and Type-D) for every clause (i.e., for, where, and return).

4.3 Normalization Rules for Each Nesting Type

Now, we propose source-level normalization rules for each nesting type in Table 2. We
describe our normalization rules by using the notation by Manolescu et al. [6]. Every
rule transforms nested queries to equivalent unnested ones. We first define equivalence
of two queries in Definition 3.
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DEFINITION 3: Two queries are equivalent if they produce the same results without
considering order.

Normalization Rules for Type-A
We present Rules 3, 4, and 5 for nested expressions of Type-A in the for, where, and
return clauses, respectively. In Type-A, the inner FLWR expression can be evaluated
independently of the outer FLWR expression since there is no correlation. We pre-
evaluate the inner FLWR expression and bind the result, which is a single value, to the
variable T . Then, we substitute the inner FLWR expression with T . These rules extend
the NEST-A rule [5] so as to accommodate the XQuery language.

for $x in aggr (for $y in E3
where E4($y)
return E5($y))

where E2($x)                                      
return E6($x)

T := aggr (for  $y in E3
where  E4($y)
return E5($y))

for $x in T
where E2($x) 
return E6($x)

RULE 3

for $x in E1
where E2($x)
return E6($x) op aggr (for $y in E3

where E4($y)
return E5($y))

T := aggr (for  $y in E3
where  E4($y)
return E5($y))

for $x in E1,
$t in T

where E2($x)
return E6($x) op $t

RULE 4

for $x in E1
where E2($x) op aggr (for $y in E3

where E4($y)
return E5($y))

return E6($x)

T := aggr (for  $y in E3
where  E4($y)
return E5($y))

for $x in E1,
$t in T

where E2($x) op $t
return E6($x)

RULE 5

RULES 3 ∼ 5: Normalization rules for Type-A

CORRECTNESS OF RULES 3∼5: Having no correlation implies that outer and inner
FLWR expressions are independent of each other. Thus, substituting the inner FLWR
expression with the pre-evaluated result guarantees the same query results. �
Normalization Rule for Type-N
We present Rule 6 for nested expressions of Type-N in the where clause. Type-N
can be handled in a manner similar to that for Type-A. The only difference is that the
result of the inner FLWR expression is not a single value, but a sequence of values.
We apply the distinct function to the inner FLWR expression before binding it to
the variable T . The distinct function is required to avoid duplication of the query

for $x in E1
where E2($x) op (for $y in E3

where E4($y)
return E5($y))

return E6($x)

T := distinct(for $y in E3
where  E4($y)
return E5($y))

for $x in E1,
$t in T

where E2($x) op $t
return E6($x)

RULE 6: A normalization rule for Type-N
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results. This rules extends the NEST-N-J rule by Kim [5] so as to accommodate the
XQuery language.

One might argue that Rule 6 is different from NEST-N-J since Rule 6 creates a
temporary relation T instead of directly joining the inner query with the outer query
as in NEST-N-J. We note that, however, NEST-N-J has an important assumption
that duplication in the result of the inner query should be eliminated before
the join [5]. Hence, if we embody this assumption in Rule 6, it becomes identical to
NEST-N-J.

CORRECTNESS OF RULE 6: As in Type-A, outer and inner FLWR expressions are
independent of each other. In addition, the distinct function applied removes
duplicates from the result of the inner FLWR expression. Thus, substituting the in-
ner FLWR expression with the pre-evaluated result guarantees the same query
results. �

EXAMPLE 1: Query 3, shown in Section 2, contains a nested expression of Type-N.
Result 3 shows a possible result of Query 3. We obtain Query 3′ by applying Rule 6
to Query 3. We easily know that Queries 3 and 3′ produce the same query results. We
note that, if the distinct function were omitted from Query 3′, Result 3 would be
repeated twice since the variable T contains duplicate values (i.e., two D2’s). �

RESULT 3: Result of Query 3.
<DName> Research </DName>

QUERY 3 ′ : Normalize Query 3 using Rule 6.
T := distinct(for $y in document(“Projects.xml”)/Projects/Proj

return $y/DNO)

for $x in document(“Departments.xml”)/Departments/Dept,
$t in T

where $x/DNO = $t
return $x/DName

Normalization Rule for Type-J
In Type-J, the inner FLWR expression cannot be pre-evaluated since there exists corre-
lation. To pre-evaluate the inner FLWR expression, we define the isolation of the inner
FLWR expression through Definitions 4 and 5.

DEFINITION 4: Correlated expressions are two expressions connected by comparison
operators in the where clause of an inner FLWR expression, where at least one of them
contains a variable defined in the for clause of an outer FLWR expression.

DEFINITION 5: Isolation of an inner FLWR expression is to remove all of the correlated
expressions from the inner FLWR expression.

We present Rule 7 for nested expressions of Type-J in the where clause. We first isolate
the inner FLWR expression, rendering the correlated expression E4($y) op2 E5($x)
removed. Then, we pre-evaluate the inner FLWR expression and substitute it with the
pre-evaluated result, resulting in E2($x) op1 $t/result/t1. Finally, we add the cor-
related expression into the where clause of the outer FLWR expression, resulting in
$t/result/t2 op2 E5($x).
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for $x in E1
where E2($x) op1 (for $y in E3

where E4($y) op2 E5($x)
return E6($y))

return E7($x)

T := distinct(for  $y in E3
return <result>

<t1>{E6($y)}</t1>
<t2>{E4($y)}</t2>

</result>)
for $x in E1,

$t in T
where E2($x) op1 $t/result/t1 and $t/result/t2 op2 E5($x) 
return E7($x)

RULE 7: A normalization rule for Type-J

CORRECTNESS OF RULE 7: There are two conditions that need to be satisfied in
the original query: (i) E2($x) op1 E6($y) and (ii) E4($y) op2 E5($x). After isolat-
ing the inner FLWR expression, we pre-evaluate it and return the pairs of E6($y) and
E4($y). Here, E6($y) (i.e., $t/result/t1) is used for evaluating the former condition,
and E4($y) (i.e., $t/result/t2) for the latter one. Thus, the normalized query is equiv-
alent to the original one. �

EXAMPLE 2: Query 4 contains a nested expression of Type-J. We obtain Query 4′ by
applying Rule 7 to Query 4. �

We note that normalization does not always guarantee better performance. In the orig-
inal query of Rule 7, suppose that the number of elements in E3 is very large, but the
inner FLWR expression itself is very cheap to compute by virtue of an index available
for the predicate in the where clause. In this case, the cost of repeatedly evaluating the
inner FLWR expression may be smaller than that of creating a temporary relation T .
Here, the latter is almost the same as the cost of copying the whole elements of E3 into
T . Thus, we need a sophisticated query optimizer that can decide whether normaliza-
tion is beneficial by using the estimated costs of the normalized and original queries.
We leave this optimization as a topic of a future paper.

QUERY 4: Find the department where at least one project is processed in the
department location.

for $x in document(“Departments.xml”)/Departments/Dept 
where $x/DLoc = (for $y in document(“Projects.xml”)/Projects/Proj 

where $y/DNO = $x/DNO 
return $y/PLoc) 

return $x/DName

QUERY 4 ′ : Normalize Query 4 using Rule 7.
T := distinct(for $y in document(“Projects.xml”)/Projects/Proj

return <result><t1>{$y/PLoc}</t1><t2>{$y/DNO}</t2></result>) 

for $x in document(“Departments.xml”)/Departments/Dept, 
$t in T 

where $x/DLoc = $t/result/t1 and $x/DNO = $t/result/t2 
return $x/DName
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Normalization Rules for Type-JA
We present Rules 8, 9, and 10 for nested expressions of Type-JA in the for, where,
and return clauses, respectively. These rules consist of two steps. In the first step, we
transform the nested expression of Type-JA to that of Type-J. In the second step, we
apply our normalization rules for Type-J. Here, we elaborate on the first step.

We first isolate the inner FLWR expression, rendering the correlated expression
E4($y) op E5($x) removed. Then, we pre-evaluate the aggregated values for each value
of E4($y), which includes the variable $y defined in the for clause of the inner FLWR
expression. During this pre-aggregation, the group by operator is required. We spec-
ify the group by operator using the extension proposed by Deutsch et al. [2] since the
XQuery standard does not have it currently. Next, we substitute the return clause of
the inner FLWR expression with the pre-aggregated result. Finally, we omit the aggre-
gation operator in the outer FLWR expression. These rules extend the NEST-JA rule [5]
so as to accommodate the XQuery language.

for $x in E1,
$z in aggr (for $y in E3

where E4($y) op E5($x)
return E6($y))

where E2($x, $z)                                      
return E7($x, $z)

T := for  $y in E3
return groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1,
$z in (for $t in T

where $t/result/t1 op E5($x)
return $t/result/t2)

where E2($x, $z) 
return E7($x, $z)

(Rule 8)

(Type-J rule)

T := for  $y in E3
return groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1,
$t in T

where $t/result/t1 op E5($x) and
E2($x, $t/result/t2)

return E7($x, $t/result/t2)

RULE 8

for $x in E1
where E2($x) op1

aggr(for $y in E3
where E4($y) op2 E5($x)
return E6($y))

return E7($x)

T := for  $y in E3
return  groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1
where E2($x) op1

(for      $t in T
where $t/result/t1 op2 E5($x)
return $t/result/t2)

return E7($x)

(Rule 9)

(Type-J rule)

T := for  $y in E3
return  groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1,
$t in T

where E2($x) op1 $t/result/t2 and 
$t/result/t1 op2  E5($x)

return E7($x)

RULE 9

for $x in E1
where E2($x)
return E7($x) op1

aggr (for $y in E3
where E4($y) op2 E5($x)
return E6($y))

T := for  $y in E3
return  groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1
where E2($x)
return E7($x) op1

(for       $t in T 
where $t/result/t1 op2 E5($x)
return $t/result/t2)

(Rule 10)

(Type-J rule)

T := for  $y in E3
return  groupby E4($y) as
<result>

<t1>{E4($y)}</t1>
<t2>{aggr (E6($y))}</t2>

</result>

for $x in E1,
$t in T

where E2($x) and
$t/result/t1 op2 E5($x)

return E7($x) op1 $t/result/t2

RULE 10

RULES 8 ∼ 10: Normalization rules for Type-JA

As discussed in the literature, these rules can incur the count bug [4]. Thus, when the
count bug can occur, we exploit the Magic Decorrelation method proposed by Seshadri
et al. [10] for correcting the count bug. This method is regarded as the state-of-the-art
method. It uses grouping and outer join. We omit the explanation of the Magic Decor-
relation due to space limit.

CORRECTNESS OF RULES 8∼10: The first step pre-evaluates the aggregated values
for each value of a grouping attribute. Thus, this step preserves all of aggregated
values. By pre-evaluating (i.e., removing) the aggregation, the nested expression of
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Type-JA is transformed to that of Type-J. We note that the only difference between
Type-JA and Type-J is existence of aggregation. Applying rules for Type-J completes
the normalization. �
EXAMPLE 3: Query 5 contains a nested expression of Type-JA with nesting in the
where clause. We obtain Query 5′ by applying Rule 9. �

QUERY 5: Find the names of the departments with at least two projects.
for $x in document(“Departments.xml”)/Departments/Dept

where 2 <= count(for $y in document(“Projects.xml”)/Projects/Proj
where $y/DNO = $x/DNO
return $y/PNO)

return $x/DName

QUERY 5 ′ : Normalize Query 5 using Rule 9.
T  := for $y in document(“Projects.xml”)/Projects/Proj

return groupby $y/DNO as
<result><t1>{$y/DNO}</t1><t2>{count($y/PNO)}</t2></result>

for $x in document(“Departments.xml”)/Departments/Dept, 
$t in T

where 2 <= $t/result/t2 and $t/result/t1 = $x/DNO
return $x/DName

Normalization Rule for Type-D
We present Rule 11 for nested expressions of Type-D in the where clause. We first
define some additional notations.

– FLWRn denotes a FLWR expression.
– FLWRIsolated

n denotes the inner FLWR expression obtained by isolating FL
WRn.

– ECorrelated
n ($x) denotes the correlated expression of FLWRn, which includes the

variable $x. If there is no correlated expression, TRUE is returned.

Since the inner FLWR expressions FLWR1 and FLWR2 do not have correlation
between each other, we isolate them independently into the variables T1 and T2, respec-
tively. Then, we perform join between T1 and T2. Here, we assume $t1/result/t1 and
$t2/result/t1 are the return values of FLWR1 and FLWR2, while $t1/result/t2
and $t2/result/t2 are the values used in the correlated expressions. Next, we bind
the result of this join to the variable T3 and remove duplicates. Finally, we replace
FLWR1 op FLWR2 in the where clause of the outer FLWR expression with the
correlated expressions of FLWR1 and FLWR2 (i.e., ECorrelated

1 ($t3/result/t1) and
ECorrelated

2 ($t3/result/t2)).

CORRECTNESS OF RULE 11: We can isolate FLWR1 and FLWR2 separately into T1
and T2. Using T1 and T2, we compute FLWR1 op FLWR2 and store the result into T3.
Then, to compensate for lack of the correlated expressions, we add ECorrelated

1 ($t3/re-
sult/t1) and ECorrelated

2 ($t3/result/t2), which are evaluated against T3, to the
where clause of the outer FLWR expression. Hence, the normalized query is equiva-
lent to the original one. �
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for $x in E1,
where FLWR1 op FLWR2 
return E2($x)

T1 := FLWR1
Isolated

T2 := FLWR2
Isolated

T3 := distinct(for $t1 in T1,
$t2 in T2

where $t1/result/t1 op $t2/result/t1 
return <result>

<t1>{$t1/result/t2}</t1>
<t2>{$t2/result/t2}</t2>

</result>) 
for $x in E1,

$t3 in T3
where E1

Correlated ($t3/result/t1) and
E2

Correlated ($t3/result/t2)
return E2($x)

RULE 11: A normalization rule for Type-D

EXAMPLE 4: Query 6 contains a nested expression of Type-D. We obtain Query 6′ by
applying Rule 11 to Query 6. �

QUERY 6: Find the names of the employees who are working for a project located in
“Houston.”

for $x in document(“Departments.xml”)/Departments/Dept/Emp
where (for $y in document(“WorksOn.xml”)/WorksOnList/WorksOn

where $y/SSN = $x/SSN
return $y/PNO)

= 
(for $z in document(“Projects.xml”)/Projects/Proj
where $z/PLoc = “Houston”
return $z/PNO)

return $x/EName

QUERY 6 ′ : Normalize Query 6 using Rule 11.
T1 := for $y in document(“WorksOn.xml”)/WorksOnList/WorksOn 

return <result><t1>{$y/PNO}</t1><t2>{$y/SSN}</t2></result>

T2 := for $z in document(“Projects.xml”)/Projects/Proj
where $z/PLoc = “Houston”
return $z/PNO

T3 := distinct(for $t1 in T1,
$t2 in T2

where $t1/result/t1 = $t2
return $t1/result/t2) 

for $x in document(“Departments.xml”)/Departments/Dept/Emp, 
$t3 in T3

where $x/SSN = $t3
return $x/EName
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5 Implementation Mechanism for Normalization Rules

In this section, we explain our implementation mechanism for the rules proposed in Sec-
tion 4. We adopt the Query Graph Model (QGM) [8] to internally represent an XQuery
expression. Section 5.1 introduces the QGM. Section 5.2 presents a normalization al-
gorithm based on the QGM.

5.1 Query Graph Model

A query graph in the QGM is a data structure devised to internally represent an SQL
query. It has been used for processing and optimizing an SQL query in IBM DB2. We
slightly modify the original model so as to accommodate XQuery.

A query graph consists of query blocks. Each query block represents a FLWR ex-
pression and consists of a head and body. A head corresponds to the return clause,
and thus, contains the elements that are returned as the query result. A body consists
of nodes and edges. A node represents an element2; the clause where binding occurs
is specified in a parenthesis at the side of the node. Edges are classified into the bind-
ing edge and predicate edge. The former binds a node to either an element or a query
block. The latter connects nodes and represents a conjunct in the where clause. We
denote the former as a dotted line and the latter as a solid line with a rectangle. A loop
predicate edge attached to a node $z represents a local predicate on $z. We note that an
inter-block predicate edge indicates that two query blocks have correlation. Each query
block may additionally have a flag that indicates whether distinct, group by, or
order by are used.

Figure 3 shows the query graphs of Queries (a), (b), and (c). We explain only Query
(b) to avoid repetitive explanation. Query (b) finds the names of the departments that
have at least two projects. The inner FLWR expression that counts the number of
projects in a department is nested in the where clause of the outer FLWR expres-
sion. The outer and inner FLWR expressions correspond to the query blocks QB1 and
QB2, respectively. In the outer FLWR expression, the for clause is represented as
the node $x to which the Dept element is bound; the where clause as the loop pred-
icate edge on the node $z bound to the query block QB2; and the return clause
as the head $x/DName. In the inner FLWR expression, the for clause is repre-
sented as the node $y to which the Proj element is bound; the where clause as the
predicate edge between the nodes $x and $y; and the return clause as the head
count($y/PNO). We note that the predicate edge between the nodes $x and $y in-
dicates correlation.

5.2 Normalization Algorithm

Our algorithm consists of two procedures: Normalize QG and ApplyNormalization-
Rules. The former finds out the clause where a nested expression occurs, and the latter
the nesting type.

In the Normalize QG procedure, we determine the clause that contains a nested ex-
pression in the following manner. First, if a binding edge is connected from a node
with “(for)” in the query block QB1 to the query block QB2 (e.g., between $z
and QB2 in Figure 3 (a)), the for clause has a nested expression. Second, if a

2 Since we deal with XQuery, we use the term “element variable” corresponding to “tuple vari-
able” in the relational context.
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Query (a) : Contains a nested expression in the for clause.
for $x in document(“Departments.xml”)/Departments/Dept,

$z in  count(for $y in document(“Projects.xml”)/Projects/Proj
return $y/PNO)

return $z

Query (b) : Contains a nested expression in the where clause.
for $x in document(“Departments.xml”)/Departments/Dept
where 2 <= count(for $y in document(“Projects.xml”)/Projects/Proj

where $y/DNO = $x/DNO
return $y/PNO)

return $x/DName

Query (c) : Contains a nested expression in the return clause.
for $x in document(“Departments.xml”)/Departments/Dept
return (for $y in document(“Projects.xml”)/Projects/Proj

where $y/DNO = $x/DNO
return $y/PNO)

$z

$x (for)

Dept
count($y/PNO)

$y (for)

Proj

QB1

QB2

$z (for)

$x/DName

$x (for)

Dept
count($y/PNO)

$y (for)

Proj

QB1

QB2

$z (where)2 <= $z

$x/DNO = $y/DNO

QB2

$x (for)

Dept
$y/PNO

$y (for)

Proj

QB1

QB2

(a) The query graph of Query (a) having
a nested expression in the for clause

(b) The query graph of Query (b) having
a nested expression in the where clause

(c) The query graph of Query (c) having
a nested expression in the return clause

$x/DNO = $y/DNO

Fig. 3. The query graphs of example queries

binding edge is connected from a node with “(where)” in the query block QB1 to
the query block QB2 (e.g., between $z and QB2 in Figure 3 (b)), the where clause
has a nested expression. Third, if the head of the query block QB1 contains another
query block QB2 (e.g., as shown in Figure 3 (c)), the return clause has a nested
expression.

Figure 4 shows the Normalize QG procedure. As described above, it detects nested
expressions in the for clause (lines 3∼6), in the where clause (lines 7∼17), and in the
return clause (lines 18∼21). Then, it calls the ApplyNormalizationRules procedure
with the clause information. If there exists two inner FLWR expressions in the where
clause, it applies Rule 11 for Type-D immediately (line 15).

In the ApplyNormalizationRules procedure, we determine the nesting type in the
following manner. The nesting type is dependent on existence of correlation and aggre-
gation. Correlation exists if the inner query block QB2 has a predicate edge connected
to a node in the outer query block QB1. On the other hand, aggregation exists if there is
an aggregate function in the head of QB2. Hence, we can easily detect correlation and
aggregation using the query graph. After detecting them, the nesting type is determined
as shown in Table 1.
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1:   Procedure Normalize_QG (query block QB1)
2:   begin

/* Remove nesting from the for clause */
3:   if (A binding edge is connected from a node 

with “(for)” in QB1 to QB2)
4:       then begin
5:      ApplyNormalizationRules(QB2, for)
6:       end

/* Remove nesting from the where clause */
7:       if (A binding edge is connected from a node

with “(where)” in QB1 to QB2)
8:       then begin
9:           if (only one operand is a query block (QB2))
10:     then begin
11:     ApplyNormalizationRules(QB2, where)
12:         end
13:         if (both operands are query blocks)
14:         then begin
15:             Apply Rule 11.
16:         end
17:     end

/* Remove nesting from the return clause */
18:     if (The head of QB1 contains QB2)
19:     then begin
20:           ApplyNormalizationRules(QB2, return)
21:     end
22: end

1:     Procedure ApplyNormalizationRules (query block QB2, clause)
2:     begin
3:   Normalize_QG(QB2)
4:         if (QB2 has a predicate edge connected to a node in 

the outer query block)
5:         then begin

/* Normalize a nested expression of Type-JA */
6:             if (QB2 has an aggregate function in its head)  
7:             then begin
8:                Apply Rules 8,9, or 10 depending on the clause that contains

a nested expression
9:          end

/* Normalize a nested expression of Type-J */
10:       else
11:               Apply Rules 1,2, or 7 depending on the clause that contains

a nested expression
12:           end
13:       end
14:       else

/* Normalize a nested expression of Type-A */
15:    if (QB2 has an aggregate function in its head)
16:       then begin
17:         Apply Rules 3,4, or 5 depending on the clause that contains

a nested expression
18:           end

/* Normalize a nested expression of Type-N */
19:           else
20:         Apply Rules 1,2, or 6 depending on the clause that contains 

a nested expression
21:           end
22:       end
23:   end

Fig. 4. The Normalize QG and ApplyNormalizationRules procedure

$x/DName

$x (for)

Dept

QB1

$t (for)
$x/DNO = $t/result/t1

T

$t/result/t2 >= 2

<result>
<t1>{$y/DNO}</t1>
<t2>{count($y/PNO)}</t2>

</result>
$y (for)

Proj

QB2 as T

group by $y/DNO

Fig. 5. The query graph obtained by normalizing Figure 3 (b)

Figure 4 also shows the ApplyNormalizationRule procedure. As described above, it
finds out the nesting type and applies the normalization rule using both of the clause
information and the nesting type. It applies Rules 8, 9, and 10 for Type-JA (lines 6∼9);
Rules 1, 2, and 7 for Type-J (lines 10∼12); Rules 3, 4, and 5 for Type-A (lines 15∼18);
and Rules 1, 2, and 4.3 for Type-N (lines 19∼21).

EXAMPLE 5: Figure 5 shows the query graph obtained by normalizing Figure 3 (b).
During this normalization, the condition in line 7 of Normalize QG is satisfied, and
then, Rule 9 is applied in line 8 of ApplyNormalizationRules. We note that two query
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blocks are separated after normalization is completed. These two query blocks are seri-
ally executed. �

Our algorithm is also applicable when nested expressions occur in more than two lev-
els. In that case, we apply our algorithm recursively until all of nested expressions are
normalized.

6 Conclusions

In this paper, we have reported preliminary results in developing our XML DBMS
named Odysseus/XML. For efficient processing of XQuery expressions, we have imple-
mented the normalization procedure into Odysseus/XML. Our approach focuses on a
practical implementation. To propose normalization rules, we have adopted the source-
level rule, which is easy to implement. We have shown that our rules are correct and
complete according to Kim’s classification. Then, we have presented a normalization
algorithm based on the QGM. The normalization rules that should be applied can be
easily detected using the QGM. Overall, our work provides a practical approach to im-
plementing normalization of XQuery expressions.

As a future work, we intend to verify the advantages of normalization by the cost
formula and extensive experiments.
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Abstract. As a query language for navigating XML trees and selecting a set of 
element nodes, XPath is ubiquitous in XML applications. One important issue 
of XPath queries is checking containment. In particular, we investigate a fre-
quently used fragment of XPath that consists of node tests, the child axis (/), the 
descendant axis (//), branches ([]) and label wildcards (*). For special classes of 
pattern trees, the homomorphism algorithm returns false negatives. In order to 
address this problem, we propose two containment techniques, conditioned 
homomorphism and hidden conditioned homomorphism, and then present 
sound algorithms to check containment. The analytical result is given with an 
experiment. 

1   Introduction  

XPath is a simple query language for navigating XML trees and selecting a set of 
element nodes. It is ubiquitous in XML applications as a common sub-language of 
XQuery[4], XLink[10], XPointer[11] and XSLT[8]. One of the most important issues 
of XPath queries is checking containment. Query containment is crucial in many 
contexts, such as query optimization, query reformulation, information integration 
and integrity checking. In general, the efficiency of finding the result of a query on a 
given input database depends on the size of the query. Queries submitted to the query 
processor might contain redundant branches that can be removed independent of any 
integrity constraint. This fact spurred the research on query minimization in query 
optimization domain. Most minimization algorithms for tree pattern queries follow 
the general process: first pruning the query tree, then checking equivalence between 
the pruned query tree and the original one. Since query tree equivalence and contain-
ment are mutually reducible, the key problem is eventually reduced to checking con-
tainment between two query trees. Moreover, in the query minimization algorithms, 
the building block of checking containment/equivalence always contributes the most 
computation complexity. Hence, the efficiency of the containment algorithm is criti-
cal for the overall performance. 
                                                           
* Supported by the National Natural Science Foundation of China under Grant No. 60573094, 

Tsinghua Basic Research Foundation under Grant No. JCqn2005022 and Zhejiang Natural 
Science Foundation under Grant No. Y105230. 
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Fig. 1. A simple tree pattern corresponding to XPath expression a/*[b]//c 

The focus of this paper is the containment checking for a fragment of XPath, with 
applications in all the contexts mentioned above. This fragment consists of node tests, 
the child axis (/), the descendant axis (//), branches ([]) and label wildcards (*). Isolat-
ing the most important features, we call this class of queries XP{ , *, //}. This fragment 
is used frequently in practice; further restrictions seem impractical since each of the 
features occurs often. Every expression in XP{ , *, //} can be translated into a tree 
pattern with the same semantics [12,16]. For example, XPath expression a/*[b]//c is 
presented by the tree pattern in Fig. 1 where double-slashes represent descendant 
edges, * is a label wildcard, and the return node is marked with a solid circle. Starting 
at the root, this pattern first checks if the root node is labeled a. If not, it returns the 
empty set; otherwise, it then checks if the a-node has a child with both a b-child and a 
c-descendant. If not, it returns the empty set; otherwise, it returns all the matched  
c-descendants. The b-child and c-descendant of document tree may occur in any  
order. 

For a given XPath expression p and input tree t, p(t) is the set of nodes in t returned 
by the evaluation of p. Given two expressions p and q, we say that p is contained in q 
(denoted by p ⊆ q) iff ∀ t. p(t) ⊆  q(t).  

1.1   Related Work 

Query containment is a well-studied area of database systems. One of the first results 
was that of Chandra and Merlin [7] who showed that for a class of relational database 
queries, called conjunctive queries, the containment problem is NP complete. Peter 
Buneman et al. [5] provided a PTIME algorithm for linear patterns in XP{//}. Linear 
queries in XP{*, //} are a special case of regular expressions on strings, for which a 
linear-time containment algorithm is claimed in [13]. Queries in XP{*, } can be 
viewed as the acyclic conjunctive queries over tree structures, from which it follows 
that the containment of this fragment is solvable in PTIME [19]. Containment  
for XP{ , //} was shown to be in PTIME in [1]. The class of patterns that include  
descendant edges (XP{ , //}, XP{ , *, //}) can be expressed in datalog with recursion, 
for which the containment is undecidable in general [17]. In [20] the author showed, 
using chase techniques, that the datalog fragment needed for XP{ , *, //} has a decid-
able containment problem. Using canonical model technique, [12] showed that  
containment in fragment XP{ , *, //} is co-NP complete, and proposed a complete  
algorithm for containment, which is EXPTIME complexity. The authors also  
proposed a sound but incomplete algorithm, which is based on homomorphism and 
may return false negatives. As an overview, [16] introduced some of the main  
algorithmic techniques that had been proposed for XPath query containment. 
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1.2   Motivation, Contributions and Overview 

By the definition of containment, to check containment p ⊆ q for two XPath expres-
sions, we need to check that p(t) ⊆  q(t) holds for all trees t. Since there are infinite 
many trees, it is not even clear that the problem is decidable. The method of canonical 
model, introduced in [12], prunes the check space into a finite set, and arrives at an 
exponential-time algorithm for checking containment. On the other hand, the homo-
morphism technique, coming from a classical characterization result for conjunctive 
queries against relational databases, arrives at a much more efficient but incomplete 
algorithm. Then, how to narrow the gap between canonical model and homomorph-
ism? Is there any technique which is more efficient than canonical model, meanwhile 
more complete, that is, returns less false negatives, than homomorphism?  In this 
paper, we address this challenge and make the following contributions: 

 To address the problem that homomorphism algorithm proposed in [12] may 
return false negatives, we introduce a technique called conditioned homo-
morphism and present an efficient algorithm. 

 For another class of tree pattern pairs, conditioned homomorphism still returns 
false negatives. The conditioned homomorphism is extended to hidden condi-
tioned homomorphism, and an efficient algorithm is presented. 

 The experiments demonstrate both the practicality and efficiency of our  
techniques. 

The rest of this paper is organized as follows: Section 2 contains the basic nota-
tions, definitions and background materials. Section 3 and 4 contain the core of our 
work, that is, conditioned homomorphism and hidden conditioned homomorphism 
techniques. Experimental results are presented in Section 5. Finally, we conclude our 
work in Section 6. 

2   Preliminaries 

2.1   XML Tree, XPath Fragment and Tree Pattern 

We model XML documents as trees over an infinite alphabet. Following the defini-
tion in [12], for a tree t, NODES (t) and EDGES (t) are the sets of nodes and edges, 
respectively, ROOT (t) denotes its root node, and LABLE (x) denotes the label on 
node x. EDGES+ (t) is the transitive closure of EDGES (t): EDGES+ (t) = EDGES 
(t) EDGES (t)oEDGES+ (t), and EDGES* (t) is the reflexive and transitive closure 
of EDGES (t): EDGES* (t) = NODES2 (t) EDGES+ (t). EDGE (x) is the edge con-
necting node x and its parent. The size of a tree t, in notation |t|, is the number of 
edges in t. 

The fragment of XPath studied in this paper, denoted by XP{ , *, //}, consists of ex-
pressions given by the following grammar where “n” is an element and “.” means the 
current node: 

q  n | * | . | q/q | q//q | q[q] (1) 
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Attributes and text values are handled similarly to elements and are omitted from our 
discussion. 

The tree patterns are used to represent expressions of XPath queries [12,16]. The set 
of tree patterns corresponding to XPath fragment XP{ , *, //} is denoted by P{ , *, //}. 
The definitions on XML trees can also be applied to tree patterns. Besides, for tree 
pattern p, C-EDGES (p) is the set of child edges and D-EDGES (p) is the set of all 
descendant edges. Obviously, C-EDGES (p) D-EDGES (p)=EDGES (p). 

An embedding from tree pattern p to XML tree t is a function e: NODES (p)  
NODES (t) satisfying: 

(1) e (ROOT (p)) = ROOT(t); 
(2) for each x NODES (p), LABEL (x) = * or LABEL (x) = LABEL ( e (x)); 
(3) for each x, y NODES (p), if (x, y) C-EDGES (p) then (e (x), e (y)) EDGES  

(t), if (x, y) D-EDGES (p) then (e (x), e (y)) EDGES+ (t).  

The process of checking whether there exists an embedding from a tree pattern p to a 
tree t and getting the result sets is called evaluation of p on t. The set of tree nodes 
returned by evaluating p on t is denoted by p (t). If there exists an embedding from 
tree pattern p to tree t, the tree t satisfies the tree pattern p. 

2.2   Boolean Tree Pattern 

The number of return nodes in a tree pattern is called arity. The arity of tree patterns 
transformed from XPath expression is always 1. In the case of a tree pattern p with 
arity zero, p (t) evaluates to the empty-tuple if there exists an embedding from p to t. 
Otherwise, p (t) is the empty-set. Such patterns are viewed as boolean tree patterns or 
boolean patterns, and p (t) is true if an embedding exists and false otherwise. Thus, 
evaluation of boolean tree pattern p on tree t is to check whether p (t) is true. For 
boolean patterns, containment reduces to implication: p ⊆ q iff ∀ t. p(t)  q(t). 

For the purpose of the containment problem, [12] claimed that it is sufficient to 
limit our discussion to boolean tree patterns. In fact, there is a translation of k-ary tree 
pattern to boolean pattern such that for any k-ary patterns p, q and their respective 
translations p , q , p ⊆ q iff p ⊆ q . 

In the rest of this paper, all tree patterns are assumed to be boolean tree patterns, 
unless otherwise stated. 

2.3   Prior Techniques Overview 

One way to reason about containment is by way of canonical model [12]. To check 
that p (t)  q (t) holds for all trees t, this technique restricts the search to “canonical” 
trees t , which “look like” p and are “no bigger” than q. It arrives at an exponential-
time algorithm for checking containment. The second approach is homomorphism 
[7,19,2], which will be discussed in detail in section 2.4. The third technique, auto-
mata technique [14], represents the set of counter examples by a finite device, a tree 
automaton. It combines the tree automata corresponding to the involved expressions 
and checks whether the resulting automaton accepts a non-empty set. As the canonical 
model technique, the algorithm derived from automata technique runs in exponential 
time. The last technique is the chase technique [19,2,18]. It is mainly used as an  
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extension of homomorphism technique to check containment in the presence of integ-
rity constraints. 

2.4   Homomorphism Technique 

2.4.1   Definition of Homomorphism 
Homomorphism was first proposed in [7] to check containment between conjunctive 
queries of relational database. It can also be applied to queries over tree structures. 
Given tree patterns p and q, a homomorphism h: q  p is a function from NODES (q) 
to NODES (p) that satisfies the following conditions: 

Root-preserving. h ( ROOT(q) ) = ROOT(p), 
Label-preserving. For each  NODES (q), LABEL (x) = * or LABEL (x) =  

LABEL ( h(x) ), 
Child-edge-preserving. For each (x, y)  C-EDGES (q), (h(x), h(y))  C-EDGES 

(p), and 
Descendant-edge-preserving. For each (x, y)  D-EDGES (q), (h(x), h(y))  

EDGES+ (p). 

 

Fig. 2. A simple homomorphism from tree pattern q to tree pattern p 

Homomorphism does not need to be an injective function. Fig. 2 illustrates such a 
homomorphism. If a homomorphism h: q  p exists, we say that there is a homo-
morphism from pattern q to pattern p. In [12], the authors showed that given two 
patterns p and q, one can determine in time O (|p |q|) whether there exists a homo-
morphism from q to p. Moreover, if it exists  p ⊆ q holds. Thus, an efficient practical 
algorithm for checking containment is to search for a homomorphism.  

2.4.2   Adorned Tree Pattern 
However, homomorphism algorithm is not always complete. It is already observed in 
[13] that the existence of a homomorphism fails to be a necessary criterion for pat-
terns in P{*, //}. Fig. 3(a) illustrates a scenario for that. The two tree patterns corre-
spond to XPath expressions p=a/*//b, q=a//*/b. Although p and q are equivalent, that 
is p ⊆ q and q ⊆ p, there is no homomorphism from q to p because the wildcard in q 
can’t be mapped to any node in p. The solution is to eliminate the * node in q and 
adorn the descendant edge with “[1, )” meaning that there is at least one interme-
diate node on this path. This is shown in Fig. 3(b), which illustrate a homomorphism 
from the adorned tree pattern q to pattern p. 
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Fig. 3. (a) Two equivalent tree patterns p and q with no homomorphism from q to p; (b) After 
tree pattern q being reduced to adorned tree pattern q , a homomorphism exists from q  to p 

Before formally introducing the adornments, we define length of edge as the num-
ber of intermediate nodes that the edge can cover. Obviously, the length of a child 
edge is 0, and the length of a descendant edge is an interval number. Since a node in 
the tree pattern can have at most one parent node, we define edge length of a node x 
as the length of edge connecting node x and its parent node, denoted by edge-length 
(x). For example, in Fig. 3(a), edge-length (u) = [0, ), and in Fig. 3(b), edge-length 
(v) = [1, ). In tree patterns, the interval is put near the corresponding edge, like the 
picture in Fig. 3(b).  

To transform a tree pattern into an adorned one, the length of every descendant 
edge is initialized to be [0, ) and the length of every child edge is initialized to be 
[0, 0]. Then if there is an edge shares a * node with an adjacent edge, the * node is 
eliminated and the two edges are combined into a new descendant edge. The interval 
of the length of the new descendant edge is computed by superimposing the respec-
tive intervals of the lengths of the two edges and then increasing both the upper and 
lower bound of the interval by 1 (to count in the eliminated * node). And only * nodes 
that have a unique child may be eliminated this way, that is, if a * node has two or 
more child nodes then it cannot be eliminated. This process can also be described as a 
set of rewrite rules described as follows: 

...//x...  …//x…, edge-length (x) = [0, ); 
…/*/x… …//x…, edge-length (x) = [1, 1]; 

…//*/x…, edge-length (*) = [m, n] …//x…, edge-length (x) = [m+1, n+1]; 
…/*//x…, edge-length (x) = [m, n] …//x…, edge-length (x) = [m+1, n+1]; 
…//*//x…, edge-length (*) = [m0, n0], edge-length (x) = [m1, n1] …//x…, 

edge-length (x) = [m0+m1+1, n0+n1+1]. 

(2) 

For example, the adorned tree pattern of q = a/*/b//*/c//*/*//d is q  = a//[1, 1] 

b//[1, ]c//[2, ]d. 

2.4.3   Homomorphism with Adorned Tree Pattern 
The distance between two nodes of tree pattern is defined as the number of edges 
between them on the path. If there is no ancestor-descent relationship between the two 
nodes, then the distance should be . Take tree pattern p in Fig. 1 for example, dis-
tance (u, v) = 2, and distance (w, v) = . A homomorphism h from adorned tree pat-
tern q to tree pattern p satisfies the following conditions:  
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(1) h (ROOT (q)) = ROOT (p), 
(2) if x   NODES (q), then LABEL (x) = * or LABEL (x) = LABEL (h (x)), 
(3) if (x, y)  EDGES (q), (distance (h(x), h(y)) - 1)  edge-length (y). 

Every unadorned tree pattern admits a trivial adornment by setting length of  every 
child edge to be [0, ], and length of every descendant edge to be [0, ). Hence dis-
cussions on adorned tree patterns can be also applied to unadorned tree patterns.  

It is showed in [13] that the existence of homomorphism from adorned tree pattern 
to tree pattern is a necessary and sufficient condition for containment when both pat-
terns are linear. To illustrate the example in Fig. 3, the tree pattern q is reduced to the 
adorned tree pattern q , making a homomorphism possible. [12] proposed an algo-
rithm for finding homomorphism from adorned tree pattern q to tree pattern p which 
runs in time O (|p |q |). Based on this algorithm, [12] proposed an algorithm for 
checking containment. It is sound, and runs in time O (|p| |q|) where p and q are two 
tree patterns. However, in general this algorithm is incomplete. 

3   Conditioned Homomorphism Technique 

3.1   More Complete Homomorphism? 

In fact, in fragment of XP{[], *, //}, existence of homomorphism from q to p is sufficient 
but not necessarily complete for p ⊆ q. This is exemplified by the tree patterns p and q 
in Fig. 4(a). In this example, p ⊆ q but no homomorphism exists from q to p. We ex-
plain this example in next paragraph. 

For convenience, every node in p and q is assigned with a unique identifier, 
marked at the bottom right corner of each node in Fig. 4(a). Following the steps intro-
duced in Section 2.4.2, tree pattern q is reduced to adorned tree pattern q . The node6 
of q is eliminated, and edge-length (node8) of q  becomes [1, ). Although there 
seems to be two possible targets for the node2 of q , none of them really makes a 
homomorphism. But a closer inspection shows that p ⊆ q holds. Given an XML tree t, 
p (t) = true, and e is an embedding from p to t, the number of intermediate nodes be-
tween e (node6) and e (node9) in the XML tree t must be either =0 or 1. According 
to this observation, we construct two tree patterns p1 and p2 in Fig. 4(b) and Fig. 4(c). 
The tree pattern p1 is almost the same as the tree pattern p except that no intermediate 
node is allowed between node6 and node9. And tree pattern p2 specifies that there 
should be at least one intermediate node between node6 and node9. Obviously, XML 
trees satisfying tree pattern p can also satisfy tree pattern p1 or p2. In Fig. 4(b) there is 
homomorphism from q  to p1, and in Fig. 4(c) there is a homomorphism from q  to 
p2. It means that p1 ⊆  q and p2 ⊆  q. In another word, XML trees satisfying tree pat-

tern p1 or p2 can satisfy tree pattern q. Then, ∀ t. p(t) = true q(t) = true, that is p ⊆  q. 
Intuitively, in the example above, tree pattern p1 and p2 impose certain conditions 

on the number of intermediate nodes on the path of descendant edges of tree pattern p. 
If tree pattern p satisfies the condition that edge-length (node9) = [0, 0], then accord-
ing to Fig. 4(b), there exists homomorphism from q to p, that is p ⊆  q; and if tree 
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Fig. 4. (a) Tree patterns p and q with no corresponding homomorphism, q
; (b) Homomorphism from q to p1; (c) Homomorphism from q to p2 

pattern p satisfies the condition that edge-length (node9) = [1, ), similarly, accord-
ing to Fig. 4(c), p ⊆  q. Then after union the two conditions together, it is concluded 

that p ⊆  q under the condition edge-length (node9) = [0, ) in pattern p. Since the 
edge between node9 and its parent node6 in pattern p is a descendant edge, the condi-
tion edge-length (node9) = [0, ) can always be satisfied. That is to say, p ⊆  q  
always holds. 

3.2   Conditioned Homomorphism 

The condition term is defined as constraint on the edge length of one or more descen-
dant edges of a tree pattern. For tree pattern p, edge-length (x) = [m, n], x  NODES 
(p) is called a condition term; and edge-length (x) + edge-length (y) = [m, n], x, y  

NODES (p) is also a condition term, “+” is superposition on intervals. For example, 
condition term edge-length (x) = [1, ) means that there should be more than one 
intermediate nodes on EDGE (x); condition term edge-length (y) + edge-length (z) = 
[3, ) means that the sum of number of intermediate nodes on EDGE (y) and EDGE 
(z) should be between [3, ). A condition for a tree pattern is a conjunction of condi-
tion terms. For example, a possible condition for tree pattern p is edge-length (x) = 
[1, ) edge-length (y) = [1, 1].  We define base condition of a tree pattern as a 
condition which can always be satisfied. Take tree pattern p in Fig. 4(a) for example, 
base-condition (p) = {edge-length (node2) = [0, ) edge-length (node9) = [0, )

edge-length (node10) = [0, )}. 
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Definition 1. Let p be a tree pattern and q be an adorned tree pattern. If when p 
satisfies condition c, there is a homomorphism from q to p, then there is a conditioned 
homomorphism from q to p under condition c, denoted by h: q ⎯→⎯c  p. 

Obviously, if there is a conditioned homomorphism from tree pattern q to p under 
condition base-condition (p), then p ⊆  q. Moreover, if h1: q ⎯→⎯c1  p, h2: q ⎯→⎯c2  

p…hn: q ⎯→⎯cn  p, and c1 c2 cn = base-condition (p), then p ⊆  q. 

3.3   Computing Conditioned Homomorphism 

For node x of tree pattern p, sub-tree(x) is the sub-tree of pattern p rooted at node x, 
and sub-edge-tree (x) is the sub-tree(x) pluses the parent node of node x and the edge 
between them. 

Theorem 1.  Let p be a tree pattern and q be an adorned tree pattern, and ROOT (q) 
has k child nodes n1, n2…, nk. If there is a conditioned homomorphism from sub-edge-
tree (ni) to p under condition ci, i=1…k, then there exists conditioned homomorphism 
from q to p under condition c1 c2 ck. 

Theorem 2.  Let p be a tree pattern and q be an adorned tree pattern, and x is a non-
leaf node of p, y is a non-root node of q. If ROOT (p) and the parent node of y are 
compatible (label preserving), and there is a homomorphism from sub-tree (y) to a 
descendant node x of x under condition c, then a condition c  could be figured out 
under which a homomorphism from sub-edge-tree (y) to sub-tree (x) exists. 

On the path from node x  to x , let there be k child edges and l descendant edges, and 
the nodes on the bottom side of every descendant edges are respectively n1, n2 …, nl. 
Then, a condition term is constructed, i.e., α: edge-length (n1) + edge-length (n2) + … 
+ edge-length (nl) = edge-length (y k, k]. Then c´ = α c. 

A condition is conjunction of condition terms. If one of the condition terms can not 
be satisfied, e.g. edge-length (x [-3, -2], or two condition terms conflict with each 
other, e.g. edge-length (x [0, 0] and edge-length (x [1, ), this condition is 
called unsatisfiable, hence no homomorphism exists. 

The above theorems allow iteratively computing conditions of homomorphism be-
tween sub-patterns bottom up. Our algorithms computing conditions of homomorph-
ism are derived from these theorems. Algorithm 1 takes tree pattern p and adorned 
tree pattern q, and returns the condition under which there is a conditioned homo-
morphism from q to p. It proceeds bottom up in both q and p, and computes two ta-
bles Con (x, y) and Con* (x, y) with x  NODES (p) and y  NODES (q). Con (x, y) is 
a condition of tree pattern p under which there is a homomorphism from sub-tree (y) 
to sub-tree (x). Con* (x, y) is a condition of tree pattern p under which there is a 
homomorphism from sub-edge-tree (y) to sub-tree (x). 

In line 7 of function COMPUTE-CONDITION*, k is the number of child edges be-
tween x and x and ni is the bottom side nodes of descendant edges between x and 
x .While computing conditions, NULL condition means an unsatisfiable condition, 
and can be treated as boolean false. The result of conjunction of a NULL condition 
with other condition is also a NULL condition. 
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Algorithm 1. Finding conditions for conditioned homomorphism q  

Function: FIND-CONDITIONED-HOMOMORPHISM(p,q) 
Input: tree pattern p, adorned tree pattern q 
Output: boolean value indicating whether a homomorphism exists from q to 
p under base-condition of p 
Begin 
1    condition base = base-condition(p) 
2    for y in NODES(q) do {bottom up iteration} 
3       for x in NODES(p) do {bottom up iteration} 
4          if(LABEL(x) == * or LABEL(y) == LABEL(x)) 
5             if(y is leaf node) 
6                Con(x,y) = base 
7             else 
8                condition c = (y,y´)•EDGES(q)Con

*(x,y´) 
9                if c is satisfiable 
10                  Con(x,y)=c 
11               else  
12                  Con(x,y) = NULL 
13               end if 
14            end if 
15         end if 
16         if((y!=ROOT(q))and(LABEL(x)==* or LABEL(y.parent)==LABEL(x))) 
17            Con*(x,y)=COMPUTE-CONDITION*(x,y) 
18         end if 
19      end for 
20   end for 
21   if(Con(ROOT(p),ROOT(q))=base-condition(p)) 
22      return true 
23   else return false 
24   end if 
End 

Function: COMPUTE-CONDITION*(x,y) 
Input: node x of tree pattern p, non-root node y of tree pattern q 
Output: Con*(x,y) 
Begin 
1   if(x is a leaf node) 
2      return null 
3   else 
4      condition c 
5      for each descendant node x´ of x and Con(x´,y)!=NULL 
6         int k=number of child edges between x and x ´ 

7         c=c Con(x´,y) ( edge-length(ni)=edge-length(y) [k,k])) 
8      end for 
9      return c 
10  end if 
End 

3.4   Checking Containment with Conditioned Homomorphism 

From Definition 1 in Section 3.2, containment of two tree patterns can be checked by 
conditioned homomorphism. Algorithm 2 checks containment of two tree patterns p 
and q. Line 1 reduces tree pattern q to adorned tree pattern q following a bottom up 
manner, which runs in time O (q). Then it calls function FIND-CONDITIONED-
HOMOMORPHISM to check containment between p and q . In Algorithm 1, each 
pair of (x, y) should be computed once for Con (x, y) and Con* (x, y). When comput-
ing Con (x, y), each child node y  of y is retrieved for Con* (x, y ), the number of 
child nodes is less than |q|. In computing Con* (x, y), each descendant node x of x is 
 



464 Y. Liao et al. 

retrieved for Con (x , y), the number of descendant nodes is less than |p|. Then check-
ing containment with conditioned homomorphism runs in time O (|p|2 |q| + |p| |q|2). 
Algorithm 2 is sound and efficient. It can check containment for tree patterns in  
frequently used cases where prior homomorphism algorithm may return false  
negatives. 

Algorithm 2. Checking containment ⊆ q 

Function: CHECK-CONTAINMENT 
Input: tree pattern p and q 
Output: boolean value indicating whether p⊆q holds 
Begin 
1   Apply the rewrite rules in (2) to q repeatedly, reducing it to q  
2   return FIND-CONDITIONED-HOMOMORPHISM(p, q ) 
End 

4   Hidden Conditioned Homomorphism Technique 

There are special cases in which conditioned homomorphism may return false nega-
tives. To solve this problem, conditioned homomorphism is extended to hidden condi-
tioned homomorphism which generates a more complete containment algorithm than 
the one proposed in previous section with the same complexity. 

4.1   Special Case Study 

Fig. 5(a) shows that conditioned homomorphism still fails in some cases. Since node2 
in tree pattern q has two child nodes, it will not be eliminated when apply the rewrit-
ing rules of (2) on q. Tree pattern q can be only embedded into tree pattern p under 
condition edge-length (node2) = [0, 0]. But, if the descendant edge of p is stretched, 
as illustrated in Fig. 5(b), sub-tree (node2) of tree pattern q can be embedded into any 
sub-tree pattern rooted at the node on the stretched path of p, including, of course, the 
sub-tree pattern rooted at the child node of node1 in p. Thus, in fact, p ⊆ q holds. 

 

Fig. 5. (a) Two tree patterns p and q, p ⊆ q, but conditioned homomorphism fails to check con-
tainment; (b) Embedding from q to q after stretch the descendant nodes of p 

 



 Hidden Conditioned Homomorphism for XPath Fragment Containment 465 

4.2   Hidden Conditioned Homomorphism 

For a tree pattern p, let pk be the tree pattern constructed by adding a * node as new 
root node and a child edge connecting the * node and the root node of tree pattern pk-1, 
and p0=p. Let (p) be the set of tree patterns: 

(p) = {pk | k=0, 1, 2…, } (3) 

Hence, in the example of Fig. 5(a) where p ⊆ q holds but conditioned homomorphism 
not exists, there is homomorphism from sub-tree (node2) of pattern q to pattern in 

(sub-tree (node2)) of pattern p.  

Theorem 3.  Let p be a tree pattern and q be an adorned tree pattern, and there exists 
conditioned homomorphism from q to p under condition c. If LABEL (ROOT(q)) = *, 
and all edges connecting ROOT(q) and its child nodes are descendant edges, then 
there also exists conditioned homomorphism from q to each pattern in (p) under 
condition c. 

Definition 2.  Let p be a tree pattern and q be an adorned tree pattern, and there exists 
conditioned homomorphism from q to patterns in (p) under condition c, and let tree 
patterns p =x//p, q =y/q, LABEL (x)=* or LABEL (x) = LABEL (y), then there exists 
a hidden conditioned homomorphism from q to p under condition c. 

It can be observed that, there is no explicit conditioned homomorphism from q to 
p . In Fig. 5(b), node2 of tree pattern q is mapped to nodes hidden in the descendant 
edge of tree pattern  p. That is why it is called hidden conditioned homomorphism. 

4.3   Checking Containment with Hidden Conditioned Homomorphism 

According to Theorem 3 and Definition 2, it is easy to determine the existence of a 
hidden conditioned homomorphism. To incorporate hidden conditioned homomorph-
ism into the containment checking process, it is only needed to replace the line 7 of 
the function COMPUTE-COMDITION* proposed in previous section with lines as 
follows: 

1   if(EDGE(y) C-EDGES(q) and EDGE(x) D-EDGES(p) and (EDGE(y´) D-
EDGES(q) for all child nodes y´of y)) 
2      c=c Con(x´,y) 
3   else 

4      c=c Con(x´,y) ( edge-length(ni)=edge-length(y) )) 
5   end if 

Obviously, the modified algorithm for checking containment still runs in time 
O(|p|2 |q| + |p| |q|2), and is more complete than the one proposed in Section 3. 

5   Experimental Results 

Four algorithms have been implemented: canonical model (CM for short), homo-
morphism (HO), conditioned homomorphism (CH) and hidden conditioned  
homomorphism (HCH). CM and HO are both derived from [12]. 
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Table 1. Some of the pairs of boolean tree patterns for experiments and containment results 

No. p q HO CM CH HCH 
no.1 a//b[c]//d a//*[.//c]//d True True True True 
no.2 a/b[c]/e/c a/*/*/c True True True True 
no.3 a//b[*//c]/b[b/c]//c a//b[*//c]b/c True True True True 
no.4 a//b[c/*//d]/b[c//d]/b/c/d a//b[c/*//d]/b/c/d False True True True 
no.5 a//*/b/c a/*[.//c]//b False True False True 
no.6 a//*/b//b/c a/*/*/*/c False False False False 
no.7 a/b[.//c]//d a//b[c]/d False False False False 

 

Fig. 6. Experimental results for query containment 

The inputs of all algorithms are boolean tree patterns, not XPath expressions. Some 
of the most representative test cases are given in Table 1, where boolean tree patterns 
are represented using XPath syntax. Intuitively, the structure and size of tree patterns 
inputted for containment checking have great effect on the running time of the algo-
rithms. The test cases in Table 1 demonstrate these variations. The size of tree pattern 
ranges from 4 to 11, which is reasonable for frequently used queries, and the fragment 
of tree patterns are in XP{ , *}, XP{ ,  //}, XP{*, //} and XP{ , *, //}. 

In the first five test cases, p is contained in q, and in the last two cases, p is not con-
tained in q. The containment results of algorithms are shown in Table 1. Algorithm HO 
and CH returned false negatives in some cases, but HCH and CM didn’t. Running time 
of the algorithms on test cases is illustrated in Fig. 6, where Y-axis represents running 
time in microseconds. Obviously, HCH is always more efficient than CM.  

6   Conclusion 

This paper investigates the checking of containment for an important core fragment of 
XPath. Many XML applications could benefit from a practical and efficient algorithm 
for checking containment of such expressions. Two techniques - conditioned homo-
morphism and hidden conditioned homomorphism are provided for the checking of 
containment. The experiment shows that these techniques are more complete than 
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homomorphism technique, and the derived algorithms are more efficient than that of 
canonical model technique. 
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Abstract. Unlike in traditional databases, queries on XML streams are
bounded not only by memory but also by real time processing. Recently
proposed Hole-Filler model is promising for information transmission and
publication, by slicing XML data into low consuming, easy synchronized
fragments. However, XPath queries evaluate the elements in streamed
XML data, not the XML fragments, and operation dependence caused
by fragments decelerates processing efficiency. By taking advantage of
schema information for XML, this paper proposes a model of tid tree
to optimize queries over XML fragments by removing “redundant” op-
erations. It then proposes XFPro for processing XPath queries on XML
fragments to achieve processing and memory efficiency. Our performance
study shows that XFPro performs well both on execution time and
memory metrics.

1 Introduction

XML [1]is emerging as a de facto standard for information representation and
data exchange over the web. As semi-structural data, XML can be represented
as a tree-structural model with data contents and structural relationships among
them. Evaluating XML queries, such as XPath [2] and XQuery [3], is thus widely
studied in database management systems. Figure 1 gives an XML document and
its DOM tree, which acts as an example of our work.

However, being inherently hierarchical, stored XML data poses an overwhelm-
ing overhead on runtime factors, which is not suitable for stream processing. In
stream model, data arrives in continuous streams and has to be analyzed in
real-time by one pass. Hence, queries on XML streams are bounded not only by
memory but also by real time processing. Many applications, such as network
intrusion detection, sensor network monitoring, business transactions and earth
climate monitoring, involve analysis of streaming data.

Recently, many research work focus on answering queries on streamed XML
data, such as XFrag [4], XStreamCast [5] and etc. In XFrag framework, large
XML documents are fragmented into manageable chunks of information and
XQueries are processed on steamed XML fragments in a pipelined model, with-
out having to wait for the entire XML document to be received and materialized.
In [5], a query algebra for XQuery that operates on fragmented XML stream data
is presented. All these framework are built on streamed XML fragment model.
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<co mmo d ities >
  <v en d o r>
    <n ame>W al-M art</n ame>
      <items >
        <item>
          <n ame>PDA </n ame>
          <make>HP</make>
          <mo d el>PalmPilo t</mo d el>
          <p rice cu rren cy =" USD" >315.25</p rice>
        </item>
        ...
      </items >
    </v en d o r>
    ...
</co mmo d ities >

1

commodities

2

vendor

3

name

4

items

6

name

7

make

8

model

9

price

5

item

currency

W al-Mart

USDPDA HP PalmP ilot 315.25

...... 93

item

……

vendor

name items

Carrefour

315 316

314

......

......

Fig. 1. An XML Document and its DOM Tree

In order to correlate each XML fragments, Hole-Filler model is proposed
in [6]. In the model, a hole represents a placeholder into which another rooted
subtree (a fragment), called a filler, could be positioned to complete the tree. In
this way, infinite XML streams turn out to be a sequence of XML fragments,
and queries on parts of XML data require less memory and processing time.
Furthermore, changes to XML data may pose less overhead by sending only
fragments corresponding to the changes, instead of sending the entire document.

Unfortunately, processing XML fragments instead of whole XML document
is fraught with challenges. It has to maintain the context of the fragments for us
to navigate from fragment to fragment and to cache the fragments related to the
query answer when necessary. Since not all the fragments can be available at the
same time and the fragments may arrive in any order, reducing the processing
cost is the key for queries on XML fragments.

In XFrag, XML fragments are processed as and when they arrive and only
those messages that may effect on the query results are kept in the association
table. However, the XFrag pipeline is still space consuming in maintaining the
links in the association tables and time consuming in scheduling the operations
for each fragment. Furthermore, since fragments are forwarded through oper-
ators on the pipeline, XFrag has to check the fragments’ head information on
each operator, which decelerates the processing efficiency. And it can not avoid
“redundant” operations when dependence occurs between adjacent operators.

This paper presents a new framework and a set of techniques for processing
XPath queries over streamed XML fragment. As compared to the existing work
on supporting XPath/XQuery over streamed XML fragment, we make the fol-
lowing contributions: (i)we present techniques for enabling the transformation
from XPath expression to optimized query plan. We model the query expres-
sions using tid tree and apply a series of transformations, which enable further
analysis and optimizations on query operations. Furthermore, such transforma-
tions reduce the query workload by specifying query operations such as “//”
and “*”. (ii)based on tid tree, we present a pruning scheme to cut off redun-
dant operations after query rewriting. In this way, we save the memory space
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and processing power. (iii)based on optimized tid tree, we propose query plan
transformation techniques, which map a tid tree directly into an XML fragment
query processor, named XFPro, and generate an efficient query execution plan.
Note that, we assume the query clients cannot reconstruct the entire XML data
before processing the queries.

The rest of this paper is organized as follows. Section 2 presents the related
work in the area of XML stream query processing. Section 3 introduces Hole-
Filler model as the base for our XML fragments. Section 4 gives a detailed
statement of our XML fragment processing framework. Section 5 shows exper-
imental results from our implementation and shows the processing efficiency of
our framework. Our conclusions are contained in Section 6.

2 Related Work

Many recent projects relate to query processing on streamed XML, such as
NiagaraCQ [7], XRQL [8] and FluXQuery [9]. The BEA/XQRL processor [8]
supports pipelined processing of streams by implementing the iterator model at
the expression level. However, query optimizations specially designed for XML
streams are limited in this system, and large documents cannot be processed.
Transducer networks [10] have also been used to handle a subset of XQuery
for streaming XML data. In Flux [9], XQuery is translated into event-based
intermediate representation (IR) and the buffer size is optimized by analyzing
the DTD as well as the query syntax.

Instead of evaluating infinite XML stream by token, several recent efforts have
focused on continuous processing of fragmented XML. The hole-filler model was
first proposed in [11]. However, it is used in the context of pull-based content
navigation over mediated views of XML data from disparate data sources. In
Xstream [12], the advantages of a semantics-based fragmentation of XML data
for efficient transmission over a wireless medium are highlighted. An alternative
fragmented XML processing model, suitable for pull-based web-service applica-
tions, is presented in Active XML [13].

In XstreamCast [5], XML fragments are broadcasted to clients in a push-based
streaming model and continuous query is processed in a historical timeline. In
comparison, we present systematic and powerful techniques for optimizing and
transforming queries that are not specifically written for fragment processing.
As we stated earlier, our additional contribution is specifying query expressions
and pruning “redundant” operations in them.

3 Model for Streamed Fragmented XML Data

In our approach, we adopt the hole-filler model [6] to describe XML fragments,
which hold both the data contents and structural relationships. In order to
simplify representation for further processing, a coding scheme is proposed to
compress such information.
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3.1 Preliminary Hole-Filler Model

We assume that a single document D is a node labelled acyclic tree with the
set V of infinite nodes and the set E of finite edges. XML stream begins with
finite XML documents and runs on as and when new elements are added into the
document or updates occur upon the existing elements. The following definitions
introduce some fundamental notions used in the rest of the paper.

Definition 1. An XML document D is a tree Td = (Vd, Ed, Σd, rootd, oid),
where Vd is an infinite set of nodes, including element nodes, attribute nodes
and text nodes; Ed is a finite set of directed edges, indicating parent-child re-
lationship between element nodes or containment relationship between element
nodes and attribute nodes; each node has a type and is identified by oid, Σd is
the set of node types; rootd (∈ Vd) is the root element of D.

Definition 2. A filler F is a subtree of XML document Tf = (Vf , Ef , Σf , rootf ,
f id, headf , Hd), where Vf is the subset of Vd, Ef is the subset of Ed and Σf is
the subset of Σd; each filler is identified by fid, which is included in headf ; Hd

is a finite set of holes; rootf (∈ Vf )is the root element of the subtree.

Definition 3. A hole H is an empty node n(n ∈ Hd) assigned with unique hid,
into which a filler with the same fid value could be positioned to complete the
tree.

Given an XML document tree, we can fragment it by recursively inserting a hole
at every point where a subtree is pruned, i.e. a filler is generated, and associating
it with an ID(the fid of the filler fragment). Note that the filler can in turn
have holes in it, which will be filled by other fillers. And we can reconstruct
the original XML document by substituting holes with the corresponding fillers
at the destination as it was in the source. However, reconstructing the entire
XML tree is not a good idea since the query has to wait for the end of the
stream to begin processing, which is not accommodated for infinite streamed
XML fragments. As will be discussed in the next section, our approach is to
process XML fragments as and when they become available in streamed model.

Definition 4. Tag structure is a fragment of XML document with the highest
priority TS = (Vt, Et, roott, IDt, Did), where Vt is an infinite set of tag nodes
in XML document; Et is a finite set of edges; IDt is a set of number identifying
the tag nodes in XML document; Did is the XML document identifier.

Tag structure is a structure summary for XML fragments. It provides structural
information for XML and captures all the valid paths [6]. In the hole-filler model,
tag structure not only provides the relationships between each element nodes, but
also involves fragmentation information of the XML data. It can be generated
according to XML Schema or DTD, and also can be obtained when fragmenting
an XML document without DTD.
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3.2 Encoding Scheme

The DTD and tag structure of the XML document (given in Figure 1) in
Section 1 are depicted in Figure 2.

Here, we encode the tag attribute “ID” and “Filler” together as a tag code.
For “Filler = true”, we set the end of the tag code with “1”, otherwise we set
it with “0”. And for attribute “ID”, we separate it from the “Filler” code by a
point. The tag code for tag ”vendor” in the previous example is 2.1, while the
tag code for tag “items” is 4.0. In this way, we can obtain the fragmentation
information by checking the end of the tag code.

Figure 3 gives two fragments of the XML document in Figure 1. Here, we
number the root filler (i.e. the root of the fragmented document) with fid 0.
And other filler IDs can be generated by pre-order traversing XML document
tree at the server site. Attribute tsid [4](i.e. tag structure id) indicates the ID
of the fragment’s root element in XML document DTD.

We associate fillers with holes by matching filler IDs with hole IDs. Fragment
2’s fid corresponds to a Fragment 1’s hid, which means Fragment 2 fills the
corresponding hole in Fragment 1 as a subtree when reconstructing the XML
document.

It is obvious that the contents in Fragment 1 remain relative stable to Frag-
ment 2, i.e. texts (or elements) in Fragment 2 ( such as “price”) may be up-
dated more frequently. We can save transmission cost by sending Fragment 2

1

commodities

2

vendor

3

name

4

items

*

+

6

name

7

make

8

model

9

price

5

item

<s tream: s tru ctu re>
  <tag  n ame=" co mmo d ities "  id =" 1"  Filler=" tru e" >
    <tag  n ame=" v en d o r"  id =" 2"   Filler=" tru e" >
      <tag  n ame=" n ame"  id =" 3"  />
      <tag  n ame=" items "  id =" 4" >
        <tag  n ame=" item"  id =" 5"   Filler=" tru e" >
          <tag  n ame=" n ame"  id =" 6"  />
          <tag  n ame=" make"  id =" 7"  />
          <tag  n ame=" mo d el"  id =" 8"  />
          <tag  n ame=" p rice"  id =" 9"  />
        </tag >
      </tag >
    </tag >
  </tag >
</s tream: s tru ctu re>

Fig. 2. Tag Structure of Hole-Filler Model

Fragm ent 1:
<c om m odities  filler id="0" ts id="1">
  <vendor>
    <nam e>W al-Mart</nam e>
      <item s>
        <s tream : hole id="10" />
        <s tream : hole id="20"  />
        . . .
  </vendor>
  . . . .
</c om m odities>

Fragm ent 2:
<s tream : filler id="10" ts id="5">
  <item >
    <nam e>PDA</nam e>
    <m ake>HP</m ake>
    <m odel>Palm Pilot</m odel>
    <pric e c urrenc y="USD">315.25</pric e>
  </item >
</s tream : filler>

Fig. 3. XML document Fragments
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rather than the whole XML document. Furthermore, we can cut “price” as a
single fragment to save update transmission cost. This will lead to higher cost in
querying item/price, for the elements now are in two different fragments. There
is a trade-off between transmission cost and query cost. In this paper, we assume
that XML documents have been fragmented already. What we focus on is query
execution on XML streaming fragments at client site. Fragmenting algorithm is
stated in [14] and omitted here.

4 XFPro Query Handling

Based on hole-filler model, infinite XML streams turn out to be a sequence of
XML fragments, which become the basic processing units of the query. How-
ever, input queries evaluate the elements in the XML document, not the XML
fragments. Since fragments with the same tag code share the same structure, we
can skip evaluating the structural relationship inside the fragments and expedite
processing time by rewriting the queries for XML fragments.

This section focuses on the analysis and optimization we perform for queries on
fragments. Our goal is to correctly rewrite the query so that it can be processed
directly on fragments, and to prune off the redundant path evaluations. Initially,
we give an overview of our framework.

4.1 Overview

In this paper, we consider the class of XPath queries that are formed using
only the following axes: child, attribute, or descendant axes, denoted as forward
XPath. The following query, referred to as Query 1, is an example on the XML
document described in Section 1.

Query 1: /commodities/vendor/items/item[name=‘‘PDA’’]/price

The analysis we perform in this paper is based on the following key observa-
tions on queries over streamed XML fragments. In a path expression consisting
of predecessor node and successor node, operation dependence (see definition
6)occurs if the following conditions hold true:

– The query result to predecessor node and successor node are in the same
fragment, or

– Any fragment matching the predecessor node also matches the successor
nodes.

The first condition is straightforward. Let us consider the second condition.
When the query nodes involve predicates, the result set of the successor query
must be a subset of that of the predecessor query. When the query nodes have
no predicates, the first condition holds true, which means that the query result
only depends on the predecessor node. Queries that satisfy this propriety are
referred to as subsumption dependence [15], which in most cases can be made
subsumption-free by removing the successor nodes.
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XFPro Query EngineTid Tree

XFPro Framework

Path Expressions

Prune Policy

Optimized Tid Tree

Query Plan

Query Transformer Query Plan Generator

Fig. 4. Overview of the Framework

Take Query 1 for example. According to the fragmentation information indi-
cated in tag structure, “commodities”, “vendor” and “item” are root nodes of the
fillers while “items”, “price” and“name” are not. Considering that a “vendor”
fragment with tsid 5, filler id 7 and hole ids from 10 to 100, arrives and is eval-
uated against the path expression from query node “commodities”, since query
nodes “items” and “vendor” belong to a common fragment according to the
fragmentation information in tag structure, fragments that match ”vendor” ob-
viously match “items”(without considering predicates). And such fragments need
not to be evaluated for structural relationship between “vendor” and “items”.

Much of our analysis bases on such query operation dependencies. Figure 4
shows the key phases in our XFPro system. First, we construct the tid tree
from query expression and tag structure. Then, according to tag structure, we
apply a series of policies to prune and optimize the tid tree. Such techniques
not only rewrite some queries to avoid redundant operations, but most impor-
tantly, they save the memory space and processing power. After optimization,
we transform the tid tree into query processor, and efficient query execution plan
is generated.

4.2 Tid Tree

We introduce tid tree to represent the query expression and enable further analy-
sis and optimizations on query operations.

Definition 5. Let N be the set of query nodes in a query Q. Tid tree is a tree
TT = (Tt, Et, roott, Pt, Ot), where Tt is the set of corresponding tag codes of the
nodes in set N; Et is a set of edges describing the structural relationship between
two nodes; Pt is a text set of the predicate values; Ot is an operator set including
boolean connectors; roott (∈ Vt) is the root element of the tree.

We introduce subroot node denoted as the root of a filler, and subelement node
that locates in a filler but is not the root of the subtree. By taking advantage of
tag codes, we can easily tell subroot nodes from subelement nodes by checking
the end of the code.
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1.1 2.1 4.0 5.1 7.0

6.0 "PDA"

=

Fig. 5. Tid Tree of Query 1

And parent-child relationship between nodes is represented by a single arrow,
while ancestor-descendant relationship between nodes is represented by a double
arrow. In the case that the descendant node corresponds to multiple tag codes,
we duplicate the descendant node and assign different tag codes to them (see
Section 4.3 for details). The output of the query is depicted by an arrow.

In order to distinguish between the node that represents a tag code and the
node that represents an atomic predicate, we represent tag nodes with circles
and values of predicates with rectangles. The operators (such as <, >, ≥, ≤,
=) and boolean connectors are represented with diamonds. The tid tree for the
Query 1 described in the previous section is shown in Figure 5. 1.1 is the tag
code of “commodities” and similarly, 2.1, 4.0, 5.1, 6.0 and 7.0 are the tag codes
of “vendor”, “items”, “item”, “price” and “name”. Here, “=” and “PDA” are
treated as operator node and predicate node respectively in the tid tree.

4.3 Optimizing Tid Tree

In XFrag [4], each query primitive corresponds to an XFrag operator, which
processes the fragment only if the tsid of the fragment matches that of the
operator. In the case that they do not match, the fragment is simply passed on
to the subsequent operator in the query tree.

However, in the case of operator dependence (as illustrated in Section 4.1), the
fragments that do not match the predecessor operator need not to be evaluated
against the successive one.

Definition 6. Given any pair of nodes in tid tree n1,n2, if the query result of
n2 is valid only if that of n1 is valid, n2 is considered dependent on n1. We use
directed edge e = (n1, n2) to imply the dependence between n1 and n2.

Definition 7. Given any pair of nodes in tid tree n1,n2, n2 is subsumption
dependent on n1 if: (i) n2 is dependent on n1, and (ii) the query result of n2 is
a subset of the query result of n1.

Subsumption-free queries are intuitively queries that do not contain “redun-
dancies”. Some queries can be rewritten to be subsumption-free, by eliminating
redundant portions. Much of our analysis focuses on finding such dependencies
on tsid nodes, to eliminate “redundant” query evaluations on structural rela-
tionship. In pruning process, we use dashed arrows to represent subsumption
dependencies, and solid arrows for subsumption-free dependencies.

Path Pattern Query. Path pattern query is the simplest type of queries.
Meanwhile it is the base of tree pattern query. Firstly, we assume that the query
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does not contain “//” and “*”. This class of query covers most of the structural
relationship “redundancies”. For example, Query 2 is a simple path pattern
query with only “/” involved.

Query 2: /commodities/vendor/items/item/name

The original query involves three fragments with tsid 1, tsid 2 and tsid 5
and the tid tree includes five steps with tsid 1, tsid 2, tsid 4, tsid 5 and tsid 6.
However, since fragments that don’t match tsid 2 obviously don’t match tsid 4,
i.e. tsid 4 subsumption depends on tsid 2.

We can rewrite the query to avoid such redundant operations by deleting
subelement nodes which have no predicates and are not the leaf nodes in tid
tree. According to tag code, subroot nodes ended with “1” are kept in the tid
tree while subelement nodes ended with “0” and without predicate node in their
children are removed. Since tsid 6 is a subelement node with predicate and tsid 7
is the leaf node in tid tree, they are kept in the tree. Figure 6 shows the optimized
tid tree after pruning off the dependent node 4.0 (depicted by “X”).

1.1 2.1 4.0 5.1 6.0

Fig. 6. The Pruned Tid Tree after removing Subsumption Dependence of Query 2

However, pruning path pattern query may lead to incorrect results, when “//”
and “*” are considered. This is because the ancestor node A before “//” and
the descendant node D after “//” may belong to different fragments. Hence the
fragment matches A may not match D. Similarly, “*” may not match in the
same filler and we cannot determine subsumption dependence directly.

In such cases, we need to rewrite the tid tree into “//” or “*” excluded form.
Taking “//” for consideration, we first capture all the paths from A to D when
traversing the tag structure. Then we insert the tag codes of corresponding
subroot nodes of D into tid tree and link them with A according to the path. In
this way, “//” is replaced by “/” and the query result is the merge set of each
output node in tid tree. Now we can apply the pruning scheme for “/” to the
rewritten tid tree. Figure 7 presents the tid tree of Query 3, which returns the
descendants “name” of “vendor”.

Query 3: /commodities/vendor//name

In Figure 7 (a), tsids of “name” are 3.0 and 6.0 and represented in two descen-
dant nodes of “vendor”, with tsid 2.1. In Figure 7 (b), the ancestor-descendant
relationship between “vendor” and “name” is substituted by parent-child rela-
tionship and all kinds of the fragments involved in this query are indicated.

Pruning path pattern query with “*” involved takes the similar scheme. Since
path pattern query is the base of tree pattern query, pruning scheme for path
pattern query can be applied to all kinds of the XPath expressions.
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1.1 2.1

3.0

6.05.1

1.1 2.1

3 .0

(a) O riginal Tid Tree (b) O ptim ized Tid Tree

6 .0

Fig. 7. Tid Tree of Query 3

Twig Pattern Query. Typically, a twig pattern query is a linear path pattern
query if predicates are eliminated. This linear path expression is called main
path expression, while other expressions inside predicates are called predicate
path expressions. Since we have discussed the pruning scheme for main path
expression, only the structural relationship between testing node and predicate
node is considered here.

There are two cases in twig pattern query, as depicted in Figure 8. One is the
case that the predicate expression and the testing node are in a common filler,
while the other case is not.

T[P] [P ]

roo t
tsid=1  fid=0

roo t
tsid=1  fid=0

tsid=t1  fid=f1 tsid=t2  fid=f2 tsid=2  fid=2

T

tsid=t1  fid=f1

(a) (b )

Fig. 8. Two Cases in Twig Pattern Query

In (a), the testing node T and predicate P share the same filler id. We prune
P only when it is a path expression but not value testing expression. This is
because the fragments with the same tsid share the same structure.

In (b), the testing node T and predicate P belong to different fragments. We
cannot prune P directly. However, after rewriting the tid tree by inserting the
subroot node of P , we can prune P when it is only a path expression but not
value testing expression.

4.4 Query Plan Generation

As described in the previous section, we rewrite original query into tid tree.
However, the tid tree only represents a view of relationships between tsid nodes
and predicates, while the details of query processing are not modelled. This
section focuses on the transformation from tid tree to the corresponding query
plan and gives a processing example of XFPro.

The transformation from tid tree of Query 1 into the XFPro processor is
depicted in Figure 9. Each subroot node in tid tree corresponds to an entry of
hash table, which is tagged by a value of true, false, undecided (⊥). And each
subelement node is added in a bucket tagged by an odd value linked to the



478 H. Huo et al.

1.1

2.1

6.0

"PDA"

5.1 =

7.0

1.1

2.1

HAS H T ABLE

5.1

result

6.0 7.0

= ''PD
A ''

BUC KET

Fig. 9. Transformation from Tid Tree to XFPro

corresponding entry of the subroot node, while each predicate node is added in
a bucket tagged by an even value linked to the corresponding entry. There is a
result entry at the end of the hash table, which has a linked bucket to cache the
candidate output. It conjuncts all the entries’ value and is set true only if all the
predecessor entries are set true.

T

2.1

5.1

result

6.0 7.0

=

HASH TABLE BUCKET

T

T
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result

6.0 7.0
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result
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HASH TABLE BUCKET

HASH TABLE BUCKET
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'

T

' 'P D A '
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Fig. 10. XFPro Processing Example

The XFPro processing for Query 1 is depicted in Figure 10. When the “com-
modities” fragment with tsid “1”, filler id “0” and hole ids “1, 21, 41” arrives,
the query hash table set the entry 1 with T and the information is saved in
the bucket linked to the entry. More over, the fragment with tsid “1” is tagged
with an undecided value when it has predicate and the condition has not been
evaluated for this fragment. Note that, at the point, the “commodities” filler
can be discarded as it is no more needed to produce the result and the hole
filler association is already captured. This results in memory conservation on
the fly. Similarly, when the “vendor” fragment with the corresponding tsid “2”
arrives, the entry 2 saves the information into the bucket and is set T , as there
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is no condition for it. When the “item” fragment with tsid “5”, filler id “3”
arrives, the entry 5 is set ‘⊥’, since it has predicate bucket. After determining
that the information in filler “3” matches the predicate, it sets the entry T .
The “item” fragment may also be discarded at the point conserving memory, for
the result value, which is a subset of the fragment, is already captured in the
linked bucket. Since all the entries in the hash table are set “true”, the value of
price is output as the result. The algorithms listed below describe the processing
method.

Algorithm1 FindQueryChild()
{Input an element node and trigger descendant operators}
IF (isHashTerminalNode(element)) THEN output element;
ELSE
q <- HashBucketFirstnode(QueryNextnode(element));
WHILE(q!=null)DO
IF (q.fid==elemnet.fid)
THEN q.val=element.val; FindQueryChild(q); q=q.next;
ELSE
FOR(p=element.hid;p!=null&&p.hid!=q.fid;p=p.next);
IF (p.hid==q.fid)
THEN q.val= element.val; FindQueryChild(q);q = q.next;

END IF END FOR
END IF

END WHILE
END IF

Algorithm 1 and 2 change the corresponding values of the hash table to sched-
ule triggering the descendant operator and inquiring the parent operator.

Algorithm2 FindQueryParent()
{Input an element node and inquire parent operator}
IF (HashQueryFirstnode(element)) THEN element.val=TRUE;
ELSE
q <- HashBucketFirstnode(QueryPrenode(element));
WHILE(q!=null)DO
FOR ( ; q!= null;q = q.next )
IF (q.fid==element.fid) THEN element.val = q.val;
ELSE
FOR (phid=q.hid; phid!= null; phid = phid.next);
IF(p.hid==element.fid) THEN element.val = q.value;
END IF END FOR

END IF END FOR
END WHILE
element.val=UNDECIDED;

END IF
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5 Performance Evaluation

We have implemented the XFPro translator engine in Java, which rewrites
XPath expressions into tid-tree based query plans for XML fragments. Our XF-
Pro query engine on fragmented XML streams processes the optimized queries
directly on the filler fragments before reconstructing the entire XML document.

All experiments are run on a PC with 2.6GHz CPU, 512M of memory and 80G
hard disk. The operating system is WindowsXP. The experiments are run on data
sets generated by the xmlgen program. We have written an XML fragmenter that
fragments an XML document into filler fragments to produce an XML stream,
based on the tag structure defining the fragmentation layout.

We have selected three representative queries (Q1,Q2 and Q3) on the gener-
ated XML documents and compared the results with the XFrag Processor [4].

Query1:doc("book.xml")/book/sections/section/subsection/title
Query2:doc("book.xml")/book/section[difficulty>="default"]/title
Query3:doc("book.xml")/book/title/section[difficulty>="default"]

To illustrate the differences in the query execution methods on the filler frag-
ments, consider the Query 1 that returns the subsection title of the books. Since
“section”, “subsection” and “title” are in common filler fragments, according
to the fragmentation information in tag structure, our query operates “subsec-
tion” and “title” over fragment only when the fragment tsid matches that of
the operator. Furthermore, each fragment is only evaluated once and hashed
to corresponding item if tsid matches. While in XFrag, each fragment needs
to be passed on through the pipeline and evaluated step by step. In this way,

Query 

File size Fragmented 

File Size 

Method Run time memory 

 10Mb 11.04Mb XFPro 

XFrag 

518.27ms 

1875.00ms 

0.36Mb 

0.62Mb 

Q1 15Mb 17.56Mb XFPro 

XFrag 

1377.05ms 

3926.50ms 

0.81Mb 

1.35Mb 

 20Mb 23.18Mb XFPro 

XFrag 

2121.59ms 

5245.56ms 

1.18Mb 

1.83Mb 

Q2 

10Mb 

15Mb 

20Mb 

11.98Mb 

19.20Mb 

24.12Mb 

XFPro 

XFrag 

XFPro 

XFrag 

XFPro 

XFrag 

3015.92ms 

7329.70ms 

4585.60ms 

11444.55ms 

6727.93ms 

15259.40ms 

1.87Mb

2.13Mb 

5.39Mb 

6.95Mb 

6.78Mb 

9.83Mb 

Q3 

10Mb 

15Mb 

20Mb 

11.78Mb 

19.38Mb 

24.33Mb 

XFPro 

XFrag 

XFPro 

XFrag

XFPro 

XFrag 

3005.86ms 

7239.07ms 

4550.15ms 

11429.71ms 

6674.87ms 

15154.78ms 

2.08Mb 

2.03Mb 

5.01Mb 

6.64Mb 

6.73Mb 

8.86Mb 

Fig. 11. Experimental Results
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our method performs better than XFrag. The results of the experiments are
summarized in Figure 11.

From the experimental results, we observe that the XFPro method outper-
forms the XFrag method mainly on running time, while the memory cost of these
two methods makes little difference. That is because both of the methods adopt
the policy of keeping the output-related information of the fragments while hash
buckets use less links than association table. For the query processing time, the
XFPro method saves CPU time by avoiding subsumption operations. Further-
more, the XFrag method has to schedule the operations for each fragment, while
the XFPro only changes the corresponding value of the hash table.

6 Conclusions

This paper has presented a framework and a set of techniques for processing
XPath queries over streamed XML fragments. We present techniques for enabling
the transformation from XPath expression to optimized query plan. Our query
model of tid tree helps to transform queries on element nodes to queries on
XML fragments and analyze “redundant” operations in them. Furthermore, such
transformations specify query operations such as “//” and “*” and reduce the
query workload. Based on optimized tid tree, we present a scheme to map a
tid tree directly into an XML fragment query processor, and thus efficient query
execution plan is generated. Our experiments show that our framework performs
well on saving processing power and memory space.

Acknowledgments. This research was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 60473074 and 60573089) and Spe-
cialized Research Fund for the Doctoral Program of Higher Education (SRFDP).

References

1. W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edi-
tion). (2000) http://www.w3.org/TR/REC-xml.

2. W3C Working Draft: XML Path Languages (XPath), ver 2.0. (2001) Tech. Re-
port WD-xpath20-20011220, W3C, 2001, http://www.w3.org/TR/WD-xpath20-
20011220.

3. W3C working draft: XQuery 1.0: An XML Query Language. (2001) Technical
Report WD-xquery-20010607, World Wide Web Consortium.

4. Bose, S., Fegaras, L.: XFrag: A query processing framework for fragmented XML
data. In: Eighth International Workshop on the Web and Databases (WebDB
2005), Baltimore, Maryland (June 16–17,2005)

5. Bose, S., Fegaras, L., Levine, D., Chaluvadi, V.: A query algebra for fragmented
XML stream data. In: Proceedings of the 9th International Conference on Data
Base Programming Languages(DBPL 2003), Potsdan, Germany (September 6–8,
2003)

6. Fegaras, L., Levine, D., Bose, S., Chaluvadi, V.: Query processing of streamed
XML data. In: Eleventh International Conference on Information and Knowledge
Management (CIKM 2002), McLean, Virginia, USA (November 4–9, 2002)



482 H. Huo et al.

7. Chen, J., J.DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous
query system for internet databases. In Chen, W., Naughton, J.F., Bernstein, P.A.,
eds.: SIGMOD Conference, Dallas, Texas, USA, ACM (2000) 379–390

8. Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T.,
Carey, M.J., Sundararajan, A.: The BEA/XQRL streaming xquery processor. In
Freytag, J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J., Selinger, P.G., Heuer,
A., eds.: Proceedings of the 29th International Conference on Very Large Data
Bases, Berlin, Germany (2003)

9. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An opti-
mizing xquery processor for streaming XML data. [16] 1309–1312
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Data Bases. In Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blake-
ley, J.A., Schiefer, K.B., eds.: Proceedings of the 30th International Conference on
Very Large Data Bases, Toronto, Canada, Morgan Kaufmann (2004)



An Efficient Algorithm for Computing
Range-Groupby Queries

Young-Koo Lee1,�, Woong-Kee Loh1,��, Yang-Sae Moon2,
Kyu-Young Whang1, and Il-Yeol Song3

1 Department of Computer Science &
Advanced Information Technology Research Center (AITrc),

Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea

{yklee, woong, kywhang}@mozart.kaist.ac.kr
2 Department of Computer Science,

Kangwon National University, Chunchon, Kangwon, Korea
ysmoon@kangwon.ac.kr

3 College of Information Science and Technology,
Drexel University, Philadelphia, Pennsylvania, USA

song@drexel.edu

Abstract. Aggregation queries for arbitrary regions in an n-dimensional
space are powerful tools for data analysis in OLAP. A GROUP BY query
in OLAP is very important since it allows us to summarize various trends
along with any combination of dimensions. In this paper, we extend the
previous aggregation queries by including the GROUP BY clause for ar-
bitrary regions. We call the extension range-groupby queries and present
an efficient algorithm for processing them. A typical method of achieving
fast response time for aggregation queries is using the prefix-sum array,
which stores precomputed partial aggregation values. A naive method for
range-groupby queries maintains a prefix-sum array for each combination
of the grouping dimensions in an n-dimensional cube, which incurs enor-
mous storage overhead. Our algorithm maintains only one prefix-sum
array and still effectively processes range-groupby queries for all possi-
ble combinations of multiple grouping dimensions. Compared with the
naive method, our algorithm reduces the space overhead by O( 1

2n ), while
accessing almost the identical number of cells.
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1 Introduction
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more useful for decision-making than the individual ones. Thus, OLAP queries
heavily compute aggregations for summarizing data. Since computing aggre-
gations is very expensive, the efficient aggregation algorithms are crucial for
achieving good performance in OLAP systems [2, 4, 8].

OLAP is based on a multidimensional data model that employs multidimen-
sional arrays for modeling data, and the multidimensional arrays are called data
cubes [1, 3]. In OLAP, aggregation queries processed against arbitrary regions
are frequently used as powerful tools for data analysis [2, 4, 6, 7, 9, 11]. We call
the queries range-aggregation queries. In range-aggregation queries, query range
are imposed in the form of arbitrary contiguous ranges for each dimension. These
query ranges frequently have the numerical domains such as age, income, and
time, where the order between the values can be naturally defined [2, 4, 8].

Depending on the existence of grouping dimensions, range-aggregation queries
in an n-dimensional cube can be classified into two categories: those without
grouping dimensions and those with grouping dimensions. We call the former
range-non-groupby queries or range queries [8], and the latter range-groupby
queries. The range queries compute a single aggregation value from all the cells in
the specified region, and the range-groupby queries compute an aggregation value
for each combination of values of grouping dimensions. We call each combination
of values of grouping dimensions as a group key value.

Figure 1 shows the typical forms of SQL statements for the range queries and
the range-groupby queries. For a data cube C whose dimensions are D1, . . . , Dn

and whose measure is M , the range query and the range-groupby query are shown
in Figures 1(a) and 1(b), respectively, where n is the number of dimensions, and
[li, hi](1 ≤ i ≤ n) represents the query range for each dimension Di. Without
loss of generality, we assume that the first m(≤ n) dimensions are used for
grouping, i.e., D1, . . . , Dm are the grouping dimensions and Dm+1, . . . , Dn are
the non-grouping dimensions, throughout this paper.

Ho et al. [8] proposed a method that can effectively process the range queries.
In order to process range-sum queries, their method uses a prefix-sum array,
which stores precomputed partial sum results. The method has an advantage
that it always accesses the same number of cells (2n) regardless of the size of the
query region. Following this work, extensive research has been done for update-
efficient [2, 4, 5], approximate [6, 7], and progressive [9, 11] processing of range
queries. Recently, a similar idea was adopted for processing temporal aggregation
queries [12, 13], which retrieve summarized information from the time-evolving
attributes.

To our knowledge, no previous method for processing range-groupby queries
has been presented in the literature. In this paper, we propose an efficient method
for computing range-groupby queries. A simple extension of the prefix-sum ar-
ray method proposed by Ho et al. [8] maintains a prefix-sum array for each
combination of grouping dimensions, which we call a naive prefix-sum method.
However, such a method incurs enormous storage overhead. We explain more on
the method in Section 3.
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SELECT SUM(C.M)
FROM C
WHERE l1 ≤ C.D1 ≤ h1

. . .
AND ln ≤ C.Dn ≤ hn;

(a) A Range Query

SELECT C.D1, . . . , C.Dm, SUM(C.M)
FROM C
WHERE l1 ≤ C.D1 ≤ h1

. . .
AND ln ≤ C.Dn ≤ hn

GROUP BY C.D1, . . . , C.Dm;

(b) A Range-Groupby Query

Fig. 1. Classification of Range-Aggregation Queries

We present a novel method that maintains only one prefix-sum array while
achieving almost the identical performance compared with the naive prefix-sum
method. We show that some clusters are formed from the cells accessed when
computing the range-groupby queries using a prefix-sum array. The proposed
algorithm takes advantage of the notion of cluster. In addition, through formal
analysis, we demonstrate the effectiveness of our algorithm in terms of the num-
ber of accessed cells and the storage overhead. Our method accesses the cells by
the unit of cluster instead of individual cells and avoids duplicated accesses of
the same cells, which may incur performance degradation. Compared with the
naive prefix-sum method, our algorithm reduces the space overhead by O( 1

2n ),
while requiring to access a similar number of cells. Moreover, compared with the
method that directly accesses the data cube, our algorithm reduces the number
of accessed cells by O(rsn−m), where rs is the size of the query region for a
dimension.

The rest of this paper is organized as follows. Section 2 reviews the concept
of prefix-sum array and the method for computing range-sum queries using the
prefix-sum array. Section 3 presents the naive prefix-sum method for computing
range-groupby queries. Section 4 proposes our range-groupby algorithm using
only one prefix-sum array. Section 5 presents the results of the analysis on our
algorithm. Finally, Section 6 concludes this paper.

2 Related Work: Prefix-Sum Array and Range-Sum
Queries

Our method for computing range-groupby queries is based on the prefix-sum
array proposed by Ho et al. [8]. In this section, we review the prefix-sum array
and the range-sum queries. A prefix-sum array is defined as follows: For an
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Fig. 2. Computation of a Range-Sum Query Using a Prefix-Sum Array

OLAP database consisting of dimensions D1, . . . , Dn, let array A be the data
cube for the database, and P be the prefix-sum array of A. In addition, let the
domain of Di be {0, 1, . . . , |Di|−1}, where |Di| is the cardinality of the dimension
Di

1. Then, a cell P [p1, . . . , pn] is defined as the aggregation value of the cells in
the region specified by two boundary points A[0, . . . , 0] and A[p1, . . . , pn]. The
following Eq. (1) formally defines the value of a cell in P .

P [p1, . . . , pn] =
p1∑

v1=0

· · ·
pn∑

vn=0

A[v1, . . . , vn] (1)

Figure 2 shows an example of processing a range-sum query that computes the
range-sum of a region X [lx : hx]×Y [ly : hy] in a two-dimensional data cube. As
shown in the figure, the range-sum for X [lx : hx]×Y [ly : hy] is equal to the range-
sum of X [0 : hx]× Y [0 : hy], subtracted by the ones of X [0 : hx]× Y [0 : ly − 1]
and X [0 : lx−1]×Y [0 : hy], and added by the one of X [0 : lx−1]×Y [0 : ly−1].
The four range-sums correspond to P [hx, hy], P [hx, ly − 1], P [lx − 1, hy], and
P [lx − 1, ly − 1], respectively. Thus, the range-sum of X [lx : hx]× Y [ly : hy] can
be easily computed by P [hx, hy]−P [hx, ly − 1]−P [lx− 1, hy] + P [lx− 1, ly− 1].

The technique can also be applied to COUNT and AVERAGE. The following
Lemma 1 [8] formally defines the equation for processing range-sum queries using
a prefix-sum array in an n-dimensional space.

Lemma 1. Consider an array A representing a data cube C consisting of di-
mensions D1, . . . , Dn, and the prefix-sum array P for A. Then, the range-sum
query that has the query range [li, hi] for each dimension Di can be computed
by the following Eq. (2):

h1∑
v1=l1

· · ·
hn∑

vn=ln

A[v1, . . . , vn] =

∑
v1∈{l1−1,h1}

· · ·
∑

vn∈{ln−1,hn}
(−1)αP [v1, . . . , vn] , (2)

1 The dimension with the continuous domain values such as income uses a transformed
domain, which is called a rank domain [8]. A rank domain is created using a mapping
function that maps the continuous domain values to the finite number of discrete
domain values while preserving the order.
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where α is the number of vi’s such that vi = li − 1 among vi’s in P [v1, . . . , vn].
We note that when li = 0, vi becomes −1. For notational convenience, we set
P [v1, . . . , vn] = 0 if vi = −1 (this value does not exist) for at least one vi. �

Ho et al. [8] showed that, when computing a range-sum query using Eq. (2), the
number of cells to be accessed from P is 2n.

3 The Naive Prefix-Sum Method for Computing
Range-Groupby

In this section, we describe the naive prefix-sum method for computing range-
groupby queries using multiple prefix-sum arrays. Consider a range-groupby
query over a data cube A consisting of dimensions D1, . . . , Dn, whose query
ranges are [li, hi](1 ≤ i ≤ n), and D1, . . . , Dm are grouping dimensions as as-
sumed in Section 1. (Non-grouping dimensions are Dm+1, . . . , Dn.) A range-
groupby query computes the aggregated values for each group key value (D1, . . . ,
Dm) = (a1, . . . , am) (lj ≤ aj ≤ hj)(1 ≤ j ≤ m) using the following Eq. (3):

hm+1∑
vm+1=lm+1

· · ·
hn∑

vn=ln

A[a1, . . . , am, vm+1, . . . , vn] . (3)

The aggregation values in Eq. (3) can be efficiently computed by maintaining a
data structure having a prefix-sum array for each group key value of the grouping
dimensions. We define such a data structure in Definition 1 and formalize the
computation method of the range-groupby queries using the data structure in
Lemma 2.

Definition 1. Consider an array A representing a data cube C consisting of
dimensions D1, . . . , Dn. We define GP1..m as the group prefix-sum array of
grouping dimensions D1, . . . , Dm for array A. The value in the cell (D1, . . . , Dm,
Dm+1, . . . , Dn) = (q1, . . . , qm, qm+1, . . . , qn) of GP1..m is defined as follows:

GP1..m[q1, . . . , qm, qm+1, . . . , qn] =
qm+1∑

vm+1=0

· · ·
qn∑

vn=0

A[q1, . . . , qm, vm+1, . . . , vn] . (4)

�

Lemma 2. Consider an array A representing a data cube C consisting of dimen-
sions D1, . . . , Dn. Suppose that we process a range-groupby query with grouping
dimensions D1, . . . , Dm using GP1..m, and each dimension Di(1 ≤ i ≤ n) has
the query range [li, hi]. Then, the aggregated value for each group key value
(a1, . . . , am) can be computed by Eq. (5) below:
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hm+1∑
vm+1=lm+1

· · ·
hn∑

vn=ln

A[a1, . . . , am, vm+1, . . . , vn] =

∑
vm+1∈{lm+1−1,hm+1}

· · ·
∑

vn∈{ln−1,hn}
(−1)αGP1..m[a1, . . . , am, vm+1, . . . , vn] , (5)

where α is the number of vk’s (m < k ≤ n) such that vk = lk−1 among the vk’s
in GP1..m[a1, . . . , am, vm+1, . . . , vn]. �

The proofs for all the Theorems, Lemmas, and Corollaries in this paper are given
in [10]. For the rest of the paper, we use GP instead of GP1..m for simplicity.
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Fig. 3. Naive Prefix-Sum Method (Grouping Dimension = {X})

Figure 3 shows an example of processing a range-groupby query in a data
cube with dimensions X , Y , and Z. The query has a grouping dimension X and
the range conditions [x3, x5], [y3, y5], and [z2, z4] for X , Y , and Z, respectively.
Figure 3(a) is the array A representing the data cube. Figure 3(b) is a group
prefix-sum array GP of the grouping dimension is X . As shown in Figure 3(b),
the array GP has a prefix-sum array consisting of dimensions Y and Z for each
group key value xi of the grouping dimension X . For each group key value, the
cells accessed to compute the range-groupby query are represented as follows:
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– X = x3:
∑y5

vY =y3

∑z4
vZ=z2

A[x3, vY , vZ ] =
GP [x3, y5, z4]−GP [x3, y5, z1]−GP [x3, y2, z4] + GP [x3, y2, z1]

– X = x4:
∑y5

vY =y3

∑z4
vZ=z2

A[x4, vY , vZ ] =
GP [x4, y5, z4]−GP [x4, y5, z1]−GP [x4, y2, z4] + GP [x4, y2, z1]

– X = x5:
∑y5

vY =y3

∑z4
vZ=z2

A[x5, vY , vZ ] =
GP [x5, y5, z4]−GP [x5, y5, z1]−GP [x5, y2, z4] + GP [x5, y2, z1]

We compute the range-groupby query by computing the range-sum queries for
each group key value of X . In Figure 3(b), the shaded cells indicate the accessed
cells.

Corollary 1. When computing a range-groupby query using Eq. (5) in Lemma
2, the number of cells accessed from the array GP is 2n−m ×

∏
j(1≤j≤m)(hj −

lj + 1). �

In order to compute a range-groupby query, we have to read
∏

i(1≤i≤n)(hi−li+1)
cells when using a data cube. On the other hand, we only need to access
2n−m×

∏
j(1≤j≤m)(hj − lj +1) cells when using the group prefix-sum array GP .

However, the method is still impractical because it has to maintain a precom-
puted group prefix-sum array GP for each of 2n combinations of the grouping
dimensions.

4 The Proposed Prefix-Sum Method for Computing
Range-Groupby

In this section, we propose an algorithm that solves the storage problem of the
naive prefix-sum method. Our algorithm computes range-groupby queries using
only one prefix-sum array.

4.1 Characteristics of Range-Groupby Queries and Prefix-Sum
Arrays

We observe that the range-groupby queries have the following characteristics.
First, a range-groupby query can be divided into range-sum queries of

∏
j(1≤j≤m)

(hj − lj + 1) subregions. Each subregion consists of the cells that belong to one
group key value. That is, the cells whose group key value is (a1, . . . , am) form a
subregion delimited by range conditions [aj , aj ] of size 1 for grouping dimensions
Dj ’s (1 ≤ j ≤ m), and by range conditions [lk, hk] for non-grouping dimensions
Dk’s (m < k ≤ n). Second, these subregions are adjacent to each other.

We observe that the prefix-sum arrays have the following characteristics. First,
as shown in Lemma 1, range-sum queries using a prefix-sum array access the
same number (2n) of cells regardless of the sizes and shapes of query ranges.
Second, some cells accessed to process range-groupby queries for the subregions
that are adjacent to each other are repeatedly accessed. We discuss on this issue
in detail using examples in the next section.
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Fig. 4. Range-Groupby Query Using One Prefix-Sum Array (Grouping Dimension
= {X})

4.2 Patterns of Accessed Cells

We first discuss the case with one grouping dimension, and then generalize it to
the case with multiple grouping dimensions.

Clusters with One Grouping Dimension. Figure 4 shows an example of
the range-groupby query using a prefix-sum array of three dimensions X , Y ,
and Z. The query has a grouping dimension X and range conditions [x3, x5],
[y3, y5], and [z2, z4] for X , Y , and Z, respectively. Figure 4(a) represents the
region specified for aggregation in the data cube (array A); Figure 4(b) the cells
accessed in the prefix-sum array (array P ) of A. For each group key value of the
grouping dimension X , the cells accessed to compute the range-groupby query
are as follows:

– X = x3:
∑y5

vY =y3

∑z4
vZ=z2

A[x3, vY , vZ ] =
P [x3, y5, z4]− P [x3, y5, z1]− P [x3, y2, z4] + P [x3, y2, z1]
−P [x2, y5, z4] + P [x2, y5, z1] + P [x2, y2, z4]− P [x2, y2, z1]

– X = x4:
∑y5

vY =y3

∑z4
vZ=z2

A[x4, vY , vZ ] =
P [x4, y5, z4]− P [x4, y5, z1]− P [x4, y2, z4] + P [x4, y2, z1]
−P [x3, y5, z4] + P [x3, y5, z1] + P [x3, y2, z4]− P [x3, y2, z1]
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– X = x5:
∑y5

vY =y3

∑z4
vZ=z2

A[x5, vY , vZ ] =
P [x5, y5, z4]− P [x5, y5, z1]− P [x5, y2, z4] + P [x5, y2, z1]
−P [x4, y5, z4] + P [x4, y5, z1] + P [x4, y2, z4]− P [x4, y2, z1]

Now we analyze the pattern of the accessed cells. When processing X = x3
and X = x4, the prefix-sum array cells P [x3, y5, z4], P [x3, y5, z1], P [x3, y2, z1],
and P [x3, y2, z1] are repeatedly accessed. Likewise, when processing X = x4 and
X = x5, the prefix-sum array cells P [x4, y5, z4], P [x4, y5, z1], P [x4, y2, z4] and
P [x4, y2, z1] are repeatedly accessed. Since eight cells are accessed for each value
of X , we need to access 24 cells in total. However, if we remove the repeated
accesses, we only need to access 16 different cells. We note that the accessed
cells form four clusters (strips, in this case) that are parallel to the grouping
dimension X .

Lemma 3. Let P be the prefix-sum array for a data cube consisting of di-
mensions D1, . . . , Dn. Consider a range-groupby query, where Di has the query
range [li, hi] and the grouping dimension is D1. Then, when processing the range-
groupby query with P , the set U ′ of cells accessed from P is given by Eq. (6):

U ′ =
h1⋃

v1=l1−1

⋃
v2∈{l2−1,h2}

· · ·
⋃

vn∈{ln−1,hn}
{P [v1, v2, . . . , vn]} . (6)

�

Corollary 2. When computing a range-groupby query with one grouping di-
mension, the number of cells to be accessed from the prefix-sum array P is
2n−1 × (h1 − l1 + 2) according to Lemma 3. �

By Lemma 3, the cells accessed form 2n−1 clusters (or strips) along the grouping
dimension D1. Each cluster has the range [l1− 1, h1] for the grouping dimension
D1 and a value of either lk − 1 or hk for each non-grouping dimension Dk(1 <
k ≤ n).

Clusters with Multiple Grouping Dimensions. Figure 5 shows an example
of the range-groupby query using a prefix-sum array of three dimensions X , Y ,
and Z. The query has two grouping dimensions X and Y , and range conditions
[x3, x5], [y3, y5], and [z2, z4] for X , Y , and Z, respectively. Figure 5(a) represents
the region specified for aggregation in the data cube (array A); Figure 5(b) the
cells accessed in the prefix-sum array (array P ) of A. For each group key value,
the cells accessed to compute the range-groupby query are as follows:

– X = x3, Y = y3:
∑z4

vZ=z2
A[x3, y3, vZ ] =

P [x3, y3, z4]− P [x3, y3, z1]− P [x3, y2, z4] + P [x3, y2, z1]
−P [x2, y3, z4] + P [x2, y3, z1] + P [x2, y2, z4]− P [x2, y2, z1]

– X = x3, Y = y4:
∑z4

vZ=z2
A[x3, y4, vZ ] =

P [x3, y4, z4]− P [x3, y4, z1]− P [x3, y3, z4] + P [x3, y3, z1]
−P [x2, y4, z4] + P [x2, y4, z1] + P [x2, y3, z4]− P [x2, y3, z1]

. . .
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Fig. 5. Range-Groupby Query Using One Prefix-Sum Array (Grouping Dimensions =
{X, Y })

– X = x5, Y = y5:
∑z4

vZ=z2
A[x5, y5, vZ ] =

P [x5, y5, z4]− P [x5, y5, z1]− P [x5, y4, z4] + P [x5, y4, z1]
−P [x4, y5, z4] + P [x4, y5, z1] + P [x4, y4, z4]− P [x4, y4, z1]

Now we analyze the pattern of the accessed cells. We can see that when either
the X or Y value is increased by one, four cells are repeatedly accessed. When
both X and Y values increase by one, two cells are repeatedly accessed. Since we
have nine possible combinations of X and Y values, and eight cells are accessed
for each combination, we need to access 72 cells in total. However, if we remove
the repeated accesses, we only access 32 different cells. We note that the accessed
cells form two planes parallel to the X-Y plane.

In general, these clusters are m-dimensional rectangles, where m is the number
of the grouping dimensions. Theorem 1 generalizes the pattern of accessed cells
for multiple grouping dimensions.

Theorem 1. Let P be the prefix-sum array for a data cube consisting of di-
mensions D1, . . . , Dn. Consider a range-groupby query, where Di has the query
range [li, hi] and the grouping dimensions are D1, . . . , Dm. Then, the set U ′ of
cells accessed to process the query using P is represented by Eq. (7):
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U ′ =
h1⋃

v1=l1−1

· · ·
hm⋃

vm=lm−1⋃
vm+1∈{lm+1−1,hm+1}

· · ·
⋃

vn∈{ln−1,hn}
P [v1, . . . , vm, vm+1, . . . , vn] . (7)

�

Corollary 3. When computing a range-groupby query, the number of cells to be
accessed from the prefix-sum array P is 2n−m×

∏
j(1≤j≤m)(hj− lj +2) according

to Theorem 1. �

By Theorem 1, we can see that the accessed cells form 2n−m m-dimensional
rectangles parallel to the subspace consisting of the grouping dimensions. In
other words, the cells form 2n−m clusters, where each of the clusters consists of
the values in the interval [lj − 1, hj] for a grouping dimension Dj (1 ≤ j ≤ m)
and lk − 1 or hk for a non-grouping dimension Dk (m < k ≤ n).

4.3 Range Groupby: Proposed Algorithm

Figure 6 shows the algorithm Range Groupby that processes range-groupby
queries by taking advantage of the pattern of accessed cells as presented in
Theorem 1. The key idea of the algorithm is that, by accessing the cells in P
only once for processing a range-groupby query, the algorithm avoids any possi-
ble disk accesses caused by the duplicated accesses of the same cells in P , which
may incur performance degradation. The inputs are an n-dimensional prefix-
sum array P and the query ranges [li, hi](1 ≤ i ≤ n) for each dimension. Let
G = {D1, . . . , Dm} be grouping dimensions.

Step 1 reads the cells of the prefix-sum array needed for computing the range-
groupby query into main memory. The cells are read in the unit of cluster. Since
even the total clusters are much smaller in size than the whole prefix-sum array
P , they can fit in main memory. According to Theorem 1, each cluster consists
of the region bounded by the interval [lj−1, hj] for grouping dimensions Dj(1 ≤
j ≤ m), and [vk, vk] of size 1 for non-grouping dimensions Dk(m < k ≤ n),
where vk is either lk − 1 or hk. Step 2 computes aggregation for each group key
value by using the cells retrieved in Step 1.2 and Eq. (8).

5 Performance Analysis

In this section, we compare the performance and the storage overhead of the
proposed algorithm Range Groupby with two other methods for computing
range-groupby queries. As the performance measure, we use the number of cells
accessed from disk.

No Precomp. This method processes a range-groupby query by directly ac-
cessing the cells within the given query region in the data cube. This method
does not use precomputed results, and has no extra storage overhead. How-
ever, the method accesses the largest number of cells.
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Algorithm. Range Groupby

Input:
(1) An n-dimensional prefix-sum array P
(2) A query range [li, hi] for each dimension Di(1 ≤ i ≤ n)

Output:
Result of aggregation

1 [Read the cells of P for each cluster into main memory to be used for processing
the range-groupby query]
Let Dm+1, . . . , Dn be non-grouping dimensions. For each cluster, i.e., for each
value (vm+1, . . . , vn) of (Dm+1, . . . , Dn), where vk ∈ {lk − 1, hk} (m < k ≤ n),
DO
1.1 Construct a cluster whose region is bounded by the interval [lj − 1, hj ] for

grouping dimensions Dj(1 ≤ j ≤ m) and [vk, vk] for non-grouping dimensions
Dk(m < k ≤ n).

1.2 Retrieve the cells in the cluster into main memory.
2 [Compute the aggregation value for each group key value]

For each value (v1, . . . , vm) of (D1, . . . , Dm), where vj ∈ [lj , hj ](1 ≤ j ≤ m), DO
2.1 Compute the range-sum whose region is bounded by the interval [vj , vj ] for

grouping dimensions Dj and [lk, hk] for non-grouping dimensions Dk(m <
k ≤ n). It can be computed using the cells of P retrieved in Step 1.2 and the
following Eq. (8):

hm+1

vm+1=lm+1

· · ·
hn

vn=ln

A[v1, . . . , vm, vm+1, . . . , vn] =

vm+1∈{lm+1−1,hm+1}
· · ·

vn∈{ln−1,hn}
(−1)αP [v1, . . . , vm, vm+1, . . . , vn] . (8)

Fig. 6. Range-Groupby Algorithm Using One Prefix-Sum Array

Full Precomp. This is the naive prefix-sum method described in Section 3. It
maintains 2n prefix-sum arrays for every possible combination of grouping
dimensions.

Range Groupby. This method uses the algorithm Range Groupby presented
in Section 4.2, which uses only one prefix-sum array. This method reads the
cells from the array only once, thereby avoiding multiple accesses to the same
cells.

Table 1 summarizes the number of cells accessed from disk and the storage
overhead for processing range-groupby queries. Table 1 shows that the number
of cells accessed by Range Groupby is very close to that by Full Precomp. It
shows the effectiveness of the notion of cluster, which enables avoiding repeti-
tive accesses of the same cells. The storage overhead is measured in the total
number of cells. Full Precomp needs to store one prefix-sum array for each of
2n combinations of grouping dimensions, and needs to store 2n×

∏
i(1≤i≤n) |Di|

number of cells in total, where |Di| is the cardinality of dimension Di.
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Table 1. Comparison of Three Range-Groupby Algorithms

Number of Accessed Cells Storage Overhead
No Precomp i(1≤i≤n)(hi − li + 1) i(1≤i≤n) |Di|
Full Precomp 2n−m × j(1≤j≤m)(hj − lj + 1) 2n × i(1≤i≤n) |Di|

Range Groupby 2n−m × j(1≤j≤m)(hj − lj + 2) i(1≤i≤n) |Di|

We now illustrate the results in Table 1 using graphs. Figure 7 shows the
number of accessed cells as the query range (h− l + 1) varies. For simplicity, we
assume that the sizes of the query ranges are equal for all the dimensions. In the
figure, we set n = 5 and m = 3. The horizontal axis represents the normalized
size of the query range, which is computed by dividing the size of the query range
(h−l+1) by the cardinality of the dimension |D|. The vertical axis represents the
normalized number of accessed cells computed by dividing the number of cells
accessed while processing the query by the total number of cells in the grouping
dimension space

∏
j(1≤j≤m)(hj − lj + 1).

In Figure 7, we note that Range Groupby accesses almost the same number of
cells as Full Precomp as shown in Table 1. (The ratio of the numbers of accessed
cells is

∏
j(1≤j≤m)

hj−lj+2
hj−lj+1 , which is very close to one.) No Precomp accesses∏

k(m<k≤n)
hk−lk+1

2 times as many cells as Full Precomp. Since the size of the
query range (hi−li+1) is much larger than 2, No Precomp accesses a far greater
number of cells than Full Precomp.
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Fig. 7. Number of Cells Accessed for Processing Range-Groupby Queries

Figure 8 shows the storage overhead as the dimension cardinality varies. In
the figure, we set n = 5. For simplicity, we assume that all the dimensions have
the same cardinalities. We represent the storage overhead in gigabytes of storage
space. Figure 8 shows that Full Precomp requires 32(= 2n) times as much storage
as Range Groupby.
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6 Conclusions

In this paper, we defined the range-groupby query and presented an efficient
algorithm for processing the query. A range-groupby query is a GROUP BY
query for an arbitrary region in an n-dimensional data cube. The range-groupby
queries are frequent in many of OLAP applications, since the queries allow
us to analyze various trends in a specified region from the diverse perspec-
tives (dimensions). To our knowledge, there has been no effort for finding an
efficient algorithm for range-groupby queries. The major contribution of this
paper is that we proposed an algorithm for processing range-groupby queries
in an n-dimensional data cube using only one prefix-sum array, regardless of
combinations of grouping dimensions, thereby significantly reducing the storage
requirements.

Through formal analysis, we showed the effectiveness of the proposed algo-
rithm in terms of the number of cells accessed while process the query and the
storage overhead. Compared with the method that directly accesses the data
cube, the proposed algorithm reduces the number of accessed cells by O(rsn−m),
where rs is the size of the query region for a non-grouping dimension. Compared
with the method that maintains precomputed results for all the possible com-
binations of the grouping dimensions, the proposed algorithm reduces the space
overhead by O( 1

2n ) while requiring no more number of accessed cells.
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Abstract. In order to efficiently evaluate range-aggregate queries in
data warehouse environments, several works on data cubes (such as the
aggregate cubetree) are proposed. In the aggregate cubetree, each entry
in every node stores the aggregate values of its corresponding subtree.
Therefore, range-aggregate queries can be processed without visiting the
child nodes whose parent nodes are fully included in the query range.
However, the aggregate cubetree does not take range queries using par-
tial dimensions and range queries without aggregation operations into
account. That is, 1) a great deal of information that is irrelevant to the
queries also has to be read from the disk for partially-dimensional range
queries and 2) while it improves the performance of range queries with
aggregate operations, it degrades the performance of the range queries
without aggregate operations. In this paper, we proposed a novel index
structure, called Aggregate-Tree (denoted as Ag-Tree), which gets rid of
the above-mentioned weaknesses of the aggregate cubetree without any
side effects. The experiments and discussions presented in this paper
indicate that the new proposal is significant for range queries in data
warehouse environments.

1 Introduction

Several terms that are necessary to understand this paper are explained and the
background of this paper is presented.

1.1 Terms

Range-aggregate queries. An example of range-aggregate queries over a
relation F (D1, D2,· · ·, Dn, M) is as follows

SELECT AggregateFunction(M)
FROM F
WHERE l1 ≤ D1 ≤ h1
AND l2 ≤ D2 ≤ h2
AND · · ·
AND lk ≤ Dk ≤ hk,

where F is a fact table that a range-aggregate query is executed on. D1, D2, ...,
and Dn are dimension attributes, M is a measure attribute, and k dimension

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 498–512, 2006.
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attributes (D1, D2, · · ·, Dk) (k ≤ n) are used to determine the query range. The
attributes used for the query condition in the where-clause are called query at-
tributes (dimensions). Generally, possible range-aggregate queries include range-
COUNT/SUM/AVG/MIN/MAX queries. If the queries provided from users are
not with any aggregate operations, then the queries aim at the tuples in the
query ranges.

Partially-dimensional range queries. The existing studies on multidimen-
sional indexing have been directed to all-dimensional queries ( referred to herein
as AD queries), in which the queries are evaluated using all the index dimen-
sions. However, in many applications, the query conditions (ranges) are often
formed with partial (not all) dimensions, which are called partially- dimensional
range queries (referred to herein as PD range queries).

Let us see PD range queries by an example. For a relational table T with eight
attributes of A1 - A8. Assume that the actual attribute combinations possibly
used in query conditions be {{A1, A3}, {A2, A5},{A3, A4},{A5, A6}, {A1, A2},
{A2, A4}, {A1, A3, A5}, {A2, A4, A6}}. All of these queries are PD range queries.
Probably, there are many actual combinations of query attributes used in all pos-
sible PD range queries. Thus, it is not always feasible in applications with large
datasets for one index to be built for each possible combination of query at-
tributes, because (1) numerous indices have to be constructed and managed, (2)
many attributes are repeatedly included in different indices (e.g., A1 in three
indices in the above example), which is too space-consuming for large datasets
and results in a large maintaining cost, and (3) the combinations of index at-
tributes that can possibly be used in the user-provided PD queries are often
unpredictable. Note that, there are a total of (2n− 1) different combinations for
n possible query attributes.

1.2 Background

Data warehouse [1] is a database system for analysis, which extracts, integrates,
and transforms data from an OLTP database, and stores them in efficient struc-
tures for analysis. Relational databases use star schemas [2] for representing
analysis data. The fact table is the center of the star schema, and it consists
of dimension attributes related to the dimension tables and measure attributes
that are numeric values and may be aggregated. In data warehouse environments,
generally, the size of the fact table is so large that the query processing can be
time consuming. Various methods have been proposed to solve this problem. The
scheme maintaining materialized views [3, 9, 10] for the fact table through the
data cube [4, 11, 12] is one of those. The data cube is an operator that computes
aggregate functions over all possible groups in the fact table. By keeping the
result of the data cube operation as a materialized view, fast query execution is
possible through the summary information of the fact table. This materialized
view is stored as a relation, which may be large. Therefore, overhead is heavy
for creating an additional index on the materialized view in order to improve
the query performance.
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In order to improve the performance of cube queries, cubetree [7, 8] is pro-
posed and used as a technique materializing a data cube through an R-tree-like
structure. But the queries have to traverse all internal and leaf nodes in the
query range to compute range-aggregate queries [6]. Countering this problem,
the work [15] proposes an enhanced cubetree, called aggregate cubetree, in which
each entry of all internal nodes stores the aggregate value(s) of the whole subtree
rooted it. Therefore, by using these aggregate values, range-aggregate queries can
be processed without visiting the child nodes whose parent nodes are fully in-
cluded in the query range. The aggregate cubetree is better than the original
cubetree because it can evaluate queries with a smaller number of node accesses.

Obviously, however, the aggregate cubetree suffers from the following two im-
portant drawbacks. 1) It does not take into account PD range queries, which
is very popular in data warehouse environments. A great deal of information
that is irrelevant to the queries also has to be read from the disk for PD range
queries. 2) It does not take into account the queries without aggregation opera-
tions. In actual applications, not all queries given from users are with aggregate
operations. That is, many queries may aim at the tuples in the given range.
Certainly, the structure of the aggregate cubetree also can be used for range
queries without aggregate operations. However, while it improves the perfor-
mance of range queries with aggregate operations, it degrades the performance
of the range queries without aggregate operations. This is because many aggre-
gation values (especially when several aggregate functions are simultaneously
necessary) in the accessed nodes also have to be read from the disk, although
they are not used in the queries at all.

In this paper, countering the weaknesses of the aggregate cubetree, we pro-
posed a novel index structure, called Aggregate-Tree (denoted as Ag-Tree), which
has the following two outstanding properties. 1) For PD range queries with or
without aggregate operations, only the information that is relevant to the queries
is read from the disk. 2) For the range queries without aggregate operations, no
matter they are AD range queries or PD range queries, the aggregate values are
not read from the disk. By this proposal, the above-mentioned drawbacks of the
aggregate cubetree are overcome without any side effects. In short, we propose
a novel structure that can efficiently evaluate both PD range queries and AD
range queries, no matter they are with aggregate operations or not.

The rest of this paper is organized as follows. Section 2 introduces some related
works. Our proposal, the Ag-Tree, is presented in Section 3 along with some
necessary algorithms and discussions. The experiment result is in Section 4.
And, Section 5 concludes this paper.

2 Related Works

In order to improve the performance of the range queries with the aggregate opera-
tions, many works have been done, especially around data cube [15, 19, 20, 21, 23].
The work [19] is on a technique called quotient cube, which is a summary structure
for a data cube that preserves its semantics, with applications for online
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exploration and visualization. The work [20] is on how to reduce the size of data
cubes. The work [21] is on how to perform aggregations on multiple dimensions
simultaneously. And the work [23] is on high-dimensional OLAP (e.g., 100 dimen-
sions). In this paper, we propose a novel structure that can efficiently evaluate
both PD range queries and AD range queries, no matter they are with aggregate
operations or not. Although no existing works are directed to multidimensional in-
dices for PD range queries, we found that the aggregate cubetree [15] is related to
our study. Before the introduction of the aggregate cubetree, let us briefly review
its predecessor, cubetree.

2.1 Cubetree

Cubetree is a tree structure for storing a data cube. If the data cube is built
on the fact table having n dimension attributes, then it is composed of hyper-
planes from n-dimension to zero-dimension. The basic idea of the cubetree [7, 8] is
mapping these n to zero-dimensional hyper-planes into n-dimensional space, and
storing them in an R-tree. The data cube organized as n-1 to zero-dimensional
data except for the original n-dimensional data is called dataless cubetree, and
the cubetrees made up of several n-1 dimensional R-trees from dataless cubetree
is called reduced cubetree. When the data cube is composed as the reduced
cubetree, the size of data cube can be reduced and the clustering effects can be
improved. Other techniques such as sorting and bulk loading can also be applied
to improve the clustering effects. However, the cubetree requires accessing all the
leaf nodes within the query range to process a range-aggregate query, which is
a primary factor that reduces the query performance as the size of query ranges
get larger. In data warehouse environments, aggregate queries are frequently
requested on large ranges, in which a large part of leaf nodes have to be accessed.
Thus, the original cubetree possibly show worse performance for such queries
than scanning the entire table [15].

2.2 Aggregate Cubetree

The basic structure of the aggregate cubetree is similar to that of the original
cubetree based on R*-tree. In the aggregate cubetree, each node is composed of
a number of entries. Each leaf node entry is made up of dimension attributes
and aggregate value of measure attributes, and each internal node entry is com-
posed of an MBR (Minimum Bounding Rectangle), child node pointer, and an
aggregate value. The aggregate value in each internal node entry is the aggre-
gate value of all the tuples in the corresponding subtree. Each aggregate value in
internal nodes can be calculated from the aggregate values in all its child node
entries.

The range queries on R-tree-like structures are performed by recursively
searching nodes overlapping the query range. In the cubetree, all of the nodes
overlapping the query range must be accessed for range-aggregate queries. In the
aggregate cubetree, however, by using the aggregate values in the entries of the
internal nodes, range-aggregate queries can be performed without visiting the
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child nodes whose parent nodes are fully included in the query range. Therefore,
the number of node accesses can be reduced compared with the cubetree.

Although the aggregate cubetree is originally directed to data cubes, its struc-
ture certainly can be used for range queries exerted on relational datasets. In
fact, it can be used to both AD and PD range queries, with or without aggregate
operations. Each entry in the leaf nodes corresponds to one tuple. Besides the
index attributes, the measure attributes are also contained in the leaf nodes.

3 Ag-Tree

The proposed method, Ag-Tree, is presented after a brief description of weak-
nesses of the aggregate cubetree.

3.1 Weaknesses of Aggregate Cubetree

As mentioned above, by storing all necessary aggregate values in intermediate
nodes, the aggregate Cubetree can improve the performance of range-aggregate
queries. However, it suffers from the following two weaknesses.

1. It does not take PD range queries into account. Like the other existing
multidimensional indices, in the aggregate cubetree, all the objects (tuples) are
clustered in the leaf nodes according to their information in all index dimensions
and, every node contains the information of its entries in all the index dimen-
sions (i.e., each node entry includes MBR edges in all index dimensions). That
is, the aggregate cubetree is also directed to evaluating AD range queries. Using
an n-dimensional aggregate cubetree, PD range query having k (k < n) query
dimensions can be evaluated by simply extending the query range in each of the
remaining (n − k) irrelevant index dimensions to their whole data ranges. The
weakness is that, each node of the aggregate cubetree contains n-dimensional in-
formation, but only k-dimensional information is necessary for an k-dimensional
PD range query, which means that a great deal of unnecessary information (i.e.,
the information in the irrelevant dimensions) also has to be read from disk. This
certainly greatly degrades the query performance.

2. It does not take the queries without aggregation operations into
account. The aggregate cubetree is directed to the queries having aggregate
operations. Actually, there are still many queries that need not aggregate op-
erations (e.g., those aiming at the tuples in the query range). If the aggregate
cubetree is used to evaluate such queries, then so many aggregation values in
the accessed nodes also have to be read from the disk, although they are not
used in the queries at all. In other words, the aggregate values in the aggregate
cubetree nodes reduce the capacity of each node, especially, in the cases that
several aggregate values of COUNT, SUM, AVG, MIN and MAX are necessary.

By the proposed method in this paper, both of the above problems can be
solved without any side effects. That is, for PD range queries, the information
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Fig. 1. Structure of Ag-Tree

in the irrelevant dimensions need not be read from disk, and for the queries
having no aggregate operations, no aggregate values are read from disk. Thus,the
proposed method can efficiently evaluate both PD range queries and AD range
queries, no matter they are with aggregate operations or not.

3.2 Ag-Tree

The key idea of the Ag-Tree includes the following points. 1) Every node of the
n-dimensional aggregate cubetree is divided into n one-dimensional nodes, each
of which only holds information in one dimension. Thus, for PD range queries
with or without aggregate operations, only the nodes corresponding to the query
dimensions are possibly accessed. The nodes in the irrelevant dimensions can be
skipped. 2) Unlike the aggregate cubetree, all the aggregate values are contained
in some special nodes, which are independent of the index parts of the Ag-Tree. In
this way, the nodes for aggregate values need not be accessed for the queries with-
out aggregate operations. General structure of Ag-Tree is depicted in Fig. 1(a),
in which the white nodes form the index part and the black nodes, called aggre-
gate nodes, store aggregate values. Figure 1(b) shows one node-group, in which A-
values means “aggregate values”, i.e., all or part of {COUNT, SUM, AVG, MIN,
MAX}. All the entries with the same index in different nodes of each node-group
(i.e., all the entries in each ellipse) form one complete MBR whose aggregate val-
ues are contained in the aggregate node in the same location (index).

In the aggregate cubetree, each node entry corresponds to one complete MBR
(one subspace in the index space). In the Ag-Tree, however, each node en-
try only corresponds to one edge of the corresponding MBR, i.e., a complete
n-dimensional MBR is divided into n edges, which are stored in different nodes
of one node-group with the same index location. In other words, the entries in
the same location (index) of the node-group forms a complete MBR, which is
shown in Fig. 2.

Figure 2 is an example of entries in a node-group of the Ag-Tree in a two-
dimensional index space. In this example, each complete MBR is divided into
two parts, which are separately contained in two nodes of one node-group. For
example, Xentryi and Y entryi in Fig. 2 correspond to the two edges of MBRi
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paralleling the X-axis and the Y-axis, respectively. That is, Xentryi+Y entryi =
MBRi. Note that, for simplicity, Figure 2 does not include the aggregate nodes.

Here, the following two questions may occur.

How to determine the capacity of each node-group? Obviously, all of
the nodes in each node-group must have the same number of entries. Based on
the principle of “one node one page”, we can determine the capacity of each
node in the index part (say fx) and that of the aggregate node (say fa). Then,
the final fanout/capacity of each node-group should be the smaller one of fx

and fa, i.e., min{fx, fa}. Generally, fa > fx. Thus, commonly speaking, the
final fanout/capacity of each node-group is determined by the index-part. In
other words, the aggregate nodes generally do not influence the fanout of the
index part.

Whether or not the “node-dividing” of the Ag-Tree results in a great
increase in the total number of nodes? The answer is “No”. This is because
each node of the Ag-Tree only contains the information in one dimension and no
aggregate values in it, which means each node of the Ag-Tree can contain much
more number of entries than each node in the aggregate cubetree.

3.3 Algorithms

Insert and delete algorithms. The insert algorithm of the Ag-Tree is naive
extensions of the counterparts of R*-tree. When the new tuple reaches a leaf node-
group, it is divided and stored in different nodes according to dimensions. If split
is necessary for an overflowed node-group, all its nodes have to be split at the
same time and the split may be up propagated. After a delete operation, if the
node-group under-flowed, all its nodes should be deleted at the same time and
all its entries are inserted again. That is, all the nodes in each node-group must
be born simultaneously and die simultaneously. For the aggregate nodes, as the
new tuples are inserted, the corresponding aggregate values in the ancestor node-
groups should be updated. The insert and delete algorithms are omitted here.

Algorithm for range queries without aggregate operations. This algo-
rithm can be used for AD range queries and PD range queries without aggregate
operations, which is shown in Table 1.
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Table 1. Algorithm for range queries without aggregate operations

Procedure RangeQuery (rect, node-group)
Input: rect: query range

node-group: initial node-group of the query
Output: result: all the tuples in rect
Begin
For each entry e ∗) in node-group Do

If e INTERSECT rect in all the query dimensions ∗∗) Then
If (node-group is not at leaf) Then

RangeQuery (rect, e.child); //e.child means the child node-group of e
Else result ← e

EndFor
End

*) An entry includes all parts with the same index in the different nodes of this node
-group.

**) When an entry is investigated to determine whether it intersects the query range,
only the nodes corresponding to the query dimensions need be accessed. EVEN,
in the visited node-groups, not all nodes corresponding to the query dimensions
are necessary to be checked because that the investigation of the current entry
can be stopped if it is found not to intersect the query range in the current query
dimension.

Table 2. Algorithm for range queries with aggregate operations

Procedure RangeSUM (rect, node-group)
Input: rect: query range

node-group: initial node-group of the query
Output: result: sum of aggregate values in the query range
Begin

SUM type result ← 0;
For each entry e in node-group Do

If e IsFullyContainedBy rect in all the query dimensions (condition1) Then
result ← result+e.aggregateSUM
// e.aggregateSUM is SUM value corresponding to e.

Else If (node-group is not at leaf) AND
(e NotSeparatedFrom rect in all the query dimensions) (condition2)

Then
result ← result+RangeSUM (rect, e.child);
//e.child means the child node-group corresponding to e

EndFor
Return result

End

Algorithm for range queries with aggregate operations. An algorithm
for Range-SUM queries is shown in Table 2. The algorithms for other aggregate
functions are similar.
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Like the algorithm in Table 1, when an entry is checked to determine its
relationship (IsFullyContainedBy, NotSeparatedFrom) with the query range, only
the nodes corresponding to the query dimensions need be accessed. EVEN, not
all the nodes in the query dimensions are necessary to be checked (see Table 1).

Once the current entry e is found not fully to be contained in the query range
in some query dimension (condition1 in this algorithm) and node-group is not
at leaf level, the relationship of NotSeparatedFrom will be checked (condition2).
In condition2, once the current entry e is found not to intersect the query range
in some query dimension, the investigation of e is concluded.

When the search reaches at leaf nodes, condition1 is used to judge whether
or not each entry is contained in the query range. The measure attribute values
of the entries that are located in the query range will be add to the result.

3.4 Discussion on Query Performance

The unique features of the Ag-Tree are that, the information in different dimen-
sions is divided and stored in different nodes, and the aggregate values are stored
in independent nodes. Thus, the Ag-Tree appears to be efficient for PD range
queries. No matter they are with or without aggregate operations.

Certainly, we also can build two aggregate cubetrees for range queries with-
out aggregate operations and with aggregate operations, respectively. This way,
however, (a) heavily wastes space, especially for large datasets, (b) maintaining
two indices needs extra cost, and (3) the above problem of PD range queries still
remains even two indices are built.

The structure of the Ag-Tree guarantees that it can be applied to PD range
queries with any combinations of the query dimensions, no matter such PD
range queries are with or without aggregate operations. The information in the
dimensions that are irrelevant to the current query is not read from disk for
PD range queries and the aggregate values are read from disk only when they
are necessary. Moreover, as mentioned in the discussion of Table 1, even not all
nodes (of the visited node-groups) corresponding to the query dimensions are
necessary to be checked.

Next, let us see AD range queries. The Ag-Tree still appears to have advantage
over the aggregate cubetree considering 1) aggregate values are read from disk
only when they are necessary and 2) although all of the nodes in the visited node-
groups intuitively have to been accessed for AD range queries, it is actually not
true. Let us see the reason by an example in a three-dimensional index space,
which is shown in Fig. 3.

In Fig. 3, because the MBR of the current node-group intersects the query
range, the entries (the dotted cuboides) in this node-group should be investi-
gated. Anyway, since all these entries do not intersect the query range in the
X-Y plane, the Z-axis need not be checked. That is, the node corresponding to
the Z-axis in this node-group can be skipped and the information in the Z-axis
in this node-group need not be read from disk. Note that, if the X-Z plane is
first checked, the node corresponding to the Y-axis can be skipped. More impor-
tantly, for the higher-dimensional spaces, because the MBRs (entries) in each
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Fig. 3. Example of AD range queries

node-group become sparser, it generally becomes possible to skip more nodes in
the visited node-groups. This means that, in the visited node-groups, the infor-
mation in one or more dimensions possibly need not be read from secondary stor-
age even for all-dimensional range queries. On the contrary, for all-dimensional
indices (e.g., the aggregate cubetree), the information corresponding to all of the
dimensions in the visited nodes have to be read from disk.

Thus, even for AD range queries, the Ag-Tree also probably has better query
performance than the aggregate cubetree, especially for AD range queries with-
out aggregate operations (so many aggregate values have to be read from disk
in the case of the aggregate cubetree, although they are not used at all).

4 Experiments

Datasets having Zipf distribution with a constant of 1.5 (like the works [15, 17])
are used to examine the behavior of the Ag-Tree for range queries with or without
aggregate operations. The datasets have 200000, 300000 and 500000 tuples, each
of which have six attributes. Only the results for the dataset with 200000 tuples
are presented in this paper because of the limitation on the number of pages.
Note that the performance advantage of the Ag-Tree becomes slightly larger as
the size of dataset grows.

All the experiments were performed with FreeBSD 4.5 release and the node
size is 4096 bytes. Query performance is measured in term of the number of
leaf node accesses because (1) I/O cost is still the performance bottleneck for
many systems. Thus, the number of accessed nodes is tested and compared
in many studies on multidimensional indexing, (2) the leaf nodes constitute the
overwhelming majority of the total nodes and they tend to be stored in secondary
storage [18], and (3) The Ag-Tree is wider than the aggregate cubetree and it
is possibly lower than the Aggregate Cubetree since each node-group can holds
more tuples. Thus, comparing the number of accessed leaf nodes is fairer.

The range queries having various numbers of query dimensions (from one to six)
are tested with different range sizes. The ratio of the side length of query range
to domain size of the corresponding query dimension varies from 10% to 100% in
increments of 10%. The range query for the range of the same size is repeatedly
100 times with random locations and the average performance is presented. From
the experiment results, we can see that the Ag-Tree can be used more efficiently
to range queries, no matter they are with or without aggregate operations.
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4.1 Range Queries Without Aggregate Operations

The experimental results are depicted in Fig. 4, where the X-axis represents
range size and the Y-axis represents the number of accessed leaf nodes.

Figure 4 shows that

(1) as the number of query dimensions increases, the performance advantage
of the Ag-Tree compared to the aggregate cubetree becomes weaker. Anyway,
even for AD range queries, the advantage is still clear in most cases (see Section
3.4 for the reason),
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Fig. 4. Experimental result for range queries without aggregate operations



Ag-Tree: A Novel Structure for Range Queries 509

(2) the performance of range queries exerted on the aggregate cubetree be-
comes better as the number of query dimensions increases. This is because that
the search region can be limited in more dimensions, and

(3) as the number of query dimensions increase, the query performance of the
Ag-Tree varies in an interesting way. On the one hand, the number of accessed
node-group decreases in the same reason as (2). On the other hand, the number
of the accessed nodes in each accessed node-group may increases. Under these
two conflicting influences, as the number of query dimensions increases, the query
performance of the Ag-Tree does not change much in cases that the query size
is not greater than 40%. However, if the query size exceeds 50%, the query
performance of the Ag-Tree degrades clearly as the number of query dimensions
grows. This seems because that more nodes generally have to be accessed in each
visited node-group (see Fig. 3).

4.2 Range Queries with Aggregate Operations

The Range-SUM query is chosen as an example. The experiment result is shown
in Fig. 5, in which the results for one and three query dimensions are not pre-
sented because the limitation of the number of pages and they do not lead to
any new observations.

Figure 5 shows that both the query performance of the aggregate cubetree
and that of the Ag-Tree degrade slowly as the query size grows. It appears
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Fig. 5. Experimental result for range queries with Range-SUM
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because that there are the following two conflicting tendencies as the query size
increases.

1. More nodes intersect the query range.
2. More nodes are fully contained in the query range and their child/descendant

nodes need not be checked.

The other observations are the same as those in Section 4.1.

5 Conclusion

In this paper, a novel structure for range queries in data warehouse environments
is proposed. The proposed structure is called Aggregate-Tree and denoted as
Ag-Tree, in which the information of each node entry is divided and stored in
individual nodes according to the index dimensions. In addition, the necessary
aggregate values are stored in separated nodes that are independent of the in-
dex nodes. In this way, for the partially-dimensional range queries (denoted as
PD range queries in this paper) with or without aggregate operations, only the
information in the query dimensions is possibly read from the disk. And, for the
range queries without aggregate operations, no matter they are all dimensional
range queries or partially-dimensional range ones, the aggregate values are not
read from disk. The discussions and various experiments indicate that the pro-
posed method can be efficiently used for range queries, no matter they are with
or without aggregate operations. Although the proposed method is based on
R*-tree, many other structures also can be employed. The basic requirements
for applying the proposed method to an index structure are that (1) the index is
MBR-based and, (2) in the index, the region that is covered by every node must
be completely contained within the region of its parent node. Note that, the idea
of the proposed method can not be used for the hyper-sphere-based structures
(such as SS-tree), which are directed to nearest neighbor queries (e.g., similarity
queries) and can not be efficiently used for range queries.
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Abstract. EXtensible Markup Language (XML) has rapidly gained importance 
as a mechanism for the exchange of information amongst heterogeneous 
sources over the web. In order to deal with the challenging task of managing the 
large volumes of data appearing, encoded in XML transactional databases, the 
need to explore the XML Document Warehouse (XDW) approach is initiated. 
The applications of the Requirement Engineering (RE) process and Object-
Oriented conceptual models have proven their usefulness in building successful 
software models and solutions. In this paper we introduce an integration 
methodology for the development of XDWs. Initially we provide a formal 
notation of the structural design for the XDW conceptual model. Secondly we 
focus on deriving requirements for the XDWs by exploring the Goal-Question 
Metric (GQM) approach. We adapt and extend this concept to XDWs and 
introduce a method for developing warehouse requirements considering user 
viewpoints and organizational objectives. The implementation of our proposed 
warehouse requirement derivation model is demonstrated using a case study 
example extracted from a simplified real-world scenario. 

1   Introduction 

Data Warehouses contain data extracted from various transactional databases, which 
have been cleaned, aligned and combined. A great quantity of document data, web 
data and other semi-structured data is being increasingly encoded in XML transact-
ional databases. EXtensible Markup Language (XML) has recently gained importance 
as a mechanism for the exchange of information between heterogeneous data sources 
over the web [1]. It is likely that a vast number of XML documents will comprise the 
would-be repository and include many disparate transactional XML databases. The 
need to efficiently manage large amounts of XML data motivated us to examine the 
data warehouse approach for XML data and documents, through the use of XML 
document marts and XML document warehouses. 

1.2   Related Work 

1.2.1   Data Warehouse 
Since the introduction of dimensional modeling (which revolves around facts and 
dimensions), various design techniques have been introduced to capture multi-
dimensional data (MD) at the conceptual level. These include: Ralph Kimball’s Star 
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Schema [2] from which the SnowFlake and StarFlake conceptual models were 
derived. In [3] [4] and [5], two different OO modelling approaches are demonstrated 
where data is described in n-dimensional cubes. In [6] the Object-Relational Star 
schema concentrates on data models and Object-Relational data warehouses with a 
distinct focus to provide support for the representation of two types of hierarchical 
relationships, which are aggregation and inheritance. These models both object and 
relational have a number of limitations if they were to be applied to XML Document 
Warehouses. The two major reasons include: (a) given XML’s non-scalar, set-based 
and semi-structured nature, the object and relational data design model types lack the 
ability to accommodate XML design level constructs in an abstract and implemen 
tation-independent form, and (b) there is insufficient emphasis on capturing user 
requirements early at the design stage. Despite the success and dominance of data 
warehouse models, to our knowledge, no research directions exist that formally define 
and incorporate a requirement derivation model into a high-level conceptual model 
for semi-structured data (namely XML). 

1.2.2   Goal Question Metric (GQM) Approach 
Measurement is defined as a method that supports answering a range of questions and 
provides sufficient feedback in relation to the performance of a software development 
process in its entire duration. Given the measurement outcome it is then important to 
determine the degree of necessity for implementing activities to assist with the 
improvement of the software engineering process. At this stage a significant aspect 
involves examining each activity’s overall impact to the software’s development. The 
GQM approach was established for organizations that require meaningful 
measurement in terms of their thoroughly identified goals and projects, within the 
software engineering development process. Applying the GQM method mainly 
involves obtaining and utilizing essential data to: (a) identify organizational goals 
operationally and (b) interpret these (collected data) in terms of the related elements 
of the stated goals.  

Gradually the use of the GQM approach deviated from its conventional purpose of 
identifying project deficiencies and evaluating goals. Nowadays it is currently 
encompassed in quality enhancement as a goal formation technique, targeting 
software development enterprises [7, 8]. Based on numerous studies [7, 8] in relation 
to the utilization of metrics and models in the industry, measurement proves valuable 
when it is instigated in a top-down approach and entails to: (a) concentrate on 
precisely identified goals, (b) apply to all objects (products, activities, resources) in 
the software development process and, (c) be interpreted based on the study of the 
organizational context, which includes its environment and goals as a whole. 

1.3   Brief Overview of Our XML Document Warehouse (XDW) Model 

The elements that comprise our proposed conceptual modeling approach for  
XML document warehouses, illustrated in [9], make this a distinct method as it 
utilizes two major components, which include: (a) the capability of XML Document 
Structure, to accommodate and explicitly describe heterogeneous, semi-structured 
data along with their relationship semantics (unlike flat-relational data), and (b)  
XML Schema, to describe, validate and provide semantics for its corresponding 
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instance document (XML document). It also has the ability to capture OO concepts 
and relationships as well as intuitive XML specific constructs derived from class 
decompositions and granularity of components. (i.e. ordering and homogeneous 
aggregation relation-ships).  

The proposed XDW model is composed of three levels: (1) Requirement Level 
(RL): Assists to the derivation of different dimensions (perspectives) of the document 
warehouse. This is accomplished through the development and elicitation of 
requirements based on the users viewpoints and organizational objectives. This level 
includes two main sub-components, namely: (a) Warehouse Requirement Document: 
Corresponds to the non-technically written outline of the XDW requirements, and (b) 
OO Requirement Model: Expresses all non-technical requirements into technical 
terms and software specific concepts using UML. (2) XDW Conceptual Level: 
Consists of two major components, which are: (a) The XML FACT (xFACT) 
Repository, which is a snapshot of the underlying transactional system for a given 
context, and (b) a collection of logically grouped Conceptual Views, which provide 
possible perspectives of the XML document hierarchy stored in the xFACT 
repository. These conceptual views can be grouped into logical groups, where each 
one is very similar to that of a given subject area [12] appearing in Object-Oriented 
conceptual modelling techniques. Each subject-area in the XDW model is referred to 
as a Virtual Dimension (VDim). VDim is called virtual since it is modelled using a 
conceptual view [13] (which is an imaginary XML document) and behaves as a 
dimension to a given xFACT. A requirement, which is captured in the OO 
Requirement Model, is transformed into one or more Conceptual Views [13], in 
association with the given xFACT. Therefore a valid requirement can be satisfied by 
one or more XML conceptual views for a given context (i.e. xFACT). (3) Logical 
Level: Involves the systematic transformation of the entire XDW conceptual model, 
into a major XML schema along with its corresponding XML document, through the 
use of generic transformation rules. This conversion process is demonstrated 
elaborately in our previous work [14]. 

1.4   Outline of Our XML Document Warehouse (XDW) Requirement Model 

In [10, 15] we examined the concept of Requirement Engineering (RE), more 
specifically the Goal-Oriented approach, and proposed the XDW Requirement 
Model. RE, similar with the GQM approach, is concerned with the activities carried 
out by the system and the objectives of different stakeholders. Our XDW 
Requirement Model focuses on capturing and eliciting requirements early at the 
design stage, by taking into consideration organizational objectives as well as user 
viewpoints. Furthermore these are particularly related to the XDW on deriving 
dimensions as opposed to associating organizational objectives to the system 
functions, which is traditionally carried out in RE. The key issue is the principal of 
correspondence between the real world representation and its domain. This involves 
the mapping of real world entities in the system, which tends to facilitate a system’s 
evaluation. Our XDW Requirement Modeling approach is unique as up to now there 
have been no attempts to capture requirements and the entirety of their semantic 
nature. 
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1.5   Contribution of the Paper 

In this paper we concentrate on the first two levels of the XDW Model namely the 
Requirement Level and the XDW Conceptual Level. Our primary purpose is to 
introduce an integration methodology for the development of XDW’s. In section 2 we 
provide a formal notation for our XDW conceptual model. This is achieved by using 
set theory approach to express the numerous types of components and relationships 
comprising the XDW conceptual model, which includes the XML FACT (xFACT) 
repository and the warehouse dimensions also referred to as Virtual Dimensions 
(VDim). Section 3 focuses on requirement formation for XDWs. It is important to 
recognize that until now, goal oriented approaches have been largely targeted at the 
development of software systems rather than focused on document warehouses 
involving embedded XML structures. This fact motivated us to explore the Goal 
Question Metric (GQM) approach. We adapt and extend this concept to 
accommodate XDW’s and to propose a formal technique for deriving warehouse 
requirements considering the users viewpoints and organizational goals.  

Based on the existing requirement-driven data warehouse models and/or research 
directions (mainly for relational data), requirements are identified and defined from 
given operational data. Our work differs from these directions as, users’ views and 
organizational goals take priority rather than available operational data, semantics 
and/or formats. Therefore in our work operational data and its semantics are 
complementary and used to refine organizational goals as opposed to just define these. 

The proposed Requirement Derivation Model using the GQM approach will be 
illustrated in detail with the use of a case study example. We investigate a possible 
XDW of a simplified version of a “Conference Publication” system used for 
managing and distributing conference proceedings of various international 
conferences held in different cities throughout the year. Conference proceedings 
consist of a collection of papers (past and present) stored in various geographically 
distributed conference databases/systems, in varying formats such as ACM, LNCS, 
IEEE. The system is similar to that of existing systems such as ACM Portal [16], 
SpringerLink [17] or IEEE Xplore® [18]. Logically, we treat all the different 
conferences and their proceedings as one big (logical) conference proceeding on the 
web (similar to the concept of a “global view” in enterprise systems). 

2   Formal Model Definition for XML Document Warehouses 
(XDW) 

The XDW conceptual model is composed of: (a) the XML FACT (xFACT) repository 
and (b) the Virtual Dimensions (VDims). A detailed illustration of the formal model 
definitions for the XDW Model is outlined in the following section. 

2.1   Development of the XML FACT (xFACT) Repository  

Definition A: A context is more than a measure but instead is an item that is of 
interest for the organization as a whole [3, 11]. The xFACT repository is a snapshot 
of the underlying transactional system for a given context. 
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The real world is comprised of a collection of entities and the relationships among 
them. A segment from the real world is referred to as a context, for instance our case 
study context is “Conference Publication”.  

At this stage, it is important to clarify the distinct meaning and representation of 
the xFACT repository, at the conceptual and logical levels respectively. At the 
conceptual level the data of a system’s context is captured and represented into the 
xFACT conceptual model (Figure 1) using UML with the use of objects, object 
attributes and relationships. At the logical level, the use of generic rules accomplishes 
a systematic transformation of our Object-Oriented (OO) conceptual model (xFACT) 
into XML Schema along with its corresponding XML Document. The objects 
represented in UML at the conceptual level become object instances at the logical 
level. Therefore one major xFACT XML Document is a collection of instances of the 
objects in the xFACT conceptual model. That is to say that the xFACT model is a 
document repository but the object instances at the logical level are not considered as 
separate XML documents as they are in fact translated as XML elements. The 
complete transformation methodology for the xFACT model from conceptual level 
into logical level is illustrated in detail in [14] using generic rules.  

The process of building the xFACT (Figure 1) for a given context involves to: (a) 
initially identify and name the real world objects, their attributes and relationships that 
may exist amongst these. The obtainment of the required information through 
descriptive declaration sets in the real world is a sufficient way to achieve this, and 
(b) map the identified components into equivalent UML objects, attributes and 
relationships.  
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Fig. 1. The complete xFACT model of the Conference Publication Case Study 
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The list of equations below aims to uniquely discover real-world components and 
map these into appropriate objects and/or semantic relationships. For instance the real 
world object Product is mapped and named Product as a UML object in the 
xFACT conceptual model. 

  Zo = {The set of declarations that exclusively distinguish real world objects that map 
to UML objects} 

Z  = {The set of declarations that exclusively distinguish real world object    
properties that map to UML object attributes} 

Z  = {The set of declarations that exclusively distinguish real world object    
relationships that map to UML object relationships} 

Z = {The set of declarations that exclusively distinguish all real world components} 

ρ ZZ Z Z a  o ∪∪=  (1) 

Equation (1) states that the union of all the declaration sets in the real world 
including, objects, objects attributes and objects relationships, composes Z.  

The different types of relationships amongst objects appearing in the xFACT 
conceptual model may include: association, inheritance and forms of aggregation such 
as: ordered (a composite object consists of sub-objects which have a specific 
ordering), and homogeneous (one ‘whole’ object consists of ‘part’ objects that are of 
the same type) [9]. Based on a given context each of the identified object’s 
relationship is expressed by cardinality which specifies how many instances of one 
class may be associated with a single instance of another class. Below  represents the 
cardinality set of values to be used: 

n} 1, {0,  =  (2) 

The cardinality values in (2) can form the following tuples which are presented in 
lower-bound upper bound format: (a) (0..0) No object instances may be connected to 
another. (b) (0..1) Indicates that none to maximum of one object instance to be 
connected to another. (c) (0..n) Signifies that none or many objects instances can be 
connected to another. (d) (1..1) Means that exactly one corresponding object instance 
is possible. (e) (1..n) Denotes that at least one object instance is connected to another 
and f) (n) means that there are no boundaries on minimum and maximum number of 
objects instances connected to another. 

2.2   XML FACT (xFACT) Repository Domain 

A domain, in general terms, relates with a set of possible values for a given entity, 
event, or subject matter. A universal real world domain is immense and having that a 
single context is one of its segments, signifies that all possible context domains are 
extracted from the one universal domain.  

In equation (1) we stated that one important component is the set of declarations 
that identify real world object properties. At the conceptual level, in the xFACT 
model, these will correspond as object attribute values and similarly at the logical 
level as XML elements and/or XML attributes. Hence the value domain at each level 
namely, the real world, conceptual and logical levels, is composed of the collection 
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of: real world object properties, conceptual object attributes and XML elements 
and/or XML attributes respectively.   

Below the relationship between a real world context x where 1  x n and the 
universal real world w is expressed, where each module has a domain dom. 

)dom(  )dom( Wx ⊆  (3) 

Equation (3) indicates that a given real world context x domain is a proper subset of 
the entire real world w domain as there is at least one element/value in w that is not in 

x. 
Let each of the real world object/s x, the corresponding conceptual object/s x and 

for each object’s XML schema and XML document, Dx at the logical level, to all have 
an individual domain dom where 1  x n. The domain mapping process starting from 
the real world level to conceptual level and finally to the logical level can be 
expressed as:  

)dom(D   )dom(  )dom( xxx →→Δ  (4) 

The following equations (5) shows the mapping stages of a given real world 
context x, to its equivalent xFACT Kx at the conceptual level and the corresponding 
XML schema and XML document Cx at the logical level, where each level has a 
domain dom where 1  x  n. 

)dom(C   )dom(K  )dom( xxx →→  (5) 

From the equations presented up to now, we can state that for a given context x, 
developing the conceptual model xFACT Κx is a matter of identifying and collecting 
the associated objects, attributes and relationships. Translating the conceptual model 
into the logical level becomes an entire XML schema together with an XML 
document, Cx. The concepts introduced so far are expressed as follows:  

Real World Domain )dom(  )dom(     and  xx x         x ⊆Δ⊆Δ  

Conceptual Level Domain )dom(K  )dom(     andK  xx x         x ⊆⊆  

Logical Level Domain )dom(C  )dom(D     andC  D xx x         x ⊆⊆  

(6) 

2.3   Context Perspectives (Virtual Dimensions) Domains 

In section 2.2 we stated that a context is a segment of the real world and can therefore 
be considered as one of the possible real world perspectives. In section 1.3 we defined 
that the various perspectives of the document hierarchy stored in the xFACT 
repository at the conceptual level are referred to as Conceptual Views. A logical group 
of conceptual views forms a Virtual Dimension (VDim).  Requirements are formed 
based on the of the user’s viewpoints and organizational objectives and are valid 
when fulfilled by one or more Conceptual View/VDim (section 1.3).    

Let x equal to a real world perspective, also allow the corresponding generated 
Conceptual View/VDim equal to CVx and at the logical level let the VDim XML 
schema and XML document to equal Vx, where all have value domains dom and 1  x 

 n. These are expressed in (7). 
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Real World Level Domain )dom(  )dom(  xx ⊆  

Conceptual Level Domain )dom(K  )dom(CV  xx ⊆  

Logical Level Domain )dom(C  )dom(V  xx ⊆  

(7) 

Equation (8) shows the domain-mapping channel of all three levels.  

)dom(V   )dom(CV  )dom( xxx →→  (8) 

Definition B: A Virtual Dimension (VDim) is a subset of a given XML FACT 
(xFACT) model at the conceptual level. A collection of Virtual Dimensions composes 
the xFACT model, which denotes that the xFACT is a superset of the all the existing 
Virtual Dimensions. 

3   Requirement Derivation Model Using the Goal-Question Metric 
(GQM) Approach 

In this section we will concentrate on the Requirement Level of the XDW model by 
introducing a requirement derivation technique using the principles of the Goal-
Question Metric (GQM) approach.  

Data warehouse requirements may arise from three main sources: (a) present and 
future organizational objectives based on current and past data, (b) user needs aligned 
with organizational objectives and (c) analytics used to fulfil organizational 
operations, such as frequent query paths (both internal and external) from the data 
warehouse.   

Rather than focusing on the quality of a system’s functionality, as it occurs in 
traditional goal-oriented approaches, we concentrate on the quality of products and/or 
services outlined in a given organizational context. What follows is a brief overview 
of our proposed Requirement Derivation Model for XDWs, shown in figure 3, which 
encompasses four main levels. (1) Establish primary organizational goals and define 
these based on the major principles of an organization, such as the products and 
services offered, the activities and resources used and ultimately the user viewpoints. 
The next step involves to decompose the derived high-level goals, where possible, to 
allow for new sub-goals to emerge. (2) Develop a set of questions for each stated goal 
to help discover various possible ways for their fulfillment. The questions formed are 
then used to assist in the discovery process of warehouse requirements. (3) The 
derived warehouse requirements are captured and modeled using our XDW 
Requirement Model, as illustrated in [10, 15], that will assist to generate the 
corresponding document warehouse dimensions. We use our requirement modeling 
approach because it is designed for XDWs and considering the presence of XML 
documents, the task of modeling the requirements and capturing their semantic nature, 
would otherwise be very challenging to attain. (4) Form a set of metrics in 
conjunction with the stated requirements that allows expressing each derived question 
in quantifiable terms. Metrics enable evaluation of the initial identified goals and 
determine the degree of their accomplishment. The implementation of our introduced 
Requirement Derivation methodology will be illustrated in more detail in section 3.2.  
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[Goals]
{Organizational Objectives, User Requirements, Analytical Requirements }

[Sub-goals]

Virtual Dimensions (VDim) Dimensional Queries (DQ)

[Sub-goals]

[Sub-goals] [Sub-goals]

XML FACT Repository (xFACT) DefinitionXML FACT Repository (xFACT) Definition

………………….. …………

 
Fig. 2. Path from Goals to xFACT Repository Definition 

We state that a high-level goal is a simplified, yet well-formulated and defined 
concept. The decomposition process involves breaking down one major component 
into several sub-segments. Goal decomposition generates one or more sub-goals, 
which provide an in-depth view and an enhanced understanding underlying the 
complexity of the concerned goal. Each well defined sub-goal corresponds to one or 
more XML Warehouse Requirement/(s), (XWR) which in turn corresponds to a 
collection of definitions for the Virtual Dimension (VDim) in the XDW model or 
warehouse (dimensional) queries. In simple terms, XWRs provide the blueprint for the 
VDims (and the dimensional queries) at the required level of complexity, abstraction 
and detail. The resulting collection of VDim (and the dimensional query) definitions, 
provide the formal blueprint of the xFACT. Conversely, a well-formulated xFACT 
should satisfy data and semantic requirements of all the VDims and dimensional 
queries that are formulated from the XWR. This concept is expressed in Figure 2. 

3.1   Outline of the Requirement Derivation Model for XDWs 

The Requirement Derivation Model is the initial stage that provides the foundation to 
help guide the design of the overall XDW structure. The intention is to map the 
derived requirements to corresponding data warehouse dimensions and subsequently 
configure the xFACT repository. The main themes of this methodology are to: 

(1) Identify high-level goals based on the organizational objectives as well as user 
viewpoints.  

(2) Understand the current stated goals and through hierarchical decomposition to 
derive one or more sub-goals. It is important to note that the level of 
decomposition varies for each goal as it depends on degree of their complexity.  
The higher the goal complexity, the more decomposition required. 

(3) Explore the possibility for each sub-goal to be further elicited to promote new 
goals, which would have not been otherwise considered. 

(4) Obtain the leaf goals, meaning the goals formed from the resulting decomposition 
process, and for each one to derive a set of corresponding questions that define 
this in operational terms. In other words to identify probable ways that will lead 
to goal fulfillment.  
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(5) Derive a set of warehouse requirements (XWRs) to address each formed question 
and represent these requirements using the XDW Requirement Model. This 
process will determine ‘what’ data is to be collected and ‘how’ it will be carried 
out depending initially on the data stored in the xFACT repository. In the case 
where a requirement cannot be fulfilled with the current available data, it is then 
necessary to refer to the XML transactional document databases and obtain the 
additional data. 

(6) Develop a set of metrics by using the already established warehouse requirements 
(XWRs), to address each question and express it in quantifiable terms. A  
metric outcome assists in goal evaluation and determines the degree of its 
accomplishment. 

Our proposed Requirement Derivation Model’s (Figure 3) foundation lies in the 
GQM principles. This model is composed of four main levels: (1) Abstraction Level: 
This has two sub-levels namely the High-Level Goal and the Sub-Goal Level. (2) 
Operational Level:  Form questions to express the stated goals in operational terms 
and lead to the derivation of warehouse requirements. (3) Requirement Modeling 
Level: Apply the XDW Requirement Modeling approach [10, 15] to capture and 
represent the developed warehouse requirements. The modeling of requirements 
reveals the kind of data required to be obtained for their fulfillment. (4) Quantitative 
Level: Develop a set of metrics using the formerly defined warehouse requirements. 
These metrics help to answer the formed questions stated at the Operational Level and 
evaluate the degree of accomplishment of the goals derived at the Abstraction Level.  
What follows is a detailed discussion of each level. 

1. Abstraction Level 
This level represents the possible goals that can be formed based on a given organi-
zational context. In order to obtain the specifications that will be used to construct 
goals, the main factors to consider are, the configuration and the intentions of the 
organization as well as the user viewpoints. Goal development relies on three main 
sources of information, which includes to: (a) conduct an initial study of the organi-
zational policy statements and strategic plans. (b) Obtain the descriptions of the 
organizational objects (products, services, activities and resources) and (c) assess the 
organizational model in order to reveal the possible user viewpoints of a given goal. 

Definition C: A goal is defined as a component which includes the following 
elements: (1) The object of study, (2) the products and services offered by an 
organization, (3) the activities involved for the successful establishment of the 
products and services, (4) the resources used in order to produce the products and 
services and (5) the likely user viewpoints.  

There are two sub-levels as shown in Figure 3: The High-Level Goal and the Sub 
Goal Level. A high-level or an abstract goal indicates its wide-ranging nature. In 
mostcases, abstract goals tend to be accompanied by high levels of complexity 
andtherefore might be difficult to fulfill at first. Hence it is necessary to decompose 
the high-level goal into several sub-goals. This leads to the creation of the Sub-Goal 
Level. Decomposition provides an enhanced understanding of the current goals and 
identifies new avenues for their accomplishment. In our proposed requirement 
derivation plan (Figure 3) where the high level goal has an arrow pointing to itself,  
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Fig. 3. Requirement Derivation Model for XDWs Using the GQM Approach 

indicates that a goal does not always need to be decomposed but instead can remain in 
its current state, given that its level of complexity is low. This justifies that it is 
possible for a direct link to exist from the Abstraction Level’s, High-Level Goal to the 
Operational Level. The dotted rectangle surrounding the sub-goal level, shown in 
Figure 3, indicates an optional component. 

2. Operational Level 
As discussed previously a direct connection may exist amongst the Operational Level 
and the two preceding sub-levels, meaning that it can be immediately related either to 
a high-level goal or a newly formed sub-goal. The structure of the questions formed at 
the Operational Level depends entirely on the specifications of the identified goals. A 
set of corresponding questions is generated for the each derived leaf goal (using the 
decomposition process) to express this in operational terms.  

The purpose of using questions is to discover possible ways for goal fulfillment 
and based on the data availability to determine the capabilities encompassed or lack 
of, to satisfy given requirements. There are three categories for each question set, 
which are as follows:  

− Set A: How can the object (product/service, activity, resource) in question, which 
relates to the overall goal as a whole be described? 

− Set B: How can the object’s attributes in question, which relate to the concerned 
issue of the stated goal, be expressed?  

− Set C: How can the object’s characteristics in question, which relate to the 
concerned issue of the given goal, be evaluated? 

3. Requirement Modeling Level 
The questions formed at the Operational Level bring to the surface the main elements 
composing a given goal. Warehouse requirements (XWRs) consist of the collection of 
key components identified in the questions. Our definition of a requirement as stated 
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in [10, 15], denotes the expectant outcome of the data warehouse for a given context. 
Requirement accomplishment correlates with ‘what’ kind data is required and ‘how’ 
to obtain these from the XML transactional document database. The established 
requirements are then modeled using our XDW Requirement Modeling approach [10, 
15]. The aims of this approach are to: (a) capture requirements early in the design 
process, (b) understand the current and newly formed requirements, (c) use each 
requirement(s) to create a corresponding XDW dimension, (d) ensure that the 
required data to construct a dimension is available and extracted from the XML 
transactional document database, and (e) certify that the collected data used for the 
formation of all warehouse dimensions, is assembled to build the entire xFACT 
repository. The full illustration of the modeling of requirements using the XDW 
Requirement Model can be found in our existing work [10, 15]. In this paper we will 
only demonstrate the derivation of requirements. 

4. Quantitative Level 
A set of metrics is formed through the combination of one or more of the already 
identified requirements, with the aim to address each question created at the 
Operational Level. Hence a single metric consists of one or a collection of warehouse 
requirements (XWR). Tracing each metric outcome to the concerned goal carries out 
the evaluation of its fulfillment. In the case where a metric cannot be fulfilled 
indicates that one or more of its included requirement components, cannot be satisfied 
with the information at hand and therefore it is necessary, only at the design stage, to 
refer back to the XML transactional document databases to obtain the additional 
required data. At this point it is important to visualize the link amongst the three 
major components including: XML transactional document databases, the Virtual 
Dimensions (warehouse dimensions) and the XML FACT (xFACT) repository. Hence 
it is critical to be able to move through this link from any direction to certify the 
correct assembly of the XDW. In this paper we will demonstrate the formation of 
metrics to be used for goal evaluation. The actual goal evaluation process based on 
the metrics outcomes will be demonstrated in future work. 

3.2   Implementation of the Requirement Derivation Model for XDWs 

This section provides an illustration of the outlined components of our proposed 
methodology for deriving requirements using the GQM approach. The sample context 
that will be used throughout is a “Conference Publication” case study.  

The Abstraction Level, shown in Figure 4, is a framework of the possible goals that 
can be derived based on the case study context. Given the five main sources of 
information to define a goal, as stated in section 3, definition C, we form a sample 
high-level goal which is to ‘Secure a Well Renowned Conference Status’. Applying 
the decomposition process of the high-level goal derives smaller segments, namely 
the sub-goals. This process proves beneficial as it provides a clear overview and 
anenhanced understanding of the current complexity issue surrounding the goal in 
question, which assists to identify appropriate solutions in an efficient and direct 
manner. The decomposition process for each goal ceases depending on the 
developer’s judgment and level of satisfaction. For instance the first sub-goal 
“Improve the Paper Review Process” is further decomposed to two more secondary  
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Fig. 4. “Abstraction Level” of the Conference Publication Context 

goals, also referred to as ‘leafs’, which include to “Ensure a timely review process” 
and “Include reviewers with an expert knowledge”.  This indicates that all the 
identified sub-goals when combined contribute to the achievement of their parent goal 
and subsequently the major high-level goal. 

Provided the specifications of the derived leaf goals, proceeding to the Operational 
Level involves forming questions that express each of the obtained goals in 
operational terms. Questions bring to the surface probable ways of achieving each 
goal, as well as determining whether the adequate data exists to satisfy these. The 
major elements identified in the questions, will help form the warehouse requirements 
(XWRs), which will then be modeled at the Requirement Modeling Level. At the 
Quantitative Level, by using the identified warehouse requirements, a set of metrics is 
developed which relate with the process of the overall goal evaluation. As stated 
previously, due to space limitations the actual modeling of the requirements and the 
evaluations for goal accomplishment will not be carried out in this paper. 

The section that follows is a demonstration of the remaining three components, 
namely the Operational Level, Requirement Modeling Level and Quantitative Level, 
of our proposed model to derive warehouse requirements. We choose the sample case 
study sub-goal to “Maximize the Quality Content of the Final Proceedings” which is 
further decomposed and one of the goals formed is to “Increase the likelihood of 
obtaining and selecting high quality papers by boosting the total number of paper 
submissions. 

− Goal 1.2  Maximize the Quality Content of the Final Proceedings 
Sub-Goal 1.2.1 Increase the likelihood of obtaining and selecting high quality 

papers by boosting the total number of paper submissions. 
 

Set A Questions: How can the object (product/service, activity, resource) in 
question, which relates to the overall goal as a whole, be described? 
1. What is the current number of submitted papers? 
2. Is conference related information actually distributed to a wide range of audience 

and highly prominent institutions? 
3. How many of the accepted papers have been awarded outstanding reviews? 
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Requirements: 
1. Total number of papers submitted for the year 2005 listed by conference name. 
2. List of methods for communication. 
3. Total time consumed distributing conference related information. 
4. Total number of accepted papers listed by conference name. 
5. Total number of accepted papers where reviewers rating equals ‘1’. 
Metrics: 
1. Total number of submitted papers for the year 2005 listed by conference name. 
2. Total time dedicated and in distributing conference related information displayed 

in ascending order with cross reference to the method used.  
3. Total number of accepted papers where reviewers rating equals ‘1’ ordered by 

conference name.   
Comments:  
The requirements “List of methods for communication” and “Total time consumed 
distributing conference related information” (numbered 2 and 3), are derived based 
on the second question “Is conference related information actually distributed to a 
wide range of audience and highly prominent institutions?” Based on the xFACT 
model (figure 1), its objects and the data stored, the second metric (2), which is 
formed based on the combination of these two requirements, cannot not be fulfilled, 
as the data required is inexistent. Therefore it is required to refer to the XML 
transactional document databases to obtain the necessary data and create two more 
objects in the xFACT model, such as: “Technology” which will contain information 
on the current technological processes and equipment used, and “Recipient” which 
will include all the details of contacts for correspondence. Regarding the remainder 
list of requirements, there is adequate information stored in the xFACT to facilitate 
their full accomplishment.  

 
Set B Questions: How can the object’s attributes in question, which relate to the 
concerned issue of the stated goal, be expressed?  
1. What is the standard deviation of the current actual number of papers submitted 

from the rough estimate?  
2. What is the rate of the submitted papers where the authors belong to well-known 

associations? 
3. Does the group of reviewers allocated in each conference theme acquire the 

sufficient expert knowledge? 
4. Has there been a significant change in the total number of paper submissions 

between 2004 and 2005? 
5. What is the rate of acceptance from the total number of submissions? 
Requirements: 
1. List of papers with cross-reference to authors’ details ordered by institute and 

region. 
2. List of reviewers’ details.  
3. Total number of submitted papers ordered by conference and by year. 
4. Estimated number of papers to be submitted ordered by conference name. 
5. Total number of accepted papers.  
Metrics: 
1    {(Current number of submitted papers – Estimated number of paper submissions)/   

number of submitted papers} * 100 
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2. (Number of papers with authors belonging to well-known associations / Total 
number of submitted papers) * 100 

3. List of reviewers’ details ordered by their strongest area of expertise, and 
displayed under each allocated conference theme.  

4. Difference (subtraction) of the total numbers of papers submitted between 2005 
and 2004.   

5. Percentage (%) increase or decrease of papers submitted compared to the year 
2004. 

6. (Total number of accepted papers / Total number of submitted papers) * 100 
Comments: 
The requirements “Total number of submitted papers ordered by conference and by 
year” and “Estimated number of papers to be submitted ordered by conference 
name” (numbered 3, 4), are derived given the first question “What is the standard 
deviation of the current actual number of papers submitted from the rough estimate?” 
The metric (1) cannot not be achieved, as the data required to carry out estimation 
calculations is not stored in the xFACT model. It is required to obtain additional data 
from the XML transactional document databases and include another object, titled 
“Budget”, which will include all future estimations and future approximations for 
each conference.  
 
Set C Questions: How can the object’s characteristics in question, which relate to 
the concerned issue of the given goal, be evaluated? 
1. Is the overall quality content of the final proceedings satisfying from the program 

committee viewpoint? 
2. Is there a noticeable improvement on the quality of the final selected papers in 

2005 compared to the year 2004? 
Requirements: 
1. Average evaluation score for each conference. 
2. Total score of the feedback evaluation for each conference for the year 2005. 
3. Total number of evaluation forms completed. 
Metrics: 
1. Total score of evaluation for each conference / Total number of evaluation forms 

completed. 
2. Total score of evaluation for each conference for the years 2004 and 2005 

displayed in descending order.  
3. Difference (subtraction) of the total evaluation scores for each 2004 and 2005.   
4. Percentage (%) increase or decrease of evaluation scores of the proceedings for 

each conference in comparison with the previous year 2004. 
5. Subjective evaluation from the program committee and targeted audience. 
Comments: 
There are two ways to fulfill the questions created regarding the quality of the 
conference proceedings: (1) Objective evaluation of the proceedings quality, which 
cannot be fulfilled given the current data contained in the objects of the xFACT 
model. Conducting an evaluation process by distributing feedback forms, where 
individual scoring and comments are permitted, can perform this. An object named 
“Feedback” to contain additional is required in the xFACT model, and (2) subjective 
evaluation, which is based mainly on the personal opinion and judgment from the 
viewpoint of which it is taken.  
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4   Conclusions and Future Work 

XML supports the representation and exchange of information amongst heterogeneous 
data sources over the web. It is likely that the presence of XML documents in the would-
be repositories will grow rapidly. The challenge to effectively manage such a vast 
number of XML documents, initiates the need to explore the data warehouse approach 
through the use of XML document marts and XML Document Warehouses (XDWs).  

In this paper, at the conceptual level we provide a formal model with derived sets 
of rules for our XDW model, which includes the XML FACT (xFACT) repository 
and the Virtual Dimensions (VDims). The second major aspect concentrates on the 
derivation of XDW requirements. This is accomplished by exploring the Goal 
Question Metric (GQM) approach and in conjunction with our existing XDW 
Requirement Modeling approach we introduced a methodology for generating 
warehouse requirements (XWRs). We illustrated the implementation of this approach, 
using a walk through of examples extracted from our case study. 

For future work many issues deserve investigation. Primarily to propose a formal 
step algorithm to demonstrate the association between the three major components: 
XML Document Warehouse requirements (XWR), Virtual Dimensions (VDims) and 
the XML FACT (xFACT) repository and to show each component’s role and 
significance in contribution to the overall construction of the XDW. Next is to build 
an empirical study plan to validate the XDW model. Also we need to investigate 
feasible technologies to automate the mapping between the XDW content and the 
XDW repositories along with their semantics intact (conceptual and operational). 
Performance issues associated with this challenging task need to also be addressed. 
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Abstract. Web services oriented computing is a hot topic for many e-commerce 
applications recently. It dramatically speeds up the application process and 
becomes more agile in responding to changing business needs. In this paper, we 
study the concurrency control problems among interleaved transactions for web 
services oriented e-commerce. We propose a new method called two-phase 
locking with adjustable slack time (2PL-AST) based on a high priority 
mechanism, which resolves the concurrent data access for both real-time and 
non-real-time support operations. The design issue aims to meet the deadline 
requirements of real-time transactions and minimize the response time of non-
real-time transactions in the web services family at the same time. Experiments 
are conducted to evaluate the performance under different concurrency control 
protocols. 

1   Introduction 

Web services oriented technologies are important for building distributed applica- 
tions, which are typically constructed from a set of services that are independently 
designed. The widespread adoption of web services offers advantages including: 
interoperability, stability, and implementation reuse. The structure of a typical web 
services application is shown in Fig. 1 [1]. It consists of resources, application logic, 
and a message-processing layer that deals with message exchanges. When a services 
oriented message arrives at a web services the message processing changes it into 
something more tangible for applications to deal with. Such web services transactions 
include the execution of short-running transactions within an organization and long-
running transactions across organizations [2].  

Each activity in web services transactions may request access data executing by 
subtransactions in real-time or non-real-time situations. For practical purposes, the 
activity is considered to consist of a nested web services transaction. An Internet 
purchasing example as illustrated in Fig. 2 involves the following four steps: (1) 
selecting the product, (2) providing personal data that allows the credit card to be 
authorized, (3) checking the number of products in the inventory management 
services, and (4) confirming a customer’s order and total payment [3-5]. The activities 
of credit authorization and customer accounting must be executed timely, and the 
inventory management services are commonly encapsulated with several activities to 
execute. In the familiar example of stock market analysis and program trading,  
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Fig. 1. The web services oriented architecture [1] 

 

Fig. 2. The business process of an internet purchasing [5] 

information on stock prices is gathered through multiple sources and piped through a 
series of filters for refinement. The information is then used by an expert system that 
spots trading opportunities. Some serious activities in web-based stock trading 
systems perhaps involve real-time supports. The purpose of activities for system 
management belongs to traditional web-based transactions [6]. 

In fact, the need to manage different styles of resource access conflicts and ensure 
the consistency of data in web services is based on concurrency control protocols. The 
services broker gets a lot of requests for its information and; it needs to be able to 
decide who wants what and whether or not they are granted access. Locking 
mechanisms are the standard method of concurrency control for most web-based 
database applications. The idea behind locking is intuitively simple and effective as 
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stated in many previous publications [7]. Each data object has a lock associated with 
it. Before a web services transaction can access a data object, the concurrency control 
must first examine the lock associated with that data object. If the lock is free, the 
lock is granted to the web services transaction and the data object can be accessed by 
the web services transaction. The two-phase locking with high priority (2PL-HP) used 
in most commercially available database systems gives good performance for 
processing real-time transactions on the Internet [4,6,8]. This approach ensures that a 
higher priority transaction is never blocked by a lower priority transaction, and the 
conditional restart avoids the starvation problem through the high priority technique. 
The problem of priority inversion is resolved by using priority inheritance [4]. In spite 
of many research efforts concerning the concurrency control problem, the findings 
often assume that the system may consist of only one single type of data that is 
required in real-time. We know that real-time or non-real-time activities may exist 
simultaneously in the nested web services transactions described in Fig 2. The 
impacts of different non-real-time features on these concurrency control protocols 
have been conspicuously been ignored in previous studies in this topic. To correct this 
omission, a new concurrency control protocol must incorporate the access needs of 
real-time and non-real-time features.  The design must minimize the number of 
missed real-time transactions and maximize the throughput of non-real-time 
transactions. A new concurrency control protocol called two phased locking with 
adjustable slack time (2PL-AST) is proposed to satisfy the concurrent data access of 
nested web services transactions supporting different degrees of real-time constraints. 
The main concepts of 2PL-AST are (1) give priority data access to real-time web 
services transactions, (2) utilize slack time to allow non-real-time web services 
transactions to access data, and (3) use conditional restart and priority inheritance to 
avoid the problem of starvation and priority inversion as stated in [4]. Simulations 
demonstrate that 2PL-AST delivers good performance when web services 
applications require data access in different real-time supports in the system. 

The remainder of this paper is organized as follows. Section 2 describes the related 
work and the proposed concurrency control protocol. Section 3 provides the 
simulation model and performance results. Finally, a conclusion is made in Section 4. 

2   The Proposed Concurrency Control Protocol 

The web services oriented application is generally defined as a distributed database 
system where some transactions have deadlines on their completion times. Missing 
the deadlines can seriously affect the usefulness of completing the transactions. The 
goals are to satisfy transaction deadlines and to maintain database consistency. 
Concurrency control protocols strive to schedule data and to resolve data conflicts in 
such a way that transaction deadlines are taken into account [8]. The web services 
stack as shown in Fig. 3. Here we focus on the problem of data access conflicts 
among interleaved web services transactions in real-time and non-real-time support 
operations resolved by concurrency control protocols [2].  

Concurrency control protocols are designed to maintain database consistency 
despite concurrent execution of transactions [8]. The two-phase locking protocol has 
been a popular mechanism to solve the problem of concurrent accesses to shared data 
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Fig. 3. The web services stack [2]  

objects in most web-based database applications [7]. Some notable concurrency 
control protocols based on two-phase locking mechanism are introduced and 
notations used are listed briefly below. Ti denotes a (sub)transaction in the system. 
S(Ti) means the slack time of transaction Ti. The remaining execution time of 
transaction Ti is denoted Ert(Ti). 

2.1   Conventional Two-Phase Locking (2PL) 

In 2PL, the execution of a transaction consists of two phases: the grow phase and the 
shrink phase. In the grow phase, locks are acquired but may not be released. In the 
shrink phase, locks are released but new locks may not be acquired [8]. For 
transactions to be executed timely, priority inversion occurs when a transaction with 
high priority is blocked by a transaction with lower priority. 

2.2   Two-Phase Locking with High Priority (2PL-HP) 

2PL-HP proposes restarting the lower priority lock holder and letting the higher 
priority lock requester get the lock. This resolves the problem of priority inversion for 
transactions with real-time constraints. Fig. 4 states the rule of 2PL-HP: if the priority 
of a lock-requesting transaction is higher than the lock-holding transaction, the lock-
holding transaction is restarted. Otherwise, the lock-requesting transaction is blocked. 
Although it eliminates priority inversion, 2PL-HP causes severe access conflicts of 

 
 

 

Fig. 4. Pseudo code of 2PL-HP  
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system resources among transactions with different real-time support operations, and 
does not use the nested structure of web services applications. 

2.3   Two-Phase Locking with Adjustable Slack Time (2PL-AST) 

In 2PL-HP, the basic principle in resolving data conflicts between two web services 
transactions is to restart the lower-priority transaction [8]. In web services 
applications supporting real-time and non-real-time constraints, real-time transactions 
are always assigned higher priorities than non-real-time transactions. Thus, when 
there is an access conflict between a real-time transaction and a non-real-time 
transaction in web services applications, the non-real-time transaction is likely to be 
restarted leading to a poor performance of non-real-time transactions. To improve the 
total system performance, 2PL-AST (as shown in Fig. 5) is proposed using the key 
idea of adjustable slack time based on the high priority approach.  

 

Fig. 5. pseudo code of 2PL-AST 

2PL-AST assigns the unique lowest priority value to all web services transactions 
with non-real-time constraints, because those transactions have no deadlines. When 
web services (sub)transactions have access conflicts among different interleaved web 
services transaction families, the high priority technique is used: it blocks or aborts 
the lower priority of web services (sub)transactions. The conditional restart procedure 
using adjustable slack time is incorporated in 2PL-AST to avoid the starvation 
problem of the high priority approach. This allows web services (sub)transactions 
with a lower priority to access data first instead of aborting, if the slack time is long  
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Table 1.  Conflict resolution strategies in 2PL-AST 

 

enough. Otherwise, lower priority web services (sub)transactions must be aborted. In 
a nested structure of web services oriented applications, (sub)transactions execute on 
behalf of their root transaction. Thus, subtransactions of the same web services family 
should not abort each other when access conflict occurs. When access conflict does 
occur within the members of a web services family, the priority inheritance method is 
used to avoid the problem of priority inversion [4].  
    The adjustable value of  is designed in response to the load of the practice system. 

 satisfies deadlines for real-time web services transactions and maximizes the 
throughput of non-real-time web services transactions. Table 1 shows the nested 
structure of web services transactions; the different conflict resolution strategies 
adopted in 2PL-AST are listed within and across a web services family. The symbol 
A represents blocking the lock-requester; B represents the technique of inheritance 
priority; and C represents using adjustable slack time to evaluate the opportunity of 
non-aborted (sub)transactions. 

3   Simulation Model and Performance Evaluation 

The architecture of simulation model as shown in Fig. 6 is defined as an open queuing 
model that has a network of n sites with a single external source and destination for 
transactions [9, 10]. Tsi indicates a transaction leaving the source for the queue in the 
site i and Tid presents a transaction leaving the queue in the site i for the destination. 
A transaction leaving the queue in the site i for the queue in site j is Tij. All accesses 
of local transactions existing in the central subsystem keep circulating from one queue 
to the next and reenter the system immediately. When a remote transaction issues the 
remote request, the central subsystem has external arrivals and departures. The 
simulation model at each site consists of four CPUs and two disks. This structure is 
similar to that of [3, 4, 8, 11, 12].  

3.1   Workload Model and Performance Metric 

Most of the workload parameters have similar values to those used in previous studies 
[3, 4, 11, 12]. Table 2 lists the workload model parameters and their baseline values. 
The parameters page_cpu and page_io determine the CPU and disk time needed to 
access a data page, respectively. The parameter used to model the load of the system 
is arrival_rate, which specifies the mean rate of transaction arrivals and has a Poisson 
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Fig. 6. The architecture of simulation model 
 
distribution. In other words, the inter-arrival time of nested transaction is in 
exponential distribution with mean 1/arrival_rate. Restart_delay gives the delay 
timecaused by restarting a transaction. Write_prob determines the probability of 
updating data pages after a transaction has read the data pages. Sub_trans signifies the 
number of subtransactions varying randomly in a (sub)transaction tree. Tran_size 
represents the number of leaf subtransactions in a nested transaction, which is the 
mean of a uniform distribution varying range between 0.5*tran_size and 
1.5*tran_size. The parameter leaf_size determines the number of operations per leaf 
subtransaction varying uniformly between 0.25*leaf_size and 1.75*leaf_size. The 
parameter level_size represents the depth of a nested transaction tree varying 
uniformly from 0.25*level_size to 1.75*level_size. 

The performance metric of MissRatio as given in [3, 4, 8] were used: 

number of transactions missing the deadline
 = 100%

total number of submitted transactions
MissRatio ×  

A smaller the MissRatio implies the better performance. We compared the 
performance of the concurrency control protocols of the 2PL, 2PL-HP and 2PL-AST 
under various conditions, and also investigated the variety of response times for non-
real-time transactions. For the transaction scheduling policy, we used the approach of 
earliest deadline first adopted widely for most types of real-time database research 
[6,11]. 
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Table 2. Workload parameters and baseline values 

 

3.2   The Experiment of Basic Model  

The settings for the basic parameters listed in Table 2 are based on the previous 
studies [3, 4, 11, 12]. In this experiment, we varied the arrival rate from 20 real-time 
Web services transactions/second (abbreviated as real-time trans/sec) to 120 real-time 
trans/sec in increasing steps of 20 in order to model different system loads. As shown 
in Fig. 7a, the performance order based on the MissRatio metrics is 2PL-AST > 2PL-
HP > 2PL. From the figure, we see that the system misses more deadlines as the 
workload increases. This is consistent with our intuition: a heavier workload induces a 
longer queuing time, a higher probability of data conflicts and transaction blocking, 
and thus fewer transactions can meet their deadlines. 2PL performs the worst because 
the requesting transaction always blocks and waits for the data object to become free. 
This is the standard method for most database management systems which do not 
execute real-time transactions. 2PL causes some real-time demands to be delayed. 
The 2PL-AST algorithm gives real-time demands access to data without delay, and 
avoids useless restarts. 2PL-AST uses slack time to execute the transactions with 
lower priorities completely instead of restarting them. 2PL-AST uses the techniques 
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Fig. 7a. Miss ratio for basic model 

 

Fig. 7b. Response time for basic model 

 

Fig. 7c. Rollback Frequency for basic model 
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of conditional restart and priority inheritance [4] so that access conflict will not cause 
the subtransactions of the same Web services family to abort each other. The 2PL-
AST delivers better performance than 2PL-HP, which directly restarts lower-priority 
transactions when they have data access conflicts with high-priority transactions. 
Since the restarted transaction would have much less slack time than its first 
incarnation, chances are that the restarted transaction will miss its deadline too. For 
the performance of non-real-time transactions as illustrated in Fig. 7b, we found that 
2PL-AST using the factor of adjustable slack time can maintain a faster response time 
than 2PL and 2PL-HP with a normal real-time transaction workload. 

To study how data contention affects the performance, we plot the transaction 
rollback frequencies in Fig. 7c. We see that 2PL-AST causes fewer restarts than 2PL-
HP does. This is because 2PL-AST keeps adjustable slack time to execute the lower-
priority transactions, and fewer transactions must be restarted. However, the restart 
problem only occurs in 2PL when a previously aborted transaction is restarted in the 
deadlock processing.   

4   Conclusion 

It is difficult to keep up with the rapid changes in technology. The advent of web 
services oriented architectures intensifies competition, because these technologies are 
fundamentally changing the way we build our systems and how internal and external 
systems will interact. Various concurrency control protocols have been studied for 
different types of web services transactions. With the increasing pressure of response 
time requirements, many advanced databases now must provide real-time 
performance to certain services. The techniques proposed for the concurrency control 
of real-time transactions may not be suitable to e-commerce web services applications 
due to the existence of non-real-time requests because their conflict resolution 
mechanisms may significantly affect the performance of non-real-time web services 
transactions. 
    In this paper, a new method called 2PL-AST based on high priority algorithms is 
proposed to provide concurrent data access for both real-time and non-real-time 
requests. The concepts of 2PL-AST include (1) giving prompt data access to real-time 
requests, (2) utilizing slack time for non-real-time data access, and (3) using the 
techniques of conditional restart and priority inheritance to avoid the problems of 
starvation and priority inversion. Simulation results demonstrate the performance 
order from the best to the worst based on the metric of MissRatio is 2PL-AST > 2PL-
HP > 2PL as workload increases. 2PL performs poorly because the requesting 
transaction always blocks and waits for the data object to become free. Therefore, 
2PL increases the chances of real-time web services transactions missing its 
deadlines. 2PL-HP causes more restarts than 2PL-AST does because 2PL-HP does 
not consider the possibility of utilizing slack time to execute restarted transactions. 
For the performance of non-real-time transactions, 2PL-AST can maintain quick 
response times at normal real-time transaction workload.  
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Abstract. Clustering web users is one of the most important research
topics in web usage mining. Existing approaches cluster web users based
on the snapshots of web user sessions. They do not take into account the
dynamic nature of web usage data. In this paper, we focus on discov-
ering novel knowledge by clustering web users based on the evolutions
of their historical web sessions. We present an algorithm called COWES
to cluster web users in three steps. First, given a set of web users, we
mine the history of their web sessions to extract interesting patterns that
capture the characteristics of their usage data evolution. Then, the simi-
larity between web users is computed based on their common interesting
patterns. Then, the desired clusters are generated by a partitioning clus-
tering technique. Web user clusters generated based on their historical
web sessions are useful in intelligent web advertisement and web caching.

1 Introduction

Web Usage Mining (WUM)—the application of data mining techniques to dis-
cover usage patterns from web data—has been an active area of research and
commercialization [9]. Existing web usage data mining techniques include sta-
tistical analysis [9], association rules [8], sequential patterns [13], classifica-
tion [7]etc. An important topic in web usage mining is clustering web users—
discovering clusters of users that exhibit similar information needs, e.g., users
that access similar pages. By analyzing the characteristics of the clusters, web
designers may understand the users better and thus can provide more suitable,
customized services to the users [12]. There are quite a few methods for clustering
web users proposed in the literature [5] [12] [11].

Generally, existing web user clustering consists of three phases: data prepara-
tion, cluster discovery, and cluster analysis. Since the last phase is application-
dependent, let us briefly describe the first two phases. In the first phase, web
sessions of users are extracted from the web server log by using some user iden-
tification and session identification techniques [4]. A web session, which is an
episode of interaction between a web user and the web server, consists of pages
visited by a user in the episode [5]. For example, Figure 1 (a) shows four requests
from one session. The first line means that the user at foo.ntu.edu accessed the
page www.uow.edu/sce/Jeffrey/pub.html at 10:30:05 on January 01, 2005. In the
second phase, clustering techniques are applied to generate clusters of users. For
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foo.cs.ntu.edu — [01/Jan/2005:10:30:05 -0800]
    “GET / www.uow.edu/sce/Jeffrey/pub.html HTTP/1.0” 200 3027
foo.cs.ntu.edu — [01/Jan/2005:10:30:08 -0800]
    “GET / www.uow.edu/sce/Jeffrey/ HTTP/1.0” 200 1205
foo.cs.ntu.edu — [01/Jan/2005:10:30:18 -0800]
    “GET / www.uow.edu/sce/ HTTP/1.0” 200 1967
foo.cs.ntu.edu — [01/Jan/2005:10:30:23 -0800]
    “GET / www.uow.edu/sce/Henry HTTP/1.0” 200 994

www.uow.edu

www.uow.edu/sce

www.uow.edu/
sce/Jeffrey

www.uow.edu/
sce/Henry

www.uow.edu/
sce/Jeffrey/
pub.html

(a) (b)

Fig. 1. Web session and page hierarchy

example, given the web sessions of three users, u1, u2 and u3 as in Figure 2
(c) (left part), where only the accessed pages are presented, existing web user
clustering methods [5] will group them together as their sessions share common
web pages.

1.1 Motivating Example

Existing web user clustering methods cluster users based on the snapshots of
their web sessions. However, the web usage data is dynamic in nature. For ex-
ample, Figures 2 (a), (b) and (c) (left parts) show the historical web sessions
of users u1, u2 and u3 at time T1, T2 and T3 respectively with a specific time
granularity (e.g. day, week, month etc). It can be observed that pages visited by
web users at different time points are different. This can be attributed to various
factors, such as users’ variation of their information needs and changes to the
content of the web site etc.

Such dynamic nature of web usage data poses both challenges and opportuni-
ties to web user clustering. In particular, the dynamic nature of web usage data
leads to the following two challenging problems:

– Maintenance of web user clustering results: Take the web sessions in
Figure 2 as an example. Web user clusters generated by existing techniques
at time T1 does not include the usage data at time T2 and beyond. Hence,
the clustering results have to be updated constantly along with the change
of web usage data. This requires development of efficient incremental web
user clustering techniques.

– Discovery of novel web user clusters: Web user clusters generated by
existing techniques at time T3 does not include the usage data at time T2
and before. While knowledge extracted from the snapshots of web sessions
is important and useful, interesting and novel knowledge can be discovered
from the historical web sessions. For example, we can discover clusters of
users that exhibit similar characteristics in the evolution of their usage data,
e.g. users share common change patterns in their historical web sessions.

In this paper, we focus on discovering novel knowledge by clustering web users
based on the change patterns in their historical web sessions. Various types of
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Fig. 2. Historical web sessions

change patterns can be mined from historical web usage data. In this paper,
we mine a particular change pattern called Frequently Changed Subtree Patterns
(FCSP), which was proposed by us in the context of XML documents in [3] be-
fore. We briefly introduce the idea of FCSP as follows. Pages accessed in a web
session can be organized into a hierarchical structure, called a page hierarchy,
based on the URLs of the pages [5]. For example, the page hierarchy constructed
for the pages in the web session in Figure 1 (a) is shown in Figure 1 (b). Obvi-
ously, a page hierarchy represents the information needs of a user. Similarly, the
sequences of historical web sessions of web users u1, u2 and u3 are represented
as sequences of page hierarchies in Figure 2 (right part), where a gray node rep-
resents a page that will disappear in the next web session, and a dark node is
a page that newly occurs in current session. The changes to the structure of a
page hierarchy, e.g. the insertions and deletions of nodes, reflect the variation
of user’s information needs. A FCSP is a set of subtrees, in a page hierarchy,
whose structures frequently change together in a sequence of historical web ses-
sions. For example, since the structures of the subtrees rooted at nodes c and d
(depicted by dotted line) frequently changed together in the historical sessions
of user u2, the two subtrees will be discovered as a 2-FCSP of u2, according to
some metrics we define later in Section 2 (A k-FCSP is a FCSP consisting of k
subtrees). Similarly, the two subtrees will be discovered as a 2-FCSP for user u3
as well. For user u1, the subtree rooted at node b will be discovered as a 1-FCSP.
We use the set of FCSPs, mined from the historical web sessions of a user, as the
change patterns to capture the characteristics of the evolution of his usage data.
Hence, users having similar FCSPs will be clustered. For example, the users u2
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and u3 in Figure 2 will be grouped together as they share the common FCSP
while u1 will be a singular cluster.

We present an algorithm for Clustering Of Web users based on their historical
wEb Sessions, called COWES. The overview of COWES is presented in Figure 3.
Given a collection of web users {u1, · · · , un}, where each user is associated with
a sequence of historical web sessions, we extract FCSPs from their historical web
sessions first. Then, each web user is represented as a set of FCSPs. We define
a similarity metric to measure the proximity between each pair of users based
on their FCSPs. The output of the this step is a similarity matrix of web users.
Finally, we perform a partitioning clustering algorithm on the similarity matrix
to generate the clusters.

1.2 Applications

Web user clusters generated by COWES are useful at least in the following two
applications:

– Intelligent Web Advertisement: 99% of all web sites offer standard ban-
ner advertisements [1]. This shows the importance of this form of online
advertising. One of the ways to maximize revenues for the party who owns
the advertising space is to design intelligent techniques for the selection of
an appropriate set of advertisements to display in appropriate web pages.
Web user clusters generated by COWES can be beneficial for designing in-
telligent advertisement placement strategies. For example, after clustering
users in Figure 2 based on historical web sessions, we knew that the vari-
ation of information needs of u1 is different from that of users u2 as well
as u3. Although all users accessed the page a/b/e at time T3, u1 frequently
changes his information needs under a/b. Thus, it makes sense to put rele-
vant advertisement banners in page a/b instead of page a/b/e for u1 in order
to maximize revenues.

– Proxy Cache Management: Web caching is an interesting problem in
web research area [2] [13] as web caches can reduce not only network traffic
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but also downloading latency. Because of the limited size of cache region, it
is important to design effective replacement strategies to maximize hit rates.
One of the frequently used replacement strategies is LRU, which assigns
priorities to the most recently accessed pages. Web user clusters generated
by COWES can be used with LRU to manage the caching region more
optimally. For example, after time T3, LRU will cache the pages under a/c
and a/d for user u2 (u3). When u2 accesses pages at next time point such as
T4, once it is detected that u2 changed his information needs under a/c, we
can degrade the priority of pages under a/d and hasten the eviction of these
pages. This is based on the knowledge obtained from the results of COWES,
which indicates that u2 frequently changes his information needs under a/c
and a/d together.

The rest of the paper is organized as follows. In Section 2, we explain the notion
of FCSP that is used as the clustering feature in our algorithm. We define
the similarity metrics in Section 3. In Section 4, we present the framework of
COWES. We evaluate the performance of COWES in Section 5 and review
related works in Section 6. Section 7 concludes this paper.

2 Frequently Changed Subtree Pattern (FCSP)

As mentioned above, in order to cluster web users based on their historical web
sessions, we extract the set of FCSPs first to capture the characteristics in the
evolution of their usage data. We briefly introduce the notion of FCSP in this
section. Readers can refer to our previous work [3] for details.

As in [5], pages in a web session can be organized into a page hierarchy based
on their URLs. Hereafter, we refer to a page hierarchy of a web session as a web
session tree. Formally, a web session tree is an unordered tree T =< N, E >,
where N is the set of nodes where a leaf node represents a web page corre-
sponding to a file in the web server and a non-leaf node represents a web page
corresponding to a directory in the server, E is the set of edges where each edge
from a parent node to a child node represents the consisting-of relationship be-
tween the corresponding pages. Particularly, a node r, r ∈ N , is the root of the
tree which represents the home page of a web site. An example web session tree
is shown in Figure 1. Accordingly, a tree ti =< Ni, Ei > is a web session subtree,
denoted as ti ≺ T , iff Ni ⊆ N and for all (x, y) ∈ Ei, x is a parent of y in T.

Given a sequence of historical web session trees of a web user, we are interested
in how the structures of the trees change, which reflects the variation of the user’s
information needs. Hence, we first define two basic operations that change the
structure of a tree as follows.

– Insert(x, y): This operation creates a new node x as a child node of node y
in a web session tree.

– Delete(x): This operation is the inverse of the insertion one. It removes node
x from a web session tree.
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Fig. 4. Four historical sessions of a web user

A web session tree (subtree) is considered as changed once a change operation,
i.e. insertion or deletion, occurs to it. Figure 4 shows four historical web session
trees of a web user in sequence, where the black nodes depict the newly inserted
nodes in the current session and the grey nodes depict the nodes that will be
deleted in the next session. Compared with the session tree T 1, a new node g is
inserted in the subtree a/b (Hereafter, we use the path from the root to node x
to denote a web session subtree rooted at x). Thus, the subtree a/b is considered
as changed in session T 2. Similarly, the subtree changed in session T 4 again.

Each changed web session subtree is associated with a value which reflects its
change degree. Intuitively, the more number of nodes inserted to/removed from a
subtree, the more significantly the subtree changed. Then, a metric called Degree
of Change (DoC ) is defined as follows.

Definition 1 (DoC ). Let ti=< N i, Ei >, ti+1=< N i+1, Ei+1 > be two ver-
sions of a web session subtree t. The Degree of Change for subtree t is:

DoC(t, i, i+1) =
|{x|x ∈ {N i ∪N i+1} && x /∈ {N i ∩N i+1}}|

|{x|x ∈ {N i ∪N i+1}}| #$

That is, the DoC of a subtree in two versions is computed as the ratio of the
number of inserted/deleted nodes to the total number of unique nodes of the
subtree in the two versions. For example, in Figure 4, the DoC of the subtree
a/b in the first two sessions is 1/3.

Basically, a FCSP is a set of web session subtrees satisfying the following
two conditions: i) the set of subtrees frequently change together; ii) the set
of subtrees frequently undergo significant changes together. Correspondingly,
we define two metrics, Frequency of Change (FoC ) and Significance of Change
(SoC ), to measure the change frequency and change significance of a set of
subtrees.

Definition 2 (FoC ). Let < T 1, T 2, . . . , T n > be a sequence of n historical web
session trees of a web user. Let P be a set of subtrees, P = {t1, t2, . . . , tm}, where
tji ≺ T j (1 ≤ j ≤ n). Let DoC(ti, j, j + 1) be the Degree of Change for subtree
ti from jth version to (j + 1)th version. The Frequency of Change for the set of
P is:

FoC(P) =

∑n−1
j=1 Vj

n− 1
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where Vj =
m∏

i=1

Vji and Vji =
{

1, if DoC(ti, j, j + 1) �= 0
0, if DoC(ti, j, j + 1) = 0 #$

Obviously, FoC of a set of subtrees P is the fraction of sessions where all subtrees
in P changed. For example, let P be two subtrees, a/b and a/d, in Figure 4. Then,
FoC(P ) = 2/3 as both subtrees changed together in sessions T 2 and T 4.

Definition 3 (SoC ). Let < T 1, T 2, . . . , T n > be a sequence of n historical web
session trees of a web user. Let P be a set of subtrees, P = {t1, t2, . . . , tm}. The
Significance of Change of the set of subtrees is defined as follows:

SoC(P ) =

∑n−1
j=1 Dj

(n− 1) ∗ FoC(P )

where Dj =
m∏

i=1

Dji and Dji =
{

1, if DoC(ti, j, j + 1) ≥ α
0, otherwise #$

That is, the SoC of a set of subtrees P is computed as the ratio of the number
of sessions all subtrees in P change significantly (compared with the threshold
of DoC ) to the number of sessions all subtrees in P changed together. Let P be
the two subtrees of a/b and a/d in Figure 4. Suppose the threshold of DoC is
0.3. Then, SoC(P ) = 1/2 as the two subtrees changed together in two sessions
and both of them changed significantly only in the session T 4.

Based on the above metrics, the Frequently Changed Subtree Pattern can be
defined as follows.

Definition 4 (FCSP). Let < T 1, T 2, . . . , T n > be a sequence of n historical
web session trees of a web user. Let P be a set of subtrees, P = {t1, t2, . . . , tm}.
Given the user-defined minimum DoC α, minimum FoC β and minimum SoC
γ, P is a Frequently Changed Subtree Pattern FCSP if it satisfies the following
two conditions: i) FoC(P ) ≥ β;ii) SoC(P ) ≥ γ. #$
That is, a FCSP is a set of web sessions subtrees that frequently change together
and frequently undergo significant changes together.

3 Similarity Measure

As we use the set of FCSPs, mined from the historical web sessions of each user,
as our clustering feature, we need to define the similarity between web users
based on their FCSPs. In this section, we first define two types of FCSPs that
can be shared by web users. Then, we define the Similarity of FCSPs and the
Similarity of Users sequentially.

3.1 Types of Shared FCSPs

Recall that each FCSP is a set of web session subtrees. We define two types of
FCSPs that can be shared by two web users, Identical FCSPs and Approximate
FCSPs, based on their subtrees.
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u1 = { P1
1 = { C/P, C/T }, P1

2 = { C/P, C/S } }

u2 = { P2
1 = { C/P, C/T } }

u3 = { P3
1 = { C/P, C/S }, P3

2 = { C/P/p1, C/T/c1 } }

(a)

u4 = { P4
1 = { C/P, C/T/c1 } }

C - Company, P - Products, T - Training, S - Service, p1- product1, p2 - product2, c1- course1, c2 - course2

C

P T S

p1 p2 c1 c1

(b)

Fig. 5. FCSPs of web users

Before giving the definitions of the two types of FCSPs, we explain them
with an example. Figure 5 (a) shows four web users {u1, u2, u3, u4}, where
each user is associated a set of FCSPs, e.g. u1 = {P 1

1 , P 2
1 } (we use the sub-

script to denote the identity of the user and the superscript to denote the
identity of the FCSP of the user). Each FCSP is a set of web session sub-
trees, e.g. P 1

1 = {Company/Products, Company/Training}. Figure 5 (b) shows
the ancestor relationship between the web session subtrees. Consider the two
FCSPs P1

1 and P1
2. Both indicate the two subtrees, Company/Products and

Company/Training, frequently changed together in a sequence of historical web
sessions. Hence, P1

1 and P1
2 contribute in the similarity of the evolution of usage

data for users u1 and u2. We call such a pair of FCSPs Identical FCSPs.

Definition 5 (Identical FCSPs). Let P1 = {t1, · · ·, tm}, P2 = {t1, · · ·, tn}
be two FCSPs. Let L(t) be the path from the root of the web session tree to the
root of the web session subtree t. If m = n and ∀i(1 ≤ i ≤ m), ∃j(1 ≤ j ≤
n) s.t. L(ti) = L(tj) and vice versa, then the two FCSPs are Identical FCSPs,
denoted as P1 = P2. #$

That is, two FCSPs are Identical FCSPs if there is a one-to-one mapping between
the subtrees of the two FCSPs and the corresponding subtrees are rooted at the
same node. For example, the two users u1 and u3 in Figure 5 share the pair of
Identical FCSPs P 2

1 and P 1
3 .

Consider the example in Figure 5 again. Although P 1
1 and P 2

3 are not Iden-
tical FCSPs, they are similar to some extend in their semantics because their
corresponding web session subtrees have the ancestor relationships. Hence, this
pair of FCSPs contribute to the similarity of the evolution of usage data for
u1 and u3 as well. We call such a pair of FCSPs Approximate FCSPs, which is
defined as follows.

Definition 6 (Approximate FCSPs). Let P1 = {t1, . . . , tm} and P2 =
{t1, . . . , tn} be two FCSPs. Let L(t) be the path from the root of the web session



COWES: Clustering Web Users Based on Historical Web Sessions 549

tree to the root of the web session subtree t. A subtree ti is an ancestor of an-
other subtree tj, denoted as tj % ti, if L(ti) is a prefix of L(tj). If m = n and
∀i(1 ≤ i ≤ m), ∃j(1 ≤ j ≤ n) s.t. ti % tj or ti & tj and vice versa, then the two
FCSPs are Approximate FCSPs, denoted as P1 ≈ P2. #$

For example, the two users u1 and u4 in Figure 5 share the pair of Approximate
FCSPs P 1

1 and P 1
4 . Note that, the definition of Identical FCSPs is a special case

of that of Approximate FCSPs.

3.2 Similarity of FCSPs

According to above discussion, two web users share Identical FCSPs and/or
Approximate FCSPs. For each pair of shared FCSPs, we need to measure how
similar they are. Note that each FCSP has a set of elements (subtrees) and is
associated with two values, FoC and SoC, which reflect its strength. We then
define the Similarity of FCSPs based on their Element Similarity and Strength
Similarity. The former measures the proximity of two FCSPs in terms of their
subtrees and the later measures the proximity of two FCSPs in terms of their
FoC and SoC.

Element Similarity. Since a pair of Approximate FCSPs are different in their
contained subtrees, we define the Element Similarity to measure the distance
between a pair of FCSPs in terms of their subtrees. Intuitively, the closer the
corresponding subtrees of the FCSPs in their ancestor relationship, the more
similar the pair of FCSPs. Hence, we first define the Ancestor Level to measure
the distance of two subtrees in their ancestor relationship.

Definition 7 (Ancestor Level). Let ti and tj be two web session subtrees s.t.
tj % ti. The ancestor level between ti and tj, denoted as AL(ti, tj), is the length
of the path from the root of ti to the root of tj. #$
Consider the example in Figure 5 again. Let ti be the subtree Company/Products
and tj be the subtree Company/Products/product1 . Then, AL(ti, tj) is 1.

Definition 8 (Element Similarity). Let P1 = {t11, . . . , tm1 } and P2 = {t12, . . . ,
tm2 } be a pair of Identical/Approximate FCSPs s.t. ti1 % ti2 or ti1 & ti2 (1 ≤ i ≤
m). The Element Similarity of the pair of FCSPs, denoted as ES(P1, P2), is
defined as,

ES(P1, P2) = 2−
∑m

i=1 AL(ti
1,ti

2) #$

The Element Similarity of a pair of Identical/Approximate FCSPs has value
in (0, 1]. When the pair of FCSPs is Identical FCSPs, the Element Similarity
has the maximum value 1 since the Ancestor Level of each pair of corresponding
subtrees is zero. The higher the value, the more similar the two FCSPs in terms of
their subtrees. For example, consider the pair of Approximate FCSPs in Figure 5,
{P 1

1 = {C/P, C/T}, P 2
3 = {C/P/p1, C/T/c1}}. ES(P 1

1 , P 2
3 )=2−2=1/4.
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Strength Similarity. With regard to Strength Similarity, we consider the sim-
ilarity between a pair of FCSPs in terms of the values of their FoC and SoC,
which reflect the change frequency and the change significance of the pattern
respectively. We adopt the Euclidean distance to measure the distance between
the values of the two metrics for a pair of shared FCSPs and then convert the
distance to a similarity measure by using a monotonic decreasing function.

Definition 9 (Strength Similarity). Let P1 and P2 be a pair of Identical/
Approximate FCSPs. Suppose FoC(P1) = f1, SoC(P1) = s1, FoC(P2) = f2
and SoC(P2) = s2. Then the Strength Similarity of the pair of FCSPs, denoted
as SS(P1, P2), is defined as,

SS(P1, P2) = e−d(P1,P2), where d(P1, P2) =
√

(f1 − f2)2 + (s1 − s2)2 #$

The Strength Similarity has value in (0, 1]. The closer the values of FoC and
SoC of the two FCSPs, the higher the Strength Similarity. For example, sup-
pose the FoC and SoC of the FCSPs in Figure 5 with respect to each user
are shown in Figure 6. For the pair of Identical FCSPs {P 1

1 , P 1
2 }, its SS is

e−
√

(0.6−0.55)2+(0.75−0.8)2 = 0.931.

Similarity of FCSPs. Now we define the Similarity of FCSPs by considering
both Element Similarity and Strength Similarity.

Definition 10 (Similarity of FCSPs). Let P1 and P2 be a pair of FCSPs.
Let ES(P1, P2) be their Element Similarity and SS(P1, P2) be their Strength
Similarity. Then, the similarity of the two FCSPs, denoted as SoF (P1, P2), is
defined as,

SoF (P1, P2) =
{

ES(P1, P2) ∗ SS(P1, P2), if P1 = P2 or P1 ≈ P2
0, otherwise #$

That is, if a pair of FCSPs is Identical/Approximate FCSPs, then the Similarity
of FCSPs is the product of their Element Similarity and their Strength Similar-
ity. If the two FCSPs are neither Identical nor Approximate, their similarity is
zero. Hence, SoF has value in [0,1]. The higher the value, the more similar the
two FCSPs.

FCSP_ID FCSP FoC SoC FoC SoC FoC SoC FoC

1(P1
1, P2

1) { C/P, C/T } 0.6 0.75 0.55 0.8

2(P1
2, P3

1) { C/P, C/S } 0.4 0.7 0.6 0.9

3(P3
2) { C/P/p1, C/T/c1 } 0.5 0.8

4(P4
1) { C/P, C/T/c1 } 0.65

SoC

0.85

u1 u2 u3 u4

Fig. 6. FoC and Weight of FCSPs
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3.3 Similarity of Web Users

For two web users that are represented as two sets of FCSPs, we should measure
their proximity by taking into account not only the number of shared FCSPs
but also the SoF of shared FCSPs. Thus, we define the Similarity of User as
follows.

Definition 11 (Similarity of Users). Let u1 = {P 1
1 , P 2

1 , . . . , Pm
1 } and u2 =

{P 1
2 , P 2

2 , . . . , Pn
2 } be two web users that are represented as two sets of FCSPs.

Suppose there exists k (0 ≤ k ≤ m ≤ n) s.t. P 1
1 = P 1

2 or P 1
1 ≈ P 1

2 , · · ·, P k
1 =

P k
2 or P k

1 ≈ P k
2 . The Similarity of Users, denoted as SoU(u1, u2), is defined as,

SoU(u1, u2) =
∑k

i=1 SoF (P i
1, P

i
2)

m+n
2

#$

If two web users share all their FCSPs and each pair of shared FCSPs has the
SoF of 1, then the Similarity of Users has the maximum value of 1. Otherwise,
if the two web users share no FCSP, the Similarity of Users is 0.

4 Framework of COWES

Given a collection of web users, where each user is associated with a sequence of
his historical web sessions, COWES generates the clusters of users in the follows
phases:

– Phase I. From the historical web sessions of each user, we extract a set of
FCSPs, which will be treated as a vector of features for clustering.

– Phase II. Compute the similarity between pairs of web users in terms of their
FCSPs based on defined similarity metrics.

– Phase III. Perform clustering on the generated similarity matrix of web users.

In [3], we proposed an algorithm that discovers FCSPs from a sequence of histor-
ical tree structures. Thus, we omit the details of Phase I and interested readers
can refer to [3] for the details. We discuss the Phases II and III in the following
subsections.

4.1 Similarity Computation

As the output of Phase I, each web user is represented as a set of FCSPs. We
need to compute the similarity between each pair of users in the second phase.

Given two sets of FCSPs of two users, we first compute an optimal align-
ment of their FCSPs so that the total Element Similarity between match-
ing FCSPs can be maximized. For example, suppose u1 = {P 1

1 } where P 1
1 =

{Company/Products, Company/Training}, and u2 = {P 1
2 , P 2

2 } where P 1
2 =

Company/Products, Company/Training /course1} and P 2
2 ={Company/Products

/product1, Company/Training/course1}. Although P 1
1 is approximate with both

P 1
2 and P 2

2 , we align P 1
1 with P 1

2 so that the total Element Similarity between
the matching FCSPs is maximized. After getting the optimal alignment, the
SOF of the matching FCSPs can be computed and the SoU of the two users
can be obtained accordingly.
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4.2 Cluster Generation

After Phase II, we can get a similarity matrix of web users. Then, many ap-
propriate algorithms can be used to generate the clusters. However, different
algorithms will have different performance with respect to the characteristics of
the data. Here, we employ the well-known K -medoid [6] clustering technique.
Obviously, K -medoid is by no means the only available method for clustering
based on the similarity matrix, but it is the more preferable one as shown by
our experimental results. We need to point out that the novelty here is not the
clustering algorithm, but the extraction of appropriate information from histor-
ical web sessions as a base for clustering and the similarity metrics we defined
to measure the proximity of web users in terms of their characteristics in usage
data evolution.

5 Experimental Results

In this section, we evaluate the performance of COWES via experiments on
both synthetic and real data sets. All experiments are carried out on a Pentium
IV 2.8GHz PC with 512MB memory. The operating system is Windows 2000
professional.

5.1 Experiments on Synthetic Data

We conduct two experiments on the synthetic data. The first experiment is
carried out to illustrate our decision on employing a partitioning clustering al-
gorithm. The second experiment is used to show the processing costs of different
phases of our clustering approach.

We implemented a synthetic FCSPs generator which is a process of the fol-
lowing steps. First, we generate a general web session tree with the given number
of nodes. Then, we select subtrees from the tree structure to compose FCSPs.
We organize the FCSPs into groups by controlling the overlap between each pair
of groups. We select FCSP groups for each web user and assign FoC and SoC to
each FCSP. Parameters of the synthetic FCSPs generating process is shown in
Table 1 (a), where the third column shows the default values of the parameters.

Table 1. Parameter and Results

D Number of web users 5000
S Average number of FCSPs per user 5
G Number of FCSP groups 40
F Average number of FCSPs of each group 4
P Number of FCSPs 150
T Average number of subtrees of each FCSP 3
N Number of nodes of general session tree 500

(a) Parameter List

D Step 2 Step 3
2K 10.31 5.92
3K 25.91 17.00
4K 41.39 23.20
5K 79.19 38.98
6K 96.66 95.12
7K 140.65 199.13

(b) Time
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(a) agglomerative (b) partitioning (c) graph-based

Fig. 7. Similarity matrix ordered by clustering results

Result Analysis. Firstly, we conduct experiments to show why we decide to
employ a partitioning clustering algorithm. Particularly, we compare the fol-
lowing three well-known clustering algorithms: the agglomerative algorithm, the
partitioning algorithm and the graph-based algorithm [14]. Figure 7 shows the
gray scale images of the same similarity matrix ordered by the clusters generated
by the three algorithms. The shade of each point in the images represents the
value of the corresponding entry in similarity matrix. In extreme cases, white
and black correspond to the similarity values of 1 and 0 respectively. Hence, for
a good clustering, the rectangles on the diagonal should be as white as possi-
ble as they represent the web users in same clusters, while the remaining areas
should be as black as possible. From Figure 7, we observe that the partitioning
algorithm performs the best not only in achieving the best accuracy but also in
controlling the balance of the cardinality of the clusters.

We also conduct experiments on the set of synthetic data to evaluate the
processing costs of the different phases of COWES. Since the performance of the
first phase has been evaluated in our previous work [3], we do not report it again.
Table 1 (b) shows the execution time of the second and third phases of COWES
with respect to the variation of the number of users. It can be observed that
both the costs of computing SoU and generating clusters increase quadratically
with the number of users.

5.2 Experiments on Real Data

We conducted two experiments on real-life data. The first one is carried out to
evaluate the accuracy of COWES and to demonstrate the novel clusters that
can be discovered by COWES. The second one is conducted to compare the
effectiveness of our similarity metric against an alternative one which ignores
the Approximate FCSPs.

DataSets. The real-life datasets are collected from Internet Traffic Archive
(http://ita.ee.lbl. gov), sponsored by ACM SIGCOMM. We use the trace that
contains a day’s worth of all HTTP requests to the EPA WWW server located
at Research Triangle Park, NC. In considering the evolution of web usage data,
the requests of a host are grouped with a time interval of one hour. All the
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IS ES IS ES IS ES IS ES
5 0.36 0.013 0.09 0.007 3 0.67 0.24 0.35 0.24
6 0.22 0.014 0.08 0.006 4 0.72 0.39 0.37 0.24
7 0.38 0.017 0.21 0.006 5 0.73 0.34 0.38 0.23
8 0.39 0.019 0.18 0.008 6 0.72 0.32 0.40 0.22

Num of
Clusters

Num of
Clusters

Dataset I Dataset II
COWES COWESSTRUCTURE STRUCTURE

Fig. 8. Comparison of clustering algorithms

IS ES IS ES IS ES IS ES
5 0.36 0.013 0.21 0.015 3 0.67 0.24 0.59 0.21
6 0.36 0.014 0.22 0.015 4 0.72 0.39 0.67 0.34
7 0.38 0.017 0.38 0.019 5 0.73 0.34 0.65 0.31
8 0.39 0.019 0.30 0.024 6 0.72 0.32 0.65 0.29

Num of
Clusters

Num of
Clusters

Dataset I Dataset II
Approximate ApproximateIdentical Identical

Fig. 9. Comparison of similarity metrics

requests of all 2333 hosts in the trace form the Dataset I. In order to study the
novel knowledge that can be discovered by COWES, we collect the requests of
57 hosts that browse the subtree of the two paths, “/docs/WhatsNew.html” and
“/docs/WhatsHot.html” to form the Dataset II. Since hosts in the Dataset II
are similar in their requests, they may not be distinguished by existing cluster
algorithms. We study to see whether COWES can generate clusters of high
quality based on evolutionary features of the requests.

Result Analysis. We first conduct experiments to evaluate the accuracy of
COWES. The results are shown in Figure 8. The quality of the clustering results
is measured with two metrics, the overall mean inner cluster similarity and the
overall mean inter cluster similarity, that are defined in [6] and referred to as
IS and ES respectively in Figure 8. Basically, for a good clustering, the former
should be large while the latter should be small. In order to evaluate the values
of IS and ES of COWES, we employed an algorithm [10], which is referred to
as STRUCTURE in Figure 8, that clusters the web users by the similarity in
the structure of web session trees and ignores the evolutions of the sessions. We
observed from Figure 8 that for Dataset I, COWES can achieve competitive
accuracy. For Dataset II where users share similar structures in web sessions,
COWES can distinguish them with their evolutionary features and generate
clusters with much higher quality.

Then we conduct experiments to compare the effectiveness of our similarity
metric, which is referred to as “Approximate” in Figure 9, with an alternative
similarity metric considering the Identical FCSPs only, which is referred to as
“Identical” in Figure 9. As shown by the results in Figure 9, although both
similarity metrics have similar performance in ES, our similarity metric works
better in IS.
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6 Related Work

Clustering of web users is an important task of web usage mining. Existing
works on web user clustering usually extract access patterns of users from web
server log files and organize them into web sessions. Xiao et al. [12] clustered
web user sessions based on various similarity measures, such as the number of
shared web pages, the frequency of accessing the shared web pages etc. Rather
than clustering the web users based on web sessions directly, Fu et al. [5] first
generalized the sessions so that pages representing the similar semantics are
collapsed. By this manner, the dimension of clustering feature can be reduced
significantly. Wang and Zaiane [11] also cluster web users based on snapshots of
web sessions. They represented web sessions as vectors of encoded page IDs and
then a clustering algorithm handling categorical data was employed. The critical
difference between existing works on clustering web users and our effort is that we
address the dynamic nature of web usage data. We measure the proximity of web
users based on the characteristics of their usage data evolution. Existing works
measure the likeness between web users based on the information in snapshot
web sessions. Consequently, the clusters generated by our algorithm indicate
different knowledge and thus have different applications.

7 Conclusions

In this paper, we take into account the dynamic nature of web usage data to
cluster web users. A novel method, COWES, for clustering web users by histori-
cal web sessions is presented. From a sequence of historical web sessions of each
user, we first mine a set of Frequently Changed Subtree Patterns (FCSPs) to
capture the characteristics in the evolution of his usage data. Then, the similar-
ity between web users are computed based on their common FCSPs in terms of
the Element Similarity as well as the Strength Similarity. Finally, a partitioning
clustering technique is employed to generate clusters of web users. The exper-
imental results show that our approach is effective in distinguishing web users
with different characteristics in usage data evolution.
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Abstract. A number of similarity metrics have been used to measure the degree 
of web page changes in the literature.  When a web page changes, the metrics 
often represent the change differently.  In this paper, we first define criteria for 
web page changes to evaluate the effectiveness of the metrics in terms of six 
important types of web page changes.  Second, we propose a new similarity 
metric appropriate for measuring the degree of web page changes.  Using real 
web pages and synthesized pages, we analyze the five existing metrics (i.e., the 
byte-wise comparison, the TF·IDF cosine distance, the word distance, the edit 
distance, and the shingling) and ours under the proposed criteria.  The analysis 
result shows that our metric represents the changes more effectively than other 
metrics.  We expect that our study can help users select an appropriate metric 
for particular web applications. 

1   Introduction 

In many web applications, administrators create and manage web databases (a 
collection of web pages). Major web search service providers such as Google or 
Yahoo create web databases, with which users can conduct search activities.  Proxy 
servers and web browsers maintain web databases to cache web pages and reduce 
repeated downloading of the web pages. As web pages change dynamically, web 
databases become obsolete and need to be updated.  Updating all the web pages in the 
databases often entails making unnecessary requests and downloading unchanged web 
pages.  Administrators would like to update only changed (or significantly changed) 
web pages in the databases, hence it is important to know how much the contents of 
web pages changed. 

A number of similarity metrics for textual data have been used to measure the 
degree of web page changes. The simplest way to see if a web page changes is to 
compare web pages in a byte-by-byte level, which is used in [1, 3, 7]. Ntoulas et al. 
[9] used the TF·IDF cosine distance and the word distance. Lim et al. [8] used a 
metric based on the edit distance. Broder et al. [2] and Fetterly et al. [6] used the 
shingling metric.  Each of the metrics often represents the same change of web pages 
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differently.  Users may have a difficulty with selecting an appropriate metric for their 
specific applications.  In our best knowledge, there have been no research activities to 
intensively compare (or evaluate) the existing metrics in terms of web page changes. 

In this paper, we propose criteria for web page changes in order to evaluate 
existing similarity metrics.  In the criteria, web page changes are classified into six 
types (namely, “add”, “drop”, “copy”, “shrink”, “replace”, and “move”).  We believe 
that the six types represent common changes on the web.  For each of the six change 
types, each criterion is defined.  Each criterion gives appropriate values of change 
degree for the web pages changed by each change type.  A metric is defined to be 
effective if the metric is close to the criteria.  A metric is defined to be oversensitive 
(undersensitive) if the metric is always higher (lower respectively) than the criteria.  
In this paper, we also present a new similarity metric measuring the degree of web 
page changes effectively.  The metric is designed to reflect our criteria well in terms 
of the six change types. 

We conducted two kinds of experiments.  The first experiment shows how 
differently the five existing metrics (i.e., the byte-wise comparison, the TF·IDF cosine 
distance, the word distance, the edit distance, and the shingling metrics) and ours 
represent the same change of web pages with 41,469 real web pages.  In the second 
experiment, we evaluate the effectiveness of the six metrics with synthesized pages 
under the criteria.  From the results, we substantiate that the existing metrics have 
some drawbacks and our metric is more effective than the existing metrics for web 
page changes. 

This paper is organized as follows.  Section 2 explains the existing metrics briefly.  
In section 3, the change types of web pages are defined, and the criteria for web page 
changes are described.  In section 4, we propose an effective similarity metric for 
measuring the degree of web page changes.  Experimental results are reported in 
section 5.  Finally, section 6 contains the closing remarks.   

2   Existing Metrics 

We introduce five metrics that have been used to measure the degree of web page 
changes in the literature.  Throughout this paper, p denotes an original web page and 
p’ a changed page of p.  The byte-wise comparison metric [1, 3, 7], which compares 
two web pages p and p’ sequentially character by character, is the simplest (but most 
rigid) method for measuring the degree of web page changes. The metric returns 0 
when there is no change at all, and returns 1 otherwise.  The byte-wise comparison 
metric returns 1 even for very trivial changes (for example, insertion of one blank 
space). That metric is oversensitive and does not represent the degree of changes. 

The TF·IDF cosine distance metric is commonly used for determining relevance of 
documents to a search query in the field of information retrieval.  This metric 
transforms p and p’ to the TF·IDF weighted vectors vp and vp’ respectively [10], and 
calculates cosine distance between the two vectors as equation (1).  vp·vp’ denotes the 
inner product of vp and vp’, and ||vi||2 denotes the second norm of vector vi. 
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The word distance metric calculates how many of the words on a page have 
changed.  In this metric, the distance between p and p’ is calculated as equation (2), 
where m and n denote the numbers of words on p and p’ respectively.  Ntoulas et al. 
[9] used the TF·IDF cosine distance and the word distance to measure the degree of 
web page changes. 
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The TF·IDF cosine distance and the word distance metrics cannot consider the 
change of word orders because they regard web pages as bags of words.  The change 
of word orders frequently takes place and may be critical.  For example, a change of 
word orders in a shopping site could represent a change of articles’ priorities, which is 
important to customers. 

The edit distance is the least expensive cost for sequences of edit operations 
(generally, “insertion”, “deletion”, and “substitution”) required to transform one 
sequence to another sequence [5].  For example, suppose that the cost of every edit 
operation is 1.  The edit distance from a sequence <A, G, B, A, A> to <A, B, A, T, 
A> is 2 because at least two edit operations (one “deletion” of G and one “insertion” 
of T) are needed.  To measure the degree of web page changes, Lim et al. [8] defined 
a distance metric as equation (3), where m and n denote the numbers of words on p 
and p’ respectively and  denotes the edit distance between p and p’.  Each page is 
regarded as a word sequence.  Only two operations (i.e., “insertion” and “deletion”) 
are used as edit operations, and the cost of the operations is 1.  When the two pages 
are identical,  becomes 0 and the metric returns 0.  On the other hand, when the two 
pages are completely different,  is (m + n) because m old words are deleted and n 
new words are inserted.  In this case, the metric returns 1. 
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ppDED +

= δ
)',(  (3) 

The word distance and the edit distance metrics cannot distinguish insertion 
(deletion) of unique words from insertion (deletion, respectively) of duplicate words, 
even though such changes could have different implications.  For example, if a web 
page <w1, w2, w3, w4> changes to <w1, w2, w3, w4, w2, w3>, both metrics return 0.2.  If 
the same page changes to <w1, w2, w3, w4, w5, w6>, they also return 0.2.  However, it 
may be necessary to distinguish the two changes, because some applications like to 
consider them differently. 

In the shingling metric, each web page is represented as a set of k-word continuous, 
ordered subsequences.  Each subsequence is called a “shingle”, and k represents the 
number of words on a shingle.  Every word on the document starts a shingle wrapping 
at the end of the document.  For example, the 3-shingling of a document <w1, w2, w3, 
w4> is the set {<w1, w2, w3>, <w2, w3, w4>, <w3, w4, w1>, <w4, w1, w2>}.  For a given 
shingle size, the distance between p and p’ is shown in equation (4), where S(p) is the 
set of shingles on p, and |S(p)| is the number of elements on the set S(p).  Broder et al. 
[2] defined the shingling metric and tried to cluster web pages that have the similar 
contents using the metric.  Fetterly et al. [6] used the metric to investigate how web 
pages evolve. 
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The shingling metric is oversensitive to the changes on small web pages.  For 
example, assume that a web page <w1, w2, w3, w4, w5> changes to <w1, w2, w3, w6, 
w5>, and the shingle size k is 3.  Even though only one word (w4) changes, the metric 
returns 0.75.  The result could cause users to misinterpret to mean that 75% of the 
page has changed.  Moreover, if w1 moves between w3 and w4 on a page <w1, w2, w3, 
w4, w5>, the metric returns 1. 

3   Criteria for Evaluating the Metrics 

In this section, we define criteria for web page changes to evaluate how effectively 
the metrics measure the degree of web page changes.  Prior to defining the criteria, we 
classify web page changes into six types (namely, “add”, “copy”, “drop” “shrink”, 
“replace”, and “move”).  Examples of the six change types are given in Fig. 1. 

 

Fig. 1. Six types of web page changes 

Definition 1.  When new words (i.e., words not occurring on p) are inserted into p, we 
say that an “add” change takes place on the page.  When old words (i.e., words 
occurring on p) are inserted into p, we say that a “copy” change takes place on the 
page. 

Definition 2. When unique words (i.e., words occurring only once on p) are deleted 
from p, we say that a “drop” change takes place on the page.  The deleted words do 
not exist any more on p’ after the “drop” change.  When duplicate words (i.e., words 
occurring more than once on p) are deleted from p, we say that a “shrink” change 
takes place on the page.  The deleted words still occur on p’ even after the “shrink” 
change. 

Definition 3. When words on p are substituted by different words, we say that a 
“replace” change takes place on the page. 

Definition 4. When the positions of words on p change, we say that a “move” change 
takes place on the page. 

We give an example to illustrate how the six change types are applicable.  Suppose an 
e-commerce site that displays a list of book information such as titles, summaries, 
prices, popularities (i.e., the total number of books sold), and customers’ opinions, in 
 

(a) Add�

(e) Replace� (f) Move

w1 w2 w2 w3 w4

w1 w2 w2 w3 w4 w1 w2 w2 w3 w4

w1 w2 w2 w5 w3 w4
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(d) Shrink
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(a) Add     (b) Copy 

Fig. 2. Criteria for “Add” and “Copy” 

an order of popularity.  First, suppose that a customer writes his opinion on the page. 
When the opinion is different from existing opinions, the inserted words are likely to 
be unique (i.e., “add” change).  When the opinion is similar to existing opinions, the 
inserted words are likely to be duplicated (i.e., “copy” change).  Next, suppose that a 
customer deletes his opinion from the page.  When the opinion is unique from 
existing ones, the deleted words are likely to be absent on the page (i.e., “drop” 
change).  When the opinion is similar to other ones, the deleted words are still likely 
to occur on the page (i.e., “shrink” change).  We distinguish the “add” change (the 
“drop” change) from the “copy” change (the “shrink” change, respectively), because 
the change of unique information is more significant than the change of duplicate 
information in general.  On the price change, the old price of the book is updated by 
the new one on the page (i.e., “replace” change).  When the popularities of books 
change, the order of book information in the list is changed (i.e., “move” change). 

Figs. 2 to 4 illustrate the criterion of each change type.  Let n and x denote the 
number of words on p and the number of changed words, respectively.  The x-axis 
represents the number of changed words on a web page and the y-axis represents the 
change degree of a page. 

The criterion for the “add” change is defined as (x / (n+x)), as illustrated in  
Fig. 2(a). For example, when n words are added to p with n words, the change degree 
is 0.5 (= n / (n+n)).  Similarly, when 3n words are added to p with n words, the 
change degree is 0.75 (= 3n / (3n+n)).  As the number of added words increases, the 
change degree becomes to be close to 1.  The criterion for the “copy” change is 
defined as ( x / (n+x)), which is illustrated in Fig. 2(b).  The parameter , which 
ranges from 0 to 1, denotes the user-defined weight of the “copy” change against the 
“add” change.  As a user considers the “copy” change more significantly (or trivially), 

 becomes higher (or lower, respectively).  For example, if a user considers the effect 
of adding one word to be equivalent to the effect of copying two words,  should be 
set to be 1/2.  If a user considers the effect of adding one word to be equivalent to the 
effect of copying three words,  should be set to be 1/3. 

The criterion for the “drop” change is defined as (x / n), as in Fig. 3(a).  For 
example, when n words are dropped from p with n words, the degree of change is one 
(= n / n).  More than n words cannot be dropped from a page with n words.  The 
criterion for the “shrink” change is defined as ( x / n), as in Fig. 3(b).  The parameter 

, which is defined before, is used to denote the user-defined weight of the “shrink” 
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(a) Drop     (b) Shrink 

Fig. 3. Criteria for “Drop” and “Shrink” 

 
(a) Replace    (b) Move 

Fig. 4. Criteria for “Replace” and “Move” 

change against the “drop” change.  m denotes the maximum number of duplicate 
words on p, hence more than m words cannot be shrunk. 

The criterion for the “replace” change is defined as (x / n), as shown in Fig. 4(a).  
For example, when n words on p with n words are replaced to other words, the degree 
of change is one (= n / n).  The criterion for the “move” change is defined as ( x / n), as 
in Fig. 4(b).  The parameter , which ranges from 0 to 1, denotes the user-defined 
weight of the “move” change against the “replace’ change.  As a user considers the 
“move” change more significantly (or trivially),  becomes higher (or lower, 
respectively).  (n-1) is the maximum number of movable words on a page with n words. 

4   A New Metric 

In this section, we propose an effective metric.  Our metric is an improved version of 
the edit distance metric.  The metric considers all the six change types described in 
section 3.  Note that the edit distance is the least expensive cost for sequences of edit 
operations (generally, “insertion”, “deletion”, and “substitution”) required to 
transform one sequence to another sequence.  In our metric, we extend the edit 
operations to be the following six ones: “add”, “drop”, “copy”, “shrink”, “replace”, 
and “move”.  The cost of “add”, “drop”, and “replace” operations is 1. The cost of 
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“copy” and “shrink” is a, and the cost of “move” operation is b, where a and b range 
from 0 to 1.  The extended edit distance E of two web pages is defined as equation 
(5), where each page is regarded as a word sequence as done in [8].  k means the 
maximum number of sequences of the extended edit operations, and COSTi(op) 
denotes the cost of the given edit operation in the ith sequence. 

{ }
∈

=
=

},,,,,{
..1

)(min movereplaceshrinkcopydropaddop i
ki

E opCOSTδ  (5) 

The extended edit distance E between two word sequences A and B can be 
obtained through the following steps (see Example 1). 

Phase 1: Finding the longest common subsequence 
We first find the longest common subsequence LCS(A, B) of two word 
sequences, A and B.  A subsequence of a sequence is simply a sequence with 
some elements (possibly none) left out.  For example, a sequence <w2, w3, 
w4, w2> is a subsequence of a sequence <w1, w2, w3, w2, w4, w1, w2> with 
corresponding index sequence <2, 3, 5, 7> [5].  Using LCS(A, B), we create 
two word sequences excluding LCS(A, B) from A and B (hereafter referred 
to as A’ and B’, respectively). 

Phase 2: Taking care of the “move” operations 
The candidate words for “move” operation (referred to as CWmove) are the 
common words on both A’ and B’.  If b is bigger than 2a, we exclude some 
words occurring more than once on both A and B, from CWmove.  The 
excluded words become the candidate words for “copy” and “shrink” 
operations in the next phase so as to minimize the cost of the edit operation 
sequence.  Then, remained CWmove are considered as moved words.  The 
number of “move” operations becomes the number of moved words, and the 
moved words are removed from A’ and B’. 

Phase 3: Taking care of the “copy” and “shrink” operations 
The words that exist on B’ and occur on B more than once are the candidates 
for “copy” operation (referred to as CWcopy).  And the words that exist on A’ 
and occur on A more than once are the candidate words for “shrink” 
operation (referred to as CWshrink).  First, each of the common words in 
CWcopy and CWshrink is considered as a shrunk and copied word; the common 
words exist only when b is bigger than 2a.  The numbers of “copy” and 
“shrink” operations become the number of the common words, and the 
words are removed from A’, B’, CWcopy, and CWshrink.  Second, note that one 
“copy” and one “shrink” operations may also be represented by one 
“replace” operation.   If a is smaller than 0.5, the cost (i.e., 2a) of one 
“copy” operation and one “shrink” operation is cheaper than the cost (i.e., 1) 
of one “replace” operation.  Hence, we find words such that a word in 
CWcopy and a word in CWshrink occur on the same index of B and A 
respectively.  Each of the detected words is considered as a shrunk and 
copied word.  The numbers of “copy” and “shrink” operations increase as 
many as the number of the detected words, and the words are removed from 
A’, B’, CWcopy, and CWshrink.  If a is bigger than 0.5, we exclude the detected 
words from CWcopy and CWshrink.  The excluded words are considered as 
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replaced words in the next phase.  Finally, remained CWcopy and CWshrink are 
considered as copied and shrunk words respectively.  Hence, the numbers of 
“copy” and “shrink” operations increase as many as the numbers of copied 
words and the number of shrunk words respectively.  The copied words are 
removed from B’ and the shrunk words are removed from A’. 

Phase 4: Taking care of the “replace”, “add” and “drop” operations 
The words on A’ and B’ with the same indexes on both A and B are 
considered as replaced words.  The number of “replace” operations becomes 
the number of replaced words and the replaced words are removed from A’ 
and B’.  Next, the words on A’ and B’ are considered as dropped and added 
words respectively.  Hence the numbers of “add” and “drop” operations 
become the numbers of the words on B’ and A’ respectively. 

Phase 5: Calculating the extended edit distance 
The extended edit distance from A to B is calculated from the numbers of 
edit operations and their costs. 

Example 1. Suppose that a web page A = <w1, w2, w2, w2, w3, w3, w4, w5, w2> changes 
to B = <w3, w1, w4, w2, w3, w5, w5, w6, w6, w7>.  The parameters a and b are set to be 0.4 
and 0.9, respectively.  We compute the extended edit distance from A to B as follows. 

At the first phase, we find the longest common subsequence of A and B: 

LCS(A, B) = <w1, w2, w3, w5> 
A’ = <w2, w2, w3, w4, w2> 
B’ = <w3, w4, w5, w6, w6, w7> 
|add| = 0, |drop| = 0, |copy| = 0, |shrink| = 0, |replace| = 0, |move| = 0 

At the second phase, CWmove are w3 and w4 since the two words occur on both A’ 
and B’.  But, since b is bigger than 2a and w3 occurs twice on both A and B, w3 is 
excluded from CWmove.  Hence, only w4 is considered as a moved word.  The number 
of “move” operations becomes one and w4 is removed from A’ and B’: 

A’ = <w2, w2, w3, w2> 
B’ = <w3, w5, w6, w6, w7> 
|add| = 0, |drop| = 0, |copy| = 0, |shrink| = 0, |replace| = 0, |move| = 1 

At the third phase, CWcopy are w3, w5, and w6, and CWshrink are w2, w2, w2, and w3.  
First, w3 is considered as a shrunk and copied word because the word is a common 
word in CWcopy and CWshrink.  Hence, the number of “copy” and “shrink” operations 
becomes one and w3 is removed from A’, B’, CWcopy, and CWshrink.  At this time, we 
have: 

A’ = <w2, w2, w2>, CWshrink = w2, w2, w2 

B’ = <w5, w6, w6, w7>, CWcopy = w5, w6 

|add| = 0, |drop| = 0, |copy| = 1, |shrink| = 1, |replace| = 0, |move| = 1 

Next, we find the words with the same indexes on both A and B from CWcopy and 
CWshrink, which are w2 and w6; w2 occurs on A with the ninth index and w6 occurs on B 
with the ninth index.  Since a is smaller than 0.5, w2 and w6 are considered as a shrunk 
word and a copied word respectively.  Hence, the numbers of “copy” and “shrink” 
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operations increase by one.  w2 is removed from A’ and CWshrink, and w6 is removed 
from B’ and CWcopy: 

A’ = <w2, w2>, CWshrink = w2, w2 

B’ = <w5, w6, w7>, CWcopy = w5 

|add| = 0, |drop| = 0, |copy| = 2, |shrink| = 2, |replace| = 0, |move| = 1 

Next, remained CWcopy and CWshrink are considered as copied words and shrunk words 
respectively.  Hence, the number of “copy” operations increases by one and the 
number of “shrink” operations increases by two.  w2 and w2 are removed from A’, and 
w5 is removed from B’: 

A’ = <> 
B’ = <w6, w7> 
|add| = 0, |drop| = 0, |copy| = 3, |shrink| = 4, |replace| = 0, |move| = 1 

At the fourth phase, there are no any replaced or dropped words since A’ is empty. 
w6 and w7 are considered as added words, hence the number of “add” operations 
becomes two.  Finally we have the numbers of all the extended edit operations in the 
least expensive sequence of the operations: 

|add| = 2, |drop| = 0, |copy| = 3, |shrink| = 4, |replace| = 0, |move| = 1 

At the fifth phase, we calculate the extended edit distance from A to B: 

E = (2·1) + (0·1) + (3·0.4) + (4·0.4) + (1·0) + (1·0.9) = 5.7           

Using the extended edit distance, we calculate the distance between two web pages p 
and p’ as equation (6), where m and n denote the numbers of words on p and p’ 
respectively. 

),(max
)',(

nm
ppD E

IED

δ=  (6) 

5   Experiments 

We conducted two experiments.  First, using real web pages, we show how differently 
each similarity metric measures the degree of web page changes.  Second, we present 
the effectiveness of the metrics under the proposed criteria. We compare the 
following six metrics: the byte-wise comparison (in short, BW), the TF·IDF cosine 
distance (COS), the word distance (WD), the edit distance (ED), the 10-shingling 
(10SH), and our metric improving the edit distance metric (IED).  Markups of web 
pages were excluded in the experiments, as done in the literature [2, 6, 8, 9].  The 
parameters a and b of our metric were set to be 0.75. 

5.1   Difference of the Metrics 

We randomly crawled 41,469 Korean web pages in August 2005.  The web pages 
were downloaded twice in a two-day interval.  From two versions of the web pages, 
we measured the  degree of changes  using  the six  metrics. Fig. 5  shows  the  change 
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Fig. 5. Difference of sensitivity (I) 

degrees of the pages under the six metrics.  y-axis represents the sum of the change 
degrees of all the pages as percentage.  The BW result implies that 30% of the pages 
changed, since it always returns 1 despite of very trivial changes (say, insertion of a 
blank space).  For the same 30% of the pages, other metrics respond differently. 10SH 
determines that about 12% of all the page contents changed, while COS, WD, ED, 
and IED say that about 7% of them changed. As Fig. 5 shows, BW is the most 
sensitive metric among the six metrics.  We also learn that 10SH is more sensitive to 
the page changes than COS, WD, ED, and IED are.  

Fig. 6 shows how differently 10SH, COS, and ED respond to the same changes of 
web pages.  The x-axis represents the identifier of each web page, and the y-axis 
represents the change degree of the corresponding web page.  The identifiers of web 
pages are sorted in an ascending order of 10SH and COS in Fig. 6(a) and 6(b) 
respectively, in order to clearly visualize the difference of the metrics.  We have 
observed the similar results for other combinations of metrics, which are not explicitly 

 

   
(a) 10SH vs. COS                          (b) COS vs. ED 

Fig. 6. Difference of sensitivity (II) 
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presented though.  As the figures show, each metric returns different values on almost 
all the pages.  Sometimes, the difference is as large as 0.92 as shown in Fig. 6(a).  
This experiment implies that the degree of web page changes is heavily dependent on 
which metric is used to measure the page changes.  Users need to select an 
appropriate metric when they precisely measure the degree of web page changes; 
otherwise they would misunderstand web page changes.  These experimental results 
motivated our study.  

5.2   Evaluation of the Metrics 

We conducted experiments to evaluate the effectiveness of the metrics under the 
proposed criteria. These experiments were done with synthesized pages, which are 
constructed to reflect the characteristics on the web. A metric is defined to be effective 
if the results of the metric are close to the criteria. In addition, if the results of a metric 
are always higher (or lower) than the criteria, we say that the metric is oversensitive (or 
undersensitive, respectively).  and  in the criteria were set to be 0.75. 

First, we evaluated the metrics when various numbers of words on a page with 
1,000 words were changing.  We chose a page with 1000 words, since web pages with 
1,000 words occupy about 25% on the web [6].  The changed words were clustered 
(i.e., not distributed) on the pages, because the changes of real web pages were 
generally clustered [8].  In Fig. 7, the x-axis represents the number of changed words 
on a page, and the y-axis denotes the change degree of the corresponding page.  10SH 
is effective for the “add” and “drop” changes, but is oversensitive for the other 
changes.  If  in the criteria were set to be one, the metric would be effective for the 
“copy” and “shrink” changes.  In our experiment, COS is always undersensitive.  
COS returns very low values for the “copy” and “shrink” changes, which implies that 
COS treats the “copy” and “shrink” changes to be minor.  COS and WD always return 
zero on the “move” change because they do not consider the changes of word order at 
all. WD is effective for the “replace” change but is undersensitive for the other 
changes.  If  in the criteria were to be 0.5, the metric would be effective for the 
“copy” change.  On the other words, WD would be the right choice for users who 
consider the effect of adding one word to be equivalent to the effect of copying two 
words. ED works similar to WD, except for the “move” change.  ED treats the 
“move” change and “replace” change identically.  IED returns the most effective 
results in all cases.  

Next, we evaluated the metrics on various sizes of pages (i.e., 22, 23, 24, … , or 213 
words).  Note that web pages with 22 to 213 words occupy about 95% on the web [6].  
We maintained the fraction of changed words on each page to be 1/4; one word on a 
22 word page, two words on a 23 word page, three words on a 24 word page, and so 
on.  The x-axis in Fig. 8 represents the number of words on a page before change.  
From this result, we found out that 10SH becomes more oversensitive as web pages 
become smaller on all the change types.  The sensitivities of the other metrics are not 
dependent to the page size in most cases; COS also varies in sensitivity according to 
the page size, but it is not serious. 
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(a) Add                  (b) Drop 

   
(c) Copy                                      (d) Shrink 

   
(e) Replace                                      (f) Move 

Fig. 7. Comparison of metrics 

Note that the experiments were done with  = 0.75 and  = 0.75. If parameters  
and  were set differently, the sensitivities (or effectiveness) of the metrics would be 
differently evaluated under the “copy”, “shrink”, and “move” changes.  It should be 
observed that the criteria graphs with other values of  and  could be easily 
predicted; only the slope of the criteria graph changes. 

 



 A Precise Metric for Measuring How Much Web Pages Change 569 

   
(a) Add     (b) Drop 

   
(c) Copy     (d) Shrink 

   
(e) Replace    (f) Move 

Fig. 8. Sensitivity versus page size 

We now summarize what we have learned in our experiments. 

1. 10SH is oversensitive to the changes of web pages (especially under the  
“move” change). The smaller the page size is, the more sensitive 10SH is. 10S
H is effective for the “add” and the “drop” changes. 10SH measures the “add” 
change and the “copy” change similarly. The “drop” and “shrink” changes are 
similarly treated under 10SH. 
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2. COS is an undersensitive metric.  COS does not consider the “move” change at
all. In particular, the “copy” and the “shrink” changes are regarded as minor 
changes. 

3. WD does not consider the “move” change at all. WD is undersensitive to the 
“add” and the “drop” changes. The “copy” changes (or the “shrink” changes) of 
two words are approximately regarded as the “add” change (or the “drop”change,
respectively) of one word. WD is well effective for the “replace”change. 

4. ED shows the same results as WD except the “move” change. The “move” 
change is considered similarly with the “drop” or “replace” change. 

5. IED is the most effective metric under our proposed criteria. Mostly, IED 
responds to the changes of web pages identically to the criteria. IED can be used 
effectively in various applications because it can adjust the weights of the  
“copy”, “shrink”, and “move” changes. 

6   Closing Remarks 

In this paper, we classified the changes of web pages into six types, which are “add”, 
“copy”, “drop” “shrink”, “replace”, and “move”, then we defined a criterion for each 
type.  We also proposed a new metric designed to reflect the criteria well.  Under the 
criteria, we evaluated the effectiveness of the six metrics (namely, the byte-wise 
comparison, the TF·IDF cosine distance, the word distance, the edit distance, the 
shingling, and ours).  Based on this evaluation, we found that the proposed metric is 
the most effective metric in terms of all the six change types.  Our study presents how 
significantly the metrics consider each change type and which metric is effective on 
each change type.  We believe that this study is the first attempt to evaluate the 
metrics and could be used as a guideline for selecting an appropriate metric measuring 
the degree of web page changes. 

With our criteria, the metrics can be evaluated separately in terms of one of the six 
change types.  Even though more than one change type often occurs simultaneously 
on real web pages, our criteria have some limitations to measure multiple changes. 
Further research on the criteria for evaluating which metrics represent simultaneous 
changes effectively is necessary.   
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Abstract. In this paper, we propose a novel indexing method for similarity 
search in transaction databases where the frequency of database updates can be 
high. In our method, the incoming transactions are incrementally classified into 
clusters. The transactions in a cluster are represented using two features, namely 
the union and the intersection of all the transactions. Based on these two fea-
tures, the transactions in a cluster are further divided into disjoint groups. As a 
result, all the transactions are organized as a two-level index structure. With this 
index, the insertion of a transaction can be quickly done because only a particu-
lar cluster needs to be modified. Moreover, when conducting a similarity 
search, we can compute for each level the lower and upper bounds on the dis-
tance between the query and each transaction in the cluster. Based on these 
bounds, the costs on the distance computation can be greatly reduced. 

1   Introduction 

Mining knowledge from transaction databases is an essential step in decision-making 
applications. Recently, some researchers have been integrating the database tech-
niques into the mining process to improve the quality of mining results. Similarity 
search in transaction databases is one of the important techniques. For example, con-
sider the transaction database db as shown in Table 1, each transaction in the database 
indicates the items purchased by a customer. For a given transaction corresponding to 
a customer, similar transactions can be found from db and used to provide recom-
mendations about items which the customer may be interested in. In this paper, the 
similarity search problem on the transaction database is considered. For a user given 
transaction tq (in the rest of this paper, we call this given transaction the query) and a 
distance threshold δ, the transactions in the database whose distance to tq is less than 
or equal to δ will be returned as the result for similar transactions. The hamming dis-
tance is a well known operator from set theory and is widely used to calculate the 
distance between two transactions 3, 4, 5. The hamming distance between transac-
tions ti and tj dist(ti,tj) is defined as the cardinality of the union of ti and tj minus the 
intersection of ti and tj. For example, assume that a customer buys the set of items 
(abd), the hamming distance between (abd) and t1, t2, … t5 in db is 2, 2, 3, 4 and 1, 
respectively. If the distance threshold is set to 2, t1, t2, and t5 will be returned as the  
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Table 1. The transaction database db 

TID Transaction 
1 (abc) 
2 (acd) 
3 (bdef) 
4 (def) 
5 (ab) 

similar transactions to (abd). In this paper, we adopt the hamming distance as the 
distance metric for transactions. 

In recent years, several works 1, 3, 4, 5 have noted the problem of similarity search 
on transaction data. Most of the existing approaches focus on the construction of a 
transaction index structure such that similar transactions can be efficiently retrieved 
via the index structure. The concept of signature is widely used in the existing 
approaches to index transactions. A signature is a bit vector where each bit is 
associated with a set of distinct items. For each transaction, a bit of the corresponding 
signature is set to 1 if the transaction contains a sufficient number of the items 
associated with the bit. The transactions represented by the same signature are 
considered as similar transactions. According to different purposes, the existing 
approaches can be classified into table-based approaches 1, 3 and R-tree based 
approaches 4, 5. The table-based approaches assume that the correlation among items 
is consistent in the transaction database. In these papers, the probability analysis is 
applied on the items in the transaction database such that the transactions containing 
high correlative items can be represented by an identical signature. Accordingly, the 
similar transactions can be efficiently found based on the signature. However, the 
correlation among items can change since the customer behavior can change from 
time to time. That is, after inserting a certain number of transactions, the correlation 
among items has to be reevaluated such that the transactions with highly correlated 
items can still be represented by the same signature. However, the evaluation of the 
correlation among items is time consuming. Therefore, these approaches are not 
suitable for the database with a high update rate. 

On the other hand, the R-tree based approaches focus on the flexibility of index 
updates. Whenever a transaction is inserted into the database, the index structure is 
immediately updated. In general, the leaf node of the R-tree based index structure is 
associated with a set of transactions. Each internal node contains a set of signatures 
and their associated pointers each pointing to a child node of the internal node. Each 
signature in the internal node represents the transactions associated with the sub-tree 
rooted at the child node pointed by the associated pointer. In the R-tree based ap-
proaches, since the nodes in a higher level, i.e., the nodes which are closer to the root, 
cover more transactions in its descendants, most of the bits in the corresponding sig-
natures will be 1. Therefore, it is hard to distinguish whether the query is similar to 
the transactions indexed by the descendants of the nodes. In addition, similar to the 
node splitting in R-tree, these approaches adopt non-trivial algorithms to evaluate the 
signatures in the two split nodes such that the number of the bits of a signature set to 1 
in the two nodes is as small as possible. However, since the size of a node (number of 
signatures in a node) can be very large, these procedures can be time consuming. For 
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example, assume the node size is m, the time complexity of ga-split proposed in 4 
will be O(m4) (In 4, the node size is set to 4000. This is unsuitable for the dynamic 
environment). 

When conducting a similarity search, all the existing approaches use signatures in 
the index structures to compute lower bounds on distance, which is between the trans-
actions represented by the signatures and the query. Therefore, transactions which are 
impossible to be the answers can be pruned based on the lower bounds. 

There are some other approaches which focus on the problem of similarity search. 
In 2, a query can be efficiently processed since the approximate set of answers can be 
quickly found; however, some answers will be lost. In addition to the similarity search 
problem on set data, a variety of approaches such as 1, 7, 8, 11 focus on the problem 
of similarity search on the numerical data. However, as noted in 3, these approaches 
are not suitable for set data since the domain of the elements in the set data does not 
have a natural order and the dimensionality of the items in the transactions is huge. 

In this paper, we consider the problem on the database which can be updated fre-
quently and denote such database as a dynamic database. Our algorithm can be ap-
plied to both insertion and deletion cases of the database. However, due to space limit, 
we only discuss the case of insertions in this paper. Given a query tq and a distance 
threshold, our goal is to provide an index structure such that most of the dissimilar 
transactions to tq can be efficiently pruned. Moreover, most of the similar transactions 
to tq can be returned without having to compute their distances to tq. The latter is im-
portant in on-line applications. For example, assume the database shown in Table 1 
records the transactions for an e-store. Since what we want is to find the similar trans-
action to (abd) to provide on-line recommendations, the real distance/similarity be-
tween them are not important. However, in all the existing approaches, only the lower 
bounds on distance are used to prune the dissimilar transactions, the distance compu-
tation is necessary to verify whether the other transactions are similar to the query. In 
this paper, a novel index structure for the dynamic database is proposed such that the 
similarity search mechanism and index updates can be performed efficiently. 

In the proposed approach, the incoming transactions are incrementally classified 
into clusters. The transactions in a cluster are represented by two sets of items, par-
ticularly the union and the intersection of all the transactions in the cluster. Based on 
these two features, the transactions in a cluster containing the same number of items 
are further grouped. For each summary of the cluster, the corresponding distance to 
the transactions in a group will be identical and used to represent the transactions in 
the group. As a result, all the transactions are organized in a two-level index structure 
and the corresponding features of clusters and groups are recorded. The lower bound 
and upper bound on distance between a query and the transactions in the cluster and a 
group of the cluster can be computed based on the recorded information. Based on the 
computed distance bounds, dissimilar transactions can be pruned and similar transac-
tions can be found without computing their distances to the query. Therefore, the cost 
of distance computation can be substantially reduced.1 While inserting a transaction, 
only one particular cluster needs to be modified and the time complexity of updating a 

                                                           
1 Several approaches for clustering transactions have been proposed such as 6, 9, 10. However, 

these methods are not suitable for a database with a high frequency of updates, and do not 
provide a bound on the distance between the transactions in a cluster and a given query. 
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cluster is linear to the number of groups in the cluster. As a result, the proposed 
framework is robust for a dynamic database. For performance evaluation, we compare 
our approach with SG-Tree approach 4 on the similarity search time, pruning effi-
ciency and update time. The results show that our approach outperforms the SG-Tree 
approach in all these aspects. 

The rest of the paper is organized as follows. In Section 2, we first introduce the pro-
posed index structure, and then present the two-level similarity search mechanism. In 
Section 3, we describe how to efficiently cluster the transactions and update the index 
structure. The performance evaluation and experiment results are shown in Section 4. 
Finally, we conclude this paper with some remarks on future research in Section 5. 

2   The Index Structure and Similarity Search 

As described in Section 1, each cluster C in the index is represented by its two fea-
tures, i.e., the union and the intersection of all the transactions in the cluster. In this 
paper, we call the former outer border of C and the later inner border of C, denoted 
as CO and CI , respectively. Intuitively, the inner border of a cluster must be a subset 
of each transaction in the cluster while the outer border of the cluster must be the 
superset of each transaction in the cluster. Let diff(ti,tj) denote the set operator differ-
ence of ti and tj (i.e., |ti − tj|. In addition, dist(ti,tj) can be regarded as diff(ti,tj) + 
diff(tj,ti)). Property 1 shows that the distance between any two transactions in a cluster 
is bounded by the difference of the corresponding outer and inner borders. 

Property 1. Given a cluster C, the corresponding CO and CI, if ti, tj∈C, dist(ti,tj) ≤ 
diff(CO,CI). 

Proof. Since ti, tj ⊆ CO and CI ⊆ ti, tj  |ti ∪ tj|  |CO| and  |CI|   |ti ∩ tj|   dist(ti,tj) = 
(|ti ∪ tj| −  |ti ∩ tj|)  (|CO| – |CI|). Because  CI  ⊆  CO    |CO|  –  |CI |  = |CO – CI| = diff 
(CO,CI).                                                                                                                            

From Property 1, we observe that the smaller the difference of the outer and inner 
borders of a cluster, the smaller the distance between any two transactions in the 
cluster; that is, transactions in the cluster are more similar to each other. Therefore, 
the principle of incrementally clustering the incoming transactions is to keep the 
diff(CO,CI) of each cluster C as small as possible. The transactions in a cluster are 
further grouped into batches. For any two transactions ti and tj in a batch, the number 
of items in each of them is the same. Property 2 states that the difference for each 
transaction in a batch to the outer border and inner border of the cluster. 

Property 2. Given a cluster C, the corresponding CO and CI, and a batch B of C, if ti, 
tj ∈ B, diff(CO,ti) = diff(CO,tj) and diff(ti, CI) = diff(tj,CI). 

Proof. Because ti, tj ⊆ CO, diff(CO,ti) = |CO − ti| = |CO| − |ti| and diff(CO,tj) = |CO  − tj| = 
|CO| − |tj|. Because |ti| = |tj|  diff(CO,ti)  = diff(CO,tj).  The  case  for  diff(ti,CI)  =  diff 
(tj,CI) can be proved in the similar way.                                                                           

Since the difference between CO and each transaction in B is identical, we use 
dvO(C,B) to summarize diff(CO,t) for each transaction t in B. Similarly, we use 
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dvI(C,B) to summarize diff(t,CI) for each transaction t in B. Moreover, we call 
dvO(C,B) and dvI(C,B) the difference-value pair of B. In the proposed index structure, 
the two borders and the difference-value pair of each batch in each cluster will be 
recorded. The two borders and the difference-value pairs of a cluster will be used to 
estimate the distance bounds for a query to the transactions in the cluster and in a 
batch of the cluster. 

Example 1. Let the transactions (abc), (ab), and (bc) be contained in the cluster C, 
Figure 1 shows the index structure and illustrates the content of cluster C. The out 
border and inner border corresponding to C are (abc) and (b), respectively. The three 
transactions are further grouped into batches B1 and B2 in C based on the number of 
items in the transactions. The difference-value pair associated with each batch is rep-
resented in the header of the corresponding batch.                                                         

Next, we present the similarity search on the proposed index structure. Given the 
query tq and a cluster C, estimating the distance bounds for tq to the transactions in C 
helps us to prune some of the transactions and recognize them as the answers to the 
query before their distances to tq are computed. For a transaction t in C, dist(tq,t) can 
be regarded as diff(tq,t) + diff(t,tq). The distance bounds of dist(tq,t) can be derived 
from the difference bounds of diff(tq,t) and diff(t,tq). Given two transactions t1 and t2, 
if t1 ⊆ t ⊆ t2, diff(tq,t2) ≤ diff(tq,t) ≤ diff(tq,t1). Accordingly, diff(tq,t2) and diff(tq,t1) can 
be regarded as the lower and upper bounds of diff(tq,t), respectively (The difference 
bounds of diff(t,tq) can be computed in the similar way). This inspires us to extract the 
outer and inner borders from a cluster and use them along with the query to compute 
the corresponding distance bounds. In the following Lemmas, the distance bounds for 
a query to all the transactions in a cluster and to the transactions in a batch of the 
cluster are presented in Lemma 1 and Lemma 2, respectively. In Lemma 2, the differ-
ence-value pair of a batch is also considered when computing the corresponding dis-
tance bounds. 

Lemma 1. Given a transaction tq, the cluster C, the corresponding CO and CI, for the 
distance between tq and each transaction t in C, the following formula always holds. 

Index header

Cluster C Outer border: (abc)

Inner border: (b)

(0, 2)

(abc)

(1, 1)

(ab)

(bc)…
…

Batch B1 Batch B2

Index header

Cluster C Outer border: (abc)

Inner border: (b)

(0, 2)

(abc)

(1, 1)

(ab)

(bc)…
…

Batch B1 Batch B2

 

Fig. 1. The index structure 
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 (diff(tq,CO) + diff(CI,tq)) ≤ dist(tq,t) ≤ (diff(tq,CI) + diff(CO,tq)). (1) 

Proof. Because CI ⊆ t ⊆ CO, diff(tq,CO) ≤ diff(tq,t) ≤ diff(tq,CI).                          (1.1) 
Moreover, diff(CI,tq) ≤ diff(t,tq) ≤ diff(CO,tq).                                                           (1.2) 

By (1.1) and (1.2), 

(diff(tq,CO) + diff(CI,tq)) ≤ (diff(tq,t) + diff(t,tq)) ≤ (diff(tq,CI) + diff(CO,tq)). 
 (diff(tq,CO) + diff(CI,tq)) ≤ dist(tq,t) ≤ (diff(tq,CI) + diff(CO,tq)).                                

For the ease of representation, we denote diff(tq,CO) + diff(CI,tq) in formula (1) as  
1st-LB(tq,C) while diff(tq,CI) + diff(CO,tq) in formula (1) as 1st-UB(tq,C). Moreover, we 
respectively call 1st-LB(tq,C) and 1st-UB(tq,C) the first level distance lower bound and 
the first level distance upper bound for tq to each transaction in C. Given a query tq, a 
distance threshold δ, and each cluster C in the index structure, the relationship be-
tween the 1st-LB(tq,C) and 1st-UB(tq,C) and δ is discussed as follows. 

Case 1. 1st-LB(tq,C) > δ. In this case, the distance between each transaction in the 
cluster and tq must be larger than δ. Therefore, all the transactions in the cluster can be 
pruned straightforwardly. 

Case 2. 1st-UB(tq,C)  δ. In this case, the distances of all the transactions in the cluster 
to tq are smaller than or equal to δ. For this case, the transactions can be directly 
collected as the results without computing their distances to tq. 

Case 3. Both of the above two cases are not held. In this case, the distances between tq 
and the transactions in C will be further evaluated to determine which transactions 
will be included in the results. 

We call the first two cases described above and the corresponding treatments the first 
level bounding mechanism. For case 3, the difference-value pair of each batch in the 
cluster, the outer and inner borders corresponding to C, and the query will be used to 
calculate the distance lower and upper bounds of the query to the transactions in each 
batch. The two distance bounds are described in Lemma 2. 

Lemma 2. Given a transaction tq, the cluster C, the corresponding CO and CI, a batch 
B in C, and the difference-value pair (dvO(C,B),dvI(C,B)), for the distance between tq 
and each transaction t in B, the following formula always holds. 

(diff(tq,CO) + |diff(CO,tq) − dvO(C,B)|) ≤ dist(tq,t) ≤ (dist(tq,CI) + dvI(C,B)). (2) 

Proof. Because t ⊆ CO, |t| = |CO| − diff(CO,t)           (2.1) 
Let tq = tq1 ∪ tq2, where tq1 ∩ tq2 = Ø, tq1 ∩ CO = Ø, and tq2 ⊆ CO.  

|tq2| = |CO| − diff(CO,tq) and diff(tq,CO) = |tq| − |tq ∩ CO| = |tq1|.                  (2.2) and (2.3) 
dist(tq,t) = diff(tq,t) + diff(t,tq) = (|tq| − |tq ∩ t|) + (|t| − |tq ∩ t|).  

By the assumption, (|tq| − |tq ∩ t|) + (|t| − |tq ∩ t|) = (|tq| − |tq2 ∩ t|) + (|t| − |tq2 ∩ t| ) 
= ((|tq1| + |tq2|) − |tq2 ∩ t|) + (|t| − |tq2 ∩ t|) 
= |tq1| + |t| + |tq2| − 2|tq2 ∩ t|. 

Because ( |t| + |tq2| − 2|tq2 ∩ t| ) ≥ ||t| − |tq2|| 
 (|tq1| + |t| + |tq2| − 2|tq2 ∩ t|) ≥ (|tq1| + ||t| − |tq2||). 
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By (2.1), (2.2), and (2.3), (|tq1| + ||t| − |tq2||) = (diff(tq,CO) + |diff(CO,tq) − diff(CO,t)|).  
 dist(tq,t) ≥ (diff(tq,CO) + |diff(CO,tq) − diff(CO,t)|).                                              (2.4) 
Redefine that tq = tq3 ∪ tq4, where tq3 ∩ tq4 = Ø, tq3 ∩ CI= Ø.  
 diff(tq,CI) = |tq3| and diff(CI,tq) = |CI| − |CI ∩ tq| = |CI| − |tq4|.    (2.5) and (2.6) 
dist(tq,t) = (|tq| − |tq ∩ t|) + (|t| − |tq ∩ t|).  
Because CI ⊆ t, tq4 ⊆ CI ⊆ t, and tq3 ∩ tq4 = Ø,  

(|tq| − |tq ∩ t|) + (|t| − |tq ∩ t|) = (|tq| − |(tq3 ∩ t) ∪ tq4|) + (|t| − |(tq3 ∩ t) ∪ tq4|) 
= ((|tq3| + |tq4|) − |tq3 ∩ t| − |tq4|) + (|t| − |tq3 ∩ t| − |tq4|) 
= ( |tq3| − |tq3 ∩ t| ) + ( |t| − |tq3 ∩ t| ) − |tq4| 

 dist(tq,t) =  |tq3| + |t| − 2|tq3 ∩ t| − |tq4|.  
Because (|tq3| + |t| − 2|tq3 ∩ t|)  (|tq3| + |t|) 
 (|tq3| + |t| − 2|tq3 ∩ t| − |tq4|)  (|tq3| + |t| − |tq4|).  

By (2.5) and (2.6), |tq3|+ |t| − |tq4| = diff(tq,CI) + (diff(t,CI) + |CI|) − |tq4|  
= diff(tq,CI) + diff(t,CI) + (|CI| − |tq4|) 
= diff(tq,CI) + diff(t,CI) + diff(CI,tq)  

 dist(tq,t)  (diff(tq,CI) + diff(t,CI) + diff(CI,tq)).                                              (2.7) 
By (2.4) and (2.7), 

(diff(tq,CO) + |diff(CO,tq) − dvO(C,B)|) ≤ dist(tq,t)  (dist(tq,CI) + dvI(C,B)).                  

Similarly, we denote diff(tq,CO) + |diff(CO,tq) − dvO(C,B)| in formula (2) as 2nd-
LB(tq,C,B) and dist(tq,CI) + dvI(C,B) as 2nd-UB(tq,C,B). Moreover, we call 2nd-
LB(tq,C,B) and 2nd-UB(tq,C,B) the second level distance lower bound and the second 
level distance upper bound for tq to each transaction in B of C, respectively. Similar to 
the first level bounding mechanism, the relationship between 2nd-LB(tq,C,B), 2nd-
UB(tq,C,B) and the distance threshold δ is considered when conducting a similarity 
search on a query tq and each transaction t of batch B in cluster C. There are also three 
cases which are similar to the ones introduced previously. With respect to the first 
level bounding mechanism, the first two cases based on the second level distance 
bounds are used to prune the transactions in a batch and recognize them as the an-
swers. We call these two cases and the corresponding treatments the second level 
bounding mechanism. When both the cases are not held, the distance between each 
transaction in the corresponding batch and the query will be computed. Due to space 
limit, we do not show the detailed description to these cases and the corresponding 
treatments here. These cases are similar to the ones in the first level bounding  
mechanism. 

Given a query tq and the user specified distance threshold δ, the algorithm 
SearchBound (Similarity Search on Two-level Bounding Mechanism) is proposed to 
find the similar transactions to the query from the index structure. SearchBound 
works as follows. Initially, for each cluster C, the first level bounding mechanism 
with respect to tq and the transactions in C is applied to prune the dissimilar transac-
tions and find the answers without computing their distances to tq. Once the first level 
bounding mechanism fails, the second level bounding mechanism will be triggered 
for each batch in C. Note that the information needed to calculate the second level 
distance bounds for tq to the transactions in each batch, i.e., diff(CO,tq), diff(CI,tq), 
diff(tq,CO), and diff(tq,CI), have been computed in the previous steps. Therefore, the 
corresponding second level distance bounds can be efficiently computed. Finally, the 
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distance for the query to a transaction t in C will be computed only when both bound-
ing mechanisms have failed. After all the clusters have been processed, the similar 
transactions to the query will be collected and the algorithm will be terminated. 

Algorithm SearchBound 
Inputs: The index structure R, the query tq, and the 
distance threshold δ 
Outputs: The set of transactions Σ whose distances to tq 
are smaller than or equal to δ 
1.  Σ = ∅; 
2.  For each cluster C in R 
3.    If (1st-LB(tq,C) > δ)  continue; 
4.      Else if (1st-UB(tq,C) ≤ δ)  Σ = Σ ∪ {t | t∈C}; 
5.      Else 
6.        For each batch B in cluster C 
7.          If (2nd-LB(tq,C,B) > δ)  continue; 
8.          Else if (2st-UB(tq,C,B) ≤ δ)   
                     Σ = Σ ∪ {t | t∈B}; 
9.          Else for each t ∈ B 
10.           If dist(tq,t) ≤ δ  Σ = Σ ∪ t; 
11.  Return Σ;     

Example 2. Consider the cluster C shown in Figure 1. Given the query tq and the dis-
tance threshold δ = 2, we illustrate the corresponding treatments on C according to 
different tq. 

Assume tq = (abc), the corresponding 1st-LB(tq,C) and 1st-UB(tq,C) are 0 and 2, re-
spectively. Since 1st-UB(tq,C) ≤ δ, the distances of all the transactions in C to (abc) 
will be smaller than or equal to δ. Therefore, the three transactions in C will be con-
sidered similar to (abc) and included in the answer set. 

Assume tq = (bd), we observe that 1st-LB(tq,C) = 1 ≤ δ ≤ 3 = 1st-UB(tq,C) and the 
transactions in C can not be pruned. i.e., the first level bounding mechanism corre-
sponding to tq has failed in this case. Therefore, the second level bounding mechanism 
corresponding to tq will be performed. For the first batch B1, 2

nd-LB(tq,C,B1) is 3, the 
transaction in this batch, i.e., (abc), can be pruned. For the second batch B2, 2nd-
UB(tq,C,B2) is 2. Therefore, all the transactions in B2 will be directly included in the 
answer set. 

Assume tq = (de), the corresponding 1st-LB(tq,C) and 1st-UB(tq,C) are 3 and 5, re-
spectively. Since 1st-LB(tq,C) > δ, all the transactions in C can not be considered simi-
lar to the transaction (de), therefore they are all pruned.                                                

3   Index Maintenance 

In this section, we describe how to update the index when a transaction is inserted. 
There are two stages for the index updates. At first, we need to determine which clus-
ter is the best choice for the new transaction. If we cannot find one, a new cluster will 
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be created for the transaction. After that, the two borders and the difference-value 
pairs of the cluster corresponding to this transaction will be updated (Clearly, if a new 
cluster is created for the transaction, the two borders corresponding to the cluster will 
be the transaction. Moreover, there is only one batch is in the cluster which contains 
the transaction and the difference-value pair of the batch will be (0,0)). Next, we will 
first introduce the clustering algorithm. After that, we will describe how to update the 
corresponding cluster. 

As mentioned in Property 1, smaller difference between the outer border and inner 
border of a cluster indicates that the transactions in the cluster are more similar to each 
other. A maximum difference threshold maxd is given in our approach to restrict the 
boundaries of a cluster such that the similarity of any two transactions in the cluster 
can be bound in maxd. Given a transaction t, the clustering algorithm works as follows. 

Assume that after inserting t to the cluster C, the outer border and inner border of C 
will be updated as CO’ and CI’, respectively. Initially, for each cluster C, the value of 
diff(CO’,CI’) is first computed. If there exists no cluster such that the value of 
diff(CO’,CI’) is less than or equal to maxd, a new cluster will be created and t will be 
assigned to this cluster. If there exist more than one cluster such that the correspond-
ing values of diff(CO’,CI’)’s are less than or equal to maxd, a further selection on these 
clusters, say candidate clusters, should be applied. Let Ω denote the set of candidate 
clusters. For each cluster C ∈ Ω, we define the variance of C to t as (|CO’| − |CO|) + 
(|CI| − |CI’|). Generally, if the distance between t and each transaction in C is small, 
the variance of C to t tends to be small. Therefore, the transactions in C can still be 
well represented by the updated C after inserting t. Therefore, the cluster with the 
smallest variance to t in Ω will be selected to insert t. 

After the transaction clustering, the cluster C where the new transaction t was in-
serted to should be updated. The index update has two steps. First, CO and CI are 
replaced by CO ∪ t and CI ∩ t, respectively. Second, the difference-value pairs in the 
cluster are updated. Since the differences of the transactions with the same number of 
items to CO and CI remain the same even when CO and CI are changed, these transac-
tions will still be grouped in the same batch after updating C. Therefore, it is not nec-
essary to regroup the transactions while the two borders of C change. Once the two 
borders are changed, only the difference-value pairs of the batches should be updated. 
Lemma 3 shows that the difference-value pair of a batch in C can be recomputed by 
referring to its original value and the two updated borders. 

Lemma 3. Let C’ be the cluster C after it is updated and CO’ and CI’ respectively be 
the outer and inner borders corresponding to C’. If the difference-value pair of batch 
B with respect to C is (x,y), the difference-value pair of B corresponding to C’ will be 
(x’,y’), where x’ = x + |CO’| − |CO| and y’ = y + |CI| − |CI’|. 

Proof. Let the number of items in each transaction in B be n. By definition, x = |CO| − 
n and x’ = |CO’| − n  x’ = |CO’| − (|CO| − x)  x + |CO’| − |CO|. Moreover, y = n − 
|CI| and y’ = n − |CI’|  y’ = y + |CI| − |CI’|.                                                                   

It will take a constant time to update the difference-value pair of a batch in a cluster. 
Moreover, the number of batches in a cluster is bounded by maxd (users can easily 
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observe that the maximum number of batches in cluster C is diff(CO,CI) + 1). As a 
result, the cluster can be updated efficiently. 

Example 3. Consider the index shown in Figure 1. For ease of presentation, we as-
sume there is only one cluster, i.e., only the cluster C in the index. Let maxd be 3 and 
the transactions (de) and (abcde) be subsequently inserted. 

At first, the outer and inner borders corresponding to C after inserting transaction 
(de) are (abcde) and (d), respectively. Since the value of diff((abcde), (d)) is 4, which 
is larger than maxd, a new cluster named D will be created for transaction (de) and the 
outer and inner borders corresponding to D are (de) itself. Moreover, only one batch 
is created for D ((de) is in this batch) and the corresponding difference-value pair is 
(0,0). Subsequently, the two borders corresponding to C and D after inserting (abcde) 
will be (abcde) and (d), and (abcde) and (de), respectively. Because only D satisfies 
maxd, (abcde) is therefore inserted to D. Finally, the corresponding two borders of D 
are updated to (abcde) and (de). According to Lemma 3, the difference-value pair of 
the batch in D will be updated as (3,0). Moreover, an additional batch associated with 
the difference-value pair (0,3) is created for the transaction (abcde). Figure 2 shows 
the updated index structure.                                                                                                

Index header

Cluster D Outer border: (abcde)

Inner border: (de)

(0, 3)

(abcde)

(3, 0)

(de)

Cluster C Outer border: (abc)

Inner border: (b)

(0, 2)

(abc)

(1, 1)

(ab)

(bc)

Index header

Cluster D Outer border: (abcde)

Inner border: (de)

(0, 3)

(abcde)

(3, 0)

(de)

Cluster C Outer border: (abc)

Inner border: (b)

(0, 2)

(abc)

(1, 1)

(ab)

(bc)

 

Fig. 2. The updated index 

4   Experimental Results 

In this section, we compare the proposed approach with the SG-Tree approach 4, 
which has a better performance than the other algorithm [6] on dynamic databases, on 
similarity search time, pruning efficiency and index update time. All the experiments 
are performed on a Pentium IV 2.6G PC with 1.5G RAM and under the Microsoft 
Windows XP environment. The two approaches are implemented by using Borland 
C++ 6.0. We implement the ga_split which is one of the three split methods proposed 
in the SG-Tree approach. ga-split reflects the shortest similarity search time among 
the three split methods. The database generating procedure introduced in 4 is used to 
generate the synthetic databases. Three parameters T, I and D, used to generate the 
synthetic databases, are the average number of items in a transaction, the average 
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length of maximal potential frequent itemsets, and the number of transactions in the 
database, respectively. The number of distinct items is fixed to 1000, and the remain-
ing not mentioned parameters are set as the same values described in 4. 

For the SG-Tree approach, the node size is set to 4000, which is the same as that in 
4. For our approach, we run several data sets to determine the best maxd. Most of the 
results show that when maxd is 100 the search time will be the shortest. Therefore, we 
set maxd as 100 through all the experiments. 

At first, we compare the similarity search cost and pruning efficiency of SG-Tree 
with our approach when conducting a range search. The relative performance of the 
methods for various parameter settings are shown in Figure 3 through 8. For each 
experiment, the results were averaged over 100 queries which are randomly selected 
from the corresponding test datasets. Moreover, the distance threshold used in the 
experiments is set to either 2 or 10 which respectively corresponds to the small and 
large distance required by the users. Each figure shows the pruning efficiency (bars) 
and similarity search cost (lines) of the compared methods. The pruning efficiency is 
defined as the transactions accessed divided by the transactions in the datasets. 

In general, when the given distance threshold is small, most of the transactions in 
the indices are considered dissimilar to the query. The SG-Tree and our approaches 
can prune the dissimilar transactions to the query efficiently by the computed distance 
lower bounds. On the contrary, when the distance threshold is large, a larger number 
of transactions in the datasets will be considered as the answers to the query. That is, 
many transaction groups (In our approach, the term group indicates the transactions in 
a cluster or a batch of the cluster. In the SG-Tree approach, it means the transactions 
represented by a signature) in both indices will be considered similar to the query. For 
our approach, the distance upper bound of a group can be efficiently computed such that 
the similar transactions in the group can be collected without computing their distances 
to the query. However, the SG-Tree approach cannot compute the corresponding dis-
tance upper bound of a group. A transaction in the SG-Tree will be recognized as the 
answer until its distance to the query is computed. Therefore, in average, our approach 
has a more efficient pruning mechanism than the SG-Tree approach. 

Regarding the computational cost, as described in Section 1, most of the bits of the 
signatures in a node near to the root of the SG-Tree tend to be 1. Therefore, it is hard 
to distinguish whether the query is similar to the transactions indexed by the descen-
dants of the nodes. As a result, the SG-Tree approach spends time to retrieve the 
nodes in the higher level of the index but fewer transactions are pruned. This is the 
reason, where in some cases on the below figures, the SG-Tree approach has a more 
efficient pruning efficiency but a worse search time than our approach. 

Figures 3 through 6 show the performance of the indexes when considering the 
variation in the size of transactions (T) and in the size of itemsets (I), respectively. 
Generally, our approach has both a more efficient pruning mechanism and a lower 
similarity search cost than the SG-Tree approach. As the difference between the val-
ues of T and I increases, the dissimilarity of the transactions in the corresponding 
datasets also increases (the reason comes from the dataset generation procedure. After 
filling a maximal potential frequent itemset to a transaction, if the transaction has 
additional space for the other items, a set of items will be randomly selected by the 
procedure to fill up the transaction. Thus, if the difference between the values of T 
and I is large, the number of different items in any two transactions will tend to be 
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Fig. 3. Performance, varying T and distance 
threshold = 2 

Fig. 4. Performance, varying T and distance 
threshold = 10 
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Fig. 5. Performance, varying I and distance 
threshold = 2 

Fig. 6. Performance, varying I and distance 
threshold = 10 
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Fig. 7. Performance, varying D and distance 
threshold = 2 

Fig. 8. Performance, varying D and distance 
threshold = 10 

large). Therefore, a larger number of clusters will be created by our approach in order 
to separate dissimilar transactions. For the SG-Tree, the signature can loosely repre-
sent the corresponding transactions. As a result, both approaches will spend more 
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time to search the corresponding indices. However, the query transactions, which are 
selected from the corresponding datasets, are also very different from the transactions 
in the datasets. Hence, more transactions can be pruned while searching the indices. 
In this aspect, the search time can be fast. These two conditions contradict to each 
other and as a result, the pruning efficiency or the similarity search cost of the two 
approaches are not proportional to the grow of T or I. 

In Figure 7 and Figure 8, we test the robustness of the two methods to the database 
size. As in Figure 7 (corresponding to small distance threshold), although the pruning 
efficiency of SG-Tree approach is slightly worse than ours, it needs more time to 
search the SG-Tree. The reason is that the distance lower bounds computed corre-
sponding to the signatures in the nodes near the root are hard to prune the transactions 
represented by the signatures. In Figure 8, our approach computes the distance upper 
bound in each index level to find the similar transactions to the query early. There-
fore, our approach outperforms the SG-Tree approach in both pruning efficiency and 
similarity search time. 

We also compare the performance of both approaches by varying the distance 
threshold. As shown in Figure 9, when increasing the distance threshold, the pruning 
efficiency of SG-Tree approach becomes worse and its processing time gets longer. In 
our approach, the pruning efficiency is bound in 0.27 for any distance threshold and 
the search cost of our approach is greatly less than that of the SG-Tree approach. Let 
the answers found by the distance upper bound testing in our approach be ans1. Figure 
10 shows the variance of the percentage of ans1 to the answer set corresponding to 
Figure 9. In Figure 10, as the distance threshold increases, the percentage of ans1 to 
the answer set also grows. This indicates that more answers are found by the distance 
upper bound testing in our approach when the given distance threshold increases. 
Therefore, the efficiency of the pruning mechanism of our approach can be kept as 
good as when given smaller distance thresholds. As a result, our approach outper-
forms the SG-Tree approach for any given distance threshold. 

Finally, we compare the index updates of the two approaches on a synthetic dynamic 
environment. We separate the datasets into several blocks with 100k transactions 
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each. Subsequently, each block is continuously inserted to the two indices. The 
individual block insertion time is recorded for each the index. As described in Section 1, 
the SG-Tree approach requires considerable time for the node splitting process. For 
our approach, it takes about 5 msec to update the index no matter how many blocks 
have been inserted. Therefore, our approach is more robust than the SG-Tree 
approach in an environment where the frequency of index updates is high. Due to the 
limit of space, we do not show the related experiments. 

5   Conclusion and Future Works 

In this paper, a framework for efficient similar transaction search on dynamic  
databases is presented. The inner border, outer border, and the difference-value pair 
for a cluster and the batches in the cluster are introduced to represent similar transac-
tions in the proposed index structure. Based on the proposed index structure, the two-
level bounding mechanism is developed for a query transaction to prune dissimilar 
transactions and find the similar transactions without computing their distances to the 
query. Moreover, our framework processes the index update very fast because only 
the cluster to which the transaction is inserted needs to be modified. Therefore, our 
approach is more robust than previous approaches on dynamic databases. For the 
performance evaluation, we compare the proposed approach with SG-Tree approach 
on the similarity search time, pruning efficiency and index update time. The results 
show that the proposed approach is superior to the SG-Tree approach in all these 
aspects. 

Two directions are considered for future works. First, we wish to improve the pro-
posed index structure by developing a hierarchical representation for the transactions. 
Consulted from the drawback of SG-Tree, the distance between the outer border and 
inner border of a cluster in the highest level of the hierarchical index structure should 
be limited. Second, we will extend the proposed framework to work on a transaction 
data stream. 
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Abstract. In numerous applications that deal with similarity search, a
user may not have an exact specification of his information need and/or
may not be able to formulate a query that exactly captures his notion
of similarity. A promising approach to mitigate this problem is to enable
the user to submit a rough approximation of the desired query and use
relevance feedback on retrieved objects to refine the query. In this paper,
we explore such a refinement strategy for a general class of structured
similarity queries. Our approach casts the refinement problem as that of
learning concepts using the tuples on which the user provides feedback
as a labeled training set. Under this setup, similarity query refinement
consists of two learning tasks: learning the structure of the query and
learning the relative importance of query components. The paper devel-
ops machine learning approaches suitable for the two learning tasks. The
primary contribution of the paper is the Refinement Activation Frame-
work (RAF) that decides when each learner is invoked. Experimental
analysis over many real life datasets shows that our strategy significantly
outperforms existing approaches in terms of retrieval quality.

1 Introduction

With the proliferation of the web and emergence of applications requiring flexible
search over diverse data types, effective support for personalized similarity search
in database systems has emerged as an important research challenge. Similarity
based retrieval systems are also increasingly used for exploratory data analy-
sis and retrieval where a user may not initially have a clear mental model of
his exact information need [1]. A promising approach to overcome the “initial
query” and “subjectivity” problems is that of automatic query refinement via
user feedback. In such an approach, a user starts with an approximate initial
query and communicates his preferences to the system by providing feedback
(judgments on the relevance or quality of answers). The system then modifies
the query internally (e.g., changes the levels of importance of the different search
criteria, and adds/removes search criteria) to better focus on the distinguishing
features of tuples deemed relevant. The modified query is re-evaluated and the
cycle of refinement continues until the user is satisfied with the results.

Query refinement via feedback has been explored extensively in the context of
text document retrieval [16, 1]. More recently, its effectiveness in feature-based
image and multimedia similarity retrieval [14, 18, 7] as well as similarity search

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 587–601, 2006.
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over metric spaces [20] has also been established. Authors in [13] considered the
problem of refining SQL queries from user interactions in an object relational
database. This paper explored a limited set of SQL queries and illustrated that
even simple extensions of refinement approaches studied in the IR literature can
significantly enhance users’ search experience.

This paper considers the problem of refining a general class of SQL queries.
In contrast to the ad-hoc approaches in [13], we postulate the SQL refinement
problem as that of concept learning from examples to which many existing ma-
chine learning solutions can be applied. A direct (naive) strategy to modify the
query is to view the records on which the user provides feedback as a labeled
training set and use a classifier (e.g., decision tree [15]) to learn a new query
representation that will replace the original query. However, such a naive strat-
egy does not perform well in practice. Reasons for this include the fact that
classifiers do not work well when the training set is very small as is the case
in our setting where a user may provide feedback on only a few records. Fur-
thermore, being purely based on training data, the naive strategy ignores the
initial query provided by the user. Consequently it may get trapped in a wrong
hypothesis simply because the hypothesis fits the few examples. In addition, it
is very difficult to incorporate user defined types and similarity functions into
existing classifiers. Consistency is also an important issue in the refinement task.
Many existing classifiers are sensitive to the inputs causing the models built at
different refinement iterations to excessively differ from each other.

We view query refinement from feedback as consisting of two interrelated
learning tasks – learning the query structure, and learning the query weights
that capture the relative importance of different query components. These two
learning tasks have different motivations and serve different purposes. For in-
stance, structural changes to the query are very useful when the initial user
query is incomplete which may happen if either a user is not familiar with the
database or finds it too laborious to postulate a proper query. In contrast, weight
adjustment serves the purpose of customizing/tuning the ranking of results to
reflect the subjective importance of the different query components to the user.
Thus, determining when to invoke the structure/weight learners becomes a key
issue in refining a query. We develop a formal basis for making such a decision
based on which the Refinement Activation Framework (RAF) is designed.

The main contributions of this paper are summarized as follows:

1. We provide a powerful framework for refining a general class of SQL similar-
ity queries that uses a multi-modal refinement activation procedure to adjust
both query predicate weights and query structure using learning techniques.

2. We provide and experimentally validate a novel query structure refinement
technique that is based on a decision tree learner.

The remainder of the paper is organized as follows. Section 2 describes back-
ground concepts that form the basis of our work. Section 3 discusses our approach
to query refinement. Section 4 presents our experiments. Section 5 discusses re-
lated work. We conclude with Section 6.
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2 Background

2.1 Similarity Queries

A similarity query consists of three components: a set of similarity predicates
structured in DNF form, a set of weights assigned to each similarity predicate
and a ranking function. In this section, we describe these components.

The search condition in a similarity query is represented as a Boolean DNF
(Disjunctive Normal Form) expression over similarity predicates. Formally a
query Q = C1 ∨C2 ∨ . . .∨Cn is a DNF expression where Ci = Ci1 ∧Ci2 . . . , Cin

is a conjunction, and each Cij is a similarity predicate. A similarity predicate
is defined over a domain of a given data type. It is a function with two inputs:
(1) an attribute value from a tuple, t, (2) a target value which can be a point or
a range. It returns a similarity score in the range [0,1]. Notice that restricting
ourselves to DNF queries does not limit the generality of our approach since
any query condition can be mapped to its DNF representation. As will become
evident later, using a DNF representation facilitates structural learning.

A DNF ranking function is a domain-specific function used to compute
the score of a tuple by aggregating scores from individual similarity predicates
according to the DNF structure of a search condition and its corresponding set
(template) of weights that indicate the importance of each similarity predicate.
The template of weights matches the structure of the search condition and asso-
ciates a weight to each predicate in a conjunction and also to each conjunction
in the overall disjunction.

A DNF Ranking Function first uses predicate weights to assign aggregate
scores for each conjunction, and it then uses conjunction weights to assign an
overall score for the query(disjunction). We aggregate the similarity scores of
predicates in a conjunction with a weighted L1 metric (weighted summation).
Using weighted L1 metric as a conjunction aggregation function has been widely
used in text IR query models where a query is typically expressed as a sin-
gle conjunction [16, 1]. To compute an overall score of a query (disjunction),
we use the MAX function over the weighted conjunction scores. MAX is one
of the most popular disjunction aggregation functions [4]. The weight learning
algorithm used in this paper is optimized for these settings. However, our over-
all refinement algorithm is extensible enough to take other alternative ranking
functions [19, 12] as long as a weight learning module is properly defined.

All predicate weights in a conjunction add up to 1. All conjunction weights
in a disjunction may not add up to 1. A conjunction weight is in the range of
[0, 1], and represents the importance of the conjunction to the user. For example,
a conjunction’s importance can be measured as the percentage of relevant tuples
covered by it. The final aggregated scores produced by a ranking function are
used for ranking the tuples. A similarity query returns a set of records with
score ≥ α (also called α cut or threshold).

Example 1. Table 1 shows an example data table to be used throughout this
paper to illustrate our approach. It is a contract job listing table containing four
attributes: location, salary, employment duration, and job description. Consider
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Table 1. Example data table

ID Loc Sal Dur(yr) Desc
1 SN 65K 1.5 DB Developer
2 LA 70K 1 DBA
3 SD 60K 1.5 DB Designer
4 SF 70K 1.5 DB Developer
5 ... ... ... ...

Table 2. Example feedback table

ID Loc Sal Dur Desc Feedback
1 SN 65K 1.5 DB Developer OK
2 LA 70K 1 DBA NOK
3 SD 60K 1.5 DB Designer OK
4 SF 70K 1.5 DB Developer OK
... ... ... ... ... ...

the following query that asks for jobs located near SN or that pay more than
65K and have a duration close to 2 years (expressed as a DNF search condition):

(LocNear (Loc, “SN”) AND DurClose(Dur, 2)) OR (SalGreater (Sal, 65000) AND DurClose(Dur, 2))

This search condition can be directly implemented on top of a RDBMS that
supports user-defined functions (UDFs) as follows:

WITH Score AS (SELECT ID,
LocNear (Loc, “SN”) AS ls,
DurClose(Dur, 2) AS Ds1,
SalGreater (Sal, 65000) AS Ss FROM Job)

SELECT RankV al(W1, Score.ls , w11, Score.Ds1, w12,
W2, Score.Ss, w21, Score.Ds1, w22) AS S,
Loc, Sal, Dur, Desc
FROM Job, Score WHERE Job.ID=Score.ID AND S ≥ α
ORDER BY S DESC

A corresponding weight template may be: (W1(w11, w12), W2(w21, w22)) =
(0.9(0.4, 0.6), 0.8(0.4, 0.6)). The ranking function RankV al uses this template to
aggregate similarity scores as: MAX [0.9 × (0.4 × ls + 0.6 × Ds1), 0.8 × (0.4 ×
Ss + 0.6 × Ds1)]. The condition includes three similarity predicates: LocNear,
SalGreater and DurClose with obvious semantics. For example, SalGreater
may return 1 if salary ≥ 65K. For 30K < salary < 65K, it returns(
1− |sal−65K|

40K

)r

, where r is an integer. It returns 0 if salary < 30K. Such func-
tions are application specific and designed by domain experts and implemented
by database developers as UDFs. As indicated by the higher weight assigned to
the DurClose predicate, the user is more interested in a job that has duration
close to 2 years than one that is close to SN or pays more than 65K. Although
tuples with ID 1 and 4 receive the same conjunction scores from the first and
second conjunction, the first tuple is ranked higher since the weight for the first
conjunction is higher. Therefore, the tuple with ID 1 should be returned as the
top result.

2.2 Similarity Query Refinement

Given a search condition q, a set r of top-k records returned by q, and relevance
feedback f on these records (i.e., a triple 〈q, r, f〉), the similarity query refinement
problem is to modify the search condition q in such a way that, when re-executed,
it will rank more relevant records at the top. The interactive search process to
find satisfactory answers to a particular query is called a query session. A query
session can include one or more refinement iterations where the user provides
feedback and the system refines the query based on the feedback and returns
another set of ranked results. A query refinement in an iteration may involve
adapting the predicates, the DNF condition structure as well as the weights.
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Example 2. Before arriving at the condition given in example 1 that returns the
best results, suppose the user started the query session with the following query
that approximately captures his information need: ((LocNear(loc, “SN ′′) AND
DescClose(Desc, “DBA′′)), with a corresponding weight template of (1(0.5,
0.5)). At this point the user may, for example, be unfamiliar with the data
stored in the database. As a result, he used “Description similar to ‘DBA’ ” as
one of the search conditions. Then, after seeing a few records returned by the
initial query whose description matches “DBA” but whose other attributes do
not match his interest, he may use relevance feedback to invoke a refinement
iteration to guide the query away from this search condition eventually leading
to its removal in the final query shown in example 1.

3 Learning Queries from User Feedback

3.1 Problem Formulation

For each query session we maintain two tables: an answer table which contains
the ranked answer tuples along with the similarity scores assigned to these tuples,
and a feedback table that stores the relevance feedback 1 given by the user on
tuples in the answer table. Table 2 shows an example of such a table. The problem
of query refinement can now be cast as a problem of utilizing feedback table to
learn a classifier. In principle, any concept learning method can be employed
provided that it performs well on a small number of examples. However, to be
effective, query refinement requires a careful application of learning methods. In
particular, simply replacing the original query with the newly learned query can
have undesirable consequences. This leads to the important question of how to
modify the original query based on the learned classifier.

In this section, we consider two different types of learning algorithms
(classifiers). One focuses on query weight tuning, and another focuses on query
structure tuning. An activation algorithm is used to control the overall learning
process that consists of these two interrelated learning tasks.

3.2 Refinement Activation Framework (RAF)

Given a query and user feedback on its results, RAF determines which of the
two learning task to invoke. Structural changes result in addition (deletion)
of a new (old) conjunction to the DNF query or addition (deletion) of a new
(old) predicate within a conjunction. In contrast to gradual weight adjustment
that results in fine tuning of rank order, structural changes can dramatically
change the return set even causing objects deemed irrelevant to the original
query to be ranked at the top of the result set. Hence, structural changes to
the query must be made conservatively since an incorrect change may lead a
refinement along a wrong path. RAF invokes structural modifications only when

1 For simplicity, we assume binary relevance judgments (i.e. “Relevant” or “Not Rel-
evant”) although our approach can also support finer grained distinctions.
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ID ConjID=1:LocNear ConjID=2:DescClose Feed-
(Loc,“SN”) (Desc,“DBA”) back

1 1 0.8 OK
2 0.8 1 NOK
3 0.7 0.6 OK
4 0.5 0.8 OK

Fig. 1. Example CSS table
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Fig. 2. CSS for Fig 1

feedback provided by the user requires that such modifications be made and the
desired effect cannot be achieved by re-weighting query components. In order
to identifying situations where structural modifications are needed, below we
explore the limitations of weight learning in the context of refinement.

We begin by developing some notation. Consider a single conjunction Ci =
Ci1 ∧ Ci2 . . . , Cin of a DNF query. Since each predicate (i.e., Cij) in the con-
junction returns a similarity value in the range of [0,1], together they form a
Conjunction Similarity Space (CSS). Each dimension in the CSS represents a
predicate and a tuple can be mapped to a point in the CSS. We store these
mapped points in a table called CSS table. For example, figure 1 shows an exam-
ple CSS table for the tuples in the feedback table shown in table 2. This space
is also depicted in figure 2. Next, we define the notions of CSS domination and
CSS conflict as follows:

Definition 1 (CSS domination). In a given CSS, a tuple t1 dominates t2 if
t1 is as good or better (that is, t1 has an equal or higher similarity value) in all
dimensions and better in at least one dimension compared to t2.

For example, in the Figure 2, tuple 2 dominates tuples 3 and 4, but does not
dominate tuple 1. Similarly, tuple 1 dominates tuples 3 and 4, but not tuple 2.

Definition 2 (CSS conflict). In a given CSS, a pair of feedback tuples (t1, t2)
conflict with each other if t1 receives negative feedback, t2 receives positive feed-
back, and either t1 dominates t2 or t1 and t2 have equal values in all dimensions.

The conflicts in the CSS space in Figure 2 are between tuples 2 and 3, as well
as tuples 2 and 4, but not between tuples 2 and 1. Presence of conflicts in the
return set of a query means that the query is ranking an irrelevant tuple higher
than a tuple deemed relevant by the user. Hence, the query does not capture the
user’s information need and must be modified. Unfortunately, simply modifying
weights associated with the predicates can not resolve the conflict as is stated
in the following lemma.

Lemma 1. For a given CSS, if there is a conflicting tuple pair (t1, t2), there is
no monotonic aggregation function that can resolve this conflict by assigning a
larger score to t2.
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Proof. From [5], an aggregation function f is monotone if f(x1, . . . , xm) ≤
f(x′

1, . . . , x
′
m) whenever xi ≤ x′

i for every i. Recall that we use weighted summa-
tion, which is monotonic, to aggregate scores in a CSS. Let (t1, t2) be a conflicting
tuple pair where t1 receives negative and t2 receives positive feedback. Since t1
has as good or better value in all dimensions, it is not possible to assign a bigger
score to t2 since any weight assignment (done on predicates) applies to all tuples.
Note that, even without the last condition in definition 2 (i.e., t1 and t2 have
equal values in all dimensions), lemma 1 is still true. By adding this condition,
we capture cases that could not be resolved by weight tuning �

We have, thus far, established the limitation of the weight learning approach in
the context of refinement. Resolving conflicts requires structural modifications
to the query. The activation procedure we develop utilizes the above observation
to determine when to invoke such modifications.

Let Q = C1 ∨ C2 ∨ Cn be a DNF query where Ci = Ci1 ∧ Ci2 . . . , Cin is
a conjunction. To refine Q, first the activation procedure will decide how the
feedback on each tuple is used for refinement. Specifically, it decides, for each
tuple with a feedback, which conjunction should be refined by it. The activation
procedure attaches feedback to different conjunctions by assigning each feedback
to the highest scored conjunction2. For each conjunction Ci, it then determines
if the assigned feedback contains any conflict. If a conflict is identified, structural
modification to the query is invoked based on the conflicting set. For example,
in Figure 2 where empty circles represent positive feedback, tuple 2 conflicts
with tuples 3 and 4. To resolve these conflicts, the activation procedure invokes
structural learning using tuples 2, 3, and 4. The structure learning algorithm will
attempt to learn a predicate that, when added to the conjunction, will resolve
the conflict. In the current example, it may suggest the addition of a predicate
Duration ≥ 1.5 to the conjunction. In general, depending on the mechanism
used, the conjunction may be augmented by not only a single predicate but also
a logical formula F consisting of multiple predicates connected by logical connec-
tives. In the new formula (i.e., newConj = Ci∧F ), most (or all) of the conflicts
associated with the original conjunction can be resolved. We temporarily treat F
as a pseudo-predicate so the new formula becomes a conjunction. The weights of
predicates in this conjunction are rebalanced using a predicate weight learning
method where, a predicate is dropped if its weight falls below a threshold. We
designate the assigned weight of F by WF .

In this paper, we assume a logic formula F = F1 ∨ F2 ∨ · · · ∨ Fk is itself in
DNF. The predicates in Ci of newConj can be distributed over the Fp, resulting
in a new candidate set of conjunctions (Ci ∧ F1) ∨ (Ci ∧ F2) ∨ · · · ∨ (Ci ∧ Fk).
Hence, when resolving conflict tuples in a conjunction Ci, we may potentially
learn new conjunctions. During this process, the actual predicate weight of Fp

in a conjunction is assigned to be WF . We also use the original conjunction (Ci)
weight to initialize the weights of candidate conjunctions (i.e., Ci ∧ Fp).
2 Since the disjunction aggregation function is MAX, assigning a feedback tuple to

the highest scored conjunction is appropriate. Different assignment schemes may be
needed for other aggregation functions.
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RAF-Algo()
1: Input: Query (Q), FeedbackTable (FT )
2: Output: New Query (Q′)
3: compute CSS tables(Q, FT )
4: New Conjunctions: newConjs = ∅; newConjsCunt = 0
5: for each conjunction Ci in a query Q do
6: CSST = get CSS table(Ci)
7: Conflicts= computeConflictSet(CSST )
8: F = ∅
9: if |Conflicts| ≥ 1 then
10: F= learnStructure(Ci, Conflicts)
11: newConj=Ci ∧ F
12: predicateWeightLearning (newConj, CSST )
13: drop any predicate Cij frome newConj, if Cij.weight < τp

14: if F 
= ∅ then
15: for each conjunction Fp in F = F1 ∨ F2 ∨ · · · ∨ Fk do
16: if p == 1 then Ci = Ci ∧ F1
17: else newConjs[newConjsCunt + +] = Ci ∧ Fp

18: Q′ = Q
19: for each new conjunction Cnew i in newConjs do
20: Q′ = Q′ ∨ Cnew i

21: compute CSS tables(Q′, FT )
22: Q′ = assignConjunctionWeight (Q′)
23: drop any conjunction Ci frome Q′, if Ci.weight < τc

After all conjunctions are individually modified, their final conjunction weights
need to be determined. Again, we use the conjunction’s CSS table. Intuitively,
non-conflicting positive cases in the CSS boost the importance of the conjunc-
tion in the query. Given a set of tuples in the CSS, we can measure how well
the conjunction performed in the query after refinement by computing the ra-
tio of non-conflicting positive cases captured by this conjunction and the total
number of positive cases. We use this ratio as an overall conjunction weight mea-
sure. We specify our overall RAF query refinement algorithm in pseudo-code as
follows:

The algorithm takes the previous query and the feedback table as input
and generates a refined query. In the above algorithm, two things have been
left unspecified (1) the algorithm to resolve the conflict set of a conjunction
(line 10), and (2) the algorithm to learn the weight template for a given con-
junction (line 12). As RAF is an open framework, different approaches can be
used for the two learning tasks. Below, we provide algorithms we developed for
this purpose.

3.3 Learning Predicate Weights of a Conjunction

Learning predicate weights corresponds to learning their relative importance in
a conjunction. Since each dimension in the CSS corresponds to the similarity
value of a predicate in a conjunction, we can map the weight learning problem
to a classification problem over the CSS. Since we use the weighted summation
model, we seek a hyper-plane in the CSS that separates the set of tuples marked
deemed relevant, R, from the set of tuples deemed irrelevant, IR. We adapt
the linear optimization process described in [8] for this purpose. The average
complexity of this process is O(n× | p |), where n is the number of tuples with
feedback and |p| is the number of predicates in the conjunction.
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Table 3. Conjunction Scores table example

ID Loc Sal Dur Desc FB
“SD” “SF” “DB Dsger” “DB Dvper”

2 0.8 0.4 70K 1 0.7 0.8 NOK
3 1 0.3 60K 1.5 1 0.7 OK
4 0.3 1 70K 1.5 0.7 1 OK

3.4 Learning New Structure of a Conjunction

The purpose of modifying a conjunction is to resolve conflicts present in the
result set. Therefore, given a CSS table, we choose only the tuples that have
conflicts, and use them in structural learning. For example, tuples 2, 3 and 4 in
Figure 2 will be used in this learning. The original tuples in a feedback table
form a learning set (LSet). Before we can apply our learning algorithm to this
set, we need to convert it to a suitable format called a scores table. This
conversion is needed because performing query refinement directly on the LSet
is not always possible as database attributes can have complex and non-ordinal
(numeric) attributes. The scores table, which consists of conflicting tuples,
contains only ordinal values.

Data Preparation: Scores Table Generation.– This table is generated by
retaining columns for ordinal attributes from the conflicting tuples in the LSet
and converting complex and non-ordinal attributes into similarity measures. This
similarity measure is computed by taking every value of each complex attribute
in the LSet and calculating its similarity to all the other values of that attribute
in the LSet. For example, tuples 2, 3 and 4 (i.e., the conflicting set) in Figure 2
form the conjunction scores table shown in Table 3. In this example, columns for
ordinal attributes like Salary and Duration are identical to those in the feedback
table. For the remaining non-ordinal attributes we created a column for each
attribute–value pair. Each entry in these columns measures the similarity be-
tween the value in the heading and the attribute values from the tuples in the
feedback table. For instance, the first entry under the column Location=“SD”
(i.e. 0.8) is the similarity score of the value “SD” and the location value of tuple
2 which is “LA”. Since we want to learn predicates that focus on relevant tuples,
only attribute values from records that are marked “Relevant” are used to from
columns in the scores table. Consequently, no column is created for attribute
values like “LA” because the tuple having this value is marked “Not Relevant”.

Learning New Structures from a Scores Table.– Given a conjunction
scores table, we can use any DNF learner (see section 5 for a review) to ex-
tract a set of hypotheses that explains/classifies the scores table. In this paper,
we use a modified decision tree learner, namely C4.5 [15]. The original C4.5
employs a greedy divide-and-conquer strategy to build a decision tree. Given a
labeled data such as a scores table, the algorithm initializes a decision tree
with one leaf node that represents the whole data. It tests each attribute, and
chooses the best attribute (A) and value (v) pair, which, if used to split the
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data into two portions – one with values in attribute A ≥ v, another with values
< v – results in maximum entropy gain. It also records this split in the decision
tree by splitting the original leaf nodes to two new leaf nodes; the old leaf node
becomes the root of the two new leaf nodes. The algorithm recursively tests
and splits the leaves until either all points in each partition belongs to one class
(e.g., all marked with positive feedback or all marked with negative feedback),
or it becomes statistically insignificant to split further. C4.5 then generates DNF
rules/conjunctions from the decision tree.

Our main modification to C4.5 is an additional stopping condition. If we al-
low C4.5 to keep splitting its leaf nodes that represents a portion of data, the
leaf nodes will get purer and purer towards a class. We instead stop splitting
the node once a leaf node no longer has conflicts. Then, once the decision tree
is constructed, a set of rules/conjunctions are derived from it. We, then, fil-
ter out the conjunctions that do not have any associated feedback tuples. The
remaining conjunctions form the logical formula F used in the activation algo-
rithm. Note that these conjunctions are also similarity based conjunctions since
they are learned from the scores table. For example, from the scores table,
table 3, the classifier generates a predicate Dur ≥ 1.5, that removes the original
conflicts.

To improve efficiency, we push similarity computations into the tree building
process. This approach also avoids materialization of the scores table. Further-
more, we do not need to construct all scores table columns if we have already
obtained a reasonable split point. The worst case complexity of this algorithm
is O(| R | ×d× n× (log(n))2), in which | R | is the number of relevant cases, d
is the number of dimensions of the original feedback table, and n is the size of
the feedback table. In practice, the number of the distinct relevant values of an
attribute (e.g., Loc) is considerably smaller than | R |. Therefore, the complexity
is close to standard decision tree complexity, which is O(d× n× (log(n))2).

4 Experiments

In this section, evaluate the effectiveness of RAF. We first present our experi-
mental setup including the datasets we used and our synthetic query generator.
We then evaluate RAF against four well-known algorithms.

4.1 Experimental Setup

We ran all our experiments using a P3-800MHZ PC with 256MB RAM. The
similarity retrieval component is implemented using UDF features in IBM DB2.
The refinement component is implemented as a stored procedure in IBM DB2.
We use IBM OSL package [6] as our linear problem solver.

We used 12 datasets from the UCI machine learning repository [10], all of
which have class labels. These datasets represent different domains of interests.
For discrete attributes, we analyzed each pair of values of an attribute to de-
cide the similarity value between them. For continuous attributes, we used the
formula in section 2.1 to compute the similarity value of any two intervals.
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To evaluate our query refinement method, we formulate two related queries,
a target query qt which simulates a user’s real information need, and an initial
query qi which simulates his initial knowledge when starting the search. The
query qt can be more general or specific than qi in terms of its DNF structure.
We built a query generator that generates a set of query pairs 〈q1, q2〉, where q1
is more specific than q2. If we set qt = q1 and qi = q2 we evaluate our algorithms
on refining a general query to a specific query (i.e. G2S in our experiments).
Conversely, if qt = q2 and qi = q1, we evaluate our algorithms on refining a
specific query to a general query (i.e. S2G in our experiments). We generated 20
target and initial query pairs for each dataset getting a total of 240 pairs. Also,
to simulate a realistic query, the size of results from qt should be small compared
to the database size. We only take top 20 records from qt as its return set. The
largest dataset we tried has nearly 32,000 records; this makes the target size less
than 0.06% of the database size.

Algorithms Tested. We compare RAF with four existing methods. The first
method, which we refer to as OCM (from the authors’ last name initials) focuses
on learning conjunctions [13]. OCM is similar to our approach in that it also
refines the initial query structure using relevance feedback. The second method
is FALCON [20], which does not refine the initial query explicitly, but uses the
positive feedback to rank the data. The third method, Rocchio’s method [16], is
a standard vector based IR approach. In our experiment, we use attribute-value
pairs as the vectors. Hence, Rocchio’s method ignores the query structure and
also similarity measures on the attributes. Since our refinement task essentially
performs a classification based on the relevance feedback, one can directly apply
an existing classification package if the data types can be mapped to the required
types. This can be easily done for the 12 datasets we used, but not in general.
Hence, the fourth method we compare our approach to is a well-known decision
tree classifier C4.5 [15]. C4.5 takes the feedback data as a training set, and gen-
erates a classifier. It ignores the initial query structure, and predefined similarity
measures on the data attributes. The refinement system uses this classifier to
assign confidence levels as scores to the remaining data tuples.

Evaluation Process. The above algorithms are evaluated based on:

1. Efficiency: time taken to refine a query
2. Effectiveness: precision and recall measures
3. Simplicity of a refined query: number of the predicates in the query

To evaluate the effectiveness of a refinement algorithm, we simulate the desired
user concept by first executing a target query and placing the top 20 tuples that
satisfy the target query into a set R, the relevant records. Then, we execute the
initial query (i.e., iteration 1). We compute the precision level at every 5% of
recall interval (i.e. every relevant point retrieved) until all the relevant tuples are
retrieved. To study effectiveness, we form the first learning set L by adding the
top retrieved tuples containing exactly two relevant tuples from the initial query
result. If a refinement algorithm performs well at a refinement iteration, it should
have good precision level in all recall intervals. The refinement algorithm uses
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Fig. 3. Precision-Recall: RAF Vs. OCM

set L as the feedback table to learn a refined query. In subsequent iterations,
the learning set L is updated by adding the top ranked tuples of each iteration
that contain two new relevant tuples. Hence, L continues to grow accumulating
all the relevance feedback gathered starting from the initial iteration. In our
experiments, we execute the refinement algorithm four times (i.e., five iterations)
to evaluate its performance in different iterations.

4.2 Results

As shown in table 4, average execution time for a refinement cycle in our al-
gorithm averages around 0.5 seconds and ranges between 0.2 to 0.7 seconds.
Falcon and Rocchio algorithm are not included in this table since they do not
generate queries explicitly. RAF is consistently more efficient than OCM. This is
because OCM always starts structure tuning which is typically more expensive
than weight tuning. In RAF, the activation procedure does not choose structure
tuning if there are no conflicts. RAF runs slower than C4.5. This is expected
since the feature space (i.e., scores table) used in RAF is larger than the original
data’s feature space. Furthermore, RAF also performs weight tuning.

In Figure 3, we show the refinement effectiveness of RAF and OCM on the
dataset adult, which is the largest dataset in our experiment. In each of the two
graphs, each line represents average precision over 20 similarity queries at every
5% of recall interval. We use the average precision at each 5% recall interval as
a measure of retrieval quality. If a method does well in an iteration, this average
should be high. For example, average precision of RAF at iteration 1 is 11%,
and after one refinement cycle it increases to 40%. OCM still remains at 11%.
Hence, RAF outperforms OCM after the first refinement cycle.

Table 4. Average Refinement Time
per Query (sec.)

G2S Avg. S2G Avg.
Refine Time(sec.) Refine Time(sec.)
RAF OCM C4.5 RAF OCM C4.5
0.4 0.8 0.2 0.5 0.8 0.3

Table 5. Avg. Number of Predicates in
Query

Dataset G2S S2G
Init It2 It5 Target It2 It5

RAF 4.8 5.1 5.6 6.7 6.9 5.1
OCM 4.8 15.1 15.9 6.7 15.3 9.7
Rocchio 4.8 69.6 76.3 6.7 76.3 97.9
C4.5 4.8 1.1 1.8 6.7 0.8 1.5
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Fig. 4. Precision Average at Each Iteration

To further evaluate the learning behaviors of each algorithm in different it-
erations, Figure 4 plots the overall average over different iterations. We observe
that RAF has very good learning behaviors in both learning scenarios (i.e., G2S
and S2G), such that it has much better precision at each iteration. We also
notice that without learning, the initial query performs badly in general (i.e.,
iteration 1). Although OCM attempts to improve the retrieval quality by mod-
ifying the initial query concept, it performs worse than RAF. The main reason
is that RAF focuses directly on resolving the essential feedback conflicts, but
OCM simply tries to fit concepts (i.e., predicates) that match to the feedback.
Also, for some cases OCM may wrongly add a set of predicates while simple
weight modification can achieve the correct ranking. RAF outperforms OCM on
average by 24% in terms of average precision after first refinement cycle for G2S
learning. This average is computed over the 240 query pairs. RAF and OCM
outperform the other three methods in both G2S and S2G learning scenarios.
This clearly shows the merit of considering the initial query structure during
the refinement process. C4.5 and Rocchio perform the worst since they ignore
the initial query structure and the predefined attribute level similarity functions
during refinement cycles.

In addition to precision and recall measures, another interesting measure of a
refinement algorithm is the simplicity/complexity of its refined queries. Table 5
shows the average number of predicates over the 240 queries at different itera-
tions. The initial queries for G2S case contain 4.8 predicates on average, and target
queries have 6.7. For the S2G case, the number is reversed. As we observed, the
number of average predicates in RAF at different iterations lies in between the
average number of predicates in initial and target queries. This increases query
understandability since the refined query is not far away from the target query.
OCM has about twice as many predicates on average as the target. The main rea-
son of this is that OCM cannot represent disjunctive concepts explicitly; it uses
additional predicates to simulate disjuncts. We also report the average number of
vectors used by the Rocchio’s method at different iterations, and the number of
vectors used could be 10 times bigger than the number of target predicates. C4.5
is at another extreme, which, due to the small number of positive feedback avail-
able at each iteration, generates very small number of rules with only one or two
conditions. Falcon is not included because it does not produce queries.
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5 Related Work

The work most related to this paper is [13], which proposed a query refinement
framework on top of ORDBMSs for learning SQL queries from user interactions.
There are two major limitations in [13]. Firstly, it did not consider weight and
structure learning separately, and at each iteration both weight and structure
were modified while modification of only one of the two would have sufficed.
This resulted in, at times, an over aggressive policy that adds/drops wrong
predicates from the query. Secondly, [13] considered only learning a limited set
of conjunctive queries; it did not support learning disjuncts. If the optimal query
the user had in mind and the feedback was consistent with a disjunctive query
(e.g., Salary > 65K OR Duration > 2 years), the approach would attempt to
simulate a disjunction via a conjunction. That is, it would attempt to learn the
query of Salary > 65K AND Duration > 2 years. This results in a suboptimal
query with poor retrieval performance and poor interpretability.

Query refinement via feedback has been explored extensively in the context
of text document retrieval in the information retrieval literature [16, 1]. Gener-
ally, a vector space model is assumed (i.e., Rocchios method [16]). Refinement
tasks focus on how to weight the elements in the vector space. There is no ex-
plicit query formulation and attribute similarity measures. IR models have also
been generalized to multimedia domain. Query refinement techniques have also
been exploited in the multimedia domains, e.g., MARS [17, 9], Mindreader [7],
FALCON [20]. FALCON generalizes the refinement model to any suitably de-
fined metric distance function. As long as the distance between two tuples can
be properly defined, FALCON can be applied. It uses the relevant examples
as the query, and rank the database based on the aggregate distance measure.
However, since FALCON does not consider the original query formulation, it
performs poorly when the relevant set is very small.

Although not from the point of view of database queries, there is a
considerable body of work on learning DNF and CNF formulas from examples.
DNF learners in the literature can be grouped into two as divide-and-conquer
based (e.g. decision tree learners [15]) and separate-and-conquer based or cov-
ering algorithms. Among the large number of algorithms in the latter category,
the AQ family of algorithms [2], CN2 [3] and PFOIL [11] are popular. In these
approaches, predicates have no similarity semantics (i.e., are crisp conditions).
It is also unclear how to incorporate initial queries and similarity functions
into these approaches. Furthermore, these algorithms normally require large
amount of input (i.e., training and testing ratio) before deriving good hypothesis.

6 Conclusions

In many search environments, a user normally has imprecise specification of
what he wants. We provide a system to enable users express imprecise queries,
and refine it interactively by supplying relevance feedback. We identified two
distinct tasks of similarity query refinement: refining query structure and deter-
mining the relative importance of predicates and conjunctions. We proposed a
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set of novel algorithms to control weight and structure learning. We implemented
these algorithms and the extensive experiments we conducted showed that RAF
consistently outperforms previously suggested techniques both in terms of re-
trieval quality and query simplicity.
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Abstract. We have constructed a graph database system where a query
can be expressed intuitively as a diagram. The query result is also vi-
sualized as a diagram based on the intrinsic relationship among the re-
turned data. In this database system, CORAL plays the role of a query
execution engine to evaluate queries and deduce results. In order to un-
derstand the effectiveness of CORAL optimization techniques on visual
query processing.We present and analyze the performance and scalabil-
ity of CORAL’s query rewriting strategies, which include Supplementary
Magic Templates, Magic Templates, Context Factoring, Näıve Backtrack-
ing, and Without Rewriting method. Our research surprisingly shows that
the Without Rewriting method takes the minimum total time to pro-
cess the benchmark queries. Furthermore, CORAL’s default optimiza-
tion method Supplementary Magic Templates is not uniformly the best
choice for every query. The “optimization” of visual queries is beneficial
if one could select the right optimization approach for each query.

1 Introduction

Scientific and industrial projects have been generating large volumes of data.
This tremendous amount of data need storage and analysis. A key issue is that
the data management software needs to be easy–to–use, yet provides fast re-
sponse time. It is not trivial to make a database system simple and intuitive
enough for the end-users to query in a sophisticated way. Our graph database
system [1] is toward solving this important problem. We believe that the dia-
grammatic query and visual result display will ease the task of data management
and data analysis. We have applied the benefits of deductive query language, di-
agrammatic queries, and data visualization so as to provide the end-users, who
are not familiar with or do not want to bother with writing SQL queries, a
helpful system to pose queries and represent query results in a diagram.

In brief, our graphical user interface allows the end–users to construct queries
by drawing diagrams. It is implemented in JAVA. The supported graphical query
language we have implemented is GraphLog [2]. The query result set is visualized
as diagrams with the same icon and style as in the query. CORAL [3] is the
system’s database engine. The raw data are stored in a MySQL [4] relational
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database. The detailed description about our system’s query formulation and
result visualization mechanism can be found at [1].

In order to handle the huge size data in a real–world application, we need to
study the possible optimization techniques that are effective for diagrammatical
queries so as to speed up the query processing. There have been quite a num-
ber of graph database systems presented in the literature. In general, they have
been lack of full studies of the query language expressiveness, semantics and op-
timization. To the best of our knowledge, no performance studies of optimization
strategies for graph databases have been done prior to our work.

Our first step towards an optimization solution is to understand the effect of
CORAL’s optimization techniques on the diagrammatical queries in our context.
In this paper, we will present the study of CORAL’s query optimization tech-
niques in our context. We have used a benchmark of 24 queries across a range of
different data sizes. This query set on the University model are carefully chosen
and typical enough to evaluate our system’s ability to express queries at different
complex levels. The data sets used for our experiment range from 640,000 pieces
of ground facts to 5,100,000. The wide range of data sets are comprehensive
enough to examine our system’s capability to handle large data sets.

The capabilities of the system has been expanded to include all features of
GraphLog. Our tests and demonstration were performed with a system capable
of handling selection, projection, queries with negation, and transitive queries.
It also supports blobs, which help to modularize queries with hierarchical rela-
tionships and layout the results in the orthogonal shape.

The rest of this paper is organized as follows: Section 1.1 introduces the eval-
uation framework. Section 2 illustrates the structure of the Graph Database
System. Section 2.1 gives an example of query and its translations across the
system. Section 3 presents and analyzes the performance experiment results for
various CORAL query optimization strategies. Section 4 discusses the related
work and Section 5 concludes the paper.

1.1 Test Benchmark

The benchmark used in the test was a framework for object-oriented query lan-
guage evaluation [5]. It was built on a University Model. Originally, it was a
guideline for designing a new query language and improving the performance of
existing languages.

The University Model is a simplified version of a university administration
system that manages the personal and academic information of students and
staff members. The structural relationships among the classes defined in the
schema are given in Figure 1.

The class Person has two subclasses Staff and Student. Visiting staff
is the subclass of the Staff. Both an object of class Staff and an object of
class Student can be an object of class Tutor. A student may be supervised
by one or more staff members. A staff member may be a supervisor for one or
more students. However, some students do not have a supervisor and some staff
members do not supervise a student. Every staff member works in a Department
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Fig. 1. The university model structure

and every student studies a specific major in a department. Each department
offers Course for students. The staff members are lecturers for these courses. In
some cases, the students need to take and pass the prerequisite courses before
taking a course. Each course has an object of Assessment that specifies its credits
and schools terms that offer it. Every person lives in a place that is defined by
Address. Each department has a location, which is an object of class Address.

The benchmark contains four evaluation dimensions: expressive power, sup-
port of object-orientation, support of collections and usability. Each evaluation
dimension is composed of a set of criteria and each criteria is assessed by a
set of proposed queries on the University Model (Appendix A). The support
of object-orientation mainly concerns the object identity, method calling, com-
plex objects, class hierarchy and dynamic binding of the system. The expressive
power approach is to test the object manipulation features of the system, such
as nested queries and relational completeness. The support of collections tries to
find a set of operations on the system that can obtain consistent performance on
different collection classes. It is also used to test on the mixing of and conversion
between different collection classes. The usability aims at examining the ease of
using query notations.

2 System Architecture

Our Graph Database System takes up four subsystems. They are Graphical
User Interface, TGL Translator, Query Processing Engine and MySQL
Data Storage. The system architecture is shown in Figure 2.

The Graphical User Interface (GUI) is the system’s interface to end–
users. Users can draw a query diagram in the query editor. The GUI translates
the user’s query that is defined as a diagram into XML format and sends it to
the next layer of the system: TGL Translator. The GUI is also responsible to
visualize the query result set into a graph.

The TGL Translator consists of the query translation component and the
result translation component. The query translation component accepts the query
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Fig. 2. Graph database system architecture

diagram from the GUI and first translates it into the XML format with pre–
defined tags. Then it translates the XML–formatted query into a CORAL query
program. The result translation component translates the query result returned
by CORAL into XML and passes the XML–formatted query result to the upper
GUI layer.

The Query Processing Engine is responsible for evaluating the query and
deducing the result. It consists of two components: the CORAL client and the
CORAL server. The CORAL client interacts with the TGL Translator and the
MySQL Data Storage. It is responsible to receive the query plan from the TGL
Translator and the query result from the CORAL server. The CORAL client
terminates when the query finishes, whereas the CORAL server will live until
the user requires to shut it down.

The CORAL Server is the deductive engine to optimize the query and execute
the query. The query optimization part transforms the incoming queries to an
internal representation based on the optimization(rewriting) methods used in
the query. In the optimization strategies, several control annotations are added
to the original query program. This optimized program is transferred to the
query evaluation part. The query evaluation part takes the annotated program
and in-memory facts as input and executes the program under the direction of
annotations. The data management part is in charge of maintaining and manip-
ulating the facts for each query. It loads data from the client interface of MySQL
Data Storage and converts the data into CORAL facts on demand [11].

The MySQL Data Storage stores the data source physically in MySQL
database. The conventional data manipulations can be performed on data in
MySQL. The CORAL server initiates a connection with MySQL. All records in
the target database are loaded into the CORAL server’s computer main memory
as a runtime database for CORAL.

2.1 A Query Example

The translation of queries adds flexibility to the system. The transformation
of a query from a diagram to XML representation is a process of depicting
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(A) (B)

(D) (C)

(E)

Fig. 3. The query interface. The user posed a query which returns all of the Computer
Science and Engineering students who do part-time jobs across these two departments.
(A) Defining a new relation called works not majors in. All students who work part–
time in a department that is different from their major department satisfy this concept.
(B) Defining another new relation eng students. A blob is used, which is a container
containing all students in the Engineering department. (C) Similarly, defining a relation
called eng students for all the Computer Science students. (D) This is the query
diagram. It makes use of the relations defined in the first three windows. (E) An
overview of all the relations present in the database and the user–defined relations.

the query diagram in format of XML with pre–defined tags. The structure of
an XML representation for a query diagram follows the Transferable Graphic
Language (TGL) schema. The TGL translator builds up a mapping between an
XML document that conforms to the TGL schema and a CORAL program. The
detailed description about how this mapping is done can be found in [6].

In order to illustrate this procedure, we provide an example query, which re-
turns all of the Computer Science and Engineering students who are doing part–
time jobs across these two departments. Its query diagram in our graph database
system is shown in Figure 3. The detailed description about our system’s query
formulation and result visualization mechanism can be found at [1].

The TGL translator translates both the relation definition diagrams and the
query diagram into the XML–formatted documents. The following XML docu-
ment is translated from the query diagram in Figure 3. There are four elements
under the <distinguished-show> element, meaning that these four elements
should be returned as the query result. It consists of two <edge> elements for
works not majors in as well as two <blob> elements named cs students and
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eng students. In contrast, the nodes student(ID1), student(ID2), dept(ID1) and
dept(ID2) are under the <content> element. They make up the context of the
query diagram.

<graphlog>
<showGraphlog>
<id>tempQueryResult</id>
<distinguished-show>
<edge>

<id>EID3_0</id>
<predicate>works_not_majors_in</predicate>
<FromNodeID>NID0003</FromNodeID>
<ToNodeID>NID0000</ToNodeID>

</edge>
<edge>

<id>EID1_2</id>
<predicate>works_not_majors_in</predicate>
<FromNodeID>NID0001</FromNodeID>
<ToNodeID>NID0002</ToNodeID>

</edge>
<blob>

<id>BID0006</id>
<predicate>cs_students</predicate>
<outerNodeID>NID0000</outerNodeID>
<innerNodeID>NID0001</innerNodeID>

</blob>
<blob>

<id>BID0007</id>
<predicate>eng_students</predicate>
<outerNodeID>NID0002</outerNodeID>
<innerNodeID>NID0003</innerNodeID>

</blob>
</distinguished-show>
<content>
<node>

<id>NID0000</id>
<entity>

<name>dept</name>
<field>No1</field>

</entity>
</node>
<node>

<id>NID0001</id>
<entity>

<name>student</name>
<field>ID1</field>

</entity>
</node>
<node>

<id>NID0002</id>
<entity>

<name>dept</name>
<field>No2</field>

</entity>
</node>
<node>

<id>NID0003</id>
<entity>

<name>student</name>
<field>ID2</field>

</entity>
</node>

</content>
</showGraphlog>

</graphlog>

The following two CORAL program modules are generated by the TGL Trans-
lator. They are translated as the definition of relation works not majors in and
relation cs students. The TGL translator generates a similar CORAL query
program for eng students. The CORAL query program translated directly from
the XML query in the previous page makes use of these three CORAL relation
definitions in order to generate the final answer.

module cs_students.
export cs_students(ff).
eid1_0(ID,No1) :- majors_in(ID,No1).
cs_students (No1,ID) :-

dept(No1,"Computing Science"),
eid1_0(ID,No1).

end_module.

module works_not_majors_in.
export works_not_majors_in(ff).

eid0_3(ID,No2) :- works_in(ID,No2).
eid0_2(ID,No1) :- majors_in(ID,No1).
works_not_majors_in(ID , No3):-

eid0_3(ID,No2),
eid0_2(ID,No1),
No2 = No3, No1 <> No3.

end_module.

The CORAL query program translated directly from the XML query in the
pervious page makes use of these three CORAL relation definitions in order to
generate the final answer.

Figure 4 shows the query result for the example query. The diagram clearly
shows two clusters, one for CS department students and the other for Engineer-
ing department students. In addition, all of these students are working part-time
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Fig. 4. Query result for the example query

across these two departments: three Engineering students identified by their stu-
dent IDs are working in the CS department, and three CS students are working
in the Engineering department.

3 Optimization Experiment

Deductive databases allow a view to be defined using logical rules, and allow
logical queries against the view. Since the rules allow recursive definitions, the
resulting expressive power of the query language is greater than the relational
query languages. Graph query languages are even more expressive, and provide
a visual representation.

In our graph database system, CORAL works as the deductive engine to eval-
uate queries and deduce results. We chose CORAL for its flexibility to connect
to relational database, and its declarative nature for ease of translation from/to
a GraphLog query diagram. In order to find the possible optimization solutions
for our visual queries, we first test the effectiveness of CORAL’s optimization
strategies in our context.

3.1 Preliminaries

CORAL is a deductive database system that supports a declarative language.
Every CORAL program is a collection of modules, each of which can be sepa-
rately compiled into CORAL internal data structures. The modules may include
facts and rules. In a declarative environment, a fact is the same thing as a tuple
in a relation or a row in an SQL table. A rule is a way to derive new facts.
We can say the facts are the unconditional rules. The collection of all facts are
stored physically in the database, called the existential database. The set of all
facts that we can derive from the base set of facts are not stored physically in
the database, called the intensional database.

Modules are the units of optimization and also the units of evaluation. Evalua-
tion techniques can be chosen on a per-module basis, and different modules with
different evaluation techniques can interact in a transparent fashion. Although
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CORAL developed a number of query evaluation strategies, it still uses heuris-
tic programming rather than a cost estimation package to choose evaluation
methods.

The user can specify high-level annotations at the level of each module, to
guide the query optimization. User-level annotations can be added directly to
the source code and they give the programmer freedom to control query’s op-
timization as well as evaluation. CORAL’s user-level annotations are divided
into Rewriting Annotations, Execution Annotations, and Per-Predicate Annota-
tions. Presently, CORAL’s Rewriting Annotations, include Supplementary Magic
Templates [7], Magic Templates [8], Context Factoring [9], Näıve backtrack-
ing [10], and Without Rewriting method. CORAL’s default rewriting (optimiza-
tion) method is Supplementary Magic Templates.

3.2 Data Loading

The test platform was a SunFire 280R with two 900MHz UltraSparc-III+ CPUs
and 4GB physical memory. The operating system is Solaris 9. We tried the five
annotations mentioned above individually on each query and recorded the query
execution time on the CORAL server.

We have used eight data sets for our experiment to subjectively evaluate
CORAL’s optimization performance. Our script generates a MySQL program
which inserts the data records into MySQL database. The total number of
records in a data set is a function of the number of person records. The number
of courses and addresses are constants, which is 500 and 2000 respectively. The
size of the other tables depends on the number of person records, and(or) the
number of course records, and(or) the number of address records.

Figure 5 plots the data loading time from MySQL data storage to CORAL
run-time workspace for each data set. The x–axis shows the variable of number
of person records, and y–axis, shows the range of the variable of data loading
time in units of hours. Thus, the graph is showing us the change in loading

Fig. 5. MySQL to CORAL workspace data loading time
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time from MySQL to CORAL over the increasing data set size. The curve at
the bottom shows the time CORAL takes to load the person records. The curve
in the middle shows represents the time CORAL takes to load all of the rest
recodes. The curve at the top most of the graph demonstrates the total time
CORAL takes to load all of the records in the database.

On the graph, it is easy to see that the total time CORAL takes to load
MySQL data steadily rise over the data set size, from a low of about 0.2 hour in
the data set based on 100,000 person records to a level of about 37 hours in the
largest data set based on 800, 000 person records. It is observed that when the
data set size is doubled, the loading time is about six times longer. It is tolerable
for CORAL to spend hours loading in the data, as it is only the one- time cost
for loading all the data to the CORAL workspace.

3.3 Query Processing

In each test run, all five optimization techniques mentioned above were tried out
on each query. Figure 6 is showing CORAL total execution time for 24 queries
across five optimization methods at each test run by using the cluster columns.

In detail, the x–axis shows the variable of number of person records, and the
y–axis shows the range of the variable of CORAL execution time in units of
seconds. On the graph, there are altogether eight cluster columns representing
eight test runs. One cluster column is for one test run on a particular data
set. Each cluster is made up of six vertical bars, for six kinds of CORAL op-
timization methods, in sequence of No rewriting, Supplementary magic, Magic,
Factoring, Näıve backtracking, and Hypothetical method. The higher a vertical
bar, the longer time that CORAL takes to execute all of the 24 queries using
the optimization method the vertical bar represents.

CORAL has implemented the first five optimization methods. The sixth op-
timization method, as its name tells, is our assumption of such a method’s pres-
ence. This “hypothetical method” can intelligently choose a fastest optimization
method among CORAL’s five optimization methods. It is not implemented as
an optimization method in CORAL.

We have used 30 queries in the test benchmark for our experiment. However,
in Figure 6, we omitted some queries (Q12, Q15, Q16, Q28, Q29, Q30). For the
case of Q12, Q15 and Q16, CORAL does not return the query result after 15–20
minutes even for the smallest data set. We found out that the problem of Q12 is
that its translated CORAL program involves cycles on negation of a sub–query,
which is not supported by CORAL. Q15’s problem is that, it has to include the
same relation twice in the query program body. Q16 introduces a free variable
which makes the CORAL program unsafe. For the case of Q28, Q29, and Q30,
none of CORAL’s rewriting methods has a response after 15–20 minutes except
for the smallest data set.

3.4 Analysis

With the experiment results summarized in Figure 6, we have the following three
main findings:
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Fig. 6. CORAL response time for 8 test runs (24 queries in each run)

(A) There is neither sudden drop nor rise in terms of each vertical bar (repre-
senting a rewriting method). Regardless of the rewriting strategies, the CORAL’s
response time for all of 24 queries continually rise over the data set sizes, from a
low of about 29 seconds in the smallest data set to a level of 24,000 seconds (≈
6 hours). It is a reasonable growth as the larger data set consumes longer time
for CORAL to execute the queries.

(B) It is common for every test run that CORAL’s four rewriting methods
take much longer than its no–rewriting method. This implies that CORAL’s four
rewriting methods slow down the query processing in certain queries: namely Q11
and Q13, and Q19 (From Table 1). For these three queries, CORAL’s rewrit-
ing methods should not be used. Q11 asks for students taking a course given
by “Steve Johnson”. Q13 asks for all the names of the students. Q19 asks for
students living in the area of Hillhead, Kelvinside and Dowanhill.

(C) The“hypothetical method” significantly outperforms the other five opti-
mization techniques. Recall that this “hypothetical method” is one of our as-
sumptions about CORAL’s optimization strategies. It can intelligently pick the
fastest optimization method among CORAL’s five optimization methods.

A common behavior among CORAL’s optimization methods is that the
CORAL response time for each query of a certain optimization method con-
tinually rises up over the data set. Under an optimization method, the larger
the data set, the longer time that CORAL takes for a query. Table 1 shows the
CORAL response time particularly for the largest data set based on 800,000
person records. The numeric values in the table is in unit of seconds. Combin-
ing it with the other seven experiment results, we have discovered the following
interesting facts:
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Table 1. CORAL response time in unit of seconds with 5 rewriting strategies for the
data set of 800,000 persons, totally 5,000,000 records

No rewriting Sup. magic Magic Factoring Back tracking

Q1 3.000 1.570 1.600 1.570 1.560
Q2 13.550 13.850 14.700 14.180 14.480
Q3 105.550 0.040 0.030 0.030 0.040
Q4 492.950 1.270 0.810 0.830 0.830
Q5 0.010 0.020 0.010 0.020 0.030
Q6 1.320 1.320 1.340 1.320 1.320
Q7 527.690 105.980 113.650 114.740 114.880
Q8 6.160 6.380 6.410 6.430 6.450
Q9 12.330 12.290 12.720 12.620 12.620
Q10 16.480 18.760 20.060 20.180 20.240
Q11 11.540 18561.200 19013.000 19000.800 19022.400
Q13 791.740 1032.840 1216.960 1226.420 1229.840
Q14 0.150 0.190 0.180 0.200 0.190
Q17 12.490 13.090 13.610 13.050 13.380
Q18 9.650 0.001 0.001 0.001 0.010
Q19 109.110 994.400 662.670 1012.790 1007.290
Q20 2.370 2.440 2.440 2.460 2.450
Q21 0.110 0.110 0.110 0.100 0.100
Q22 233.650 1.110 0.110 0.130 0.130
Q23 134.740 17.500 11.690 17.040 17.070
Q24 0.150 0.160 0.160 0.150 0.160
Q25 0.100 0.110 0.120 0.110 0.110
Q26 0.810 0.800 0.810 0.800 0.800
Q27 235.600 3.900 3.390 3.390 3.440

(1) CORAL’s rewriting techniques have pronounced effect on 8 queries (Q1,
Q3, Q4, Q7, Q18, Q22, Q23, Q27), with the improvement from the low of 2
times faster in Q1 with Supplementary Magic method for the data set based
on 800,000 person records, to the level of 2500 times faster in Q18 for the same
data set. In contrast, the remaining 13 queries do not benefit or suffer when using
CORAL’s rewriting techniques in every experiment, since the improvement with
an optimization technique is marginal (≤ 20%).

(2) CORAL’s default optimization method Supplementary Magic is not guar-
anteed to defeat CORAL’s the other three optimization methods under all cir-
cumstances. The evidence is from Q3, Q4, Q22, Q23, and Q27 across all the
test runs. Due to the space limitation, we only discuss the case of 800,000 per-
son records data set as an evidence, as it is shown in Table 1. In Q3, both
Magic and Factoring takes only 75% of the time consumed by applying Sup-
plementary Magic method. In Q4 and Q22, Magic takes as low as 63% and
66% respectively of the time consumed by using Supplementary Magic method.
For Q22’s case, the Supplementary Magic method is even more worse: the other
three methods takes only around 10% of the time consumed by Supplementary
Magic.

(3) There is no universal best nor worst optimization technique. If one opti-
mization technique fails, so do the other three techniques.

We categorized the benchmark queries into three classes: queries that ben-
efit from optimization, queries that suffer from optimization, and queries that
keep neutral about optimization. We have summarized their CORAL query pro-
gram(s) characteristics in the Table 2.
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Table 2. Characterizing queries based upon their optimization effect

Optimization is beneficial Optimization is harmful

Q1 Q3 Q4 Q7 Q18 Q22 Q23 Q27 Q11 Q13 Q19 Q28 Q29 Q30

atomic values + + + + + o o o o
don’t care symbols + + o o
≥ 3 joins + + + + o o o o
recursion +
relations union + + o o
näıve o

4 Related Work

There have been numerous graph database systems presented in the litera-
ture [15, 16, 17, 18, 19, 20, 21, 22]. In general, they have been research prototypes
that lack full studies of the query language expressiveness, semantics and opti-
mization. The implementations have been limited. To the best of our knowledge
no performance studies of optimization strategies for graph databases have been
done prior to our work.

Our work builds upon the Hy+ system [2] developed by Alberto Mendelzon
in Toronto. They designed the GraphLog language, studied its expressive power,
and implemented a prototype system in Smalltalk. Their implementation trans-
lated GraphLog into several logic-based systems including CORAL. However,
the only performance study [23] that they did was a comparison of the näıve
translation to Datalog/CORAL with a translation to factored Datalog using
automata.

In the field of deductive databases there has been extensive research on the
optimization of queries for Datalog (and its variants). The major interest has
been the optimization of recursive queries. Ceri et al. [14] provide an excellent
summary of the field. The evaluation or comparison of optimization strategies
is typified by Bancilhon and Ramakrishnan [12, 13] who develop analytical cost
models for the optimization strategies when applied to four queries (related to
the parent and ancestor relations) and then generate numerical data from the an-
alytical models using synthetic data driven by three shapes — tree, inverted tree,
and cylinder — for the “family tree”. The state-of-the-art is perhaps best sum-
marized in a quote [24]: “Related work on the performance of recursive queries
and their evaluation algorithms has considered either worst case performance, or
performance over structured synthetic databases, or empirically measured perfor-
mance over randomly generated relations.” The community has not developed
extensive benchmarks nor carried out extensive performance comparisons.

5 Conclusion

In this paper, we have studied the optimization of visual queries for our graph
database using a benchmark of 24 queries across a range of different data sizes.
Our aim is to understand the effectiveness of CORAL’s optimization techniques



614 G. Butler et al.

on the diagrammatic queries. Recall that our database supports defining queries
in a diagrammatic form and visualization of the query results. With the exten-
sive experiment results, we are able to conclude that it is beneficial to optimize a
visual query. Nevertheless, within the scope of the 24 benchmark queries, apply-
ing one optimization technique uniformly in general was worse than applying no
optimization to the queries. It is important to utilize the optimization strategies
in CORAL when appropriate as there is very slow execution for some queries if
no optimization is used. Our research indicates that, a “smart” selection that
is able to determine which kind of rewriting method to apply on a given query
may profoundly improve the performance of the query execution engine.
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Appendix A: Benchmark Evaluation Dimensions and
Queries

1. Support of object-orientation
(a) Method calling

Q1. Return staff members
named Steve Johnson.

(b) Dynamic binding
Q2. Return staff members
earning more than 2000 per
month.

(c) Complex objects
Q3. Return tutors living in
Glasgow.

(d) Object identity
Q4 Return tutors working and
studying in the same depart-
ment.

(e) Class hierarchy
Q5 Return all visiting staff in
the university.
Q6 Return all visiting staff
members in the university who
earn more than 2000 per
month.

2. Expressive power
(a) Multiple generators

Q7 Return students studying
in the same department as
Steve Johnson.

(b) Dependent generators
Q8 Return courses taken by the
students.

(c) Returning new objects
Q9 Return students and the
courses taken by them.

(d) Nested queries
Q10 Return students and the
courses taken by them that
have more than one credit.

(e) Quantifiers
Q11 Return students taking a
course given by Steve Johnson.
Q12 Return students taking
only courses given by Steve
Johnson.

(f) Relational completeness
Q13 Return the names of stu-
dents.
Q14 Return all the possible
combinations between depart-
ments and courses.
Q15 Return staff members and
students in the Computing Sci-
ence Department.
Q16 Return areas where stu-
dents, but no staff live.
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(g) Nested relational extension
Q17 Return income tax of staff
as 40

(h) Recursion
Q18 Return all direct and indi-
rect prerequisite courses of the
“DB4” course.

3. Support of collections
(a) Collection literals

Q19 Return students living in
the following areas: Hillhead,
Kelvinside and Dowanhill.

(b) Collection equality
Q20 Return courses with no
prerequisite courses.

(c) Aggregate functions
Q21 Return courses with less
than two assessments.

(d) Positioning and ordering
Q22 Return the first and sec-
ond supervisors of Steve John-
son.
Q23 Return students hav-
ing Steve Johnson before Bob
Campbell in their supervisor
lists.

(e) Occurrences and counting
Q24 Return courses with 4 as-
sessments of the same percent-
age weight.
Q25 Return the number of as-
sessments worth 25

(f) Converting collections
Q26 Return the salary of tutors
and keep the possible duplicate
values.

(g) Combining collections
Q27 Return the students su-
pervised by Steve Johnson.

(h) Mixing collections
Q28 Return courses taught by
the supervisors of Steve John-
son

4. Usability
(a) Local definitions

Q29 Return students whose
major departments are in ei-
ther Hillhead Street or Univer-
sity Avenue.

(b) Query functions
Q30 Return students taking
some course run by their de-
partments.
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Abstract. Workflow management is a fast evolving technology which
can support business process reengineering and realize the full or partial
automatic process of a business. A formal model of workflow should con-
tain at least four major dimensions: the process, resource, case and time
dimensions. Although much research has been devoted to this subject, to
the best of our knowledge, no existing research is able to model workflow
with the four dimensions at the same time. In this paper, a formal model,
named as WF-RAPN (A Resource Assignment Petri Net for Workflow
Management) is shown. The model extends traditional Petri Nets with
resource assignments and case handling. To guarantee that resources are
correctly consumed and execution time of each case is soundly calculated
in the modeled processes, a formal set of WF-RAPN composition rules
are designed and the proof of the correctness is also shown in the paper.

Keywords: Petri nets, WF-RAPN, workflow, resource assignment.

1 Introduction

Workflow management is a fast evolving technology which can support busi-
ness process reengineering and realize the full or partial automatic process of
a business. The term workflow defined by the Workflow Management Coalition
(WfMC) refers to the automation of a business process which passes the infor-
mation or tasks from one participant to another according to a set of procedural
rules [9].

A formal model should contain at least four major dimensions: the process,
resource, case, and time dimensions [8]. The process dimension describes the
routing of the activities in a workflow. The basic types of routing include se-
quential, parallel, conditional, and iteration routing [4]. Sequential routing means
tasks are executed sequentially, parallel routing specifies tasks are executed in
parallel, conditional routing indicates a decision of routing among tasks, and it-
erative routing organizes tasks into loops. In the resource dimension, the resource
allocation and assignment strategies are concerned. Especially, when resources
are limited and shared by multiple tasks. The availability of resources in turn
depends on the resource assignment strategies when conflicts occur. The case
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dimension displays the fact that workflows are case-based. Each case is an in-
stance of a workflow process, and does not directly influence another case. They
influence each other indirectly by sharing the same resources. In the time di-
mension, we have to keep the total elapsed time of each case, and this temporal
information can help workflow managers to improve the workflow design.

Petri Nets is a class of graphical and mathematical models suitable to model
concurrent, parallel, asynchronous and dynamic systems [5],[6]. Being a powerful
modeling tool for dynamic systems, much research has used Petri nets to model
and analyze real-world and workflow management system [1],[2],[3],[4],[7],[8].
WF-net [8] gives only process control specification for workflow modeling. TCPN
[7] and TCWF-net [4] extend Petri net by adding minimun, maximun and du-
rational timing constraints to places or transitions. However, they do not take
account of the issues of case and resource assignment of workflow management.
Jongwook [3] proposes an interactive Petri net model which incorporates resource
sharing constraints for planning and scheduling, but the model lacks resource
assignment mechanism and does not specify composition rules to correctly con-
struct a work flow related net.

Although each of these four dimensions has been separately addressed by some
previous researches, to the best of our knowledge, no existing research has been
devoted to model workflow with the four dimensions at the same time. In this
paper, we present a model based on Petri Net, named WF-RAPN (A Resource
Assignment Petri Net for Workflow Management), to model the four dimensions
of workflow at the same time. The contribution of the model is that four patterns
of sub-Petri Net along with algorithms are proposed to model resource allocation
and assignment decision, a set of composition rules are proposed to guarantee
that the patterns and the rest of the Petri-Net integrated well and no residual
tokens are left behind when a case is closed, a notation of case is proposed to
record each job processed on the workflow and a mechanism to compute the
elapse time for each case is also included.

The rest of the paper is organized as follows. In Section 2, the components
of WF-RAPN are introduced. The firing rules and firing conditions of new com-
ponents are also formally stated in the section. Based on the components, the
patterns that are used in workflow to describe resource sharing and assignments
are introduced in Section 3. To correctly construct a workflow, a well formed
expressions of WF-RAPN is defined in Section 4. The correctness of the well
formed expressions is proved in Section 5. Conclusion and future work are drawn
in Section 6.

2 The Construct of WF-RAPN

2.1 Places

Two types of places are designed in WF-RAPN. A CP (Conventional Place)
corresponds to the process condition and is the same as the place of classical
Petri nets. Every token in a condition place has a case identity used to distinguish
the case or batch that it belongs to. Each RP (Resource Place) is a repository
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of one type of resources. A RP with tokens means a particular type of resources
are available. RP s may hold more than one token to denote the availability of
multiple resources. The two types of places are shown in Fig. 1.

In WF-RAPN, every case has two attributes: case identity (CID) and the
accumulated elapse time (AET ). The case identity attribute is the identifier
that uniquely distinguishes a case from the others. The AET of a case records
the accumulated time of this particular case taken so far.

2.2 Transitions

WF-RAPN has two types of transitions, namely, Conventional Transition (CT )
and Resource Dispatching Transition (RDT ). CT s correspond to tasks and have
the same meanings and behavior as the transitions of classical Petri nets. For
each shared resource, a RDT is created to assign the resource to activities. RDT s
can only dispatch one type of resources to tasks and thus can have only one input
RP . Fig. 2 shows the graphical representation of the two types of transitions.

Fig. 1. WF-RAPN places Fig. 2. WF-RAPN transitions

To simplify WF-RAPN diagrams, the convention for marks on edges connect-
ing into and out of CT s is one. The detailed firing conditions and firing rules of
each type of transitions are explained in Sections 2.4 and 2.5.

2.3 The WF-RAPN Model

The construct of a WF-RAPN machine is defined as < P, T, E, SY MP, SY MT,
W, C, D, WT, PRI, ResourcePair, DF, S0 >, where

P = {P1, . . . , Pi}, where i is the number of places
T = {T1, . . . , Tj}, where j is the number of transitions
E ⊂ P × T ∪ T × P → {True, False}
SY MP : P → {CP, RP}
SY MT : T → {CT, RDT }
W : P × T ∪ T × P → {0, 1, . . .}
C : {C1, . . . , Ck}, where k is the number of cases
D : T → Real Number
WT : P × C → Real Number
PRI : CP → Real Number
DF : T × 2p → P
S0 : initial state
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P is a non-empty finite set of places, T is a non-empty finite set of transitions,
and E is a non-empty finite set of arcs connecting places and transitions. P ∩T =
φ and P ∪ T �= φ. C is a non-empty set of cases. SY MP and SY MT express
the types of places and transitions. W is the weights on E. D denotes durations
of transitions. WT is a set of functions defined on the tokens of CP s to keep
track of the waiting time when the tokens are kept in the CP s. PRI is a set of
priority functions defined on CP s. DF is a set of decision functions defined on the
transitions of type RDT to simulate the resource assignment decision in the event
of resource contention. S0 is an initial state and has the form of < M0, AET0 >,
where the attributes denote the initial markings and the accumulative executing
times, respectively.

M : {p—p in P and SY MP (p) = CP} ×C → {0, 1},
M : {p—p in P and SY MP (p) = RP} → {0, 1,. . . },
To simplify the notation of firing rules, M : {p—p in P and SY MP (p) =
RP} = M : {p—p in P and SY MP (p) = CP} ×C in the paper,
AET : C → Real Number

For a CP place, M records the number of tokens in the place designated for
each case. For a RP place, M records the number of tokens (resources) ready to
be distributed. The detailed behaviors of state functions are further explained
in their firing rules.

2.4 Enabling and Firing Conditions

A CT transition is enabled if all of their input places have at least W (P, Ti)
tokens designated to the same case. A RDT transition, Ti, is enabled if its input
RP , say RPk, has at least W (RPk, Ti) tokens and at least one of its input CPs

has a token. In WF-RAPN, a transition Ti for case cid is enabled at j-state if
one of the following conditions holds:

1. when SY MT (Ti) = RDT ,
(a) ∃!P SY MP (P ) = RP ∧E(P, Ti) ∧Mj(P ) ≥ Wj(P, Ti), and
(b) ∃P SY MP (P ) = CP ∧ E(P, Ti) ∧Mj(P, cid) = 1

2. when SY MT (Ti) = CT ,
∀P E(P, Ti) ∧Mj(P, cid) ≥Wj(P, Ti)

2.5 Firing Rules

An enabled conventional transition (CT ) may fire. However, an enabled RDT
must fire at once. The state of a WF-RAPN machine is advanced when a tran-
sition starts to fire or when a transaction completes a firing. The duration is the
time needed to complete the transition. The j-th state of the machine is repre-
sented by < Mj, AETj >. When transition Ti fires or completes in the (j-1)-th
state with relative time θ, the state is advanced to the j-th state with functions
defined below.
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– If the enabled transition Ti fires for case cid, only markings of those places
which tokens leave are updated accordingly and the others remain the same.
If SY MP (P ) = CP , then

Mj(P, x) =
{

Mj−1(P, cid)−W (P, Ti) if E(P, Ti) ∧ x = cid
Mj−1(P, cid) otherwise

for all conventional places in P . Variable x denotes a variable of a case
identification.
If SY MP (P ) = RP , then

Mj(P ) =
{

Mj−1(P )−W (P, Ti) if E(P, Ti)
Mj−1(P ) otherwise

for all resource places in P .
– When a firing transition Ti for case cid completes, if Ti is not a RDT , then

only markings of those places where tokens arrive are updated accordingly
and the others remain the same. If Ti is a RDT transition, one of its output
RP s will be selected to receive the resource token according to the resource
assignment decision function DF of Ti.
If SY MP (P ) = CP , then

Mj(P, x) =
Mj−1(P, x) + W (Ti, P ) if SY MT (Ti) �= RDT ∧ E(Ti, P ) ∧ x = cid
Mj−1(P, x) otherwise

for all conventional places in P .
If SY MP (P ) = RP , then

Mj(P )=

Mj−1(P ) + W (Ti, P ) if SY MT (Ti) �= RDT ∧ E(Ti, P )
Mj−1(P ) + W (Ti, P ) if SY MT (Ti) = RDT ∧ E(Ti, P )∧

DF (Ti, {Ph|∃yE(Ph, Ti) ∧ Mj−1(Ph, y)= 1})=P
Mj−1(P ) otherwise

for all resource places in P .
When two or more activities compete for the same resources, the DF func-
tion of a RDT will assign the resource to the activity which input CP has
a higher priority. If the priorities among competitive activities are the same,
the activity with a longer waiting time recorded in its input CP gets the
resource.

– The accumulative executing time (AET ) will be accumulated and kept for
each case. The initial AET of a case is zero and never changes when the
token of the case stays in the source place Pb. When the state advances, we
will add extra θ to AET s of all cases which are still running. Once a token
of a case arrives at sink place, Pe, the AET of the case stops accumulating.

AETj(cid) =
AETj−1(cid) if Mj(Pb, cid) > 0 or Mj(Pe, cid) > 0

AETj−1(cid) + θ otherwise
(1)

for all cases in P .
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3 Modeling Resource Assignment with WF-RAPN

In WF-RAPN, resources are divided into two categories, consumable (e.g. parts
and materials), and reusable (e.g., human and devices) resources. After being
utilized, a consumable resource is consumed and exhausted but the reusable
resource can be reused.

A resource can be shared by multiple activities with random or determinis-
tic assignment strategies. Random assignments assign shared resources among
competing activities in a random manner; on the other hand, deterministic as-
signments allow users to explicitly assign resources to specific activities according
to decision functions. Fig. 3 represents the pattern of sharing common consum-
able resource rp1 randomly between two traditional transitions t1 and t2. If p1
and p3 both have a token arrived, t1 and t2 will be enabled simultaneously. In
this case, a token of rp1 will be assigned to t1 or t2 randomly.

Fig. 4 shows the pattern in which reusable resource rp1 is randomly shared
by tasks t1 and t2. The pattern is similar to that presented in Fig. 3 except that

Fig. 3. Consumable resource rp1 is ran-
domly assigned to t1 or t2

Fig. 4. Reusable resource rp1 is randomly
assigned to t1 or t2

Fig. 5. Consumable resource rp1 is as-
signed to t1 or t2 by rdt1

Fig. 6. Reusable resource rp1 is assigned
to t1 or t2 by rdt1
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the token would flow back to rp1. When the firing of t1 or t2 completes, a token
will flow back to rp1.

Fig. 5 presents the pattern of assigning resource to a specific activity by a
decision function. When rdt1 fires, its decision function can decide which output
place, namely, rpa or rpb, can have the resource token. If the token is assigned
to rpb, the CT t2 will be enabled, and may fire. If the transition type of t2 is
EFT , t2 will fire at once when it is enabled.

Fig. 6 presents the pattern that reusable resource rp1 is assigned to t1 or t2
according to the result of decision function rdt1. The pattern is similar to that
presented in Fig. 5 with the addition of two arcs from t1 and t2 to rp1, which
send resource tokens back to rp1 when the firing of t1or t2 completes.

4 Formal Expressions of WF-RAPN

This section is devoted to develop a formal construction rules of WF-RAPN
so that the workflows constructed according to the rules are always correct We
leave the proof of its correctness in the next section.

To make the rules succinct, following vocabulary is defined. Let T be a set of
non-RDT transitions, P be a set of conventional places, RT be a set of RDT
transitions and RP be a set of resource places. A place or transition is called a
singleton if it is not connected with any edges.

Definition 1. {< p,t >} and {< t,p >} are atomic terms based on T and P if
t in T , p in P and both t and p are singleton.

Fig. 7 shows two types of atomic terms. On the left side, the start element is a
place and the end element a transition. On the right side, the start element is a
transition and the end element a place.

Definition 2. A simple term based on T and P is defined as follows:

1. Atomic terms are simple terms.
2. If TM is a simple term based on T and P and starts and ends with transition

ts and te (or place ps and pe), respectively, and px in P (or tx in T ) is a
singleton then TM union {< px, ts >}and TM union {< te, px >} (or
{< tx,ps >, < pe,tx >}) are extension terms, which are also simple terms.

3. If TM1 and TM2 are mutually exclusive simple terms based on T and P
and TM1 ends with transition te (or place pe), and TM2 starts with place
ps in P (or transition ts) then TM1 union TM2 union {< te, ps >} (or
{< pe,ts >}) are concatenation terms, which are also simple terms.

4. Specifically, a simple term is called a PP simple term, if both the start and
end elements are places, and similarly called a TT simple term, if both the
start and end elements are transitions. Fig. 8 shows the two types of simple
terms.

5. A parallel term and an iterative term, to be defined in Definitions 3 and 5,
are TT simple terms, and a conditional term, given in Definition 4, is a PP
simple term.



624 P.-Y. Hsu, Y.-L. Chen, and Y.-B. Chang

Fig. 7. Two types of atomic terms Fig. 8. Two types of simple terms

Definition 3. Given a set of mutually exclusive PP simple terms TM1,. . . ,
TMn based on T and P , where the start and end elements of TMj are psj

and pej respectively for 1 ≤ j ≤ n, tj, tk in T and are singleton, then {< ti,
ps1 >,. . . ,< ti, psn >} union TM1 union TM2 . . . union TMn union {< pe1,
tk >,. . . ,< pen, tk >} is a parallel term based on T and P . Fig. 9 shows the
pattern of a parallel term.

Definition 4. Given a set of mutually exclusive TT simple terms TM1,. . . ,
TMn based on T , and P , where the start and end elements of TMj are tsj and
tej respectively for 1 ≤ j ≤ n, and pj, pk in T and are singleton, then {< pi,
ts1 >,. . . ,< pi, tsn >} union TM1 union TM2 . . . union TMn union {< te1,
pk >,. . . ,< ten, pk >} is a conditional term based on T and P . Fig. 10 shows
an example of a conditional term.

Fig. 9. An example of parallel terms Fig. 10. An example of conditional terms

Definition 5. Given two mutually exclusive TT terms, namely, TM1 and TM2,
based on T and P . If TM1 starts and ends with atomic terms, < t1, p1 > and
< p2, t2 >, respectively and TM2 starts and ends with transitions t3 and t4,
respectively, then TM1 union TM2 union {< p2,t3,< t4,p1 >} is an iterative
term based on T and P . Fig. 11 shows an example of an iterative term.

Fig. 11. An example of iterative terms

Definition 6. A simple TT term based on T and P is a workflow based on T
union RT , and P union RP .
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Definition 7. Given a workflow, w, based on T union RT and P union RP , a
singleton resource place, r in RP , t1, t2,. . . ,tr in w, w′ is a workflow based on
the same sets if

1. w′ = w ∪ {< r, ti > |i = 1, . . . , r}, or
2. w′ = w ∪ {< r, ti >, < ti, r > |i = 1, . . . , r}

Fig. 3 and Fig. 4 illustrate two samples defined in Definition 7.

Definition 8. Given a workflow, w, based on T union RT and P union RP ,
singleton resource places, r, r1 . . . rk in R, and t1, t2, . . . , tk, ps1..psk in w, w’ is
a workflow based on the same sets if:

1. w′ = {< r, trdt >}∪{< psi, trdt >, < trdt, rpi >, < rpi, tsi > |i = 1, . . . , k}∪
w, or

2. w′ = {< r, trdt >} ∪ {< psi, trdt >, < trdt, rpi >, < rpi, tsi >, < tsi, r >
|i = 1, . . . , k} ∪ w

Fig. 5 and 6 show samples defined in Definition 8.
When using WF-RAPN to model a workflow, the system designer must follow

the following composition rules. A WF-RAPN must have a source place and a
sink place. The source place has no input transitions and connect to a workflow
with its begin transition. A token in the source place denotes the beginning of
a case. A sink place is used to denote the ending of a case and has no output
transitions and is connected to a workflow with its ending transition. Once a
token comes to a sink place, the corresponding case finishes.

Definition 9. Given a workflow, w, based on T union RT and P union RP ,
two singleton places pe and ps in P , if ts and te are the start and end transitions
of w, respectively, then any WF-RAPN starts with < P union RP , T union RT ,
w union {< ps, ts >, < te, pe >}, SY MP , SY MT , W > is a well form formula,
where SY MP and SY MT are defined according to P , RP , T , and RT , and W
follows the convention stated in section 2.3.

5 Correctness Proofs

To show the correctness of the model, two issues should be proved, including:
(1) The routing process of multiple cases can be run correctly; (2) The time AET
of each case is computed correctly. As for the first issue, we show that in a well
formed WF-RAPN, when the token of a case goes from the source into the sink
place, no tokens of this case remain in the workflow. The second issue is resolved
by showing that the elapse time of state changes are correctly accumulated, and
therefore the total accumulated elapse time of a case in a workflow is exactly
the total execution time of the case.

Theorem 1. In a simple term where edges are marked with conventions, when
a token in the end place or the end transition, no token with the same cid is left
in other places or transitions in the simple term.
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Proof.
The proof is proceeded with induction.

The statement is true when the simple term is an atomic term.
Given a set of simple terms, S, based on T and P and that make the statement

true, we will prove that extending the simple terms in the set with rules defined
in definition 2 to 6 yield simple terms that also make the statement true.

Case 1. Let s in S, if s is extended with the extension rule then an element
can be affixed to the term with either start and end elements. In both scenarios,
the new terms do not have extra branches and will still make the statement true.

Case 2. Let s1, s2 in S, if a new term is formed by concatenating s1 and s2
then when a token is in either the part of s1 or s2, no token with the same cid
should be left in the other term. Thus the new term still support the statement.

Case 3. Let s1, . . . , sn are TT terms in S then combining the set of terms with
the parallel rule forms a new term. In the new term, n tokens with the same
cid are sent to the n sub terms at the same time and when the last transition
is fired, a token with the same cid is taken away from each of the n sub terms.
Therefore, no token with the same cid is left in the sub terms.

Case 4. Let s1, . . . , sn be PP terms in S then combing the set of terms with
the conditional rule forms new term, in which when the first transition completes
its fire for a token, only one sub term gets a token with the same cid. Hence,
when the last transitions fired with the same cid, no sub terms have any token
with the same cid left.

Case 5. Let s1 and s2 be TT terms and the start and end elements of s1
are connected to s2 with the iterative rule to form a new term. Before the end
transition of the original s1 fires, a token must exist in the last place of s1 which
means no token with the same cid has left in s2 or other parts of s1.

Thus, the new terms derived from S also make the statement true and the
theorem is proved.

Theorem 2. For a well-formed WF-RAPN with a state sequence of
< S0, . . . , Sn >, if Sk is the first state where the sink place Ps has a token
with case identity cid, then AETj(cid) = the elapse time of the case for j≥ k.

Proof.
Let Si be the first state where the token of the case leaves the source place.
Then, according to the firing rule shown in formula (1) stated in Section 2.5,
we have AET (cid)=0 before state i. After state i but before state k, the firing
rule in formula (1) indicates that the elapse time of case cid will be accumulated
at each state change. Finally, once we have reached state k or after state k,
the time accumulation stops according to formula (1). As a result, AETj(cid) ,
where j ≥ k, holds the elapse time of the case.

6 Conclusion

A formal model of workflow should be able to describe the semantic of process
routing, resource assignment, case identification and execution time computation.
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WF-RAPN is designed to fulfill these requirements. WF-RAPN extends classical
Petri nets with resource places and resource dispatching transition. With WF-
RAPN, we can formally describe all these details and compute the execution time
of each case. Although WF-RAPN can describe basic resource assignment and
sequencing relationships, more research is needed in modeling resource consump-
tions. For example, the model cannot describe scenarios where activities consume
partial resource, instead of the entire units, or activities utilize and release the
same resource intermittently. Hence, future research is needed to model resource
utilization and assignments in more complicated scenarios of workflow.
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Abstract. Conceptual Modelling plays a fundamental role in database
design since Chen’s Entity-Relationship (ER) model. In this paper we
consider a conceptual model capable of capturing classes of objects with
their attributes, relationships among classes, cardinality constraints in
the participation of entities to relationships, and is-a relations among
both classes and relationships. We provide a formal semantics for such
model in terms of predicates and constraints over their extensions. We
address the problem of containment of conjunctive queries over a con-
ceptual schema, and we show an algorithm for solving the problem, that
achieves better computational complexity than the techniques found
in the literature. The results presented here are directly applicable in
query answering on incomplete databases, and in data integration under
constraints.

1 Introduction

Conceptual models, and in particular the Entity-Relationship (ER) model [9],
play a fundamental role in database design. Conceptual schemata used in
database design have the necessary expressiveness and flexibility for effectively
representing the domain of interest, and are precise enough to allow the imple-
mentation on DBMSs.

In this paper we address the problem of query containment, where queries are
conjunctive queries expressed over a conceptual schema. As a conceptual model,
we adopt a formalism that we call Extended Entity-Relationship (EER) Model,
able to represent classes of objects with their attributes, relationships among
classes, cardinality constraints in the participation of entities to relationships,
and is-a relations among both classes and relationships. Since our conceptual
model deals with classes (entities) and relations (relationships) on classes, we
provide a formal semantics to our conceptual model in terms of the relational
database model. In our setting, conjunctive queries are expressed by using pred-
icates (relations) appearing in the relational representation of the conceptual
schema.

The problem of determining containment of queries is highly relevant for
query optimisation [8]; in general a query Q1 is contained in another query Q2
if for every database D the answers to Q1 evaluated over D are a subset of the
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answers to Q2 evaluated over D. The query containment problem is complicated,
in our setting, by the high expressiveness of the EER model. In fact, we represent
a conceptual schema by means of a relational schema, on whose predicates the
queries are formulated, and therefore we need to make use of integrity constraints
to capture the expressiveness of the EER model.

The problem of determining whether a query Q1 is contained in a query
Q2 under a set Σ of constraints, written Q1 ⊆Σ Q2, consists in determining
whether for every database D satisfying Σ the answers to Q1 evaluated over
D are a subset of the answers to Q2 evaluated over D. Consider the following
example, adapted from [11] and entirely based on the relational database model.
We have two relations

employee [emp no, emp name, salary , dept ]
dept [dept no, dept name, location ]

with a single integrity constraint employee[4] ⊆ dept[1], stating that every depart-
ment number appearing in the fourth column of employee must be the number
of some department, therefore it must appear in the first column of dept. Now,
consider the two conjunctive queries

Q1(U) ← employee(U, agenor , X, Y )
Q2(U) ← employee(U, agenor , X, Y ), dept(Y, Z, W )

Without constraints we have that Q1 is not contained in Q2, while in the presence
of the constraint the queries are equivalent, i.e. they are contained in each other.

In the rest of the paper we will present an algorithm that checks containment
of queries expressed over an EER schema, represented by means of a relational
schema with constraints. The class of constraints we deal with does not fall
in the class of IDs and FDs for which containment is known to be decidable
(see [4]); indeed, the decidability of the problem is already known from a work
that addresses containment in the context of a Description Logics that is able
to capture the EER model [6]. However, our technique, besides providing an
in-depth look at the issue of containment of queries over EER schemata, yelds
an upper bound for the complexity of the problem that is better than the one
of [6].

2 Preliminaries

In this section we give a formal definition of the relational data model, of
database constraints, of conjunctive queries, and of containment of conjunctive
queries under constraints.

The relational data model. In the relational data model [10], predicate sym-
bols are used to denote the relations in the database, whereas constant symbols
denote the objects and the values stored in relations. We assume to have two
distinct, fixed and infinite alphabets Γ and Γf of constants and fresh constants
respectively, and we consider only databases over Γ ∪Γf . We adopt the so-called
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unique name assumption, i.e. we assume that different constants denote different
objects.

A relational schema R consists of an alphabet of predicate (or relation) sym-
bols, each one with an associated arity denoting the number of arguments of the
predicate (or attributes of the relation). When a relation symbol R has arity n,
it can be denoted by R/n.

A relational database (or simply database) D over a schema R is a set of
relations with constants as atomic values. We have one relation of arity n for
each predicate symbol of arity n in the alphabet R. The relation RD in D
corresponding to the predicate symbol R consists of a set of tuples of constants,
that are the tuples satisfying the predicate R in D.

When, given a database D for a schema R, a tuple t = (c1, . . . , cn) is in RD,
where R ∈ R, we say that the fact R(c1, . . . , cn) holds in D. Henceforth, we will
use interchangeably the notion of fact and tuple.

Integrity constraints. Integrity constraints are assertions on the symbols of
the alphabetR that are intended to be satisfied in every database for the schema.
The notion of satisfaction depends on the type of constraints defined over the
schema. A database D over a schema R is said to satisfy a set of integrity
constraints Σ expressed over R, written D |= Σ, if every constraint in Σ is
satisfied by D.

The database constraints of our interest are functional dependencies (FDs),
inclusion dependencies (IDs) and key dependencies (KDs) (see e.g. [2]). We de-
note with boldface uppercase letters (e.g. X) both sequences and sets of at-
tributes of relations. Given a tuple t in relation RD, i.e. a fact R(t) in a database
D for a schema R, and a set of attributes X of R, we denote with t[X] the pro-
jection (see e.g. [2]) of t on the attributes in X.

(i) Functional dependencies (FDs). A functional dependency on a relation R is
denoted by R : X→ Y. Such a constraint is satisfied in a database D iff for
each t1, t2 ∈ RD we have that if t1[X] = t2[X] then t1[Y] = t2[Y].

(ii) Inclusion dependencies (IDs). An inclusion dependency between relations
R1 and R2 is denoted by R1[X] ⊆ R2[Y]. Such a constraint is satisfied in
a database D iff for each tuple t1 in RD

1 there exists a tuple t2 in RD
2 such

that t1[X] = t2[Y].
(iii) Key dependencies (KDs). A key constraint over relation R is denoted by

key(R) = K, where K is a subset of the attributes of R. Such a constraint
is satisfied in a database D iff for each t1, t2 ∈ RD we have t1[K] �= t2[K].
Observe that this constraints is equivalent to the functional dependency
R : K → AR, where AR is the set of all attributes of R, therefore KDs are
a special case of FDs.

Queries. A relational query is a formula that specifies a set of data to be re-
trieved from a database. In the following we will refer to the class of conjunctive
queries. A conjunctive query (CQ) Q of arity n over a schema R is written in
the form Q(X) ← body(X , Y ) where:
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(1) Q belongs to a new alphabet Q (the alphabet of queries, that is disjoint
from both Γ , Γf and R);

(2) Q(X) is the head of the conjunctive query, denoted head(Q);
(3) body(X, Y ) is the body of the conjunctive query, denoted body(Q), and is

a conjunction of atoms involving the variables X = X1, . . . , Xn and Y =
Y1, . . . , Ym, and constants from Γ ;

(4) the predicate symbols of the atoms are in R,
(5) the number of variables of X is called the arity of Q.

Every variable appearing more than once in Q (more than once in the body,
or both in the body and in the head) is called distinguished variable (DV);
every othervariable is called non-distinguished variable (NDV). We denote with
Var(Q) the set of all variables of Q.

Given a database D, the answer to Q over D, denoted Q(D), is the set of
n-tuples of constants (c1, . . . , cn), such that, when substituting each xi with ci,
for 1 ≤ i ≤ n, the formula ∃Y .body(X, Y ) evaluates to true in D, where ∃Y is
a shorhand for ∃Y1 · · · ∃Ym.

Query containment. Given two CQs Q1, Q2 over a relational schema R, we
say that Q1 is contained in Q2, denoted Q1 ⊆ Q2, if for every database D for
R we have Q1(D) ⊆ Q2(D). Given two CQs Q1, Q2 over a relational schema R,
and a set Σ of constraints on R, we say that Q1 is contained in Q2 under Σ,
denoted Q1 ⊆Σ Q2, if for every database D for R we have that D |= Σ implies
Q1(D) ⊆ Q2(D).

3 The Conceptual Model

In this section we present the conceptual model we shall deal with in the rest
of the paper, and we give its semantics in terms of relational database schemata
with constraints.

Our model incorporates the basic features of the ER model [9] and OO models,
including subset (or is-a) constraints on both entities and relationships. It is an
extension of the one presented in [3], and here we use a notation analogous
to that of [3]. Henceforth, we will call our model Extended Entity-Relationship
(EER) model, and we will call schemata expressed in the EER model Extended
Entity-Relationship (EER) schemata.

An EER schema consists of a collection of entity, relationship, and attribute
definitions over an alphabet Sym of symbols. The alphabet Sym is partitioned
into a set of entity symbols (denoted by Ent), a set of relationship symbols
(denoted by Rel), and a set of attribute symbols (denoted by Att).

An entity definition has the form

entity E
isa: E1, . . . , Eh

participates(≥ 1): R1 : c1, . . . , R� : c�

participates(≤ 1): R′
1 : c′1, . . . , R′

�′ : c′�′
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where: (i) E ∈ Ent is the entity to be defined; (ii) the isa clause specifies a
set of entities to which E is related via is-a (i.e., the set of entities that are
supersets of E); (iii) the participates(≥ 1) clause specifies those relationships to
which an instance of E must necessarily participate; and for each relationship
Ri, the clause specifies that E participates as ci-th component to Ri; (iv) the
participates(≤ 1) clause specifies those relationships to which an instance of E
cannot participate more than once (components are specified as in the previous
case). The isa, participates(≥ 1) and participates(≤ 1) clauses are optional. A
relationship definition has the form

relationship R among E1, . . . , En

isa: R1[j1 1, . . . , j1 n], . . . , Rh[jh 1, . . . , jh n]

where: (i) R ∈ Rel is the relationship to be defined; (ii) the entities of Ent
listed in the among clause are those among which the relationship is defined
(i.e., component i of R is an instance of entity Ei); (iii) the isa clause specifies a
set of relationships to which R is related via is-a; for each relation Ri, we specify
in square brackets how the components [1, . . . , n] are related to those of Ei, by
specifying a permutation [ji 1, . . . , ji n] of the components of Ei; (iv) the number
n of entities in the among clause is the arity of R. The isa, clause is optional.
An attribute definition has the form

attribute A of X
qualification

where: (i) A ∈ Att is the attribute to be defined; (ii) X is the entity or relation-
ship to which the attribute is associated; (iii) qualification consists of none, one,
or both of the keywords functional and mandatory, specifying respectively that
each instance of X has a unique value for attribute A, and that each instance of
X needs to have at least a value for attribute A. If the functional or mandatory
keywords are missing, the attribute is assumed by default to be multivalued and
optional, respectively.

For the sake of simplicity, and without any loss of generality, we assume
that in our EER model different entities and relationships have disjoint sets
of attributes; also, we do not consider the domains of the attributes, i.e. the
specification of the domains to which values of attributes must belong.

The semantics of an EER schema is defined by specifying when a database
for that schema satisfies all constraints imposed by the constructs of the schema.
First of all, we formally define a database schema from an EER diagram. Such
a database schema is defined in terms of predicates, that represent the so-called
concepts (entities, relationships and attributes) of the conceptual schema. There-
fore, we define a relational database schema that encodes the properties of the
EER schema C.
(a) Each entity E in C has an associated predicate E of arity 1. Informally, a

fact of the form E(c) asserts that c is an instance of entity E.
(b) Each attribute A for an entity E in C has an associated predicate A of

arity 2. Informally, a fact of the form A(c, d) asserts that d is the value of
attribute A associated to c, where c is an instance of entity E.
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(c) Each relationship R among the entities E1, . . . , En in C has an associated
predicate R of arity n. Informally, a fact of the form R(c1, . . . , cn) asserts that
(c1, . . . , cn) is an instance of relationship R, where c1, . . . , cn are instances
of E1, . . . , En respectively.

(d) Each attribute A for a relationship R among the entities E1, . . . , En in C
has an associated predicate A of arity n + 1. Informally, a fact of the form
A(c1, . . . , cn, d) asserts that (c1, . . . , cn) is an instance of relationship R and
d is the value of attribute A associated to (c1, . . . , cn).

Once we have defined the database schema R for an EER schema C, we give
the semantics of each construct of the EER model; this is done by specifying
what databases (i.e. extension of the predicates of R) satisfy the constraints
imposed by the constructs of the EER diagram. We do that by making use of
the relational database constraints introduced in Section 2.

(1) For each attribute A/2 for an entity E in an attribute definition in C, we
have the ID A[1] ⊆ E[1].

(2) For each attribute A/(n+1) for a relationship R/n in an attribute definition
in C, we have the ID A[1, . . . , n] ⊆ R[a, . . . , n].

(3) For each relationship R involving an entity Ei as i-th component according
to the corresponding relationship definition in C, we have the ID R[i] ⊆ Ei[1].

(4) For each mandatory attribute A/2 of an entity E in an attribute definition
in C, we have the ID E[1] ⊆ A[1].

(5) For each mandatory attribute A/(n+1) of a relationship R/n in an attribute
definition in C, we have the ID R[1, . . . , n] ⊆ A[1, . . . , n].

(6) For each functional attribute A/2 of an entity E in an attribute definition
in C, we have the KD key(A) = {1}. In fact, there cannot be more than one
value for attribute A that is assigned to a single instance of E.

(7) For each functional attribute A/(n+1) of a relationship R/n in an attribute
definition of C, we have the KD key(A) = {1, . . . , n}. In fact, there cannot
be more than one value for attribute A that is assigned to a single instance
of R.

(8) For each is-a relation between entities E1 and E2, in an entity definition
in C, we have the ID E1[1] ⊆ E2[1]. In fact, the is-a relation specifies a set
containment between entities E1 and E2.

(9) For each is-a relation between relationships R1 and R2, where components
1, . . . , n of R1 correspond to components j1, . . . , jn, in a relationship defi-
nition in C, we have the ID: R1[1, . . . , n] ⊆ R2[j1, . . . , jn]. In fact, the is-a
relation specifies a set containment between relationships R1 and R2.

(10) For each mandatory participation (participation with minimum cardinality
1) as c-th component of an entity E in a relationship R, specified by a clause
participates≥ 1: R : c in an entity definition in C, we have the ID E[1] ⊆ R[c].

(11) For each participation with maximum cardinality 1 as c-th component of
an entity E in a relationship R, specified by a clause participates≤ 1: R : c
in an entity definition in C, we have the ID key(R) = {c}

The class of constraints we obtain, which is a subclass of key and inclusion
dependencies, is a novel class of relational database dependencies, that we shall
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Employee Works in Dept

Manager

since

dept nameemp name

1 2

Fig. 1. EER schema for Example 1

call conceptual dependencies (CDs) for obvious reasons. The conjunctive queries
we consider are formulated using the predicates in the relational schema we
obtain from the EER schema as described above.

Example 1. Consider the EER schema shown in Figure 1, depicted in the usual
graphical notation for the ER model (components are indicated for the rela-
tionship Works in). The elements of such a schema are manager/1, employee/1,
dept/1, works in/2, emp name/2, dept name/2, since/3. The schema describes em-
ployees working in departments of a firm, and managers that are also employees.
We omit the formal specification of the schema and the constraints on its rela-
tional representation. Suppose we want to know the names of the managers who
work in the toy department (named toy dept) since 1999. The corresponding
conjunctive query is

Q(Z)← manager(X), emp name(X, Z), works in(X, Y ), since(X, Y, 1999)
dept(Y ), dept name(Y, toy dept)

4 Chase and Containment

In this section we first present the notion of chase, which is a fundamental tool
for dealing with database constraints; then we prove some relevant properties
of the chase under conceptual dependencies (CDs), by means of which we prove
the decidability of the problem of containment of conjunctive queries under such
dependencies.

The chase of a conjunctive query [13, 11] is a key concept in particular in the
context of functional and inclusion dependencies. Intuitively, given a conjunctive
query, its conjuncts are “frozen” and seen as facts in a database, where each
variable is associated to a distinct value. Since this collection of facts in general
does not satisfy the inclusion and functional dependencies, the idea is to convert
the initial facts into a new set of facts constituting a database that satisfies
the dependencies, possibly by collapsing facts (according to FDs) or adding new
facts (according to IDs). Since a frozen query is a database, as we will see in the
next section, we will define the notion of chase of a database having, in general,
fresh and non-fresh constants.

Construction of the chase. Consider a database instance D for a relational
schema R, and a set Σ of dependencies on R; in particular, Σ = ΣI ∪ΣF , where
ΣI is a set of inclusion dependencies and ΣF is a set of functional dependencies.
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In general, D does not satisfy Σ, written D �|= Σ. In this case, we construct
the chase of D w.r.t. Σ, denoted chaseΣ(D), by repeatedly applying the rules
defined below. We denote with chase∗

Σ(D) the part of the chase that is already
constructed before the rule is applied.

Inclusion Dependency Chase Rule. Let R, S be relational symbols in R.
Suppose there is a tuple t in Rchase∗

Σ(D), and there is an ID σ ∈ ΣI of the form
R[YR] ⊆ S[YS ]. If there is no tuple t′ in SD such that t′[XS ] = t[XR] (in this
case we say the rule is applicable), then we add a new tuple tchase in SD such
that tchase [XS ] = t[XR], and for every attribute Ai of S, with 1 ≤ i ≤ m and
Ai /∈ XS , tchase [Ai] is a fresh value in Γf that follows, according to lexicographic
order, all the values already present in the chase.

Functional Dependency Chase Rule. Let R be a relational symbol in R.
Suppose there is a FD ϕ of the form R : X → Y. If there are two tuples
t, t′ ∈ Rchase∗

Σ(D) such that t[X] = t′[X] and t[Y] �= t′[Y] (in this case we say
the rule is applicable), make the symbols in t[Y] and t′[Y] equal in the following
way. Let Y = Y1, . . . , Y�; for all i ∈ {1, . . . , �}, make t[Yi] and t′[Yi] merge into a
combined symbol according to the following criterion: (i) if both are constants
in Γ , halt the process, since the initial database cannot be chased; (ii) if one
is in Γ and the other is a fresh constant in Γf , let the combined symbol be
the non-fresh constant; (iii) if both are fresh constants in Γf , let the combined
symbol be the one preceding the other in lexicographic order. Finally, replace
all occurrences in chase∗

Σ(D) of t[Yi] and t′[Yi] with their combined symbol.
In the following, we will need the notion of level of a tuple in the chase; intu-

itively, the lower the level of a tuple, the earlier the tuple has been constructed
in the chase.

Definition 1. Given a database instance D for a relational schema R, and a
set Σ of FDs and IDs, the level of a tuple t in chaseΣ(D), denoted by level (t),
is defined as follows:

(1) if t is in D then level(t) = 0;
(2) if t2 is generated from t1 by application of the ID chase rule, and level(t1)
= k, then level(t2) = k + 1;

(3) if a FD is applied on a pair of tuples t1, t2, they keep their level, except
when they are turned into the same tuple; in such a case, the new tuple gets
the minimum of the levels of t1 and t2.

Now we come to the formal definition of the chase.

Definition 2. We call chase of a relational database D for a schema R, accord-
ing to a set Σ of FDs and IDs, denoted chaseΣ(D), the database constructed from
the initial database D, by repeatedly executing the following steps, while the FD
and ID chase rules are applicable.

(1) while there are pairs of tuples on which the FD chase rule is applicable,
apply the FD chase rule on a pair, arbitrarily chosen;
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(2) if there are tuples on which the ID chase rule is applicable, choose the
one at the lowest level and apply the ID chase rule on it.

As we pointed out before, the aim of the construction of the chase is to make
the initial database satisfy the FDs and the IDs. This is formally stated by the
following result.

Theorem 1. Given a database schema R with a set Σ of FDs and IDs, and
given a database D for R, the database chaseΣ(D) satisfies Σ.

Proof. We prove the result by contradiction. We start from IDs; suppose a fact
R(c1, . . . , cm) in chaseΣI (D) violates an ID of the form R[XR] ⊆ S[XS ]. This
means that there is a tuple tR = (c1, . . . , cm) in RchaseΣ(D) and there is no tuple tS
in SchaseΣI

(D) such that tR[XR] = tS [XS ]. But this is a contradiction, since these
are exactly the conditions for the application of the chase rule for IDs, that has
already been applied during the construction of chaseΣI (D). As for FDs, suppose
that two tuples t, t′ in chaseΣ(D) violate a FD of the form R : X → Y, i.e.
t[X] = t′[X] and t[Y] �= t′[Y]; this is the condition of application of the FD chase
rule, therefore we have a contradiction, since the FD chase rule must have already
been applied during the construction of the chase. This proves the claim.

We remind the reader of the following definition (see e.g. [2]): a set ΣI of IDs
is cyclic if in ΣI there is a sequence of dependencies Ri[Xi] ⊆ Si[Yi], with
1 ≤ i ≤ n, where Ri+1 = Si for 1 ≤ i ≤ n, and R1 = Sn. Otherwise, ΣI is said
to be acyclic. It is easy to see that chaseΣ(D) can be infinite only if the set if
IDs in Σ is cyclic.

Associated to the chase, we have a chase graph that encodes the process of
construction of the chase itself.

Definition 3. Given a database D, and a set of inclusion dependencies ΣI, let
chaseΣI (D) be the (possibly infinite) chase of D according to ΣI . The chase
graph associated to chaseΣI (D) is a graph defined as follows.

(i) The set of the nodes is the set of facts in chaseΣI (D).
(ii) The edges are labelled with IDs in ΣI .
(iii) Given two facts f1, f2 of chaseΣI (D), the arc (f1, f2) is in the graph if
f2 is added to the chase in an application of the chase rule for a dependency
σ ∈ ΣI ; in this case, the arc (f1, f2) is labelled by σ.

(iv) If there is a fact f1 = R(c1, . . . , cn) and an ID of the form R[YR] ⊆
S[YS ], but the required fact f2 is already in the chase, then there is a special
arc from f1 to f2, that we will call cross-arc according to the notation of [11].

Notice that every chase graph, if we exclude the cross-arcs, is a forest of trees
whose roots are the facts in the original database D.

Example 2. Consider the relations R and S, both of arity 2, and a set of IDs
Σ = {σ1, σ2, σ3}, with:

σ1 : R[1] ⊆ S[1]
σ2 : S[2] ⊆ R[1]
σ3 : S[2] ⊆ S[1]
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Let D be a database containing the facts R(a, b) and R(a, c). The chase graph
associated to chaseΣ(D) is shown in Figure 2, where the newly introduced values
are αi (i = 1, 2, . . .) and the dashed arcs are cross-arcs.

The chase is a powerful tool for reasoning about dependencies [13, 14, 16, 11].
In the next following we will show how the chase can be used in testing the
containment of queries under database dependencies.

· · ·

σ3σ2

· · ·· · ·

σ2

S(α1, α2) R(α1, α3)

σ3

σ2σ3

σ1 σ1

R(a, c)R(a, b)

level 0

σ1

R(α2, α4)

S(a, α1)

S(α2, α5)

Fig. 2. Chase graph for Example 2

Testing query containment with
the chase. In their milestone paper
about query containment under func-
tional and inclusion dependencies [11],
Johnson and Klug proved that, under
FDs and IDs, a containment Q1 ⊆Σ Q2
between two conjunctive queries can be
tested by verifying whether there is a
query homomorphism from Q2 to the
chase of the database obtained by “freez-
ing” Q2, i.e. turning its conjuncts into
facts. A homomorphism from a conjunc-
tive query Q to a database D is a func-
tion f from the variables and constants
appearing in a query Q to Γ ∪ Γf such
that every conjunct R(X1, . . . , Xn) (where every Xi is a variable or constant)
is mapped to a fact of the form R(c1, . . . , cn) in D, where ci = f(Xi) for all
i ∈ {1, . . . , n}.

Definition 4. Consider a a conjunctive query Q; the frozen query Q, denoted
fr(Q), is a pair 〈fr (head(Q)), fr(bodyQ)〉, where 〈fr (head(Q)) is a fact and
fr(bodyQ)〉 is a database, that is obtained by choosing a homomorphism μ : Γ ∪
Var(Q) → Γ ∪ Γf such that μ sends each constant of Γ into itself, and each
variable in Var(Q) to a fresh constant in Γf . Each conjunct in body(Q) is sent
by μ to a fact in fr (body(Q)), and head(Q) to fr(head(Q)). For technical rea-
sons, the fresh constants to which μ maps the DVs must precede in lexicographic
order all the (fresh) constants to which μ maps the NDVs.

Theorem 2 (see [11]). Let Q1, Q2 be conjunctive queries, and Σ a set of FDs
and IDs. Then Q1 ⊆Σ Q2 if and only if there is a homomorphism that sends
each constant of Γ to itself, and maps body(Q2) to chaseΣ(fr(body(Q1))) and
head(Q2) to fr(head(Q1)).

To test containment of conjunctive queries under IDs alone or key-based depen-
dencies (a special class of FDs and IDs that is more general than the combination
of key and foreign key dependencies), Johnson and Klug proved that it is suffi-
cient to consider a finite portion of the chase; this leads to the decidability of the
problem of containment, and it is also shown that the complexity of the problem
of testing containment is pspace-complete. This result was extended in [4] to a
broader class of dependencies, namely key dependencies and non-key-conflicting
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Fig. 3. EER schema for Example 3

inclusion dependencies (NKCIDs), in the context of query answering on incom-
plete and inconsistent databases; the NKCIDs, in fact, behave like IDs alone
because they do not interfere with KDs in the construction of the chase. In our
case we are in the presence of CDs, i.e. a special class of key dependencies and in-
clusion dependencies; IDs are not non-key-conflicting (or better key-conflicting),
therefore the decidability of query containment is yet to be proved. In the pres-
ence of CDs, the construction of the chase presents some problems, as shown in
the following example.

Example 3. Consider the EER schema shown in Figure 3, derived from that
of Example 1, and depicted in the usual graphical notation for the ER model,
where the label [1, 2] in the is-a relation between the two relationships denotes
that the components of Manages correspond, in their order, to components 1, 2
(in this order) of Works in, and the cardinality constraint (0, 1) for Employee
denotes that each instance of Employee must participate a minimum of 0 times
and a mazimum of 1 times to Works in; the cardinality constraint for the par-
ticipation of Manager to Manages is analogous. We have an additional predicate
manages/2 with respect to Example 1. Suppose we have a database, obtained by
freezing a query, with the facts manager(m) and works in(m, d). If we construct
the chase, we obtain the facts employee(m), manages(m, α1), works in(m, α1),
dept(α1), where α1 is a fresh constant. Observe that m cannot participate more
than once to works in, so we deduce α1 = d. We must therefore replace α1 with
d in the rest of the chase, including the part that has been constructed so far.

Fortunately, also in the case of CDs, a finite portion of the chase is sufficient
to test conjunctive query containment. This result can be proved analogously
to the corresponding result in [11], but now things are complicated by the fact
that an application of the FD chase rule can lead to a sequence of cascading
applications of the same rule. This affects lower levels of the chase, so that we
cannot be sure, once we stop at a certain level, whether the collapse of a pair
of facts (due to the application of the FD chase rule) in a level that is far larger
than the limit level can affect the portion of the chase we have constructed. In
other words, in principle we do not know what the first portion of the chase
actually is, before we construct the rest of the possibly infinite chase, since the
application of the FD chase rule in a far level could propagate, like a crack in a
high wall, down to the first portion.

First, we show that, after a certain number of levels, it is impossible that the
construction of the chase of a frozen query Q1 w.r.t. a set of CDs fails (see the
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FD chase rule), leading to the conclusion that Q1 is contained in all queries. We
state our result for the chase of a database.

Lemma 1. Let D be a database and Σ a set of CDs. We have that if the con-
struction of chaseΣ(D) does not fail after level W !, where W is the maximum
width of an ID in Σ (i.e. the maximum number of attributes involved in an ID),
then it does not fail in any level greater than W !.

Proof (sketch). It is easy to see that the construction of the chase may fail only
if the FD chase rule is applied between two tuples, containing only non-fresh
constants in Γ , and belonging to a relation that represent a relationship of an
EER schema; in fact, all other tuples of the same kind contain at most one
non-fresh constant. Since tuples containing only constants in Γ propagate only
through IDs that represent is-a relations between two relationships, such tuples
do not “survive” after W ! levels.

Lemma 2. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ΣI a set of CDs,
where ΣK and ΣI are sets of KDs and IDs respectively. If there exists a ho-
momorphism μ sending each constant of Γ to itself, and mapping body(Q2) to
facts of chaseΣ(fr(body(Q1))) and head(Q2) to fr(head(Q1)), then there exists
another homomorphism μ′ having the same properties, that sends all the facts
of body(Q2) to facts in chaseΣ(fr(body(Q1))) appearing at levels that are lower
than |Q2| · |Σ| · W !, where |Q2| is the number of conjuncts in Q2, |Σ| is the
number of dependencies in Σ, and W is the maximum width of an ID in Σ.

Proof (sketch). The proof of this theorem goes very much like the proof of the
analogous result for the case of IDs alone or key-based dependencies [11]: all the
results hold also in the presence of CDs. We do not provide the details here, due
to the fact that the proof is long and rather complicated. The only difference
between our result and the result of [11] is the term W !, that is replaced by
(W +1)W in the result of that paper. This is because W ! is the maximum length
of a path in the chase graph made up of ordinary arcs only, starting from a fact
θ, and such that there are no two equivalent facts in the path, where two facts
θ1, θ2 are said to be equivalent if: (i) they have the incoming arc labelled with
the same ID; (ii) for every attribute Ai, if either θ1[Ai] or θ2[Ai] appears in θ,
it holds θ1[Ai] = θ2[Ai]. In our case, differently from [11], the maximum length
of such a path is W !.

We now come to the decidability of query containment. Our plan of attack
consists in showing a principle of locality of KDs in the chase: in practice, we
show that collapses due to the application of the FD chase rule propagate their
effects at most δ levels back in the chase, where δ is a value depending on
the dependencies. Therefore, in order to test whether Q1 ⊆Σ Q2, we need to
construct the chase until level �JK = |Q2| · |Σ| ·W !, and continue for extra δ
levels; after that point, no changes will occur in the first �JK levels of the chase.
We first need an auxiliary lemma.
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Lemma 3. Let D be a database instance (over Γ and Γf ) for a relational
schema R, and Σ = ΣK ∪ ΣI a set of CDs, where ΣK and ΣI are sets of
KDs and IDs respectively. Consider a fact θ containing a symbol c ∈ (Γ ∪ Γf ),
at level � in chaseΣ(D); then, c does not appear in any fact at levels greater than
� + |Σ| ·W ! = � + δ.

Proof. First, observe that only the IDs encoding is-a arcs between relationships
are non-unary in Σ. Clearly, c can appear for |Σ| more levels, but also for
more, if there are cyclic non-unary IDs. If we consider a path of ordinary arcs
(non-cross-arcs) corresponding to the application of the ID chase rule w.r.t. IDs
σ1, . . . , σk that form a cycle, if σi is unary for some i ∈ {1, . . . , k}, c cannot
survive for more than |Σ| levels after �; instead, if σ1, . . . , σk are all non-unary,
and therefore forced to have the same width U , the cycle of IDs formed by
σ1, . . . , σk can be traversed (in the application of the ID chase rule) U ! times,
where all the generated facts are obtained by permutating the values in the U
positions of θ. After that, no further propagation of c is possible. Since k is
limited by |Σ| and U by W , the thesis follows.

Lemma 4. Let D be a database instance (over Γ and Γf ) for a relational
schema R, and Σ = ΣK ∪ ΣI a set of CDs, where ΣK and ΣI are sets of
KDs and IDs respectively. Suppose that, during the construction of chaseΣ(D),
we apply the FD chase rule to two facts θ1, θ2 in chaseΣ(D); then all the appli-
cations of the FD chase rule that are done in consequence of the first one involve
facts that are at level greater or equal than max(level(θ1), level (θ2)) − δ, where
δ = |Σ| ·W !.

θc �c

�01

�02

�1

θ02

θ1

�2

σ

θ01

Ψ
Φ θ2

Fig. 4. Figure for the proof of Lemma 4

Proof. Let key(R) = {k} be a
KD in ΣK , θ1 =R(α1, . . . , αk−1,
c, αk+1, . . . , αn), and θ2 = R
(β1, . . . , βk−1, c, βk+1, . . . , βn).
We refer the reader to Figure 4,
that shows the chase graph for
chaseΣ(D) (higher levels are
below in the figure). We assume
that α1, . . . , αn, β1, . . . , βn are
fresh constants in Γf (at the
end of the proof we shall con-
sider the case where one of the
two facts θ1, θ2 is in D). In
the following we shall not con-
sider IDs and FDs regarding at-
tributes, since they are acyclic
and have a marginal role in the
construction of the chase. Also,
we assume �1 = level (θ1) ≥ level (θ2) = �2; this is done without loss of generality,
since the other case is symmetric to this one. Since θ1 and θ2 agree on the key,
we need to turn αi into βi for all i such that 1 ≤ i ≤ n and i �= k; in fact, since
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θ2 was generated earlier that θ1, its fresh constants have higher lexicographic
rank; as a consequence, θ1 is turned into θ2, so that the arc incoming into θ1
becomes a cross-arc incoming into θ2, labelled with the ID σ in Figure 4. Since
c appears both in θ1 and θ2, it must have appeared for the first time al level �c,
in the fact θc; then it propagated in the chase to θ1 and θ2.

Let θ01 and θ02 be the facts where the αi and βi appear for the first time,
respectively; notice that in general, when fresh constants appear for the first
time at levels greater than 0, they occupy all positions in a fact, except one,
that contains a constant appearing at the previous level. In the figure, the level
�01 of θ01 is lower than the level �02 of θ02: the other case is treated analogously,
since it is symmetrical. The shaded subgraphs Φ, Ψ in Figure 4 are the subtrees
(considering ordinary arcs only) rooted in θ01 and θ02 repectively. Therefore: in Φ
we find constants α1, . . . , αk−1, c, αk+1, . . . , αn, plus fresh constants introduced
in Φ for the first time; in Ψ we find constants β1, . . . , βk−1, c, βk+1, . . . , βn, plus
fresh constants introduced in Ψ for the first time; moreover, α1 and βi appear
only in Φ, Ψ respectively. By Lemma 3, �1 − �01 ≤ δ, where �1 = level (θ1);
therefore, changing αi into β1 (1 ≤ i ≤ n and i �= k) affects portions of the chase
that are less than δ levels far from θ1; moreover, applications of the FD chase
rule on facts in Φ ∪ Ψ will clearly affect only facts in Φ ∪ Ψ itself. Finally, in
the case where θ01 (or θ02) is in D, Lemma 3 show immediately that the thesis
holds. This proves the claim.

Lemma 5. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ΣI a set of CDs,
where ΣK and ΣI are sets of KDs and IDs respectively. If there exists a ho-
momorphism μ sending each constant of Γ to itself, and mapping body(Q2) to
facts of chaseΣ(fr(body(Q1))) and head(Q2) to fr(head(Q1)), then there exists
another homomorphism μ′ having the same properties, that sends all the facts of
body(Q2) to facts of the database obtained by constructing the first (|Q2|+ 1) · δ
levels of chaseΣ(fr (body(Q1))), where δ = |Σ| ·W !, according to the given pro-
cedure of applications of the chase rules (Definition 2).

Proof. The proof descends straightforwardly from Lemmata 2 and 4, as discussed
above.

The following theorem is a direct consequence of the previous lemma.

Theorem 3. Let Q1, Q2 be two conjunctive queries, Σ = ΣK ∪ ΣI a set of
CDs, Where ΣK and ΣI are sets of KDs and IDs respectively. Checking whether
Q1 ⊆Σ Q2 is decidable, and can be done by constructing the first (|Q2|+1)·|Σ|·W !
levels of chaseΣ(fr(body(Q1))), and checking for the existence of a homomor-
phism μ′ as in Theorem 5.

As for the complexity of the algorithm for checking a containment Q1 ⊆Σ Q2
in case Σ is a set of CDs, we first focus on the complexity w.r.t. |Q1| and |Q2|
(number of atoms of Q1 and Q2 respectively); it is easy to see that our algorithm
can be run in time polynomial in |Q1|, and exponential in |Q2|. This because the
depth of our finite segment of chase does not depend on |Q1|, and it is linear in
|Q2|. The algorithm is also double exponential in W .
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The complexity w.r.t. |Q1| is especially important because, when consider-
ing the correspondence between query containment and query answering over a
knowledge base or incomplete data [1, 4], Q1 plays the role of the data, and the
complexity w.r.t. |Q1|, called data complexity, is highly relevant, since the size of
the data is usually much larger that that of the schema. Though decidability of
query containment in our case could be proved from the results in [6], our tech-
niques provides a better insight on the complexity of the problem, as discussed
in the following section.

5 Discussion

In this paper we have presented a conceptual model based on the ER model,
and we have given its semantics in terms of the relational database model with
integrity constraints. We have considered conjunctive queries expressed over con-
ceptual schemata, and we have shown that containment of such queries is decid-
able by means of an algorithm that performs better than all the known ones.

Containment of queries is a fundamental topic in database theory [7, 6, 11, 12].
[3] deals with conceptual schemata in the context of data integration, but the
cardinality constraints are more restricted than in our approach. Another work
that deals with dependencies similar to those presented here is [5], however the
is-a relation among relationships is not considered in it. Also [15] addresses the
problem of query containment using a formalism for the schema that is more
expressive than the one presented here; however, the problem here is proved to
be coNP-hard. In [6], the authors address the problem of query containment for
queries on schemata expressed in a formalism that is able to capture our EER
model; in this work it is shown that checking containment is decidable and its
complexity is exponential in the number of variables and constants of Q1 and
Q2, and double exponential in the number ov existentially quantified variables
that appear in a cycle of the tuple-graph of Q2 (we refer the reader to the paper
for further details). Since the complexity is studied by encoding the problem
in a different logic, it is not possible to analyse in detail the complexity w.r.t.
|Q1| and |Q2|, which by the technique of [6] is in general exponential. Our work
provides a more detailed analysis of the computational cost, showing a lower
complexity w.r.t. |Q1|.

The complexity results about query containment are directly applicable in
certain cases of answering queries on incomplete databases or knowledge bases,
and also in data integration under constraints; still, effective and efficient algo-
rithms are yet to be developed. As for future work, we plan to tackle the problem
of answering queries over data integration sytems where the schema is expressed
in the EER model, in a way that is similar to the one followed in [3].
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Abstract. We study rules A ⇒ B describing attribute dependencies
in tables over domains with similarity relations. A ⇒ B reads “for any
two table rows: similar values of attributes from A imply similar values
of attributes from B”. The rules generalize ordinary functional depen-
dencies in that they allow for processing of similarity of attribute val-
ues. Similarity is modeled by reflexive and symmetric fuzzy relations.
We show a system of Armstrong-like derivation rules and prove its com-
pleteness (two versions). Furthermore, we describe a non-redundant basis
of all rules which are true in a data table and present an algorithm to
compute bases.

1 Introduction and Related Work

Introduction. Rules of the form A ⇒ B where A and B are collections of at-
tributes have been studied in several areas of computer science. We are interested
in their role as describing dependencies known as functional dependencies [2, 12].
The interpretation of an ordinary functional dependence A ⇒ B in a given data
table D is the following: any two table rows in D which have the same values of
attributes from A have also the same values of attributes from B.

In a paper by 29 leading experts in database systems [1], it has been pointed
out that one of the important future topics in database research is management
of uncertainty. In particular, one should extend existing tools to allow for im-
precision. For instance, not only exact matches but also approximate matches of
data items, i.e. matches w.r.t. some underlying similarity, need to be taken into
account in the very foundations of data processing. From this point of view, it
seems necessary to extend the notion and interpretation of classical functional
dependencies so as to take into account similarity in attribute values. A nat-
ural idea is to interpret a functional dependence A ⇒ B as follows: any two
objects which have similar values of attributes from A have also similar values
of attributes from B.
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Table 1. Data table: there are no non-trivial ordinary functional dependencies but
there are approximate dependencies

dist. diam. weight moons
Mercury 57.9 4878 0.056 0
Venus 108.2 12103 0.815 0
Earth 149.6 12714 1.000 1
Mars 227.9 6787 0.107 2
Jupiter 778.3 134700 317.700 39
Saturn 1427.0 120000 95.200 30
Uranus 2870.0 50800 14.660 21
Neptune 4496.7 48600 17.230 8
Pluto 5900.0 2300 0.002 1

As an illustrative example, consider a table from Tab. 1 describing planets
of our solar system. The table contains the following attributes: distance from
sun (in thousands of kilometers), equatorial diameter (in kilometers), weight (in
weights of Earth), number of known moons ; and objects Mercury, Venus, . . . As
one can see, there are no non-trivial ordinary functional dependencies in the data
table. However, one can see that with an intuitive notion of similarity, there are
dependencies saying that similar values of some attributes imply similar values in
other attributes. For instance, similar distance from sun implies similar number
of moons. On the other hand, Uranus and Neptune serve as a counterexample
to a dependency saying that similar diameter implies similar number of moons.
Needless to say, a precise meaning the above described dependencies depends on
the definition of the similarity relations and the definition of validity of a func-
tional dependency involving similarity relations. We come back to this example
in Section 6.

One can think of many other examples of functional dependencies over do-
mains with similarity relations and there is a question of an appropriate frame-
work to put this idea into work. A feasible option is offered by fuzzy logic [11].
Suppose a domain Dy (i.e., the set of all values) of each attribute y is equipped
with a fuzzy similarity ≈y (a particular fuzzy relation assigning to any values
a, b ∈ Dy a degree a ≈y b ∈ [0, 1] to which a is similar to b). Then one may con-
sider formulas A⇒ B with A and B being fuzzy sets of attributes, and the fol-
lowing meaning of A⇒ B: for any two objects x1, x2, if the degree x1[y] ≈y x2[y]
of similarity of their y-values x1[y], x2[y] ∈ Dy is at least A(y) for each attribute
y, then for each attribute y′ the degree x1[y′] ≈y′ x2[y′] is at least B(y′). There-
fore, degrees A(y) ∈ [0, 1] and B(y) ∈ [0, 1] act as thresholds for similarities in
attribute values. It is easily seen that this approach extends the classical one.
Namely, if A and B are crisp sets, i.e. A(y) ∈ {0, 1} and B(y) ∈ {0, 1} for each
y ∈ Y , and each ≈y is an ordinary equality then the above meaning coincides
with the meaning of attribute dependencies.

In the present paper, we introduce a concept of a functional dependence and
its interpretation in data tables over domains with similarities. We present a sys-
tem of axioms (deduction rules) and show its completeness as well as its graded
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completeness. We describe non-reduntant bases of all functional dependencies
which are true in a data table and present an algorithm for their computation.

Related Work. For an overview of modeling uncertainty and imprecision in data
engineering and databases we refer to [6]. Various aspects of functional dependen-
cies over domains equipped with similarity relations have already been studied,
see e.g. [13, 14, 15], a good overview is [15]. Compared to our notion of a func-
tional dependence and its validity, neither of these approaches does allow for
using thresholds (see above). Therefore, our dependencies have more expressive
capability. For instance, we can have dependencies like “age similarity in degree
at least 0.7 and income similarity in degree at least 0.9 implies similarity in life
insurance costs in degree 0.5” which is quite reasonable rule since it captures the
possibly different influences of age and income on the conclusion concerning sim-
ilarity in life insurance costs. Furthermore, we describe bases and an algorithm
for their computation which the above-cited works did not.

2 Preliminaries

Fuzzy logic and fuzzy set theory are formal frameworks for a manipulation of a
particular form of imperfection called fuzziness (vagueness). For an introduction
to fuzzy logic we refer to [3, 9, 11]. In this section, we recall some concepts we need.

Contrary to classical logic, fuzzy logic uses a scale L of truth degrees, a
most common choice being L = [0, 1] (real unit interval) or some subchain of
[0, 1]. This enables us to consider intermediate truth degrees of propositions, e.g.
“x1 is similar to x2” has a truth degree 0.8, indicating that the proposition is
almost true. In addition to L, one has to pick an appropriate collection of logical
connectives (implication, conjunction, . . . ). A general choice covering almost
all particular structures used in applications is a complete residuated lattice
with a truth-stressing hedge (shortly, a hedge) [9], i.e. a structure L = 〈L,∧,∨,
⊗,→, ∗, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being
the least and greatest element of L, respectively; ⊗ is commutative, associative,
and a ⊗ 1 = 1 ⊗ a = a for each a ∈ L; ⊗ and → satisfy so-called adjointness:
a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L; hedge ∗ satisfies 1∗ = 1, a∗ ≤ a,
(a → b)∗ ≤ a∗ → b∗, a∗∗ = a∗. Elements a of L are called truth degrees. ⊗ and
→ are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. Hedge
∗ is a (truth function of) logical connective “very true”. The above properties
have natural logical interpretations [9].

A common choice of L is a structure with L = [0, 1] (unit interval), ∧ and
∨ being minimum and maximum. Three most important pairs of ⊗ and → are
�Lukasiewicz: a⊗b = max(a+b−1, 0), a → b = min(1−a+b, 1); Gödel (minimum):
a ⊗ b = min(a, b), a → b = 1 for a ≤ b and a → b = b for a > b; Goguen
(product): a ⊗ b = a · b, a → b = 1 for a ≤ b and a → b = b

a for a > b. Another
common choice is L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗
given by ak ⊗ al = amax(k+l−n,0) and the corresponding → given by ak → al =
amin(n−k+l,n). Such an L is called a finite �Lukasiewicz chain. Another possibility
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is a finite Gödel chain which consists of L and restrictions of Gödel operations
on [0, 1] to L. Two boundary cases of (truth-stressing) hedges are (i) identity, i.e.
a∗ = a (a ∈ L); (ii) globalization: a∗ = 1 for a = 1, and a∗ = 0 for a �= 1.

Having L, we define usual notions: an L-set (fuzzy set) A in universe U is a
mapping A : U → L, A(u) being interpreted as “the degree to which u belongs to
A”. If U = {u1, . . . , un} then A can be denoted by A = {a1/u1, . . . ,

an/un} mean-
ing that A(ui) equals ai for each i = 1, . . . , n. For brevity, we write {. . . , u, . . . }
instead of {. . . , 1/u, . . . }. Let LU denote the collection of all L-sets in U . Op-
erations with L-sets are defined in the usual way, i.e. componentwise [11]. An
L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X . Crisp L-sets can
be identified with ordinary sets. For a ∈ L and A ∈ LX , a⊗A ∈ LX is defined
by (a⊗A)(x) = a⊗A(x).

Given A, B ∈ LU , we define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u)→ B(u)

)
, (1)

which generalizes the classical subsethood relation “⊆”. S(A, B) represents a
degree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1.
As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .

A binary L-relation ≈ in U , i.e. a mapping ≈: U ×U → L, is called reflexive
if for each u ∈ U we have u ≈ u = 1; symmetric if for each u, v ∈ U we have
u ≈ v = v ≈ u; transitive if for each u, v, w ∈ U we have (u ≈ v) ⊗ (v ≈
w) ≤ (u ≈ w); L-equivalence if it is reflexive, symmetric, and transitive. We
will use reflexive and symmetric L-relations to represent similarity on domains
of attribute values.

Throughout the rest of the paper, L denotes an arbitrary complete residuated
lattice with a hedge.

3 Functional Dependencies over Domains with Similarity
Relations

3.1 Functional Dependencies and Their Validity

Suppose Y is a finite set of attributes. A (fuzzy) functional dependence (over
attributes Y ) is an expression A ⇒ B, where A, B ∈ LY are fuzzy sets of
attributes. We use also “FD” for “functional dependence”.

Functional dependencies will be evaluated in the following data tables: A
data table over domains with similarity relations is a tuple

D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉, where

– X is a non-empty set (of objects, table rows),
– Y is a non-empty finite set (of attributes, table columns),
– for each y ∈ Y , Dy is a non-empty set (of values of attribute y) and ≈y is a

binary fuzzy relation in Dy which is reflexive and symmetric (similarity),
– T is a mapping assigning to each x ∈ X and y ∈ Y a value T (x, y) ∈ Dy

(value of attribute y on object x).
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D always denotes some data table over domains with similarity relations with
its components denoted as above, A⇒ B always denotes a FD.

Remark 1. (1) D can be seen as a table with rows and columns corresponding to
x ∈ X and y ∈ Y , respectively, and with table entries containing values T (x, y) ∈
Dy. Moreover, each domain Dy is equipped with an additional information about
similarity of elements from Dy.

(2) Consider L = {0, 1} (case of classical logic). If each ≈y is an equality (i.e.
a ≈y b = 1 iff a = b), then D can be identified with what is called a relation on
relation scheme Y with domains Dy (y ∈ Y ) [12].

(3) We may assume that attributes from Y are numbered, i.e. Y = {y1, . . . ,
yn}. Then, for x ∈ X and Z ⊆ Y , x[Z] denotes a tuple of values T (x, y) for
y ∈ Z. For instance, if Y = {y1, . . . , y10} and Z = {y2, y3, y10}, then x[Z] =
〈T (x, y2), T (x, y3), T (x, y10)〉. Moreover, we denote x[{y}] by x[y] and identify it
with T (x, y).

We want to consider A ⇒ B true in D if “for any two objects x1, x2 ∈ X : if
x1 and x2 have similar values on attributes from A then x1 and x2 have similar
values on attributes from B”. In general, we will consider a degree a ∈ L to which
A ⇒ B is true in D, with a = 1 meaning that A ⇒ B is (fully) true. Define
first for a given D, objects x1, x2 ∈ X , and a fuzzy set C ∈ LY of attributes a
degree x1(C) ≈ x2(C) to which x1 and x2 have similar values on attributes from
C (agree on attributes from C) by

x1(C) ≈ x2(C) =
∧

y∈Y

(
C(y)→ (x1[y] ≈y x2[y])

)
. (2)

That is, x1(C) ≈ x2(C) is truth degree of “for each attribute y ∈ Y : if y belongs
to C then the value x1[y] of x1 on y is similar to the value x2[y] of x2 on y”. Then,
validity of a FD is captured by the following definition. A degree ||A⇒ B||D to
which A ⇒ B is true in D is defined by

||A ⇒ B||D =
∧

x1,x2∈X

(
(x1(A) ≈ x2(A))∗ → (x1(B) ≈ x2(B))

)
. (3)

Remark 2. (1) ||A⇒ B||D is a truth degree of “for any objects x1, x2 ∈ X : if it
is true that x1 and x2 have similar values on attributes from A then x1 and x2
have similar values on attributes from B”.

(2) If A and B are crisp sets (i.e. A(y) ∈ {0, 1} and B(y) ∈ {0, 1} for each
y ∈ Y ) then A and B may be considered as ordinary sets and A ⇒ B may be
seen as an ordinary FD. Then, if ≈y is a crisp equality (i.e., a ≈y b = 1 iff a = b
and a ≈y b = 0 iff a �= b), x1(A) ≈ x2(A) = 1 iff x1[A] = x2[A] and similarly
for B. Therefore, ||A ⇒ B||D = 1 iff A ⇒ B is true in D in the usual sense of
validity of ordinary FDs.

(3) We now show that for a FD A ⇒ B, degrees A(y) ∈ L and B(y) ∈ L act
as thresholds. This is best seen when ∗ is globalization, i.e. 1∗ = 1 and a∗ = 0
for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1 (see [9]), we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a �≤ b.
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Therefore, ||A ⇒ B||D = 1 means that proposition “for any objects x1, x2 ∈ X :
if for each attribute y ∈ Y , A(y) ≤ (x1[y] ≈y x2[y]), then for each attribute
y′ ∈ Y , B(y′) ≤ (x1[y′] ≈y x2[y′])” is (fully) true. As a particular example, if
A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0 for y �∈ YA) B(y) = b for y ∈ YB ⊆ Y
(and B(y) = 0 for y �∈ YB), the proposition becomes “for any objects x1, x2 ∈ X :
if for each attribute y ∈ YA, x1[y] is similar to x2[y] in degree at least a, then
for each attribute y′ ∈ YB , x1[y′] is similar to x2[y′] in degree at least b”. That
is, having A and B fuzzy sets allows for a rich expressibility of relationships
between attributes which is why we want A and B to be fuzzy sets in general.

3.2 Semantic Entailment

We are going to define the meaning of “A ⇒ B follows from a collection T of
FDs”. Since FDs may be valid to various degrees, we assume that, in general, T
encompasses FDs with their degrees of validity. That is, we assume that T is a
fuzzy set of FDs and that T (C ⇒ D), i.e. degree to which C ⇒ D belongs to
T , is a degree of validity of C ⇒ D, cf. also [8]. This covers the case when T is
crisp (i.e. T (C ⇒ D) = 1 or T (C ⇒ D) = 0), i.e. a given FD either is assumed
valid or not; then we write A ⇒ B ∈ T if T (A ⇒ B) = 1 and A ⇒ B �∈ T if
T (A⇒ B) = 0.

For a fuzzy set T of fuzzy FDs, the set Mod(T ) of all models of T is defined by

Mod(T ) = {D | for each A, B ∈ LY : T (A⇒ B) ≤ ||A ⇒ B||D},

where D stands for an arbitrary data table over domains with similarities. That
is, D ∈Mod(T ) means that for each FD A⇒ B, a degree to which A ⇒ B holds
in D is higher than or at least equal to a degree T (A ⇒ B) prescribed by T .
Particularly, for a crisp T , Mod(T )={D | for each A⇒ B ∈ T : ||A⇒ B||D = 1}.

A degree ||A⇒ B||T ∈ L to which A⇒ B semantically follows from a fuzzy
set T of functional dependencies is defined by

||A⇒ B||T =
∧

D∈Mod(T ) ||A ⇒ B||D.

That is, ||A⇒ B||T is a truth degree of “A⇒ B is true in all models of T ”.

Lemma 1. For A, B ∈ LY , a data table D over domains with similarities, and
c ∈ L we have

c ≤ ||A ⇒ B||D iff ||A⇒ c⊗B||D = 1. (4)

Proof. Sketch: it can be shown that c ≤ ||A ⇒ B||D iff c → ||A ⇒ B||D = 1 iff
||A⇒ c⊗B||D = 1.

Lemma 1 enables us to reduce the concept of a model of a fuzzy set of FDs to the
concept of a model of an ordinary set of FDs, and to reduce the concept of se-
mantic entailment from a fuzzy set of FDs to the concept of semantic entailment
from an ordinary set of FDs:
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Lemma 2. Let T be a fuzzy set of FDs and A, B ∈ LY . Define an ordinary set
c(T ) of FDs by

c(T ) = {A⇒ T (A⇒ B)⊗B |A, B ∈ LY and T (A⇒ B)⊗B �= ∅}. (5)

Then we have

Mod(T ) = Mod(c(T )), (6)
||A⇒ B||T = ||A ⇒ B||c(T ), (7)

and thus

||A⇒ B||T =
∨
{c ∈ L | ||A ⇒ c⊗B||T = 1}, (8)

||A⇒ B||T =
∨
{c ∈ L | ||A ⇒ c⊗B||c(T ) = 1}. (9)

Proof. Using definitions and Lemma 1.

Note that due to (9), the concept of a degree of entailment from a fuzzy set of
FDs can be reduced to entailment in degree 1 from a set of FDs.

4 Complete System of Rules for Functional Dependencies

We now introduce an axiomatic system for reasoning with FDs and prove its
completeness in two versions. First, we prove that a FD A⇒ B is provable from
an ordinary set T of FDs iff A⇒ B semantically follows from T in degree 1 (com-
pleteness). Second, we introduce a concept of a degree |A⇒ B|T of provability of
a FD A⇒ B from a fuzzy set T of FDs and show that |A⇒ B|T = ||A⇒ B||T
(graded completeness, see [8]).

4.1 Axioms and Some Derived Rules

Our axiomatic system consists of the following deduction rules.

(Ax) infer A ∪B ⇒ A,
(Cut) from A⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A⇒ B infer c∗ ⊗A⇒ c∗ ⊗B

for each A, B, C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood as
usual deduction rules: having FDs which are of the form of FDs in the input part
(the part preceding “infer”) of a rule, a rule allows us to infer the corresponding
FD in the output part (the part following “infer”) of a rule.

Remark 3. (1) Rules (Ax) and (Cut) are taken from [10]. A difference from [10]
is that A, B, C, D are fuzzy sets in (Ax) and (Cut) while in [10], A, B, C, D are
ordinary sets.

(2) Rule (Mul) is a new rule in our fuzzy setting.

A FD A⇒ B is called provable from a set T of FDs, written T ) A⇒ B, if there
is a sequence ϕ1, . . . , ϕn of FDs such that ϕn is A⇒ B and for each ϕi we either
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have ϕi ∈ T or ϕi is inferred (in one step) from some of the preceding FDs (i.e.,
ϕ1, . . . , ϕi−1) using some deduction rule (Ax)–(Mul). A deduction rule “from
ϕ1, . . . , ϕn infer ϕ” (ϕi, ϕ are FDs) is said to be derivable from (Ax)–(Mul) if
{ϕ1, . . . , ϕn} ) ϕ.

Lemma 3. If “from ϕ1, . . . , ϕn infer ϕ” is a rule derivable from the ordinary
Armstrong axioms (see [12]) then replacing symbols of sets by symbols of fuzzy
sets, the resulting rule is derivable from (Ax) and (Cut).

Proof. It follows from [10] that each deduction rule derivable from the ordinary
Armstrong axioms is derivable from (Axc) and (Cutc) where (Axc) and (Cutc)
result from (Ax) and (Cut) by replacing fuzzy sets by ordinary sets. Now, observe
that replacing ordinary sets with fuzzy sets in any proof from (Axc) and (Cutc),
we get a proof from (Ax) and (Cut).

Remark 4. Lemma 3 shows that, for instance, the following deduction rules are
derivable from (Ax) and (Cut):

(Ref) infer A⇒ A,
(Wea) from A⇒ B infer A ∪ C ⇒ B,
(Add) from A⇒ B and A ⇒ C infer A ⇒ B ∪ C,
(Pro) from A⇒ B ∪C infer A⇒ B,
(Tra) from A⇒ B and B ⇒ C infer A⇒ C,

for each A, B, C, D ∈ LY .

4.2 Completeness

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” is said to be sound if

Mod({ϕ1, . . . , ϕn}) ⊆Mod({ϕ}),

i.e. if each model of all ϕ1, . . . , ϕn is also a model of ϕ.

Lemma 4. Each of the rules (Ax)–(Mul) is sound.

Proof. Omitted due to lack of space (proof is straightforward from definitions).

Let T be a set of FDs. T is called syntactically closed if T ) A ⇒ B iff A ⇒
B ∈ T , i.e. if T = {A ⇒ B |T ) A ⇒ B}. T is called semantically closed if
||A⇒ B||T = 1 iff A ⇒ B ∈ T , i.e. if T = {A⇒ B | ||A⇒ B||T = 1}.

Lemma 5. Let T be a set of FDs. If T is semantically closed then T is syntac-
tically closed.

Proof. Sketch: First it can be shown that a set T of FDs is syntactically closed iff
we have: A∪B ⇒ A ∈ T ; if A⇒ B ∈ T and B∪C ⇒ D ∈ T then A∪C ⇒ D ∈ T ;
if A ⇒ B ∈ T then c∗ ⊗A ⇒ c∗ ⊗B ∈ T , for each A, B, C, D ∈ LY , and c ∈ L.
These conditions are satisfied for if “from ϕ1, . . . , ϕn infer ϕ” is one of (Ax)–
(Mul), then if ϕ1, . . . ϕn ∈ T , we have Mod(T ) ⊆ Mod({ϕ1, . . . ϕn}) ⊆ Mod({ϕ})
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by soundness of (Ax)–(Mul). This says each model of T is a model of ϕ, i.e.
||ϕ||T = 1. Since T is semantically closed, i.e. T = {A ⇒ B | ||A ⇒ B||T = 1},
we get ϕ ∈ T .

Lemma 6. Let T be a set of FDs, let both Y and L be finite. If T is syntactically
closed then T is semantically closed.

Proof. Sketch: Let T be syntactically closed. In order to show that T is seman-
tically closed, it suffices to show {A ⇒ B | ||A ⇒ B||T = 1} ⊆ T . We prove this
by showing that if A ⇒ B �∈ T then A ⇒ B �∈ {A ⇒ B | ||A ⇒ B||T = 1}. By
Lemma 4, since T is syntactically closed, it is closed under all of the rules which
result from Armstrong axioms (and thus also their consequences) by replacing
sets with fuzzy sets. Let thus A ⇒ B �∈ T . To see A ⇒ B �∈ {A ⇒ B | ||A ⇒
B||T = 1}, we show that there is D ∈ Mod(T ) which is not a model of A ⇒ B.
For this purpose, let first A+ be the largest fuzzy set C such that A ⇒ C ∈ T .
A+ exists. Namely, V = {C |A ⇒ C ∈ T } is non-empty since A ⇒ A ∈ T by
(Ref), V is finite by finiteness of Y and L, and for A ⇒ C1, . . . , A ⇒ Cn ∈ T ,
we have A ⇒

⋃n
i=1 Ci ∈ T by a repeated use of (Add). Now, take a data ta-

ble D with X = {x1, x2} such that for y ∈ Y we have: if A+(y) = 1 then
Dy = {a}, T (x1, y) = T (x2, y) = a, a ≈y a = 1; if A+(y) �= 1 then Dy = {a, b},
T (x1, y) = a, T (x2, y) = b, a ≈y a = b ≈y b = 1, a ≈y b = b ≈y a = A+(y).
Then for each y ∈ Y , ≈y is reflexive and symmetric (and even transitive).

Now, it can be shown that D is a model of T but not of A ⇒ B (details
omitted due to lack of space).

We thus have completeness of (Ax)–(Mul).

Theorem 1 (completeness). Let L and Y be finite. Let T be a set of FDs.
Then

T ) A⇒ B iff ||A⇒ B||T = 1.

Proof. Sketch: Denote by syn(T ) the least syntactically closed set of FDs which
contains T . It can be shown that syn(T ) = {A⇒ B |T ) A⇒ B}. Furthermore,
denote by sem(T ) the least semantically closed set of FDs which contains T . It
can be shown that sem(T ) = {A ⇒ B | ||A ⇒ B||T = 1}. To prove the claim,
we need to show syn(T ) = sem(T ). As syn(T ) is syntactically closed, it is also
semantically closed by Lemma 6 which means sem(syn(T )) ⊆ syn(T ). Therefore,
by T ⊆ syn(T ) we get

sem(T ) ⊆ sem(syn(T )) ⊆ syn(T ).

In a similar manner we get syn(T ) ⊆ sem(T ), showing syn(T ) = sem(T ). The
proof is complete.

4.3 Graded Completeness

Theorem 1 says that for an ordinary set T and a FD A⇒ B, A⇒ B follows from
T in degree 1 iff A ⇒ B is provable from T . A question is whether for a fuzzy
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set T , a degree to which A ⇒ B follows from T can be somehow approximated
using a suitable notion of a proof [8, 9]. In this section, we will see that this is
possible, i.e. that (Ax)–(Mul) obey even completeness in degrees.

For a fuzzy set T of FDs and for A ⇒ B define a degree |A ⇒ B|T ∈ L to
which A ⇒ B is provable from T by

|A⇒ B|T =
∨
{c ∈ L | c(T ) ) A⇒ c⊗B}, (10)

where c(T ) is defined by (5). The following theorem shows that the concept of
a degree of provability coincides with that of a degree of semantic entailment.

Theorem 2 (graded completeness). Let L and Y be finite. Then for every
fuzzy set T of fuzzy attribute implications and A ⇒ B we have |A ⇒ B|T =
||A⇒ B||T .

Proof. Consequence of Lemma 2 and Theorem 1.

5 Computing Non-redundant Bases of All True
Functional Dependencies

In the previous sections, we showed that semantic entailment from sets of
functional dependencies can be characterized syntactically (by a suitably de-
fined notion of provability / provability degree), i.e. we showed a completeness
of (Ax)–(Mul). In knowledge engineering, completeness is used still in another
sense: “complete” means “fully describing all dependencies which are true in
a given data table / model”. Therefore, call a set T of functional dependencies
complete in D if

||A⇒ B||T = ||A ⇒ B||D (11)

for each A ⇒ B (degree to which A ⇒ B semantically follows from T equals
degree to which A ⇒ B is true in D). Thus, a set T which is complete in
D conveys all information about dependencies in D via the concept of semantic
entailment. Moreover, if T is complete in D and no proper subset of T is complete
in D, we call T a non-redundant basis of D. In other words, a non-redundant
basis T is a complete set from which one cannot remove any A⇒ B ∈ T without
losing completeness. From this point of view, we are interested in finding non-
redundant bases because they are basically “the minimal sets of FDs conveying
the maximal information about D”.

Note if T is complete w.r.t. D, it follows immediately from Theorem 1 and
the definition of completeness w.r.t. D that an arbitrary FD A ⇒ B can be
proved from T using (Ax)–(Mul) iff A ⇒ B is true in D in degree 1.

In the sequel we show a way to compute a non-redundant basis of any D.
Since the proofs are technically involved, we omit them due to lack of space.

Given an L-set B of attributes, we define a binary L-relation Eq(B) on X
(rows of D) as follows

(Eq(B))(x, x′) = x(B) ≈ x′(B). (12)
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Eq(B) is a binary L-relation indicating similarity of table rows on attributes
from B, cf. (2). For any binary L-relation Sim on X we define an L-set At(Sim)
of attributes by

(At(Sim))(y) =
∧

x,x′(Sim(x, x′)→ (x[y] ≈y x′[y])). (13)

If Sim is interpreted as a similarity relation, (At(Sim))(y) is a truth degree
of “any table rows which are Sim-similar are also Sim-similar on the value of
attribute y”. Finally, we define an operator C: LY → LY (i.e., C is an operator
on L-sets of attributes) as follows

C(B) = At((Eq(B))∗). (14)

In words, (C(B))(y) is a truth degree of proposition: “any table rows which are
(very) similar on attributes from B are also similar on the value of attribute y”.
It can be shown that Eq, At, and C given by (12), (13), and (14), respectively,
have the following properties (for the notions involved, see e.g. [7]):

Theorem 3. Eq and At form a Galois connection. C is a closure operator. #$

It can be shown that the set T = {B ⇒ C(B) |B ∈ LY } of functional depen-
dencies is complete in D. However, T is not interesting since it is too large and
redundant. Nevertheless, T contains non-redundant bases which are based on
the following concept.

For any M ∈ LY (i.e., M is an fuzzy set of attributes) define a data table
DM = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉 where

– X = {x, x′},
– for y ∈ Y , if M(y) = 1 then Dy = {a}, a ≈y a = 1, T (x, y) = a, and

T (x′, y) = a,
– for y ∈ Y , if M(y) �= 1 then Dy = {a, b}, a ≈y a = b ≈y b = 1, a ≈y b =

b ≈y a = M(y), T (x, y) = a, and T (x′, y) = b.

Given a data table D over domains with similarities, P ⊆ LY (a system of fuzzy
sets of attributes) is called a system of pseudo-intents of D if for each P ∈ LY

we have:

P ∈ P iff P �= C(P ) and ||Q ⇒ C(Q)||DP = 1
for each Q ∈ P with Q �= P .

The following assertion says that in order to get a non-redundant basis it
suffices to pick from {B ⇒ C(B) |B ∈ LY } only those FDs where B’s belong to
a system of pseudo-intents:

Theorem 4. Let D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉 be a data table over do-
mains with similarities, P be a system of pseudo-intents of D. Then T = {P ⇒
C(P ) |P ∈ P} is a non-redundant basis of D. #$

We now show a way to compute a system of pseudo-intents in an efficient way.
For brevity, we discuss only particular case for a hedge ∗ being globalization, i.e.
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a∗ = 1 for a = 1 and a∗ = 0 for a �= 1. First, if ∗ is globalization then C can be
described as follows

(C(B))(y) =
∧
{x[y] ≈y x′[y] | x < x′, and
for any y′ ∈ Y : B(y′) ≤ x[y′] ≈y x′[y′]}.

Furthermore, define an operator clT ∗ : LY → LY (operator on fuzzy sets of
attributes) by putting for each Z ∈ LY :

ZT ∗
= Z ∪

⋃
{B ⊗ S(A, Z)∗ |A ⇒ B ∈ T and A �= Z},

ZT ∗
n =

{
Z if n = 0,

(ZT ∗
n−1)T ∗

if n ≥ 1,

clT ∗(Z) =
⋃∞

n=0 ZT ∗
n .

The existence and uniqueness of P is characterized by the following assertion.

Theorem 5. Let L be a finite linearly ordered residuated lattice with global-
ization, D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉 be a data table over domains with
similarities. Then

(i) there is a unique system P of pseudo-intents of D;
(ii) for T = {P ⇒ C(P ) |P ∈ P}, clT ∗ is a closure operator and

P ∪ {C(M) |M ∈ LY } is the set of all its fixpoints. #$

Hence, in case of globalization and finite linearly ordered structure of truth
degrees, one can find P as a subset of fixpoints of a closure operator. This can
be done with polynomial time delay by the following algorithm (inspired by
Ganter’s NextClosure algorithm [7]):

Algorithm 1.
Input: D (data table over dom. with similarity relations).
Output: P (system of pseudo-intents).

B := ∅
if B �= C(B): add B to P
while B �= Y :

T := {P ⇒ C(P ) |P ∈ P}
B := B+ (B+ is lectically smallest fixed point of clT∗

which is a successor of B)
if B �= C(B): add B to P

The efficiency of the previous algorithm depends on computation of clT ∗(Z). A
straightforward method to compute clT ∗(Z) leads to an algorithm similar to the
CLOSURE algorithm known from database systems [12]. An improved version
of CLOSURE, also known as LINCLOSURE [12], can also be adopted in our
setting. This and related topics will be discussed in a forthcoming paper.
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6 Illustrative Examples

Consider again Tab. 1. To get a data table D = 〈X, Y, {〈Dy,≈y〉 | y ∈ Y }, T 〉
over domains with similarity relations, denote by X and Y the sets of planets
and their attributes, respectively, put Dy = [0,∞) for each y ∈ Y , and consider
Fig. 1. Fig. 1 depicts similarities on the domains Dy. The similarities ≈y on
domains Dy can be described as follows: As a structure of truth degrees, take a
real unit interval [0, 1] equipped with �Lukasiewicz operations and globalization,
and denote by Eb

a a fuzzy set in [0,∞) defined by

Eb
a(x) =

⎧⎨
⎩

1 if x < a,
b−x
b−a if x ≥ a and x ≤ b,

0 otherwise.

Eb
a expresses that if the distance between two reals drops below a, then the reals

are indistinguishable (with respect to Eb
a); if the distance exceeds b, the reals

are fully distinct (with respect to Eb
a); reals with distances between a and b are

given proportional truth degrees between 1 and 0. Thus, for any real numbers
x1 and x2 we can define their Eb

a-similarity degree to be Eb
a(|x1 − x2|), i.e. the

degree to which |x1 − x2| belongs to Eb
a. This says that two objects are similar

to a degree to which is it true that the objects are “close”. Now, the curves
depicted in Fig. 1 correspond to similarities defined as follows:

x1 ≈s x2 = E500
50 (|x1 − x2|), x1 ≈d x2 = E20000

5000 (|x1 − x2|),
x1 ≈w x2 = E10

1 (|x1 − x2|), x1 ≈m x2 = E5
1(|x1 − x2|),

where s ∈ Y denotes distance from sun, d ∈ Y denotes diameter, w ∈ Y denotes
weight, and m ∈ Y denotes number of moons. For instance, if x1 denotes Earth
and x2 denotes Mars then “x1[m] ≈m x2[m] = 1” (i.e., proposition “Earth and
Mars have similar number of moons” is fully true), “x1[s] ≈m x2[s]

.= 0.93” (i.e.,
proposition “Earth and Mars have similar distance from sun” is true in degree
0.93), etc. Note that “being similar” is subjective and that we can replace the
above similarities by other ones.

For technical reasons, we round the exact values of L = [0, 1] from ≈y (y ∈ Y )
down to values of L = {0, 0.1, 0.2, . . . , 0.9, 1}. This way we obtain a finite linearly
ordered structure of truth degrees with globalization suitable to generate the
non-redundant basis ofD. In our case, the basis obtained by Algorithm 1 contains
the following formulas (for brevity, we do not repeat attributes from premises,

50 500

1 distance

5000 20000

1 diameter

1 10

1 weight

1 5

1 moons

Fig. 1. Similarity relations
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i.e. instead of FD A ⇒ B, we list a FD A ⇒ B′ where B′ results from B by
deleting all y with A(y) = B(y)):

{s, 0.8/d, w, m}⇒{d}, {0.9/s, 0.8/d, w, 0.7/m}⇒{m},
{0.8/s, d, w, 0.7/m}⇒{s, m}, {0.7/s, 0.8/d, w, m}⇒{0.9/s},
{0.1/s}⇒{0.7/s, 0.8/d, w, 0.7/m}, {0.7/d, 0.8/w}⇒{0.8/d},
{0.6/d, w, 0.8/m}⇒{m}, {0.6/d, 0.9/w}⇒{w, 0.7/m},
{0.4/d}⇒{0.6/d, 0.8/w}, {0.1/d}⇒{0.3/d},
{0.1/w}⇒{0.6/d, 0.8/w}, {0.1/m}⇒{0.6/d, w, 0.7/m}.

A FD A⇒ B holds in D in degree to which follows (syntactically/semantically)
from the above-mentioned FDs. One can see that all of the FDs of the basis have
a natural meaning in the data table D.

For instance, {0.1/m}⇒ {0.6/d, w, 0.7/m}, says “if the numbers of moons are
similar in degree (at least) 0.1, then the diameters are similar in degree 0.6, the
weights are fully similar, and the numbers of moons are similar in degree 0.7”.
Taking into account the underlying similarities, the formula can be read:

“if |x[m]− x[m]| ≤ 4 then |x[d] − x′[d]| ≤ 11000,
|x[w] − x′[w]| ≤ 1, and |x[m]− x′[m] ≤ 2|”,

i.e., the implication says: “if the difference between numbers of moons of x and
x′ is at most 4 then the difference between their diameters is at most 11000,
the difference between their weights is at most one weight of Earth, and the
difference between numbers of moons is at most 2.

7 Concluding Remarks

We introduced functional dependencies for data tables over domains with sim-
ilarity relations. We presented basic semantic notions (validity, entailment), a
complete axiom system, description of non-redundant bases of all functional de-
pendencies which are true in a given table, and presented an algorithm for its
computation. In addition to that, in a full version of this paper, we will show

– other complete systems of derivation rules;
– algorithm and related results for other hedges than globalization;
– complete proofs of our theorems.

Note that in a related paper [5] we show a close connection to so-called attribute
implications which makes it possible to reduce some problems considered here
to analogous problems of fuzzy attribute implications. Our future research will
focus on:

– algorithms for various problems of FDs ([12] is a good survey of problems
and algorithms in classical FDs);

– further types of data dependencies in a fuzzy setting, like multivalued de-
pendencies (cf. [6]).
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Abstract. To facilitate the XML query processing, several kinds of labeling 
schemes have been proposed. Based on the labeling schemes, the ancestor-
descendant and parent-child relationships in XML queries can be quickly de-
termined without accessing the original XML file. Recently, more researches 
are focused on how to update the labels when nodes are inserted into the XML. 
However how to process the deleted labels are not discussed previously. We 
think that the deleted labels can be processed in two different directions: (1) re-
use all the deleted labels to control the label size increasing speed and improve 
the query performance; (2) never reuse the deleted labels to query different  
versions of the XML data based on labeling schemes. In this paper, we firstly 
introduce our previous work, called QED, which can completely avoid the re-
labeling in XML updates. Secondly based on QED we propose a new algo-
rithm, called Reuse, which can reuse all the deleted labels to control the label 
size increasing speed; meanwhile the Reuse algorithm can completely avoid the 
re-labeling also. Thirdly to query different versions of the XML data, we pro-
pose another new algorithm, called NeverReuse, which is the only approach 
that never reuses any deleted labels. Extensive experimental results show that 
the algorithms proposed in this paper can control the label size increasing speed 
when reusing all the deleted labels, and is the only approach to query different 
versions of the XML data based on labeling schemes. 

1   Introduction 

XML query processing has been thoroughly studied in the past few years. Many tech-
niques, e.g. structural index [11, 12] and labeling scheme [1, 6, 18], have been pro-
posed to facilitate XML queries. The structural index is a structure summary from the 
original data which can help to traverse the hierarchy of XML, but this traversal is 
costly and the overhead of the traversal can be substantial if the path lengths are very 
long or unknown. On the other hand, The labeling scheme requires smaller storage 
space, yet it can efficiently determine the ancestor-descendant (A-D) and parent-child 
(P-C) relationships between any two elements of the XML. In this paper, we focus on 
the labeling scheme. 

Recently how to efficiently update the XML has gained a lot of attention [2, 6, 8, 
13, 14, 15, 18]. Different algorithms have been proposed to decrease the update cost, 
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however the updates are focused on how to process the labels when a node is inserted 
into the XML. How to process the deleted labels is not considered in the previous 
researches. 

We think that the deleted labels can be processed in two different directions: (1) 
reuse all the deleted labels to control the label size increasing speed; (2) never reuse 
the deleted labels to query different versions of the XML. Thus the objective of this 
paper is to propose algorithms to process the deleted labels in these two different 
directions, and meanwhile to keep the low update cost. 

The main contributions of this paper are summarized as follows: 

• We propose a new algorithm which can reuse all the deleted labels. In this way, 
we control the label size increasing speed when nodes are deleted and inserted 
in the XML data. This Reuse algorithm need not re-label the existing nodes in 
updates. 

• We propose another new algorithm that is the first one which never reuses the 
deleted labels; it is the only approach that truly maintains different XML label 
versions and supports the query of different XML versions based on labeling 
schemes. 

• We conduct several experiments which show that the Reuse algorithm can effi-
ciently control the label size increasing speed, and the NeverReuse algorithm 
can truly maintain the different label versions (the labels in different versions 
are unique). 

The rest of the paper is organized as follows. Section 2 reviews the related work. 
We introduce our previous work on how to update the XML without re-labeling the 
existing nodes and give the motivation of this paper in Section 3. In Section 4, We 
propose the algorithm to reuse all the deleted labels which can control the label size 
increasing speed in the update environment with both insertions and deletions. We 
propose another algorithm which never reuses the deleted labels and accordingly 
supports the query of different XML versions based on labeling schemes in Section 5. 
The experimental results are illustrated in Section 6, and we conclude in Section 7. 

2   Related Work 

2.1   XML Labeling Schemes 

We present three families of XML labeling schemes, namely containment [1, 9, 19, 
20], prefix [6, 13, 15] and prime [18]. 

Containment Scheme. Zhang et al [20] use a labeling scheme in which every node is 
assigned three values: “start”, “end” and “level”. For any two nodes u and v, u is an 
ancestor of v iff u.start < v.start and v.end < u.end. In other words, the interval of v is 
contained in the interval of u. Node u is a parent of node v iff u is an ancestor of v and 
v.level – u.level = 1. 

In Figure 1, “5,6,3” is a child of “2,7,2” since interval [5, 6] is contained in interval 
[2, 7] and levels 3 – 2 = 1. 
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Although the containment scheme is efficient to determine the ancestor-descendant 

relationship, the insertion of a node will lead to a re-labeling of all the ancestor nodes 
of this inserted node and all the nodes after this inserted node in document order. This 
problem may be alleviated if the interval size is increased with some values unused. 
However, large interval sizes waste a lot of numbers which causes the increase of 
storage, while small interval sizes are easy to lead to re-labeling. 

To solve the re-labeling problem, [2] uses Float-point values for the “start” and 
“end” of the interval. It seems that Float-point solves the re-labeling problem [15]. 
But in practice, the Float-point is represented in a computer with a fixed number of 
bits [2, 15]. As a result, only 18 values [2] can be inserted between any two real val-
ues since [2] uses the consecutive integer values at the initial labeling. Even if [2] 
uses values with large gaps, it still can not avoid the re-labeling due to the float-point 
precision. Therefore, using real values instead of integers does not provide any benefit 
for the node updating [15, 18]. 

When a node is inserted at a place where a node has ever been deleted, it is natural 
for the containment scheme to reuse the deleted labels to reduce the storage space. On 
the other hand, if we need to maintain different XML versions, we should not use the 
deleted labels in the previous XML versions. All the current containment labeling 
schemes can not achieve this objective since there are a finite number of values be-
tween any two values in a computer; when the finite number of values are used up, 
the current containment schemes have to reuse the deleted labels or re-label the nodes. 

 
Prefix Scheme. In the prefix labeling scheme, the label of a node is that its parent’s 
label (prefix) concatenates its own (self) label. For any two nodes u and v, u is an 
ancestor of v iff label(u) is a prefix of label(v). Node u is a parent of node v iff la-
bel(v) has no prefix when removing label(u) from the left side of label(v). 

DeweyID [15] labels the nth child of a node with an integer n, and this n should be 
concatenated to the prefix (its parent’s label) to form the complete label of this child 
node. 

OrdPath [13] is similar to DeweyID, but it only uses the odd numbers at the initial 
labeling. When the XML tree is updated, it uses the even number between two odd 
numbers to concatenate another odd number for the inserted node. OrdPath wastes 
many numbers which makes its label size larger. The query performance of OrdPath 
is worse as it needs more time to decide the prefix levels based on the odd and even 
numbers (see [7] for the experimental results). 

Cohen et al [6] uses Binary String to label the nodes (called BinaryString in this 
paper). The root of the tree is labeled with an empty string. The first child of the root 
is labeled with “0”, the second child with “10”, the third with “110”, and the fourth 

1,16,1

2,7,2 8,9,2 10,13,2 14,15,2

3,4,3 5,6,3 11,12,3 

Fig. 1. Containment scheme 
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with “1110” etc. Similarly for any node u, the first child of u is labeled with la-
bel(u).“0”, the second child of u is labeled with label(u).“10”, and the ith child with 
label(u).“1i-10”. 

When a node is inserted into the XML, DeweyID and BinaryString need to re-label 
the sibling nodes after this inserted node and the descendants of these siblings. 
Though OrdPath need not re-label the existing nodes, it increases the label size and 
decreases the query performance. 

It is natural for DeweyID and BinaryString to reuse the deleted labels, but when all 
the labels between two labels are used up, they have to re-label the existing nodes. 
Therefore they can not truly maintain the different label versions of the XML since 
they need re-labeling. OrdPath can reuse the deleted labels, but it does not consider 
how to avoid reusing the deleted labels. 

 
Prime Scheme. Wu et al [18] use Prime numbers to label XML trees. The root node 
is labeled with “1” (integer). Based on a top-down approach, each node is given a 
unique prime number (self_label) and the label of each node is the product of its par-
ent node’s label (parent_label) and its own self_label. For any two nodes u and v, u is 
an ancestor of v iff label(v) mod label(u) = 0. Node u is a parent of node v iff la-
bel(v)/self_label(v) = label(u). 

We have compared Prime with other labeling schemes in [7]. Prime has very bad 
query performance because it has very large label size and it employs the modular and 
division operations to determine the ancestor-descendant and parent-child relation-
ships. Its update performance is also much worse (see [7]). Therefore we do not dis-
cuss Prime further in this paper. 

 
QED. In [7], we propose a compact dynamic binary string approach to efficiently 
process XML updates, furthermore we propose a dynamic quaternary encoding 
(called QED) in [8] which can completely (no overflow problem) avoid the re-
labeling when a node is inserted into the XML. We will in detail introduce QED in 
Section 3, and the reuse and never reuse algorithms in Sections 4 and 5 respectively 
are all based on QED. 

2.2   XML Version Control 

It is important to maintain and query different versions of the XML [3, 4, 5, 10, 16, 
17]. The Reference-Based Version Model [4] discusses the storage performance of 
multiversion documents. [10] stores the latest version of a document and the sequence 
of changes of different versions of the XML. [3] queries the historical XML data in 
which parts of the XML data are always updated. All of these papers are about the 
version control of the documents. To the best of our knowledge, no one has ever stud-
ied how to maintain the different versions of the labels of labeling schemes and how 
to use the labeling scheme to query different versions of the XML data. 

If we want to query different versions of the XML data based on labeling schemes, 
we should not reuse the deleted labels especially when the deleted labels have order 
relationships with the new inserted labels. 
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3   Preliminary and Motivation 

Here we introduce our QED [8] based on examples. 

3.1   Label the XML Based on QED 

Definition 3.1 (Quaternary code). Four numbers “0”, “1”, “2” and “3” are used in 
the code and each number is stored with two bits, i.e. “00”, “01”, “10” and “11”. 

Definition 3.2 (QED code). QED code is a quaternary code. The number “0” is used 
as the separator and only “1”, “2” and “3” are used in the QED code itself. 

The separator “0” can be used to separate different codes, and it will never encounter 
the overflow problem, thus QED can completely avoid re-labeling (see [8] for more 
details). The most important feature of our QED encoding is that it is based on the 
lexicographical order for efficient updates. 

Definition 3.3 (Lexicographical order p ). Given two Quaternary codes CA and CB, 
CA is lexicographically equal to CB iff they are exactly the same. CA is said to be lexi-
cographically smaller than CB (CA p  CB) iff 

a) “0” p  “1” p  “2” p  “3” (this is always true and is used by condition b)), or 
b) compare CA and CB symbol by symbol from left to right. If the current symbol of 

CA and the current symbol of CB satisfy (a), then CA p  CB and stop the compari-
son, or 

c) CA is a prefix of CB. 

From Figure 1, it can be seen that the “start” and “end” values are from 1 to 16.  
Table 1 shows the QED codes for these 16 numbers, and the following steps are the 
details of how to get the QED codes. Note that 16 is only an example; any other num-
ber is well also. See [8] for the formal QED algorithms. 

Step 1. In the encoding of the 16 numbers, we suppose there is one more number before 
number 1, say number 0, and one more number after number 16, say number 17. 

Step 2. The (1/3)th number is encoded with “2”, and the (2/3)th number is encoded 
with “3”. The (1/3)th number is number 6, which is calculated in this way, 6 = 
round(0+(17–0)/3). The (2/3)th number is number 11 (11 = round(0+(17–0)× 2/3)). 

Step 3. The (1/3)th and (2/3)th numbers between number 0 and number 6 are number 2 
(2 = round(0+(6–0)/3)) and number 4 (4 = round(0+(6–0)× 2/3)). The QED code of 
number 0 (left code) is now empty with size 0 and the QED code of number 6 (right 
code) is now “2” with size 1 (here 1 refers to 2 bits). This is Case (a) where the left 
code size is smaller than the right code size. In this case, the (1/3)th code is that we 
change the last symbol of the right code to “1” and concatenate one more “2”, i.e. the 
code of number 2 is “12” (“2” → “1” and “1” ⊕ “2” → “12”), and the (2/3)th code is 
that we change the last symbol of the right code to “1” and concatenate one more “3”, 
i.e. the code of number 4 is “13” (“2” → “1” and “1” ⊕ “3” → “13”). 
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Table 1. QED encoding 

Decimal number QED codes 
1 112 
2 12 
3 122 
4 13 
5 132 
6 2 
7 212 
8 22 
9 23 

10 232 
11 3 
12 312 
13 32 
14 322 
15 33 
16 332 

Step 4. The (1/3)th and (2/3)th numbers between numbers 6 and 11 are numbers 8 (8 = 
round(6+(11–6)/3)) and 9 (9 = round(6+(11–6)× 2/3)). The QED code of number 6 
(left code) is “2” with size 1 (here 1 refers to 2 bits) and the code of number 11 (right 
code) is “3” with size 1 (here 1 refers to 2 bits). This is Case (b) where the left code 
size is larger than or equal to the right code size. In this case, the (1/3)th code is that 
we directly contatenate one more “2” after the left code, i.e. the code of number 8 is 
“22” (“2” ⊕ “2” → “22”), and the (2/3)th code is that we directly concatenate one more 
“3” after the left code, i.e. the code of number 9 is “23” (“2” ⊕ “3” → “23”). 

Step 5. The (1/3)th and (2/3)th numbers between numbers 11 and 17 are numbers 13 
(13 = round(11+(17–11)/3)) and 15 (15 = round(11+(17–11)× 2/3)). The code of 
number 11 (left code) is “3” with size 1 and the code of number 17 (right code) is 
empty now with size 0. This is still Case (b). Therefore the QED code of number 13 
is “32” (“3” ⊕ “2” → “32”), and the code of number 15 is “33” (“3” ⊕ “3” → “33”). 

In this way, all the numbers will be encoded. 

Lemma 3.1. All the QED codes are ended with either “2” or “3”. 

Theorem 3.1. Our QED codes are lexicographically ordered. 

Example 3.1. The QED codes in Table 1 are lexicographically ordered from top to 
down. “132” p  “2” lexicographically because the comparison is from left to right, 
and the 1st symbol of “132” is “1”, while the 1st symbol of “2” is “2”. “23” p  “232” 
because “23” is a prefix of “232”. 

When we replace the “start”s and “end”s (1-16) in Figure 1 with our QED codes, and 
based on the lexicographical comparison, a QED containment scheme is formed. 
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3.2   Order-Sensitive Updates 

The following algorithm shows how we can insert nodes without re-labeling the exist-
ing nodes. 

 
Algorithm 1. AssignInsertedCode 
Input: Left_Code, Right_Code 
Output: Inserted_Code, such that Left_Code p  Inserted_Code p  Right_Code 
lexicographically. 
 

Description: 
  1: get the sizes, i.e. number of bits, of Left_Code and Right_Code 
  2: if size(Left_Code) < size(Right_Code)  //size is the number of bits of the code 
  3:     then Inserted_Code = the Right_Code with the last  
                                                 symbol changed to “1” ⊕  “2” 
  4: else if size(Left_Code) > size(Right_Code) 
  5:     if the last symbol of Left_Code is “2” 
  6:          then Inserted_Code = the Left_Code with the  
                                        last symbol changed from “2” to “3” 
  7:     else if the last symbol of Left_Code is “3” 
  8:          then Inserted_Code = Left_Code ⊕  “2” 
  9: else if size(Left_Code) = size(Right_Code) 
10:    then Inserted_Code = Left_Code ⊕  “2”  

Fig. 2. AssignInsertedCode algorithm 

 

Fig. 3. Update 

Example 3.2. When inserting node “a” (see Figure 3), we should insert a number 
between the “start” of the parent “1” (Left_Code) and the “start” of the first sibling 
“2” (Right_Code). If we use the existing approach, we can not insert a number be-
tween “1” and “2”, and we must re-label the nodes. However, when referring to  
Table 1, our QED codes for “1” and “2” are “112” and “12”. Based on the AssignIn-
sertedCode algorithm, we insert a QED code between “112” and “12”, then the “start” 
of the inserted node “a” is “113” (see lines 4-6 of the AssignInsertedCode algorithm 
in Figure 2). The “end” of node “a” is an insertion between the new “start” “113” and 
the “start” of the first sibling “12”, thus the “end” of “a” is “1132” (see lines 4, 7 and 
8 in Figure 2). Obviously, “112”p  “113” p  “1132” p  “12”. We need not re-label 
any existing nodes, but we can keep the containment scheme working correctly. It is 
similar for the insertions of nodes “b”, “c” and “d”. 

1,16,1

14,15,2
a b c

d

2,7,2 8,9,2 10,13,2

3,4,3 5,6,3 11,12,3 
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3.3   Motivation 

It can be seen that QED avoids the node re-labeling when a node is inserted into the 
XML. But it has the following deficiencies. QED does not consider how to process 
the deleted labels. The deleted label with larger size than its neighbor labels will be 
reused, but the deleted label with smaller size will not be reused. 

Example 3.3. When we delete the QED code “12” between “112” and “122” (see 
Table 1) and want to insert another code at this place, the inserted code will be “1122” 
(see lines 9 and 10 in Figure 2). The deleted code “12” is not reused because it has 
smaller size than its neighbors (“112” and “122”), and the re-inserted code “1122” has 
larger size than the deleted code “12”, therefore the size increases fast. On the other 
hand, if we delete the QED code “122” between “12” and “13” (see Table 1) and 
insert another code at this place, the inserted code is still “122” (see lines 9 and 10 in 
Figure 2). The deleted code “122” is reused because it has larger size than its 
neighbors (“12” and “13”). 

It is not good to process the deleted labels in this way. If we want to improve the 
query performance, all the deleted labels should be reused which will hinder the label 
size from increasing fast. On the other hand, if we want to query different versions of 
the XML, we should never reuse the deleted labels. That is to say, our current ap-
proach is not for the reuse objective and also not for the version control objective. 
Therefore in Sections 4 and 5, we propose algorithms to reuse the deleted labels and 
never reuse the deleted labels respectively. 

4   Reuse the Deleted Labels (Reuse) 

If there are no deletions, the original QED algorithm [8] (Algorithm 1 in this paper) 
can guarantee that the inserted label has the smallest size between two labels, also the 
cost of Algorithm 1 is very cheap which only needs to modify the last 2 bits of the 
neighbor label. However, if there are deletions, Algorithm 1 can not guarantee that the 
inserted label is with the smallest size. Figure 4 shows the Reuse algorithm. The idea 
of this algorithm is to find the smallest possible code lexicographically between two 
given codes by comparing left_code and right_code symbol by symbol from left to 
right. From Lemma 3.1, we know that all the QED codes can only be ended with 
either “2” or “3”, therefore the cases and conditions in Figure 4 are complete. 

Example 4.1. Suppose the QED code “12” between “112” and “122” (see Table 1) is 
deleted and we need to insert a new code between “112” and “122”. The new inserted 
code is “1122” based on Algorithm 1 in Figure 2. The deleted code “12” is not reused. 
On the other hand, based on Algorithm 2 in Figure 4, we compare “112” and “122” 
symbol by symbol from left to right. The second symbol of left_code (“112”) is “1” 
and the second symbol of right_code (“122”) is “2” (see Case (d) in Figure 4). The 
difference position is at the 2nd symbol (see line 33 in Figure 4), therefore SL = get-
PartCode(left_code, P, P) = getPartCode(“112”, 2, 2) = “1”, i.e. the second symbol of 
“112”, and SR = getPartCode(right_code, P, P) = getPartCode(“122”, 2, 2) = “2”. SL 
== “1” and SR == “2”, hence the condition at line 36 in Figure 4 is satisfied. Based on 
line 37, temp_code = getPartCode(left_code, 1, P-1) ⊕  “2” = getPartCode(“112”, 1, 
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2-1) ⊕  “2” = “1” ⊕  “2” = “12”. “12” p  “122” lexicographically, i.e. temp_code p  
right_code lexicographically, therefore the condition at line 38 is satisfied. As a result, 
inserted_code = temp_code = “12”. It can be seen the deleted code “12” is reused. 

Algorithm 2. AssignInsertedCodeWithReuse 
Input: left_code, right_code 
Output: inserted_code (reuse the deleted code) 
 

Description: 
  1:  Case (a) left_code and right_code are both empty 
  2:  inserted_code = “2” 
 

  3:  Case (b) left_code is NOT empty but right_code is empty 
  4:  if “2” does not appear in left_code //left_code contains “1” and “3”, or contains only “3” 
  5:    if all the symbols of left_code are “3” 
  6:        then inserted_code = left_code ⊕  “2” 
  7:    else 
  8:        then denote the position of the firstly encountered “1” as P 
  9:                 inserted_code = getPartCode(left_code, 1, P-1) ⊕  “2” 
10:  else if “1” does not appear in left_code //left_code contains “2” and “3”, or contains only “2”, or  
              contains only “3”; //the case that all the symbols of left_code are “3” has been discussed at line 5 
11:   then denote the position of the firstly encountered “2” as P 
12:             inserted_code = getPartCode(left_code, 1, P-1) ⊕  “3” 
13:  else if both “1” and “2” appear in left_code //left_code contains “1”, “2” and “3”, or contains only  
                              “1” and “2” 
14:   then denote the position of the firstly encountered “1” as PA, and denote the position of the firstly  
                              encountered “2” as PB  
15:             if PA < PB 
16:                  then inserted_code = getPartCode(left_code, 1, PA -1) ⊕  “2” 
17:             else if PA > PB    //note that PA can not be equal to PB 
18:                  then inserted_code = getPartCode(left_code, 1, PB -1) ⊕  “3” 
 

19:  Case (c) left_code is empty but right_code is NOT empty 
20:  if “2” does not appear in right_code //right_code contains “1” and “3”, or contains only “3” 
21:    then denote the position of the firstly encountered “3” as P 
22:             inserted_code = getPartCode(right_code, 1, P-1) ⊕  “2” 
23:  else if “3” does not appear in right_code //right_code contains “1” and “2”, or contains only “2” 
24:    then denote the position of the firstly encountered “2” as P 
25:             inserted_code = getPartCode(right_code, 1, P-1) ⊕  “12” 
26:  else if “2” and “3” both appear in right_code //right_code contains “1”, “2” and “3”, or contains only  
                                      “2” and “3” 
27:    then denote the position of the firstly encountered “2” as PA, and denote the position of the firstly  
                                      encountered “3” as PB 
28:             if PA < PB 
29:                  then inserted_code = getPartCode(right_code, 1, PA -1) ⊕  “12” 
30:             else if PA > PB    //note that PA can not be equal to PB 
31:                  then inserted_code = getPartCode(right_code, 1, PB -1) ⊕  “2” 
 

32:  Case (d) conditions (a) and (b) in Definition 3.3 
33:  denote the first difference position of left_code and right_code as P; in other words, getPart-
Code(left_code, 1, P-1) is equal to getPartCode(right_code, 1, P-1) and getPartCode(left_code, P, P) is 
different from getPartCode(right_code, P, P); denote getPartCode(left_code, P, P) as SL (SymbolLeft) and 
getPartCode(right_code, P, P) as SR (SymbolRight) 
34:  if (SL == “1”) and (SR == “3”) 
35:    then inserted_code = getPartCode(left_code, 1, P-1) ⊕  “2” 
36:  else if (SL == “1”) and (SR == “2”) 

Fig. 4. AssignInsertedCodeWithReuse algorithm 
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37:    then temp_code = getPartCode(left_code, 1, P-1) ⊕  “2” 
38:             if temp_code p  right_code lexicographically 
39:                  then inserted_code = temp_code 
40:             else  
41:                  then suppose there is a temp_left_code which is equal to getPartCode(left_code, P,  
                                left_code.size()) and suppose there is a temp_right_code which is empty 
                                //left_code.size() return the total symbol number of left_code 
42:                           process temp_left_code and temp_right_code based on Case (b); denote the returned  
                                result by Case (b) as temp_code 
43:                           inserted_code = getPartCode(left_code, 1, P) ⊕  temp_code 
44:  else if (SL == “2”) and (SR == “3”) 
45:    then temp_code = getPartCode(left_code, 1, P-1) ⊕  “3” 
46:             if temp_code p  right_code lexicographically 
47:                  then inserted_code = temp_code 
48:             else  
49:                  then suppose there is a temp_left_code which is equal to getPartCode(left_code, P,  
                                left_code.size()) and suppose there is a temp_right_code which is empty 
                                //left_code.size() return the total symbol number of left_code 
50:                           process temp_left_code and temp_right_code based on Case (b); denote the returned  
                                result by Case (b) as  temp_code 
51:                           inserted_code = getPartCode(left_code, 1, P) ⊕  temp_code 
 

52:  Case (e) condition (c) in Definition 3.3 
53:  left_code is a prefix of right_code; suppose there is a temp_left_code which is empty and suppose 
there is a  
       temp_right_code which is equal to getPartCode(right_code, left_code.size()+1, right_code.size()) 
54:  process temp_left_code and temp_right_code based on Case (c); denote the returned result by Case 
(c) as temp_code 
55:  inserted_code = getPartCode(right_code, 1, left_code.size()) ⊕  temp_code 
 

Function getPartCode(code, P1, P2) 
  1:  return the symbols of code between position P1 and P2. 

Fig. 4. (continued) 

Theorem 4.1. Algorithms 1 and 2 guarantee that the order can be kept no matter how 
many codes are inserted at any place of the QED codes. 

Example 4.2. After insertion, the new inserted code based on Algorithm 1 is “1122” 
and the new inserted code based on Algorithm 2 is “12”. Based on Algorithm 1 or 2, 
we can insert infinite number of QED codes between “112” and “1122” and between 
“1122” and “122”, or between “112” and “12” and between “12” and “122”. That 
means that the Reuse algorithm in this paper can completely avoid the re-labeling 
also, yet it makes the label size increase slowly. 

Theorem 4.2. Suppose some codes are deleted between left_code and right_code, and 
suppose the minimum size of these deleted codes is MS. Algorithm 2 guarantees that 
the inserted code between left_code and right_code is with size MS. 

Example 4.3. Suppose the QED codes “212”, “22” and “23” between “2” and “232” 
(see Table 1) are deleted and we need to insert a new code between “2” and “232”. 
Based on Algorithm 2 in Figure 4, left_code “2” is a prefix of right_code “232”, thus 
it is Case (e). Based on line 53, temp_left_code is empty and temp_right_code = get-
PartCode(right_code, left_code.size()+1, right_code.size()) = getPartCode(“232”, 
1+1, 3) = “32”. Based on line 54, we need to go to Case (c). The condition at line 26 
is satisfied. When we go to line 27, the firstly encountered “2” in “32” is at the 2nd 
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symbol, and the firstly encountered “3” in “32” is at the 1st symbol, i.e. PA = 2 and PB 
= 1. Thus the condition at line 30 is satisfied, i.e. PA > PB. Therefore based on line 31, 
inserted_code = getPartCode(right_code, 1, PB -1) ⊕  “2” = getPartCode(“32”, 1, 1-1) 
⊕  “2” = “” ⊕  “2” = “2”. Next we go back to line 54, and temp_code = “2”. When 
going to line 55, the final inserted_code = getPartCode(right_code, 1, left_code.size()) 
⊕  temp_code = getPartCode(“232”, 1, 1) ⊕  “2” = “2” ⊕  “2” = “22”. The deleted 
code “22” is reused, and it can be seen that the size of “22” is less than or equal to the 
size of the deleted codes “212” and “23”. That means the deleted code with smaller 
size is reused firstly. Similarly when we insert a code between “2” and “22”, lines 52, 
53, 54, 19, 23, 24, 25 and 55 in Figure 4 will be used and the returned result is “212” 
which is equal to the deleted code “212”. When we insert a code between “22” and 
“232”, lines 32, 33, 44, 45, 46 and 47 in Figure 4 will be used and the returned result 
is “23” which is equal to the deleted code “23”. 

Based on Theorem 4.2, the label size will not increase fast. 

5   Never Reuse the Deleted Labels (NeverReuse) 

If a deleted code has larger size than its neighbors, Algorithm 1 will reuse this deleted 
code (see the last two sentences of Example 3.3). If we want to query different ver-
sions of the XML based on the labeling schemes, Algorithm 1 is not appropriate. We 
propose another algorithm which never reuses the deleted codes; it truly maintains the 
different label versions of the XML. 

Case (a) in Algorithm 3 (see Figure 5) is easy to understand. Intuitively Case (b) 
(lines 4-11 in Figure 5) can be summarized as: inserting a code between left_code and 
the first deleted_code, inserting between any two consecutive deleted codes, and in-
serting between the last deleted code and right_code using Algorithm 1 (see Figure 2); 
the final inserted code is the code of all these inserted codes with the smallest size. 

 

Algorithm 3. AssignInsertedCodeWithoutReuse 
Input: left_code, right_code, middle_codes (between left_code and right_code) 
Output: inserted_code, and inserted_code ≠ any one of the deleted_codes  
 
Description: 
  1:  Case (a) process the deleted codes 
  2:  if middle_codes are deleted 
  3:     then do not delete middle_codes physically, but mark them as “deleted” 
 
  4:  Case (b) process the inserted code 
  5:  suppose there are n-2 deleted codes between left_code and right_code 
  6:  put left_code, deleted_codes, and right_code in an array with size n called LDRcodes 
  7:  suppose there is another array called temp_inserted_code with size n-1 
  8:  for (int i=0; i<(n-1); i++) { 
  9:       temp_inserted_code[i] = AssignInsertedCode(LDRcodes[i], LDRcodes[i+1]) 
10:  }  //AssignInsertedCode is Algorithm 1 in Figure 2 
11:  inserted_code = min{temp_inserted_code[i] | i∈ [0, n-2]} (min means the minimal size) 

Fig. 5. AssignInsertedCodeWithoutReuse algorithm 
 



670 C. Li, T.W. Ling, and M. Hu 

When a node is deleted, it is not physically deleted but instead is marked as “de-
leted” and is stored ordered with other undeleted nodes. At line 9 of Algorithm 3, we 
use AssignInsertedCode (Algorithm 1) rather than Algorithm 2 because in fact there 
are no physical deletions and the cost of Algorithm 1 is smaller than Algorithm 2. We 
use an example to illustrate Algorithm 3. 

Example 5.1. Suppose the QED codes “122”, “13” and “132” between “12” and “2” 
(see Table 1) need to be deleted. We do not delete them physically, but mark them as 
“deleted”. When a new code needs to be inserted between “12” and “2”, the new code 
will be “13” based on Algorithm 1 (Figure 2). The deleted code “13” is reused that is 
not what we expect. Based on Algorithm 3, we insert codes between left_code “12” 
and the first deleted_code “122”, between deleted_codes “122” and “13”, between 
deleted_codes “13” and “132”, and between the last deleted_code “132” and 
right_code “2”; the inserted codes will be “1212”, “123”, “1312” and “133” based on 
Algorithm 1. We select the inserted code with the smallest size, e.g. “123”, as the 
final inserted code. “123” and “133” are the codes between “12” and “2” with the 
smallest sizes which do not reuse the deleted codes. 

Theorem 5.1. All the deleted codes will NOT be reused based on Algorithm 3. 

Based on Algorithm 3, we will never reuse the deleted codes, as well Algorithm 3 
guarantees that a code with smaller size is used before a code with larger size is used. 

Algorithm 3 intends to make the label size increase slowly (called NeverReuse-I) 
However, Algorithm 3 needs more time to calculate the inserted code especially when 
there are a lot of deleted codes between left_code and right_code. If we want to re-
duce the insertion time, we can directly use any inserted code (see line 9 in Figure 5) 
as the final inserted code (called NeverReuse-II), but this can not guarantee that the 
inserted code is with the smallest size. Furthermore, if a code is required to be in-
serted between two specific deleted codes (the inserted code should have order rela-
tionships with the two specific deleted codes), then insert a code between these two 
specific deleted codes (called NeverReuse-III) instead of using Algorithm 3. We will 
further test NeverReuse-I, NeverReuse-II, NeverReuse-III in Section 6.2. 

6   Performance Study 

The query and update performance of different labeling schemes have been studied in 
[8]. In this paper, we mainly compare the Reuse and NeverReuse algorithms proposed 
in this paper with the original QED encoding in [8]. All the experiments are imple-
mented in Java and all the experiments are carried out on a 3.0 GHz Pentium 4 proc-
essor with 1 GB RAM running Windows XP Professional. 

6.1   Performance Study on Reusing the Deleted Codes 

Based on the original QED [8], we generate 1,000,000 QED codes. We test the case 
that codes are deleted then inserted at the odd positions of the 1,000,000 codes; after 
the deletions and insertions, we call these new codes CodeSet2; this is case 1. Sec-
ondly we test that the codes are deleted then inserted at the even positions of  
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CodeSet2, thirdly odd positions of CodeSet3, fourthly even positions of CodeSet4, and 
so on. 

We compare the performance of QED (based on Algorithm 1 in Figure 2) and Re-
use (based on Algorithm 2 in Figure 4). Figure 6 shows that the code size of Reuse 
does not increase in all the ten cases (since we reuse all the deleted codes). On the 
other hand, the code size of QED increases linearly (for these ten cases) which is fast. 
Note if there are only insertions (no deletions) at different places of the QED codes, 
the code size of QED increases logarithmically but not linearly. 

The experimental results confirm that our Reuse algorithm (Figure 4) can reuse all 
the deleted codes, thus it efficiently controls the increasing speed of the code size. 

6.2   Performance Study on Never Reusing the Deleted Codes 

We delete and insert at any place of the 1,000,000 QED codes generated in  
Section 6.1. The experimental results confirm that our NeverReuse algorithm(s) 
(NeverReuse-I, NeverReuse-II, and NeverReuse-III; see the discussions after Theo-
rem 5.1) never reuse any deleted codes, hence the NeverReuse algorithm(s) can truly 
maintain different label versions of the XML data. There are no other researches 
about how to never reuse the deleted labels in labeling schemes. Therefore we do not 
compare different schemes on label version control in the experiments. The other 
containment and prefix labeling schemes can not truly maintain different XML label 
versions because they must reuse the deleted labels no matter how large gaps are 
leaved between two values. 

We compare the size and the update time increasing speeds of NeverReuse-I, 
NeverReuse-II and NeverReuse-III. Figure 7(a) shows that the size (only the size of 
the inserted codes) differences among the three approaches are not very large though 
NeverReuse-I is better. On the other hand, Figure 7(b) shows that the update time 
(only the processing time) of NeverReuse-I increases very fast, but the update time of 
NeverReuse-II and NeverReuse-III is almost 0 millisecond (ms). Therefore in prac-
tice, we suggest using NeverReuse-III because its update time is small, its code size is 
not large, and the most important reason is that NeverReuse-III can maintain the order 
relationships among the deleted codes. Maintaining the orders of the deleted codes 
can only be achieved by our approach. 
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Fig. 7. NeverReuse 

7   Conclusion 

In this paper, we propose a new algorithm which can reuse all the deleted labels. In 
this way, we efficiently control the label size increasing speed. The experimental 
results also show that with this algorithm we can greatly decrease the label size when 
a lot of nodes are deleted and inserted. Meanwhile, the Reuse algorithm can com-
pletely avoid the re-labeling in XML updates also. In summary, Reuse is more appro-
priate to efficiently process the updates with both insertions and deletions (QED is 
more appropriate for the updates with insertions only). 

No one has ever studied how to query different versions of the XML based on la-
beling schemes, therefore in this paper we propose algorithm(s) that never reuse the 
deleted labels; this truly maintains the different label versions (the labels in different 
versions are unique). The existing labeling schemes can not truly maintain the label 
versions since they must re-label the exiting nodes when many nodes are inserted. 
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Abstract. Graph has great expressive power to describe the complex relation-
ships among data objects, and there are large graph datasets available. In this
paper, we focus ourselves on processing a primitive graph query. We call it reach-
ability query. The reachability query, denoted A � D, is to find all elements of
a type D that are reachable from some elements in another type A. The problem
is challenging because the existing structural join algorithms, studied in XML
query processing, cannot be directly applied to it, because those techniques make
use of the tree-structure heavily. We propose a novel approach which can process
reachability queries on the fly while keeping the space consumption small that
is needed to keep the required information for processing reachability queries.
In brief, our approach is based on 2-hop labeling for a directed graph G which
consumes O(|V | · log |E|) space. We construct a novel join-index which is built
on a small table and B+-tree. With the join-index, the high efficiency is achieved.
We conducted extensive experimental studies, and we confirm that our approach
can efficiently process reachability queries over a graph or a tree.

1 Introduction

Due to the advanced Web technology and the new techniques for data archiving and an-
alyzing, there is a huge volume of data available in public, which are graph structured
in nature including hypertext data, semi-structured data and XML [1]. For instance,
in Web mining, the navigation patterns of Web surfers is modeled as directed acyclic
graphs to improve the analysis of the navigation behavior of user groups [4]. In Genome
biology, graph and network models have been used, for example, gene-regulatory net-
works or metabolic networks. HumanCyc [13] and Cyc [11] are two such databases
where graph is used to represent their inter-reactions.

Graph has great expressive power to describe the complex relationships among data
objects. Real applications use different facilities/systems to handle their data as ei-
ther directed graphs, or directed acyclic graphs, or trees. As a major standard for rep-
resenting data on the World-Wide-Web, XML provides facilities for users to model
data as trees or to view data as graphs with two different links, the parent-child links
(document-internal links) and reference links (cross-document links) where the cross-
document links are supported by value matching using ID/IDREF in XML. In addition,
the XLink (XML Linking Language) [8] and XPointer (XML Pointer Language) [9]
provide more opportunities for users to manage their complex data as graphs and inte-
grate data effectively.

In this paper, we study a primitive graph query, called reachability query, that is
needed in any types of graphs (directed graphs, directed acyclic graphs, or trees). In

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 674–688, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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item buyer seller itemref seller bidder itemref person

name personref personref personref personref name

europe closed auction open auction people

site

+ +

∗ ∗

? + +

Fig. 1. A part of DTD used in XMark Benchmark [16]

brief, given two types of elements in a graph, A and D, the reachability query, denoted
A � D, is to find all elements of the type D that are reachable from some elements in
the type A.

The needs of such a reachability query can be even found in XML. Consider the
DTD graph in Fig. 1, which is a part of DTD used in XMark Benchmark [16]. The
DTD specifies person, seller, and bidder, where a person has a name, and
a seller/bidder may have ID/IDREF to reference a person, because seller
and bidder are person. In Fig. 1, solid links represent document-internal links
whereas dashed links represent cross-document links (ID/IDREF). Suppose that we
want to know seller’s names. It becomes difficult to find names of sellers using
the XPath operator // (descendants-or-self-axis) alone, because // does not traverse
the cross-document links supported by ID/IDREF. It needs more joins to process this
reachability query using XPath even the underneath DTD is known. It requests even
great effort to process a reachability query if there is no DTD available, and may need
to traverse the whole graph. It is unreasonable for users not to be able to find such in-
formation in a graph effectively and efficiently, where users are recommended to model
data by sharing the commonly-used parts (e.g., seller as person) as much as possible.

It is important to note that the reachability query we are studying is a more general
facility to find relevant information in arbitrary graphs (including trees). A//D is a
special case of A � D when data is a tree. There exist many advanced techniques to
process structural join or containment join, A//D, for XML including [3, 6, 10]. Those
techniques cannot be directly applied to reachability queries, A � D, because they all
at maximum make use of the XML tree-structure without ID/IDREF. As an exemption,
in [17], Wang et al studied reachability queries, A � D, and proposed two algorithms
based on a graph coding scheme [2] and structural join techniques used in XML.

In this paper, we propose a novel index-based approach that can efficiently process
reachability queries, A � D, over a graph (including tree). Our approach achieves
high efficiency while keeping space consumption small. First, we adapt a graph cod-
ing scheme which consumes O(|V | · log |E|) space for a directed graph G(V, E). The
coding scheme is based on the 2-hop labeling for a graph [7]. We report a simple yet
effective technique that can further reduce the space consumption of 2-hop cover. Note:
There are several recent works on computing 2-hop cover using a divide-and-conquer
approach [14, 15] or a geometry-based approach [5]. The incremental maintenance of
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such 2-hop cover was also reported in [15]. Second, we propose an algorithm for reach-
ability queries based on 2-hop labeling. In order to be more efficiently processing reach-
ability queries, we construct a novel join index consisting of a table and a B+-tree. Our
join index allows us to process any A � D queries in a graph on the fly. As shown
in our extensive experimental studies, our index-based approach consumes the simi-
lar amount of space like the interval-based graph coding scheme as reported in [17],
and significantly outperforms the algorithms given in [17]. Third, we confirm that our
approach can also process structural joins for XML tree data efficiently.

The rest of the paper is organized as follows. Section 2 discusses graph data and
defines reachability queries. Section 3 introduces the only existing algorithm for reach-
ability queries over graphs, which serves the baseline for us to compare. Section 4
discusses our approach in detail. We will give the graph coding we used, the query pro-
cessing techniques and its join index. Experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

2 Graph Data and Reachability Query

We consider a large directed node-labeled graph G = (V, E, λ, L), to represent a com-
plex data set which can be semi-structured data or XML data. Here, V is a set of ele-
ments, E is a set of edges, L is a set of labels, and λ is a function which assigns a node
a label. Given a label l ∈ L, the extent of l is defined as a set of nodes whose label is l,
denoted ext(l). An example is given below.

Example 1. A simple XML document is shown in Fig. 2. The example shows two re-
lationships between elements in XML. One represents the parent-child relationship be-
tween two elements in XML. For example, the element <site> has <europe> as its
subelement (parent-child). The parent-child relationships for an XML document form
a tree representation. Fig. 3 (a) shows the tree representation of Fig. 2. The other
is a general reference from one element to another using id and idref based on
value-matching, where id specifies a unique user-assigned identifier for an element,
and idref specifies a link to the element with the same identifier. For example, in
Fig. 2, line-4, an item is associated with an identifier (id="item1"). In the mid-
dle of Fig. 2, there is an element itemref which points to (id="item1") using
idref="item1". Both parent-child and id-idref relationships together form a graph
representation for an XML document. Fig. 3 (b) shows the graph representation of
Fig. 2. Note: in both Fig. 3 (a) and (b), every node is associated with a system-assigned
object identifier, for example 16.

Given a directed node-labeled graph G = (V, E, λ, L), we define a reachability query,
denoted A � D, as to find whether elements with label A can reach elements with
label D. In other words, let A and D be two labels in L. A � D finds all pairs of (u, v)
such as v is reachable from u where u ∈ ext(A) and v ∈ ext(D) in the graph G.

We consider two cases for a query seller � name against the simple XML doc-
ument (Fig. 2). First, we issue the query against its tree representation (Fig. 3 (a)),
the query result is empty, because there does not exist a data path from an element of
seller to an element of name. It is important to note that, when XML is modeled as
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<site>
· · · · · ·
<Europe>

<item id=“item1”>
<name>desktop</name>

</item>
<item id=“item2”>

<name>laptop</name>
</item>

</Europe>
<closed auction>

<buyer>
<personref idref=“person1”/>

</buyer>
<seller>

<personref idref=“person2”/>
</seller>
<itemref idref=“item1”/>

</closed auction>
<open auction>

<seller>
<personref idref=“person1”/>

</seller>
<bidder>

<personref idref=“person2”/>
</bidder>
<itemref idref=“item2”/>

</open auction>
<people>

<person id=“person1”>
<name>Joe</name>

</person>
<person id=“person2”>

<name>Ray</name>
</person>

</people>
</site>

Fig. 2. A Sample XML Document
Fragment
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Fig. 3. Document Representation

a tree, A � D is the same as A//D used in XPath queries. Second, we issue the query
against its graph representation (Fig. 3 (b)), there are two pairs, namely, (9, 23) and
(11, 22), because sellers are persons and therefore persons names are sellers names. An
acute reader may ask whether the second case can be processed using // in XPath with
value index efficiently. The answer is rather negative. For getting the sellers names, 22
and 23, the XQuery is as follows.

for $p in //seller
let $n := for $s in //person

where $p/personref/@idref = $s/@id
return $n/name

The above XQuery finds all sellers and all persons followed by id/idref match-
ing, and is time-consuming. It is worth of noting that it requests users to know the
underneath schema of XML data. In fact, even when a user knows the underneath
schema, sometime, it is rather complicated to process A � D using // and id/idref. For
example, the reachability query, closed auction � name, requires more joins on
id/idref if it is processed using XQuery.



678 J. Cheng, J.X. Yu, and N. Tang

3 An Existing Approach

For processing reachability queries, A � D, two algorithms were processed in [17]
using a structural join method based on an interval-based coding scheme for arbitrary
directed graphs. In brief, given a directed graph, G. First, it constructs a directed acyclic
graph G′ by condensing a maximal strongly connected component in G as a node in
G′. Second, it generates interval-based codes for G′ the directed acyclic graph based
on [2]. Third, all nodes in a strongly connected component in G share the same code
assigned to the corresponding representative node condensed in G′.

Agrawal et al [2] proposed a method for labeling directed acyclic graphs using in-
tervals. The labeling is done in three steps for a directed acyclic graph, GD . 1) Con-
struct an optimum tree-cover T . An optimum tree-cover is defined as to minimize the
number of intervals. 2) Every node, v, in the T is labeled using an interval [s, e]. A
node v has a postorder number, denoted po, which is the number assigned follow-
ing a postorder traversal of the tree starting from 1. The e value in [s, e] for a node
v is the postorder number of the node v, and the s value in the interval is the small-
est postorder number of its descendants, where s = e if v is a leaf node. 3) After
T is labeled, it examines all nodes of GDin the reverse topological order. During the
traversal, for each node u, add all the intervals associated with v, if there exists an
edge (u, v), into the interval associated with u. Note: an interval can be eliminated
if it is contained in another. Let Iu be a list of intervals assigned to a node u. Sup-
pose there are two nodes u and v where Iu = {[s1, e1], [s2, e2], · · · , [sn, en]}, and
Iv = {[s′1, e′1], [s′2, e′2], · · · , [s′m, e′m]}. There exists a path from u to v if the postorder
of v is in an interval, [sj , ej], of u. The interval-based graph code for the sample XML
documents as a directed graph is given in Fig. 3 (b).

Two algorithms, GMJ and IGMJ, were studied in [17]. We introduce the algorithm
IGMJ (Improved Graph-Merge Join) below, because it outperforms GMJ.

As shown in Algorithm 1, for A � D, IGMJ takes two lists Alist and Dlist as
its input. Here, Alist and Dlist are two lists of nodes belonging to label A and D
respectively. Alist is sorted on the intervals [x, y] by the ascending order of x and then

Algorithm 1. IGMJ (Alist, Dlist)
1: a := Alist.head(); d := Dlist.head();
2: R := ∅;
3: while a �= ∅ ∨ d �= ∅ do
4: if a.x ≤ d.postid then
5: rstree.trim(a.x); rstree.insert(a); a := a.next();
6: else
7: rstree.trim(d.postid);
8: for all elements a ∈ rstree do
9: R.insert(a.id, d.id);

10: end for
11: d := d.next();
12: end if
13: end while
14: return R;



Fast Reachability Query Processing 679

the descending order of y. If a node of A has n intervals, then it will have n entries
in the Alist. Dlist is sorted by the ascending order of postorder. The motivation is
to leverage the order in the intervals and postorder to accelerate join processing. The
rstree is a range search tree. In the range search tree, the intervals are indexed and
organized according to their y values. Two operations, trim(v) and insert(n), are
used such as trim(v) is to batch delete the intervals whose y values smaller than v
and insert(n) is to insert a node to the range search tree.

4 A Novel Join Index

In this paper, we propose a novel join index for a set of reachability queries A � D in
a graph G = (V, E, λ, L). Note, there are in total nC2 combinations of such A � D if
n is the size of the set of labels, L. The goal is to minimize the query processing cost
for any reachability query A � D in a graph G on the condition that the size of the join
index is small.

Intuitively, it is seen as difficult to minimize both query processing cost and the
space required for such a join-index. Let’s consider the simplest approach. That is to
materialize all nC2 combinations of such A � D on disk, 〈L1, L1〉, 〈L1, L2〉, · · · ,
〈Ln−1, Ln〉, 〈Ln, Ln〉 if there are n labels. In doing so, we can answer any reachability
query, A � D, by simply loading the corresponding materialized join-index from disk.
However, the simplest approach here processes reachability queries efficiently at the
expense of huge disk space. Suppose that there are n labels, The worst case is that the
extent of a label, ext(Li), may occur n times because there are n reachability queries
from Li to any other Lj for j = 1, · · · , n. It also implies that the join-index can be
possibly n times of |V | where V is the set of nodes in graph G. Such simplest approach
is infeasible.

In the following, we propose a novel join index which takes space less than that of
the data in general. We will show that we can process any reachability query efficiently
with the proposed join index. Below, we will first introduce a graph coding, our query
processing techniques based on the graph coding, and the join index structure.

4.1 2-Hop Reachability Labeling

The 2-hop reachability labeling is defined in [7]. We introduce it below in brief. Let
G = (V, E) be a directed graph. A 2-hop reachability labeling on graph G assigns
every node v ∈ V a label L(v) = (Lin(v), Lout(v)), where Lin(v), Lout(v) ⊆ V ,
such that every node x in Lin(v) connects to every node y in Lout(v). A node v is
reachable from a node u, denoted u � v, if and only if Lout(u)∩Lin(v) �= ∅. The size
of the 2-hop reachability labeling over a graph G(V, E), is given as L, below.

L =
∑

v∈V (G)

|Lin(v)|+ |Lout(v)| (1)

Consider L(v) for a node v, the name of 2-hop comes from the idea that the reachability
from a node x ∈ Lin(v) to node y ∈ Lout(v) is via the node v in the middle way, so
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that the first hop is from x to v and the second hop is from v to y. In order to solve the
2-hop reachability labeling, Cohen et al introduce 2-hop cover which is a set of paths in
the graph G. The definition is given below [7].

Definition 1 (2-hop cover). Given a directed graph G = (V, E). Let Pu�v be a set
of paths from node u to node v in G, and P be a set of all such Pu�v in G. A hop,
hu, is defined as hu = (pu, u), where pu is a path in G and u is one of the endpoints
of pu. A 2-hop cover, denoted H , is a set of hops that covers P , such as, if node v is
reachable from node u then there exists a path p in the non-empty Pu�v where the path
p is concatenation of pu and pv, denoted p = pupv , and hu = (pu, u) and hv = (pv, v).

The 2-hop reachability labeling can be derived from a 2-hop cover [7]. Formally, given
a 2-hop cover H , the label for node v, L(v) = (Lin(v), Lout(v)) becomes Lin(v) =
{x | ((x, v), v) ∈ H} and Lout(v) = {x | ((v, x), v) ∈ H}. Given a 2-hop reachability
labeling, H = ∪v∈V Hv where Hv = {((x, v), v)|x ∈ Lin(v)} ∪ {((v, x), v)|x ∈
Lout(v)}. In addition, the size of the 2-hop cover, |H |, for a graph G, is the same as
that of 2-hop reachability labeling (|H | = L).

The 2-hop cover problem is to find the minimum size of 2-hop cover for a given graph
G(V, E), which is proved to be NP-hard [7]. Cohen et al show that a greedy algorithm
exists to compute a near optimal solution for the 2-hop cover problem. The resulting size
of the greedy algorithm is larger than the optimal at most O(log n) where n = |V |. In
[14, 15], Schenkel et al studied a partition-based approach to efficiently generate 2-hop
cover for a large graph. The incremental maintenance of such 2-hop code for a graph
was also discussed in [15]. In [5], we also propose a novel geometry-based algorithm
to improve the efficiency of computing 2-hop cover for even large dense graphs.

The computed 2-hop labeling for the graph representation of the XML document
(Fig. 3 (b)) is listed in Table 1. Here, The table has four attributes L (label), v (node),
Lin of v and Lout of v. For example, 8 � 14, because Lout(8) ∩ Lin(14) = {8} �= ∅.

We observe that the 2-hop labeling can be further compressed by removing hops
in the form of (v � v, v). Table 2 shows the compact 2-hop labeling for the sample
example. We use the compact 2-hop labeling in our work. When compact 2-hop labeling
is used, the condition of checking reachability needs to be modified as below: if u � v
is true, then one of the three conditions must be true, (a) Lout(u) ∩ Lin(v) �= ∅, (b)
u ∈ Lin(v) and (c) v ∈ Lout(u). As can be seen in Table 2, 8 � 14 is true, because
8 ∈ Lin(14).

Table 1. 2-hop labeling for the graph in Fig. 3 (b)

T v Lin Lout T v Lin Lout T v Lin Lout

site 1 ∅ 2, 3, 4, 5 item 7 2, 4 ∅ person 15 3, 4, 15 15
europe 2 2 2 buyer 8 3, 8 8 name 16 2, 3, 6 ∅
closed auction 3 3 3 seller 9 3 15 name 17 2, 4, 7 ∅
open auction 4 4 4 seller 11 4 14 name 22 3, 4, 8, 14 ∅
people 5 5 5, 14, 15 bidder 12 4 15 name 23 3, 4, 15 ∅
item 6 2, 3, 6 6 person 14 3, 4, 8, 14 15
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Table 2. Compact 2-hop labeling for the graph in Fig. 3 (b)

L v Lin Lout L v Lin Lout L v Lin Lout

site 1 ∅ 2, 3, 4, 5 item 7 2, 4 ∅ person 15 3, 4 ∅
europe 2 ∅ ∅ buyer 8 3 ∅ name 16 2, 3, 6 ∅
closed auction 3 ∅ ∅ seller 9 3 15 name 17 2, 4, 7 ∅
open auction 4 ∅ ∅ seller 11 4 14 name 22 3, 4, 8, 14 ∅
people 5 ∅ 14, 15 bidder 12 4 15 name 23 3, 4, 15 ∅
item 6 2, 3 ∅ person 14 3, 4, 8 ∅

In the following, for simplicity, we use the non-compact 2-hop labeling to explain
our ideas and we use the compact 2-hop labeling in our testing.

4.2 Reachability Query Processing Based on 2-Hop Labeling

We discuss reachability query processing below based on hops (Definition 1). Recall:
given a hop, hu = (pu, u), pu is a path and u is one of the endpoints of pu. Suppose w
is the other endpoint. There are only two possible cases for pu. One is pu = w � u,
and the other is pu = u � w. Here, w is the center of the hop. In Table 1, all centers
appear in either Lin or Lout. Given a set of hops,H, constructed for a graph G. We can
obtain such a set of centers, denoted W . For each w ∈ W , we can also construct two
sets, H+(w) and H−(w) as below.

H+(w) = {u | w � u, (w � u, u) ∈ H} (2)

H−(w) = {u | u � w, (u � w, u) ∈ H} (3)

Here, H+(w) consists of all nodes that can be reached from the center w, and H−(w)
consists of all nodes that can reach the center w. Both H−(w) and H+(w) together
serve as an inverted index showing that every node in H+(w) can be reached from all
nodes in H−(w). Furthermore, we can efficiently find the nodes in either H+(w) or
H−(w) that are associated with a label Li.

H+(Li, w) = {u | u ∈ H+(w) ∧ λ(u) = Li} (4)

H−(Li, w) = {u | u ∈ H−(w) ∧ λ(u) = Li} (5)

As an example, consider Table 1. H+(14) = {22} and H−(14) = {5, 11}. It suggests
that 22 can be reached from 5 and 11. Furthermore, we have H+(name, 14) = {22},
H−(people, 14) = {5}, and H−(seller, 14) = {11}. It suggests that the seller
identified by node identifier 11 has a name identified by 22.

Reachability query processing. Given the above equations, a reachability query, A �

D, can be processed in two steps. First, it finds all centers w ∈ W in which H+(A, w)
and H−(D, w) are non-empty. Note: both A and D are labels. Second, it produces
the query result by simply pairing every element in H−(A, w) with every element in
H+(D, w), because they must be reachable. The correctness of our reachability query
processing is ensured based on the correctness of 2-hop labeling. Recall: 2-hop labeling
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Table 3. Code Sizes for different XMark Datasets

Graph TreeName Factor Data Set (M)
2-Hop (M) Interval (M) 2-Hop (M) Interval (M)

10M 0.1 11.88 3.97 3.43 4.15 3.11
20M 0.2 23.93 7.97 6.89 8.35 6.26
30M 0.3 39.24 11.89 12.43 12.43 9.32
40M 0.4 47.51 15.83 13.66 16.53 12.40
50M 0.5 59.03 19.81 17.07 20.61 15.45

ensures that, if node v can be reachable from node u in a graph G, there must exist a
center w such as w is reachable from u and v is reachable from w. We maintain the
2-hop labeling. For a reachability query A � D, we check all possible centers w, and
we only report those elements of A that can reach elements D. In other words, we do
not include any results which shall not be include and we do not miss any results.

The size of graph code. The code size of 2-hop labeling in general is similar with the
interval-based code. We will discuss it in our experimental studies. As shown in Table 3,
for example, when the XMark dataset [16] is 59.03MB, the size of 2-hop labeling is less
than a half of the raw dataset, 19.81MB, whereas the interval-based code is 17.07MB.
It implicitly suggests that the space needed for 2-hop labeling is reasonable small. In
the next subsection, we discuss the efficiency of reachability query processing using an
join index.

4.3 Join Index

As discussed in the previous section, our reachability query processing is done in two
steps for A � D: i) finding all centers w ∈ W in which H+(A, w) and
H−(D, w) are non-empty, and ii) pairing every element in H+(A, w) with every el-
ement in H−(D, w). In order to process these two steps efficiently, we propose an
join index which consists of two parts, namely, a center-table and a balanced B+-tree.
The center-table is an implementation of a function, W (A, D), which returns all cen-
ters w ∈ W such as both H−(A, w) and H+(D, w) are non-empty. The B+-tree is
illustrated in Fig. 4. The search key on the B+-tree is a pair 〈Li, w〉, where Li is a

− + − + − + − +
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Algorithm 2. HPSJ(A,D)
1: W ← W (A,D);
2: for each w ∈ W do
3: Search for H−(A, w) and H+(D, w) on the B+-Tree;
4: pair every element in H−(A, w) with all elements in H+(D, w) and output the result;
5: end for

〈name, 2〉
〈name, 3〉
〈name, 4〉
〈name, 6〉
〈name, 7〉
〈name, 8〉
〈name, 14〉
〈name, 15〉

〈seller, 14〉
〈seller, 15〉

+16, 17

+22, 23

+17, 22, 23

+16
+17
+22
+22
+23

−9
−11

...

...
...

...
...

...

〈name, 14〉
〈name, 15〉

〈seller, 14〉
〈seller, 15〉

〈seller, name〉 {14, 15}

〈Li, Lj〉 W (Li, Lj)
. . . . . .

. . . . . .

seller →name

Fig. 5. An Example

label and w is a center. In the leaf nodes of B+-tree, there are two pointers for a search
key 〈Li, w〉, namely, H−

Li
(w) and H+

Li
(w). The B+-tree can be fast constructed using

2-hops, and is easy to maintain. Due to limit of space, we do not discuss the mainte-
nance issues in this paper.

Our HPSJ algorithm is outlined in Algorithm 2, which takes two labels, A and D,
as input, for a reachability query, A � D, and process A � D over a graph which
is stored in our join-index. In the algorithm, we first find the list of centers, W , from
the center-table (line-1). Note: W (A, D) returns centers, w, where both H−(A, w) and
H+(D, w) are non-empty. For each of the centers, w ∈ W , we search the B+-tree part
of the join-index; and report the join results by pairing every elements in H−(A, w)
and H+(D, w).

As an example, we show how to process a reachability query, seller � name,
against the graph representation of XML (Fig. 3 (b)), in Figure 5. First, we identify all
the centers by calling W (seller, name) using the center-table. We obtain two centers,
14 and 15 (Note: W = {14, 15}). We then obtain all seller that can reach name
in both centers, 14 and 15, by searching B+-tree. For example, with the search key
〈saller, 14〉, we find 9 in H−(seller, 14); with the search key 〈name, 14〉, we find 22
in H+(name, 14); and therefore, the seller (9) has a name (22).

5 Performance Study

Our approach can process reachability queries, A � D, over graphs and trees. We
conducted extensive performance studies, in comparison with those algorithms that are
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designed for reachability queries over graphs and reachability queries over trees, re-
spectively. For the former, we compare our proposed HPSJ algorithm against the IGMJ
algorithm [17] over large graphs. For the latter, we compare our HPSJ algorithm with
two index-based structural join algorithms, XR-tree [10] and B+-tree [6] over trees. We
report our results in this section.

The datasets we used for testing are generated using the XMark benchmark [16].
Five factors are used, namely, from 0.1 to 0.5. Given an XMark dataset generated with
a factor. We generate graph data by treating both document-internal links (parent-child)
and cross-document links (ID/IDREF) as edges in the same manner, and we generate
tree data with the document-internal only. The details are given in Table 3. In Table 3,
the first column is the dataset name for easy reference, the second column is the factor
used to generate a XMark dataset. The third column shows the size of the dataset used.
The fourth and fifth columns show the size of the compact 2-hop labeling and the inter-
val [2], for the graph, respectively. The last two columns show the size of the compact
2-hop labeling and the interval [2], for the tree, respectively. All sizes are of the unit of
Megabyte. It is worth noting that, for both graph and tree, the size of the 2-hop labeling
and the size of the interval coding are marginally different. Given a graph and a tree
generated from the same XMark dataset with a certain factor. The size of the 2-hop
labeling code for the graph is smaller than that for the tree, because 2-hop labeling can
cover a rather large number of nodes in graph, in comparison with the case of tree. On
the other hand, the size of the interval code for the graph is larger than that for the tree,
as expected.

We implemented our HPSJ algorithm and the IGMJ algorithm using MS VC++.
We used the code implemented by Jiang and Wang [10] for testing XR-tree [10] and
B+-tree [6] over trees. We conducted our testing on a PC with Pentium 2GHz CPU, 1G
main memory and an 80G SCSI disk. The OS is Windows 2000 Professional.

5.1 Reachability Query Processing over Graphs

For the XMark benchmark, there are many labels in its DTD. A part of the XMark
DTD is given in Fig. 1. We conducted testing over a large number of combinations of
two labels, and report 10 queries in this testing. The 10 queries are selected as they
give different results with different distributions. Table 4 lists the 10 selected queries, in
which the first column is the query id, the second column shows the reachability query,
A � D, the following 5 pairs show the sizes of |A| and |D| for each XMark dataset,
namely, 10M, 20M, etc, for graphs. Here, for A � D, |A| indicates the total number
of A elements that can match D elements, and |D| indicates the total number of D
elements that can match A elements.

We process the 10 selected reachability queries, using HPSJ and IGMJ. The per-
formance results are shown in Fig. 6. There are 5 subfigures, for 5 different datasets,
10M, 20M, 30M, 40M and 50M, respectively, in Fig. 6. In each subfigure, x-axis is the
10 queries, and y-axis is the elapse time in msec. Our algorithm, HPSJ, significantly
outperforms IGMJ in all cases, even though our algorithm uses a slightly larger size of
graph labeling. We explain the reason below. Give a reachability query, A � D. There
are |W (A, D)| centers found in the first step in our algorithm. In the second step, we
only need to search over the B+-Tree of our join-index for |W (A, D)| times. We don’t
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Table 4. Queries for XMark Data Sets as Graphs

10M 20M 30M 40M 50MA � D |A| |D| |A| |D| |A| |D| |A| |D| |A| |D|
Q1 africa � item 1 55 1 110 1 181 1 220 1 269
Q2 closed auctions � reserve 1 592 1 1175 1 1891 1 2319 1 2854
Q3 closed auctions � item 1 2152 1 4317 1 7111 1 8626 1 10565
Q4 europe � incategory 1 2307 1 4490 1 7375 1 8974 1 10945
Q5 namerica � incategory 1 3756 1 7427 1 12531 1 15261 1 18630
Q6 people � incategory 1 4456 1 8888 1 14686 1 17997 1 21762
Q7 closed auctions � bidder 1 6059 1 11937 1 18889 1 23077 1 28755
Q8 item � keyword 2055 4331 4199 8627 6855 14233 8317 17128 10148 20844
Q9 item � text 2175 6462 4350 12830 7177 21257 8700 25664 10657 31371
Q10 item � incategory 2175 8219 4350 16290 7177 27037 8700 32787 10657 40232
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Fig. 6. Reachability Query Processing over Different Graphs

need to check any join conditions but simply pair the results retrieved from B+-tree.
Note: the size of |W (A, D)| has the impacts on the number of searching over B+-tree
used in our join-index. IGMJ behaves like a structural join algorithm, which has to scan
the two interval lists, A and D, once. IGMJ needs to check join condition with some
run-time data structures to support it as shown in Algorithm 1. The cost depends on the
sizes of the two lists, A and D, rather than the size of query result.

We also show the scalability results in Fig. 7 for query Q1, Q3, Q4, Q9 and Q10,
respectively. In each subfigure in Fig. 7, the x-axis is the dataset size, and y-axis is
the elapse time in msec. There are two cases. First, Fig. 7 (a), (b) and (c) show that,
for query Q1, Q2 and Q3, the processing time of HPSJ takes the similar amount of
time, despite the size of dataset increases. On the other hand, the processing time used
in IGMJ increases linearly. It is mainly because that the result size is small. There is
no time needed for HPSJ to check join condition whereas IGMJ needs more time to
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Fig. 7. Scalability of Reachability Query Processing over Graphs
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check the join condition when the dataset becomes larger. For Q1, HPSJ beats IGMJ
by nearly 100 times. Second, Fig. 7 (d) and (e) show that, for query Q9 and Q10, both
the processing time of HPSJ and IGMJ increase while the size of dataset increases. It
is because the result size for query Q9 and Q10 are large. HPSJ takes more time to
retrieve data from disk with more B+-tree searches, because the number of centers can
be large accordingly. Nevertheless, HPSJ is faster than IGMJ in all cases. In particular,
for query Q9, almost all item elements have text sub-elements. It implies that HPSJ
needs more time to retrieve data like IGMJ does to process the two lists. Nevertheless,
HPSJ is about 1.4 times faster than IGMJ.

5.2 Reachability Query Processing over Trees

We show our testing results over XML trees in comparing our HPSJ algorithm with
the two index-based structural join algorithms, namely, XR-Tree [10] and B+-tree [6].
Because the XML trees are used, in this testing, A � D is the same as A//D. In this
testing, we use 5 tree datasets given in Table 3. We only show our result using 6 queries,
Q1, Q4, Q5, Q8, Q9 and Q10. Like Table 4, the result sizes for these queries with are
listed in Table 5.

Table 5. Queries for XMark Data Sets as Trees

10M 20M 30M 40M 50MA//D |A| |D| |A| |D| |A| |D| |A| |D| |A| |D|
Q1 africa//item 1 55 1 110 1 165 1 220 1 275
Q4 europe//incategory 1 2307 1 4490 1 6696 1 8974 1 11187
Q5 namerica//incategory 1 3756 1 7427 1 11414 1 15261 1 19003
Q8 item//keyword 1510 4189 3026 8330 4512 12456 6023 16582 7483 20544
Q9 item//text 2175 6246 4350 12454 6525 18669 8700 24848 10875 30972
Q10 item//incategory 2175 8219 4350 16290 6525 24509 8700 32787 10875 40925

Fig. 8 shows the testing result. As can be seen in Fig. 8, HPSJ, XR-tree and B+-tree
all perform in a similar way due to the similar I/O complexity [10]. HPSJ is faster than
XR-Tree in all the cases, but is slower than the B+-tree algorithm in the cases where
the number of results is large. The testing results for XR-tree and B+-tree show the
similar trends as reported in [12]. In brief, XR-tree cannot perform well if they need
to access the stab lists multiple times, which requires more I/O costs. B+-tree based
algorithm needs to access most of the leaf pages of the index structure. It can be faster
than HPSJ when the result size is large. Another reason that B+-tree outperforms HPSJ
is that there are possible random I/Os when using HPSJ. In other words, H+(Li, w)
and H−(Lj , w) are stored in different disk pages.

Fig. 9 shows the elapsed time of processing reachability queries while increasing the
size of the trees. As seen in Fig. 9 (a) and (b), when there is a small number of query
results, HPSJ outperforms the indexed structural join algorithms at most 44.79 times
and 23.99 times on average. When the query results become big, as shown in Fig. 9 (c),
(d) and (e), HPSJ outperforms XR-tree, and B+-tree outperforms HPSJ, for the reasons
discussed above.
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Fig. 8. Performance on Different Data Sets as Trees
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Fig. 9. Scalability on Trees

6 Conclusion

We studied reachability query processing, which is to find all elements of a type D
that are reachable from some elements in another type A, denoted A � D. We pro-
posed a novel approach which processes reachability queries on the fly. In other words,
we do not need to check any join conditions while processing reachability queries.
Our approach is based on 2-hop labeling for a directed graph G which consumes
O(|V | · log |E|) space. A novel join-index was proposed in this paper which is built
on a small table and B+-tree. With the join-index, the high efficiency is achieved. We
conducted extensive experimental studies. We showed that our approach can signifi-
cantly outperform the up-to-date algorithm for reachability queries over graphs, and
achieve high efficiency for processing reachability queries over trees.
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Abstract. In this paper, we explore the direct use of relations in information re-
trieval for precision-focused biomedical literature search. A relation is defined 
as a pair of two concepts which are semantically and syntactically related to 
each other. Unlike the traditional term-based IR models, our model represents a 
document by a set of controlled concepts and their binary relations. Since 
document level co-occurrence of two concepts, in many cases, does not mean 
this document really addresses their relationships, the direct use of relation may 
improve the precision of very specific search, e.g. searching documents that 
mention genes regulated by Smad4. For this purpose, we develop a generic on-
tology-based approach to extract concepts and their relations; a prototyped IR 
system supporting relation-based search is then built for Medline abstract 
search. We then use this novel IR system to improve the retrieval result of all 
official runs in TREC-2004 Genomics Track. The experiment shows promising 
performance of relation-based IR. The mean of P@100 (the precision of top 
100 documents) for all 50 topics is raised from 26.37 %( the P@100 of the best 
run is 42.10%) to 53.69% while the recall is kept at an acceptable level of 
44.31%. The experiment also demonstrates the expressiveness of relations for 
the representation of genomic information needs. 

1   Introduction 

Precision and recall are two basic metrics measuring the performance of an Informa-
tion Retrieval (IR) system. Often, high precision is at the cost of low recall, and vice 
versa. Nowadays, precision-focused searching is getting more and more attention 
most likely due to the following two reasons. First, in a lot of domain-specific search, 
such as searching the Medline, which collects 14 millions of biomedical abstracts 
published in more than 4600 journals, the professionals normally know what they 
need and their search queries are often very specific and only like to receive those 
documents which meet their specific query; thus, they do not expect a large number of 
documents. Second, the absolute number of returned relevant document is still large 
enough for most retrieval tasks even if the recall is low because of the exponentially 
increasing size of the document collection. 
                                                           
*  This research work is supported in part from the NSF Career grant (NSF IIS 0448023). NSF 

CCF 0514679 and the research grant from PA Dept of Health. 
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Traditional IR models often use a set of terms to index and search documents. A 
term might be a concept from a controlled vocabulary, or a word or a phrase in a 
natural language statement, or a thesaurus entry representing a set of synonymous 
terms [14]. Term-based indexing and searching is convenient for text processing. 
However, this mechanism might lose some useful information such as the correspon-
dence between terms strongly addressed in the original documents. There are full of 
various explicitly asserted biological relationships in genomic and biomedical litera-
ture, e.g. protein interactions and disease complications; these biological relationships 
are exactly what scientists are interested in. Therefore, we hypothesize that the direct 
use of relationships would improve the precision of genomic information retrieval 
(GIR).  

Term-based IR models have to use term co-occurrence to approximate relations 
because there are no direct relations available in their indices. However, the co-
occurrence of two terms in a document, in many cases, does not mean this document 
really addresses their relationships, especially when the co-occurrence count is low 
(e.g. in abstract-based search such as PubMed). Thus, the precision would be com-
promised. We conducted a simple experiment that tried to retrieve documents ad-
dressing the interaction of obesity and hypertension from PubMed1 by specifying the 
co-occurrence of term hypertension and obesity in abstract or title. We then took the 
top 100 abstracts for human relevance judgment. Unfortunately, as expected, only 33 
of them were relevant. 

Fig. 1. The query used to retrieve documents addressing the interaction of obesity and hyper-
tension from PubMed. A ranked hit list of 6687 documents is returned. 

In literature, there are volumes of work using term relationships to improve IR. 
However, their definition of the relationship and the motivation to use relationships 
are different from ours. Their relationships could be roughly classified into two 
classes. One is the co-occurrence relationship; the range for co-occurrence might be a 
document, a paragraph, a sentence, or a fix-sized sliding window [1, 2, 20]. The other 
is the general semantic relationship such as is-a, part-of and synonym [2]. Their appli-
cations of relationships in IR also fall into two categories. One line of work applies 
the correspondence between query terms and document terms into query expansion 
[1]. The other line of work uses the syntactic relationship between document terms to 
estimate a more accurate dependency document model such as bigram and trigram  
[5, 11]. The effect of the dependency model on IR is similar to that of using phrases 
instead of words as the indexing unit. 

Our relation is defined as a pair of two concepts which are semantically and syn-
tactically related to each other. The semantic constraint could be but not limited to 
general is-a, part-of and synonym. In most cases, they refer to domain-specific rela-
tionships. For GIR, the semantic relationships could be interaction, binding, affecting, 
producing, etc. The syntactic constraint is the explicit assertion of the binary relation 
between two concepts in a natural language statement. Many general (e.g. WordNet) 
                                                           
1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 

obesity [TIAB] AND hypertension [TIAB] AND hasabstract [text] 
AND ("1900"[PDAT] : "2005/03/08"[PDAT])
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or domain thesaurus (e.g. UMLS) already define lots of semantic relationships. But if 
the concepts of a relation are not syntactically related in the document they appear, we 
would not treat them as a relationship during both indexing phase and searching 
phase. Thus, our definition of relationship is stricter than that in the previous litera-
ture.  Our motivation for relationship is also different from previous work. We di-
rectly use relationships in conjunction with concepts to index and search documents 
whereas previous work indirectly uses relationships for query expansion or depend-
ency document model estimation. 

 The extraction of binary relations from text is a challenging task. We think this is 
one of the major reasons that no relation-based search engine is reported so far. The 
concept (term) extraction is the first step of the relation extraction. The methods for 
term extraction fall into two categories, with dictionary [13, 21] or without dictionary 
[9, 12, 17, 18]. The later is characterized by its high extracting speed and no reliance 
on dictionary and the capability of predicting new terms. However, it does not extract 
the meaning of a term. Thus, it does not fit for our application. Instead, we apply a 
dictionary-based approach [21] to the concept extraction.  The majority of the litera-
ture use patterns learned by supervised approaches [12] or unsupervised approaches 
[7, 13], or coded by hand to identify binary relations in a natural language statement. 
We apply hand-coded patterns to the extraction of binary relations. 

We finally develop a generic ontology-based approach to extract concepts and 
their binary relations. Based on that, we build a prototyped IR system supporting 
relation-based search for Medline abstracts. We use this novel IR system to improve 
the retrieval result of all official runs in TREC-04 Genomics Track. The experiment 
shows promising performance of relation-based IR. The mean of P@100 (the preci-
sion of top 100 documents) for all 50 topics is raised from 26.37 %( the P@100 of the 
best run is 42.10%) to 53.69% while the recall is kept at an acceptable level of 
44.31%. The experiment also shows the expressiveness of relations for the representa-
tion of information needs, especially in the area of biomedical literature which are full 
of various biological relations. 

The rest of the paper is organized as follows: Section 2 describes the representation 
of documents and queries. Section 3 presents a generic approach to the extraction of 
concepts and relations. Section 4 shows the experiment design and result. A short 
conclusion finishes the paper. 

2   Representation of Document and Query  

Traditional IR models a document and a query as a set of terms. A term might be a 
concept from a controlled vocabulary, or a word or a phrase in a natural language 
statement, or a thesaurus entry representing a set of synonymous terms. The different 
indexing units may produce slightly different performance for IR. But neither of them 
explicitly addresses the relation between terms, i.e. terms in a document are unstruc-
tured. Obviously, a document is full of various relations. For example, biomedical 
literatures contain a large number of biological relationships among gene, protein, 
mutation, disease, drug, etc. Intuitively, the incorporation of such knowledge (repre-
sented by relations) will help improve the precision of an IR system. For this purpose, 
we propose a relation-based document representation mechanism below. 
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2.1   Document Representation 

In the relation-based IR model, we represent a document by a set of concepts from 
UMLS and their binary relations as shown in Figure 2. We use controlled concepts 
rather than words in natural language to index the documents because of the charac-
teristics of the GIR. In genomic-related literature, a term is often comprised of multi-
ple words; the word-based unigram IR model might lose the semantics of the term. 
Meanwhile, severe synonym and polysemy problem in GIR might cause trouble while 
an IR system tries to match query terms with indexing terms according to their names 
instead of meanings [15, 19]. A UMLS concept is a meaning with a unique ID repre-
senting a set of synonymous terms. Thus, the introduction of UMLS concept for in-
dexing may relieve the two above-mentioned problems. 

Fig. 2. A real example of document representation. The document (PMID: 12749816) can be 
found through PubMed. CUI is the unique ID of a concept in UMLS2.  

However, we keep term names in the index because term names do provide addi-
tional information for IR. For example, in the experiment of TREC 2004 Genomics 
Track (see Section 2.2 and Section 4), we use term names to decide if a term (protein) 
belongs to certain protein family. Also, we record the semantic type of a term, the 
category a term belongs to. The semantic type is also useful to express information 
needs (see Section 2.2). 

A relation is defined as a pair of two concepts which are semantically and syntacti-
cally related to each other. We extract all such concept pairs in a document and record 
their frequency. For the simplicity, the relation in our model is undirected.   

2.2   Query Representation 

The query representation is often subject to the mechanism of document representa-
tion. Under traditional term-based IR model, we often use term vector or term-based 
Boolean expression to represent information needs.  In this section, we will first 
                                                           
2 http://www.nlm.nih.gov/research/umls/ 

Terms (CUI, Name, Semantic Type, Frequency) 
T1 (C0003818, arsenic, Hazardous or Poisonous Substance, 9) 
T2 (C0870082, hyperkeratosis, Disease or Syndrome, 4) 
T3 (C1333356, XPD, Gene, 6) 
T4 (C0007114, skin cancer, Neoplastic Process, 1) 
T5 (C0012899, DNA repair, Genetic Function, 3) 
T6 (C0241105, hyperkeratotic skin lesion, Finding, 2) 
T7 (C0936225, inorganic arsenic, Inorganic Chemical, 1) 
...... 
 

Relations (First Concept, Second Concept, Frequency) 
R1 (T1, T3, 3)  R2 (T2, T4, 1) 
R3 (T2, T5, 2)  R4 (T2, T3, 2) 
R5 (T4, T5, 1)  R6 (T3, T4, 1) 
…… 
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briefly introduce the syntax of relation-based Boolean expression and then demon-
strate the effectiveness of this query representation mechanism by the examples from 
TREC 2004 Genomics Track. 

Two types of predicates denoted by concept (T) and relation (R) are available to 
build Boolean expression.  A concept can be specified by any combination of its name 
(STR), unique ID (CUI), and semantic type (TUI). All predicates can be combined by 
AND or OR operator. Here, we use the ad hoc retrieval topics in TREC 2004 Genom-
ics Track3 to illustrate how to use relation-based Boolean expression to represent user 
information needs. 

Topic #1: Ferroportin-1 in humans 
Query: T (CUI=C0915115)  
Notes: C0915115 is the concept ID of Ferroportin-1 in the dictionary of UMLS (Uni-
fied Medical Language System).  All concepts IDs in this paper are based on UMLS. 

Topic #12: Genes regulated by Smad4 
Query: R (CUI1=C0694891 and TUI2=T028) 
Notes: C0694891 is the concept ID of Smad4 and T028 stands for the semantic type if 
Gene. Because a relation is undirected, the query should contain the symmetric predi-
cate R (CUI2=C0694891 and TUI1=T028). However, for the simplicity, we let the IR 
system automatically generate the symmetric predicate R. 

Topic #14: Expression or Regulation of TGFB in HNSCC cancers 
Query: R (CUI1=C1515406 and CUI2=C1168401) 
Notes: C1515406 is the concept ID of TGFB and C1168401 is the concept ID of 
HNSCC 

Topic #30: Regulatory targets of the Nkx gene family members 
Query: R (STR1 like nkx% and TUI1=T028 and TUI2=T028) 
Notes: we assume a term with its name beginning with nkx and with semantic type of 
gene is the member of Nkx gene family. 

We can see that relation-based Boolean expression is neat and powerful to express 
user information needs from above examples. In topic #1, we simply use one T predi-
cate though Ferroportion-1 has lots of synonyms. In topic #12 and #30, we use one R 
predicate in conjunction with semantic types to express a question-answering type 
information need that is very difficult to be represented by term vector or term-based 
Boolean expression. 

3   Extraction of Concepts and Relations 

In this section, we propose a generic ontology-based approach to the extraction of 
concepts and relations. As shown in Figure 3, we first extract term names using do 
main ontology in conjunction with part of speech patterns [21]; then use surrounding 
words to narrow down the meaning of the extracted term, i.e. identifying the concept 
the term refers to in the context. Finally we employ several heuristic approaches to the 
extraction of binary relations. 

                                                           
3 http://trec.nist.gov/data/genomics/04.adhoc.topics.txt 
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Fig. 3. The architecture of the concept and relation extraction system 

3.1   Extraction of Terms 

There are volumes of work on the topic of term extraction from biomedical literatures. 
Most of them use either hand-created rules or machine-learned rules to extract terms 
from text. However, neither of them extracts the meaning of a term that is important to 
our document representation model. For instance, the information extraction (IE) system 
may tell you that Ferroportin-1 is a protein but not tell you what protein it is. For this 
reason, we implement a generic ontology-based approach [21] that identifies not only 
the semantic type of the term, but also its possible meanings. This approach begins with 
part of speech (POS) tagging, then generates candidate terms using POS patterns, and 
finally determines if it is a term by looking up the ontology. 

In this particular project, we take UMLS as the domain ontology. UMLS is built 
from the electronic versions of many different thesauri, classifications, code sets, and 
lists of controlled terms in the area of biomedicine and health. The Metathesaurus of 
UMLS is organized by concept or meaning of terms and provides their various names 
(synonyms), and the relationships among them.  By checking with the synonym table, 
we can easily determine if the candidate (generated by POS patterns listed in Table 1) 
is a term and retrieve possible meanings if yes. 

 
Table 1. Part of Speech Patterns and Examples. NN, NUM, and JJ denote noun, number, and 
adjective, respectively. All article, preposition, and conjunction words will be removed from 
the original text before pattern matching. 

Part of Speech Pattern Examples 
NN NN NN Cancer of Head and Neck 
NN NUM NN DO 1 Antibody 
JJ NN NN High Blood Pressure 
NN NN DNA Repair 
NN NUM Ferroportin 1 
JJ NN Sleeping Beauty 
NN FancD2 
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A term sometimes appears in the form of a pronoun such as it or its abbreviation. It 
is then necessary to figure out what the pronoun or the abbreviation refers to in the 
local context. We then develop a simple heuristic approach to handle abbreviations 
and implement a light method [3] to solve pronominal references. 

3.2   Term Sense Disambiguation 

Using the approach proposed by [21], we may extract more than one meaning for a 
term. For example, Ferroportin-1 has two meanings in UMLS (C0915115: metal 
transporting protein 1; C1452618: Slc40a1 protein, mouse). Thus, we need a sense 
disambiguation component to further clarify the meaning the term refers to in the 
context.  

Inspired by the finding that the ambiguity of many UMLS terms in text is caused 
by the use of short name, abbreviation, or partial name, we develop an unsupervised 
term sense disambiguation approach adapted from Lesk’s word sense disambiguation 
(WSD) approach. The Lesk’s WSD approach basically tags sense by maximizing the 
number of common words between the definition of candidate senses and the sur-
rounding words of the target [10]. Different from Lesk’s approach, our approach first 
use surrounding words (3 words in the left side of the target and 3 word in the right 
side of the target) to narrow down sense candidates. If there is still more than one 
sense left, we then score each candidate. In Lesk’s approach, any word in any sense 
has same weight. Obviously it is not a good assumption for term sense disambigua-
tion. Instead, we borrow the idea from term weighting research and use TF*IDF to 
score the importance of a word for a sense [8]. Then the final formula for sense  
tagging is:  

×=×=
i j

ij

iji
iji

j F

F

n

N
TFIDFS logmaxargmaxarg  

Where:  
N is the number of senses in dictionary 
ni is the number of senses containing Wordi 
Fij is the occurrence of Wordi in various names of Sensej 
Fj is the total occurrence of words in various names of Sensej 

3.3   Extraction of Relations 

A relation is defined as a pair of two concepts which are semantically and syntacti-
cally related to each other. If there is a pre-defined relation between the semantic 
types of two concepts in the domain ontology, these two concepts are simply viewed 
as semantically related. However, the judgment of syntactic relation between two 
concepts is difficult. We propose a heuristic approach for syntactic relation judgment.  

The extraction of biological relationships is a hot topic in the area of information 
extraction. The essence of this line of work is to generalize the syntactic rules for 
certain types of relations in a supervised or unsupervised manner.  However, there are 
two major problems when applying these methods to extract biological relations for 
our IR indexing. First, the indexing component of our IR system is interested in vari-
ous biological relationships. But most of these reported extracting methods are merely 
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tested on protein-protein interactions. Second, the recall of these extracting methods 
seems to low for IR use. For example, the IE system reported by [13] only extracts 53 
relationships with 43 correct from 1,000 Medline abstracts containing the keyword 
“protein interaction”. Instead, we develop a simple but effective heuristic approach 
that first uses clause level co-occurrence to generate concept-pair candidates and then 
apply a set of rules to filter out some candidates. This approach is able to identify 
various biological relationships with high recall and good precision for IR use.  

Term co-occurrence is frequently used to determine if two terms are connected in 
graph-based data mining. Some work takes any pair of two words in a sentence as a 
relation [16]. However, as reported by [4], sentences in Medline abstracts are often 
very long and complex. Thus, if we follow the strategy of [16], many noisy relations 
may be introduced. Instead, we use a clause as the boundary of a relation because 
concepts within a clause are more cohesive than within a sentence in general. We 
implement a light approach that basically uses comma and a set of conjunction words 
(including although, because, but, if, that, though, when, whether, while and so on) to 
split a complex sentence into one main clause and several subordinating clauses. In 
example 1, there are three terms underlined and one relation (obesity and periodontal 
disease). The term epidemiological study has no relation with any of the other two 
terms because it is in a separate clause. 
 
Rule for relation: If two concepts are co-occurred within a clause, but are not coor-
dinating components, and their semantic types are related to each other in domain 
ontology, this concept pair is identified as a binary relation. 
 
Example 1: A recent epidemiological study revealed that obesity is an independent 
risk factor for periodontal disease. 
 
Example 2: Diabetes is associated with many metabolic disorders including insulin 
resistance, dyslipidemia, hypertension and atherosclerosis. 
 
Also, Ding et al. [4] pointed out that coordinating was a frequently occurred phe-
nomenon in biomedical documents and interactions (relations) between coordinating 
components was rare in Medline abstract. Thus, in example 2, diabetes has relations 
with remaining four concepts respectively. But insulin resistance, dyslipidemia, hy-
pertension, and atherosclerosis don’t have relations with each other because they are 
coordinating components. 

In short, we consider a concept pair a binary relation if these two concepts are co-
occurred within a clause, but are not coordinating components, and their semantic 
types are related to each other in the domain ontology. 

4   Experiment 

In this section, we discuss the experiment design and the search engine and document 
collection used for experiment. Then we analyze the experiment result and compare 
the performance of proposed relation-based IR model with other work. 
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4.1   Search Engine and Collection for Experiment 

To our best knowledge, no search engines support relation-based search so far. For 
this reason, we developed a prototyped IR system supporting relation-based Boolean 
search. We implemented conceptual document representation in Figure 2 with a DB2 
database. When a query represented by relation-based Boolean expression (see Sec-
tion 2.2) is submitted, the system automatically converts the Boolean expression to 
ANSI SQL statement and submits the SQL statement to the DB2 system. The proto-
typed IR system is function-limited. It does not support document ranking, but simply 
returns documents that satisfy all predicates specified in the query. 

We use the collection of TREC 2004 Genomics Track in our experiment. The 
document collection is a 10-year subset (1994-2003, 4.6 million documents) of the 
MEDLINE bibliographic database of the biomedical literature that can be searched by 
PubMed. Relevance judgments were done using the conventional "pooling method" 
whereby a fixed number of top-ranking documents from each official run were pooled 
and provided to an individual for relevance judgment. The pools were built from the 
top-precedence run from each of the 27 groups.  They took the top 75 documents for 
each topic and eliminated the duplicates to create a single pool for each topic. The 
average pool size (average number of documents judged per topic) was 976, with a 
range of 476-1450.  Based on the human relevance judgment, the performance of each 
official run could be evaluated (All facts and evaluation result of TREC-04 Genomics 
Track in Section 5 are from [6]). 

Since our goal is to see whether our relation-based IR methods can further improve 
TREC 2004 participants’ retrieval results, we build our search engine on top of search 
engines participated in TREC 2004. For this, we take the documents in pools for each 
topic and eliminate repeated documents across topics to create a single pool for our 
experiment use. The indexing and searching of our prototyped IR system is based on 
this mini-pool containing 42, 255 documents. 

4.2   Experiment Design 

Our goal is to build a precision-focused IR system. The major research question of 
this paper is if relation-based IR outperforms term-based IR in terms of precision. 
Because the current prototyped system does not support ranking, we compare overall 
precision (the precision of all retrieved documents) of our run with P@100 of all runs 
participated in TREC 2004 Genomics Track. Our run retrieved 125 documents on 
average. Thus, the comparison is fair to runs in TREC-04.  

The hypothesis that relation-based IR outperforms term-based IR in terms of preci-
sion is actually based on the assumption that explicit assertion of term relation is more 
useful than document level term co-occurrence when judging if a document addresses 
certain relationship. To test the truth of this assumption, we study if the query R (t1, t2) 
provides higher precision than the query T (t1) and T (t2) in our experiment. 

We are also interested in the recall of relation-based IR though it is not our focus. 
On one hand, the use of relation will lower the recall because the number of docu-
ments returned by R (t1, t2) is always equal or less than by T (t1) and T (t2). On the 
other hand, the use of concept instead of term name well solves the synonym prob-
lem; thus it may increase the recall. So we will study the effect of use of concept and 
relation on the recall of IR. 
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4.3   Analysis of Experiment Result 

Our run retrieves 124.80 documents on average and achieves 53.69% overall preci-
sion and 44.31% overall recall (see Table 5). Because our prototyped system does not 
support ranking, we compare our overall precision with P@100 of TREC 2004 Ge-
nomics Track. This comparison is fair to runs of TREC since our system retrieves 
more than 100 documents on average.  

We first compare the precision on 50 individual topics. Except for topic 16, the preci-
sion of ours outperforms P@100 of TREC on all other 49 topics as shown in Fig. 4. 
Then we compare the precision of our run with P@100 of all official runs in TREC. As 
shown in Table 2, the precision of our run (53.69%) is significantly higher than P@100 
of the top 3 runs and the mean of all official runs (26.37%). It is worth noting that we 
can not say that the precision of our IR system is better than that of other IR systems 
because our search is based on the returns of all other IR systems. But the experiment 
result really tells us that the relation based model is very promising for precision-
focused IR because it significantly improves the precision of other IR systems. 

For seven topics that use a single R predicate like R (CUI1=A and CUI2=B), we fur-
ther change the Boolean expression to T (CUI=A) and T (CUI=B) and search again. As 
expected, the precision is lowered while the recall is improved (see Table 3). That is, the 
binary relation provides higher precision than document level term co-occurrence when 
retrieving documents addressing certain relationships. This is the foundation of the 
claim of the whole paper that relation-based IR model contributes higher precision to 
domain-specific research than term-based IR models. 

The concept-based search can raise the recall of IR especially when a term has lots 
of synonyms because all synonyms share one concept ID.  To test this hypothesis, we 
change seven single T predicate searches listed in Table 4 to term-based searches. As 
expected, the recall of topic 1 and 35 is significantly lowered because both of them 
have many synonyms. 
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Fig. 4. The comparison of the overall precision of our relation-based IR system with the mean 
P@100 of all official runs in TREC 2004 Genomic Track on 50 ad hoc retrieval topics 
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Table 2. The comparison of the precision of our run with official runs participated in TREC 
2004 Genomics Track. Runs in TREC are sorted by Mean Average Precision (MAP) [6]. Be-
cause our retrieval is not ranked, MAP and P@10 are not available; the P@100 of our run is 
actually the overall precision. 

 Run MAP P@10 P@100 
Relation IR (Our Run) N/A  N/A 53.69 
pllsgen4a2 (the best) 40.75 60.04 41.96 
uwntDg04tn (the second) 38.67 62.40 42.10 
pllsgen4a1 (the third) 36.89 57.00 39.36 
edinauto5 (the worst)  0.12  0.36  1.3 
Mean@TREC04 21.72 42.69 26.37 

Table 3. The comparison of the use of relation and concept co-occurrence in IR 

R (t1, t2) T (t1) and T (t2) 
Topic 

P (%) R (%) P (%) R (%) 

P@100 
TREC04 

(%) 
7 35.71 8.70 24.62 27.83 27.04 
8 52.00 8.07 41.05 24.22 20.94 

13 12.00 12.50 8.77 20.83 2.74 
14 100.00 23.81 80.00 23.81 2.70 
15 61.90 14.44 48.08 27.78 18.00 
21 71.43 18.75 52.83 35.00 27.96 
22 30.52 44.76 25.14 65.71 27.09 

Table 4. The comparison of concept-based search and term-based search 

T(CUI=A) T (STR like %B% ) T(STR=B) Topic Name  B 
P (%) R (%) P (%) R (%) P (%) R 

1 Ferroportin 77.59 56.96 84.62 41.77 88.46 29.11 
 6 FancD2 84.09 39.36 84.09 39.36 85.29 30.85 
9 mutY 73.38 98.26 81.75 97.39 81.48 95.65 
35 WD40 97.16 63.10 99.28 50.55 98.28 21.03 
36 RAB3A 98.10 81.50 98.10 81.50 98.53 79.13 
43 Sleeping Beauty 80.56 14.87 77.42 12.31 77.42 12.31 
46 RSK2 92.59 12.69 82.76 12.18 89.47 8.63 

5   Conclusions and Future Work 

In this paper, we proposed a novel relation-based information retrieval approach for 
biomedical literature search. Unlike traditional term-based IR models that use terms 
to index and search documents, our relation model uses controlled concepts and their 
binary relations to index and search documents. Because explicitly asserted biological 
relationships are exactly what scientists are interested in, the direct use of relation  
for document indexing and searching may improve the precision of genomic informa-
tion retrieval. The experiment on the collection of TREC 2004 Genomics Track  
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successfully tested this hypothesis. Besides, we could draw another three conclusions 
from the experiment: 

• An explicitly asserted relation in text is a stronger indicator of a document 
that addresses a binary relation than the document level concepts co-
occurrence. 

• Concept-based search will bring higher recall than term-based search es-
pecially when a searching term has many synonyms. 

• Relation-based Boolean expression is powerful and effective to express 
genomic information needs. 

For future work, we will develop a ranking algorithm for relation-based IR and im-
plement a full-functioned search engine supporting relation-based searching. We will 
also take effort on the extraction of concepts and relations that would further improve 
the performance of the relation-based search. 
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Abstract. Keyword search is an effective approach for most users to search for 
information because they do not need to learn complex query languages or the 
underlying structures of the data. This paper focuses on effective keyword 
search in XML documents which are modeled as labeled trees. We first analyze 
the problems caused by the refinement of result granularity during XML key-
word search and then propose to partition an XML document into XML frag-
ments with the granularity of Minimal Information Unit (MIU). Furthermore, 
we present efficient index structures and the corresponding search algorithms. 
Finally, our comprehensive experiments demonstrate the benefits of our method 
over previously proposed methods in terms of result quality, index size and 
execution time. 

1   Introduction 

Keyword search is now the most popular information discovery method because the 
user does not need to learn any query language, or know the underlying structure of 
the data. Google, as the most famous search engine, provides keyword search on the 
HTML documents of World Wide Web. When the user just inputs several keywords 
on its simple-style homepage, Google can return all the HTML documents that are 
associated with these keywords. Therefore, the search engines of this kind can greatly 
facilitate naïve users to search for information on WWW. 

With XML gradually becoming the de facto standard for data representation and 
exchange, keyword search on XML documents has become an important research 
direction. Although an XML document can be regarded as an HTML document, and 
thus the existing search engine techniques can be used for XML keyword search, the 
XML document has its own characteristics to be exploited. The biggest difference 
between HTML keyword search and XML keyword search lies in the granularities of 
their results. HTML keyword search returns the whole HTML document. The tags in 
the HTML document are just display instructions with no semantic information, so it 
is difficult to partition an HTML document into fragments. On the contrary, the tags 
in the XML document contain certain semantic information, indicating the meaning 
of the data nested. Therefore, we can return just the fragments of the XML document 



 Effective Keyword Search in XML Documents Based on MIU 703 

associated with the keywords, rather than the whole XML document. In XML  
keyword search, the granularity of the search result is refined from document into 
element, which is called Refinement of Result Granularity. Refinement of result 
granularity is very useful and effective in searching on large XML documents, be-
cause it can help the user filter out a great deal of irrelevant information. Besides, 
because XML documents in most practical applications are often far larger than 
HTML documents in size, if we just return to the user the whole XML document, the 
high cost of network transfer will greatly degrade the search performance. 

However, refinement of result granularity also gives rise to several problems. First, 
if some result element is partitioned from the XML document and returned to the 
user, it will be semantically incomplete with its context lost. Consider a sample XML 
document shown in Figure 1. Suppose that the user inputs a single keyword “Ull-
man”, for he wants to search for the information about Ullman’s publications. In this 
situation, all the known researches will return to the user the elements directly con-
taining “Ullman”, such as the second author element in Figure 1, i.e. <author>Jeffrey 
D. Ullman</author>. Nevertheless, for the user, the context information is insufficient 
in such a simple result. He cannot understand whether Ullman is the author of a book 
or that of a paper, needless to say what on earth this publication is. Obviously, such 
search results will never satisfy the user. Therefore, how to make the search results 
semantically complete with necessary context information becomes a pressing prob-
lem to be solved. 

<publ i cat i on>
<books>

<publ i sher>Prent i ce Hal l </publ i sher>
<book>

<t i t l e>Database Concept s</t i t l e>
<aut hor>Davi d M.  Kroenke</aut hor>

</book>
<book>

<t i t l e>A Fi r st  Cour se i n Database Syst ems</t i t l e>
<aut hor>Jef f r ey D.  Ul l man</aut hor>

</book>
. . .

</books>
. . .

</publ i cat i on>  

Fig. 1. A Sample XML Document 

Second, the search results gained through using the existing techniques still contain 
much irrelevant information. Still consider the XML document in Figure 1. Suppose 
that the user wants to search for the information about Ullman’s books published by 
Prentice Hall, and thus he may input the keywords “Ullman Prentice Hall”. All the 
known researches return the smallest elements containing “Ullman”, “Prentice” and 
“Hall” in the XML document, such as the first books element. Obviously, such a re-
sult will not satisfy the user as well, because it contains all the information of the 
books published by Prentice Hall. Thus, what the user really wants is still submerged 
in the sea of irrelevant information. Of course, in comparison with returning the 
whole XML document, it is a big step forward to simply return the first books  



704 J. Xu et al. 

element, because all the information of the books published by other presses has been 
filtered out. Yet, all in all, it is still a problem how to achieve a finer result granularity 
to filter out irrelevant information. 

Third, refinement of result granularity may lead to invalid search results. The 
commonest situation is that different keywords are matched with different parts of the 
XML document. Because there is no or weak relationship among these parts, such 
search results mean little to the user. The root cause of the problem lies in that the 
keywords belong to different entities, among which there exists weak relationship. 
Thus, how to identify entities in the XML document and their relationships to reduce 
invalid search results as much as possible becomes another challenge. 

This paper makes the following contributions: (1) Based on the analysis of the 
problems caused by refinement of result granularity, we give the definition of Mini-
mal Information Unit (MIU) and present the algorithm of partitioning the XML 
document into MIUs. (2) Regarding MIU as the granularity of indexing and search-
ing, we design efficient index structures and the corresponding search algorithms. (3) 
We conduct an extensive experimental study with real-life as well as synthetic XML 
data sets to validate the effectiveness and efficiency of our method. Our results dem-
onstrate significantly improved result quality and search performance. 

The rest of this paper is organized as follows. In Section 2, we review related work 
about XML keyword search. In Section 3, we present the data model that we use and 
the query semantics. Then, Section 4 states the definition of MIU in the XML docu-
ment and the algorithm of partitioning the XML document into MIUs. Section 5 pre-
sents efficient index structures and the corresponding search algorithms. Section 6 
contains experiments that show the effectiveness and efficiency of our method. Fi-
nally, Section 7 concludes this paper. 

2   Related Work 

At the present time, there are mainly two directions in the researches on XML key-
word search. One is to add full-text search features and ranking to accurate XML 
query languages such as XML-QL[5, 6, 7]. The advantage of these languages after 
extension is the accuracy of the search results. However, all these languages are not 
suitable for naïve users, because they need to learn the syntax of complex query lan-
guages, and know the structures of XML documents. 

The researches in the other direction make good use of the characteristics of the 
XML document to carry out keyword search. These researches mainly include: 
XRANK[1], XKeyword[2], XSEarch[3] and XKSearch[4]. XRANK is the first to 
realize that the granularity of the search result can be element. And it puts forward 
DIL algorithm, which merges the lists of inverted index items to find out all the ele-
ments containing all the keywords. XKeyword is the extension of keyword search in 
the relational databases—DISCOVER[8]. Regarding an XML document as a graph, 
XKeyword transforms XML keyword search into proximity search among the key-
words in the graph. From the angle of semantics, XSEarch solves, to some degree, the 
problem of invalid search results. XKSearch brings forward ILE algorithm, which is 
used to search for all the SLCAs (Smallest Lowest Common Ancestor) in the XML 
tree. ILE algorithm outperforms DIL algorithm when the search contains the  
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keywords with significantly different frequencies. The SE variant is tuned for the case 
where the keywords have similar frequencies. 

The above-mentioned researches all make contributions to the development of 
XML keyword search in the second direction, but most of them do not realize the 
problems caused by refinement of result granularity. Therefore, the problems stated in 
Section 1 will appear in their search systems. In addition, there also exist in them 
some other defects, which are pointed out in the following sections. 

3   Data Model and Query Semantics 

3.1   XML Data Model 

An XML document can be regarded as a labeled tree. The leaf node is the data value, 
and the inner node the element. An XML document contains nested elements, and 
each element has its own attributes, values or subelements. To facilitate the expres-
sion, attributes can be regarded as subelements, too. In the XML tree, a value node is 
represented with a pane, and an element node with a circle. 

Definition 1. XML Data Graph DG = (N, E, ROOT, LabelNE, ValueNV, Order). N=NE
NV. N is the set of nodes, in which NE is the set of element nodes, and NV is the 

set of value nodes. A node n has its unique global number id(n). E N×N. E is the set 
of containment edges. ROOT NE. ROOT is the unique root node. Function La-
belNE(n) returns the tag of element node n, and function ValueNV(n) returns the value 
of value node n. The child nodes of an element node are in order. Function Order(n) 
returns a number that represents the relative position of node n among its siblings. 

Definition 2. XML Schema Graph SG = (NE, E, ROOT, LabelNE, CardinalityE). NE 
is the set of element nodes. E NE×NE. E is the set of containment edges. ROOT
NE. ROOT is the unique root node. Function LabelNE(n) returns the tag of element 
node n, and function CardinalityE(e) returns the cardinality of containment edge e. 
Suppose that, in the XML schema graph, e connects node n1 with node n2, and n1 is 
the parent node of n2. Function CardinalityE(e) calculates the scope of times n2  
may appear as the child nodes of some specific node n1 in the corresponding XML 
data graph. CardinalityE(e) is represented as c1:c2, in which c1 is the minimum times 
of appearance, while c2 the maximum times. If c1 c2 m, c1:c2 can be simplified as 
m. Please note that the difference between the XML schema graph and the ordinary 
DTD graph lies in that the former exactly records the cardinalities of containment 
edges in a specific XML document, whereas the cardinalities in the latter may just 
represent approximate scopes, sometimes even far different from the real situation of 
the document. 

In the XML schema graph, if the cardinality of containment edge e is 1 or 0:1, e is 
called the edge of low frequency, otherwise the edge of high frequency. Figure 2 is 
the text of an XML document, and Figure 3 is the XML data graph of the document. 
We can see that only the leaf nodes, which are the value nodes, contain the really 
useful information. Figure 4 is the XML schema graph of the document, in which the 
edges of high frequency are represented with the thick lines. Moreover, the cardinality 
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Fig. 2. XML Document (DBLP) 

    

                         Fig. 3. Data Graph (DBLP)                              Fig. 4. Schema Graph (DBLP) 

of each containment edge is marked beside the edge. For instance, the cardinality of 
the edge between node conference and node year is 5:15, which means that for any 
conference, it has been held at least for five years and at most for fifteen years. 

3.2   Result Definition of Keyword Search 

Keyword search Q is the keywords submitted by the user. Suppose that Q {w1, w2, 
..., wk}. XKSearch defines the result set of keyword search as all the SLCAs. The  
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so-called SLCA node is the element node in the XML tree and satisfies the following 
two conditions: (1) the subtree rooted at the node contains w1, w2, ..., wk; (2) there 
does not exist any subtree of the subtree mentioned in (1), which also contains w1, w2, 
..., wk. 

XKSearch defines the result set as all the SLCAs, so it may lose some results. For 
example, in the XML tree of Figure 5, suppose that k1 and k2 are the keywords sub-
mitted by the user. Through observation, it is not difficult to find out that the search 
results should be the two XML fragments shown in Figure 5, whose root nodes are 
node 1 and node 4 respectively. However, in XKSearch, because node 1 is the ances-
tor node of node 4, node 1 will, according to ILE algorithm, be removed by the pro-
cedure removeAncestor(). Obviously, such removal is not appropriate. The root cause 
of this problem just lies in that the definition of the result set made in XKSearch has 
its deficiency. 

 

Fig. 5. SLCA & XLCA 

To solve the above-mentioned problem, XLCA (eXclusive Lowest Common An-
cestor) is proposed on the basis of SLCA and defined as follows: first of all, for an 
XML data graph T, find out all the SLCAs of T; these SLCAs are just XLCAs;  
second, remove from T the fragments rooted at these SLCA nodes, and then find out 
again all the SLCAs of T, which are left out by ILE algorithm but revealed after the 
removal; these SLCAs are also XLCAs; the second step repeats until there is no 
SLCA in T. It can be seen that all the XLCAs are exclusive, i.e. non-overlapped. 
From the definition, SLCA must be XLCA, while XLCA is not necessarily SLCA. 

Suppose that xlca(T) is the set of all the XLCAs in an XML data graph T, and that 
slca(T) is the set of all the SLCAs. We define the result set of XML keyword search 
as all the XLCAs, that is, xlca(T). For T, slca(T) xlca(T). We can see that the defini-
tion of the result set made in XKSearch is not complete, because it cannot find out 
xlca(T) slca(T). For example, in Figure 5, XKSearch cannot find out the fragment 
rooted at node 1, but we can because the XLCA node set just includes node 1  
and node 4. Note that from Section 4 MIU is regarded as the granularity of indexing 
and searching. Therefore, since then, XLCA is composed of MIUs, rather than  
elements. 
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4   Minimal Information Unit 

4.1   Definition of MIU 

Keyword search aims at searching for the information of the entities associated with 
the keywords. Entity should be the finest granularity of the search result, otherwise 
the information returned to the user may be semantically incomplete. The search re-
sult should also contain the necessary context information, which requires returning to 
the user the entities closely related to those directly containing the keywords. Mean-
while, the entities that have no or weak relationship to those directly containing the 
keywords should also be filtered out as much as possible. Therefore, the first step in 
keyword search is to identify all the entities in the search target. 

An XML document is a set of entities. The element in the document represents the 
entity in the real world or its attribute. For example, in Figure 3, the paper element 
refers to the paper entity, and its title subelement serves as the title attribute of the 
paper entity. Each entity can have one or more attributes. Attributes can be simple or 
composite. A specific entity is just an instance of certain entity type. In the XML 
document, it means that there exist elements of the same type but with different con-
tents. Besides, there exists certain relationship of containment between entities. Simi-
larly, in the XML document, it means that there exists nesting between elements. For 
example, dblp is the set of several conferences. Since a conference is held in different 
years, it can be further divided by year. Then, in a specified year, the conference con-
tains many papers. 

Definition 3. Minimal Information Unit (MIU) of DG is an XML fragment in DG. Its 
root node refers to the entity it represents, and all the descendant nodes refer to the 
attributes of the entity. This fragment as a whole makes up an information unit with 
relatively complete semantics. Similarly, we can also define the Minimal Information 
Unit of SG. To distinguish between them, we name MIU of DG dMIU, and MIU of 
SG sMIU. The former represents the specific entity, while the latter refers to the en-
tity type. Usually, there are several dMIUs corresponding to one sMIU. 

The introduction of MIU is conducive to solving the problems caused by refine-
ment of result granularity. First, after the recognition of dMIUs, the search result can 
be composed of dMIUs representing entities, rather than arbitrary elements. This 
makes its components semantically complete.  Second, only after the recognition can 
the entities in the context be identified and returned to the user. In this way the search 
result can contain the necessary context information. Third, it is not until the recogni-
tion of dMIUs that we can filter out the entities unrelated to those directly containing 
the keywords in order to further reduce the irrelevant information. 

XSEarch solves the problem of invalid results by means of judging the relationship 
between two elements. XSearch holds that different elements with the same tag  
represent different entities of the same type, and so concludes that they are semanti-
cally unrelated. This kind of judging method is so severe that it probably judges some 
valid results to be invalid. Take the XML tree in Figure 6 for example. Suppose the 
user submits the keywords “Prentice Hall Database”, for he wants to search for the 
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   Fig. 6. A Sample XML Tree                          Fig. 7. Partitioning of Schema Graph 

Information about books on Database published by Prentice Hall. However, be-
cause“Prentice Hall” and “Database” are both in the elements with the same tag 
“name”, XSEarch will hold that “Prentice Hall” and “Database” belong to different 
entities of the same type, and so they are semantically unrelated. Therefore, it will not 
return the result to the user. Yet, it is not the fact. After partitioning an XML docu-
ment into MIUs, the different elements with the same tag must belong to different 
dMIUs. So what can be solved by XSEarch can also be achieved by our method. 
What’s more, our method has its own advantage. We do not think that there is no 
relationship between different dMIUs. Instead, in Section 5, we give a mechanism to 
judge the quality of the result according to its classification. 

4.2   Partitioning of MIU 

Some nodes in the XML tree have no real meanings, and usually have no attributes. 
The nodes of this kind only serve for connection, like node dblp in Figure 3, so we 
call them connection nodes, or dumb nodes. 

The algorithm of partitioning SG into sMIUs is described as follows: In SG, 
through removing all the edges of high frequency and then removing all the isolated 
nodes (i.e. connection nodes), all the subgraphs acquired are sMIUs of this SG. Take 
the SG in Figure 4 for example, the partitioning is demonstrated in Figure 7. 

To partition the XML document into dMIUs, we first carry out the preprocessing, 
i.e. scanning over its XML DG. After the acquisition of its corresponding XML SG, 
we partition SG into sMIUs according to the above-mentioned algorithm. Then, we 
can partition DG into dMIUs according to the acquired sMIUs. 

4.3   Tuning of MIU 

The edges of high frequency can be further divided into the weak edges of high fre-
quency and the strong edges of high frequency. The former are the edges of c2 , in 
which  is a tunable parameter, while the latter are the edges of c2 . 

In some situations, because of practical needs, we can tune the partition of SG  
to gain sMIUs with the coarser granularity. After fixing the value of , we can re- 
gard all the weak edges of high frequency as the edges of low frequency, and reparti-
tion SG. 
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4.4   Indexing of MIU 

Dewey encoding is a numbering technique widely used in the context of general 
knowledge classification. The common used numbering method in XML keyword 
search is as follows: (1) the dewey number of the root node is 0; (2) suppose that the 
dewey number of some node is x, then the dewey number of its first child node is x.0, 
the second is x.1, and so on. In Figure 3, each node of the XML tree is numbered 
according to dewey encoding. The length of a dewey number is defined as the number 
of components it contains, like |0.0.1| 3. The length is just the depth of the corre-
sponding node in the XML tree. We can also know whose value is bigger between 
two dewey numbers by comparing the first component at first; if the same, then the 
second, and so on, like 0.0.1.1.0<0.1.1.1. Furthermore, the number of the root node 
can be specified as the document number as well, thus supporting the global number-
ing of the document set. Note that what we index is the root nodes of dMIUs, so we 
can greatly reduce the lengths of the dewey numbers as well as the quantity of them. 

5   Search Algorithms Based on MIU 

5.1   Classification of Search Results and System Indexes 

According to the result quality in terms of semantics, the results of keyword search Q
{w1, w2, ..., wk} can fall into two categories: the optimal results and the common 

results. The optimal result means that w1, w2, ..., wk appear in the same entity, i.e. in 
the same MIU. The common result means that w1, w2, ..., wk appear in several enti-
ties, i.e. in several MIUs. The common results can be further divided into the linear 
common results and the non-linear common results. The linear common result means 
that w1, w2, ..., wk appear in several entities which have close context relationship 
with each other. In other words, w1, w2, ..., wk appear in several MIUs which have 
ancestor-descendant relationship. They appear on the same path originating from the 
root. And the non-linear common result means that w1, w2, ..., wk appear in several 
entities which have loose relationship. In other words, w1, w2, ..., wk appear in several 
MIUs and no path originating from the root can contain all of these MIUs. 

The known researches all regard element as the finest granularity. Consequently, 
it is difficult, from the angle of semantics, to classify the search results. The existing 
researches usually acquire at first all the results and then sort them using information 
retrieval techniques. By contrast, this paper takes MIU as the finest granularity. The 
search results are divided into three categories: the optimal, linear common and non-
linear common results. Obviously, from the angle of semantics, the optimal results 
are superior to the common ones, and, in most situation, the linear common results 
are superior to the non-linear common ones. Therefore, we can calculate succes-
sively the results of the three categories. If the result output of the search system is 
based on top-k, the search may finish earlier when the optimal result set (or the linear 
common result set) is searched out. Furthermore, from section 5.2, we can see that 
the time and space cost is quite low in searching for the optimal results and the linear 
common ones. 

To support keyword search, we design efficient index structures. First of all, with 
regard to the XML document to be searched, we establish an inverted index of MIU 
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numbers in the external storage. For each keyword w in the document, there is a list 
of inverted index items, miuIL[w], which contains all the dewey numbers of the MIUs 
where w appears directly. Besides, the MIU numbers in the list are arranged at first in 
the descending order according to length, and then, for those with the same length, 
they are arranged in the ascending order according to value. For the XML document 
in Figure 2, miuIL(SIGMOD)={0.0, ...}, miuIL(2003)={0.0.1, ...}, miuIL (Querying) 
={0.0.1.1, ...}, miuIL(XRANK)={0.0.1.2, ...}, ... Second, we establish an inverted 
index of PATH numbers. For each keyword w, there is a list of inverted index items, 
pathIL[w], which contains all the numbers of the paths where w appears. The PATH 
numbers in the list are arranged in the ascending order according to value. For the 
XML document in Figure 2, pathIL(SIGMOD)={P1, P2, ...}, pathIL(2003)={P1, P2, 
...}, pathIL(Querying)={P1, ...}, pathIL(XRANK)={P2, ...}, ... 

5.2   Searching for Optimal Results and Linear Common Results 

The optimal result is an MIU which contains w1, w2, ..., wk. Suppose that the miuIL 
lists corresponding to w1, w2, ..., wk are respectively miuIL[w1], miuIL[w2], …, 
miuIL[wk]. Algorithm 5.1 can calculate the optimal results through merging 
miuIL[w1], miuIL[w2], …, miuIL[wk]. It optimizes the process of merging as well. 
The search for the results is carried out successively from the low level to high level. 
Thus, if different are the lengths of the MIU numbers that the current k pointers point, 
the MIU numbers on lower levels can be directly skipped. In this way, we only need 
to compare their lengths, rather than the specific redundant MIU numbers. 

Algorithm 5.1 computeOptimalResults

while (miuIL[w1]<>Ø & ... & miuIL[wk]<>Ø) {
minlength=min{|top(miuIL[w1])|, ..., |top(miuIL[wk])|}
for(i=1;i<=k;i++)

while (|top(miuIL[wi])|>minlength) {
remove(top(miuIL[wi]));
if (miuIL[wi]==Ø) exit;}

rearrange the order of miuIL[w1], , miuIL[wk]
to make the value of top(miuIL[w1]) the smallest

temp=remove(top(miuIL[w1]));
for(i=2;i<=k;i++)

if (top(miuIL[wi])==top(miuIL[w1])) remove(miuIL[wi])
else break;

if (i==k+1) output(temp);
}

 

Fig. 8. Searching for the Optimal Results 

The linear common result is composed of several MIUs, and each MIU contains at 
least one keyword. Moreover, there exists ancestor-descendant relationship among 
these MIUs, that is to say, they appear on the same path originating from the root. 
Suppose that the pathIL lists corresponding to w1, w2, ..., wk are respectively 
pathIL[w1], pathIL[w2], …, pathIL[wk]. We can calculate the linear common results 
through merging pathIL[w1], pathIL[w2], …, pathIL[wk]. The algorithm is similar to 
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that of searching for the optimal results. With limited space, the detailed description 
of the algorithm is omitted here. 

5.3   Searching for Non-linear Common Results 

Algorithm 5.2 presents the algorithm of evaluating the non-linear common result set, 
which is called BUP (Bottom-up Pass) algorithm. The basic idea of BUP algorithm is 
as follows: the search process starts from the lowest level of the XML tree, bottoming 
up one level after another; during the process, the information on the keywords is 
passed upwards along the path level by level; once some MIU node contains all the 
keywords (some of them may be passed here from the lower levels), the correspond-
ing XML fragment will be regarded as a search result. 

This algorithm uses a list, miuList, to store the relevant information on the MIU 
nodes in the current level which contain the keywords or whose subtrees contain the 
keywords. The steps of the algorithm are described below. For the current level l, (1) 
check the miuList to see if there exist the MIU nodes containing all the keywords. If 
there do exist, remove the nodes from the miuList. Then check the removed nodes. If 
they do not belong to the optimal or linear common results, output the XML frag-
ments corresponding to them; 2) after checking level l, pass the information on the 
keywords of the remaining nodes in the miuList to their parent nodes(level l-1), and 
replace all the child nodes with their parent nodes. If there exist several child nodes 
with the same parent node, merge the subtrees together and meanwhile record in the 
parent node the position of each child node containing keywords; 3) read the numbers 
of the MIU nodes in level l-1 from the miuIL list of each keyword, and merge them 
with the miuList. Note that, in step 2, we record the accurate information on the posi-
tions of the keywords, so the XML fragment returned is not necessarily the whole 
subtree which probably contains much irrelevant information. In step 3, if there does 
not exist the keyword wi in level l-1 or in its upper levels, further check if wi exists in 
the miuList. If there is none, either, then the algorithm can finish earlier. 

In algorithm 5.2 l is the level currently under review. miuList.KS represents the set 
of keywords appearing in miuList. miuList[i].KS represents the set of keywords ap-
pearing in the subtree which takes miuList[i] as its root. Function prefix() returns the 
prefix of the dewey number with the designated length. merge(miuStart, miuEnd-1) is 
to replace the nodes in the miuList from miuStart to miuEnd-1 with their parent node. 
Simultaneously, the information on the positions of these child nodes is recorded to 
filter out irrelevant information later. Function miuILLevel(wi,level) returns the set of 
the MIU numbers in miuIL[wi], each of which has the same level level. 

BUP algorithm will be further demonstrated with the example in Figure 5. First, 
review the lowest level, i.e. the third level to examine every node where k1 or k2 ap-
pears. Because there is no node which contains all the keywords, every node where k1 
or k2 appears on the third level passes upwards to its own parent node the information 
on the keywords. Thus, node 5 passes the keyword k1 to node 4, and node 6 passes the 
keyword k2 to node 4. And when it comes to the nodes on the second level, it is found 
that node 4 contains all the keywords, and thus the corresponding XML fragment is 
output. Likewise, node 2 and node 3 pass k1 and k2 respectively to node 1, and when it 
comes to the nodes on the first level, it is found that node 1 contains all the keywords, 
and thus the corresponding XML fragment is output. 
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Algorithm 5.2 BUP Algorithm

miuList=Ø;
level=docdepth+1;
while (level>0) {

//check for results
if (miuList<>Ø) {

for (i=0;i<size(miuList);i++) {
if (miuList[i].KS contains all keyword) {

if ((miuList[i] not in OptimalResultSet)
  & (miuList[i] not in LinearCommonResultSet))
output(miuList[i])

delete(miuList[i])}}
}
//pass keyword information to their parents
if ((miuList<>Ø) & (level>1)){

miuStart=0;
while (miuStart<size(miuList)) {

miuEnd=miuStart+1;
while ((miuEnd<size(miuList))
     & (prefix(miuList[miuStart],level-1)==prefix(miuList[miuEnd],level-1)))

miuEnd++;
merge(miuStart, miuEnd-1)}

}
//read keyword information of the upper level
level--;
if (level>0) insert miuILLevel(w1,level), , miuILLevel(wk,level) into miuList
for (i=0; i<k; i++) {

if ((miuILLevel(wi,level)=Ø) &  & (miuILLevel(wi,1)=Ø) & !(miuList.KS contains wi))
exit;

}  

Fig. 9. Searching for the Non-linear Common Results 

Now we compare our work with XRANK. First, DIL algorithm proposed in 
XRANK searches for the results from left to right with the sequence of the results 
having no regularity in terms of semantics. By contrast, BUP algorithm presented in 
this paper adopts the bottom-up search strategy. Intuitively speaking, the deeper re-
sults contain the richer context information, so they are usually the better results from 
the angle of semantics. The bottom-up search strategy can guarantee that the deeper 
results will be produced first, that is to say, the results with richer context information 
will be produced first. Therefore, in terms of semantics, the sequence of the results 
produced by BUP algorithm is obviously better than that of DIL algorithm. Thus, in 
the situation where the response time is strictly demanded, the results produced by 
BUP algorithm can be directly output. Second, for DIL algorithm, even if, at some 
moment in the process of search, it is predictable that the index items left will not 
produce results any more, it is not until all the index items are scanned that the results 
can be output. Whereas, BUP algorithm carries out a predictable check whenever it 
finishes its search on one level; if it is predicted that no new result will be produced, 
the search can finish earlier. In addition, the stack-based DIL algorithm searches from 
left to right, and so will involve large quantities of push and pop operations on the 
stack when the keywords appear randomly in the XML tree. However, the above-
mentioned operations do not exist in BUP algorithm with its adopting the bottom-up 
search strategy, and it only needs to neglect the several components in the rear part of 
the dewey numbers when passing upwards the information on the keywords. 
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6   Experimental Evaluation 

We experimentally evaluate the techniques presented in this paper. First, we investi-
gate the space savings due to the MIU partition. Second, we present some evidence 
that our search results are of high quality from the angle of semantics. Finally, we 
evaluate the performance of our search algorithms. 

6.1   Experimental Setup 

For our experiments, we use both the DBLP and XMark data sets. DBLP, the popular 
computer science bibliography database, is widely used in XML benchmarking. In the 
version we use, there are almost 100,000 records, totaling about 80MB of data. We 
filter out the references and other information only related to the DBLP website and 
group first by journal/conference name, then by year. We also generate an 100MB 
XMark data set. We choose to experiment with the DBLP and XMark data sets for 
they represent real-life and synthetic data sets, respectively. The experiments have 
been carried out on a PC with a 3.0GHz Pentium IV processor and 1GB of RAM. 

6.2   Space Savings 

To the best of our knowledge, the existing works all take element as the finest granu-
larity. However, we take MIU. Table 1 gives the space requirements of the two ap-
proaches. As shown, the element approach incurs a significant space overhead for 
both DBLP and XMark. It is because the indexing scope of the element approach 
covers all the elements. By contrast, the MIU approach requires less space because its 
indexing scope covers all the MIUs, and one MIU just contains several elements. In 
our experiments, the average number of elements in one MIU is 7.8. Furthermore, the 
index item in the MIU approach has a shorter length because the dewey number of the 
MIU is just that of the root node of the MIU. 

Table 1. Space Requirements of the Different Approaches 

 DBLP XMark 
 Inv. List PATH List Inv. List PATH List 
For element (XRANK) 136MB N/A 205MB N/A 
For element (XKSearch) 177MB N/A 258MB N/A 
For MIU 78MB 21MB 132MB 26MB 

6.3   Result Quality 

Each search result produced by our system is composed of MIUs rather than elements. 
Thus, the components of the search result have semantically complete information. 
Moreover, the existing works do not take the context information into consideration 
and their search mechanism cannot obtain the necessary context information automati-
cally. By contrast, in our search system, it is easy to obtain such information. 

We choose four typical keyword searches for the experiments in this and the next 
sections. Q1={Ullman}, Q2={keyword, search}, Q3={SIGMOD, XML}, Q4={XML, 
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 Fig. 10. Percentages of Irrelevant Information                      Fig. 11. Total Search Time 

relational}. First, we compare the percentages that irrelevant information occupies in 
the search results acquired through DIL algorithm, ILE algorithm and our search 
algorithms respectively, which is shown in Figure 10. In terms of refinement of result 
granularity, the existing researches can only reach the level of element without further 
filtering out the irrelevant information in the elements. Our search algorithms out-
weigh DIL algorithm and ILE algorithm in this aspect, especially in the situation the 
keywords appear across levels, which means that the keywords submitted by the user 
do not appear in the same level, when a great deal of irrelevant information may ap-
pear in the lower levels. From the figure, we can find out that the percentages that 
irrelevant information occupies in our search results remains steady and in a compara-
tively lower level, while those in the results of DIL algorithm and ILE algorithm are 
in a higher level and vary a lot. 

6.4   Search Performance 

We now evaluate the search performance of the different algorithms. Figure 11 shows 
the total search time of DIL algorithm, ILE algorithm and BUP algorithms respec-
tively. From the figure, we can find out that the total search time taken in BUP algo-
rithm is the least, while DIL a little more, and ILE the most. In the experiments, we 
also validate that when keywords have significantly different frequencies, the search 
speed of ILE algorithm is faster than DIL algorithm and BUP algorithms, which is 
determined by its algorithm scheme. However, for ILE algorithm, it is just the per-
formance in the special situations of this kind. Usually, ILE algorithm has no such 
predominance, and just as stated in Section 3, it cannot guarantee that all the possible 
results will be found out. 

7   Conclusion 

In this paper, with the focus on effective keyword search in XML documents, we first 
analyze the problems caused by the refinement of result granularity during XML 
keyword search, and then give the description of how to partition an XML document 
into XML fragments with the granularity of Minimal Information Unit (MIU). By 
regarding MIU as the granularity of indexing and searching, we design efficient  
index structures and the corresponding search algorithms. Through the sufficient 
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experimental evaluation, we demonstrate that our index structures and query evalua-
tion techniques do provide significant space saving and performance gains. And our 
search results are semantically complete with necessary context information remain-
ing and irrelevant information filtered out. 
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Abstract. In this paper we present a quality model highlighting the complete-
ness of sensor data with respect to its application. The model allows consis-
tent handling of information loss as data propagates through a sensor network.
The tradeoffs between various factors that influence completeness are quantified
thereby allowing an integrated view of completeness at various levels in a sys-
tem. The paper is presented in the context of the fast emerging field of smart
spaces. All concepts in the paper have a foundation in real-life problems arising
in this context. Preliminary implementation results are presented to illustrate the
value of the completeness based approach versus one that does not use complete-
ness.

1 Introduction and Motivation

Applications in the fast emerging field of smart spaces [1, 2] use data collected and
aggregated from sensors of many modalities to monitor entities and environments and
assist in decision making. Information rich sensor data, such as image and audio, is
used in conjunction with basic context information such as location, identity, and time
to carry out classification, inferencing, and other categories of recognition tasks.

A major problem in such systems is information- or data-loss. Data may be lost at
many stations from the sensor to the application. Besides the sensors themselves, losses
may arise from the transmission medium, e.g., radio attenuation or network congestion.
In this paper we present a quantitative model for such loss. The model is based on an
intuitive notion of sensor data completeness that measures the amount of data reaching
a point of consumption compared to the maximum amount of data possible at that point.
In related work [3] we have investigated data loss that arises from delay or congestion
within the networking layer, and present an admission control scheme for regulation of
such loss.

1.1 A Smart Home Application

We consider as an example, an application that analyzes the pacing behavior of elderly
dementia patients in their homes [4]. This application relies on sensor readings that
need to be updated and reasoned about rapidly, while at the same time analyzing the
knowledge thus generated to answer complex high level queries about the patient. For
example, in connection with the home of a dementia patient (Fig. 1), a doctor might
ask “Does the person become highly agitated while he is exhibiting abnormal pacing
behavior in the living room?” [5]. An answer to this query involves accessing a set of
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c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Home Layout

location sensors that determine position and
can accurately classify pacing behavior from
other forms of movement, and a number of
body worn accelerometers, which generate
2D or 3D instantaneous acceleration data.
From this data it is possible to infer through
some high-level pattern classification algo-
rithms, what was the type of behavior that the
person was exhibiting.

Each of three rooms of Fig. 1 is equipped
with a passive infra-red sensor PIR1, PIR2
and PIR3, passing information to a proxy
(Fig. 2), whether a person is in that room.

Because we assume only a single person in the house, the proxy translates this data
into a single attribute stating the room in which the person is. In addition, each room
is equipped with two ultrasound distance sensors (Da, Db, ..., Df ), which measure
the distance of some object to the sensor. Usually, the distance of the opposite wall is
reported, but when the person is in the room, the sensors report the distance to that
person. The data from the two sensors of each room are passed to the proxy, which
derives the position of the person in the room. Finally, the person is equipped with an
on-body sensor, namely a 2D body worn accelerometer, which generates two readings
BWAx and BWAy.

Fig. 2. An Example Sensor Query System Scenario showing the Virtual Table

Tab. 1 (left) shows the raw data as produced by the sensors. We assume that the
smallest granularity time period (system data rate) for this application is 1 second. We
will measure completeness as the ability of the overall system to produce data values
for each relevant measure in each time period. The following completeness-relevant
observations can be made from Tab. 1:
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Table 1. Raw data from sensors (left) and data produced by the set of proxies (right)

– The ultrasound sensors have long stretches of almost constant data. During those
periods they are measuring their distance to the opposite wall.

– Sensor Db stopped working for seconds 9 - 13.
– At second 22 no passive infrared sensor detects a person. This can happen during

transition of the person from one room to the other.
– Sensor Dd has a too fast internal clock. Originally it was synchronized with sensor

Dc to deliver distance data simultaneously. This is important to derive exact posi-
tion data at the proxy. After a while, Dd reports data for second 12, even though the
measurement actually occurred in second 11. After corrective actions of the proxy
in second 19, the two sensors are in synch again.

Tab. 1 (right) shows the data produced by the set of proxies. The following com-
pleteness relevant observations can be made:

– The system data rate remains (by definition) at 1 second. This rate is globally set
and true at all levels, except for the query data rate as specified in the user require-
ments.

– The distance data was used to derive positional information for each room. Accord-
ingly, as soon as one of the two distance values was missing, no positional value
can be derives (lines 9-13).

– Some rounding has taken place.
– Both the accelerometer readings have undergone PCA (Piecewise Constant Ap-

proximation) compression. Thus, only a few values remain.
– The passive infra-red (PIR) data was aggregated to form the “Room” attribute val-

ues. In cases where the PIR values conflict (line 16) or give no information (line
22) no value is provided.
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1.2 Sample Queries with Completeness Awareness

In this section we present three sample queries that illustrate how completeness may be
used in the system. The high level queries are as follows: a) “Is there a person in one
of the three rooms?”, b) “Is the person in the room pacing abnormally?” and c) “Is the
person highly agitated?”

Passive infrared sensors are used to determine the presence of a person in one of
the three rooms. Upon detection, ultrasound sensors are used to get accurate pacing
trajectories to classify them as normal or abnormal. Once abnormal pacing is identified,
body worn accelerometer readings are taken to detect the onset of agitation.

Query 1: “Every 10 seconds generate a PIR sensor reading for each room.”
The above sample query indicates whether a person is present in one of the rooms.

The completeness level of the information provided could be increased by upgrading to
a greater requirement of completeness to get precise position information once a person
is detected to have entered a given room.

Query 2: “Every second generate the position of the person in the Living Room.”
The previous sample query gathers position information through external observa-

tion, with a high degree of completeness. Once the pacing is detected to be abnormal,
an additional query at a still higher level of completeness is issued to the body worn ac-
celerometer to gather data and collect it for fine grained motion analysis at the analyst’s
workstation.

Query 3: “Every 0.1 second generate a set of accelerometer readings.”
In a typical sensor query system, sensors can switch between sleep, idle, and active

states to prolong battery life. Due to lack of any well defined conventions, sensors are
generally operating at a predefined constant sampling rate while switching into a active
state. In addition, to meet the requirements of a certain range of applications, sensors
are easily to be operated at a sampling rate that is higher than necessary for some ap-
plications. Such over-fed data unnecessarily reduces the query processing performance
and wastes system resources in terms of transmission bandwidth and battery power.

1.3 Contributions and Paper Structure

The main contribution of this paper is a model highlighting the completeness of sensor
data: (i) The model allows consistent handling of information content losses as data
propagates through a sensor network. (ii) The model considers factors that influence
completeness and allows trade-offs between the sensor data completeness and system
resource consumption to be configured based on application requirements. (iii) An im-
plementation of the model in a “smart home” application context demonstrates all the
concepts introduced in the paper. Our implementation results illustrate the value of the
completeness based approach versus one that does not use completeness. Query run-
ning times are greatly reduced and system resources are conserved as over-fed data are
cleared from the data operation and transmission paths.

We have presented thus far, a simple example of a “smart home” that is able to
monitor the health and well-being of its resident. We have emphasized the importance
of information completeness in such an application. We have also put together the con-
cepts discussed in this paper into an example system that illustrates various types of
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processing taking place, and some sample queries in this environment. In order to keep
the presentation and analysis simple, we have only introduced only three modalities
of sensors. In our current deployment of sensors in a hospital ward ([5]) we have a
much richer diversity of sensing modalities including pressure sensors, microphones
and video cameras. Feature extraction allows us to filter massive amounts of source
data into streams of relevant information which are then stored in a relational database.
The remainder of the paper is structured as follows. In Sec. 2 we present a completeness
model for sensor data. The model permits us to express query completeness as well as
data completeness in a unified framework. Sec. 3 introduces the notion of predicting
quality highlighting the fact that such predictions allow fine-tuning and optimization of
sensor configuration. Sec. 4 discusses a proof of concept implementation set up in our
laboratory, and introduces preliminary results. Sec. 5 discusses related work; conclu-
sions and future work are discussed in Sec. 6.

2 A Completeness Model for Sensor Data

Completeness is but one of several information quality criteria, albeit an important one.
It is a measure for how much data reaches a point of consumption compared to the max-
imum amount of data possible at that point. The more complete some data is, the higher
the quality of conclusions on that data are. Examples for conclusions are aggregations
on the data, which again have a completeness value, and medical diagnosis, which are
not measured by their completeness but by their clinical success.

In this section we lay the foundation of our completeness model for sensor data
by first defining what the maximum amount of data is, i.e., our reference point. Then
we formally define completeness and show in the following sections how it is affected
by different operations along the sensor query system components and operations per-
formed by them.

2.1 Data Rates in Sensor Systems

Given a component, the rate at which data is produced by the component is called its data
rate. Rates are defined as the average number of data items produced within some fixed
duration, usually millisecond. There are five types of data rates that are important for us:

System data rate (SysDR). The system data rate is the maximum data rate that pre-
vails for all sources and end users in a system. The system rate should be at least the
maximum of all other data rates. It is fixed once at setup and merely serves as a point of
reference. SysDR is chosen so that all other rates can be defined as multiples of SysDR.

A system producing data at system data rate is the maximum a system can produce.
Typical rates at the user-end of a sensor system are much lower. The typical system
data rate of a monitoring system, such as the one described in Sec. 1.1, is 1/msec (or
1000/sec), i.e., no component produces data at a higher rate than that.

Sampling data rate (SampDR). The sampling data rate is the rate at which a sensor
obtains samples from its environment, as determined by physical limitations or by con-
figuration settings. The sampling rate may be set during setup or changed dynamically
by an application or by the sensor itself.



722 J. Biswas, F. Naumann, and Q. Qiu

Typical sampling data rates are 0.1/sec for the IR sensors, 0.1/sec for idle distance
sensors, and 1/sec for active distance sensors.

Sensor data rate (SensDR). The sensor data rate is the rate at which a sensor com-
municates data to the outside world—usually to a base station, or to the next hop in a
multi-hop sensor network. Sensor data rate can be lower than the sample data rate to
save energy. For instance, a sensor might measure temperature once per second, but is
configured to only communicate if there is a change in temperature.

Operator data rate (OpDR). The operator data rate is the rate at which a logical op-
erator in the sensor network produces data. Usually the operation is an aggregation, but
could also be a selection, projection, transformation, or even a dispatch-type operation.
Operator data rate can be lower or higher than the data rates of its input. For instance,
an aggregation operator might aggregate groups of ten data items received from a sen-
sor, and thus have an operator data rate of on tenth of the sensor data rate. On the other
hand, an operator might produce data at a higher rate than its input if it fills input gaps
with data. In the temperature example above, an operator might receive data only if the
temperature changes but produces a constant stream of data, using the last available
input data. Also note that input is not necessarily sensor data, but can in turn be data
from another operator.

Environment
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Fig. 3. Different data rates in a sensor
system (wide arrows indicate high data
rate)

Query data rate (QDR). The query data rate is
the rate at which the end user or application would
like to see data delivered in a query response. It is
dictated by the application requirements. For in-
stance, an clinician might be satisfied with a av-
eraged temperature data for a patient that is based
on a temperature reading every minute: The query
data rate is 1/60000 per millisecond. On the other
hand, an application tracking fast objects, such
as automobiles, can only produce reliable results
with a data rate of 1/100, i.e., 10 readings per
second.

We use the query data rate to measure the qual-
ity of the system. If the operator data rate of the
final operator is at least as high as the query data
rate, the setup and configuration of the sensor sys-
tem is acceptable. If it is lower, the overall quality
is diminished.

For brevity from here on, we omit the term
“data” from the different data rates. Fig. 3 shows the points in a sensor system where
the individual data rates are defined. The system itself has an overall system rate. Two
sensors measure the environment at different sampling rates and produce data at dif-
ferent sensor rates. A transformation operator leaves the data rate unchanged; a filter
operator reduces the data rate and thus has a lower operator rate. An aggregation again
produces data at some operator rate, which is consumed by two applications, each with
different requirements, expressed as query rate. Application 1 has a lower query rate
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and is thus adequately supplied by the sensor system. Application 2 has higher query
rate than the incoming operator rate. Thus, its overall quality is diminished.

The mentioned data rates are determined by different means: Data rates of sen-
sors (SampDR and SensDR) are usually determined by the manufacturer and can be
configured using embedded software. The operator data rate is dynamically set during
runtime. It depends on the algorithms involved and their internal parameters. Finally,
and most important is a means to determine the query data rate QDR. This involves two
subproblems: First determining the “right” QDR for the application at hand, and second
specifying the QDR in a query. We leave the first problem to the expert and provide a
model for the second.

2.2 Completeness

In this section we describe how we translate actual data rates of a running system into
a single completeness value measured over a certain period, which can be compared
with the requirements of the query. To this end we construct one virtual relation V R
for each data transfer level of the system. The first column of V R always represents the
time-dimension. Time increments are determined by the system data rate, i.e., if SysDR
is 1 /sec, there is a row for each second. The other columns represent different sensors
or operators producing data at that level of the system.

We distinguish two kinds of completeness for columns (see definitions later):

– System completeness: Completeness with respect to the system data rate.
– Query completeness: Completeness with respect to the query data rate.

Tab. 1 show the virtual tables of the smart home scenario as described in Sec. 1.1. If
we regard each data item in a relation as a cell, some of the cells could be unoccupied
or occupied by null value, i.e., SensDR and OpDR are less that SyDR. The proportion
of data bearing cells to null valued cells in a set of cells indicates the completeness
of the group of cells. Regard the Distb column of Tab. 1. The sensor stopped produc-
ing output values for five second, thus, the system completeness of this column for the
overall period of 29 seconds is 24/29 or 0.83. Regarding the entire table, we calculate
its completeness as 29+24+15+14+15+15+29+29+29+29+29

29∗11 = 257
319 ≈ 0.81. Due to ag-

gregation, some columns of Tab. 1 naturally contains less values. To account for this
effect, completeness for aggregated columns is calculated differently as we explain in
the following paragraphs.

Definition 1 (System completeness). Let n be the number of sensors represented in
the virtual relation V R, let d be the duration of measurement for a given application
or query, and let v be the number of non-null values in V R. Then system completeness
of V R is SysComp(V R) := v

n·d .

In the previous and the next definition we assume all sensors represented in V R to be
relevant for a query. Next, query completeness reflects the fact that the usually very high
system rate is higher than the requirement of the query. Thus for query completeness,
we take as a basis the query rate QDR and not the system rate SysDR.

Definition 2 (Query Completeness). Corresponding to Definition 1, query complete-
ness is defined QComp(V R) := SysComp(V R)·SysDR

QDR .
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Consider for instance a system data rate of 1 per millisecond and a query data rate of 1
per min or 1/60000 per millisecond. Consider further a series of sensors and operators
producing a final system completeness of 1/1000 (1 per second) at the querying site.
Then query completeness is 1

1000/ 1
60000 = 60, i.e., the query requirements are well

met. In fact, completeness is 60 times higher than necessary, indicating potential to
decrease sensor data rates. A QDR of 2 per second on the other hand evaluates to a query
completeness of 1

1000/ 1
500 = 1/2, i.e., the query requirements are not met indicating a

need to increase sensor data rates or operator data rates.
In Sec. 3 we show how to calculate system completeness without knowing the pre-

cise value of v, thus utilizing the completeness measure to gauge the effectiveness of
the sensor networks for different applications.

3 Predicting Quality

The main idea of calculating completeness and propagating its scores from the sensors
over proxies to the final application is to model the information using a virtual table
between each level of nodes. The schema of this table represents the data that is passed
between the nodes. This schema includes columns for the “split” values for different
sensors. The completeness of this virtual table can easily and formally be defined by
counting NULL-values. In real-world scenarios, this virtual table is never materialized,
so one cannot count values. Instead, it is necessary to predict the number of null-values
based on setup of sensor data rates, properties of the sensors themselves, and opera-
tions at the proxy levels. This calculation should be performed bottom up: Given the
completeness of the sensor data, completeness values at various higher levels (proxies,
application, and query) can be mathematically predicted.

The following paragraphs list formulas to calculate completeness through various
operations. Together, these formulas build a completeness model, similar to the known
cost-models of conventional DBMS optimizers.

3.1 Completeness of Sensor Output

Sensors output data at their individual sensors data rate, thus “filling” the virtual rela-
tion. If SensDR(si) is the sensor data rate of sensor si, the output data completeness of
si is, SysComp(si) = SensDR(si)

SysDR . By ignoring for now various factors that influence
completeness, the system completeness of VR that is filled with only raw sensor data
from n sensors is SysComp(V R) =

∑
i SensDR(si)
SysDR·n .

As SensDR of a sensor closely depends on its SampDR, which can generally be set
to a wide range of different values on the fly, one possible dimension to manipulate data
completeness is through dynamically configuring SampDR of a sensor.

3.2 Completeness Through Several Typical Sensor System Operations

Virtual relations are not only filled with raw sensor data, but, at higher levels, by var-
ious operations. A comprehensive algebra to manipulate data completeness through
every possible sensor system operation is left for further work. In this section we con-
sider a few logical data operators that are most commonly encountered in typical smart
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home systems of the type described in Sec. 1.1, and their effects on completeness are
characterized. It is noted that the formulas listed below for completeness calculation
are not necessarily unique, nor the most precise ones, but based on our experience they
are simple and effective to provide a good estimation on completeness in real systems.
A more general discussion on the completeness influence of data operations is left to
future work.

Logic-OR Data Operator: This type of data operation can be abstracted as an operation
that integrates N time series inputs,{s1, s2, . . . , sn}, into one time series output, sor,
and the integration logic is OR, that is, for each time, a non-null value reading from
any among the N inputs lead to a non-null value in the output. This type of operation
is mainly to describe in-network data aggregation ([6]), which is essential for wireless
sensor networks where resources such as bandwidth and energy are limited. In such
in-network data aggregation, intermediate nodes may aggregate several events reported
from different sources into one event as sensor readings can be correlated, e.g., detection
of the same phenomenon. Based on our experience, a good estimation of OpDR for this
type of operation is OpDRor(s1, s2, . . . , sn) = max(SensDR(s1), SensDR(s2),
. . . , SensDR(sn)).

Therefore, the system completeness of the aggregated output can be estimated as
SysComp(sor) = max(SysComp(s1), SysComp(s2), . . . , SysComp(sn)).

Logic-AND Data Operator: This type of data operation can be abstracted as an opera-
tion that integrates N time series inputs, {s1, s2, . . . , sn}, into one time series output,
sand, and the integration logic is AND, that is, for each time, a null value reading from
any among the N inputs lead to a null value in the output. The operation is mainly to
describe that columns in VR can possibly be the results by fusing raw sensor data from
multiple sources. For example, in an object tracking system, the position data can be the
integrated results of fusing the distance readings from two nearby ultrasonic sensors. A
typical join operation on sensor data based on only the timestamp can also be described
as this type of operation. Based on our experience, a good estimation of OpDR for this
type of operation is

OpDRand(s1, s2, . . . , sn) = min(SensDR(s1), SensDR(s2), . . . , SensDR(sn))

Therefore, the system completeness of the fused output can be estimated as,

SysComp(sand) = min(SysComp(s1), SysComp(s2), . . . , SysComp(sn))

Compression Operator: In sensor networks, wireless communication is the key fac-
tor to consume resources in terms of bandwidth and energy. It is common for sen-
sors to compress time series readings instead of sending them in raw form. One of
simplest yet effective sensor data compression method is Piecewise Constant Approx-
imation (PCA) ([7]), which is adopted in the system we built. In PCA, the time data
series D to be processed is represented as a sequence of n segments, PCA(D) =
(v1, e1), (v2, e2), . . . , (vn, en), where en is the end point of a segment and vn is a con-
stant value for time in [en−1 + 1, en]. Here we assume the value at en−1 + 1 is used for
vn. With such approximation, d(i) is estimated as

d(i) =
{

v1 if i ≤ e1
vm if em−1 + 1 ≤ i ≤ em
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Let k = em − em−1, that is, every k samples share a constant, and scompr be the com-
pressed output, OpDR for this type of data compression is, OpDRcompr = SampDR

k .
Therefore, the system completeness of the compressed output can be estimated as,
SysComp(scompr) = SysComp(D)

k .

Aggregation Query Operator: Aggregation queries, such as COUNT, MIN, MAX and
SUM, occur frequently in such systems and their completeness handling requires a slight
twist. By definition, an aggregation operator has multiple values, {s1, s2, . . . , sn}, as
input and a single value, saggr , as output. Completeness associated with such operators
should reflect the completeness of the input, i.e., relatively how much data went into
the calculation of the aggregate, and not the single output value. Therefore, the system
completeness of the single aggregated output value is defined as,

SysComp(saggr) = avg(SysComp(s1), SysComp(s2), . . . , SysComp(sn))

4 Prototype and Experimental Results

In this section, a preliminary prototype implementation of the concepts discussed in this
paper is presented. The prototype demonstrates the value of the proposed completeness
model through an experimental implementation of the patient behavior monitoring sys-
tem described in Sec. 1.1.

4.1 A Sensor Query Engine with Completeness Awareness

A sensor query engine with completeness awareness is built to perform a preliminary
evaluation of the proposed data completeness model. This sensor query engine is imple-
mented by introducing a middleware layer on top of the relational SQL engine, MySQL.
The main functions of this layer include,

– Self-discovery of the available sensors in the system,
– Maintenance of a relational table in MySQL for each sensor with real-time update,
– Generation of appropriate views of the full Virtual Relation, by full-outer-join op-

eration on all the relevant tables within a particular time window,
– Adjustment of the sampling rate of each sensor on the fly, based on data complete-

ness.

In the prototype, original SQL queries are supported with two new clauses, COMP
and TIME, as shown in Fig. 4. The COMP clause enables the possibility to explicitly in-
dicate the completeness requirement of any available attribute in the VR. The complete-
ness requirement indicated may be used for both configuring the system and accessing
the quality of query results. In this initial version of our prototype, completeness is
closely coupled with sampling rate adjustment of related sensors for future queries and
PCA [7] compression ratio selection for past queries. The TIME clause is used to sup-
port simple continuous queries by specifying the beginning and end of the monitoring
duration as well as the frequency at which the query is to be executed.
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4.2 Experimental Setup and Measurements

Fig. 4. Sensor Query Engine with Com-
pleteness Awareness

A replica of the home layout shown in Fig. 1
is set up in the lab. Each of the three rooms—
kitchen, dining room and living room—is
equipped with two ultrasonic sensors and one
passive infra (PIR) sensor. A person with body
worn accelerometer is assumed to be wander-
ing inside the house. All sensors are installed
on the CrossBow MicaZ mote platform. The
data gathering process is shown in Fig. 2. Due
to the small number of sensors used, and also
the small spatial separation among sensors, a
very simple network topology is employed,
in which each sensor directly communicates
through a wireless link with a common proxy attached to a PC. Thus, all proxies and
the user node of Fig. 2 are actually co-located at the same node. To emphasize the effect
of the completeness model, no additional sensor management scheme is employed; in
other words, all sensors are kept active during the monitoring period.

As discussed above, in such patient behavior monitoring systems, a wide range of
factors are available for us, e.g., sensor sampling rate, data operation or sensor schedul-
ing, to explore the flexibility of meeting query completeness requirements but simul-
taneously reducing system resource consumption and increasing query performance.
In our experiments, we wished to see how the completeness model could help in im-
proving query performance and system resource planning for future queries through the
selection of appropriate sensor sampling rate. Without completeness awareness, to sat-
isfy the requirements of all three queries described in Sec. 1.2, the predefined constant
sampling rates for PIRs, ultrasonic sensors and BWA needed to be set to at least 0.1, 1,
and 10 samples per second continuously. The system with such a set of minimal con-
stant sampling rate settings is used as a comparison against a system with completeness
awareness, where the sampling rate of each sensor is dynamically selected based on
query completeness requirement, while answering Query 2.

The VR for Query 2, shown in Tab. 1, is generated as a view of combining the output
of all five proxies:

CREATE VIEW HOUSEHOLD
SELECT * FROM P1, P2, P3, P4, P5
FULL OUTERJOIN ON Time

The SysDR is defined here as 1 per millisecond. As indicated, the required QDR
in Query 2 for position data, which are represented as X and Y coordinates (PosXab,
PosYab), is 1 per second. To achieve full query completeness, the following condition
should be satisfied:

QComp(PosXab) ≥ 1.

Based on the definition of query completeness,

QComp(PosXab) =
SysComp(PosXab) · SysDR

QDR
,
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The SysComp requirement to be specified in the query is,

SysComp(PosXab) ≥
QDR

SysDR

With the new completeness clause COMP, Query 2 can be posed as:

SELECT PosX_ab, PosY_ab FROM HOUSEHOLD
WHERE Room = "Living Room"
AND COMP(PosX_ab) >= 0.001

As shown here, the required QDR for the application, which may be provided by ex-
perts, is implicitly specified in the query through the indication of system completeness
requirement. For attributes without any completeness requirements a default system
completeness value, 0.0001 in this experiment, is assumed.

As a logic-AND type operator is used to derive the position information by fus-
ing distance data from two ultrasonic sensors Distb and Distb, based on the algebra
discussed in Sec. 3, we have,

SysComp(PosXab) = min(SysComp(Dista), SysComp(Distb)),

Based on the discussion in Sec. 3 we have

SysComp(Dista) =
SensDR(Dista)

SysDR
, SysComp(Distb) =

SensDR(Distb)
SysDR

and

SensDR(Dista) = SampDR(Dista), SensDR(Distb) = SampDR(Distb)

As specified in the query, to satisfy the query completeness we should have

SysComp(PosXab) ≥ 0.001

With the set of equations above, we found such completeness requirement can be satis-
fied with

SampDR(Dista) ≥ 1 per second, SampDR(Distb) ≥ 1 per second

Results were collected by posing Query 2 over our sensor query system with and
without completeness awareness respectively. The query period, which is the duration
of measurement for a query each time, is varied in experiments.

From the experimental results, we observe that by satisfying just the necessary
query completeness, through our completeness planning, we can achieve much bet-
ter query response performance as shown on the left of Fig. 5. This is the case, even
though the overall system completeness is low as shown on the right. In addition, there
is greater system resource saving, in terms of bandwidth and energy, as shown on the
left of Fig. 6 and better query completeness satisfaction as shown on the right.
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Fig. 5. Running Time (left) and System Compl. of VR (right) of Query 2
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Fig. 6. Amount of Data Processed (left) and Query Completeness of Position Data (right) for
Query 2

5 Related Work

There are two major areas of related work, namely information quality and Data Stream
Management Systems (DSMS). A systematic and formal approach to the measurement
of information quality, and the combination of such measurements for information inte-
gration are presented in [8]. These approaches are based on notions of coverage, density
of information, ranking of information sources, query-specific attribute weightings, and
a number of ways of selecting between multiple sources of data. IQ bounds are dis-
cussed in [9] and related to the notion of query completeness in this paper. Determining
the “size” of a data source, i.e., its coverage, its not a new problem. Most notably,
Motro and Rakov define a “completeness” criterion, which matches our coverage crite-
rion [10]. Motro suggests to add “completeness assertions” to the query result, adding
more meaning to the result [11]. Completeness assertions are statements, such as “the
data contains all recordings on the CBS label”. These assertions are aggregated along
query plans in a similar fashion to our coverage along mapping paths. Thus, the author
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can give qualitative statements about the completeness of results, but not quantitative
statements as we do. Finally, Florescu et al. quantitatively describe the content of dis-
tributed autonomous document sources using probabilistic measures [12]. Their model
calculates two values: “Coverage” of data sources, determining the probability that a
matching document is found in the source, and “overlap” between two data sources,
determining the probability that an arbitrary document is found in both sources. These
probabilities are calculated with the help of word-count statistics.

The early work in the area of continuous queries led to the identification of stream
processing as as new problem [13, 14, 15, 16]. It is found in [15, 16] that a key chal-
lenge for the design of a DSMS is to provide approximation and adaptivity in executing
continuous queries, because data rates and query load may exceed available resource.
Our proposed completeness model can provide a quantitative approach to handle the
interaction between resource management and query approximation in such DSMS by
simply treating those approximation techniques [16, 17], such as synopsis compression,
sampling and load shedding, as various knobs in our model.

The most well known and distributed sensor based system is the Berkeley MOTE.
In [18] the authors describe the query language for the MOTE, the database TinyDB
and its support for continuous queries. In [19] is presented ideas on tree-based pro-
cessing of in-network aggregation and the subtleties of its cost-benefit analysis, and
wave scheduling. In [20] the authors discuss the main issues that apply to sensor based
query processing. High level approaches have been outlined in [21] and [22]. Finally,
[23] discusses continuously adaptive queries over streams in the face of changing query
workloads and data rates.

6 Conclusions

As a first step we have introduced a simple model for information completeness, which
is a criterion for information quality. The model is evaluated in a unique application set-
ting that is based primarily on sensor data sources. Factors affecting completeness are
characterized and a simple analytical model illustrates how a trade-off can be made be-
tween avoidable and unavoidable factors that affect completeness, thereby giving some
means for achieving desired completeness levels without paying too high a price. Al-
though a system should contain components such as reasoning systems, knowledge-
bases, databases, and stream management, only the lower portion of such a system has
actually been modeled and analyzed in this paper. Higher level components of such
systems must be integrated to gauge the effectiveness of the entire scheme of dealing
with information completeness.

On the positive side, query completeness is a notion that can be used in many ways
and to many ends. This paper illustrates how query completeness can be used to al-
leviate sensors from unnecessarily high sampling rates. Other uses are conceivable,
such as sensor selection and sensor management as well as resource management. In
future work we shall be continuing to develop a sound understanding of important cri-
teria for information quality such as completeness. Our aim is to apply these ideas in a
manner that permits easy development of context aware applications for smart spaces.
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We also intend to develop a formal model for completeness based on the informal model
presented herein.
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Abstract. Sybase ASE (Adaptive Server Enterprise) is a cost based database 
system. Statistics information plays a key role in the costing model of ASE 
optimizer. Typically, up-to-date statistics is critical in selecting an optimal 
query plan with good performance. However, updating statistics is a resource 
intensive maintenance operation. A common user concern is the lack of input 
on when statistics needs to be updated and also the time taken to maintain the 
statistics. In this paper, we introduce a new solution for automating statistics 
maintenance in Sybase ASE 15.0. Our solution includes a new metric for 
evaluating data changes due to DMLs (Data Management Language), the use of 
a scheduler to generate rules to gather statistics based on feedback from the 
metric and random sampling of data when gathering statistics. This approach 
will make statistics maintenance more intelligent and efficient, and reduce the 
TCO (Total Cost of Ownership) significantly. 

1   Introduction 

Commercial databases have increased in size and complexity due to the proliferation 
of enterprise data. Recent survey results indicate an unprecedented growth in data 
volume, with OLTP systems as large as 23 TB [1]. Based on the logical and physical 
state of the system and the kind of query being optimized, there is an expectation on 
the query processor to evaluate many different access plans and provide the most 
efficient plan. To achieve this, modern query processors rely on accurate statistics that 
represent the underlying distribution of data in the system. Such statistical data 
typically includes the number of rows in a table, number of leaf pages in an index, 
histograms representing distribution of data in a column, and the number of distinct 
values in a column. The query optimizer uses this information to estimate the number 
of rows processed at each step of a plan, thereby assessing the cost of all competing 
plans and picking the plan that has the least cost. In the absence of accurate statistics, 
cost estimates can be different from the actual values, which can result in poor choice 
of a query execution plan and affect performance dramatically. 

In applications that have sudden bursts of data coming in, or columns that 
encounter frequent data changes, statistics can become stale very rapidly causing 
unreliable throughput and response times. Some statistics such as the number of rows 
in a table or the leaf count of an index are dynamically updated whenever there are 
DMLs (Data Management Language). It is expensive to dynamically maintain column 
level statistics. Hence, such statistics have to be refreshed by manually configuring 
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statistics maintenance. However, updating statistics is a resource intensive operation 
that must be scheduled at appropriate maintenance windows when the load on the 
system is light. 

A key pain point in statistics maintenance is the difficulty in determining which 
columns would benefit from having statistics and which existing statistics require a 
refresh. The second issue is that while not having accurate statistics could lead to a 
less-than-optimal plan, running statistics maintenance operations too frequently could 
greatly impede critical operations. The time taken to refresh statistics is a matter of 
concern as well, since this operation requires table scans and leaf-level scans of 
indexes and the use of CPU cycles to perform data sorts together with a significant 
use of data cache. Hence, statistics maintenance is an onerous task for database 
administrators. 

All of the above issues can be addressed to make statistics gathering more 
intelligent in order to free up valuable administration time and move towards a self-
administering system. 

The rest of the paper is organized as follows: In Section 2, we introduce some 
related works and background of this topic. In Section 3, we introduce the Sybase 
solution in ASE15.0. An outline of the sampling algorithm and some experimental 
results showing its effectiveness is presented in Section 4. We conclude and address 
our future enhancement in Section 5. 

2   Background 

Efficient processing of statistics is a requirement of all major commercial databases. 
Identifying which objects in the database need statistics, how often to refresh these 
statistics and when to schedule this maintenance operation are issues that need to be 
addressed by every intelligent statistics system. To this end, several major players 
have developed automatic statistics update mechanisms such as Microsoft SQL 
Server [8], Oracle 10g[2], ASA as well as DB2 UDB [4]. 

The Sybase solution to intelligent statistics maintenance is a three-pronged 
approach. The user problems described earlier can be divided into three areas:  

• When to update statistics  
• How to automate this task  
• How to make statistics maintenance more efficient.  

We introduce a new “datachange” metric that functions as a measure of the change 
of data distribution in an object since the last statistics refresh. This provides 
administrators with some guidance to determine if the existing statistics have become 
stale. We propose the infrastructure for power users to be able to update statistics 
through pre-canned templates in order to conserve resources. Finally, statistics 
maintenance is made more efficient by reducing the size of the dataset. 

This is achieved in two ways. The first is by the use of random data sampling when 
statistics is being gathered. The second way is by the use of semantic data partitions, 
wherein the data is partitioned and stored in smaller chunks and statistics maintained 
at the level of the partition (see Fig.1). Semantic data partitioning is not the focus of 
this paper and will not be discussed at length. 
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Fig. 1. Framework for intelligent statistics management 

3   Intelligent Statistics Management in Sybase ASE 15.0 

3.1   Overview of Statistics in ASE  

Statistics in Sybase ASE is stored in system catalogs. This includes table level 
statistics such as the number of rows in a table, number of pages etc and column level 
information. The “update statistics” command is used to collect and maintain these 
statistics. This command allows for statistics to be gathered at various levels of 
granularity, such as for all indexes of the table, for all columns in a partition of the 
table, or for non-indexed columns. It also allows the configuration of the number of 
steps to be used in creating the histogram that represent data distribution in a column 
and the number of parallel threads to be used in gathering statistics. 

3.2   Datachange 

The datachange function monitors DML activities and measures the number of 
INSERTS, DELETES and UPDATES on an object, column or partition since update 
statistics was last run. The function measures the changes to data distribution as a 
percent of number of rows in the table or partition.  

To keep track of the changes to the data distribution, three internal counters are 
maintained, one each for INSERTS, DELETES and UPDATES. These counters are 
maintained per partition. They are stored in the partition descriptor and cached in-
memory. The in-memory values are flushed to disk periodically through an idle-
soaker thread. As the counters are available in-memory, no additional I/O is required 
to maintain them. 
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Fig. 2. A typical system with a data distribution that is changing rapidly due to a high rate of 
DMLs. The query optimizer chooses the best plan for incoming queries by using statistics for 
the data distribution, stored in the system catalogs. The database administrator routinely issues 
an “update statistics command” to refresh the statistics. 

For a column “i” in a table “O” that has “n” rows, let “I” be the number of inserts, 
“D” the number of deletes and “U” the number of updates. Then the datachange for 
column “i”, “DC(i)” is calculated as:  

DC(i) = (I + D + 2*U)/2 

For object “O”, the datachange at object level is calculated as: 

DC(O) = ( Max((I + D + 2*U) for each column “i” having statistics)) / n 

Whenever there is a DML on the table, the corresponding counter is incremented. 
The counters are reset when statistics are updated for the object/partition or during a 
clean shutdown of the server.  

Database administrators can use the output of this function to set thresholds for 
various objects with a job-scheduling task. When the datachange metric indicates that 
the threshold has been exceeded, the scheduler task will execute the “update 
statistics” command. 

There are many flavors of the update statistics command. This is to allow 
granularity in gathering statistics. Correspondingly, the datachange function can be 
used to determine the changes at these same levels of granularity. 

3.3   Automating Statistics Collection 

The Job Scheduler feature in Sybase ASE 15.0 enables database administrators to 
define and schedule database tasks. The Job Scheduler provides a single interface for 
managing multiple system-wide servers. It helps to automate routine management 
tasks, with jobs written in Sybase Transact-SQL. The Job Scheduler comprises of an 
internal scheduler task, an external scheduling agent and a system catalog to store the 
history, status and other data related to scheduled and completed jobs.   
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The internal scheduler task determines when scheduled jobs are run. It feeds the 
external scheduling agent with the necessary job information. The scheduling agent 
retrieves the job definition from the system catalog and issues the job commands to 
the target databases. It then logs the results back to the system catalog. 

Sybase ASE 15.0 provides templates, which are shortcuts to common jobs, leaving 
database administrators to fill in only the parameters required to create the job 
definition. In addition, an intelligent wizard can be invoked to guide database 
administrators in filling the templates, generate jobs and to schedule these jobs at 
appropriate times. 

For automating statistics gathering, an object level template or a database level 
template can be used. The object level template allows the administrator to define the 
datachange threshold for each object, partition or column that needs to be tracked, the 
window when the maintenance task should be run as well as the options available for 
the update statistics command, such as the desired number of steps in the histogram or 
the number of consumer threads to be used. The database level template will sweep 
through all the indexes in the database and update the statistics on all the indexes 
based on a pre-configured threshold. After statistics is gathered successfully, the 
datachange function values are reset to 0. 

 

 
Fig. 3. Job scheduler architecture depicting interactions between the internal scheduler task and 
external scheduling agent and the system catalog containing information on the completed jobs 

3.4   Sampling for Update Statistics 

Updating column level statistics requires table scans of non-indexed columns and 
leaf-level scans of index pages. This operation uses a large number of system 
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resources besides requiring very large maintenance windows when the datasets are 
large or are rapidly changing. The use of sampling in databases has been proposed for 
a number of problems such as estimating result size for a query, as well as estimating 
and constructing histograms [3,5,6,7]. Sampling for update statistics, is an option 
designed to reduce the resources required to gather statistics. 

Depending on the user specified sampling rate, a random subset of pages of the 
table/partition are read into a temporary table, which is then sorted and statistics is 
gathered from this sorted subset. With a smaller subset of data, the I/O contention while 
reading data, the number sort buffers required for the sorts and the overall time taken to 
gather statistics are all reduced. Sampling is not carried out at the row level, since 
scanning one row from a page can be quite inefficient. So all rows from a sampled page 
are used in statistics gathering. The disadvantage of this approach is that if the values in 
a page are correlated, then the sampled statistics might be skewed. When there is a high 
degree of correlation, a larger sampling percent should be configured. This will allow a 
larger number of pages to be read which will uncover more distinct values in the table. 
However, as the distribution of data may not be known beforehand, some level of 
experimentation has to be done to arrive at an appropriate sampling percent that presents 
the best approximation for the dataset in hand. 

The update statistics command that is generated by the Job Scheduler uses a 
default sampling rate of 20% of the table size. This use of sampling helps in 
decreasing the time taken to automatically update statistics. This sample percentage 
can be configured with the help of the scheduler template to the value that provides 
the most accurate approximation for the dataset. 

4   System Evaluation 

The following experimental results were obtained by updating statistics on a single 
column of a table that has 10,556,400 records and 105,564 pages. 

From the results in Table 1 and Table 2, it is seen that for this dataset, a 50% 
sampling of the dataset reduces the execution time by 58% and the number of  
 

Table 1. Elapsed time during update statistics on a single column using different sampling 
percentages 
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Table 2. Physical I/Os during update statistics on a single column using different sampling 
percentages 
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Table 3. Comparison of cost estimate with sampled index statistics in TPC-D queries 
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physical I/Os by 51% and a 10% sampling of the same dataset reduces execution time 
by 92% and the number of physical I/Os by 91%. The percentage of sampling used 
and the accuracy of statistics gathered will be dependent on the characteristics of the 
underlying dataset. 

When the same dataset was partitioned 10 ways, and the update statistics query 
executed with 20% sampling rate, which is the default sampling rate used by the job 
scheduler, the elapsed time was observed to be 14 seconds. This is a substantial drop 
from the 940 seconds needed for a full scan of the un-partitioned dataset. With the 
scheduling routine kicking in to refresh statistics on smaller partitioned datasets only 
when the datachange metric indicates significant DMLs, the window for maintaining 
statistics is significantly reduced without impeding critical system activities. 
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A separate experiment was conducted on a 1 GB TPC-D database to verify that the 
optimizer’s cost estimates were not significantly affected by the use of sampling. The 
indexes of the largest tables in the dataset, lineitem and orders, were sampled at 5%, 
10% and 20% and a selection of queries run to record the cost estimates for these 
queries. A comparison of these values with the cost estimates for these queries after a 
full scan is depicted in the Table 3 and shows that the error in estimation is within an 
acceptable range. 

5   Conclusion 

Statistics aids the optimizer in choosing the least cost query access plan. To this end, 
maintaining accurate statistics is essential in the performance of the database. The 
“Automatic Update Statistics” solution in ASE 15.0 can help database administrators 
in statistics maintenance. For near-zero manual deployments, ASE 15.0 Job Scheduler 
templates can be configured and tuned to activate statistics update with minimum 
impact to critical operations.  

Some future enhancements could include automatic generation and delete of 
statistics where applicable, auto refresh of statistics if a column’s minimum or 
maximum value changes due to DMLs, use of feedback mechanism to determine 
optimal sampling.  
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Abstract. When hosting XML information on relational backends, a
mapping has to be established between the schemas of the information
source and the target storage repositories. A rich body of recent liter-
ature exists for mapping isolated components of XML Schema to their
relational counterparts, especially with regard to table configurations.
In this paper, we present the Elixir system for designing “industrial-
strength” mappings for real-world applications. Specifically, it produces
an information-preserving holistic mapping that transforms the com-
plete XML world-view (XML schema with constraints, XML documents
XQuery queries including triggers and views) into a full-scale relational
mapping (table definitions, integrity constraints, indices, triggers and
views) that is tuned to the application workload. A key design feature
of Elixir is that it performs all its mapping-related optimizations in the
XML source space, rather than in the relational target space. Further,
unlike the XML mapping tools of commercial database systems, which
rely heavily on user inputs, Elixir takes a principled cost-based approach
to automatically find an efficient relational mapping. A prototype of
Elixir is operational and we quantitatively demonstrate its functionality
and efficacy on a variety of real-life XML schemas.

1 Introduction

For persistently storing information from XML sources, there are primarily two
technological choices available: A specialized native XML store (e.g. Tamino [25],
Natix [11], Timber [10]), or a standard relational engine (e.g. IBM DB2 [20], Ora-
cle [24], MS-SQL Server [22]). From a pragmatic viewpoint, the latter approach
brings with it the benefits of highly-functional, efficient and mature technol-
ogy. Therefore, a rich body of literature has emerged in the last five years on
the mechanics of hosting XML documents on relational backends. Specifically,
there have been several proposals for generating efficient mappings between XML
schema (e.g. DTDs [17] or XML Schema [29]) and relational schema. A common
feature of much of this work is that it has focused on isolated components of
the relational schema, typically the table configurations. However, viable XML-
to-relational systems that intend to support real-world applications will need
to provide an information-preserving holistic mapping that transforms the com-
plete XML world-view (XML schema with constraints, XML documents, XQuery
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queries including triggers and views) into a full-scale relational schema (table
definitions, integrity constraints, indices, triggers and views). In this paper, we
address this issue by presenting a system called ELIXIR (Establishing hoLIstic
schemas for XML In Rdbms) which produces such “industrial-strength” XML-
to-RDBMS mappings.

By taking a principled cost-based approach to mapping design, Elixir auto-
matically delivers efficient mappings that are tuned to the XML application.
This is in marked contrast to the XML mapping tools currently provided by
commercial database systems, wherein the user is expected to play a significant
role in the design and the tuning is largely manual. For example, in DB2’s XML
Extender, the user needs to have intimate knowledge of the application to specify
mapping of each XML node to either a table or a column using the Document
Access Definition (DAD) medium [20].

A novel feature of Elixir is that it performs all its mapping-related optimiza-
tions in the XML source space, rather than in the relational target space. The
evaluation of the quality of these optimizations is done at the target database
engine, and the feedback is used to guide the optimization process in the XML
space, in an iterative manner, resulting in a dynamically-derived mapping that
is tuned to the application. This approach is based on our observation that an
organic understanding of the XML source can result in more informed choices
from a performance perspective – as a case in point, making index choices at the
XML source and then mapping them to relational equivalents proves to be sub-
stantially better than directly using the relational engine’s index advisor, which
is the current industrial practice [6]. An additional benefit of source-based index
choices is that the knowledge can be used to guide the XQuery-to-SQL transla-
tion during query processing, consistent with the observation in [12] that schema
decomposition and query translation are interdependent and should therefore be
handled in an integrated manner.

A related feature of Elixir is its integrated approach to producing efficient
holistic schemas – for example, the choice of indices is affected by the XML
constraints. This integration ensures that all the interactions between the XML
inputs and the effects of these inputs on the relational outputs are automatically
taken into account during the optimization process.

Currently, a prototype of Elixir is operational on the DB2 relational en-
gine [20], and can be easily ported to any standard RDBMS. The prototype
is implemented in Ocamlc (Objective Caml) [23], a strongly-typed functional
programming language, and has been successfully evaluated on a variety of real-
world and synthetic XML schemas [29] for representative XQuery [2] queries. To
make our objectives concrete, a sample fragment of inputs from an XML bank-
ing application and a relational mapping derived from Elixir for these inputs is
shown in Figure 1.

To the best of our knowledge, Elixir is the first system to aim towards deliver-
ing industrial-strength mappings for XML-to-RDBMS. In the remainder of this
paper, we describe its highlights – the complete technical details are available
in [14].
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– – XML Schema
<xs:element name="country" type="CountryType"

minOccurs="0" maxOccurs="unbounded">
<xs:key name="acc-num-key">

<xs:selector xpath=".//account"/>
<xs:field xpath="./sav-acc-num |

./check-acc-num"/>
</xs:key>
<xs:keyref name="cust-acc" refer="acc-num-key">

<xs:selector xpath=".//customer"/>
<xs:field xpath="./acc-num"/>

<xs:keyref>
</xs:element>
...

– – XML Documents

<bank>
<country>

<name>India</name>
<customer>

<cust-id>1</cust-id>
<acc-num>101</acc-num> ...

</customer> ...
<city>

...
<account>

<sav-acc-num>101</sav-acc-num>
<balance>1232423</balance>

</account>
</city> ...

</country> ...
</bank>

– – XML Query workload

FOR $cust IN //customer
FOR $acc IN //account
WHERE ($cust/acc-num = $acc/sav-acc-num
OR $cust/acc-num = $acc/check-acc-num)
AND $cust/cust-id = ’1000’
return <balance>$acc/balance</balance>
# Frequency 20000

– – XQuery Triggers

CREATE TRIGGER Increment-Counter
AFTER INSERT OF //Customer
...
CREATE TRIGGER NewCityTrigger
AFTER INSERT OF /bank/country/city
...

– – XML Views

CREATE VIEW imp cust AS
FOR $cust IN //customer
FOR $acc IN //account
WHERE ($cust/acc-num = $acc/sav-acc-num
OR $cust/acc-num = $acc/check-acc-num)
AND $acc/balance > 100000
return <acc-num>$cust/acc-num</acc-num>

<balance>$acc/balance</balance>
...

(a) Input

– – Tables
CREATE TABLE Customer (Cust-id-key
INTEGER PRIMARY KEY, id INTEGER NOT NULL,
name VARCHAR(25),...);
CREATE TABLE Account (Acc-id-key
INTEGER PRIMARY KEY, ...);
...

– – Relational keys equivalent to XML keys

ALTER TABLE Account ADD CONSTRAINT Acc-key
UNIQUE (sav-or-check-acc-num, parent-Country);
ALTER TABLE Customer ADD CONSTRAINT Acc-fkey
FOREIGN KEY (acc-num, parent-Country)
REFERENCES Account(sav-or-check-acc-num,
parent-Country);
...

– – Recommended Indices

CREATE INDEX name-index ON Customer(name);
CREATE INDEX acc-num-index ON Account
(sav-or-check-acc-num, parent-Country);
...

– – SQL Triggers

CREATE TRIGGER Increment-Counter
AFTER INSERT ON Customer
REFERENCING NEW AS new_row
FOR EACH ROW
BEGIN ATOMIC

UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.Id = new_row.Branch

END

. . .
– – Stored Procedure

CREATE PROCEDURE NewCityTrigger(...)
BEGIN

Send-mail(cust-name, city-name, ...)
END

. . .
– – Relational views

CREATE VIEW imp cust AS
(SELECT C.acc-num, A.balance
FROM Customer C, Account A
WHERE C.acc-num = A.sav-or-check-acc-num
AND A.balance > 10000)

. . .

(b) Output

Fig. 1. Example Elixir Mapping
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2 Architecture of Elixir System

The overall architecture of the Elixir system is depicted in Figure 2. Given an
XML schema, a set of documents valid under this schema, and the user query
workload, the system first creates an equivalent canonical “fully-normalized”
initial XML schema [9], corresponding to an extremely fine-grained relational
mapping, and in the rest of the procedure attempts to design more efficient
schemas by merging relations of this initial schema.

Summary statistical information of the documents for the canonical schema
is collected using the StatsCollector module. The estimated runtime cost of the
XML workload, after translation to SQL, on this schema is determined by ac-
cessing the relational engine’s query optimizer. Subsequently, the original XML
schema is transformed in a variety of ways using various schema transforma-
tions, the relational runtime costs for each of these new schemas is evaluated,
and the transformed schema with the lowest cost is identified. This whole pro-
cess is repeated with the new XML schema, and the iteration continues until
the cost cannot be improved with any of the transformed schemas. The choice
of transformations is conditional on their adhering to the constraints specified
in the XML schema, and this is ensured by the Translation Module.

In each iteration, the Index Processor component selects the set of XML
path-indices that fit within the disk space budget (measured with respect to the
equivalent relational indices), and deliver the greatest reduction in the query
runtime cost. These path indices are then converted to an equivalent set of

  Stats
Collector

  Initial
Schema

     Schema 
Transformation
     Module

   Index 
Processor

Translation
 Module

Relational Optimizer

XQuery 
Rewriting

XML Trigger
 Processor

XML Schema 
   with keys

     XML 
Documents

XML Data 
 Statistics

  Disk 
Budget

Path Indices

Relational tables, keys, 
indexes, statistics 
and SQL Workload

transformed
   schema

Cost

Efficient Relational configuration
consisting of table, keys, indices, 
SQL triggers, Relational views

XQuery 
Workload

Additional
XQuery
Workload 

     SQL 
Triggers

XQuery
Triggers

    Stored 
Procedures

XML View
 Processor

XQuery
Views

    Relational
       Views

Fig. 2. Architecture of the Elixir system



Holistic Schema Mappings for XML-on-RDBMS 745

relational indices. The XQuery queries are also rewritten to benefit from the
path indices, with the query rewriting based on the concept of path equivalence
classes [16] of XML Schema.

The XML Trigger Processor is responsible for handling all XML triggers – it
maps each trigger to either an equivalent SQL trigger, or if it is not mappable (as
discussed in Section 5), represents it with a stored procedure that can be called
by the middleware at runtime. To account for the cost of the non-mappable
triggers, queries equivalent to these triggers are added to the input query work-
load. Finally, the XML View Processor maps XML views and materialized XML
views specified by the user to relational views and materialized query tables,
respectively.

To implement the above architecture, we have consciously attempted,
wherever possible, to incorporate the ideas and systems previously presented in
the literature. Specifically, for schema transformations, we leverage the LegoDB
framework [3], with its associated FleXMap search tool [15] and StatiX [9] statis-
tics tool; the Index Processor component is based on the XIST path-index selec-
tion technique [16]; and, the DB2 relational engine [20] is used as the backend.

In the following sections, we discuss in detail the generation of the various
components of the holistic relational schema, including Table Configurations,
Key Constraints, Indices, Triggers and Views.

3 Generating Constraint-Preserving Relations

XML Schema supports a rich set of integrity and cardinality constraints. The
Translation Module takes an XML schema with such constraints as input and
produces a constraint-preserving equivalent relational schema. For example,
XML Schema supports three integrity constraints: unique, key and keyref, with
similar semantics to their relational counterparts – unique ensures no duplica-
tion among non-null values; key ensures all values are unique and non-null; and
keyref ensures reference to XML nodes. Due to hierarchical data model of XML,
context is also specified for integrity constraints to define the different sets of
nodes to be distinguished.

Using the syntax of [5], example constraints for the sample bank.xml document
shown in Figure 3 are given below:

– acc-num-key: (//country,(.//account, {sav-acc-num | check-acc-num}))
Within a country (here country is a context), each account is uniquely iden-
tified by a savings or checking account number.

– cust-acc: (//country,(./customer,{acc-num})) KEYREF acc-num-key
Within a country, each customer refers to a savings or checking account
number by acc-num.

An obvious way of supporting XML constraints in an RDBMS is to use trig-
gered procedures, but this is highly inefficient [8], and should therefore only be
used for those constraints (such as cardinality constraints) that do not have a
relational equivalent. Specifically, the XML key and keyref constraints should
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<bank>
<country>

<name>India</name>
<customer>

<cust-id>1</cust-id>
<acc-num>101</acc-num> ...

</customer> ...
<city>

<name>Bangalore</name>
<state>Karnataka</state>
<head-office> ... </head-office>
<branch-office> ... </branch-office> ...
<atm> ... </atm> ...
<account>

<sav-acc-num>101</sav-acc-num>
<balance>1232423</balance>

</account>
<account>

<check-acc-num>102</check-acc-num>
<balance>645634</balance>

</account>...
</city> ...

</country> ...
</bank>

Fig. 3. Sample XML Document (bank.xml)

TABLE Account(
Acc-id-key INT,
sav-acc-num INT,
check-acc-num INT,
balance INT,
parent-City INT)

(a) Using LegoDB mapping

TABLE Account(
Acc-id-key INT,
sav-or-check-acc-num INT,
parent-Country INT,
acc-num-flag INT,
balance INT,
parent-City INT)

(b) Inclusion of relational key

Fig. 4. Generating relational keys
for XML key – acc-num-key

be mapped to relational key and foreign-key constructs. We have developed a
three-step algorithm for implementing this mapping – this technique is superfi-
cially similar to the X2R storage mapping algorithm [7], but a crucial difference
is that they tailor the schema to fit the key constraints, thereby risking efficiency,
whereas we take the opposite approach of integrating the key constraints with
an efficient schema.

Specifically, Elixir starts by converting the XML schema into the schema tree
representation proposed in FleXMap [15]. Then, in the first step, subtrees cor-
responding to different paths that need to be mapped to a single column are
“associated”, with the need for association determined from the XML keys. For
example, for acc-num-key, the subtrees corresponding to sav-acc-num and check-
acc-num have to be associated. In the next step, the XML-to-relational mapping
procedure proposed in [3] is extended to create table configurations in the presence
of the associated trees. After mapping the XML schema to tables, the final step is
to incorporate the relational keys that are equivalent to the original XML keys.

An example output for the initial generic mapping of Figure 4(a)) is shown
in Figure 4(b). Here, the elements sav-acc-num and check-acc-num are mapped to
a single column sav-or-check-acc-num, and an additional column, acc-num-flag,
is created for identifying the account number type. Further, since the context
element for acc-num-key is country, which is not an immediate parent of Account,
a parent-Country column, which refers to country-id-key, is added to distinguish
between different contexts.

Similarly we can define an equivalent relational foreign key for the cust-acc
XML keyref. Specifically, create the following relation:
TABLE Customer (Cust-id-key INT, Cust-id INT, Name STRING, Address

STRING, Acc-num STRING, parent-Country INT)
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Fig. 5. Invalid union distribution due to acc-num-key constraint

where the foreign key is {Acc-num, parent-Country}, referring to the key attribute
pair of the Account relation.

Cost-based strategies, such as those proposed in [3], explore the optimization
space by applying various transformations to the XML schema (which exploit
the standard rules of regular expressions in XML Schema for unions and repeti-
tions), and evaluating the costs of the corresponding relational configurations.
Elixir restricts the mapping search space to only constraint-valid schema trees
by filtering out the invalid schema transformations. For example, consider the
union account = sav-acc-num | check-acc-num shown before and after distribution
in Figure 5. The corresponding relational configuration will have account
numbers stored in two relations as follows:

TABLE SAccount(SAcc-id-key INT, sav-acc-num INT, balance INT, parent-City

INT)

TABLE CAccount(CAcc-id-key INT, check-acc-num INT, balance INT,

parent-City INT)

Here our goal is to map the XML key and keyref in the form of primary key and
foreign key, respectively. However, according to the acc-num-key constraint,
sav-acc-num and check-acc-num should be mapped to a single column, in order to
define the relational key, thereby rendering the union distribution invalid.

This example shows that not all relational configurations obtained by schema
transformations are valid. Thus, while exploring the search space of relational
configurations, we should explore only the space of valid configurations. The
simple solution for this is to carry out the transformation on the schema tree
and then check if relational keys equivalent to the given XML constraints can
be defined on the resulting relational configuration. If it is not possible then
that relational configuration can be ignored, otherwise it should be evaluated
for the given query workload. However, this solution results in considerable un-
necessary work, which can be avoided if we can detect the invalidity schema
transformations before carrying out the schema transformation.

For example, assume that union t1|t2 is being distributed, where t1 and t2 are
subtrees of the schema tree. Now we will try to analyze the cause for invalidation.
Note that both the subtrees, corresponding to sav-acc-num (t1) and check-acc-num
(t2), are on the same field path of the acc-num-key constraint. Thus, if the union
distribution of this tree i.e. t1|t2 is distributed, then in the resulting configura-
tion, t1 and t2 will be mapped to different relations. In general, if subtrees t1
and t2 are both on the same field path, then union distribution of t1|t2
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is invalid. The complete set of rules to detect when schema transformations
are invalid w.r.t. XML schema constraints is given in [14]. A useful side-effect of
incorporating the constraints during the schema design process is that the map-
ping process completes faster due to the reduction of the optimization search
space.

4 Index Selection in Elixir

We move on in this section to a different component of the holistic mapping,
namely deciding on the best choice of relational indices, given a disk space bud-
get. As mentioned earlier, Elixir takes the approach of finding a good set of
indices in the XML space and then mapping them to equivalent indices in the
relational space. This is in marked contrast to current industrial practice [6],
where the index advisor of the relational engine is used to propose a good set of
indices after the schema mapping has been carried out.

For finding good XML indices, we leverage the recently proposed XIST
tool [16], which makes path-index recommendations given an input consisting
of an XML schema, query workload, data statistics, and disk budget. We have
extended XIST to make use of semantic information such as keys, which are
closely linked to index selection, by giving priority to the paths corresponding
to keys during the index selection process. This is in keeping with Elixir’s gen-
eral philosophy of exploring the combined search space of logical design (i.e.
schema transformations) and physical design (i.e. indices) since solving them
independently leads to suboptimal performance [6].

After making the choice of XML path-indices, a strategy to convert path
indices to the equivalent relational indices has to be designed. Secondly, the
disk usage of the relational indices should be within the user-specified budget –
therefore, an equivalence mapping between the disk occupancies in the XML and
relational spaces has to be formulated. Finally, the XQuery-to-SQL translation
process should take advantage of the presence of the relational indices. In the
remainder of this section, we describe our approach to handle the first and third
issues – the second issue is discussed in [14].

4.1 Path Index to Relational Index Conversion

Consider an XML-to-relational mapping, as shown in Figure 6 for a frag-
ment of the XMark benchmark schema [28]. Here, a non-leaf node is anno-
tated with a relation name, while a leaf node is annotated with the name of
a relational column. Relations Site, Africa, . . ., Samerica, Item, and Mailbox

are created for elements site, africa, . . ., samerica, item, mailbox, respectively. For
this environment, assume that the following path index, PI, has been recom-
mended: /site/regions/africa/item/mailbox/mail/from. To evaluate PI, the four re-
lations {Site, Africa, Item, and Mailbox} have to be joined.

An obvious translation process is to simply build the indices on the key and
foreign-key pair for each parent-child involved in PI. However, the drawback of
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Fig. 6. Example relational config-
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(a) Equivalence Class-based Approach
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2. Item.parent-Africa
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4. Mailbox.from

(b) Direct Approach

Fig. 7. Relational indices for path index
/site/regions/africa/item/mailbox/mail/from

this direct approach is that the number of relational indices created for a path-
index is a function of the path-length, and can therefore become very expensive
to create and maintain. An alternative and less expensive approach is to use the
concept of equivalence classes [16] to reduce the number of relational indices.
Two paths P1 and P2 are in the same equivalence class if the evaluation of both
paths against XML data results in selection of the same nodes. These equivalence
classes can be determined directly from the XML schema and are valid for all
XML documents conforming to the XML schema.

We have developed a procedure (details in [14]) that uses these path equiv-
alence classes (EQs) to convert the path-index only to the relational indices
corresponding to each EQ on the path. For example, if we assume that for each
relation, the column which stores IDs is the primary key, and that an index exists
on the primary key by default, then the equivalent relational indices for PI are
as shown in Figure 7(a) (for comparative purposes, the indices recommended by
the Direct approach are shown in Figure 7(b)).

4.2 Query Rewriting for Path Indices

The use of integrity constraints to guide XQuery-to-SQL query translation has
been recently discussed in [13]. Here, we focus on the use of available path indices
to guide XQuery-to-SQL query translation, and thereby derive a more efficient
rewriting of the query. For example, consider the query:

for $mail = /site/regions/africa/item/mailbox/mail
where $mail/from/text() = "priti@dsl.serc.iisc.ernet.in"
return count($mail)

The relevant path P here is /site/regions/africa/item/ mailbox/mail/from. If there
is no path index on P , then the SQL translation of the above query will be:

select count(*)
from Site S, Africa A, Item I, Mailbox M



750 P. Patil and J.R. Haritsa

where S.site-key = A.parent-site
and A.africa-key = I.parent-africa
and I.item-key = M.parent-item
and M.from = ’priti@dsl.serc.iisc.ernet.in’

On the other hand, if a path index on P is available, the translation module uses
this information to translate the query as follows:

select count(*)
from Africa A, Mailbox M
where A.africa-key = M.parent-africa

and M.from = ’priti@dsl.serc.iisc.ernet.in’

While the above was an illustrative example, the complete algorithm for incor-
porating indices in the XQuery-to-SQL translation process is given in [14].

5 Mapping XML Triggers and Views

We now move on to the advanced components of XML triggers [4] and XML
views [1]. Triggers are primarily used to execute a specific logic upon updates
to the database. To leverage the power of relational databases, our aim is to
map the XML triggers to relational triggers, an example of which is shown in
Figure 8.

CREATE TRIGGER Increment-Counter
AFTER INSERT OF //CUSTOMER
FOR EACH NODE
LET $branch id = NEW NODE/branch
LET $branch node =

//branch-office[id=$branch id]
LET $counter = $branch node/acc-counter

DO (
FOR $branch node
UPDATE $branch node
REPLACE $counter WITH $counter + 1 )

(a) XML trigger

CREATE TRIGGER Increment-Counter
AFTER INSERT ON Customer
REFERENCING NEW AS new row
FOR EACH ROW

BEGIN ATOMIC
UPDATE Branch-office
SET Acc-counter=Acc-counter+1
WHERE Branch-office.Id =

new row.Branch
END

(b) Equivalent SQL trigger

Fig. 8. Mapping XML triggers to SQL triggers

A problem specific to the XML domain, however, is that compared to rela-
tional updates, XQuery updates may be seen as bulk statements since they may
involve arbitrarily large fragments of documents that are inserted or dropped
through a single statement. For example, when a bank sets up operations in a
new city, the corresponding XQuery update could result in several SQL insert
statements on the tables corresponding to the update path.
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In this situation, consider the following XML trigger, sending e-mail to ad-
vertise the new office to all customers from the same country as the inserted
city:

CREATE TRIGGER NewCityTrigger AFTER INSERT OF /bank/country/city
FOR EACH NODE DO (

LET $city-name = NEW NODE/name
LET $city-state = NEW NODE/state
LET $city-head-office-id = NEW NODE/head-office-id
LET $city-branch-offices = NEW NODE/branch-office
...
FOR $customer IN NEW NODE/../country/customer
send-email ($customer, $city-name, $city-state,

$city-head-office-id, $city-branch-offices, ...) )

The above trigger needs to be executed after all the insert statements to the City,
Branch-office, Office-Id, Atm, Account relations have been executed. However,
in the current SQL standard, triggers cannot be specified relative to a set of
operations on different tables. We refer to such triggers as non-mappable XML
triggers and model them instead as stored procedures that can be called by the
middleware at runtime.

While the costs of mappable triggers are natively modeled by the relational
optimizer, an additional query workload equivalent to the non-mappable triggers
is included in the XML query workload. Our experiments have shown that in
practice XML triggers play an important role in determining the choice of the
final relational configuration.

Turning our attention to XML views, Elixir maps these views to relational
views by first converting the XML view definition to the equivalent SQL view def-
inition, and then translating XQuery queries on the XML views to SQL queries
on relational views. Additionally, if the user specifies a materialized XML view,
then this view is mapped to materialized relational views. The complete mapping
algorithm is given in [14], and an illustrative example is shown below.

Consider a user specifying the following materialized XML view to make the
balance inquiry query execute faster:

CREATE MATERIALIZED VIEW customer balance AS
FOR $customer IN //customer
FOR $account IN //account
WHERE $customer/acc-num = $account/sav-acc-num or

$customer/acc-num = $account/check-acc-num
return

<customer-balance>
<id>$customer/cust-id</id>
<acc-num>$customer/acc-num</acc-num>
<balance>$customer/balance</balance>

</customer-balance>
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

Elixir maps this XML materialized view to the following equivalent relational
materialized view:
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CREATE TABLE customer balance AS
(SELECT C.id, C.acc-num, A.balance
FROM Customer C, Account A
WHERE C.acc-num = A.sav-or-check-acc-num)

DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

6 Experimental Evaluation

In this section, we present our experimental evaluation of the Elixir system.
Our experiments were run on a Pentium-IV PC running Linux, with DB2 UDB
v8.1 [20] as the backend database engine. Four representative real-world XML
schemas: Genex [19], EPML [18], ICRFS [21] and TourML [26], which deal with
gene expressions, business processes, enterprise analysis and tourism, respec-
tively, are used in our study. In addition, we also evaluate the performance for
the synthetic XMark benchmark schema [28].1

6.1 Effect of Keys

To serve as a baseline for assessing the effect of key inclusion, we compare the
performance of Elixir (in the absence of indices, triggers, and views) with that of
FleXMap (FM) [15], a framework for expressing XML schema transformations
and for searching the equivalent relational configuration space. Using the ToX-
gene tool [27], three types of documents were generated for each XML schema
by varying the distribution of elements as all-uniform, uniform-exponential, and
all-exponential, resulting in documents with uniform data, moderately skewed
data, and highly skewed data, respectively. The query workload involves 10 rep-
resentative queries for each XML schema.

We compare the runtime efficiency of Elixir and FleXMap with regard to the
following metrics: (a) The percentage reduction in search space, and (b) The
response time speedup due to this reduction. The average number of transfor-
mations evaluated by Elixir and FM are shown in Figure 9(a) for the five XML
schemas. We see there that the reduction ranges from 30% to 60%, arising from
the filtering out of invalid transformations, discussed in Section 3. For exam-
ple, on the ICRFS schema, the average number of transformations performed by
FleXMap are about 1860, whereas Elixir only requires about 860.

The time speedup due to the search space reduction is shown in Figure 9(b),
which captures the average time required to obtain the final relational configu-
ration for the same set of schemas. Here, we observe that the runtime reductions
range from 50% to 85%. It is interesting to note that the speedup is super-linear
in the percentage space reduction. For example, the 50% search space reduction
for ICRFS may be expected to result in a speedup of 2, but the speedup actu-
ally obtained is greater than 4. The reason for this is as follows: A given XQuery
workload satisfies more paths in the fully decomposed schema of FleXMap re-
sulting in more subqueries in the equivalent SQL workload, as compared to the
1 Since XMark is available only as a DTD, we created the equivalent XML Schema

and incorporated keys by mapping the IDs and IDREFs.
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Fig. 9. Impact of Keys

number derived from the restrictive decomposed schema of Elixir. Thus, the
time required for evaluating the cost of an individual transformation using the
relational optimizer is more for FleXMap than for Elixir. In a nutshell, Elixir
has “fewer and cheaper” transformations.

6.2 Effect of Index Selection

We now move on to evaluating the impact of index selection. Specifically, we
compare Elixir, with its path-index-based selection, against two alternatives:
BasicDB2, where the system has only its default primary key indices, and
DB2Advisor, where DB2’s Index Advisor tool is used to suggest a good set
of indices, similar to [6].

We report here the results of experiments on the EPML schema [18] with
various sizes of XML documents ranging from 1 MB to 500 MB. The query
workload involves 20 representative queries. The index disk budget was set to be
10 percent of the space occupied by the XML document repository, a common
rule-of-thumb in practice. The results for this set of experiments are shown in
Figure 10, where we see that the cost of the final relational configuration is
significantly lower for Elixir as compared to BasicDB2 as well as DB2Advisor.
The results obtained on other schemas were similar and are available in [14].

Analysis of the set of indices chosen by Elixir and DB2Advisor indicates the
following: The SQL workload equivalent to the given XQuery workload involves
several joins. DB2 attempts to improve the query performance by creating mul-
ticolumn indexes or single column indexes (with include clause). Elixir, on the
other hand, uses the path indices suggested by XIST and converts path indices
to equivalent single column relational indices. Further, the sets of indexes chosen
by DB2Advisor and Elixir are quite different in that the overlap is only between
20% to 50%.

6.3 Overall Performance of Elixir System

While the previous experiments evaluated the performance in isolation for var-
ious components (the trigger and view performance is available in [14]), the
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overall performance when all components are integrated is shown in Figure 11.
This figure shows both the total time for producing the final relational schema
as well as the breakup of this time in different steps of the tuning process –
Mapping, Index selection, and Optimizer. With regard to overall time, we find
that it is in the range of a few hours for each schema. While this may seem ex-
cessive at first glance, note that (a) the schema generation process is typically a
one-shot process, and therefore time may not be a major issue; and, further, (b)
the breakup of the runtime indicates significant potential for improvement – the
heavy overhead (60% to 70%) is largely attributable to our using the optimizer
from the outside, which involves fresh creation of tables, loading of statistics,
costing the mapping and table deletion, in each iteration of the mapping pro-
cess. We expect that this overhead would be substantially reduced if the Elixir
system were implemented inside the relational engine since the optimizer could
be instrumented to directly provide the cost for the new mappings. Finally, note
that due to the absence of comparable systems for producing holistic schemas,
we only provide absolute performance results here.

7 Conclusions and Future Work

In this paper, we studied the problem of producing information-preserving holis-
tic schema mappings from XML repositories to relational backends. Specifically,
we proposed the Elixir system, which captures most significant aspects of the
XML world and delivers relational schemas that include table configurations,
keys, indices, triggers, and views, featuring an integrated, cost-based and source-
centric optimization of the mapping process. A detailed experimental study on
real-world and synthetic schemas demonstrated the effectiveness of our tech-
niques with regard to both the final quality of the relational configuration as
well as the mapping time. In a nutshell, the Elixir system achieves “industrial-
strength” mappings for XML-on-RDBMS providing lossless translation (struc-
ture and semantics including constraints and triggers) and performance tuning
(indices and materialized views). Our future plans include implementation of the
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Elixir system inside public-domain relational engines and extending the schema
mapping to include security components.
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cost based approach to XML storage. In Proc. of 18th IEEE Intl. Conf. on Data
Engineering (ICDE), March 2002.

4. A. Bonifati, D. Braga, A. Campi and S. Ceri. Active XQuery. In Proc. of 18th
IEEE Intl. Conf. on Data Engineering (ICDE), February 2002.

5. P. Buneman, S. Davidson, W. Fan, C. Hara and W. Tan. Keys for XML. Computer
Networks, 39(5), 2002.

6. S. Chaudhuri, Z. Chen, K. Shim and Y. Wu. Storing XML (with XSD) in SQL
Databases: Interplay of Logical and Physical Designs. In Proc. of 20th IEEE Intl.
Conf. on Data Engineering (ICDE), March 2004.

7. Y. Chen, S. Davidson and Y. Zheng. Constraints preserving schema mapping from
XML to relations. In Proc. of 5th Intl. Workshop on Web and Databases (WebDB),
June 2002.

8. Y. Chen, S. Davidson and Y. Zheng. Validating constraints in XML. Tech. Report
MS-CIS-02-03, Dept. of Computer and Information Science, Univ. of Pennsylvania,
2002.

9. J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Siméon. Statix: Making XML
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Abstract. In semi-supervised classification, labels smoothness and clus-
ter assumption are the key point of many successful methods. In graph-
based semi-supervised classification, graph representations of the data
are quite important. Different graph representations can affect the clas-
sification results greatly. Considering the two assumptions and graph
representations, we propose a novel method to build a better graph for
semi-supervised classification. The graph in our method is called m-step
Markov random walk graph (mMRW graph). The smoothness of this
graph can be controlled by a parameter m. We believe that a relatively
much smoother graph will benefit transductive learning. We also discuss
some benefits brought by our smooth graphs. A cluster cohesion based
parameter learning method can be efficiently applied to find a proper
m. Experiments on artificial and real world dataset indicate that our
method has a superior classification accuracy over several state-of-the-
art methods.

1 Introduction

One basic assumption employed directly or indirectly by semi-supervised classi-
fication is the labels smoothness [10] or cluster assumption [1]. In labels smooth-
ness assumption, neighboring data points tend to have the same label. This is
true in many real world problems and human intuition. In cluster assumption,
two points are likely to have the same label if there is a path connecting them
passing through regions of high density only, or to say that the decision boundary
should lie in regions of low density. These two assumptions have been success-
fully applied in semi-supervised classification. Seeger [5] and Zhu [10] have given
extensive reviews about semi-supervised classification methods.

Based on these two assumption, some methods are successfully applied in
semi-supervised classification. In harmonic function method [9], value of f at
each unlabeled data point is the average of f at neighboring points. The regu-
larization method is used to smooth the values of unlabeled data points in [8].
In these methods, a common feature lies in that the aim is to make sure that
neighboring points have approximately the same indicating function value. In
cluster kernel [1], kernels are designed such that induced distance is smaller for
points in the same cluster and larger for points in different clusters. In [2], low
density regions are identified to separate clusters.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 757–766, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Although these two assumptions seem different on the surface, they reflect the
same nature in classification, that is the data of one class is usually distributed
continuously in a relatively high density region, different classes generally do
not overlap with each other, and low density regions usually separate clusters.
From this point of view, labels smoothness and cluster assumption share the
same meaning. However, real world data might not be distributed so smoothly,
especially in high dimension cases. For example, text data in bag-of-words rep-
resentation. In this case, cluster assumption might be damaged to some extent.
Low density regions may lie inside some cluster. Labels smoothness assumption is
also difficult to be held. Because the density of data varies greatly, so it is difficult
to distinguish if the concept of “neighboring” in one region is proper for “neigh-
boring” in another region. Therefore, it is important to build a much smoother
graph representation of the data for graph-based semi-supervised classification.

To overcome the difficulties of bad data distribution, we build a smooth graph
using Markov random walk model, then label the huge amount of unlabeled
data using any other graph-based semi-supervised classification methods. This
method fits the graphical representation better, and can reveal the distribution
of labeled and unlabeled data. With different steps, it gradually combines local
and global distributions of all the data points at different levels.

In this paper, we introduce basic concepts about Markov random walk in
Sect. 2. In Sect. 3, a novel graph representation of data is presented, which
employs Markov random walk model. And a cluster based parameter learning
method is given in Sect. 4. With the experiment analysis of the artificial and
real world data sets, the results and evaluations are shown in Sect. 5. In Sect. 6,
we give the discussion and concluding remark.

2 Markov Random Walk Model

The theory and application of random walk are ubiquitous in the modern prob-
ability literature, and random walks perhaps form the simplest and most im-
portant examples of stochastic processes, i.e. random phenomena unfolding with
time. In this paper, we only consider random walk on graph, which is not exactly
the same as original random walk.

Let the graph G = (V, E) be a pair consisting of a set V of vertices, and a set
E of edges joining some pairs of vertices. For each x ∈ V , we may consider the
set Nx of neighbors of x, formed by vertices y with an edge joining x to y. The
random walk is based on this graph, where the step from x to y (y ∈ Nx) has
probability pxy. Under the assumption of Markovian property, such a random
walk on graph can be viewed as a Markov chain. Details for random walks on
graph are given in [6]. Rudnick and Gaspari [4] give an advanced discussion
about original form of random walk.

In the Markov random walk for classification, data points are mapped to
the vertices in a graph or states in a Markov chain. The transition probability
can be seen as the similarity between data pairs. Given that a dataset consists of
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data pairs {(x1, y1), · · · , (xn, yn)}, we can construct a graph on the input data
xi, and the weight of edge is defined as

wij = exp(−d(xi, xj)
σ2 ) (1)

where d(·) can be Euclidean distance or other distance measure, and σ is a
parameter for exponential weights. Let the one-step transition probability be

pij =
wij∑
k wik

(2)

We can get the transition matrix P = [pij ]. Some semi-supervised classification
methods [1, 7, 8, 9] are based on such a basic representation. In this paper, we
assume wii = 0, which forms a non-lazy random walk.

3 m-Step Markov Random Walk Graph Model

Under labels smoothness and cluster assumption [10, 1], some methods have been
proposed to smooth functions on graphs in order to get a better classification
result [8, 9]. However, most of these methods focus on the model itself to smooth
the graph. We attempt to construct a smooth graph first, and then label the
unlabeled data.

3.1 m-Step Markov Random Walk Graph

Based on Sect. 2, we can get a full connected graph G and its transition matrix
P . We can also further construct a kNN graph Gk from graph G. The transition
matrix P reflects the local structure of the graph. Data points usually have higher
probabilities to walk to the ones nearby, and tend to walk to denser regions more
likely than sparser ones.

The smoothness here can be explained as the distribution of data changes
slowly in one cluster, which can also be explained as the transition probabili-
ties from one point to its neighbors change slowly in a small region. Therefore,
we propose the following graph as the basic representation for semi-supervised
classification: connection matrix of graph G(m) is

P ∗ = Pm (3)

where P is the original transition matrix defined in Sect. 2.
Therefore, if we treat P as the connection matrix of graph G, then P × P is

the connection matrix of another graph G(2), and P × P × P is the connection
matrix of graph G(3), and so on.

3.2 Analysis of the Smoothness

Now we give an analysis about graph G(m). To facilitate analysis we first map
the graph representation of data into a Markov chain. The vertices of graph are
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mapped into states in the chain. And the vertex set V is mapped into state set
I. The weight of graph defined in Sect. 2 is mapped into transition probability
between states in Markov chain. Then from the view of Markov chain, if Pm

exists when m → ∞, there is an uniform distribution πj (1 ≤ j ≤ n) over all
the data, where n =| I |, is the total number of states in I or points in graph
G. That means the probability from any data point to one fixed point is the
same. In this case, the graph is “flat”. We can define the smoothness of a graph
according to its “flat” state if it exists. We define the smoothness function as:

Q(m) =
n∑

i,j=1

(p(m)
ij − πj)2 (4)

Q(m) reflects the smoothness of one graph. The smaller value of Q(m) means a
much smoother graph. Then we can predict that graph G(2) is much smoother
than G(1). This can be explained from the view of Markov chain. We give a brief
proof here.

By treating graph G as a Markov chain, it is easy to satisfy the following
conditions: it is a finite-state Markov chain with no two disjoint closed sets,
and it is aperiodic. After mapping the graph into a Markov chain, we have
the following result [3]: there exists a probability distribution {πj, j ∈ I} and
numbers α > 0 and 0 < β < 1 such that, for all i, j ∈ I,

| p(n)
ij − πj |≤ αβn, n = 1, 2, · · · (5)

In particular,

lim
n→∞ p

(n)
ij = πj for all i, j ∈ I (6)

In equation (5), p
(n)
ij is an element in matrix Pn. From equation (5), we know

that as n gets larger, p
(n)
ij gets closer to the fixed value πj .

From equation (4) and (5), we have

Q(m) =
n∑

i,j=1

(p(m)
ij − πj)2 ≤

n∑
i,j=1

α2β2m = n2α2β2m

For some fixed graph, n is a constant. Therefore, Q(m) gets smaller and smaller
as m grows, then we can say that the graph gets smoother and smoother.

We call this graph as m-step Markov random walk graph (mMRW graph).
Different m values will result in different graphs. In special case when m = 1, it
is the original graph G. However, m should not get too large. When m → ∞,
Pm will become an uniform distribution for each point, which provides little
information about the classification.

The following example can aptly illustrate this point. Assume that a is the
transition matrix of some graph G.
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a =

⎛
⎜⎜⎝

0.40 0.60 0.00 0.00
0.20 0.70 0.10 0.00
0.00 0.10 0.60 0.30
0.00 0.00 0.80 0.20

⎞
⎟⎟⎠ a4 =

⎛
⎜⎜⎝

0.22 0.60 0.14 0.04
0.20 0.55 0.19 0.06
0.05 0.19 0.54 0.22
0.03 0.16 0.58 0.23

⎞
⎟⎟⎠

a16 =

⎛
⎜⎜⎝

0.14 0.41 0.33 0.12
0.14 0.40 0.34 0.12
0.11 0.34 0.40 0.15
0.11 0.33 0.41 0.15

⎞
⎟⎟⎠ a64 =

⎛
⎜⎜⎝

0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14

⎞
⎟⎟⎠

We can see that Q(1) = 1.00, Q(4) = 0.39, Q(16) = 0.01, Q(64) = 0.00. As the
number of steps increases, the graph gets flatter and flatter, and at last becomes
an uniform distribution for each column.

3.3 Why the Smoothness May Help

One way to explain why the smooth graph can be better than the original one is
from the distances between points. From equation (1) and (2), we know that the
transition probabilities are related to the weights of a graph. Larger probabilities
mean larger weights. As the number of steps m gets larger, pij between far points
in the same cluster becomes larger, which means its corresponding weight gets
larger. And in turn, it means the distance of the two points far away now is
smaller. Furthermore, this kind of distance shortening is based on the density of
data. Distances between points in one cluster are shortened more and in different
clusters are shortened less.

Another way is from the spectral decomposition theory. The transition matrix
P ∗ can be decomposed as: P ∗ = ΦΛΨ , where Λ is a diagonal matrix. Then we
have

p
(m)
ij =

∑
k

λ
(m)
k φikψkj (7)

Because P is a transition probability matrix, we have λ0 = 1 > λ1 > λ2 · · · > λn.
From spectral and harmonic analysis we know that small eigenvalues correspond
to high frequency eigenfunctions. Then from equation (7) we can see that the
power of transition matrix P in fact reduces the magnitudes of high frequency
components much more than low frequency ones which correspond to larger
eigenvalues. Therefore, the power of matrix P behaves like a low-pass filter and
smoothes the distribution of the graph. In real world data, high frequency com-
ponents usually correspond to the noise, and low frequency ones reflect the dis-
tribution of data more confidently. So a smooth graph reduces the noise greatly
and represents the distribution of data better than the original one.

4 Parameter Learning

The parameters in our model are m, k in kNN graph and σ (if we use exp((xi−
xj)2/σ) to construct P ). If we use the cosine of two vectors to get P , which is:

r(xi, xj) =
< xi, xj >

√
< xi, xi >< xj , xj >

(8)
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then we have only paramters m and k. In reality, it is easy to ensure
∑

k rik �= 0.
Zhu [9] has proposed a method for learning σ. The parameter k is difficult to
learn for different data distribution. We enumerate several values of k to give
some clues about affection of k in Sect. 5. In the following part, we focus on how
to learn m in our model.

In semi-supervised classification, labeled data usually has a relatively small
size, e.g. in case of only two labeled data points, one for each class. In this case,
we can not fully trust these two points. Because they may be noises or biased by
noises greatly. Therefore, many parameter learning methods only relying on la-
beled data can not be used here. Based on the cluster assumption, we know that
when two clusters are separated well, no lower density region exists in any clus-
ter. From this intuition, we propose the following function to select a proper m:

gm(Ci) =

∑n
i,j=1 p(xi, xj)
| Ci |2

(9)

p(xi, xj) is the probability from xi to xj . We call gm(Ci) as the cohesion func-
tion of one class, and it can be viewed as the density of one cluster. For some
m, when gm(Ci) becomes relatively stable, that is Δg(Ci) < ε, then we can stop
the walk and pick up the value of m at this time.

5 Experimental Results

Many graph based methods for semi-supervised classification can be viewed as
Markov random walks [7, 8, 9]. These methods have clear explanations and have
done well in semi-supervised classification. In order to take advantage of our
smooth graph representations, we employ a random walk related method, i.e.
harmonic function in [9] to label those unlabeled data points.

5.1 Artificial Data

We use the switch or two-moon data [7] in many semi-supervised learning papers.
The weight is formed using equation (1), and d(·) is Euclidean distance. From
Fig. 1 we can see that, as the value of m gets larger and larger, the graph becomes
much smoother. Furthermore, when m = 1 and σ = 0.04 ∼ 0.06, classification
can be totally correct using method in [9]. However, keeping the accuracy at
100%, the mMRW graph enlarges the range of parameter σ to σ = 0.04 ∼ 0.45
with different m.

The smoothness of mMRW is different from smoothness in [8, 9]. In this paper,
we use smoothness to describe the transition probabilities between points. Rough
transition probabilities between points might easily spread the effect of errors. If
the bridge noise has a high transition probability, it will bias the label. However,
a smooth transition probability can reduce this error.

5.2 Text Classification

We apply our method to text classification task, with few labeled documents
but many unlabeled ones. Text documents are represented by high dimension
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Fig. 1. mMRW graph on artificial data. σ = 0.45. Right up: m = 1; Left bottom:
m = 5; Right bottom: m = 9.
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Fig. 2. Classification results of mMRW graph on text data set Windows vs Mac using
cohesion factor method

vectors, which are usually very sparse. We expect that our method can construct
a smooth graph which benefits the classification.

We train our model with real-world dataset: windows vs mac in 20 News-
groups, also used by [1, 7], electronic vs space, and baseball vs hocky. The first
dataset has two categories, windows and mac with respectively 961 and 958 ex-
amples with dimension 7511. Out of all the examples, 987 examples are taken
away to form the test set. From 2 to 128 labeled data points are randomly se-
lected to form XL. We use cosine values of vectors to form the transition matrix
P . We train on 100 randomly splits balanced for class labels, test on a fixed
separate set of 987 points. The value of m ranges from 1 to 16. Then we com-
pare kNN and mMRW graph with different k and m values. The settings for
electronic vs space and baseball vs hocky are nearly the same.



764 X. Zhou and C. Li

2 4 8 16 32 64 128
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

# labeled examples

ac
cu

ra
cy

2 4 8 16 32 64 128
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

# labeled examples
ac

cu
ra

cy

i=1

Learned i

i=1

Learned i

Fig. 3. Classification results. Left: Electronics vs Space; Right: Baseball vs Hocky.

In Fig. 2, mMRW is the accuracy of our method with parameter m learned
in Sect.4. MAM is the result of [7] and CK is the result of [1]. We can see a clear
advantage of mMRW graph method, especially when the number of labeled
examples is relatively small. Fig. 3 is the classification results of our method
and the original harmonic function [9], where m = 1 is the result of harmonic
function and learned m is the result of our method.

5.3 Benefits from Smooth Graphs

The smooth graphs can bring many benefits for graph-based semi-supervised
classification. We will discuss these benefits in the following part.

1. Large ranges for the parameter σ
If we select equation (1) as the weight of graph G, then we have to learn the pa-
rameter σ. This parameter in fact brings a decay to the distance metric d(xi, xj).
We can view each data point as a sample of the true data distribution. Then
this form of weight can be viewed as to reconstruct the true distribution using
a exponential function with parameter σ. When σ is too small, then the surface
of the data in one cluster may vary greatly at different point and low density
regions are likely to exist inside each cluster. When σ is too large, exponen-
tial function may connect different true clusters. Therefore, proper value of σ is
critical.

However, if we use smooth graphs, the range of this parameter can be enlarged.
This contributes to the low-pass filter effect of the power of P , which smoothes
the distribution of data. In artificial dataset, the range of σ is enlarged from
0.04 ∼ 0.06 to 0.04 ∼ 0.45. This is because Markov random walk reshapes the
cluster first.
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Fig. 4. Classification accuracy with different kNN graphs. Windows vs Mac data set.

2. No need for kNN graphs
Many semi-supervised classification methods employ kNN graphs to represent
data. However, using smooth graphs, kNN graphs may not be so important.
Experiments have shown that sometimes full connected graphs are better than
kNN graphes when k is small. See Fig. 4.

3. Reduce the effect of few labeled examples
Classification accuracies of many semi-supervised classification methods decrease
as the labeled examples get fewer and fewer [1, 7, 9]. However, in clustering, clas-
sification accuracy has no relation to labeled example. This shows that when
labeled examples are few, we can still get a classification accuracy as high
as that with more labeled examples, or at least accuracy should not change
greatly.

With the help of smooth graphs, we can first “reshape” each cluster clearly.
And labeled examples only tell you each cluster’s label. In the case, with few
labeled examples, smooth graphs method can still result in high classification
accuracy. This can be seen from Fig. 2 and Fig. 3.

6 Discussion

In this paper, a new form of graph is proposed, which is called m-step Markov
random walk graph. We combine the smooth graph representations with the
graph-based semi-supervised classification method. The graph is constructed us-
ing Markov random walk model, and is different from kNN and εNN graph.
Experimental results show that the combination of better graphs and the graph-
based semi-supervised classification method has many advantages in
classification task. However, more efficient methods to find a proper m might be
interesting to investigate.
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Abstract. Compression aims to reduce the size of data without loss of informa-
tion. Compaction is a special kind of compression in which the output is in the 
same language as the input. Compaction of an XML data forest produces a 
smaller XML forest, without losing any data. This paper develops a formal 
framework for the compaction of XML data and presents two compaction  
techniques. 

1   Introduction 

Compression aims to reduce the size of data without loss of information. It is useful 
because smaller data can save storage space and also network bandwidth when data is 
transmitted. A compressor generates a file smaller in size than the original; feeding 
this file to a de-compressor can recover the original. 

XML is rapidly becoming a dominant media for data exchange over the Internet. 
Because XML data is usually quite verbose, compression is an important issue for 
XML. Several tools are already available for XML compression. One can use either a 
general purpose compressor such as gzip, or an XML-specific compressor (such as 
XMill [2]) to compress XML data. 

This paper addresses a special kind of compression, called compaction, where the 
compressed output remains as XML. Existing compression techniques do not compact 
the data because they all produce a compressed file in a non-XML format, which only 
a special-purpose de-compressor can understand. The main benefit of compaction is 
that it is orthogonal to other compression techniques, so an XML file can be com-
pacted and then compressed. 

The general idea behind compaction is that the same data can be represented in 
XML in (several) different structures. Consider two XML data documents, author.xml 
and pub.xml, shown respectively in Fig. 1 and Fig. 2. The data is simple enough that 
we can rely on readers of the data to agree on its intended semantics. In author.xml 
author n1 writes a book t1, published by p1; author n2 is a co-author on book t1 and 
also independently writes a book t2, published by p2. pub.xml contains exactly the 
same information except that the structure is different. Both documents have data 
about the same two authors, the same two publishers, and the same two books. Each 
document similarly relates each book, author, and publisher, e.g., in both documents 
book t2 is authored by author n2 and published by publisher p2. Section 3 develops a 
formal framework that allows the implicit meaning or semantics of an XML data  
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collection to be determined and compared. For compaction, what interests us is the 
fact that author.xml and pub.xml have the same data but are of different sizes. Excluding 
text data, there are 14 elements in author.xml but only 13 elements in pub.xml. This 
suggests that author.xml could be compacted to at least the size of pub.xml. Of course, 
other compression techniques could potentially reduce the physical size of author.xml 
much further; however, only compacting produces output in XML. 

Compaction is concerned with logical redundancy as much as physical redun-
dancy. Note that in compaction we can measure the size of XML data by the number 
of elements. This differs from common compression tasks in which the size of a com-
pressed file can only be measured by the disk space it occupies. While file size re-
flects the physical redundancy in a file, the number of duplicate nodes gives a better 
measure for redundancy on the logical level. By preserving the XML syntax in the 
output, compaction rearranges the original data to a new form with fewer places that 
are subject to update anomaly. Certainly, compacting an XML file may potentially 
(and usually does) compress the data at the same time. Though fewer elements does 
not guarantee a physically smaller file in general, it is usually so in practice. 

This paper is organized as follows. Section 2 introduces preliminary concepts  
and Section 3 presents a semantics for XML that translates an XML data collec- 
tion to a graph. Section 4 presents a compaction technique called restructuring, which  
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transform a forest to another without affecting the semantics. Section 5 presents re-
lated work, and Section 6 concludes the paper. 

2   Preliminaries 

This section defines preliminary concepts. We start with tree and forest. 

Definition [tree]. A tree is a five tuple (V, E, , L, C), where V is the node set, E:V×V 
is the edge set,  is an alphabet of labels and text values, L:V  is a label function 
that maps a node to its label, and C:V is a value function that maps a node to its 
value.              

This tree data model is different from the DOM data model [5]. It ignores sibling 
order and it does not model other kinds of DOM nodes such as attributes and com-
ments. But the simpler model is sufficient for our purposes.  

We often need to deal with an XML data collection, which is a group of XML 
documents or parts of XML documents. This can be modeled as a forest in general. 

Labels can be used to partially identify nodes in a forest, but not to distinguish 
nodes of the same label. To further identify nodes of the same label, we need another 
characterization. One such characterization is a type identifier. Here we define nodes 
to be of the same type if they have the same label; type identifier is defined to be an 
identifier that identifies nodes of the same type. (Note that the term “type” is com-
monly used in the XML database literature but with varying meanings in different 
researches. In this paper, the type of a node is simply its label.) Such type identifiers 
observe the dependency among nodes of different types in a forest. For example, we 
may have the following dependencies in author.xml and pub.xml: 

• an author depends on its corresponding name, 
• a book depends on its corresponding title, and 
• a name, title or publisher each depends on its value. 

In each of these dependencies, one type is dependent on some other types or its own 
value. In a specific dependency, we call a node of the depending type a depending 
node; a depending node is identified by nodes or value corresponding to the deciding 
types, which we call the identifying information of the depending node. In general, we 
shall allow identifying information to be a combination of both nodes and values. 

Usually, a node’s identifying information is its immediate children (nodes or val-
ues). We further observe that, regardless of the relative position of the depending 
types and the deciding types, the identifying information is always “closest” to a de-
pendent node. For example, if a book is identified by its title, then in the forest that 
title is closer to the book it identifies than it is to other books. 

More precisely, suppose v is a dependent node and u is a type t identifying node of 
v, then u is closest in distance to v among all type t nodes. This observation suggests 
that we can employ this notion of closeness to locate the identifying information. 

Definition [related nodes]. Let v be a node of type x. Then related(v, t) = {x | x is a 
node of type t and from among all the nodes of type t, x is closest in distance to v}. 
The distance between a pair of nodes is measured by the length of the path that con-
nects the nodes.             
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Using the notion of closest, related nodes, we formalize a type identifier as follows. 

Definition [type identifier]. A type identifier I of a type t is a two-tuple (IType, IText), 
where IType = {x1,…, xm} and IText = {y1,…, yn} are each a set of types, m and n are 

non-negative integers and they are not both zero, and t IType. Two type t nodes u and 

v are identical, denoted u  v, if and only if the following holds. 

• When m > 0, for each q in related(v, xi), 1  i  m, there exists a node p in 

related(u, xi) such that p  q; for each p in related(u, xi), there exists a node q in 

related(v, xi) such that p  q. 

• When n > 0, for each q in related(v, yi), 1  i  n, there exists a node p in 
related(u, yi) such that C(p)=C(q); for each q in related(u, yi), there exists a 
node p in related(v, yi) such that C(p)=C(q). 

The following notation represents the dependency of type t on the other types:  

t  x1,…, xm; y1,…, yn 

where the delimiter symbol “;” is required, even if m or n is zero.      

The above definition recursively describes how a depending node is identified by a 
combination of nodes of other types and some values. The base case in the recursive 
definition is when the set IType of type t is empty. In this case, whether two type t 
nodes u and v are identical is decided by comparing some values. If IType is non-
empty, then whether u and v are identical is recursively determined by whether nodes 
of some other types are identical. As a special case, u and v are identical if they are 
the same node. Using the type identifier notation, the dependencies in the motivating 
example are: 1) “author  name;”, 2) “book  title;”, 3) “name  ; name”,  
4) “title  ; title”, and 5) “publisher  ; publisher”. 

3   A Semantics for XML 

We now illustrate a semantics for XML using the example in Section 1. We show a 
series of semantics-preserving operations that derives the semantics of a tree, which is 
a graph. As both author.xml and pub.xml are mapped to the same graph, they are re-
garded semantically equivalent.  

First, we identify duplicate information, i.e., data that represents the same real-
world entity. Duplicates are identified by the type identifiers. In author.xml, since the 
first and third book have the same title, and we have identifiers “book  title;” and 
“title  ; title”, the fist and third book elements are duplicates. 

Similarly, in pub.xml, the second and third author elements represent the same au-
thor, because of the identifiers “author  name; ” and “name  ; name”. The dupli-
cate information is removed through a process called node gluing. Gluing removes a 
duplicate, leaving only a single copy of the data. Fig. 3 shows the gluing for the two 
documents. In author.xml, for example, a book element is duplicated. We remove one 
copy by gluing the two subtrees together (shown by dotted lines), and also move the 
edge from the book element to the remaining copy of the author element (shown by 
dashed lines). 



 Compacting XML Data 771 

book

bib

title

author

bookname

n1

name

n2

author

book book

titletitle

p1 t1t2

bib

name

book

title

t1

title

name
t2

author

name

n1 n2n2

author

author.xml

pub.xml

author

pub

p1

pub

p2t1

pub

pub pub

p1 p2

 

book

bib

title

author

bookname

n1

name

n2

author

book

title

p1 t2

bib

name

book

title

t1

title

name
t2

n1 n2

author

author.xml

pub.xml

author

pub

p2t1

pub

pub pub

p1 p2

 

Fig. 3. Node gluing Fig. 4. Node connecting 
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Fig. 5. The final graphs Fig. 6. A graph isomorphic to the two final 
graphs 

The next step is to add edges between “related” nodes. In author.xml, authors are re-
lated to the books they wrote, and also to the publishers that publish those books. A 
tree can only (directly) capture relationships between parent and child nodes. The 
proposed semantics represents every such relationship with an edge, hence creating a 
graph that will usually contain cycles. We call the process of relating nodes as node 
connecting. Fig. 4 illustrates node connecting (shown by dashed lines). In the figure, 
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only author, name and publisher nodes are connected. To reduce clutter in the de-
picted graphs we have chosen not to represent some of the relationships. A connection 
between the n2 name node and the t2 title node, for example, is not shown. This con-
nection can be inferred because there is a one-to-one correspondence between book 
and title (as well as author and name). Hence, any node connected to a name node is 
also connected to the corresponding (its parent) author node. How do we decide 
which types of nodes to connect and which not to? It depends on the possible parent-
child relationships in forests to be semantically compared. For example, since author 
is always a parent of a name in any possible forest that we compare, we only connect 
author, but not name, with other types of nodes. On the other hand, since an author 
node can be either a parent or a child of a book node, we need to make connection 
between them in the graph. Not adding these edges keeps Fig. 4 less cluttered. More 
importantly, it saves a certain amount of cost (depending on the property of the data) 
not to physically materialize these edges. Logically, however, these edges are present 
in the graph. 

Note that the root node bib is, as we would infer, equally related to all nodes in 
each document. For ease and clarity of presentation, we choose to remove this bib 
node in both graphs. The final graphs resulting from node connecting are shown in 
Fig. 5. The two graphs in Fig. 5 are isomorphic. To illustrate this more clearly, a 
graph that is isomorphic to both is depicted in Fig. 6. It is semantically equivalent to 
the two initial trees because neither subtree gluing nor node connecting changes the 
“meaning” of the data. It is also a “minimal” form of the original trees in the sense 
that duplicate data has been eliminated. The graph in Fig. 6 (as well as the graphs in 
Fig. 5) is a canonical representation of the two initial trees, because it is semantically 
equivalent to the original data, yet syntactically minimal. 

Formally, deriving this semantics consists of the following two steps. 

1. Node Gluing: Two nodes are glued together if and only if they are identical. i.e., 
they are of the same type and their identifiers evaluate to the same value. The 
idea is that, if u and v are identical, then it is only necessary to keep one copy. We 
can replace every edge (v,y) with (u,y) and then remove v. Adding new edges to 
the forest may result in cycles. Thus gluing produces a graph in general. When 
nodes are glued in this process, the size of V decreases, and the size of E does not 
increase (and may decrease). As we can see, semantically comparing two forests 
is only possible when given the set of identifiers for all types of nodes. Identifiers 
carry the information about how nodes are related, and are crucial to reason about 
data semantics. 

2. Node Connecting: In the next step, related nodes are connected. The idea is that 
every pair of related nodes is now explicitly identified by an edge that connects 
them. Before node connecting, a pair of related nodes may or may not be adja-
cent, while semantically whether they are connected or not should not make any 
difference. Connecting effectively changes a tree to a graph by adding edges. The 
number of edges in E may either increase or decrease depending on the specific 
situation. There is no change to V, , L, or C. 
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4   Compaction 

With a semantics for XML data defined, a formal discussion on compaction is now 
possible. Compaction aims to transform a forest to a smaller forest. The two forests 
will have the same semantics, i.e., the forest-to-graph translation maps them to the 
same graph. Compaction can be achieved by changing the structure of a forest. A 
restructuring is a transformation that changes the structure of the forest but keeps its 
semantics intact. A forest can be restructured by mapping it to its canonical graph, 
and then creating a semantically equivalent forest with a different structure. Ideally, 
the restructuring will yield a forest that is smaller in size than the original. Here we 
employ a structural specification called a signature that designates the target’s struc-
tural characteristics. For example, the signature for pub.xml is  

bib#pub#book#(author#name,title) 

in which the symbol # denotes parent-child relationship and siblings are separated by 
commas and enclosed within a pair of parentheses. 

We have devised a restructuring algorithm that takes a canonical graph and a target 
signature as input, and outputs a new forest that conforms to the specification. (Due to 
space limit, the detail is omitted in this paper; it can be found at [8]). Essentially, this 
restructuring algorithm is an inverse of the combination of node gluing and node 
connecting. In changing the canonical graph to a forest, the restructuring algorithm 
disconnects and unglues nodes. It disconnects since the output has to contain no cycle, 
and it unglues (makes duplicates) since the semantics encoded in every edge in the 
canonical graph must be faithfully preserved. 

In restructuring, different target signatures will yield forests of different sizes. To 
find the most compact forest among them, we could simply enumerate all the possible 
target forests. However, this is computational intractable. The number of different 
target signatures is more than exponential.1 

While in general the problem is hard, there is a simple technique to generate a 
compact forest for some forests. The idea is to take advantage of the cardinality ratio. 
The ratio characterizes the relationship between pairs of element types as one of the 
following: one-to-one, one-to-many, or many-to-many. For example, the relationship 
between publisher and book is one-to-many: a book is published by exactly one pub-
lisher but a publisher publishes many books. On the other hand, the relationship be-
tween book and author is many-to-many. 

Cardinality ratio may come with the data as a predefined constraint; if not, it can be 
quickly determined by traversing the canonical graph. (In contrast, we do not infer 
type identifiers and assume they must be given.) Table 1 shows the cardinality ratios 
for the example graph. The relationship between author and name is one-to-one (re-
call that authors are glued by name, hence each author is associated with a single 
name, and vice-versa). Author to book is many-to-many since an author can write 
many books, and a book can have many authors. (Note that exact, average ratios 
could be computed, e.g., 4.2 to 2.7.) 

                                                           
1  Given a label set of size n, suppose the number of distinct unordered trees is t(n) and the 

number of distinct unordered forests is f(n), we have, 
t(1) = 1, t(n) = (2n-2) • t(n-1) = (2n-2) • (2n-4) ... 2 • t(1) = (2n-2) • (2n-4) ... • 2, and  
f(1) = 1, f(n) = (2n-1) • f(n-1) = (2n-1) • (2n-3) ... 3 • f(1) = (2n-1) • (2n-3) ... • 3. 
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Table 1. Cardinality ratios for the example graph 

 pub title book name 
author n-m n-m n-m 1-1 
name n-m n-m n-m  
book n-1 1-1   
title n-1    

 
The key to achieving compactness is to focus on types that are related in one-to-

many relationships. Specifically, assume types X and Y are in a one-to-many relation-
ship. Then a target signature that has X above Y leads to a forest that is more compact 
than a forest with Y above X. Consider the example of publisher and book, which 
have a one-to-many relationship. If publishers are above books in the target signature, 
then in the target forest there are no duplicate publishers (or duplicate books). Every 
book is placed under the publisher to which it belongs. If books are above publishers 
in the target signature, then the same publisher may be duplicated several times. Such 
a forest is less compact and hence need not to be considered. 

The technique for generating a target signature for a compact forest begins by con-
sidering one-to-one relationships. One side of the relationship is made a child of the 
other side. If one side is involved in gluing the other, then it should be made the child, 
otherwise either side can be made the child. Consider book and title in the example 
graph. Their relationship is one-to-one. Furthermore, book is glued using title. Hence 
book should be a parent of title in the potentially compact output. The target signature 
after this step is book#title and author#name. Next, one-to-many relationships are  
processed by making the one side the parent. In the example, after considering the 
one-to-many relationships, the target is pub#book#title and author#name. Finally, only 
many-to-many relationships remain. The remaining types are placed as high as possi-
ble in the forest. In the example graph, this means that author is made a child of book 
resulting in the signature pub#book#(title,author#name). 

Once the target signature has been generated, the original forest is restructured us-
ing the target signature. The restructured forest may or may not be smaller, i.e., the 
technique does not generate the most compact forest. Finding the signature that leads 
to the most compact restructuring is theoretically intractable. However, we expect the 
technique outlined above to lead to a “reasonable” target signature in practice. The 
technique can be further refined by utilizing the average cardinality ratio of many-to-
many relationships, e.g., if the ratio is thirty-to-two, then the two side of the relation-
ship should be made the parent. But such refinements are beyond the scope of this 
paper. 

To gauge how well compaction performs on real-world data, we did an experiment 
to compact DBLP data. The test data has a size of 309KB and contains 7312 ele-
ments. Restructuring the data using a compact signature yields a 252KB data collec-
tion that contains 5441 elements. The compacted data has an 18% reduction in file 
size and a 25% reduction in number of elements. The detail of the experiment can be 
found at [8]. 
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5   Related Work 

Compaction for XML is similar to XML compression in the sense that they both aim 
to describe the same information with shorter representation. However, compaction 
differs from usual compression since the output has to retain XML syntax. To the best 
of our knowledge, the problem of compaction has not been previously researched. In 
this section, we briefly review general and XML-specific compression techniques, 
and relate them to compaction when pertinent. 

Most modern data compression techniques have their genesis in the Huffman algo-
rithm [767] or the LZ77 algorithm [7]. Huffman coding is statistical; it assigns shorter 
codes to more frequent characters and longer codes to less frequent ones. Popular data 
compression tools such as gzip and pkzip are based on LZ77. A later version of 
LZ77, the LZW algorithm [6], is more suitable for practical implementation. The 
essence of the LZ77 family of compression techniques is to store repetitive sequences 
just once. Any repetition of a sequence that previously occurred is replaced by a 
pointer to that sequence. Such techniques are called pattern-based. 

Specialized compressors take advantage of the specific properties of the data to be 
compressed. For XML data in particular, several compression techniques have been 
proposed. The earliest such work is XMill [2]. Incorporating existing compressors, 
XMill compresses XML structures and values separately, uses type specific compres-
sors for different types of data, and allows user-defined compressors for domain spe-
cific data-types. Data compressed by XMill cannot be directly queried; doing so 
would entail a complete decompression. XGrind [4] and XPRESS [3] are both com-
pressors that support direct query evaluations on compressed XML data. XGrind uses 
a compression scheme based on Huffman coding, while XPRESS adopts an encoding 
method called reverse arithmetic encoding. It is worthwhile to note that both com-
pression techniques are homomorphic because the structure of the original XML data 
is preserved in the compressed XML data. In contrast, an important compaction tech-
nique proposed in this paper, restructuring, changes the structure of the original data. 
Homomorphism is important for the compressed data to be efficiently queried. Com-
paction, on the other hand, is useful to ascertain the semantic redundancy in the data. 
Compacted XML data is not supposed to be queried directly by the query intended for 
the original data. Among the three compressors, XGrind is the only one that tries to 
utilize schema information such as a DTD to enhance the compression ratio. In com-
parison, finding an appropriate schema (target signature in our situation) is the goal of 
compaction. To enhance compaction ratio, knowledge of identifiers in the original 
data is required, and knowledge of cardinality ratio is helpful. 

6   Conclusion 

XML compaction aims to produce a smaller, compact XML forest, without losing 
information. This paper develops a formal framework for the compaction of XML 
data. It first formalizes XML data by introducing a forest data model and defining 
types and identifiers. A translative semantics for XML is then presented. This seman-
tics translates an XML data collection to a canonical graph, depending on a given set 
of identifiers. Data collections that translate to the same canonical graph are deemed 
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to have the same semantics. Based on this formalization, two compaction techniques, 
restructuring and grouping, are discussed. Though finding the most compact forest is 
computationally prohibitive in general, we developed simple techniques to find a 
more compact forest at low cost using restructuring or grouping. 

In future we plan to explore the relationship between compaction and compression. 
General compression techniques are not confined to produce the same file format as 
the input. Hence, it is reasonable to expect that they can achieve a better compression 
than compaction. However, a file can be first compacted and then compressed. Does 
combining the compaction with compression produce better performance than com-
pression alone? An interesting work is to examine this problem on both the theoretical 
and experimental grounds. 
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Abstract. A structural join evaluates structural relationship (parent-
child or ancestor-descendant) between xml elements. It serves as an im-
portant computation unit in xml pattern matching, such as twig joins.
There exists many work on efficient structural joins. In particular, in-
dexes can expedite structural joins by skipping unmatchable elements.
A typical use of indexes is to retrieve, for a given element, all its ancestor
(or descendant) elements from an indexed set. However we observed two
possible limitations with such index probes, namely false hit and false
locate. A false hit means that an index probe touches unnecessary data
besides real results; a false locate stands for a (wasted) probe that has
zero answers. Obviously false hit and false locate can affect negatively
the efficiency of structural joins. In this paper, we challenge ourselves
to develop new structural join algorithm with no false hit and no false
locate. We illustrate that R-Tree has the no false hit property (in con-
trast to B+-Tree) and hence is a good candidate for our algorithm. For
no false locate, we propose a new function called Location which tells
the probing points that will result in matches. We design and implement
the Location function using a space-efficient structure, and present our
algorithm using R-Tree together with the Location function. Extensive
experiments show the efficiency of our algorithm.

1 Introduction

Structural join is known as an important computation primitive in xml query
processing. The Stack-Tree join algorithm proposed in [1] improved the tradi-
tional merge based algorithms with stack mechanism. Only one sequential scan is
needed for two input ordered lists A-List and D-List. Index-based algorithms [2,3]
improve the join performance. The essential idea is to use indexes on the par-
ticipating element sets to directly (or near directly) find the matching elements
and skip those without matches.

Despite of their success in performance improvement over merge-based al-
gorithms, the current indexed-based algorithms are bound to two limitations,
namely false hit and false locate. Given an element, find its ancestor (or descen-
dant) elements from an indexed set, through an index probe. A false hit means
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that an index probe touches unnecessary data besides real results; a false locate
stands for a (wasted) probe that has zero answers. False hit and false locate can
affect negatively the efficiency of structural joins.

We summarize the contributions of this paper as follows:
1. We make a comparison between R-Tree and B+-Tree on their support to

structural searches. We conclude that structural search on R-Tree indexed
data does not incur false hit while that on B+-Tree has false hit.

2. We propose a Location function to accurately locate the matchable ele-
ments. It is built on top of a succinct and space-efficient bit-vector structure,
namely Locator, which stores the distribution information of element nodes
in a set and can be used to retrieve index probing points for no false locate.

3. We present a new index-based structural join algorithm, R-Locator, which
combines R-Tree and Locator to achieve no false hit and no false locate.

Section 2 presents the motivation. Then Section 3 compares R-Tree over
B+-Tree on indexing region encode. We propose in Section 4 the space-efficient
bit-vector index Locator and show how to use Locator for no false locate. Section
5 proposes a new structural join algorithm based on R-Tree and Locator. Section
6 analyzes the experiments. Finally Section 7 concludes this paper.

2 Motivation

Stack-Tree-Desc/Anc [1], is a milestone in structural join algorithm by main-
taining an in-memory stack, with which we need only once scan of two input
ordered lists. Many optimization comes from the observation that many un-
matchable elements may attend the join operation depending on the characters
of documents and queries. To efficiently skip these unmatchable elements, two ap-
proaches, B+-Tree and XR-Tree based structural join algorithms, are proposed
in [2, 3] respectively. Consider the ancestor-descendant query a//d, Figure 1
shows the cases for different skip apporaches. Without indexes, the Stack-tree
join algorithm will retrieve all the a elements and d elements, including a1 . . . a11,
d1 . . . d5. The results are just (a7, d1) and (a11, d5), many nodes are false hit.

Chien [2] utilized the property that if a tree element x is not the ancestor of z,
then any descendant y of x cannot be the ancestor of z either. We use S(e) and
E(e) to represent node e’s startpos and endpos under region encode, respectively.
With B+-Tree index, when a1 is not the ancestor of d1, we could find the first
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a3

a4

a5 a6

a7

d1 d2

a8

d3

a9

a10

d4

a11

d5

B+ B+

B+

XR

XR

◦Loc

Fig. 1. Skip Elements Cases
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element e satisfying S(e) > E(a1) and S(e) < S(d1), so to get a4 as shown in
Figure 1, similarly we could get a7, etc. With this skip technique, however, many
useless elements are still false located, including a1, a4, a8, a9, d2, d3, d4.

XR-Tree proposed in [3] could keep extra structural relationship so that, given
an element e and an indexed set R, all e’s ancestors (or descendants) in R can be
identified efficiently. With XR-Tree, we could jump from a1 to a7 when we judge
that a1 is an unmatchable ancestor element and d1 is stabbed by a7. However,
still many unmatchable elements are false located as a1, a8, a9, d2, d3, d4. XR-Tree
outperforms B+-Tree in the point that the less hit of a4.

The reason of false locate of both B+-Tree and XR-Tree is that they only grasp
the local structural information instead of the global structural information,
which drives the design of Location function. The goal of Location function is
that, when we get a1 which has no matches, we could retrieve d1 and a7; when
we get d2 which has no matches, we could retrieve d5 and a11.

3 R-Tree vs. B+-Tree: No False Hit vs. False Hit

Encoding Selection: Consider the two most commonly used encodings: Region
encoding and Dietz encoding. We use S(e) and E(e) to represent node e’s startpos
and endpos under region encoding, respectively. One special character of region
encoding is that, for an element x, (S(x),E(x)) is a region, any descendant y of
x, its region (S(y),E(y)) is covered by (S(x),E(x)). We adopts region encoding
in this paper to show the advantage of this unique character.

3.1 R-tree for No False Hit

Figure 2 shows an xml data tree with region encoding. In general, one index
structure is built for each tagname of element. For example, if we use B+-Tree,
we have one B+-Tree for a and one for d. It is similar when using R-Tree.

Figure 3 shows a B+-Tree index for a. If we want to retrieve the ancestors of
d3, we can search on it with key value less than S(d3) = 11, and get a1, a2, a3, a4
while not the results a1, a4. This is called false hit and validation is needed.
Region encode is a 2-dimensional data, using 1-dimensional index structure (B+-
Tree), we lost some information when dropping dimension.

As is well known, R-Tree is an excellent high-dimensional index structure,
especially for 2-dimensional data. Figure 4 shows the areas to be retrieved under
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R-Tree. Review above example, when querying the ancestors of d3, only the
rectangle area including a1 and a4 is returned without redundant data. This is
also the truth for any other element and other XPath axes. Therefore, R-Tree
produces no false hit for XPath axes.

With above analysis, we may conclude that R-Tree outperforms B+-Tree in
scanning. The false hit of B+-Tree retrieves all possible data including not only
all the results but also redundant data; while the R-Tree with no false hit merely
retrieve the results. To further optimize the R-Tree performance in structural
join, we utilize the bulk-loading process and R-Tree packing [4] techniques to
keep the start order in leaf page when we insert node in increasing startpos. This
leads to a full storage utilization in the R-Tree leaves and consequently improves
the query performance.

3.2 Stack Mechanism for R-tree

Assume the stack is represented as T , the stack operations for B+-Tree proceed
as follows: first get a1 and d1, push a1 into T , and then get a2, compare a2 with
T .top() to see whether S(a2) > E(T .top()) for popping stack. We get false for
this operation so next we compare S(a2) and S(d1), we push a2 into T because
S(a2) < S(d1). The operations of ds are similar,for a new d, we compare it
with T .top() iteratively to pop elements in T that are not the ancestors of d.
The deficiency of B+-Tree is the redundant comparison operation together with
potential redundant push and pop stack operations coming from the false hit.

R-Tree also outperforms B+-Tree in this aspect as follows. We get the first el-
ement of descendant d1, then retrieve on R-Tree to get a1, a2 and a3 with ascend-
ing order on start value. Then we could directly do the operation T .push(a1),
T .push(a2), T .push(a3). We insure the start order through bulk-loading process
and R-Tree packing. a1, a2 and a3 are insured to be the ancestors of d1 because
of the no false hit of R-Tree. Next we explain why a1 must be a2’s ancestor
and a2 must be a3’s ancestor without comparison. See Figure 4, assume there
is another node e which is d1’s ancestor, a1’s descendant and a2’s sibling node.
Now d1 have two ancestors a2 and e that are sibling relationship, this contradict
the character of tree structure. Thus this kind of node does e not exist, which
insures the correctness of our put operation. We also save time on pop operation
because we have no false elements in T .

4 Locator for No False Locate

4.1 Locator: The Structure

Table 1 shows a group of assumptive encodings which is better than Figure 2
for explaining Locator, here N represents node name and C represents encoding.
We build a Locator for each distinct tagname e, denoted as Le.

We maintain two Locators for ancestor and descendant, separately. Figure 5
shows the Locator for element d, Ld and element a, La. Each bit just represents
the region length 1. Initially all bits are set to 0, if some element di intersects with
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Table 1. Encoded Elements

N C N C N C N C N C N C
a1 (1,6) a2 (2,5) a3 (3,4) a4 (7, 12) a5 (8,9) a6 (10,11)
a7 (13,16) a8 (19, 20) a9 (23,26) a10 (24,25) a11 (29,32) d1 (14, 15)
d2 (17,18) d3 (21,22) d4 (27,28) d5 (30, 31)

some bits of Ld, the corresponding bits are set to 1. Even if each bit represents
only length 1, the Locator is still a very space-efficient structure, for a large xml
document, 100M for example, the number of elements is about 106 and the region
range is about 2× 106, about 200K, which is not a problem for current memory
capacity. Furthermore, we could use many mature techniques for compressing
bit-vector structure.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0Ld

La

Fig. 5. Locator for a and d

For instance, d1’s encoding is (14, 15), so the 14th and 15th bits of Ld are set
to 1. The construction of La is similar. Note that a bit may be set to 1 many
times but only the first operation takes effect.

With Ld, we could shrink the search space of R-Tree. Assume the query is a//d
for ancestor-descendant relationship, instead of using the tree height measure to
shrink the query window, we could shrink the query window to {(29, 29), (32, 32)}
for d5, here (29, 29) is the coordinate of the lower left corner of rectangle query
window and (32, 32) is upper right corner. The query windows for other elements
are similar. Sometimes when there are some region continuous ancestors such as
a1, a4 and a7, the shrink using tree height h may be better. We denote the region
of the continuous 1 by r, so if r

2 ≤ h, we use the region code to shrink the query
window, otherwise we use h.

4.2 Optimized Locator for No False Locate

Can we perform no false locate? The answer is positive. There seems to be two
ways as shown in Figure 1, one way is to locate a7 and a11, the other way is
to locate d1 and d5. We trace the second way. The basic Locator Ld cannot do
this because it could only locate d1, d2, d3, d4, d5 for false locate. Therefore we
propose an optimization technique represented as: L′

d = La&Ld

The optimized L′
d is shown in Figure 6. With L′

d, we could easily locate d1
and d5, which has no false locate. Then we could directly retrieve only a7 and
a11 with the no false hit property discussed above. This is a perfect structural
join process.

The ‘&’ operation is safe, which means no results are lost. Note that this opti-
mization technique could only be used on Ld while not on La, which reflects the
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0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0L′
d

Fig. 6. Optimized Locator for d

0 0 01 1 0 · · ·
0bit 0bit 1000bits 0bit
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Fig. 7. Hierarchical Locator

dissymmetrical relationship between a and d in ancestor-descendant structural
query. We explain this phenomenon as follows. When some continuous 1 of Ld

are set to 0 affected by La, the descendants whose start values in these revalued
bits must have no ancestors. Otherwise, it violates the containment relationship
of the ancestor and descendant’s region encoding: the region of ancestor’s encod-
ing always covers that of its descendants. For La, in contrast, if some continuous
1 in La correspond to 0 in Ld, it is very possible that some elements a whose
start values fall in this area will have descendants in others regions. It also val-
idates that the region of continuous 1 of the ancestor’s Locator always covers
that of its descendants. Therefore the opposite optimization L′

a = Ld&La is not
safe, which will lost some information to trace ancestors. This disproportional
relationship between ancestor and descendant should be seriously considered in
many cases about structural join using region encoding.

An Analysis of Locator: Assume the page size is 4K (32768 bits), for a large
xml document, say, 106 elements, we need only 2×106

32768 ≈ 61 pages, about 244K,
which could be easily loaded into main memory. If the xml document is huge,
however, 109 elements for example, the size of Locator is 244M . We could easily
build a hierarchical Locator structure, we use 1 bit in the higher level to represent
1000 bits of its lower level; we set the higher bit 0 if all the lower 1000 bits are 0
but we store the lower 1000 bits as a virtual structure for saving storage space,
otherwise we set it 1, which is shown in Figure 7. We preprocess the higher level
to guide which part of the lower level should be read, and the higher level is just
244K that will be stayed in the main memory.

The cost of Locator is easy to analyze. Assume the number of element is |X |,
the space and time complexities of using Locator are O(|X |) for both La and
Ld because at most one scan each is enough for performing all location. The
I/O complexity analysis is straightforward as well. Each page of Locator is read
once, hence we get the I/O complexity O( |X|

B ), where B is the blocking factor.

5 Structural Joins Using R-Tree and Locator

In this section, we propose a structural join algorithms R-Locator. When some
elements which have no matches are met, we use Locator to perform the Location
function and adopt R-Tree instead of B+-Tree for retrieving elements.
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Basic Locator Operation: The operation FindFirst(L, pos, val, orien) is just
a bit-vector operation. FindFirst() is used to find the first val in L from a given
position pos in the direction orien. We need scan the Locator only once, thus
the upper limit of operating the Locator is the size of Locator.

R-Locator Structural Join Algorithm: Locator is a self-governed structure
for Location function, which could be seamlessly combined with other index
structures such as B+-Tree and R-Tree. We use Locator to efficiently find the
position where the descendant elements must have matchable ancestors
and use B+-Tree or R-Tree to retrieve the physical encodings. Here we
select R-Tree for indexing because R-Tree could perform no false hit.
Locator could also help to improve the performance of B+-Tree in locat-
ing but it is not optimal. For instance, assuming we have three encoded
ancestors a1(40, 45), a2(50, 60), a3(61, 70) and two encoded descendants
d1(30, 35), d2(63, 67); with Ld, we know that d2 must have matchable ancestors,
and then we find corresponding continuous 1 in La, which is (50, 70). This is
what Locator could do, with B+-Tree, we will get a2, a3; while with R-Tree, we
could get the result a3. R-Locator algorithm is listed as:

Algorithm 1. R-Locator (A, D)
input: A: the ancestor set and D: the descendant set
output: Query results of A//D

1: a := First(A); d := First(D) stack := ∅; Ld := Ld&La

2: while (a �= End(A) ∧ d �= End(D)) ∨ ¬stack.empty()) do
3: if (a.start > stack → top.end) ∧ (d.start > stack → top.end) then
4: stack → pop()
5: else if (a.start < d.start) then
6: stack → push(a); a := a → next
7: else if (¬stack.empty()) then
8: output pairs(a ∈ stack, d)
9: else

10: pos := FindFirst(Ld, d.end + 1, 1, True)
11: d := Rtreed → find(pos, pos)
12: pos := FindFirst(La, d.start − 1, 0, False)
13: pos := max(a.start + 1, pos + 1)
14: a := Rtreea → find(pos, pos)
15: end if
16: end while

The algorithm keeps two cursors, a and d for current elements checked. The
stack is adopted to hold the elements in A; and we also maintain the ancestor-
descendant relationship in stack. The idea of this algorithm is also based on
stack mechanism, but when elements having no matches are met, better than
previous approaches to skip unmatchable elements and test the elements that
may have matches, we adopt Locator to perform the Location function (line 10)
and use R-Tree to find ancestors (line 14).



784 N. Tang et al.

6 Performance Evaluation

6.1 Experiment Setup

Our test-bed is an experimental database system which includes a storage man-
ager, a buffer pool manger, B+-Tree, R-Tree, XR-Tree and Locator. All the
algorithms were coded with Visual Studio .NET. All the experiments were con-
ducted on a Pentium IV 2.80GHz PC with 1024M RAM and a 80G hard disk,
running Windows XP. The page size used is 4K and we use the file system as
the storage. All the experimental results presented below were obtained with a
fixed buffer pool size: 100 pages, just large enough to cache the hot elements.

We use synthetic data for all our experiments in order to control the structural
and consequently join characteristics of the xml documents. We adopt two DTDs
based on DBLP DTD and Department DTD which is similar to that in [3]. We
generated two 20M raw data for each DTD using the IBM xml data generator
with default parameters.

6.2 No False Hit vs. False Hit

This group of experiments was conducted to study the performance of R-Tree vs.
B+-Tree for false hit. We first use optimized L′

d to exactly locate descendants,
then we search the possible bit range on La for possible ancestors, and then we
use R-Tree or B+-Tree for retrieving the ancestors. We use the stack here to
store the nested ancestors, so the number of ancestors retrieved by R-Tree is the
exact number of results. The queries selected are listed in Table 8, we choose
these queries to thoroughly test all the nested and distributive cases.

Figure 9 shows the number of ancestors retrieved by R-Tree and B+-Tree.
If the ancestor elements whose ranges are covered by La are all matches of
corresponding d got from Ld, both R-Tree and B+-Tree could get no false hit.
Therefore the number of ancestors retrieved by R-Tree and B+-Tree is the same,
as shown in Figure 9 of the cases Q2 and Q3. In most cases, otherwise, some
ancestor elements have continuous encodings but some are not matches of cor-
responding d got from Ld, in which case R-Tree will still perform no false hit
while B+-Tree will get many useless ancestor elements because of false hit. There-
fore B+-Tree will retrieve much more ancestor elements than that of R-Tree. In
Figure 9, the queries Q1, Q4, Q5, Q6 show this case.

Query Document
Q1 employee//email Department
Q2 employee//name Department
Q3 inproceedings//title DBLP
Q4 book//homepage DBLP
Q5 article//homepage DBLP
Q6 article//editor DBLP

Fig. 8. Sample Queries
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6.3 Varying Selectivity on Elements

The objective of this set of experiments is to study the capabilities of various
algorithms to skip elements. Among all experiments, we show the results for the
case where the join selectivity on the ancestor set and the descendant set varied
together, starting from 90% down to 1%.

Varying Selectivity on Ancestors: The first group of experiments is to vary
join selectivity on ancestors. During this experiments, we kept the percentage
of descendants that match at least one ancestor high (99%) and varied the se-
lectivity on ancestors, i.e., the percentage of ancestors that have descendants.
Figure 6.3(a) and 6.3(b) display the elapsed time for various algorithms. As can
be observed from the figures, elapsed time with all algorithms decrease with
the decrease of selectivity on ancestors. All approaches improve the performance
by skipping unmatchable elements. Furthermore, R-Locator has the best over-
all performance. We also notice that XR-Tree is better than B+-Tree in the
case, this is because that XR-Tree is structured by maintaining stab lists in
the ancestor, thus XR-Tree performs less false locate than that of B+-Tree. One
interesting to note that even only few elements can be skipped, despite of the
possible overhead of index probing, all approaches perform no worse than the
basic Stack-tree join algorithm.

Varying Selectivity on Descendants: The second group of experiments is to
test the performance when varying join selectivity on descendants. We keep the
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Fig. 10. Elapsed time (in second) for different join selectivity. (a) (b): 99% of descen-
dants join with varying proportion of ancestors; (c) (d): 99% of ancestors join with
varying proportion of descendants; (e) (f): varying proportion of ancestors and descen-
dants are joined.
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join selectivity on ancestors high (99%) and vary the join selectivity on descen-
dants. Figure 6.3(c) and 6.3(d) show the overall performance of the algorithms
tested. As observed from the figures, R-Locator perform the best performance.
The XR-Tree is better than B+-Tree in that it keeps more information than B+-
Tree, therefore has the less chance for false locate. While one potential higher
overhead of XR-Tree is caused by two additional fields (ps, pe) in key entries,
hence more index pages.

Varying Selectivity on Both Ancestors and Descendants: In the last
set of experiments, we vary the join selectivity on both ancestors and descen-
dants. The results for these experiments are shown in Figure 6.3(e) and 6.3(f).
As shown in the figures, R-Locator still performs the best overall performance.
This can be explained as follows: as we vary the selectivity on both ancestors
and descendants, the case of interleaving elements of unmatchable elements on
ancestors and descendants increases, which increases the number of inevitable
false locate on both B+-Tree and XR-Tree. However, the distribution of elements
has no effect on Locator for no false locate.

The diversity of the algorithms is best illustrated by this group of experiments,
where there is potential to perform Location function. Locator could perform the
Location function with low overhead, therefore it provides the best performance
among all. XR-Tree, on the other hand, keeps more information than B+-Tree,
so it has more chance to achieve the Location function, thus it performs the
second and B+-Tree performs the worst overall performance.

7 Conclusion

In this paper, we propose a new Location function for fast structural join.
Previous approaches are all failed in performing this function, the reason is that
they use index to test whether the elements retrieved have matches by skipping
unmatchable elements. The design of our space-efficient structure Locator is
to efficiently perform Location function. The extensive performance evaluation
show the significance of our proposed algorithm over previous approaches.
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Abstract. Directed Acyclic Graph(DAG) could be used for modeling
subsumption hierarchies. Several labeling schemes have been proposed
or tailored for indexing DAG in order to efficiently explore relationships
in such hierarchy. However few of them can satisfy all the requirements
in response time, space, and effect of updates simultaneously. In this
paper, the prime number labeling scheme is extended for DAG. The
scheme invests intrinsic mapping between integer divisibility and sub-
sumption hierarchy, which simplifies the transitive closure computations
and diminishes storage redundancy, as well as inherits the dynamic la-
beling ability from original scheme. Performance is further improved by
introducing some optimization techniques. Our extensive experimental
results show that prime number labeling scheme for DAG outperforms
interval-based and prefix-based labeling schemes in most cases.

1 Introduction

Directed Acyclic Graph(DAG) is an effective data structure for representing sub-
sumption hierarchies in applications, e.g. OO programming, software engineer-
ing, and knowledge representation. The growing number and volume of DAGs
in such systems inspire the demands for appropriate index structures for DAG.

Labeling schemes[8] are widely used in indexing tree or graph structured data
considering their avoiding expensive join operations for transitive closure com-
putations. Determinacy, compaction, dynamicity, and flexibility are factors for
labeling scheme design besides speedup [10]. However, the state of art labeling
schemes for DAG could not satisfy most above requirements simultaneously.

One major category of labeling schemes for DAG is spanning tree based.
Ordinarily, they first find a spanning tree and assign labels for vertices following
the tree’s edges, and then propagate additional labels to record relationships of
the non-tree edges. Christophides compared two such schemes [4], i.e. interval-
based [7] and prefix-based [3]. Evaluations to the non-tree edges relationships
cannot take advantage of the deterministic tree label characters. Non-tree labels
need not only additional storage but also special efforts in query processing. Also
interval-based scheme studied in [4] has a poor re-labeling ability for updates.

There are also labeling schemes having no concern with spanning tree, such
as bit vector [9] and 2-hops [5]. Though bit vector can process operations on
DAG more efficiently, it is static and requires global rebuilding of labels when

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 787–796, 2006.
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updates happen. Moreover, studies show that recent 2-hops approach introduces
false positives in basic reachability testing.

A novel labeling scheme for XML tree depending on the properties of prime
number is proposed in [10]. Prime number labeling scheme associates each vertex
with a unique prime number, and labels each vertex by multiplying parents’
labels and the prime number owned by the vertex. Compared with prefix-based
scheme, the effect of updating is almost the same, and the query response time
and the size requirements are even smaller. However, no further work has been
performed on extending the idea to the case of DAG.

We extend the scheme by labeling each vertex with an integer which equals
to the arithmetic product of the prime numbers associating with the vertex and
all its ancestors. Independent of spanning tree, the scheme can efficiently explore
the subsumption hierarchies in a DAG by checking the divisibility among the
labels. It also inherits dynamic update ability and compact size feature from its
predecessor. Experimental results indicate that prime number labeling scheme is
an efficient and scalable scheme for indexing DAG with appropriate extensions
and optimizations. The major contributions are summarized as follows.

– Extend original prime number scheme[10] for labeling DAG and supporting
the processing of typical operations on DAG.

– Optimize the scheme on space and time requirements in terms of the char-
acteristics of DAG and prime numbers.

– A generator is implemented to generate arbitrary complex synthetic DAG for
the extensive experiments. Space requirement, construction time, scalability,
and the impact of selectivity and update are all studied in the experiments.

2 Prime Number Labeling Scheme for DAG

Given vertices v and w in DAG G, we will use parents(v), children(v),
ancestors(v), descendants(v), leaves(v), siblings(v) and nca(v, w) indicating
queries on those known typical operations related to reachability1 . (See [4] for
formal expressions). Vertex update is another kind of operation worthy of note
because it may bring reorganizations to the index structure.

2.1 Prime Number Labeling Scheme for DAG - Lite

Definition 1. Let G = (V, E) be a DAG. A Prime Number Labeling
Scheme for DAG - Lite (PLSD-Lite) associates each vertex v ∈ V with
an exclusive prime number p[v], and assigns to v a label Llite(v) = (c[v]), where

c[v] = p[v] ·
{

v′∈parents(v) c[v′], in−degree(v)>0

1, in−degree(v)=0
(1)

In Figure 1, PLSD-Lite assigns each vertex an exclusive prime number increas-
ingly from “2” with a depth-first traversal of the DAG. The first multiplier factor
in the brackets of each vertex is the prime number assigned.
1 DAG(directed acyclic graph), and reachability are general definitions in graph theory.

Given two vertices v and w, v � w is used to indicate that w is reachable from v.
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(2× 1 = 2)

(17× 2 = 34)

(19× 34 = 646)

(3× 2× 34 = 204) (23× 34 = 782)

(5× 204 = 1020) (11× 204× 646× 782 = 1133605968)

(7× 1020× 1133605968 = 8093946611520) (13× 1133605968 = 14736877584)

A

C

EB F

D G

H I

Fig. 1. PLSD-Lite Fig. 2. Updates in PLSD-Lite

Lemma 1. Let G = (V, E) be a DAG. Composite number c[v] in the Llite(v) =
(c[v]) of a vertex v ∈ V can be written in exactly one way as a product

c[v] = p[v] ·
∏

v′∈ancestors(v)

p[v′]mv′ (2)

where mv′ ∈ N.

Lemma 1 2 implies that for any vertex with PLSD-Lite, there is a bijection
between an ancestor of the vertex and a prime factor of the label value.

Theorem 1. Let G = (V, E) be a DAG. For any two vertices v, w ∈ V where
Llite(v) = (c[v]) and Llite(w) = (c[w]), v � w ⇐⇒ c[v]|c[w].

Consequently, whether two vertices have the relation of ancestor/descendant can
be simply determined with PLSD-Lite. For example, in Figure 1, we have A � D
because 2|1020. Finding out all the ancestors or descendants of a given vertex is
realizable by testing the divisibility of the vertex’s label with the other vertices’
labels in the DAG or conversely. Moreover, a vertex is a leaf if any other vertex’s
label value could not be divided by its label value. There is also a simple solution
to nca evaluating. First put all the common ancestors of both vertices into a set.
Then filter out vertices whose descendants are also within the set.

As stated in [10], re-labeling happens with the insertion or deletion of a vertex,
and only affects the descendants. After deleting vertex D, inserting leaf vertex
J and non-leaf vertex K, we have Figure 2. As a new leaf, J does not affect
other vertices in the DAG. Insertion of K only affects descendants G, H , I and
K itself. Vertex H is affected by the deletion of ancestor D too.

However, PLSD-Lite lacks enough information to identify parents/child rela-
tion. In order to support this operation, we need to separately record the prime
number that identifies the vertex and the additional information about parents.

2.2 Prime Number Labeling Scheme for DAG - Full

Definition 2. Let G = (V, E) be a DAG. A Prime Number Labeling
Scheme for DAG - Full (PLSD-Full) associates each vertex v ∈ V with an ex-
clusive prime number p[v], and assigns to v a label Lfull(v) = (p[v], ca[v], cp[v]),
where
2 All the proofs in this paper are omitted for the length limited.

(2 × 1 = 2)

(17 × 2 = 34)

(19 × 34 = 646)

(3 × 2 × 34 = 204) (23 × 34 = 782)

(5 × 204 = 1020)

(11 × 204 × 646 × 22678 = 32874573072)

(7 × 32874573072 = 230122011504) (13 × 32874573072 = 427369449936)

(31 × 204 = 6324)

(29 × 782 = 22678)

A

C

EB F

G

H I

K

DJ
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ca[v] = p[v] ·
{

v′∈parents(v) ca[v′], in−degree(v)>0

1, in−degree(v)=0
(3)

and

cp[v] =
{

v′∈parents(v) p[v′], in−degree(v)>0

1, in−degree(v)=0
(4)

We term p[v] as “self-label”, ca[v] (c[v] in Definition 1) as “ancestors-label”,
and cp[v] as “parents-label”. In Figure 3, three parts in one bracket is self-label,
ancestors-label, and parents-label. Theorem 1 is still applicable.

Theorem 2. Let G = (V, E) be a DAG, and vertex v ∈ V has Lfull(v) =
(p[v], ca[v], cp[v]). If the unique factorization of composite integer ca[v] results r
different prime numbers, p1 < ... < pr, then there is exactly one vertex w ∈ V
that takes pi as the self-label for 1 ≤ i ≤ r, and w is one of the ancestors of
v. If the unique factorization of composite integer cp[v] results s different prime
numbers, p′1 < ... < p′s, then there is exactly one vertex u ∈ V that takes p′i as
the self-label for 1 ≤ i ≤ s, and u is one of the parents of v.

Therefore, we can find out all the parents of any vertex by factorizing the parents-
label. For instance, since vertex G in Figure 3 has a parents-label 1311 = 3×19×
23, vertices B, E and F are considered to be all the parents of G. We still have
the rights to determine the parent/child relation of two vertices by checking
divisibility between one’s parents-label and the other’s self-label in terms of
Definition 2. Unique factorization also can be used to obtain ancestors. Three
ancestors A, B and C of vertex D could be identified by factoring “1020”. Though
trial division itself could be used to do integer factorization, we can choose faster
integer factorization algorithm alternately especially for small integers. Corollary
1 further expresses PLSD-Full’s sibling evaluation ability.

Corollary 1. Let G = (V, E) be a DAG. For any two vertices v, w ∈ V where
Lfull(v) = (p[v], ca[v], cp[v]) and Lfull(w) = (p[w], ca[w], cp[w]), w and v are
siblings if and only if the greatest common divisor gcd(cp[v], cp[w]) �= 1.

Corollary 1 enables us to discover the siblings of a vertex by testing whether the
greatest common divisor of the parents-labels equals 1. In Figure 3, vertex B
has two siblings E and F because gcd(34, 17) = 17 �= 1.

(2, 2, 1)

(17, 34, 2)

(19, 646, 17)

(3, 204, 2 × 17 = 34) (23, 782, 17)

(5, 1020, 3) (11, 1133605968, 3 × 19 × 23 = 1311)

(7, 8093946611520, 5 × 11 = 55) (13, 14736877584, 11)

A

C

EB F

D G

H I

Fig. 3. PLSD-Full
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3 Optimization Techniques

Elementary arithmetic operations employed by PLSD become time-consuming
when their inputs are large numbers. Some optimizations are introduced here.

Least Common Multiple. There is apparent redundancy in previous con-
struction of ancestors-label that power mv′ in Equation 2 magnifies the size of
ancestors-label exponentially, but it is helpless for evaluating the operations of
DAG. It is straightforward to remove the redundancy by simply setting mv′ to
1 in Equation 2. We have Equation 5.

c[v] = p[v] ·
∏

v′∈ancestors(v)

p[v′] (5)

Theorems 1 and 2 still hold. Define lcm(a1, a2, ..., an) to be the least common
multiple of n integers a1, a2, ..., an. In particular, we define lcm(a) = a here.

c[v] = p[v] ·
{lcm(c[v′

1],...,c[v
′
n]), in−degree(v)>0 and v′

1,...,v′
n∈parents(v)

1, in−degree(v)=0
(6)

Equation 6 implies that an ancestors-label can be simply constructed by multi-
plying self-label by the least common multiple of all the parents’ ancestors-labels.
Thereafter, Equation 5 holds. With this optimization technique, the max-length
of ancestors-label in DAG is only on terms with the total count of vertices and
the count of ancestors. Figure 4 has a smaller max-length of ancestors-label.

Topological Sort. Previous selection of prime number for the self-label is ar-
bitrary as long as any two vertices have different self-label. A naive approach is
assigning each vertex met in depth-first search of DAG a prime number ascend-
ingly. Unfortunately, Equation 5 and 2 imply that the size of a vertex’s self-label
has influence on all the ancestors-labels of its descendants. So vertices on the top
of the hierarchy should be assigned small prime numbers as early as possible.
Topological sort[6] of a DAG provides the character we need. One of the topolog-
ical sort of the DAG in Figure 1 is “A, C, E, F, B, D, G, H, I”. Let the self-labels
to be the first 9 prime numbers “2, 3, 5, 7, 11, 13, 17, 19, 23” respectively, then we
get Figure 5.

Leaves Marking. As an optimization for reducing label size, even numbers e.g.
21, 22, ..., 2n are used as self-labels for leaf vertices in [10], which gives us another

(2, 2 × 1 = 2, 1)

(17, 17 × lcm(2) = 34, 2)

(19, 19 × lcm(34) = 646, 17)

(3, 3 × lcm(2, 34) = 102, 34) (23, 23 × lcm(34) = 782, 17)

(5, 5 × lcm(102) = 510, 3) (11, 11 × lcm(102, 646, 782) = 490314, 1311)

(7, 7 × lcm(510, 490314) = 17160990, 55) (13, 13 × lcm(490314) = 6374082, 11)
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Fig. 4. Least Common Multiple

(2, 2, 1)

(3, 3 × lcm(2) = 6, 2)

(5, 5 × lcm(6) = 30, 3)

(11, 11 × lcm(2, 6) = 66, 2 × 3 = 6) (7, 7 × lcm(6) = 42, 3)

(13, 13 × lcm(66) = 858, 11)

(17, 17 × lcm(66, 30, 42) = 39270, 3 × 5 × 11 = 165)

(19, 19 × lcm(39270, 858) = 9699690, 13 × 17 = 221) (23, 23 × lcm(39270) = 903210, 17)
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Fig. 5. Topological Sort
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method to identify leaves. However, the prime number theorem indicates that
the growth of prime number is slower than that of power of 2, so self-labels of
even number leaves increase dramatically. An alternative is to follow the rule
of PLSD-FULL and simply set leaf’s ancestors-label to be negative. Whether a
vertex is a leaf could be determined by the sign of its ancestors-label. It is a
meaningful technique in the case of existing large number of leaves in a DAG.

Descendants-Label. In the same idea of ancestors-label, we can extend LDUP-
Full by adding the following so-called “descendants-label”.

ca[v] = p[v] ·
{

v′∈children(v) ca[v′], out−degree(v)>0

1, out−degree(v)=0
(7)

Clearly, Equation 7 is a reverse version of Equation 3. Now, descendants(v), can
be evaluated by factoring descendants-label. In section 4 we will give empirical
results on querying descendants and leaves using this technique.

4 Performance Study

This section presents some results of our extensive experiments conducted to
study the effectiveness of prime number labeling scheme for DAG (PLSD).

4.1 Experiment Settings

Taking the queries on RDF class hierarchies as an application background for
DAG, we setup test bed on RSSDB v2.0 [2]. In this case, each vertex stands for a
class in the RDF metadata, and each edge stands for the hierarchy relationship
between a pair of classes in the RDF metadata. RDF metadata is parsed and
stored in PostgreSQL (win32 platform v8.0.2 with Unicode configuration).

Though least common multiple, topological sort, and leaves marking are op-
tional optimizations, they are integrated in our default PLSD-Full implemen-
tation. PLSD-Lite and PLSD-Full without these optimizations are ignored for
their apparent defects. Furthermore, descendants-label is employed to examine
its effects on descendants query. We also provide the Unicode Dewey prefix-
based scheme and the extended postorder interval-based scheme by Agrawal
et al. Hence, there are totally four competitors in our comparisons, namely,
default PLSD-Full (PLSDF), PLSD-Full with descendants-label (PLSDF-D), ex-
tended postorder interval-based scheme (PInterval) and Unicode Dewey prefix-
based scheme (UPrefix). All the implementations are developed with JDK1.5.0.
Database is connected through PostgreSQL 7.3.3 JDBC2 driver. All the experi-
ments are conducted on a PC with single 2.66GHz Intel Pentium 4 CPU, 1GB
DDR-SDRAM, 80GB IDE hard disk, and Microsoft Windows 2003 Server.

The relational representations of UPrefix and PInterval, including tables, in-
dexes, and buffer settings, are the same to [4]. As for PLSDF, we create a ta-
ble with four attributes: PLSDF(self-label: text, label: text, parent-label: text, uri:
text). It is not surprising that we use PostgreSQL data type text instead of
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the longest integer data type bigint to represent the first three attributes con-
sidering that a vertex with 15 ancestors has an ancestors-label value at least
32589158477190044730 which exceeds the bound of bigint (8 bytes, between
±9223372036854775808). The conversion from text to number is available on
host language Java. Thus the number-theoretic algorithms used for PLSDF could
be performed outside PostgreSQL in main memory. Similarly, we use PLSDF-
D(self-label: text, label: text, parent-label: text, descendants-label: text, uri: text) to
represent PLSDF-D. For PLSDF and PLSDF-D, we only build B-tree indexes
on self-labels. Buffer settings are the same to those of UPrefix and PInterval.

4.2 Data Sets

To simulate diverse cases of DAG, we implement a RDF metadata generator to
generate RDF file with arbitrary complexity and scale of RDF class hierarchies.
Generator’s input includes the count of vertices, the max depth of spanning tree,
the max fan-out of vertices, and the portion of fan-in (ancestors/precedings).
The output is a valid RDF file. We concatenate the values of above four param-
eters and the count of edges with hyphens to identify a DAG. Listed in Table 1,
two groups of DAGs are generated for evaluating the performance.

Table 1. Data Sets

RDF Metadata Size Classes/ SubClassOf/ Depth Fan-out Fan-in Fan-in
DAG (MB) Vertices Edges Max Max Portion Max

1300-8-4-0.2-50504 2.55 1300 50504 8 4 0.2 219
1300-8-4-0.4-100132 4.62 1300 100132 8 4 0.4 458
1300-8-4-0.6-149451 6.34 1300 149451 8 4 0.6 373
1300-8-4-0.8-199774 8.05 1300 199774 8 4 0.8 897
1300-8-4-1.0-250222 9.32 1300 250222 8 4 1.0 562

90000-16-2-0.000053-44946 16.3 90000 44946 16 2 0.000053 3

4.3 Space Requirement and Construction Time

As shown in Figure 6(a), PLSDF and PLSDF-D have much smaller average space
requirement and mild trend of increase. The underlying cause is twofold. First,
both are simply composed of only one table whose row size equals to the count of
vertices, and one B-tree index. In contrast, Interval and UPrefix consist of three
tables (and more indexes) to record additional information besides spanning
tree. Another cause is that all the data type in the table of PLSDF or PLSDF-D
are text which will be “compressed by the system automatically, so the physical
requirement on disk may be less”[1]. Figure 6(b) illustrates that PLSDF and
PLSFD-D have the same gentle tendency but less construction time to UPrefix,
whereas the construction time of Interval is the worst. It is obvious that the count
of non-spanning tree edges impacts the space requirement and label construction
time for UPrefix and Interval. Another observation is that PLSDF needs few
space and construction time relative to PLSDF-D. This is reasonable considering
that PLSDF-D equals to PLSDF plus descendants-label.
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Fig. 6. Label Size(a) & Construction Time(b)

Operation Type Selectivity
Q1 ancestors 2.53%
Q2 descendants 20.08%
Q3 siblings 2.98%
Q4 leaves 38.67%
Q5 nca 0.011%

Fig. 7. Test Typical Operations
for Overall Performance

Fig. 8. Overall Performance

4.4 Response Time of Typical Operations

Overall Performance. DAG “9000-8-4-0.004-45182” is used here. The opera-
tions are listed in Figure 7. The total elapsed time is shown in Figure 8. PLSDF-D
is applied only to Q2 and Q4 to examine the effectiveness of descendants-label,
because it is the same to PLSDF for the other three queries. For the given se-
lectivity, PLSDF processes all the operations faster than the others. PLSDF-D
exhibits accepted performance in Q2 and Q4 as well. The concise table structure
of PLSDF/PLSDF-D and computative elementary arithmetic operations avoid
massive database access. For instance, the evaluation of a vertex’s ancestors in-
cludes only two steps. Firstly retrieve the self-label and ancestors-label of the
vertex from the table. Then do factorization using the labels. The only database
access happens in the first step.

Impact of Varying Selectivity. Selectivity experiment result is shown in
Figure 9. Diagrams in the figure correspond to operations from Q1 to Q5 re-
spectively. The metric of X-axis is the results selectivity of the operation except
that the fifth diagram for nca uses X-axis to indicate the average length from
the spanning-tree root. The metric of Y-axis is the response time. PLSDF dis-
plays almost constant time performance for all operations. Though the change of
response time is indistinguishable in some extensions, PLSDF stays at a disad-
vantage at a very low selectivity especially for Q2 and Q4. Fortunately, PLSDF-D
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Fig. 9. Impact of varying selectivity Fig. 10. Scale-up Performance

counterbalances this with descendants-label. It is a better plan to choose PLSDF-
D at a low selectivity and switch to PLSDF when the selectivity exceeds some
threshold. However, no good solution is found for PLSDF in Q3 where it costs
more response time at a low selectivity. PLSDF has to traverse among the ver-
tices and compute greatest common divisor one at a time.

Scale-Up Performance. We carry out scalability tests with the first group
of DAGs in Table 1. Operations are made to have the equal selectivity (equal
length on path for nca) for each scale of DAG size. Five diagrams in Figure 10
corresponds to operations from Q1 to Q5 respectively. Interval and UPrefix are
affected by both the size of the DAG. Unlike the other two labeling schemes,
PLSDF and PLSDF-D perform good scalability in all cases.

4.5 Effect of Updates

The “Un-ordered Updates” experiments exhibited in [10] are repeated. Here
we only give the results of updates on non-leaf vertices (updates on leaf have
the same results to that of XML tree, see Section 2.1). Ten DAGs whose ver-
tices increase from 1000 to 10000 are generated. We insert a new vertex into
each DAG between bottom left leaf and the leaf’s parent in the spanning tree.
Figure 11 shows our experimental results which coincides with that of XML tree.
PLSDF has exactly the same effect of update as Uprefix. While additional label
of PLSDF-D questionless causes more vertices to be re-labeled.
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Fig. 11. Effect of Updates

5 Conclusion

Prime number labeling scheme for DAG takes advantage of the mapping between
integers divisibility and vertices reachability. No extra information is required
to be stored for non-spanning tree edges, and the utilizations of elementary
arithmetic operations avoid time-consuming database operations. Performance
is further improved with the optimization techniques. Analysis also indicates
that re-labeling only happens when a non-leaf vertex is inserted or removed.
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Abstract. Efficient full-text keyword search remains a challenging problem in
P2P systems. Most of the traditional keyword search systems on DHT over-
lay networks perform the join operation of keywords at document level, which
consumes a huge amount of storage and bandwidth. In this paper, we present
KEYNOTE, a novel keyword search system that performs the join operation
at node level. Compared to the traditional keyword search systems on DHTs,
KEYNOTE can greatly reduce the storage and communication cost. To forward a
query to the relevant nodes for searching documents, two effective node selection
methods are presented. To address the hot spot problem in Chord overlay net-
works, an efficient load balancing scheme is introduced. Simulated experimental
evaluation with up to 8,000 nodes and over 600,000 real-world documents vali-
dates the practicality of the proposed system.

1 Introduction

Recently Peer-to-Peer (P2P) systems have emerged as a scalable infrastructure that
can provide large-scale and decentralized lookup services. Filename-based P2P search
systems are already popular, while content-based search remains a challenge in P2P net-
work context. Compared to the other complex P2P information retrieval systems, key-
word search systems on DHTs [1, 2, 3, 4] are particularly attractive due to their simple
yet efficient searching mechanism and high search accuracy. Meanwhile, along with the
development of centralized search engines, such as Google, it is interesting and worth of
studying whether P2P-based Web and text search can achieve equivalent precision, and
similar or even better performance, for the low cost, ease of deployment, and scalability
characteristics of P2P systems.

As with the centralized Web search engines, the users may be interested only in top-
k documents that are most relevant to the query in the P2P networks. Since the top-k
documents usually exist in a small number of nodes( or peers), how to select the relevant
peers without maintaining the information of all peers is the first challenge for making
P2P-based content search a reality.

Existing DHT-based keyword search technologies perform the join operation at the
document level, consuming a large amount of storage and bandwidth. In the rest part of

� This work was supported by the National Natural Science Foundation of China (NSFC) under
grant numbers 60373019, 60573183 ,60496325 and 60503034, Shuguang Program of Shang-
hai Education Development Foundation, and Shanghai Rising-Star Program (04QMX1404).

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 797–806, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



798 Z. Zhang et al.

this paper, it is called the document join approach. Fig. 1 illustrates its basic scheme.
In this approach, the keywords and the computers in this system are hashed into the
same range. A computer hosts those keywords whose hashed values are between its
address and the address of the next computer in the network. When a node joins the
network, it publishes the inverted index including the term, the global document ID and
other meta data (e.g., the weight of the term in the document). To perform the multi-
term query, the system has to transfer the posting information of one term from one
node to other nodes holding other terms. This approach is problematic in the situations
where a huge number of documents exist in the P2P network, and the node hosting the
index of the terms must spend considerable storage space for the index and metadata,
while answering a multi-term query, much bandwidth is consumed to transfer the large
amount of indices. As indicated by [1], even with promising optimization techniques,
current keyword search systems are not feasible for Internet-scale search.

Furthermore, for the existing systems, queries are not distributed evenly. Even with
the randomized DHT, the query processing workload is not balanced in the P2P sys-
tems. keeping load balance on top of DHT overlay is a critical requirement for P2P-
based keyword search systems.

Hash range
PeersInverted index on peer i 0

N

P1

P2

P3

term

term docID metadata
t1 ... ...

...

term docID metadata
t2 ... ...

...

Term-Document Info
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Fig. 1. Document-join System
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Fig. 2. Node-join System

To deal with the above three challenges, we present a novel search system. The ba-
sic idea is to select those peers having most of relevant documents to the query. To
reduce storage and bandwidth cost, our system performs the join operation at the node
level. Fig. 2 illustrates its scheme. Instead of publishing the term-document informa-
tion, our system publishes term-node data. The distributed indices include the terms,
the source node identifiers and the statistics regarding the terms in the source nodes. To
perform queries consisting of two terms, we need only to transmit the term-node statis-
tics from one node to another node. We call our system KEYNOTE, KEYword-search
using NOde-selection for TExt-retrieval. We also provide an efficient load balancing
algorithm on top of the DHT overlay, Chord [5] in our system.

In this paper, our contributions include:

– We propose KEYNOTE, a novel keyword search system over Chord overlay net-
works using node-level join, which can greatly reduce both communication and
storage cost.

– Two simple yet effective methods for node selection are proposed, which can be
implemented in distributed way.
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– A load balancing algorithm is presented for the Chord overlay, which can guarantee
that the load balancing of each hot term on one given node could be achieved in
O(log N) steps(N is the number of nodes in the network).

1.1 Related Work

PlanetP[6] uses Bloom Filter to summarize the content of each node and distributes this
summarization to the whole network. In [7], Lu et. al studies content-based resource
selection and document retrieval in hybrid P2P networks. pSearch[8] is a peer-to-peer
information retrieval system based on CAN[9], which employs statistically derived con-
ceptual indices for retrieval. P2P keyword search on top of DHTs are most relevant to
our work. To reduce the communication cost for the keyword join, some optimization
techniques have been proposed. In [2], Reynolds et. al adopt Bloom filters, caches and
incremental results to reduce the join cost. [1] reported that by combing all the existing
optimization techniques , it is still impossible to make P2P web search feasible on top
of DHTs. In [4], Tang et. al propose eSearch, a hybrid global-local indexing mecha-
nism to make the communication cost independent of the number of documents in the
network. However, this method consumes 6.8 times storage cost of traditional keyword
join systems. In [10], Zhong et. al report that the communication cost of keyword join
system could be reduced to 0.0175 times by combining the techniques of Bloom Filter,
caching , pre-computation, query log mining and incremental set intersection.

The remainder of this paper is organized as follows. Section 2 presents KEYNOTE
in details. Section 3 describes a load balancing algorithm in Chord overlay. Section 4
gives the experimental evaluation of our system. Section 5 concludes our paper.

2 Techniques of the KEYNOTE System

In KEYNOTE, a large number of computers are organized by DHT into a Chord[5]
ring. Fig. 3 illustrates the system architecture of KEYNOTE. When a new peer wants
to join the network, it first joins the Chord network using the join protocol of Chord.
Afterward, the new peer publishes the term-node statistics to other peers which are
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responsible for the terms in the Chord ring. When a multi-term query is issued, the
term-node information regarding these terms are transmitted from one node to other
nodes for performing the node-level join. From those nodes which contain all the terms,
the peer selection methods are used to select top-L (where L is the system parameter in
our system) relevant peers to which the query is finally forwarded for processing. After
all local top-k results from these selected peers are returned to the query peer, these
partial results are merged into the final top-k documents. The node leaving and failure
are handled similarly in Chord.

In the following, we would present peer selection methods, term-node information
publication , query processing and analysis of system resources in details.

2.1 Peer Selection Methods

Peer Selection Using Sum Statistics: PS-sum. Our first peer selection method(simply
PS-sum) is inspired by the gGlOSS system[11], which proposes an approach to estimate
the goodness of each text database for a given query and then ranks these text databases
according to the estimated goodness. In KEYNOTE, an estimation of the goodness of
peer Pj with regard to the query vector q = {q1, q2, . . . , qm} is given as follows.

Gsum(q, Pj) =
∑

i=1,...,m

qi × wsum(i, j) =
∑

i=1,...,m

qi × sum tfi(Pj) × idfi (1)

where wsum(i, j)is the sum weight of term ti appearing in different documents in
Pj . And sum tfi(Pj) is the sum of TF weight of ti appearing in different documents
in Pj , i.e., sum tfi(Pj) =

∑
dk∈Pj∧ti∈dk

tfik, where tfik is the TF weight of ti in
document dk.

In KEYNOTE we compute the weight of each term based on the global information.
Therefore, in equation 1, idfi is defined as the global value of log N

ni
, where ni is the

number of documents that contains ti in the whole network and N is the total number
of documents in the network.

Peer Selection Using Sum and Max Statistics: PS-sum max. The PS-sum method
could fail in the following occasion. Peer A contains only one relevant document d
to the query q. Peer B contains many relevant documents whose summed relevance is
much greater than the relevance of d, but the maximum relevance of these documents
is less than the relevance of d. Now the users issue a top-1 search for the query q and
use PS-sum to select one peer for searching, peer B would be selected for processing
the query. In this case, the users would miss the most relevant document d in peer A .
To address this problem, here we propose a new method, PS-sum max, which consid-
ers both the summed relevance and the maximum relevance. Formally, we define the
goodness of Pj to q as follows:

Gsum max(q, Pj) =
Gsum(q, Pj)

2 ∗ Max Gsum(q)
+

Gmax(q, Pj)
2 ∗ Max Gmax(q)

(2)

where Max Gsum(q)=Max{Gsum(q, Pj)}, Max Gmax(q)=Max{Gmax(q, Pj)}
and

Gmax(q, Pj) =
∑

i=1,...,m

qi × wmax(i, j) =
∑

i=1,...,m

qi × max tfi(Pj) × idfi (3)



KEYNOTE: Keyword Search by Node Selection for Text Retrieval 801

where wmax(i, j) is the maximum weight of term ti among all the documents in Pj ,
max tfi(Pj) = max{tfik|dk ∈ Pj} and idfi has the same meaning in equation 1.

2.2 Term-Node Information Publishing and Query Processing

To implement PS-sum and PS-sum max, we need to know the global value of
wsum(i, j) and wmax(i, j) for each term ti in peer Pj , which further requires global
values of N and ni. For the value of ni, we could look up the node holding ti . But
there is no dedicated node storing the value of N . In KEYNOTE, we let those nodes
responsible for stop-words store the value of N . Our process of publishing statistics for
each term ti in Pj consists of three steps.

1. We publish the number of documents containing ti to the node holding ti .
2. We get the global value of N and ni from the nodes containing stop-words and

the node holding ti respectively and then compute the global weight of ti in each
document in Pj . Afterward, wsum(i, j) and wmax(i, j) are computed .

3. Finally, the information which constitute a tuple ( ti, Pj , wsum(i, j) , wmax(i, j) )
is published to the node responsible for ti .

To answer a multi-term query, the term-node information of each term is first located
using the routing protocol in Chord. Then inverted lists of these terms are transmitted
from one node to other nodes for performing the join operation. From those nodes which
contain all these terms, we choose the top-L relevant nodes and forward the query to
these L nodes in parallel to get the local top-k documents from each of these L nodes.
Finally, the global top-k documents are obtained by merging the local top-k documents
from each of these L nodes.

2.3 Analysis of System Resource Usage and Search Latency

For the convenience of analysis, we make the following assumptions: (1)The query in-
volves two terms t1 and t2. The user is interested in seeing the top-10 results for the
query and the system parameter L is 15. (2)The link between each peer and its succes-
sors on the chord ring is pre-established TCP-IP link. When two non-neighbors want to
transmit data, they have to establish the temporal UDP link.(3) The available network
bandwidth per query is 1.5Mbps, the bandwidth of a T1 link. (4) The link latency to
establish the temporal link is 40ms and the time involved in the local searching and
computing in each site is omitted in our analysis since in P2P systems we focus on the
network latency.

Storage Cost. The storage cost is the total storage consumption for holding the dis-
tributed index over the whole network. In traditional document-join systems, we as-
sume that these systems need 8 bytes to represent the document ID and another 4 bytes
to store the meta-data (e.g., the weight of the term ). Thus, the total storage consumption
in these systems is 12 × n × t × d Bytes, where n is the number of nodes in the net-
work, t is the averaged number of distinct terms per node and d is the averaged number
of term-relevant documents per term on each node. In KEYNOTE , we use 4 bytes to
represent the node ID(or node IP) and another 8 bytes to store the sum weight and max
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weight of each term. Thus, the storage cost in KEYNOTE is 12 × n × t Bytes. Com-
pared to the document-join systems, KEYNOTE reduces the storage cost by a factor of
d. Obviously, the value of d is data collection dependent. In our Reuter news collection,
this value is around 17.

Communication Cost. The communication cost is the bandwidth cost for transmitting
the data after the link is established.

We first analyze the communication cost of document-join systems. To locate the two
nodes holding t1 and t2, the communication cost is 2∗ 1

2 ∗ log(n)∗ (40+1+40) = 81∗
log n, where 1

2 ∗ log(n) is the averaged routing hops in the Chord overlay consisting of
n nodes, (40+1+40) is the size of the query message(including 40-byte TCP-IP header,
1-byte message ID and 40-byte query text). To perform the join operation of t1 and
t2, the communication cost is 12 ∗ Nterm doc bytes, where Nterm doc is the averaged
number of documents in which a term appears. We assume that the optimization tech-
niques for the join operation (including Bloom Filter, caching , pre-computation, query
log mining and incremental set intersection) are used in the traditional document-join
system and these techniques could lead to 0.0175 times reduction1. To return the search
results, the communication cost is 28 + 1 + 10 ∗ (8 + 4) = 149(including 28-byte
UDP-IP header, 1-byte message ID, 8-byte document ID and 4-byte similarity score for
the top-10 results). Therefore, the total communication cost of document join systems
with optimization techniques is 81 ∗ log n + 0.0175 ∗ 12 ∗ Nterm doc + 149 Bytes.

Now we begin to analyze the communication cost in KEYNOTE. The cost to locate
the two nodes holding t1 and t2 is the same as that in document-join systems. The
communication cost of node-level join operation is 12 ∗ Nterm node, where Nterm node

is the averaged number of nodes in which a term appears . The cost of returning the
list of selected peers to the query peer is 28 + 1 + 15 ∗ (4 + 4) = 149(including
28-byte UDP-IP header, 1-byte message ID, 4-byte node ID and 4-byte similarity score
for the top-15 nodes). The communication cost of returning the final document list to
the query peer is 28 + 1 + 15 ∗ 10 ∗ (8 + 4) = 1829(including 8-byte document ID
and 4-byte similarity score of the top-10 documents from each of the selected 15 peers).
Therefore, the total communication cost of KEYNOTE with optimization techniques is
81 ∗ log n + 0.0175 ∗ 12 ∗ Nterm node + 149 + 1829 Bytes.

We can observe that compared to document-join systems KEYNOTE could
reduce the communication cost for Web searching roughly by a factor of
Nterm doc/Nterm node. In our data set, Nterm doc/Nterm node is roughly around 13.

Search Latency. The search latency in the document join system is 2 ∗ Tlink latency +
Cdoc−join∗8

1.5∗106 seconds, where two latencies to establish the UDP links are consumed.
One link latency is used to establish the UDP link for transmitting the data in the join
operation, and the other link latency is consumed to build the link for transmitting the
top-k results to the query peer. The search latency in KEYNOTE is 3 ∗ Tlink latency +
CKEY NOT E∗8

1.5∗106 seconds where totally 3 link latencies are involved. One link latency is
used for performing the join operation. The second latency is used for returning the

1 [10] reports that by combining these techniques together could lead to 0.0175 times reduction
in communication cost for the join operation.
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list of selected peers to the query peer. The last latency is consumed for locating the
selected peers.

3 Load Balancing

The load balancing issue includes balancing both the storage load and query execution
load. In KEYNOTE, the storage cost on each node is greatly reduced by our term-
node information publication mechanism. Thus, in this paper we focus on balancing the
query execution cost. In [12], Dabek et al. propose the idea of replicating the popular
files on all the nodes in the search path. We call this strategy “all-cache” method. In
KEYNOTE, we only cache the hot keys on the carefully selected nodes and we call our
method “selective cache”.

Algorithm1 gives a formal description of our load balancing algorithm when a node
Ni becomes overloaded for the hot key k.

Algorithm 1. ShedLoad (Node Ni, Key k)
1: i = 0
2: if Ni is not the original host for key k then
3: Let d=(k + 2m − Ni) mod 2m

4: while i < m AND d > 2i do
5: i = i + 1
6: end while
7: end if
8: repeat
9: Let Nj be the predecessor who hosts the key (k + 2m − 2i) mod 2m

10: i = i + 1
11: until i ≥ m OR Nj has no copy of the key k
12: Copy key k to Nj

13: if Ni is still overloaded due to the frequent access of key k then
14: ShedLoad (Ni, k)
15: end if

Theorem 1. In KEYNOTE, for one given node Ni and key k, our load balancing algo-
rithm could make Ni’s load for key k become light in O(log N ) steps.

For the detailed description of our algorithm and the proof of theorem 1, please refer to
our technical report[13].

4 Experimental Evaluation

We use the Reuters news as our evaluation dataset, which contains over 600,000 news
from the date 08.20.1996 to 08.19.1997. Each document in this data set is stored in
the XML format and has the tag ”location.name” that denotes the source location of
this news. We divide the Retuers news into different collections based on the tag “loca-
tion.name” . The total number of collections is 8,722 , which represents 8,722 nodes in
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(a) Top-10 search (b) Top-50 search (c) Top-100 search

Fig. 4. Top-k search performance of KEYNOTE on a 2000-node network

the Chord overlay networks. To test the performance of our system on networks with
different sizes, we scale the network size from 500 to 8,000. Four types of queries are
used to evaluate the search performance of KEYNOTE: one-term , two-term , three-
term and four-term. We give each of the four types the same probability to appear and
generate 1, 000 queries . All the experimental results presented are obtained by averag-
ing the results of the 1000 queries.

We measure the accuracy of our system by comparing the results returned by our
system with the results from centralized searching. For each top-k query, let A be the
searching result in centralized context, and B be the returned result of our system. The
accuracy is defined as |A∩B|

|A| . To test the effectiveness of our load-balancing method,
we conduct the experiment both on the full Chord ring and half-full Chord ring when
m = 16. We assume that there is one hot key in the network and a node that receives
more than 100 request per time unit would become overloaded. The number of requests
for the hot key ranges from 1,000 to 11,000 per time unit, and all requests are evenly
distributed in the Chord ring.

Fig. 4 illustrates the top-k search performance of KEYNOTE using our two peer se-
lection methods on a 2000-node network. Fig. 4(a) shows the performance comparison
between PS-sum and PS-sum max for the top-10 search. From Fig. 4(a) we can ob-
serve that PS-sum max outperforms PS-sum since by visiting the same number of nodes
PS-sum max could return more accurate documents than PS-sum could. We could have
the similar observation in Fig. 4(b) and Fig. 4(c). From Fig. 4, we could see that our
peer selection methods are very effective in determining the relevances of each peer to
the query. For the top-10 search, we could get an accuracy of 93% by visiting only 15
nodes on a 2000-node network. Even for the top-100 search, we could get an accuracy
of 87% by visiting 35 nodes on a 2000-node network.

Fig. 5 shows the system performance on different network sizes. In Fig. 5 we let
the accuracy be 90% and test the number of visited nodes required to achieve this ac-
curacy on different network sizes. In Fig. 5(a), we could see that the number of vis-
ited nodes in KEYNOTE doesn’t grow linearly with the network size. For the top-100
search, the system needs to visit 19 nodes when network size is 500. But when the
network size is 8000 (16 × increment), the system visits only 50 nodes(2.5 × incre-
ment). For the top-10 and top-50 search, the number of visited nodes almost remains
constant when the network size grows from 4,000 to 8,000. Fig. 5(b) shows that the
percentage of the visited nodes to the network size decreases as the network size grows
larger.
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(a) Number of visited nodes Vs. net-
work size

(b) Percentage of visited nodes Vs.
network size

Fig. 5. The impact of varying network size on system performance

(a) Replications on the full chord ring (b) Replications on the half-full chord
ring

Fig. 6. The performance of the load balancing algorithm

Table 1. The scaled performance of top-10 search on a 6 ∗ 107-node network with 8 ∗ 109 pages

Techniques Document-join KEYNOTE

Total storage cost 7814GB 439GB
Averaged Comm. cost 7.03 M 541KB

Latency per query 37.5 seconds 3.0 seconds
Accuracy 100% 91%

Fig. 6 gives the performance comparison of two load balancing techniques, our “se-
lective cache” (simply SC) method and the “all cache” (simply AC) method. We could
see that our “selective cache” method uses significantly few replications to achieve load
balancing than the “all cache” method both on the full Chord ring and the half-full ring.

To project the performance of our system and the document-join system for the
Internet-level search, we scale our evaluation results to 8 ∗ 109 Web pages and 6 ∗ 107

nodes. Table 1 shows that by compromising 10% accuracy we get over 10× reduc-
tion in communication and bandwidth cost as well as the search latency, which makes
KEYNOTE feasible for the Internet-level search.
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5 Conclusion

In this paper, we present KEYNOTE, a novel full-text search system on DHTs. By
performing the join operation at node level, KEYNOTE can greatly reduce storage and
bandwidth cost. For tackling the hot-spot problem on the Chord overlay, an efficient
load-balance algorithm is introduced. The experimental results validate the performance
of KEYNOTE and indicate the feasibility of KEYNOTE for Internet-scale search.
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Abstract. Stored procedures are an important feature of all major database sys-
tems that allows to execute application logic within database servers. This pa-
per reports on experiences to implement a popular scientific algorithm, the Basic
Local Alignment Search Tool (BLAST), as stored procedures within a relational
database. We implemented the un-gapped, nucleotide version of the BLAST algo-
rithm with four different relational database engines, both commercial and open
source. In an experimental evaluation, we compared our dbBLAST implementa-
tions with a standard file-based BLAST implementation from NCBI with regard
to the implementation effort, runtime performance, and scalability. It shows that
although our dbBLAST runs faster than the file-based BLAST program for short
query sequences, all implementations lack scalability. However, the results also
indicate that stored procedures require significant less development effort—both
in time and space—than traditional programming approaches.

1 Introduction

The objective of this paper is to investigate the suitability of today’s database systems
for scientific computing, and to identify possible shortcomings of database engines for
those applications. We concentrate on relational database systems. As an example ap-
plication, we take the basic local alignment search tool (BLAST) for gene sequence
databases [1, 2]. The idea is to store the sequence data in a database and to implement
the standard BLAST algorithm within the database systems using stored procedures.

All major commercial database engines support stored procedures and even some
open source database systems recently extended into this direction (e.g. PostgreSQL 8
or MySQL 5). The ’traditional’ stored procedure capability in the spirit of the SQL/PSM
standard is basically an extension of SQL with statement grouping, local variables,
control flow and condition statements [3, 4]. Besides, there is also the possibility of
externally defined stored procedures written in a 3GL programming language — for
example in C, Java, or recently also any language supported by the common language
runtime (CLR) of .NET.

The main benefits of stored procedures are reduced communication between client
and server, and better code maintainability. In the context of scientific computing, stored
procedures are interesting because they allow the implementation of data analysis algo-
rithms beyond the capabilities of SQL queries, and to run those tasks near the data anal-
ysed. In addition, it would introduce set-oriented processing and declarative querying,
both of which would be very benefitial in scientific programs. The main contributions
of this paper are as follows:

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 807–816, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– We developed a database-centric version of the BLAST algorithm, called dbBLAST,
using stored procedures and an optimised physical design for relational databases.

– We implemented dbBLAST with different relational database systems — three com-
mercial DBMS, and one open source DBMS (PostgreSQL 8) — and report on our
experiences doing so.

– In a quantitative evaluation, we compared our four dbBLAST implementations with
a state-of-the-art, file-based BLAST program from NCBI.

– Based on our experiences and evaluation results, we make suggestions for further
improvements of database engines to better support scientific database applications.

Please note that we do not strive to improve or replace the BLAST algorithm it-
self. Rather we take this well established algorithm as given and implement it using a
different technology, namely with 4GL programming languages inside a database.

Our main results are that we could implement the BLAST algorithm much faster and
shorter using stored procedures than using a ’traditional’ programming language such
as C. At least for shorter query sequences, dbBLAST is also faster than NCBI-BLAST,
but it is significantly less scalable. This can be mainly attributed to the limited support
of extensive string processing and the weak integration of stored procedures within the
query processor of current database engines. There were also significant performance
differences between the database systems used. But although dbBLAST in its current
form lacks scalability, it successfully demonstrates the power of declarative querying
for scientific computing, and how to enrich pure BLAST searches with access to all
meta-data of the stored sequence database.

2 The Basic Local Alignment Search Tool

The Basic Local Alignment Search Tool (BLAST) is an algorithm which searches a
nucleotide or protein sequence database for matches to a given nucleotide or protein
sequence [1]. The search is based on local similarity, that is, it aligns two sequences
based on short segments of relatively conserved subsequences. This algorithm is widely
used in bioinformatics to identify sequence homology. It consists of two phases:

Phase 1 – Finding Hot Spots. In the first phase of BLAST, the query sequence is bro-
ken down into smaller subsequences known as words of length w. A protein sequence
database is searched for hot spots, local subsequences which exactly match a query
word or are ’related’ to a query word. A related word is equal in length to a query word
and has a similarity score above or equal to a threshold value t. On the other hand,
hot spots in a nucleotide database are exact matches to the query words. Alignment
scores are calculated using a substitution matrix in the case of proteins. In the case of
nucleotides, a reward value (positive) is given for a pair of matching bases and a penalty
value (negative) is given for a pair of mismatched bases. Scores for each individual pair
of aligned residues are summated to give the total score.

Phase 2 – Hot Spot Extension. For each hot spot found, the alignment comparison is
extended in both directions for both query and database sequences, attempting to find
a maximal segment pair (MSP): that is a segment pair with a maximum score over all
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segment pairs of sequences in comparison. The extension of hot spots in one direction is
terminated when either one of the sequences reached its ends, or when the score of the
segment pair falls below x number of arbitrary units below the best score yet found. On
completion, the algorithm reports all MSPs found during this process with substitution
matrix score above a cut-off score s, called the high-scoring pairs (HSP). The extension
step usually accounts for over 90% of NCBI-BLAST’s execution time [2].

2.1 NCBI-BLAST

There are several highly optimised, file-based implementations of the BLAST algo-
rithms available [9, 5]; one of the most popular is from the National Center for Biotech-
nology Information (NCBI) [9]. NCBI-BLAST runs as a standalone program that scans
the entire nucleotide or protein sequence databases in order to search for matches to an
input sequence. Note that in the context of NCBI-BLAST, ’database’ actually means
a compressed binary file containing the sequence data. NCBI-BLAST differs in a few
notable aspects from the original BLAST algorithm as published in [1]:

– NCBI-BLAST searches for both the query nucleotide sequence and its comple-
mentary strand due to the double stranded nature of DNA. The query sequence
may match a nucleotide sequence in the database as is, or be the complement of a
nucleotide sequence.

– NCBI-BLAST finds hot spots by searching for exact matches between query words
and a corresponding subsequence from a nucleotide database. This means that it
does not do an initial similarity match using a substitution matrix and that the t
threshold is actually ignored.

– The implementation contains an optimisation that avoids extensions leading to an
already identified MSP. Before NCBI-BLAST extends a hot spot, it checks whether
it lies within an already found MSP. Such hot spots would extend to the very same
MSP and hence are discarded.

NCBI-BLAST is implemented in C and compiles on every major operating system.
The distribution also includes a formatdb tool which must be run first to prepare the se-
quence ’database’ for processing. Formatdb takes sequences in FASTA format and does
a straight-forward bit-compression on the nucleotide sequences: every base is encoded
with two bits. Some nucleotide sequences have degenerate symbols which represent a
set of nucleotides (such as ’N’, which denotes ’A, ’T’, ’C’ OR ’G’). As two bits can
encode only four different symbols, NCBI-BLAST actually ignores those degenerated
symbols and replaces them with a randomly selected one.

3 dbBLAST: BLAST Using Stored Procedures

We have developed a database-centric version of the well established BLAST algorithm
using a relational database management system, containing both code and the sequence
data (including all other data such as sequence origin and modification date, source or-
ganism, article references, etc.). This way, our solution can easily enrich the sequences
with any sequence details, e.g., where the matches have been published. In order to
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be able to compare the performance of this dbBLAST approach with NCBI-BLAST,
we followed the implementation specifics of it as much as possible. However, only the
nucleotide search was implemented, for the sake of simplicity.

3.1 Database Design

The central idea of the database design for dbBLAST is to avoid scanning the whole
database for a query. This is achieved in two ways: First, we introduce an inverted index
over all sequences in the database. Secondly, the sequence data is segmented so that not
the whole sequence data has to be loaded into the database buffer to check a possible
hit, but only the segment matching with a query word.

Inverted Index. The inverted index utilises ideas from text-based information retrieval
for sequence indexing [6]. Every w-residue word found in the database is indexed in
a Words table. A second WordIndex table holds the inverted index with the exact
occurrences (sequence IDs and residue index) of each indexed word. This indexing
approach is feasible because the database is updated only very infrequently (and then,
mostly insertions). A drawback is that for each queried word length w an own inverted
index is needed.

Sequence Segmenting. Sequences can become very long — e.g. in the human genome
database, sequences consisting of several ten thousands of base pairs are not uncom-
mon. This means that BLAST has to handle sequence attributes of several kilobytes
size and one needs string manipulation functions to access individual characters and
substrings within them. The solution of dbBLAST is to partition each database se-
quence into smaller segments which fit one string attribute1. The extension phase of the
BLAST algorithm normally does not need access to the whole sequence; rather, it ex-
tends hot spots just a few dozen residues to the left and to the right to find a MSP. Hence,
the chances are high that we can find the complete MSP within one segment. Addition-
ally, our dbBLAST implementations do also include a ’paging’ algorithm which allows
us to extend MSPs which span more than one segment.

3.2 dbBLAST Implementation

The BLAST algorithm is implemented as a set of stored procedures inside the database
server. The front-end is the blastn() function that can be called with a query se-
quence and the central BLAST parameters2 as arguments. The two central problems for
implementing BLAST as stored procedure are that the query sequences can potentially
become very long, and that the algorithm’s result is set-valued. Ideally, database sys-
tems should support arbitrarily sized strings as parameters and either set-valued output
parameters or return values. However, both features are not very common in today’s
systems. Hence, our approach returns the matches, depending on the host database
capabilities, either as a multi-valued return value, or they are stored in a table in the
database from which they have to be retrieved by the caller. The dbBLAST algorithm
is organised in five steps:

1 Depending on the DBMS engine, we had to use either 4KB or 8KB segments.
2 reward and penalty values and s, t, and x thresholds.
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Step 1: Query Preparation. First, it computes the complement of the query sequence
(cf. NCBI-BLAST description). Then, both the original query sequence and its
complement are split into m words of length w. This word list is stored in a tempo-
rary table(or, where possible, in a local table variable) for further processing.

Step 2: Hot-Spot Search. In the next step, the set of hot spots candidates in the se-
quence database is identified. Here, dbBLAST makes use of the inverted index —
basically, it is a join between the query words table and the inverted index table.
Please note that similar to NCBI-BLAST, our algorithm searches for exact matches.

Step 3: Duplicate Check. Similar to the approach taken by NCBI-BLAST, dbBLAST
tries to minimise the number of extensions by checking for each hot spot candidate
whether it lies within the boundaries of an extension that has already been made.
If that is the case, the hot spot candidate is discarded and no extension will be
done.

Step 4: MSP Extension. This step corresponds to phase two of the BLAST algorithm
and is the computationally most expensive step. For every hot spot found, the
matching sequence segment is retrieved from the database and a MSP is attempted
to be found by extending the match into both directions. If the match extends be-
yond the segment’s border, the adjacent segment is paged in. If the resulting MSP
has a score exceeding the cut-off threshold s, it is inserted into the results table.
Whenever possible, either a local table or table variable is used for this.

Step 5: Result Output. The entries in the result table are returned as return value of
the call to blastn(). In the case that a system does not support table-valued
stored procedures, clients have to explicitly request the results.

3.3 Stored Procedure Capabilities of Different Database Engines

We implemented dbBLAST on three commercial database management systems, in
the following anonymously referred to as DBMS A, DBMS B, and DBMS C, and on
PostgreSQL 8. Due to limited space, we only can give a short overview of the imple-
mentation details here; the interested reader finds a more detailed discussion in [7].

DBMS A. dbBLAST has been implemented on the first commerical DBMS with sepa-
rate stored procedures for each step. Due to a size limitations of character strings in that
system, the database sequences are segmented into 4 KB segments. The implementa-
tion makes use of join-hints in both step 2 (hot-spot search) and 3 (duplicate check). As
DBMS A does not directly support table-valued functions, the results are inserted into
a persistent table to be retrieved later by clients.

DBMS B. We implemented dbBLAST on commercial DBMS B in its proprietary 4GL
language. As an interesting feature, DBMS B allows for set-valued local variables. The
words of the query sequence are stored and processed in such a local table variable. The
database sequences were segmented into 8KB segments, and all sequence processing
could be programmed using VARCHARs. The high-scoring pairs are collected in a
local table variable and returned to the client as a table-valued result.

DBMS C. We implemented dbBLAST on a third commercial DBMS, referred to as
DBMS C, that supports stored procedures hosted in a CLR runtime environment. We
used a combination of the internal 4GL language and CLR managed functions written in
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C# for the most time-consuming part of BLAST: The MSP extension step. Syntactically
and from the development side, this integration was quite straight forward. However,
DBMS C only provides pass-by-value for arguments of .NET stored procedures, which
requires additional copying of the query sequence and the database segments.

PostgreSQL 8. We were also interested in the comparison with an open source database
supporting stored procedures. Hence, dbBLAST has also been implemented in Post-
greSQL 8 using PL/pgSQL stored procedures, respectively stored functions. The query
words are stored in a temporary table, and the database sequences are segmented into
8KB segments. The blastn() function is actually table-valued: the results are re-
turned as table where the matching query and database sequence sections are shown.

4 Evaluation

4.1 Experimental Setup

The following performance and scalability tests were performed on a standard PC server
with a 3 GHz Pentium 4 CPU (with hyper-threading enabled) and 2GB RAM under
Microsoft Windows Server 2003 Standard Edition. For each test, the only database
system running was the system under test. The test database was populated with 5217
nucleotide sequences from the Lycopersicon esculentum genome (tomato) as found in
the nc1130 data file obtained from the GenBank database. As a base line, we compare
our dbBLAST implementations with NCBI-BLAST version 2.2.10 that is configured to
run under version 1.4 settings (ungapped, single hit).

4.2 Implementation Efforts

The BLAST algorithm was implemented by the same programmer in four different
relational database engines using the available stored procedure facilities. We kept track
of the development time and the code size for all five implementations and compared
them with the approximate values for NCBI-BLAST. The implementation efforts with
all database systems (DBMS A, B, C, and PostgeSQL) are very comparable: all have a
program complexity of about 500 lines of code with only one to three days development
time for an experienced developer (cf. [7]).

The results indicate that database stored procedures require significant less develop-
ment effort – both in time and space – than traditional programming based on low-level
file access and 3GL programming languages such as C. We attribute this to the higher
abstraction levels and set-oriented interfaces available in stored procedure languages.
We should also note that for a more meaningful conclusions one would need to conduct
a more formalised investigation with different programmers and also a more compara-
ble BLAST implementation in C.

4.3 Response Times and Scalability

We are interested in the response times and the scalability of the different implementa-
tions. We have measured the response times of each implementation for different query
lengths from 20 up to 8000 base pairs. For each query length, five different randomly
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generated queries have been executed. The numbers in Figures 1 and 2 are the averages
over five executions of those five random queries. The same set of queries has been
executed by all databases for consistency.

Figure 1 shows the response times for small query sequences between 20 and 100
base pairs. Because BLAST has a runtime complexity of O(nm), all implementations
show a linear increase of their response time with the query length (including NCBI-
BLAST although the increase is almost invisible). The gradient of the curves however
varies depending on the runtime efficiency of the different implementations. We will
give a more detailed analysis of that in the next section.

Of the dbBLAST implementations, PostgeSQL shows the slowest performance, fol-
lowed by DBMS A, B and C. DBMS C is just a bit slower than DBMS B but scales
much worse as can be seen in the results of the scalability test in Figure 2. A promising
result is that in particular DBMS B shows a very comparable, up to query length 60
even better performance than NCBI BLAST. So far the approach of reducing the search
space by filtering of hot spots through an inverted index works. Please note again that
NCBI BLAST is a highly-optimised C-program running on a 3 GHz machine with lots
of main memory — certainly a tough competitor for a database solution.

Results of Scalability Tests
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Figure 2 shows the results of our scalability test, i.e. the response times for query
lengths up to 8000 base pairs. The trends seen in the previous chart become now
much clearer. The slowest implementation of dbBLAST is on PostgeSQL. Then fol-
lows DBMS A and DBMS C, both of which show very similar performances for larger
queries. Interestingly, the DBMS C is significantly slower DBMS B, despite the fact
that it implemented the computational intensive expansion-phase in .NET. However,
one should note that we could not evaluate a release version.

Finally, NCBI-BLAST shows the best scalability with the lowest runtime increase,
clearly outperforming all stored procedure implementations for larger queries longer
than 60 base pairs. This is not too much of a surprise because the test database fits
completely into main memory.

4.4 Execution Time Analysis

In Figure 3 we analyse how much of the total execution time had been spent in the
different parts of the dbBLAST algorithm (query length was 1280 base pairs). Find-
ing possible hot-spots through the inverted index is actually a very fast step for most
database system: the hot-spot search phase is basically a join between the inverted in-
dex and the query words table. The only exemption is PostgreSQL. It originally suffered
even worse from the sub-optimal decisions of its query optimizer that always chose an
join plan involving a complete scan through the (quite large) inverted index table3. In
the end, we manually programmed an index-nested loop join in the stored procedure
using a cursor. As the result in Figure 3 shows, still a far from optimal work-around.
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Fig. 3. Execution times of dbBLAST steps

The largest part with 50-80% of the to-
tal execution time attributes to the MSP
extension phase of the BLAST algorithm.
This is the computationally expensive
part that mainly consists of string oper-
ations and accesses to single character
positions — a usage pattern only very
rudimentary supported by current stored
procedure implementations. It also de-
pends linearly on the query length —
the longer the query, the more words,
i.e., possible hits to check and to ex-
pand. Hence, it is here where the perfor-
mance of the implementations could be
improved most.

The second crucial part for the performance and scalability of dbBLAST is the du-
plicate check. This is actually an optimisation borrowed from the NCBI-BLAST im-
plementation which checks, for each hot spot candidate, whether it lies in a previously
computed match. An extension is performed only if the hot spot candidate has not al-
ready been reported. As the MSP extension, this phase depends linearly on the length of
the query sequence. It could be much improved if one could combine this check with the

3 One reason might be that PostgreSQL does not maintain statistics on indexes [8].
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previous finding hits query. Unfortunately, this is not supported by current database en-
gines because the results table is modified within the expansion step and today’s query
engines don’t allow side-effects on queried tables. So in the current implementations,
the duplicate check is done by separate queries on the results table for each word in the
query sequence.

The remaining phases of the algorithm, query preparation and result output, are of
minor impact on the overall runtime. The query preparation time in DBMS C is larger
than that of DBMS B because it was using a persistent table for the query words, while
the DBMS B implementation, although functionally very similar, was using a table
variable in the stored procedure. DBMS A does not show an explicit time for the result
output because it does not support table-valued stored procedures — rather dbBLAST
did leave the matches in a result table which has to be scanned by the caller in an
additional step.

5 Related Work

Oracle included both nucleotide and protein BLAST searches in their latest ODM data
mining component for Oracle 10g [10, 11, 12]. The algorithm is implemented by means
of table-valued stored procedures and using the Oracle Data Cartridge Interface. In
contrast to this work, there are no optimisations to the physical database design such
as an inverted index on the possible hotspots or a paging for the sequences. Instead,
sequences are always stored as CLOBs. Unfortunately, it was not possible to compare
it with the presented three implementations on DBMS A, B, and C.

Recently, the Laboratory of Neuro Imaging at UCLA did publish BLASTgres, an ex-
tension of PostgreSQL with biological datatypes such as particularly sequence ranges
and locations, and BLAST functions [13]. In contrast to our work, BLASTgres concen-
trates on leveraging user-defined datatypes and tree-structured indexes (i.e. PostgreSQL’s
GiST index) to support biological algorithms, while dbBLAST is using standard SQL
datatypes and an optimized database schema incorporating an inverted index.

A number of different research groups have developed BLAST with the use of grid
technologies, e.g, [14, 15, 16]. The focus is here typically on the parallelisation of the
BLAST computation over several grid nodes. Some systems even use one of the stan-
dard BLAST implementations on each of the participating sites [17]. However, in none
of these approaches does database technology play any major role. Only in a differ-
ent context (astronomy) one recent work did successfully combine grid and database
technologies: [18] discusses an SQL-implementation of the data-intensive MaxBCG
algorithm that finds galaxy clusters in a large astronomical database.

Stored procedures themselves have been covered only very rarely in the database
community, at least lately. [19] discussed some techniques for developing Enterprise
JavaBeans (EJBs) to leverage existing database stored procedures for use in web appli-
cations. This is exactly the opposite approach to this paper which strives to implement
an algorithm already existing outside the DBMS into the database. Recently, Microsoft
did give an overview of the integration of the .NET CLR within its upcoming version
of SQL Server [20]. A good overview of the SQL/PSM standard is given by Melton in
[4], of which a kind of executive summary can be found in [3].



816 U. Röhm and T.-M. Diep

6 Conclusions

We presented dbBLAST, a database-centric version of the popular BLAST algorithm
for sequence alignment search. Our approach leverages the stored procedures capabili-
ties of today’s relational database engines and used an optimised physical design with
an inverted index over the (segmented) sequence database.

In a prototype study, we compared different implementations of dbBLAST with re-
gard to implementation complexity and runtime performance. For smaller query sizes
of up to 60 base pairs, dbBLAST was faster than the file-based NCBI-BLAST, but it
was lacking the scalability of a file-based BLAST search. We showed that this is mainly
due to the computationally expensive step in the BLAST computation. Current stored
procedure implementations obviously have problems with efficient processing of large
character strings. But it also showed that we could implement the BLAST algorithm
much faster and more compact using stored procedures than using a 3GL language.
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Abstract. The DTD of a set of XML documents may change due to
many reasons such as changes to the real world events, changes to the
user’s requirements, and mistakes in the initial design. In this paper,
we present a novel algorithm called DTD-Diff to detect the changes
to DTDs that defines the structure of a set of XML documents. Such
change detection tool can be useful in several ways such as maintenance
of XML documents, incremental maintenance of relational schema for
storing XML data, and XML schema integration. We compare DTD-
Diff with existing XML change detection approaches and show that
converting DTD to XML Schema (XSD) (which is in XML document
format) and detecting the changes using existing XML change detection
algorithms is not a feasible option. Our experimental results show that
DTD-Diff is 5–325 times faster than X-Diff when it detects the changes
to the XSD files. We also study the result quality of detected deltas.

1 Introduction

XML has emerged as the leading textual language for representing and exchang-
ing data over the Web. In many applications a schema (i.e., Document Type
Definition (DTD) or XML schema (XSD) [3] is associated with a set of XML
documents to define their legal structures. Schema of such XML documents may
also need to be updated to reflect a change in the real world, a change in the
user’s requirements, mistakes in the initial design, etc. For example, consider the
DTD D1 in Figure 1(a) at time t1. It may evolve to D2 (Figure 1(b)) at time t2
because the university may wish to restructure the information due to change in
the university administrators’ requirements. Such DTD change detection tools
can be useful in maintenance of XML documents when their DTD evolves, in-
cremental maintenance of relational schema of the schema-conscious approach
[9] for storing XML data, XML schema integration, etc. Let us elaborate further
on the usage of DTD change detection tool in maintenance of XML documents.
Let X be a set of XML documents where each document xi ∈ X conforms to
DTD D. Assume that due to mistakes in the initial design, D is modified to D′.
Consequently, xi ∈ X may not conform to D′ anymore. Therefore, it is necessary
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1  <!ENTITY univName “Open University”>

3  <!ELEMENT university (information,school+)>

8  <!ELEMENT course (#PCDATA)>

9  <!ELEMENT name (#PCDATA)>

12 <!ELEMENT telp (#PCDATA)>

13 <!ELEMENT fax (#PCDATA)>

14 <!ELEMENT website (#PCDATA)>

15 <!ELEMENT address (#PCDATA)>

16 <!ATTLIST course code CDATA #REQUIRED

2  <!ENTITY univName “Open University”>

4  <!ELEMENT university (information,school+)>

11 <!ELEMENT course (#PCDATA)>

12 <!ELEMENT name (#PCDATA)>

14 <!ELEMENT website (#PCDATA)>

15 <!ELEMENT telp (#PCDATA)>

16 <!ELEMENT fax (#PCDATA) >

17 <!ELEMENT address (#PCDATA) >

18 <!ATTLIST course code CDATA #REQUIRED 

(a) D1 (b) D2

4  <!ELEMENT information 

          (address,(telp|fax+|website))>

5  <!ELEMENT school (name,dean,department*)>

6  <!ELEMENT department (name,hod,courses)>

7  <!ELEMENT courses (course*)>

7  <!ELEMENT sinfo (%info;)>

6  <!ELEMENT school (sinfo,department*)>

9  <!ELEMENT dinfo (%info;)>

8  <!ELEMENT department (dinfo,courses)>

1  <!ENTITY % info “name,head,website,telp,fax”>

10 <!ELEMENT courses (course+)>

2  <!ENTITY myScript SYSTEM “script.pl” 

                     NDATA pl>
3  <!ENTITY myScript SYSTEM “newScript.pl” NDATA pl>

5  <!ELEMENT information ((telp|website|fax?),address)>

                    year CDATA #REQUIRED >

11 <!ELEMENT hod (#PCDATA)>

10 <!ELEMENT dean (#PCDATA)>

                    year CDATA #IMPLIED>

13 <!ELEMENT head (#PCDATA)>

Fig. 1. Two versions of a DTD

to detect the differences between D and D′ (denoted by �(D,D′)) automatically
so that it can be used to transform xi ∈ X to x′

i such that x′
i conforms to D′.

In this paper, we propose a novel algorithm, called DTD-Diff, for detecting
the changes to DTDs. To the best of our knowledge, this is the first approach
that addresses the DTD change detection problem. At first glance, it may seem
that the DTD change detection problem can easily be addressed by existing
change detection tools for XML documents [6, 7, 10]. Specifically, we can first
transform DTDs to XSD files that are in XML format. Then, the changes to
the DTDs can be detected using existing XML change detection tools (such as
X-Diff [10] and XyDiff [6]). Although this approach will clearly detect changes,
we argue that they suffer from these following limitations: granularity of types
of changes, inability to detect changes to both unordered and ordered nodes, de-
tection of semantically incorrect changes, generation of non-optimal edit scripts,
and performance bottleneck. The details can be found in [8].

In summary, the main contributions of this paper are as follows. (1) In
Section 2, we present data model to represent the changes to DTDs. By using
this data model we are able to detect the changes to DTDs, that are discussed
Section 3, correctly. (2) In Section 4, we propose a novel algorithm called DTD-
Diff for detecting the changes to DTDs. The algorithm takes as input two
versions of a DTD that are represented using our DTD data model and detects
the changes directly without converting them to XSD format. (3) Through an
extensive experimental study in Section 5, we show that our approach is 5–325
times faster than X-Diff [10]. Note that in our study, we convert DTDs to XSD
files prior to employing X-Diff to detect the changes.

2 DTD Data Model

A DTD consists of entity declaration (<!ENTITY ...>), element type declaration
(<!ELEMENT ...>), and attribute declaration (<!ATTLIST ...>) that describe
entities, elements, and attributes, respectively. Formally,

Definition 1 [DTD]. A DTD is a 3-tuple D = (E , A, G) where E is a set of
Element Type Declarations (ETD) in D, A is a set of Attribute Declarations
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1 Changes to Element Type Declaration (ETD)

  1.1 Insertion of new ETD

  1.2 Deletion of an ETD

  1.3 Changes to the Content Tree of an ETD

- Changes to a leaf node

      1.3.1  Insertion of a leaf node

      1.3.2  Deletion of a leaf node

      1.3.3  Move of a leaf node

      1.3.4  Update of order of a leaf node

- Changes to a subtree

      1.3.5  Insertion of a subtree

      1.3.6  Deletion of a subtree

      1.3.7  Move of a subtree

      1.3.8  Update of order of an internal node

             at which a subtree is rooted

- Changes to Cardinality

      1.3.9  Insertion of a cardinality

      1.3.10 Deletion of a cardinality

      1.3.11 Update of a cardinality

2 Changes to Attribute Declaration (AD)

  2.1 Insertion of a new AD

  2.2 Deletion of an AD

  2.3 Insertion of a new attribute in AD

  2.4 Deletion of an attribute in AD

  2.5 Update of attribute type

  2.6 Update of default value

3 Changes to Entity Declaration (ED)

  3.1 Insertion of a new ED

  3.2 Deletion of an ED

  3.4 Update of replacement text of an internal ED

  3.5 Update of URI of an external ED

  3.6 Update of content notation of an external ED

E1

||

E2 E3 E4 E5

E6 E7

,

*

?+ ?*

E1

,

(a) Content Tree (b) Types of changes

Fig. 2. Content Tree and Type of Changes

(AD) in D, G is a set of internal and external Entity Declarations (ED). Also,
if the numbers of ETDs, ADs, and EDs in a DTD are α, β, and γ then |E| = α,
|A| = β, and |G| = γ. �

For example, consider the DTD D2 in Figure 1(b). Lines 1-3, 4-17, and 18 are
examples of EDs, ETDs, and AD, respectively.

Element Type Declaration (ETD): In a DTD, XML elements are de-
clared using element type declaration. Each element type declaration E has
a name NE and element content CE . For example, consider the DTD D1 in
Figure 1(a). The name and the content of element type school (line 5) are
school and (name,dean,department*), respectively. Observe that element con-
tent can be very complex with multiple levels of nesting. For example, <!ELEMENT
E1 (E1,(E2+|E3),(E4?|E5*|(E6,E7)?)*)>. We represent the element content
CE as a content tree TE . For example, consider the element type declaration
<!ELEMENT E1 (E1,(E2+|E3), (E4?|E5*| (E6,E7)?)*)>. The content tree TE1
is depicted in Figure 2(a). Note that in an element content CE we may have se-
quence (denoted by “,”) and choice (denoted by “|”) groups of elements. Observe
that the elements in a sequence group must be ordered, and the order of elements
in choice group is not significant. That is, a content tree TE may have ordered
and unordered parts.

Attribute Declaration (AD): The attribute declaration in a DTD is used to
define the attributes of an element. Each AD A has a name NA of element type
to which a set of attributes SA belongs. Each attribute a in the attribute set
SA has a name Na, type Ya, and an optional default value Da. For example,
reconsider D1 in Figure 1(a). The attribute declaration of element type course
is in line 16. The type of data and default value of the attribute code are CDATA
and #REQUIRED, respectively.

Entity Declaration (ED): Entities are variables used to define shortcuts to
common text. Entity references are references to entities. We have two kinds of
entities: general entity and parameter entity. Consider DTD D2 as depicted in
Figure 1(b). Line 1 is an example of parameter entity. An example of general
entity is in line 2. Note that we only consider the general entities. This is be-
cause the parameter entities automatically replace the entity references. Entities
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can be declared as internal or external. An internal ED I has a name NI and
a replacement text RI . On the other hand, an external ED J has a name NJ ,
universal resource indicator (URI) UJ , and a content notation PJ . For exam-
ple, in D2 line 2 is an example of an internal ED. The name and replacement
text of this entity are univName and "Open University", respectively. Line 3
(Figure 1(b)) is an example of an external ED. The name, URI, and content
notation are MyScript, "Script1.pl", and "pl", respectively. The details on
the DTD data model can be found in [8].

3 Types of Changes

A set of DTD changes that can be detected by DTD-Diff is depicted in
Figure 2(b). We notice that a DTD indeed has richer of types of changes com-
pared to XML documents. In DTD, we have types of changes for cardinalities of
elements, more meaningful types of changes for AD and ED, etc. The details of
each type of changes depicted in Figure 2(b) can be found in [8]. In this section,
we only briefly discuss two issues regarding the types of changes to DTDs.

Update of Node/Attribute Name: We do not consider update of node/ at-
tribute name for the following reason. Consider the ETDs school in D1 and D2.
We cannot consider that the name of element “name” is updated to “sinfo” and
element “dean” is deleted as it will lead us to have a delta that is semantically
incorrect. On the other hand, suppose we have a “lastname” element whose
name is updated to “surname”. DTD-Diff detects as a deletion of element
“lastname” and an insertion of element “surname” as we do not have informa-
tion of semantic relationships between “lastname” and “surname”. Note that
the delta is still correct even though the result quality is reduced. Therefore, we
consider the update of node/attribute name as a pair of deletion and insertion
of a node in order to avoid semantically incorrect deltas in some cases.

Changes to Entity Type: If an entity g is changed from being an internal
entity to being an external entity, or vice versa, then we consider as a pair of a
deletion of an entity and an insertion of an entity.

4 DTD-Diff Algorithm

In this section, we present the DTD-Diff algorithm. The outline of the algo-
rithm is depicted in Figure 3(a). It takes as input two DTDs D1 = (E1, A1, G1)
and D2 = (E2, A2, G2) representing old and new versions of a DTD and returns
an edit script Z containing the differences between D1 and D2. The algorithm
consists of six phases (Figure 3(a)). We shall discuss each phase in turns.

The Parsing and Hashing Phase: Given two DTDs, D1 and D2, DTD-Diff
parses D1 and D2 into (T1, A1, G1) and (T2, A2, G2) respectively and computes
their hash values. Note that T1 and T2 are two sets of content trees of E1 and E2,
respectively. Since content tree of an element type declaration has both ordered
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Input:  DTD D1=        
        DTD D2=   

Output: Edit Script Z

   /* Phase 1: 
      Parsing and Hashing */
1               ParseHash(D1)
2               ParseHash(D2)
   /* Phase 2: Finding the changes 
      to element type declaration */
3  FOR EACH t1 IN T1 DO
4    FOR EACH t2 IN T2 DO
5      IF t1 and t2 has the same name 

   THEN
6         Mmin     Matching(t1,t2)
7         BREAK

8      END IF
9    END FOR
10 END FOR  
   /* Phase 3: Detect Move Operation */
11 Mmin     DetectMove(   ,   ,Mmin)
   /* Phase 4: Finding the changes to 
      attribute declaration */
12 Mmin     DetectAttributeChanges(   ,   )
   /* Phase 5: Finding the changes to 
      entity declaration */
13 Mmin     DetectEntityChanges(   ,   )
   /* Phase 6: Generating Edit scripts */
14 Z     GenerateEditScripts(Mmin)
15 RETURN Z

Input: Node N
Output: The hash value of node N

1  IF N is leaf node THEN
2    RETURN MD5Value(label(N)  cardinality(N))
3  ELSE IF N is non-leaf node THEN
4    conentenated_text = empty text
5 FOR EACH child IN children OF N
6   CalculateHashValue ( child )
7 END FOR
8 IF N is choice group THEN
9   sort children of N by their hash values
10 END IF
11   FOR EACH child IN children OF N
12 conentenated_text = HashValue(child)
13 END FOR
14 conentenated_text = label(N)  cardinality(N)
15 RETURN MD5Value(conentenated_text)
16 END IF

(b) The CalculateHashValue Algorithm(a) Outline of DTDDiff Algorithm

Fig. 3. Outline of DTD-Diff Algorithm and The CalculateHashValue Algorithm

Input: Two root node r1 and r2
Output: a set of matching pairs M

1   M = empty set
2   push pair {r1,r2} into queue Q
3 WHILE (Q is not empty)
4     pop a pair {r1,r2} from queue Q
5     M = M    {r1,r2}
6     IF HashValue(r1)<>HashValue(r2) AND
         N1, N2 are non-leaf nodes THEN
        /* compute the cost of matching every 
           pair of child nodes of r1 and r2 */
7 FOR EACH child1 IN children of r1
8         FOR EACH child2 IN children of r2
9           IF label(child1)=label(child2) THEN

10            ComputeCost(child1, child2) 
11          ELSE
12            Cost(child1,child2) = 
13          END IF
14        END FOR
15      END FOR
16      matched_pairs = set of pairs resulting from 
            minimum-cost bipartite-matching among 
            child nodes of r1 and r2
17      FOR EACH pair{x,y} IN matched_pairs
18        push pair{x,y} into queue Q
19      END FOR
20    END IF
21  END WHILE
22 RETURN M

∞

∪

Fig. 4. The Matching Algorithm

and unordered parts (the child nodes of the sequence and choice groups respec-
tively), the algorithm for computing the hash values must be able to address this
issue. We use the CalculateHashValue algorithm as shown in Figure 3(b). Note
that “•” in Figure 3(b) denotes concatenation of strings. Function MD5Value
is a hash function based on the MD5 Message-Digest algorithm [1].

We also calculate the hash values of AD in A and ED in G. The hash value
of AD A ∈ A is calculated as follows. Hash(A) = MD5-Value(Hash(NA)
• Hash(s1) • . . . • Hash(sx), where Hash(sx) = MD5-Value(Hash(Ns) •
Hash(Ys) • Hash(Ds)), sx ∈ SA, and Hash(s1) < Hash(s2) < . . . < Hash(sx).
The hash value of ED E ∈ G is calculated as follows. Hash(E) = MD5-
Value(Hash(NE) • H), where if E is an internal entity declaration, then
H = Hash(RE). Otherwise, E is an external entity declaration, and H =
Hash(UE) • Hash(PE). The overall complexity of calculating the hash values
is O(

∑|T1|
i=1(|TEi| × di) +

∑|T2|
j=1(|TEj| × dj) + |A1| + |A2| + |G1| + |G2|) where |T1|

and |T2| are the numbers of content trees in T1 and T2, respectively, |TEi| is the
number of nodes in TEi, and di is the average out-degree of TEi.

The Matching Phase: Given two content trees of ETDs E1 and E2, denoted
as TE1 and TE2 respectively, DTD-Diff invokes the Matching algorithm as
depicted in Figure 4. The Matching algorithm returns a set of matching pairs
Mmin. The principle behind the Matching algorithm in DTD-Diff is based on
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Input: Two node r1 and r2
Output: C, Cost of matching r1 and r2

1   C = 0
2   IF HashValue(r1) = HashValue(r2) THEN RETURN 0
    /*Cost of update operation*/
3   IF cardinality(r1) <> cardinality(r2) THEN C=1 
4   IF r1 and r2 are leaf node THEN RETURN C

/* recursively compute the cost of matching every 
        pair of child nodes of r1 and r2 */
5   FOR EACH child1 IN children of r1
6     FOR EACH child2 IN children of r2
7       IF label(child1)=label(child2) THEN
8         ComputeCost(child1, child2) 
9       ELSE
10        Cost(child1,child2) = 
11      END IF
12    END FOR
13  END FOR

14  matched_pairs = set of pairs resulting from minimum-cost 
       bipartite-matching among child nodes of r1 and r2
15  C = C + cost of minimum-cost bipartite-matching 
       among child nodes of r1 and r2
16  FOR EACH child1 IN children of r1
17    IF child1  matched_pairs THEN 
18      C = C + 1 /* cost of delete operation*/
19    END IF
20  END FOR
21  FOR EACH child2 IN children of r2
22    IF child2  matched_pairs THEN 
23      C = C + size of child2 /* cost of insert operation*/
24    END IF
25  END FOR
26  IF r1 and r2 are sequence group THEN
27    C = C + number of local move operations required
28  END IF
29  RETURN C

∞

Fig. 5. The ComputeCost Algorithm

the one in X-Diff [10]. That is, our matching technique finds the minimum-cost
bipartite matchings of two content trees. However, there are critical differences
between the Matching algorithm in DTD-Diff and the one in X-Diff as we ex-
ploit the unique structural and semantic features of a DTD. First, the Matching
algorithm in X-Diff is invoked once. DTD-Diff invokes the Matching algorithm
as many as the number of ETDs. Observe that each ETD in a DTD has a
unique name and hierarchy. Each root node in the content tree appears only
once and mapping occurs only between nodes with the same signature. So each
smaller content tree will be compared with another smaller tree from the second
version having the root node with same name. Note that this computation is
independent from the remaining content trees. Second, the ComputeCost algo-
rithm in Figure 5 that is invoked by the Matching algorithm in DTD-Diff to
compute the cost matching between r1 and r2 considers the cardinality changes
(line 3, Figure 5). Note that the Matching algorithm in X-Diff does not consider
the cardinality changes as it deals with XML documents, not DTDs. Third,
unlike X-Diff which is based on unordered trees, a content tree can have or-
dered and unordered subtrees. Hence, in order to ensure our matching technique
works on ordered subtrees as well, we adopt the technique used in XyDiff [6]
to find the largest order preserving sequences among those matching pairs in
sequence groups (line 26-28, Figure 5). The overall complexity of this phase is
O(min{α1, α2} × |TE1| × |TE2| × max{d1, d2} × log(max{d1, d2}), where |TE1|
and |TE2| are the average numbers of nodes of the content trees in TE1 and TE2,
respectively, d1 and d2 are the average out-degree of the content trees in TE1
and TE2, respectively, and α1 and α2 are the numbers of ETDs in D1 and D2,
respectively.

The Move Detection Phase: After we have a set of matching pairs Mmin,
DTD-Diff detects move operations. Formally, the move operation is defined
as follows. Let n1 and n2 be two nodes in TE1 and TE2 respectively. Let
parent(n) be the parent node of node n. Then, node n1 is moved to be
node n2 iff (parent(n1),parent(n2)) �∈ Mmin and Hash(n1) = Hash(n2).
Note that we only consider a move operation if the hash values of n1 and
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n2 are the same. This is because if the hash values of n1 and n2 are different,
then we need to check the differences in the subtrees rooted at n1 and n2. If
the hash values of n1 and n2 are different, then the algorithm detects it as a
deletion of n1 and an insertion of n2. Now, we discuss how the move operations
are detected. Let P and Q be two lists of the subtrees from the first and second
versions respectively that have no matching subtrees in Mmin. Subtrees in P
and Q are sorted by their size in decreasing order. For each subtree in P , the
algorithm checks whether there is a subtree in Q that have the same hash value.
If pi ∈ P and qj ∈ Q have the same hash value, then the algorithm marks that
subtree pi in the first version is moved to be subtree qj in the second version.
The complexity of this phase is O(n × log(n)), where n is the number of nodes
in the content tree.

The Attribute Declaration Change Detection Phase: Recall that at-
tribute list can be seen as a collection of attributes. The algorithm for de-
tecting the changes to attribute declarations works as follows. Given two ADs,
A1 ∈ A1 and A2 ∈ A1, we compare the hash values of these ADs. If Hash(A1) =
Hash(A2), then A1 is the same as A2 and we mark them to indicate that they
have been matched and are not changed. Otherwise, we start to compare the at-
tributes in the attribute list of A1 to the ones in the attribute list of A2. We use
the hash values and the attribute name of these attributes. If the hash values of
two attributes are the same, then they are not changed. Otherwise, we compare
their attribute names. If their names are the same, then we check their attribute
types and default values. Observe that if their attribute names are different, then
we do not need to compare their attribute types and default values as we do not
consider the update of the attribute name for the reasons discussed in Section 3.
The cost of detecting the changes to attribute declarations is O(n × log(n)),
where n is the number of attributes defined in the DTD.

The Entity Declaration Change Detection Phase: The change detection
mechanism of EDs is quite straightforward and similar to the approach for de-
tecting changes to attribute declarations. Hence, we do not elaborate on this
step further. The complexity of the algorithm for finding the changes on the en-
tity declarations is O(n × log(n)), where n is the number of entity declarations
defined in the DTD.

Edit Scripts Generation Phase: The edit script Z is generated as follows. (1)
An edit script Z is initialized as a set of move operations detected in the preced-
ing step. (2) Then, for all unmatching nodes in the first tree, delete operations are
added into edit script Z. (3) Next, for all unmatching nodes in the second tree,
insert operations are added into edit script Z. (4) For all pairs of matching nodes
that have different cardinality, cardinality update operations are added into edit
script Z. (5) For all pairs of matching nodes that belong to sequence groups and
have incorrect local order, local order move operations are added into edit script
Z. (6) The changes to the attributes lists are added into edit script Z. (7) Finally,
the changes to the entity declarations are added into edit script Z. The overall
complexity of this step is O(

∑|T1|
i=1(|TEi|)+

∑|T2|
j=1(|TEj |)+|A1|+|A2|+|G1|+|G2|).
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5 Experimental Results

We have implemented DTD-Diff entirely in Java. The experiments were con-
ducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7
GHz processor with 512 MB of memory. We use both real world DTDs and a set
of synthetic DTDs generated by using our DTD generator. The second versions of
DTDs are generated by using our DTD changes generator. We vary the numbers
of element types, the percentage of changes, the out-degree of each element types,
and the depth of each element types. We compare the performance of DTD-Diff
with the state-of-the-art approaches. Unfortunately, despite our best efforts (in-
cluding contacting the authors), we could not get the Java version of XyDiff.
Hence, we compared our approach to the Java version of X-Diff [10] (down-
loaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html) only. As X-Diff is
not designed for detecting the changes on DTDs, we convert the DTDs into XSD
[3] using Syntex dtd2xs (downloaded from http://www.syntext.com/downloads/)
before detecting the changes. Note that the results of X-Diff suffer from the lim-
itations discussed in Section 1. We also study the result quality of DTD-Diff.

Execution Time vs Number of Element Types: We set the out-degree and
depth of each element type to “5” and “3” respectively. Note that the average
of the maximum depth of real DTDs is “3” [5]. The number of attributes of
each element is set to “3”. We set the percentage of changes to “9%”. The
characteristic of the data sets used in this set of experiments is depicted in
Figure 6(a).

Code
# Element 

Types File size 
(Kb)

E005-B05-D02 5 2 7

E010-B05-D02 10 3 12

E015-B05-D02 15 4 17

E025-B05-D02 25 6 30

E050-B05-D02 50 12 56

E075-B05-D02 75 18 87

E100-B05-D02 100 23 113

E150-B05-D02 150 36 170

E250-B05-D02 250 59 273

E500-B05-D02 500 122 570

DTD (DTD-Diff)

E025-B05-D02 5 6 30

E025-B10-D02 10 12 82

E025-B15-D02 15 21 162

E025-B25-D02 25 45 385

E025-B40-D02 40 114 1,032

E025-B50-D02 50 167 1,500

E025-B05-D01 1 5 13

E025-B05-D02 2 6 28

E025-B05-D03 3 10 68

E025-B05-D04 4 21 194

E025-B05-D05 5 46 500

E025-B05-D06 6 86 994

E025-B05-D07 7 209 2,853

E025-B05-D08 8 557 7,231

(a) Different Number of Element Types

(b) Different Number of Out-degree (c) Different Number of Depth

XSD (X-Diff)

# 
Nodes

691

1,031

390

1,847

3,460

5,360

7,044

10,564

16,903

35,076

1,731

3,896

868

10,444

25,720

49,068

122,182

328,862

5,022

10,047

1,837

24,021

64,611

94,014

# 
Nodes

 File size 
(Kb)

175

275

105

490

900

1,430

1,880

2,785

4,410

9,280

Code
Out-

degree Filesize 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# Nodes
# 

Nodes
Filesize 

(Kb)

485

1,585

3,265

7,975

21,625

31,325

Code Depth Filesize 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# Nodes# Nodes
Filesize 

(Kb)

150

465

1,215

3,585

9,045

17,305

43,465

117,180

DTD

SigmodRecord

PSD

Policy7

DBLP

NewsML_1.1

# Element 
Type

# Attribute 
List

11 1

66 10

56 26

36 12

117 114

(d) Real DTD Characteristics

Code
# Element 

Types File size 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# 
Nodes

# 
Nodes

 File size 
(Kb)

Fig. 6. Data Sets

Figure 7(a) depicts the performance of DTD-Diff and X-Diff. We observed
that DTD-Diff significantly outperforms X-Diff. DTD-Diff is 5–272 times
faster than X-Diff. X-Diff failed to detect the changes when the numbers of
elements are more than or equal to 250 due to lack of main memory. The inability
of X-Diff to process large number of nodes in XML data is also highlighted in [7].
We now briefly discuss why our approach significantly outperforms X-Diff. First,
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(a) Time vs Number of Elements (9%)* (b) Time vs. Percentage of Changes*
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Fig. 7. Experimental Results

the tree representations of XSD files (XSD tree) contain elements with same
names. On the other hand, in DTD-Diff, each root node of the content trees
in a DTD has a unique name. As a result, there exists a one-to-one mapping
between a content tree in the old version to another content tree in the new
version. Hence, X-Diff does more number of bipartite matching compared to
DTD-Diff. Second, the number of nodes in the content trees is lesser in most
cases compared to an XSD tree. This further reduces the number and cost of
bipartite matching in DTD-Diff. The details can be found in [8]. Furthermore,
numbers of nodes in the XSD files are larger than the number of nodes in the
content trees (from 2.8 up to 5.8 times larger, Figure 6).

We also study the performance of DTD-Diff and X-Diff by using real world
DTDs [2, 4]. Figure 6(d) depicts the characteristics of the real world DTDs.
We set the percentage of changes to 3%. Figure 7(f) depicts the performances
of DTD-Diff and X-Diff. We notice that X-Diff has slightly better perfor-
mance than DTD-Diff. This is primarily due to the characteristics of the
data. For instance, although NewsML 1.1 has 117 elements, the performance
of DTD-Diff is comparable to X-Diff! Observe that for synthetic data set
with similar size, DTD-Diff outperforms X-Diff significantly. This is because
in NewsML 1.1, only 6 out of 117 ETDs have nested content and the maximum
depth of NewsML 1.1 DTD is only 2. Hence, cost of bipartite matching is al-
most the same. In summary, X-Diff performs relatively better than DTD-Diff
when the DTDs have simple and “flat” structure. When the DTD structure is
complex, DTD-Diff outperforms X-Diff as shown using synthetic dataset. Also,
note that DTD-Diff is still better than X-Diff because of the inaccuracies and
incompleteness in the results generated by X-Diff [8].

Execution Time vs Percentage of Changes: We use the E025-B05-D02
data set, whose number of element types, out-degree, and depth are 25, 5, and 2
respectively, as the first version of the DTD. We vary the percentages of changes
from “1%” to “20%”. Figure 7(b) depicts the execution time of DTD-Diff and
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X-Diff for different percentages of changes. We observe that the percentage of
changes slightly affect the performance of DTD-Diff and X-Diff.

Execution Time vs Out Degree: We set the number of element types and the
depth to “25” and “2” respectively. We set the percentage of changes to “9%”. We
vary the out-degree of each element type from “5” to “50”. The characteristic of
the data sets used in this set of experiments is depicted in Figure 6(b). Figure 7(c)
depicts the performance of DTD-Diff and X-Diff for different numbers of out-
degree of each element type. We observe that DTD-Diff is up to 325 times faster
than X-Diff. This is because of the reasons discussed above. We also notice that
X-Diff cannot detect the changes to XSD files when the out-degree is more than
or equal to 25 due to the lack of main memory.

Execution Time vs Depth: We set the number of element types and the out-
degree to “25” and “5” respectively. We set the percentage of changes to “9%”.
We vary the out-degree of each element type from “1” to “8”. The character-
istic of the data sets used in this set of experiments is depicted in Figure 6(c).
Figure 7(d) depicts the performance of DTD-Diff and X-Diff for different depth
of each content tree. We observe that DTD-Diff is up to 89 times faster than
X-Diff. X-Diff failed to detect the changes when the depth is more than or equal
to 8 due to the lack of main memory.

Result Quality: We also examine the quality of deltas detected by DTD-Diff.
We use E010-B05-D02data set and the percentages of changes are varied between
“1%” to “10%”. Then, we calculate the result quality, that is, the ratio between
the number of edit operations detected by DTD-Diff and the optimal one.
Figure 7(e) depicts the ratios. We observe that DTD-Diff is able to detect the
optimal deltas until percentage of changes is set to “5%”. Afterwards, DTD-
Diff detects almost optimal deltas. This is because, in some cases, a move
operation is detected as a pair of deletion and insertion. Note that we do not
compare the result quality of DTD-Diff to other approaches as, to the best
of our knowledge, DTD-Diff is the first approach for detecting the changes
to DTDs. We do not compare the result quality of DTD-Diff to the one of
X-Diff (when we use XSD files) as the types of changes of DTD and XML are
different.

6 Conclusions

A DTD change detection tool can be useful in several ways such as maintenance
of XML documents and incremental maintenance of relational schema for storing
XML data. In this paper, we present a novel technique for detecting the changes
to DTDs. Our work is motivated by the problem that converting DTD to XML
Schema (XSD) (which is in XML document format) and detecting the changes
using existing XML change detection algorithms (X-Diff and XyDiff) is not a
feasible option. Such effort is expensive and may generate semantically incorrect
and non-optimal edit scripts. We propose an algorithm DTD-Diff that directly
computes the changes between two versions of DTDs by taking into account
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the structural and semantic features of DTDs. We experimentally demonstrate
that X-Diff performs relatively better than DTD-Diff when the DTDs have
simple and “flat” structure. When the DTD structure is complex, DTD-Diff
runs significantly faster (5–325 times) than X-Diff for given data set. DTD-Diff
is also able to produce optimal or at least near-optimal deltas.
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Abstract. Web service composition provides a way to build value-added
services and web applications by integrating and composing existing web
services. In this paper, a composite web service is modeled using queue-
ing network for the purpose of performance analysis. Each component
web service participating the composite web service corresponds to one
service center. The control flow between component web services is rep-
resented by the Markov chain that describes the transition of customers
between service centers. To perform performance analysis, the Markov
chain should be known first. However, a web service is usually a black box
and only its interfaces can be seen externally, so the internal control flow
can be only estimated from history execution logs. This paper gives a
method that mines the Markov chain of a composite web service from its
execution logs. Then, bottlenecks identification and performance analy-
sis are conducted for the queueing network model. Experimental results
show that this model mining method is effective and efficient.

1 Introduction

The emerging paradigm of web services promises to bring to distributed com-
putation and services the flexibility that the web has brought to the sharing of
documents (see [1]).

Web service composition ([1, 2]) is to build value-added services and web ap-
plications by integrating and composing existing elementary web services(also
called component web services). Though the existence of considerable works on
automatic composition and verification([1, 3]), performance aspects of a compos-
ite web service has received relatively limited attention. The task of performance
analysis for composite web services becomes a non-trivial task due to the exis-
tence of control logic between component web services.

In this paper, queueing network modeling is used to model a composite web
service for the purpose of performance analysis. To conduct performance anal-
ysis, the transition probability between service centers should be known first.
That is to say, the Markov chain describing the transition of customers must be
determined.
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Because web services provide only external interfaces definition (for example,
WSDL [4]), the transition relationships between component services are usually
unknown. Whereas, the transitions can be derived from externally visible behav-
iors. This paper gives a method that derives Markov chain of a composite web
service from execution logs.

The mined Markov chain describes the transition probability of service cen-
ters in the queueing network model. Based on this observation, bottleneck iden-
tification and performance analysis can be done for the corresponding queueing
network model. Given the arrival rate, service demands for all service centers are
computed, which are then used to identify bottlenecks of the queueing network.
Other performance parameters such as utilization and average queue length can
also be obtained.

Though it is not new to model a composite web service using Markov chain,
the method described in this paper for mining the embedded Markov chain of
a queueing network model from logs and utilizing the model for performance
analysis is interesting. The main contributions of this paper are:

1. Queueing Network modeling is used to model a composite web service for
the purpose of bottlenecks identification and performance analysis, where the
service centers correspond to the component web services that participate
the composite service. And a process mining method is used to mine a model
for the composite web service. The discovered model is just the embedded
markov chain of the queueing network.

2. With the mined markov chain of the queueing network, bottleneck identifi-
cation and performance analysis are conducted. The experiments and per-
formance analysis shows that it is an effective way to evaluate the efficiency
and performance behavior of a composite service.

The rest of this paper is organized as follows. Section 2 gives a description of
web services and presents queueing network based model for a composite web
service; Section 3 discusses a method for mining Markov chain from service ex-
ecution logs; Section 4 illustrates the usage of the derived model for bottlenecks
identification and performance analysis; Section 5 shows some experimental re-
sults to illustrate that this method is effective and efficient; Section 6 reviews
related works and Section 7 concludes this paper and discusses future work.

2 Modeling Composite Web Services Using Queueing
Network

2.1 Web Services and Composite Web Services

For an application to use a web service, the programmatic interface of the web
service must be precisely described. WSDL [4] is an XML grammar for specifying
properties of a web service such as what it does, where it is located and how it
is invoked([2]).

Web service composition is the process of building value-added services and
web applications by integrating and composing existing elementary web services.
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The constructs and composition patterns for web service composition in the
industrial standards or languages(such as BPEL4WS [5] and OWL-S(DAML-
S)[6]) can be summarized using workflow patterns discussed in [7]. The usually
used patterns are sequential, conditional choice (exclusive), parallel and iterative.

In this paper, the elementary web services that are used to synthesize a com-
posite one are called component web services. Both the component and composite
web services used in this paper are WSDL-described and SOAP-based.

2.2 Preliminary Concepts

Definition 1 (Markov Property). Consider a system that is observed at times
0,1,2,· · · . Let Xn be the state of the system at time n for n = 0, 1, 2, · · ·. Suppose
the system is at time n, say. That is, the system states have been observed as
X0, X1, · · · , Xn. The question is: can the state of the system at time n + 1 be
predicted, in a probabilistic way? If the next state Xn+1 depends only on Xn,
given the complete history of X0, X1, · · · , Xn, the question is considerably sim-
plified. If the system has this property at all times n, it is said to have a Markov
property (see [8]).

Definition 2 (Markov Chain). For observation time n = 0, 1, 2, · · ·, the stochas-
tic process {Xn, n ≥ 0} on state space S is said to be a Discrete-Time Markov
Chain (DTMC) if it has a Markov property.

If a system is observed continuously, with X(t) being the state at time t, t ≥ 0,
the stochastic process is called a Continuous-Time Markov Chain (CTMC) if it
has a Markov property.

For a composite web service, each participating component web service T(called
task, also) is an activity. At each time point, it is either active or not active.
Thus, each task can be captured by a binary random variable T, where T=1
represents task T is active while T=0 for not active. Let a system state Xt at
time t defined as a set of activities which are active at that time. Then, Xt

is a random variable because the result of web service invocation is uncertain.
If the system is observed at times t1, t2, . . ., this sequence of random variables
Xt1 , Xt2 , . . . form a stochastic process. By assuming the conditional probability
of each task node given its parents in the composite web service, i.e. by assuming
the Markov property, the stochastic process for a composite web service can be
seen as a Markov chain([9, 10, 11]).

2.3 Queueing Network for Composite Web Services

Queueing network modeling is a particular approach to computer system model-
ing in which the computer system is represented as a network of queues which is
evaluated analytically. A network of queues is a collection of service centers rep-
resenting the system resources that provide service to a collection of customers
that represent the users or transactions([8, 12, 13]).

Queueing Network Model for Composite Web Services. Each component
service participating in a composite web service corresponds to one service center
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in the queueing network model. The control flow between component services is
described by the transitions of customers between service centers in the queueing
network model. The customers are the service requestors that invoke web service
operations.

The transition of customers between service centers is inherently a Markov
chain. The fact that customers are served at a service center i implies that service
center i is active during that time period. So, the transition of customers between
service centers corresponds to the state transition of the Markov chain for the
composite web service. Based on this fact, to quantify a queueing network model
that corresponds to a composite service, it is necessary to quantify the Markov
chain first.

3 Deriving Markov Chain of Queueing Network

According to Section 2, a composite web service is represented by the embedded
Markov chain. Its execution logs can be regarded as realizations of the underlying
stochastic process. Motivated by [9], this section discusses a method to identify
all states and their transitions according to the Markov assumption.

3.1 Execution Log

Suppose the execution log L = {L1, L2, · · · , Lm} consists of m records each
describing a single execution trace of the composite service.

Each record is a sequence of log elements: service(starttime, endtime), sep-
arated by comma. Each log element represents an execution of service starting
at time starttime and ending at time endtime.

Each service execution starts with state S0, i.e., the empty set of active ser-
vices. When S0 is entered again, one execution ends.

When system is in state Si, the set of active services is denoted as Active(Si).
The transition from state Si to Sj is the result of the execution of some service sk

that makes Active(Sj) = Active(Si)
⋃

{sk}. When a service sk ends, a transition
from the current state Si to state Sj occurs with Active(Sj) = Active(Si)−{sk}.

3.2 Method for Deriving Markov Chain

According to Markov property, system state Sj will only depend on state Sj−1.
This implies a method for building the Markov chain by scanning the log, iden-
tifying system states and linking consecutive states.

The procedure for building Markov chain is shown in Algorithm 1 and
Algorithm 2. Algorithm 1 is used to compute the event occurrence frequencies
and Algorithm 2 is used to compute the state transition probability.

In Algorithm 1, the events are sorted in ascending order of timestamp and then
scanned to find the overlapping services and their transitions. This algorithm
remembers previous state by an auxiliary variable, so it can identify a loop from
the logs under the assumption that there are no duplicate activities.
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Algorithm 1. Computing the Event Occurrence Frequency

1: read a line from log file;
2: while (!in.eof()) do
3: set prevSet and tmpSet to be empty;
4: get an ordered set allLogElement of event with “start” or “end” labeled;
5: add prevSet to states if prevSet /∈ states
6: for pos ← 0, allLogElement.size() do
7: tmp:=log element at position pos;
8: if (tmp.label == “start”) then
9: currSet := prevSet;

10: currSet.add(tmp.getServiceName()); prevSet := currSet;
11: end if
12: if (tmp.label == “end”) then
13: currSet.remove(tmp.getServiceName());
14: if (prevSet.size() ≥ 1 and currSet.isEmpty()) then
15: continue; � to find a joint state for parallel activities
16: end if
17: if (currSet.isEmpty()) then
18: If (states.contains(prevSet)), add a new state to states;
19: ElseIf (tmpSet == prevSet) handle loop; continue;
20: compute sojourn time for state prevSet;
21: end if
22: if (transition.contains(“tmpSet− > prevSet”)) then
23: numOfT ransition := numOfT ransition + 1;
24: else
25: transition.add(“tmpSet− > prevSet”); numOfT ransition := 1;
26: end if
27: end if � end of if on condition “label==end”
28: end for � end of “for” loop
29: line := in.readLine();
30: end while

Now, the time complexity is analyzed for Algorithm 1. Suppose there are m
logs and n services. For each execution log, lines 3 to 28 are executed. There may
be O(n) activities in each log, so lines 6 to 28 needs to be executed O(n) times.
Because there may be O(n2) transitions at most, so lines 22 to 26 take O(n2) time
to determine whether a corresponding transition exists. According to the above
analysis, a total of O(n3) time is needed for each log record. Thus,Algorithm 1
computes the model in O(mn3) time. Algorithm 2 can be executed in O(n3).
Hence, the whole process for mining a Markov chain takes O(mn3).

In the following, a simple example is used to illustrate the process to construct
a Markov chain from services logs. Suppose, the set L = {L1} consists of the
following service log:

L1 = {D(1, 2), A(3, 9), B(4, 11), C(6, 12), E(13, 14)}.

Table 1 shows the intermediate variables during the computation. The set of
states is: {S0, S{D}, S{A,B,C}, S{E}}. In Tab. 1, S0, S1, S2, S3 are used to represent
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Algorithm 2. Computing State Transition Probability

1: for all state ∈ states do
2: t num ← the number of transitions from state;
3: v num ← the number of transition to state;
4: for all transition t do
5: if (t.getSource() == state) then
6: tnum ← the count of t;
7: target ← target of t;
8: matrix[state][target] := tnum/t num;
9: averageSojourn := sojourn.get(state)/v num;

10: end if
11: end for
12: end for

Table 1. Result of processing log L

step currSet prevSet tmpSet states transition
initial ∅ ∅ ∅ ∅ ∅
step1 {D} {D} ∅ {S0} ∅
step2 ∅ ∅ {D} {S0, S1} {S0 → S1}
step3 {A} {A} {D} {S0, S1} {S0 → S1}
step4 {A,B} {A,B} {D} {S0, S1} {S0 → S1}
step5 {A,B,C} {A,B,C} {D} {S0, S1} {S0 → S1}
step6 {B,C} {A,B,C} {D} {S0, S1} {S0 → S1}
step7 {C} {A,B,C} {D} {S0, S1} {S0 → S1}
step8 ∅ ∅ {A,B,C} {S0, S2,S1} {S0 → S1,S1 → S2}
step9 {E} {E} {A,B,C} {S0, S2,S1} {S0 → S1,S1 → S2}
step10 ∅ ∅ {E} {S0, S2, S1, S3} {S0 → S1,S1 → S2,S2 → S3}

Fig. 1. Markov chain for the example

states S0, S{D}, S{A,B,C}, S{E},respectively. The corresponding Markov chain is
shown in Fig. 1. This example is a tandem queueing network according to [8].

4 Performance Analysis for Queueing Network Model

With the Markov chain derived from Section 3, the queueing network model
for a composite web service can be analyzed quantitatively. Parameters such as
service demand, utilization and residence time can be computed given the arrival
rate. Then, the bottleneck(s) can be identified.
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4.1 Bottleneck Identification for Single-Class Queueing Network

According to [14], the bottleneck for single class model is the service center i
with the largest service demand Di = Si × Vi, with service time Si and visit
ratio Vi. So the problem of finding bottleneck of single class network reduces to
finding the service center with largest service demand. Because service time has
been known according to Algorithm 1 in Section 3, the focus is to compute visit
ratio vector [Vi] for all service centers.

The queueing network model for composite web service is itself an open net-
work. When a customer arrives, the probability that he will enter service center
i is bi. While he completes the service at service center i, he can switch to service
center j or leave the network.

Suppose the arrival rate for the whole composite service is λ. Because the
network model for composite web service is a steady one, so the departure rate is
also λ. At the same time, for each service center, the rate of arrival and departure
is also equivalent. So, for all component service centers j = 1, 2, · · · , M , formula 1
holds (see [13]).

vj =
M∑
i=1

pijvi + bjλ (1)

For entry center, the visit ratio is λ. So, given a arrival rate λ, with the tran-
sition probability matrix {pij} derived in Section 3, the set of linear equations 1
are solved to get the visit ratio for each service center. The algorithm for solving
linear equations is Gauss Principal Element Elimination [15].

Then, the service demand of each service center is computed using visit ratio
Vi and service time Si. As a result of this, the service center with largest service
demand is identified. Bottleneck identification for multi-class queueing network
is also performed using a method according to [16], in which a method is dis-
cussed to give a set of potential bottlenecks for multi-class queueing network.
The implementation details are not included here due to space limitation.

4.2 Delay in Transmission

In the above discussion, the transmission channels are an abstraction for send-
ing and receiving messages. So far their effect on system performance has been
neglected. In reality, transmission delays can increase the system response time.
Particularly, in the web service settings, messages are contained in a SOAP-
based envelope and transmitted over HTTP or SMTP, which is regarded to cost
much transmission delay.

Service centers could be used to model transmission channels: this model
assumes that only one message can be in transit at a time and may produce
inflated response times. In this case, it can be considered that a resource is
dedicated to a request, so the channel is modeled as a delay center ([12, 17]). The
arrival rate for such a service center is equal to the arrival rate at the component
fed by the channel. Each channel has a delay time property, representing the
average time it takes a message to traverse the channel([18]).



Mining Models of Composite Web Services for Performance Analysis 835

A channel’s transmission delay affects the system response time: the delay of
each channel traversed by a job is added to the job’s response time. However, it
does not affect component performance or bottlenecks.

5 Experiments

Experiments are performed to evaluate the methods discussed in this paper.
Composite web services are defined using BPEL4WS [5]. The execution engine
for BPEL process is ActiveBPEL (http://www.activebpel.org/) engine, which
uses Axis (http://ws.apache.org/axis) to hold external web services.

The loan approval example in BPEL4WS specification is employed as the base
of the composite service. It is extended to include a three-branch conditional
construct and a two-branch parallel construct. For more information about loan
approval example, the readers are referred to [5]. It is deployed and executed
in an engine, with logs collected. Then Algorithm 1 is executed to mine the
underlying model from the logs.

With the mined Markov chain and the visit ratio formulas, we can get visit
ratio Vi and service time Si of service center i. Then the performance measure
such as service demands, resource utilization, average residence time and average
queue length can be computed. The formulas used are the following ones(see
[12]): the service demand for i is Di = Si×Vi; the utilization for i is Ui = λ×Di;
the average residence time is Ri = Di/(1−Ui); average queue length is computed
by Little’s law with Qi = λ × Ri = λ × Di/(1 − Ui) = Ui/(1 − Ui). The details
of computation results won’t be shown here for lack of space.

Experiments are also conducted to evaluate the performance of Algorithm 1.
The computer used for experiments is with the following configurations: Pentium
4 1.5GHZ with 512M RAM, Windows 2000, jdk1.4.2.

Nodes are randomly added to the process definition for varied model sizes.
Table 2 shows the execution time. It can be seen that this method is efficient
and scales linearly with the size of the input for a given model size. It also scales
well with the size of model in the experiments.

Table 2. Execution time of Algorithm 1 (in Seconds)

Number of Logs
Number of Nodes

10 30 50 100
100 0.04 0.16 0.39 1.25
1000 0.27 1.61 3.75 12.51
10000 2.56 17.02 39.82 124.41

6 Related Works

The field of modeling web services and their interaction has received considerable
attention in recent years. A variety of formalisms have been proposed in the



836 A. Gao et al.

following directions: web service composition specifications [5, 6], formal model of
services composition, automatic composition, analysis and verification(see [1, 3]
for a survey of these topics).

Though the existence of considerable works on automatic composition, QoS-
driven service composition([19]) and semantic web service composition, perfor-
mance analysis of composite web service has received relatively limited attention.

Author in [20] performs response time analysis of composite web services.
While in our method, composite web service is modeled using queueing net-
work techniques, so performance parameters such as response time, throughput
and utilization can also be achieved. Moreover, this paper can deal with more
composition constructs than just parallel in [20].

Agrawal et al. [21] introduced the first algorithm for mining workflow logs. A
broad survey on the current work in workflow mining, or process mining,is given
by van der Aalst and Wejters [22]. In [9, 11], the problem of automatic process
discovery and mining is based on a probability model,i.e. by assuming Markov
condition. The method discussed here is mostly motivated by CrossFlow[9] with
the differences: our method is based on queueing network and its embedding
Markov chain; our method can deal with concurrent states with any number
of involved activities while CrossFlow[9] doesn’t mention it; the method in this
paper can also be used to identify loop construct.

7 Conclusion

This paper models composite web service using queueing network for the purpose
of performance analysis. The transition probabilities between service centers,
being a Markov chain, are mined from history execution logs. By remember-
ing previous state, the model mining algorithm can handle sequential, exclusive
choice, concurrent and iterative cases. After the Markov chain is derived, bottle-
necks identification and performance analysis is conducted . Experimental results
show this process mining method is efficient and effective. In future, the various
challenges on process mining proposed in [22] will be further discussed.
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Abstract. To bridge the gap between the over increasing ubiquity of
multimedia and the lack of approaches to deal with semantics of mul-
timedia information, an important number of research efforts has been
brought out lately. Nevertheless, a vast majority of proposed techniques
deal with movies or other montage-edited media sources like TV-news,
football matches, etc., which are characterized by efficient temporal gran-
ularity (frames, shots, scenes, etc.). Unfortunately, this latter property
does not hold in environments like, e.g, multimedia meetings, making tra-
ditional approaches not quite suitable for such settings. In this paper we
present our approach to conceptual modeling of multimedia data based
on MADS, a spatio-temporal data model with multi-representation sup-
port. We also provide an example for the case of multimedia meetings.

1 Introduction

Due to persistent popularization of digital cameras, PDAs, 3G cell phones, etc.,
multimedia gradually takes stands once dominated by classical alphanumeric
data. However, despite the simplicity of taking pictures with one’s digital camera,
it is not that obvious, e.g. to find among those shots the photo of Liz standing
the left of Bill at the last week briefing. This is partially due to the fact that the
major emphasis in the field of multimedia research has been for a long time placed
on such (low-level) issues as storage, coding, networking, hardware, etc., while
paying a very limited attention to semantic aspects of multimedia information.

In this paper we present our approach1 to conceptual modeling of multime-
dia data based on MADS [1], a spatio-temporal data model supporting multi-
representation, which we extend with multimedia modeling capabilities. This
permits to reuse the existing features of MADS in the multimedia context, as
well as to keep the model backward-compatible for non-multimedia applications.

It is especially due to the recent raising of Semantic Web and ontologies-
related research that semantics in general and multimedia semantics in particular
are being paid an overgrowing attention nowadays.
1 This work is funded by National Center of Competence in Research (NCCR) on

Interactive Multimodal Information Management (IM2), supported by the Swiss
National Science Foundation. http://www.im2.ch

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 838–848, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An important number of recent activities in the field of multimedia content
description has been focused on MPEG-7, an XML Schema based standard,
providing over 450 simple and complex types [2]. MPEG-7 is extensible and
allows describing temporal, spatial, and spatio-temporal components of audiovi-
sual content. Despite its benefits, the complexity and immaturity of the standard
hamper its wide spreading. Moreover, its marked affixment to physical media
sources does not permit to fully exploit the multimedia semantics.

A semantic multimedia meta-modeling approach based on Enhanced Multi-
media Meta Objects (EMMO) is proposed in [3]. An EMMO establishes a trad-
able knowledge-enriched unit of multimedia content, combining media, semantic,
and functional aspects. In general, EMMOs represent an interesting approach
to conceptual multimedia modeling, taking advantage of ontologies, versioning
support, and providing association and constructor mechanisms. Nevertheless,
the model seems to be somewhat physical-media oriented, and tries to mix phys-
ical and semantic aspects of multimedia data altogether, which, in our opinion,
hampers the expressiveness of semantics-oriented modeling.

Perhaps one of the most recent directions of multimedia research is focused in
the domain of emergent semantics. Due to variety and multitude of user groups,
whose expectancies are not known beforehand, it becomes almost impossible to
foresee the all different semantic interpretations of multimedia information by
various application users. In [4], several approaches to tackle this problem are
presented. In particular, the media blending approach [5] has proved useful for
discovering emergent semantics in multimedia settings.

The rest of the paper is structured as follows: sect. 2 provides a general de-
scription of a multimedia meeting environment, and points out its peculiar prop-
erties as compared to traditional multimedia settings. Sect. 3 introduces MADS,
a spatio-temporal data model supporting multi-representation. Sect. 4 describes
MADS multimedia extensions, and illustrates a sample conceptual multimedia-
extended schema. Finally, sect. 5 concludes and discusses the work in progress.

2 Multimedia Meeting Framework

One of the primary directions of the IM2 project is a Smart Meeting Room appli-
cation dealing with interfaces and supporting facilities to store and retrieve both
the raw media data produced at the meetings (e.g. video and audio recordings
of the meetings), and the corresponding metadata produced after the meetings
(namely, various annotations to describe, in particular, relevant segmentations
of the audio and video files and, as far as possible, their semantic content) [6].

In the context described above we are developing a conceptual multimedia
modeling technique suitable in particular for the case of multimedia meetings.
The interaction between multimedia meeting participants can take place ei-
ther in the form of monologues or discussions. Participants are also free to use
a projection board or other visualization tools for demonstrating slides, dia-
grams, etc. The totality of multimedia meetings is recorded by a set of audio-
visual recording equipment, which could be fixed-position, fixed-trajectory, or
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(a) (b)

Fig. 1. Multimedia Meeting Scenarios

free-trajectory (cameraman-driven). Two typical examples of multimedia meet-
ings in IM2 are shown in fig. 1. In fig. 1a three wall-fixed cameras are filming 2
of the 4 meeting participants on one side of the desk, the other 2 participants on
the other side of the desk, and a projection screen on the wall, respectively. In
fig. 1b each meeting participant is filmed by a personal dedicated fixed camera.

Compared to traditional audio-visual multimedia applications, multimedia
meetings are characterized by a number of features that make existing modeling
approaches not quite suitable for meeting scenarios. Thus, for example, a great
number of existing video annotation and conceptual modeling techniques are
based on dividing video sequences into temporal components, namely: frames,
shots, and scenes. It has been argued that shots represent the finest level of
descriptive granularity for motion pictures [7]. This reasoning, however, does
not necessarily hold for the case of multimedia meetings. Indeed, in a setting
like the one presented in fig. 1b, shot-level division is seriously hampered by a
highly static pattern of video recordings. As for frame level division, this type of
segmentation is way too fine and removes temporal aspects of video content [8].

Another important peculiarity of multimedia meetings is a multitude of phys-
ical media sources. For example, each meeting participant can be represented by:
a set of personal video files, parts of the video file for the projection screen, as
well as parts of the common sound file. This markedly differs from the majority
of classical single-media systems, often meant for motion pictures, where each
media file is considered as single and is in general treated (i.e. annotated, queried,
etc.) independently of the other files in the collection. It should be noted that
unlike the motion pictures context, where montage is used to produce a single
media file out of a series of independent footages, this solution is not appropriate
to multimedia meeting scenarios. Unlike motion pictures, multimedia meetings
applications do not seek to provide a unified multimedia view of the domain
as seen by a single person or group of persons (e.g. movie director). Quite the
contrary, in multi-user environments like that of the IM2, users/annotators are
many, each having their own points of interest. It is thus important to preserve
all the multimedia recordings, and make them available for multiple accesses and
reuse by different users, thus prohibiting any possible semantic losses.

Further investigating the problem of multitude of physical media sources, we
go on to yet another important characteristic of multimedia meetings, namely
that of clearly separating semantic and physical aspects of multimedia. This,
in our opinion, is one of the major requirements that a powerful conceptual
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multimedia modeling technique should meet. It becomes especially important
when multimedia serves as a representation of real world entities (physical ob-
jects, relationships, events, etc.), while in this case the multimedia semantics
actually reflects the semantics of the real world entities behind the multimedia
recordings. For example, having John filmed during the meeting with a camera
A, or a camera B, or not having him filmed at all, does not change the fact of
John’s taking part in the meeting. This means that we would like to be able
to represent as much semantic information about this recorded meeting, as if
we were doing so for the real meeting itself, and not just for its multimedia
representation.

Summarizing the aforesaid, a powerful conceptual multimedia modeling tech-
nique should meet the following principal requirement:

– consider separately semantic and physical aspects of multimedia;
– be scalable with respect to multitude of physical media sources;
– support spatio-temporal semantics;
– be user-adaptable and support multi-representation;
– be at least as expressive as the modeling technique used to describe real

world entities independently of their multimedia depiction.

3 MADS Data Model

Taking into consideration the requirements defined in sect. 2, we have hereby
chosen MADS [1], [9] as the underlying base model for our conceptual multimedia
modeling approach. MADS (Modeling Application Data with Spatio-temporal
features) is a conceptual data model that primarily addresses the domain of
spatio-temporal applications. One of the key features in MADS is the orthogo-
nality of its 4 modeling dimensions (data structure, space, time, and represen-
tation), which makes the model easy to extend yet backward compatible.

MADS structural dimension supports such well-known features as objects,
relationships, attributes, methods, and so forth, as well as a number of more
complex components, such as derived attributes, is-a links, aggregation, gener-
alization, multi-inheritance, transition relationships, etc.

MADS spatial dimension provides abstract datatypes (ADT) for representing
shape and location information (points, lines, simple and complex surfaces, etc.).
Each datatype has an associated set of methods for manipulating its values. The
spatiality of a type is described by a predefined attribute Geometry, whose value
domain is one of the spatial datatypes.

MADS temporal dimension provides ADTs for representing instants, intervals,
and temporal elements. Temporal ADTs support time-stamping, i.e. associating
a timeframe to a fact. The temporality of a type in MADS is described by a
predefined attribute Lifecycle, and due to the model orthogonality, any object
or relationship type can be specified as spatial, or temporal, or both. MADS also
allows to represent time-varying and space-varying information as a function
from time/space to value domains.
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Another manifestation of spatio-temporal semantics in MADS is the con-
strained relationships. Spatial (resp. temporal) object types can participate into
topological (resp. synchronization) relationship types. Such kind of relationships
impose additional constraints of spatio-temporal nature on the Geometry (or
Lifecycle, or both) attributes of the linked instances. MADS supports six pre-
defined topological relationships (incl. disjoint, adjacent, inside, etc.), and seven
predefined synchronization relationships (incl. before, overlaps, during, etc.).

Finally, MADS representation dimension permits to deal with issues like user-
adaptability and multi-representation by introducing a mechanism of perception
stamps. In MADS, object and relationship types, attributes, and methods can
have different representations and therefore be stamped. Two traditional stamp-
ing criteria are viewpoints, and resolutions.

Besides a rich data description part, MADS also provides a powerful algebraic
query language as well as a number of GUI tools: Query Editor for visual query-
ing functionality, and Schema Editor for designing MADS conceptual schemata.

Let’s illustrate some of MADS modeling features with an example. Fig. 5
presents a sample conceptual schema of a multimedia meeting environment.
The object type Meeting has a lifecycle of type IntervalSet, which allows
accounting for interruptions, or dealing with meetings that span several days.
Moreover, spatiality of object type Meeting is described by its predefined at-
tribute Geometry (not shown), whose value domain is a spatial datatype Point
(representing the place where a meeting is held). Similarly, spatiality of meeting
participants (object type Participant) is also of datatype Point, yet their cur-
rent spatial position is time-varying. We further assume that participants can
attend meetings either physically, or virtually using a webcam. In order to save
communication bandwidth, virtual attendees can disconnect/reconnect multiple
times, thus missing certain parts of the meeting. This fact is reflected on the
schema by the lifecycle of a relationship type Virtually being an IntervalSet.
Furthermore, relationship types Physically and Virtually show topological
semantics of types Inside and Disjoint, respectively, meaning that unlike par-
ticipants who attend physically, virtual attendees cannot be physically situated
in the meeting room. Besides, since the exact number and identity of Internet
participants is not known in advance, we decide to resort to multirepresenta-
tion features of MADS, and thus introduce two perception stamps T1 and T2,
with the former reflecting the information available before the meeting has taken
place, and the latter reflecting the information available after the meeting has
finished. As you can notice, the relationship type Virtually is only available in
the perception stamp T2. Finally2, the relationship type Presents marks the
span of the document presentation via its lifecycle of type Interval.

4 MADS Multimedia Extensions

Modeling multimedia representation of real world objects and events condi-
tions some peculiarities as compared to modeling these same real world entities
2 The rest of the elements presented in fig. 5 are described in sect. 4.4.
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directly. In order to depict these special characteristics that inhere in multime-
dia information, we use the orthogonality principle of MADS, and propose to
introduce a new modeling dimension (Multimedia Dimension) that serves to se-
mantically represent various facts related to multimedia aspects of the modeled
information. This approach permits to efficiently reuse all the existing features of
MADS in multimedia-related applications, as well as to keep it totally backward-
compatible for traditional non-multimedia use.

4.1 Multimedia Abstract Datatypes

Semantically an object in MADS is said to be of multimedia type if it has some
associated multimedia representation. That is either: 1) our knowledge of the ob-
ject existence comes e.g. from watching a video or listening to an audio stream,
where the object is visually/aurally represented, or 2) the object has some asso-
ciated multimedia representation thereof, which however does not condition our
knowledge of the object existence. In other words, having a multimedia object
means having an object that possesses some multimedia representation via, for
example, a video file, an audio stream, etc. To precise which kind of multimedia
representation is in issue, abstract multimedia datatypes are used.

Fig. 2 shows the hierarchy of multimedia datatypes in MADS. Each of the mul-
timedia datatypes is characterized by a number of its proper methods, which pro-
vide some datatype-specific functionality. For example, the complex datatypes
in fig. 2 provide the following specific operations:

1. Audio-Video (AV), e.g. a motion picture.
Specific operation: lip motion assisted speech recognition.

2. Audio-Video-Text (AVT), e.g. movies with subtitles.
Specific operation: subtitle production via speech recognition.

3. Picture-Audio (PA), e.g. TV news from a reporter calling on the phone.
Specific operation: automatic voice-recognition-based photo selection.

4. Picture-Text (PT), e.g. a digital picture and its title or textual description.
Specific operation: picture description via low-level image content analysis.

It should be noted nonetheless that fig. 2 only represents a hierarchy of ab-
stract conceptual multimedia datatypes, which should not be confronted with a

Simple 
Multimedia

Complex 
Multimedia

Pic

Video Audio

Text AV PA

AVT PT

MM
(Multimedia)

Fig. 2. Multimedia Datatype Hierarchy
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list of particular multimedia formats, like JPEG, MP3, etc., supported by the
multimedia-oriented application. At this stage, for example, AV only specifies
that the multimedia information in question is of audio-visual type, whatever
its storage, encoding, and format are. These latter characteristics, in their turn,
should be considered at other modeling levels and are in general implementation-
dependant. It should also be noted that the hierarchy in fig. 2 is not exhaustive
and only represents the most used, in authors’ point view, types of multimedia
data. In order to better adapt to particular requirements of a multimodal multi-
media application, any new abstract multimedia datatype whatsoever, ranging
from tactile information to smell, could be introduced into the hierarchy. In this
case, newly introduced datatypes could be associated with specific concepts from
a domain ontology, which would make understating their semantics easier for the
users of the system. On the other hand, for the sake of application simplicity,
a pruned hierarchy could also be used instead, with some of the datatypes not
taken into consideration and thus represented by their super-types.

Strictly adhering to the orthogonality principle of MADS, any object or rela-
tionship can be specified as multimedia, no matter if this object or relationship
already has some characteristics of other MADS modeling dimensions. Thus, for
example, it is possible to have an object that is at the same time spatial and
multimedia, or spatial and temporal and multimedia, etc. In much the same
manner as for spatial or temporal objects in MADS, a multimedia object type
implies having a special attribute (Multimedia), whose value domain is one of
the abstract multimedia datatypes (see fig. 3). Besides objects and relationships,
also the attributes can be of multimedia type. A multimedia attribute is a simple
(possibly multi-valuated) attribute, whose domain is a multimedia datatype.

Fig. 3 demonstrates the use of abstract multimedia datatypes in MADS. The
object type Meeting, as well as one of its attributes (Organizer) are specified as
multimedia (AV and Pic, respectively), which on the object type definition level
means having an attribute Multimedia of type AudioVisual, as well as attribute
Organizer of type Picture. Note as well, that the object type Meeting combines
at once spatial, temporal, and multimedia characteristics.

4.2 Representational Relationships

As previously mentioned, a relationship type in MADS can be specified as mul-
timedia by being associated with one of the abstract multimedia datatypes. In

Topic 1:n   Str
Organizer 1:1   

Meeting          

Pic

AV

Object Meeting {
  Lifecycle Interval
  Geometry Point
  Multimedia AudioVisual

  Topic [1,n] String
  Organizer Picture
}

Fig. 3. Multimedia Semantics in MADS Schema and Object Type Definition
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Fig. 4. Representational Relationships in MADS

addition to that, multimedia object types can participate into a special kind of
relationships called representational relationships. Enriching a binary relation-
ship with representational semantics implies imposing additional constraints on
Multimedia attributes of instances linked by the relationship. For example, in
fig. 4a object types Meeting and Participant are linked by a relationship type
Participate, which we would like to constrain by imposing that only then does
it hold when the assumed participant can be seen and/or heard throughout the
corresponding meeting. To enforce this condition, the relationship Participate
is further constrained by being assigned as MultimediaInclusion type (fig. 4b),
meaning that according to the schema in fig. 4b any participant, who is said to
participate in a meeting, must additionally have his multimedia representation
included in the multimedia representation of the corresponding meeting. Given
the example in fig. 4b, this would in particular signify (taking into account that
both Meeting and Participant are of AV multimedia type) that the audio-
visual representation of the Participant, which is contained in his Multimedia
attribute, must be included in the audio-visual representation of the correspond-
ing Meeting, contained in the Meeting.Multimedia attribute.

The following 4 generic types of representational relationships are proposed:

1. multimedia inclusion: multimedia representation of one linked instance is
semantically included into multimedia representation of the other linked in-
stance (see e.g. fig. 4b);

2. multimedia intersection: multimedia representations of two linked instances
share some common semantics, however neither of the two completely in-
cludes the other one;

3. multimedia equality: multimedia representations of two linked instances are
semantically equal, meaning that multimedia representations of neither
linked instances provides more semantic content than the other one;

4. multimedia inequality: multimedia representations of two linked instances are
semantically disjoint.

It is important to emphasize that associating relationship types in MADS
with any of the representational relationship types described above only im-
poses additional constraints of merely conceptual nature, and does not (not
necessarily) imply similar constraints on physical multimedia files, streams,
etc. behind the multimedia instances linked by the concerned relationship. For
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example, turning back to fig. 4b, the fact of the relationship type Participate
being of the representational type MultimediaInclusion does not necessarily
imply that e.g. MPEG files containing multimedia representations of meetings
should be physically composed of MPEG files representing meeting participants.

4.3 Multirepresentation in Multimedia

As presented in sect. 3, representation dimension of MADS allows to deal with
the notion of multi-representation, in particular, by means of perception stamp
mechanism. Thanks to the orthogonality principle, the representation dimension
can also be used in multimedia settings, especially when dealing with such impor-
tant aspects of conceptual multimedia data modeling as user-adaptability and
multi-representation (see sect. 2). In particular, multirepresentation in MADS
can be used to solve the following problems in the context of multimedia seman-
tics (demonstrated here by the example of multimedia meetings):

1. Multiple values of multimedia attributes (incl. reserved Multimedia at-
tribute).
Suppose that in some multimedia-enabled meeting management system par-
ticipants are represented by their photos (possibly more than one). We would
like to be able to use regular passport-format photos in official settings, while
keeping informal ones for coffee-breaks and banquet environments.

2. Multiple datatypes of multimedia attributes.
Further generalizing the problem of multivalued multimedia attributes, also
their datatypes may differ from one representation to another, even possi-
bly belonging to different modeling dimensions. For example, the Organizer
attribute in fig. 3 could be of multimedia datatype Picture in one represen-
tation, and of non-multimedia datatype String in another representation.

3. Limiting access to multimedia content.
In the context of the IM2 project, which is characterized by a big number
of users from various domains, multirepresentation coupled with an access
rights mechanism can help control user access to multimedia content depend-
ing on user’s access privileges on the representation that this content belongs
to. This facilitates, in particular, multiple and simultaneous user access.

4.4 Multimedia-Extended MADS Schema

In fig. 5, a sample multimedia-extended conceptual schema of a multimedia meet-
ing environment is presented. We keep on the description given in sect. 3, and
characterize hereby the multimedia-related details of the presented schema. The
object type Person displays its multimedia properties by means of a predefined
attribute Multimedia (not shown), whose value domain is a multimedia datatype
Picture. This allows, for example, associating a passport-size photo with each
person registered in the system. Moreover, also the object type Participant
is now additionally characterized by a Picture, which, in our example, is sim-
ply inherited from its super-type Person. In order to allow meeting participants
present documents of various formats, and not restrict them to some specific
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Fig. 5. Multimedia-Extended MADS Schema

one, we define the multimedia nature of the object type Document as being of an
abstract multimedia super-type MM (see fig. 2). Furthermore, interested not only
in storing presentation documents themselves, but also in capturing the manner
in which they are presented by meeting participants, we decide to add multime-
dia property of complex datatype AV to the relationship type Presents. Since
this latter multimedia information can only become available after the end of the
meeting and not beforehand, we mark the newly-introduced audio-visual multi-
media property of the relationship type Presents as belonging solely to the per-
ception stamp T2. Making further use of the multirepresentation support in our
multimedia-enabled environment, we decide to visually describe each Meeting by
a Picture of its meeting room (already achievable in T1), and to provide instead
a full-length audio-visual report of the meeting as soon as it becomes available
(obviously, only accessible in T2). In order to exercise some control on the audio-
visual representation of the object type Meeting in the perception T2, we order
that all the meeting participants must be seen in the audio-visual footage in
question. This is achieved by constraining the relationship type Attends with a
representational relationship of type MultimediaInclusion. Finally, instead of
storing the information about Meeting.Host as a simple character string value,
we rather opt for a set of up-to-date photos taken right on the spot. Clearly,
these latter are only available in T2.

5 Conclusions and Future Work

This paper presents a novel technique for multimedia data conceptual modeling.
We base ourselves on MADS, a spatio-temporal data model supporting multi-

representation. Using MADS orthogonality principle, we extend the model with
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a new completely orthogonal multimedia modeling dimension. This permits to
reuse the existing features of MADS in the multimedia context, as well as to
keep the model totally backward-compatible for non-multimedia use. Although
our approach is not limited to some specific multimedia setting, a sample case
of multimedia meetings has been extensively used throughout the paper. We
illustrate the modeling capabilities of our approach with a sample schema.

Currently, we are working on developing a complex 3-layer model, which will
permit to represent multimedia data from 3 different points of view, namely:
physical, logical, and conceptual. The multimedia-extended MADS, as described
in this paper, is to be used at the conceptual layer of the 3-layer model in
question. Our future plans also include incorporating the described multimedia
extensions into MADS visual schema editing tool Schema Editor.
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Abstract. RDF, the current standard for the representation of Web
metadata, is based on a simple graph model that ensures logical interop-
erability between metadata formats. This model is however too limited
to represent natively complex metadata structures such as sets, lists,
structured property values and reified triples, which are simulated using
blank nodes and built-in vocabularies. This situation tend to blur the
semantics of RDF graphs and complicate the expression of queries. In
this article, we extend RDF with n-ary statements and statement nest-
ing, so that complex metadata structures are expressed natively. A query
language over this extended RDF is also proposed.

1 Introduction

Now widely adopted as the Web metadata representation standard, RDF [5]
has found applications in many areas. Surprisingly enough, a standard query
language is still missing. At the time of writing, SPARQL, the future standard
RDF query language, is still under construction [7].

The concept of database of metadata, or metadatabase, is nonetheless promis-
ing. A growing number of Web resource descriptions are available on the network,
notably in the form of RDF files. For the moment, those metadata can only be
accessed through Web servers. The idea of metadatabases is to propose another
access to metadata through query servers. Such servers could transform the Web
into a huge decentralized database, allowing users to express complex queries to
retrieve resources matching their needs.

As will be shown in this article, RDF is actually not fully appropriate as
the data model of metadatabases. Its weakpoint is the ill-defined concept of
blank node, that blurs the initial vision of RDF metadata as a graph of well-
identified objects. Though inevitable to represent complex metadata structures,
blank nodes introduce heterogeneity in metadata representation. As a result,
querying RDF graphs is difficult as soon as blank nodes must be compared.
Worst, as blank nodes may appear anywhere in RDF graphs, expressing generic
queries is almost impossible.
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In this article, we propose an extended RDF called STIL, for Statements as
Trees of Identifiers and Literals, and its query language STILQL. Keeping the
good sides of RDF, STIL introduces n-ary statements, statements nesting, and
standalone literals and identifiers. As a result, STIL natively represents all the
structures that must be simulated in RDF. Moreover, in STIL, data resources
(e.g. Web pages) are considered as a special case of metadata resources, which
allows to query uniformly Web resources.

The article is organized as follows. Section 2 exposes the problematics of meta-
databases, describes the potential applications of a metadata query language on
a few use cases, and explains the drawbacks of RDF as a data model for such
a query language. Section 3 presents the STIL data model and its benefits.
Section 4 presents STILQL and its application to the use cases.

2 Problem Statement

2.1 An Example

Today’s Web is composed of both data resources dedicated to human readers, and
metadata resources that describe other resources. As an example, consider two
(fictive) Web sites. The DASFAA2006 conference site, http://wwww.dasfaa06.
org, publishes the conference papers as well as a metadata ressource (desc) that
describes the papers. The database community Web site, http://www.databases.
org, is a directory of Web pages and scientific papers about databases, in the
Open Directory style. It also contains a metadata resource (desc) that describes
the directory structure.

In the following, we use the following namespaces [2]: dasfaa06: is the alias
for http://www.dasfaa06.org/, db: the alias for http://www.databases.org/, rdf:
the RDF namespace, and ex: a fictive namespace used to name our predicates.

Fig. 1 presents (a possible subset of) the metadata resources dasfaa06:desc and
db:desc expressed in RDF. As papers may have more than one author, and the
order of authors is meaningful, blank nodes typed as RDF sequences are used to

Fig. 1. Metadata resources in RDF
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represent papers with more than one author. For the sake of the demonstration,
we assume that two papers have the same sequence of authors represented by
two different blank nodes.

2.2 Metadatabases Use Cases

For the moment, data and metadata resources are accessible only through Web
servers using HTTP. The vision of metadatabases is to propose another access
to those data and metadata resources through query servers. This would trans-
form the whole Web into a world-wide database of data and metadata. In the
following, we illustrate the potential of this vision on a few use cases.

Metadatabases would be a useful complement to current full-text search en-
gines. Precise queries could be expressed, for example:

Q1: Get the papers described in dasfaa06:desc as written by the same au-
thor(s).

Q2: Get the identifier, conference and author(s) of papers described in das-
faa06:desc , and classified by db:desc under the category db:category12.

Metadatabases could also be useful in Web site management. As an example,
the Web site of Benjamin Buffereau could be created simply by aggregating
information already published on conferences Web sites. If dasfaa06:paper56 is
the identifier of a paper written by Benjamin Buffereau, the following query
extracts its metadata:

Q3: Get the description from dasfaa06:desc of the resource dasfaa06: paper56.
The situation above results in data and metadata duplication: the same paper

is available from two sources, as well as its description. This is a problem for
the people maintaining the database community Web site, as the same resource
may be classified twice. In order to find duplicates, the following query could be
expressed:

Q4: Get the data resources described in db:desc that have different identifiers
but the same content.

2.3 Drawbacks of RDF

Though simple to express in natural langage, the queries Q1, Q3, and Q4 are
difficult to write in query languages that use RDF as their data model, as briefly
explained below.

First, in order to express Q4, a query language must be able to compare the
contents of two data resources. This can be done easily with query languages
that recognize data resources as instances of their data model. Unfortunately,
though some Web resources such as HTML pages have a graph structure that
can be converted in RDF, this is not the case of other resources such as images
or PDF files. The contents of such resources can be seen as RDF literals, but
an RDF graph is a set of triples, so a literal is not a valid instance of the RDF
data model. As a conclusion, in order to express Q4, a query language using
RDF as its data model must use an external function to compare the data
resources.
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Second, the expression of Q1 and Q3 must be independent of the structure
of the queried RDF graphs. Q1 compares the author(s) of different papers, no
matter if the value of this property is a single author or a list of authors. Similarly,
Q3 asks for the description of a data resource without any knowledge of the
structure of this description. We call such queries generic queries. Because of
blank nodes, generic queries are difficult to express in query languages based
on RDF. As an example, consider the expression of Q1 on the graph in Fig. 1.
As the same sequence of authors is represented by two different blank nodes,
the expression of Q1 cannot rely on blank node identifiers: blank nodes must
be compared based on their descriptions. Then, the query must compute blank
node descriptions and compare them. The situation would be different if the list
of authors was represented as a literal node. Without any prior knowledge of the
graph structure, it is difficult to express a query that would take into account
every possible situation.

3 The STIL Model

As RDF is limited to binary statements, statements of a higher arity must be
splitted into binary statements, and blank nodes must be introduced. In order to
eliminate blank nodes, we propose to allow n-ary statements, as well as statement
nesting in the style of relational complex values [1]. Moreover, in order to be able
to query any type of resources including opaque data formats and file directories,
standalone literals and identifiers are allowed.

After a presentation of STIL syntax and semantics (Sect. 3.1), we expose the
benefits of the approach (Sect. 3.2) and investigate the conversion of RDF graphs
into STIL collections (Sect. 3.3).

3.1 STIL Syntax and Semantics

STIL is a value-oriented model, i.e. constructs of the language are not objects but
values. It distinguishes three types of values, namely literals, resource identifiers
and statements. Literals are base type values such as strings or integers. Identi-
fiers represent Web resources identified by a URI, or local resources identified by
a symbol. Statements represent arbitrarily complex relations between values. A
statement is composed of a prefix and a set of attributes. Each attribute is com-
posed of a name and a value. The prefix and the attribute names are identifiers,
while an attribute value may be an identifier, a literal or a statement. In a given
statement, attribute names must be distinct, and give the role of each value in
the statement. Finally, a collection is defined as a (possibly heterogeneous) set
of values.

Graphically, a statement takes the shape of a rooted tree with labels on nodes
and arcs. The root represents the statement prefix, its outgoing arcs represent
the statement attributes, and the arc destinations represent the attribute values.
Literals and identifiers are represented as nodes. A collection is represented as a
set of trees, where a tree may be a single node.
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<collection> = "{" "}" | "{" <values> "}"
<values> = <value> | <value> "," <values>
<value> = <literal> | <identifer> | <statement>
<statement> = <identifier> "[" "]" | <identifier> "[" <attributes> "]"
<attributes> = <attribute> | <attribute> "," <attributes>
<attribute> = <identifier> "=" <value>

Fig. 2. BNF grammar for STIL values

Fig. 3. An example of STIL collection

For example, the collection in Fig. 3 states that there exists a resource called
Benjamin, a literal "hello", and a statement whose expression in natural lan-
guage is “Benjamin says that Philippe says hello”.

A BNF grammar for STIL values is given in Fig. 2. In this syntax, the collec-
tion of Fig. 3 is expressed as follows:

{Benjamin, "hello", says[who=Benjamin, what=says[who=Philippe, what="hello"]]}

3.2 Benefits of the STIL Approach to Metadata Representation

A first benefit of STIL is its flexibility: any type of resource can be interpreted as
a STIL collection. For example, a file directory is a set of identifiers, a relational
database is a set of statements, and an image is a collection containing a single
literal which is the resource contents. As a consequence, STIL queries can be
written to get, compare, or aggregate resources of any type.

A second benefit of STIL is that it represents natively complex metadata
structures, such as structured property values [5], n-ary relations [6], and reified
statements. Fig. 3 gives an example of statement reification. Complex metadata
structures are more easy to compare in STIL than in RDF. Moreover, extracting
a resource description is straightforward: the description of a resource is the set
of statements where the resource appears as an attribute value.

3.3 Converting RDF Graphs into STIL Collections

The compatibility of STIL with RDF is an important issue as a lot of metadata
resources are modeled in RDF. In order to use STILQL as an RDF query lan-
guage, RDF resources must be converted “on-the-fly” into STIL collections. STIL
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Fig. 4. STIL representation of the RDF collections in Fig. 1

is an extension of RDF ground graphs: the STIL representation of a ground RDF
triple is a statement where the prefix is the triple predicate and the attributes
are the triple subject and object. Thus, the only difficulty is the conversion of
blank nodes. However, most RDF blank nodes actually represent complex values,
that can be represented in STIL as statements. We then propose the following
(lossless) conversion from an RDF graph into a STIL collection:

– a blank node typed as rdf:Statement is converted into a STIL statement
whose prefix is the predicate of the reified statement and whose attributes
are the reified statement subject and object.

– a blank node typed as rdf:Bag, rdf:Alt, rdf:Seq or rdf:Collection is
converted into a STIL statement whose prefix is the blank node type and
whose attributes are the elements of the list or set.

– an untyped blank node is converted into a statement whose prefix is blank
and whose attributes are the outgoing arcs.

– the other triples of the RDF graph are converted into STIL statements whose
prefix is the triple predicate and whose attributes are the triple subject and
object.

Following those conversion rules, the RDF graph in Fig. 1 is converted into
the STIL collection in Fig. 4. Note that the conversion fails on untyped blank
nodes in two cases: first, when the RDF graph contains a cycle of untyped
blank nodes; second, when there are two triples in the RDF graph that have the
same predicate and the same untyped blank node as subject. Intuitively, this
correspond to the few situations in which blank nodes cannot be interpreted as
complex values.

4 STILQL, the STIL Query Language

In this section, we propose a quick overview of the STIL query language. STILQL
is inspired from semistructured query languages such as Lorel [8] and StruQL
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[4]. Its semantics is inspired from the complex value algebra [1]. More details
can be found in [3].

4.1 Simple Queries

A STIL value, as well as a STIL collection defined in extension, are valid queries.
The set operators can be used on STIL collections. Some unary operators are
provided: content returns the (union of the) collection(s) referred to by the
identifiers found in argument; prefix returns the prefixe(s) of the statements
found in argument; arity returns the arity (i.e. the number of attributes) of the
statements found in argument; attributes returns the attribute name(s) of the
statements found in argument; type returns the type(s) of the values found in
argument. Possible types are Identifier, Literal and Statement.

Path expressions can be used to navigate in statements. A path expression
is a dot-separated sequence of attribute names. The wildcards ? and * can also
appear in path expressions. The wildcard ? replaces any attribute name, while
the wildcard * replaces any sequence of attribute names.

The syntax of STILQL also allows the declaration of namespace aliases.
Aliases can be used to abbreviate URIs both in queries and query results.

4.2 “Where ... Match ... Return” Queries

In order to compose more complex queries, variables must be defined and bound
to values (see Q5, Q6, Q7, Q8 in Fig. 5). Variables are prefixed with $. A
STIL query that uses variables is at least composed of a “where” clause to
define and bind variables, and a “return” clause to format the query result.

#### Q5 # returns the collection in Fig. 4 ########################################

where $x in content(<http://www.dasfaa06.org/desc>) return $x;

#### Q6 # returns {says[who=Benjamin,what="hello"],says[who=Philippe,what="hello"],
########## says[who=Benjamin,what="goodbye"], says[who=Philippe,what="goodbye"]} ##

where $x in {Benjamin,Philippe}, $y in {"hello","goodbye"}
return says[who=$x,what=$y];

#### Q7 # returns {res[p=ex:category, o=dasfaa06:paper56, s=db:category3], ########
######### res[p=ex:category, o=dasfaa06:paper23, s=db:category12]} ################

where $x in content(<http://www.databases.org/desc>), $p = prefix($x),
$o = $x.rdf:object, $s = $x.rdf:subject

match attributes($x) == {rdf:object, rdf:subject}
return res[p=$p o=$o, s=$s];

#### Q8 # alternative syntax for Q7 ##############################################

where $p[rdf:subject=$s, rdf:object=$o] in content(<http://www.databases.org/desc>)
return res[p=$p o=$o, s=$s];

Fig. 5. Some STIL queries
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The “where” clause is a comma-separated list of variable definitions. The left
operand of a variable definition gives the variable name, and its right operand
gives the variable value(s). The “return” clause may be a single variable (Q5), or
a statement constructor where variables may appear as prefix or attribute values
(Q6, Q7, Q8).

######################################################################
# Some aliases
######################################################################

alias dasfaa06: <http://www.dasfaa06.org/>
alias rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
alias ex: <http://www.example.org/>
alias db: <http:www.databases.org/>

################################# Q1 #################################
# Get papers described in dasfaa06:desc
# as written by the same author(s).
######################################################################

where ex:author[rdf:subject=$p1, rdf:object=$a] in content(dasfaa06:desc),
ex:author[rdf:subject=$p2, rdf:object=$a] in content(dasfaa06:desc)

match $p1 != $p2
return res[paper1=$p1, paper2=$p2];

################################# Q2 #################################
# Get the identifier, conference and author(s) of papers described in
# dasfaa06:desc and classified by db:desc
# under the category db:category12.
######################################################################

where ex:conf[rdf:subject=$p, rdf:object=$c] in content(dasfaa06:desc),
ex:author[rdf:subject=$p, rdf:object=$a] in content(dasfaa06:desc),
ex:category[rdf:subject=$p, rdf:object=db:category12]

in content(db:desc)
return res[id=$p, conf=$c, author=$a]

################################# Q3 #################################
# Get the description proposed by dasfaa06:desc
# of the resource dasfaa06:paper56.
######################################################################

where $statement in content(dasfaa06:desc)
match dasfaa06:paper56 in $statement.*
return $statement;

################################# Q4 #################################
# Get the data resources described in db:desc
# that have different identifiers but the same content.
######################################################################

where ex:category[rdf:subject=$r1, rdf:object=$c1],
ex:category[rdf:subject=$r2, rdf:object=$c2]

match $r1 != $r2 and content($r1) == content($r2)
return res[r1=$r1, r2=$r2];

Fig. 6. Expression in STILQL of queries Q1 to Q4
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Variable definitions use operators and path expressions. In particular, the op-
erator content is used to iterate over the values found in a STIL collection (Q5,
Q7, Q8). Moreover, operators and path expressions can be applied to variables,
in order to define a variable from another variable (Q7).

Results can be restricted to the values matching a predicate, which must
be defined in a “match” clause between the “where” and the “return” (Q7). A
syntactic shortcut can be used to abbreviate some variable definitions. It consists
in using a statement pattern as the left operand of a variable definition (Q8). A
statement pattern is a statement where the prefix or some attribute names are
replaced with variables.

4.3 STILQL in Action

The expression of the queries defined in Sect. 2.2 is given in Fig. 6. The queries
work on the STIL representation of dasfaa06:desc and db:desc proposed in Fig.
4. They illustrate many useful features of STILQL:

– it allows to express distributed queries: Q2 works both on the content of the
metadata resources db:desc and dasfaa06:desc.

– it allows the expression of generic queries: Q1 returns the papers that have
the same authors, no matter if the list of authors is represented as a literal, an
identifier or a statement. Thanks to the uniform notion of identity in STIL,
users can write queries without any particular knowledge of the description
structure.

– it allows to get quite simply, and using a generic query, the description of a
given resource (Q3).

– it allows to query uniformly data and metadata resources (Q4).

Note that Q1 was written assuming that the query writer wants the papers
that have exactly the same authors (the same people in the same order). If the
query writer actually wants the papers that have at least one author in common,
the query must be expressed differently.

5 Conclusion

In this paper, we addressed the issue of defining a metadata representation model
and a query language that support the distribution of metadata and the expres-
sion of generic queries. We have proposed a new value-oriented metadata model
(STIL) and its query language (STILQL). STIL is flexible enough to model the
contents of most resources, including RDF resources. Thus, STILQL is both a
general-purpose Web query language and a powerful RDF query language.

The extension of STILQL is an ongoing work: the closure of the language
opens the road to the definition of a view mechanism. An update language and
a schema definition language will also be studied.

Concerning implementation, optimization issues and access methods have to
be investigated. At a more fundamental level, the expressive power of STILQL
should be studied to determine a taxonomy of queries related to complexity
classes.
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Abstract. In this article, we consider energy-efficient implementation
of the SQL join operation in sensor databases, when the join selection
condition is a range predicate. Apart from two simple approaches, we
propose distributed hash-join and index-join algorithms for implemen-
tation of range-join operations in sensor networks. Through extensive
simulations, we show that hash-join as well as index-join approaches sig-
nificantly outperform the simple approaches, even for moderately sized
networks. Our experiments also reveal that although both approach scale
well, the index-join algorithm performs better than the hash-join algo-
rithm especially in large sensor networks.

1 Introduction

A sensor network is a multi-hop ad hoc wireless network of resource constrained
sensor nodes. Each sensor node has limited computing capability and memory,
and is equipped with a short-range low-power radio, a small limited battery,
and various sensing devices. Sensor networks combine sensing, computing, and
networking capabilities to realize high-level sensing tasks in a collaborative man-
ner. Each sensor node in a sensor network generates a stream of data items that
are readings (typically, scalar values) from its sensing devices. This motivates
visualizing sensor networks as distributed database systems [4, 10, 2]. Since, mes-
sage communication is the main consumer of battery energy and sensor nodes
have limited battery power, it is important to implement the queries in sen-
sor networks with minimum communication cost. Moreover, due to the limited
computing and memory resources at each node, the query processing in sensor
networks is necessarily distributed.

In this article, we focus on communication-efficient implementation of certain
special cases of SQL join operation in sensor networks. In particular, we address
in-network processing of the SQL range-join operation, which is a special case of
the join operation when the selection condition involved is a range predicate. We
propose various distributed algorithms. One of our proposed hash-join algorithm
can be shown to incur optimal communication cost under certain assumptions.

2 Range Join in Sensor Networks

In this section, we start with presenting an overview of sensor network databases.
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Sensor Network Databases. A sensor network consists of a large number of
sensors distributed randomly in a geographical region. Each sensor has limited
processing capability, is equipped with sensing devices, and has a low-range
radio. Two sensor nodes can communicate with each other if the distance between
them is less than the transmission radius. We assume that each sensor node in
the sensor network has a limited storage capacity. Also, sensors have limited
battery energy, which must be conserved for prolonged unattended operation.
Each sensor node in a sensor network generates a streams of data tuples, and
groups of sensor nodes producing tuples with the same format contribute to a
single data stream table. In a sensor network, such data stream tables can be
looked upon as partitioned horizontally across (or generated by) a set of sensors
in the network. In a sensor database system, a query is typically initiated at a
node called the query source and the results are routed to the query source for
storage and/or consumption.

Problem Formulation. The SQL join (��) operation is a binary operation
used to correlate data from multiple tables. Range-joins are joins wherein the
join-predicate is whether two columns (join-attributes, usually with the same se-
mantics), one from each operand table, have values that are within a given range
of each other. Equi-joins are a further specialization of range-joins wherein the
join-predicate is an equality of two columns, one from each operant table. In this
article, we consider the problem of efficient in-network implementation of range-
joins in sensor networks. In particular, we consider a join operation, initiated by
a query source node Q, involving two data streams R and S distributed across
some geographic regions R and S in the network. The main performance crite-
ria for our distributed implementation is minimum communication cost, which
is defined as the total data transfer between neighboring sensor nodes.

Related Work. The vision of sensor network as a database has been proposed
by many works [4, 10, 2, 14]. However, prior research has only addressed limited
SQL functionality – single queries involving simple aggregations [8, 6, 15] and/or
selections [9] over single tables [7], or local joins [15]. So far, it has been considered
that correlations such as median computation or joins should be computed on
a single node [15, 9, 1]. The problem of distributed and communication-efficient
implementation for general join operation has not been addressed in the con-
text of sensor networks, except for our recent work [3] described in the next
paragraph.

Chowdhary and Gupta [3] address the problem of communication-efficient
distributed implementation of the join operation in the context of sensor net-
works. The paper presents a provably optimal algorithm for join operation that
incurs provably minimum communication cost under reasonable assumptions,
and a suboptimal heuristic that performs empirically close to optimal. However,
they consider the general join operation that requires matching each tuple of
one operand with each tuple of the other operand. In contrast, we consider im-
plementation of range-join operations in sensor networks, for which we develop
more efficient algorithms by using hashing and indexing techniques.
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3 Implementation of Range-Join in Sensor Networks

In this section, we develop various algorithms for communication-efficient imple-
mentation of range-joins in sensor networks. As described in the previous section,
we consider a join operation, initiated by a query source node Q, involving two
data streams R and S being generated by two geographic regions R and S in the
network. We first start with describing our general approach of implementing a
range-join operation in sensor networks.

General Approach. Traditional database join algorithms such as nested-loop
join or merge-join are unsuitable for direct implementation in sensor networks
because they are “blocking” and sensor nodes have limited memory resources. To
perform the join operation in a non-blocking manner, we determine the sliding
windows Wr and Ws of the data streams R and S respectively and store them at
some appropriately chosen regions in the network. We use the generation time of
tuples to determine their membership in sliding windows. The size, shape, and
location of the regions storing the windows depends on the memory capacity of
each node, maximum size of each window, and the location of the regions R and
S that are generating the respective data streams.

After the sliding windows Wr and Ws have been stored in the network, we
perform the following high-level operations whenever a tuple r of table R (and
vice-versa for a tuple of S)1 arrives.

1. Find tuples of the window Ws that match with the new tuple r.
2. Join the matching pairs of tuples, and route the resulting tuples to the query

source Q.
3. Insert the tuple r in the region storing Wr .

It is easy to see that performing the above operations for every arriving tuple of
data streams R and S will correctly compute the join of R and S. The various
approaches proposed in this paper differ in the manner in how and where the
sliding windows are stored and how the above three operations are performed.

Naive Algorithm. The Naive algorithm uses the simplest way of storing the
sliding windows. In particular, the Naive approach stores the windows Wr and
Ws around the center of the regions R and S that are generating the respective
data streams. Let the regions storing the windows Wr and Ws be Wr and Ws

respectively. Now, when a new tuple r of the data stream R arrives, we need to
broadcast r in the Ws region to find matching tuples of Ws.

Centroid Algorithm. In the Centroid Algorithm, both the windows Wr and
Ws are stored within a region around some point C in the network region. When
a new tuple r of the data stream table R arrives, it is routed to the point C, and
then, broadcast within the appropriate region around C to find matching tuples

1 Throughout this article, we discuss the tasks performed on arrival of an R tuple.
The same discussion applies to arrival of S tuples.



862 A. Pandit and H. Gupta

from the window Ws. The resulting joined tuples are routed to the query source
Q. Finally, the tuple r is stored at a nearby node around C with available space.

The total communication cost incurred in the above described approach con-
sists of the cost of routing r to C, broadcasting r in the region around C, and
routing the resulting joined tuples to the query source Q. It is easy to show that
the total communication cost is minimized when C is the weighted centroid of
�RSQ formed by the centers of the regions R and S, and the query source
Q, where the centroid is weighted by the sizes of R, S, and R �� S (at Q)
respectively.

3.1 Hash-Join Algorithm

The Naive and Centroid algorithms involve a broadcast of every newly arriving
tuple in an appropriate region. In this subsection, we present a distributed Hash-
Join Algorithm that exploits the fact that the join-predicate is a range predicate.

Basic Idea. The main idea of our distributed Hash-join algorithm is to “buck-
etize” (partition and store) each arriving tuple into certain buckets based on
its join-attribute value. In particular, for each arriving tuple r or R, we hash
its join-attribute value onto geographic coordinates and insert the tuple r at
a node closest to the hashed geographic coordinates (as in GHT [11, 12]). To
minimize communication cost, we wish to execute the “find Ws tuples” and “in-
sert r in Wr” operations in the same region. Thus, use the same hash function
for both operand data streams, and hence, the sliding windows Wr and Ws get
stored in the same common region. For each new tuple r, the node closest to the
hashed geographic coordinates is delegated with the responsibility of storing r,
and performing the join with the stored sliding window Ws.

Hash-Join Algorithm Steps. We now outline the sequence of steps under-
taken for each arriving tuple. For simplicity of presentation, we right now restrict
ourselves to equi-join operations ( and assume that there is sufficient available
memory at each node I to store all hashed tuples (i.e., there is no overflow). We
relax both the assumptions in later paragraphs. Now, for each arriving tuple r
of a data stream R, the following operations are performed.

1. Hash the join-attribute value of the tuple r to geographic coordinates.
2. Route r to the node I that is closest to the hashed geographic coordinates.

We use the standard location-aided routing mechanism such as GPSR [5] to
route to I.

3. Insert r at the node I.
4. Join of r with matching tuples of Ws can be computed at I, since the match-

ing tuples (having the same join-attribute value as that of r) of Ws must be
available at I.

5. Route the resulting join tuples to the query source Q.

We note here that the above described distributed Hash-join approach is similar
to the symmetric hash-join [13] algorithm proposed for evaluation of equi-joins
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in streaming database systems. We omit the proof of the following theorem for
lack of space.

Theorem 1. Let C be the weighted centroid of the centers of the regions R
and S, and Q, where the weights correspond to the sizes of the tables R, S, and
R �� S respectively. Consider the hash-function that hashes the join-attribute
values uniformly around C.

The Hash-join algorithm using the above hash-function incurs optimal com-
munication cost for implementation of an equi-join operation if each sensor node
has sufficient memory to store all the hashed tuples. �

Hash-Join for Range-Joins. In order to extend the Hash-join algorithm to
perform range-join operations, we need to only modify the fourth step of finding
the matching tuples of Ws. More specifically, in case of a range-join operation,
the tuples of Ws that may match with r need not have the same attribute value
as that of r, but would be within a range of r’s join-attribute value. If we use a
locality preserving hash function, i.e., a hash function that maps close attribute
values to close geographic coordinates, then the fourth step of our distributed
hash-join algorithm can be modified to the following.

– The tuples of Ws that match with r must be available at nearby nodes around
I. Thus, the tuple r should be broadcast in a region around I to find the
matching tuples. The size of the broadcast region depends on the range of
the join-predicate and the locality of the hash function, assuming there are
no overflows.

Hash function for Range-Joins. To enable communication-efficient processing of
range-joins, we use a hash function that maps a join-attribute value to radii
coordinates (d, θ) with respect to the centroid C. In particular, we use the lower-
order bits of the join-attribute value to obtain d, and the higher-order bits to
obtain θ. Thus, a small range of join-attribute values would get mapped from
(d1, θ) to (d2, θ) with respect to the centroid C for some values of d1, d2, and θ.
Then, the set of tuples of Ws for a given range of of join-attribute values will lie
on a radial straight line away from the centroid (see Figure 1 (a)), which can be
efficiently targeted using location-aided routing such as GPSR [5].

Managing Overflows. Due to memory limitations, a sensor node I may not
be able to store all the Wr and Ws tuples hashed to it. There are many ways to
solve such an overflow problem. Our technique to handle overflows at individual
nodes is to store the overflow tuples in nodes close (as close as possible) to the
originally hashed node I. The node I keeps track of the maximum distance of
the node that stores the overflow tuples, using overflow radii variables OI

r and
OI

s for R and S data streams respectively. The overflow radius variables are kept
updated.

The third step of inserting the tuple r in Wr and the fourth step of finding
the matching tuples in Ws of the Hash-join algorithm need to be modified to
incorporate our overflow technique. For the third step, if the node I doesn’t
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Fig. 1. (a) Hash-join algorithm, and (b) Index-join algorithm

have available memory to store the tuple r, it needs to find the closest node with
available memory around it and possibly, update the OI

r value. For the fourth
step, to find matching tuples in Ws, the newly arrived tuple is broadcast in a
region of radius OI

s around I. In practice, the extent of overflow reduces the
efficiency of the Hash-join algorithm.

To handle node failures and mobility, we can replicate tuples of a node I at
nearby nodes.

3.2 Index-Join Algorithm

In this subsection, we propose an algorithm based on a distributed index data
structure to achieve efficient searching of matching tuples for every newly arrived
tuple. Essentially, the proposed Index-join algorithm uses a distributed index
structure embedded within the sensor network to efficiently route the newly
arrived tuple to the sensor nodes storing the matching tuples. In particular, we
choose to build the classical B-tree index structure in a distributed manner in
the sensor network. To avoid the cost of routing to two different regions, we use
a single index structure to store both Wr and Ws windows.

B-Tree in Sensor Networks. To build a distributed B-Tree index structure
in a sensor network, we need to first determine the location of the B-tree root
and number of children/keys at each node (which in turn determines the height
of the tree). Using similar arguments as in Theorem 1, we can show that to
optimize the overall communication cost, the root of the B-tree index structure
should be located at the weighted centroid C of �RSQ. The number of children
(degree) at each node is determined by the memory available at each node for
join processing and the number of communication-neighbors of a node in the
network. Once the degree of the B-tree has been determined, we can determine
the join-attribute key values to be used at each node in the B-tree starting
from the root. At each node in the B-tree, the children nodes are distributed
at uniform angles around the parent node. Due to limitations in the number of
direct communication neighbors available, a child may not necessarily be a direct
communication neighbor of its parent. In fact, the communication distance of a
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child from its parent may increase with the increase in the node’s depth from
the root.

To start building the index, the chosen root node determines its children, sets
its child-pointers to its children, and sends a message to the chosen children with
information about the range of join-attribute values each child is responsible for.
Note that in traditional database systems, B-tree nodes use memory addresses
as pointers to point to their children. However, in sensor networks, we can use
geographic coordinates as pointers and use location-aided routing mechanism
to reach children that are multiple hops away. The above process of creating
more B-tree levels terminates when the remaining data range at each sensor
node is small enough that the corresponding set of tuples of Wr and Ws can be
stored at a single node. Finally, we need to set sibling pointers at the leaves,
which can be done easily. To alleviate the problem of maintenance of the B-
tree structure in response of insertions and deletions, we keep additional empty
space in each sensor node to accommodate future insertions and do not reclaim
space of expired/deleted tuples (since the overall rate of insertions is same as
the overall rate of deletions).

Index-Join Algorithm. For every arriving tuple r of the data stream R, we
essentially search for matching tuples in Ws using the constructed B-tree index
structure, and then insert the tuple r in the index structure.

More specifically, we search for tuples in Ws with join-attribute value a,
which is the lowest join-attribute value that could possible match with the join-
attribute value of the tuple r. The root node finds the range in which the value
a lies, and transmits the tuple to the geographic coordinates corresponding to
the appropriate child. Eventually, a leaf node is reached and the sibling pointers
are followed to access all the nodes storing tuples of Ws having join-attribute
values from a to the maximum join-attribute value that could possibly match
with the join-attribute value of r. The resulting joined tuples are finally routed
to the query source.

Insertion of the tuple r happens similarly. In particular, we search for the leaf
node that stores tuples of Wr with join-attribute value equal to that of r, and try
to insert the tuple r at that node. Typically, the node should have enough space
to store the new tuple because of the expiry of older tuples and the additional
space available to accommodate insertions. In case of inavailability of empty
space, we use the standard technique of insertions into B-trees. To make the
distributed B-tree structure more load balanced, we replicate the higher-level
nodes (ones closer to the root) into multiple nodes in a region around them.

4 Performance Evaluation

In this section, we present our simulation results which compare the performance
of various range-join algorithms viz., Naive, Centroid, Hash-join, and Index-
join algorithms, proposed in our article. Since incurred communication cost is
the dominant consumer of limited battery power in the sensor nodes and the
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computation performed by all algorithms is minimal, we present only the total
communication cost (in number of hops) incurred by various algorithms. Below,
we present a discussion on our simulation results.

Experiment Setup. In our simulations, we generate a sensor network by ran-
domly placing 10,000 nodes in an area of 10×10 units. Each sensor has a uniform
transmission radius and two sensors can communicate with each other if they are
located within each other’s transmission radius. Varying the number of sensors
is equivalent to varying the transmission radius, and hence, we fix the number
of sensors and measure performance of our algorithms for different transmission
radii. Each sensor node stores tuples in a local table of fixed size (5 tuples/node)
occupying 300 bytes of memory. For the distributed Index-join algorithm, we use
the same memory to also store the index structure entries, so as to be fair across
various algorithms in terms of memory usage at individual nodes. Data tuples
are generated at a uniform rate of 600 tuples/second by sensor nodes in the re-
gions R and S, and the (default) sliding window size consists of tuples that are
at most 0.5 seconds old resulting in a sliding window size of about 300 tuples for
each data stream. We perform simulations demonstrating the effect of varying
various parameters such as transmission range, range of the join-predicate, size
and shape of �RSQ, and the size of the sliding window.

Varying Transmission Radius for Different Predicate Ranges. In this
set of experiments, we fix the locations of the regions R and S and the query
source Q, and analyze the effect of increasing transmission radius on the total
communication cost incurred for different values of the predicate range. The
regions R and S are centered around the coordinates (1,1) and (9,1) which
are the far-left and far-right corners at the bottom of the network, while the
query source Q is located at (5,9) towards the top of the network. We vary the
transmission radius from 0.15 to 0.24. Lower transmission radii left the sensor
network disconnected, while higher transmission radius resulting in very low
communication cost. We chose three different ranges of the join-predicate, viz.,
10, 30, and 50. Note that range of the join-predicate signifies join-selectivity
factor, and hence, determines the size of the join result.

The simulation results are shown in Figure 2. In all the figures of this section,
we have not shown the plot for Naive approach, since it performed much worse
(incurred twice the communication cost incurred by Centroid) than all other
approaches. In Figure 2, we can see that the Hash-join and Index-join algo-
rithms significantly outperform the Centroid approach in all three graphs. Also,
the Index-join consistently outperforms the Hash-join algorithm. Note that the
better performance of Index-join with respect to Hash-join does not contradict
Theorem 1 due to the underlying assumptions made therein. With the increase
in the transmission radius, the reduction in the number of hops leads to decrease
in the overall communication cost incurred. All the three predicate ranges de-
pict the above behavior, with the higher predicate ranges resulting in higher
communication cost.
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Fig. 2. Varying transmission radius for three different predicate ranges (10, 30, and 50)
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Fig. 3. Varying predicate range for three different transmission ranges viz., 0.15, 0.18,
and 0.21

Varying Predicate Range for Different Transmission Radii. In this set
of experiments, we fix the locations of the regions R, S, and Q as before, and
analyze the effect of increasing the join-predicate range for different values of
transmission radius. We vary the join-predicate range from 10 to 50, for three
different transmission radii viz., 0.15, 0.18, and 0.21. The simulation results are
shown in Figure 3. Here also, we observe the similar trend as in the first set of
experiments, i.e., Index-join and Hash-join algorithms significantly outperform
the Centroid approach, Index-join slightly outperforms the Hash-join, and in-
crease in the transmission radius or predicate ranges causes the communication
cost to decrease or increase respectively.

Varying �RSQ for Different Predicate Ranges. In this set of experiments,
we study the effect of different shapes and sizes of �RSQ on the total commu-
nication cost, for three different predicate ranges (10, 30, and 50). Here, we fix
the transmission radius to be 0.18. To vary the size and shape of the �RSQ,
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the transmission radius is 0.18.
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we fix the centers of the regions R and S, and change the position of the query
source Q. We plot the graphs in Figure 4, where on the x-axis we represent the
various instances of �RSQ in the order of the area of the triangle. Again, we
see that the Hash-join and Index-join algorithms perform significantly better
than the Centroid, with Index-join consistently performing much better than
the Hash-join algorithm. We note that increase in the area of the triangle for a
fixed predicate range causes increase in the total communication cost incurred,
since increase in the area of the triangle results in increase in the distance to the
centroid.

5 Conclusion

In this article, we have proposed techniques for communication-efficient imple-
mentation of range-joins in sensor networks. We designed various approaches viz.,
Naive, Centroid, Hash-join, and Index-join, and evaluate their relative perfor-
mance in random sensor networks. Our simulations indicate that the Hash-join
and Index-join approaches perform much better than the other two simple ap-
proaches. Our designed algorithms could be incorporated in the sensor network
query engines such as TinyDB. Some of the promising future directions include
generalizing our technique for join for more than two tables, determining efficient
join ordering, approximate evaluation of joins, and multiple query optimization
involving join queries.
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Abstract. In this paper, we propose a parallel multidimensional index structure 
and range search and k-NN search methods for the index structures. The pro-
posed index structure is nP(processor)-n×mD(disk) architecture which is the 
hybrid type of nP-nD and 1P-nD. Its node structure increases fan-out and re-
duces the height of an index tree. Also, the proposed range search methods are 
designed to maximize I/O parallelism of the index structure. Finally, we present 
a new method to transform k-NN queries to range search queries. Through vari-
ous experiments, it is shown that the proposed method outperforms other paral-
lel index structures. 

1   Introduction 

In the past couple of decades, multidimensional index structures play a key role in 
modern database applications such as GIS (Geographic Information System), LBS 
(Location Based Service), content based image retrieval system and so on.  The appli-
cations commonly are required to manipulate multi-dimensional data. To satisfy the 
requirements of the modern database applications, various multi-dimensional index 
structures have been proposed[5, 8, 9]. 

There is much research on multidimensional index structures to improve retrieval 
performance in various ways. However, performance enhancement through a single 
index structure has the limitation that a single index structure may show insufficient 
retrieval performance for large amount of data. To solve this problems, several index 
methods using parallelism of processors or disk I/Os have been proposed[7, 10]. 
These parallel multidimensional index structures can be classified into 1P-nD and  
nP-mD, where nP and nD denote the number of processors and disks, respectively. In 
1P-nD architecture, multiple disks are connected to one processor so as to improve 
performance through parallel disk I/Os, and in nP-mD architectures, multiple disks 
are connected to multiple processors.  
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MXR-tree[1] and PML-tree[2] are 1P-nD parallel index structures. The MXR-tree 
have one master server that contains all internal nodes of the parallel R-tree. The 
PML-tree uses native space indexing with a disjoint space decomposition method. 
The PML-tree eliminates extra search paths of the R-tree and leaf node redundancy of 
the R+-tree by distributing data objects into multiple data spaces. However, there is 
only one channel between a processor and disks so loading data to memory is proc-
essed in serial. In the nP-mD architecture, multiple disks are connected to multiple 
processors.  nP-mD parallel index structures are constructed on special environments 
such as NOW (Network of Workstation). Therefore, nP-mD index structures exploit 
parallelism of processors and disk I/Os. MR-tree[3], MCR-tree[6] and PN-tree[4] are 
nP-mD parallel index structure. The MCR-tree reduces communication messages of the 
MR-tree. One master and multiple clients are connected through a computer network. 
Each client builds a complete R-tree for the portion of the data assigned to it. The PN-
tree is an index structure for multidimensional spaces using multiple B+-trees. The  
PN-tree can take advantage of as many processors as the dimensionality of the space.  

In this paper, we propose a multidimensional index structure that supports the paral-
lelism of processors and disk I/Os. The proposed index structure is nP-n×mD architec-
ture which is a hybrid type of nP-nD and 1P-nD. That is, there are multiple processors 
and each processor have multiple disks. Our node structures increase fan-out and reduce 
the height of an index tree. Also, range search algorithm that maximizes I/O parallelism 
is presented. To the best of our knowledge, existing parallel multidimensional index 
structures hardly consider k-NN(k-Nearest Neighbor) queries. We propose new k-NN 
search methods suitable to our index structures. Through various experiments, it is 
shown that the proposed method outperforms other parallel index structures.  

The rest of this paper is organized as follows. In section 2, we present the detailed 
description of our parallel multi-dimensional index structure. In section 3, we present 
the search algorithm for it. In section 4, the results of performance evaluation are 
presented. Finally, we conclude in section 5. 

2   Architecture and Insertion Method of Our Index Structure 

Our proposed multidimensional index structure is an nP-n×mD architecture which is a 
hybrid type of nP-nD and 1P-nD. That is, there are multiple processors and each 
processor have multiple disks. Disks are grouped evenly according to the number of 
servers. The groups are assigned to the servers. One primary server coordinates search 
processes and others are normal servers that process index operations. Each server 
manages a disk group and the disk group contains an independent index structure. A 
node in the index structure is distributed to disks in the group, i.e., a node consists of 
the pages of disks.  

Each server manages a disk group and the disk group contains an independent in-
dex structure. Figure 1 shows the index structure of a disk group. As shown in the 
figure, a node in the index structure is distributed to disks in the group, i.e., a node 
consists of the pages of disks. An entry in the node contains child node’s MBR and 
the pointers of those pages that consist of the node. In the figure, the first entry of the 
root node points the node 1. The node 1 consists of the first pages of disk A, B and C, 
so the entry must have the pointers of these pages and the MBR of the node 1.   
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Fig. 1. Index structure of a disk group 

The benefits of our architecture are as follows. First, similar data are declustered 
across multiple disks in the group. Since the entries in a node are distributed to multi-
ple disks, declustering effects are maximized. Second, the height of index tree is re-
duced. The size of a node is determined by the page size and the number of disks in 
the group. As the node size increases, it takes more time to load a node into memory.  
However, because the index structure can load the node in parallel, the loading time is 
not a problem. In the R-tree family, overlaps between nodes reduce the retrieval per-
formance. The height of a tree is one of the factors to increase overlaps. As the height 
of a tree becomes higher, more overlaps may be caused. Finally, in multidimensional 
index structures, as the dimension increases, the number of nodes to be accessed in-
creases.  That is, the number of node accesses is large when processing range search 
or k-NN search. Subsequently, in parallel multidimensional index structure, uniS-
pread is much more important than minLoad. The proposed index structure read all 
pages that consist of a node, so it maximizes the uniSpread.  

2.1   Insertion 

Assume that we insert entries a, b, c, d, e, f, g and h sequentially and have three disk 
groups. The entries are declustered across disk-groups in round robin fashion, i.e., a is 
inserted into the first disk-group, b is inserted into the second disk-group and so on. 
Various declustering techniques have been proposed, but in multidimensional data 
sets, the performance gap among them is not so large. Also, round-robin technique is 
easy and cheap to implement. In that reason, we choose round-robin technique as the 
declustering method. Entries assigned to each group are inserted into the index struc-
ture of the group. In the first phase, we find a proper node to insert a new entry. When 
a node is located, we check whether the node has enough space to accommodate the 
entry. Then, if overflow occurs, we start split process.  

When processing node split, we need to carefully allocate pages for newly created 
node. In general, nodes in multidimensional index structures are not always full. Con-
sequently, we cannot fully obtain disk I/O parallelism when accessing index nodes. 
To relieve this problem, we place the pages of two nodes (old node and new node) in 
different disks as much as possible so as to increase disk I/O parallelism when proc-
essing range search. We will describe our range search algorithm in the next section.  
Figure 2 shows node split process. In node 2(n2), overflow occurs. To split node 2, 
we assign a new node (node 3) and move partial entries of node 2 to node 3. When 
allocating pages to node 2 and node 3, we preferentially choose disks that have the 
smallest number of allocated pages. In the lower figure, disk D and E have the 
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Fig. 2. Node split 

smallest number of allocated pages, so pages for node 2 and node 3 are allocated from 
these two disks.  First, we allocate three pages from D, E and A sequentially, and then 
allocate three pages from B, C, and D sequentially. 

3   Search Algorithms 

3.1   Range Search 

In multidimensional index, structures have searchers take multiple paths when proc-
essing range search. That is, multiple nodes may be selected as next nodes to visit. 
Existing range search algorithms visit the selected child nodes sequentially. Figure 3 
shows the process of existing range search algorithms. A searcher chooses entries 2, 4 
and 7 from root node that are overlapped with its. The searcher visit child nodes that 
are pointed by 2, 4 and 7 sequentially. To read node 2, the searcher must access disk 
A, D and E since the pages of node 2 are distributed those disks. In a similar fashion 
the searcher visits node 4 and 7. The total number of disk accesses is the sum of the 
number of disk accesses to read root node and leaf nodes. The number of disk ac-
cesses to read root node is 1 and that of leaf nodes is 3. Therefore, the total number of 
disk accesses to process the range query is 4.  

Our range search algorithms use different approaches to load child nodes. Once child 
nodes to visit are determined, we make a page loading plan according to which disks are 
involved to load child nodes. In figure 3, A3 means the third page of disk A. There are 8 
pages to be read. We cluster these pages into groups consists of pages from different 
disks. For example, pages A3, B3, C3, D1 and E1 in GRP1 are from different disks. It 
means that those pages can be read at one I/O time. Also, A5, D4 and E2 in GRP2 are 
from different disks, so we can read them in parallel. If we load pages in this way, only 
two disk I/Os are needed to load leaf nodes. One disk I/O is saved com pared to the 
previously mentioned method. Figure 4 show our range search algorithm. 
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GRP2 : the set of pages that are accessed secondly in each disk
(A5, D4, E2)

 

Fig. 3. Example of range search 

Algorithm range search  
<All Servers>  

transmit information of the root node to I/O scheduler;  
while(infinite loop)  

if(management information of I/O scheduler do not exist)  
break;  

end if  
cur_node := access nodes using I/O scheduler simultaneously;  
if (cur_node == leaf_node)  

calculate similarity and store it to result set;  
else  

select entries that is included in  the range;  
transmit the entry information to I/O scheduler;  

end if  
end while  
transmit the results to master server;  

<Master Server>  
gather results and sort them according to similarity order;  
return the results to client;  

Fig. 4. Range search algorithm 

3.2   k-NN Search 

Existing parallel multidimensional index structures hardly consider k-NN search.  
However, k-NN queries are important in modern database applications. We propose 
three k-NN algorithms and through experiments we show which one is the best. In the 
first method, the primary server distributes a k-NN query to servers and each server 
processes the k-NN query independently. Then, the servers return the k results to the 
primary server. The primary server filters the results from servers and makes final k 
results. The response time is the sum of the longest time among servers’ response 
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time and the time to filter servers’ results. This method is simple and easy to imple-
ment. However, we may not use disk I/O parallelism like our range search algorithm 
because of the properties of the k-NN algorithm. When processing range search, a 
searcher chooses all child nodes to visit next that overlap with query predicates before 
going down to next level. Therefore, we can make a parallel page loading plan and 
save disk I/Os. However, in the existing k-NN search algorithm, all child nodes to 
visit next are not determined definitely but just one child node is determined.  
Consequently, we cannot make a page loading plan as in our range search algorithm. 
Figure 5 shows the first algorithm of k-NN search. 

Algorithm KNN search 1  
<All Servers>  

while(infinite loop)  
if(root_node == internal node)  

calculate similarities between query and entries in the node;  
sort them according to  similarity order;  

else   
calculate similarity between query and object;  
store values that are less than or equal to K to result set;  

end if  
if(a value of result set is greater than or equal to k)  

if(kth result is less than or equal to similarity of the first entry)  
break;  

end if  
end if  
root_node := access child nodes of the first entry simultaneously;  

end while  
transmit the k results to the master server;  

<Master Server>  
gather results and sort them according to  similarity order;  
return the k results to the client;  

Fig. 5. The first algorithm of k-NN search 

In the second method, the primary server transforms k-NN queries to a range  
queries.  Once a k-NN query has arrived from a client, the primary server processes 
the k-NN query partially. When the primary server gets first k results, it calculates the 
distance between k-th element and query point of the given k-NN query. It makes a 
range query with the distance. The range query is distributed to servers and the serv-
ers process the range query and return results. The primary server gathers the results 
from servers and makes k results. The time to process a k-NN query partially is quite 
short. Since servers can process the transformed range query, this method can get the 
parallelism of the range search algorithm. However, the transformed range query may 
become larger and reduce the overall performance. Figure 6 shows the second algo-
rithm of k-NN search. 

In the third method, once the primary server receives a k-NN query from clients, it 
sends the query to all servers. The servers execute partial k-NN queries with the re-
ceived query, transform the k-NN query to range query similar to the primary server 
of type 2 and return the transformed range query to the primary server. Then, the  
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Algorithm KNN search 2 
<Master Server>  

while(infinite loop)  
if(root_node == internal node)  

calculate similarities between query and entries in the node;  
sort them according to the  similarity order;  

else   
calculate similarity between query and object;  
store values that are less than or equal to k to result set;  

end if  
if(a value of result set is greater than or equal to k)  

break;  
end if  
root_node := access child nodes of the first entry simultaneously;  

end while  
calculate similarity between query and k-th object and convert to range query;  
transmit the result of the range query to the master server;  

<All Servers>  
execute the proposed range search algorithm and transmit the result to the master server;  

<Master Server>  
gather results and  sort them;  

Fig. 6. The second algorithm of k-NN search 

Algorithm KNN search 3  
<All Servers>  

while(infinite loop)  
if(root_node == internal node)  

calculate similarities between query and entries in the node;  
sort them according to the  similarity order;  

else  
calculate similarity between query and object;  
store values that are less than or equal to k to result set;  

end if  
if(a value of result set is greater than or equal to k)  

break;  
end if  
root_node := access child nodes of the first entry simultaneously;  

end while  
calculate similarity between query and k-th object and convert it  to range query;  
transmit the result of the range query to the master server;  

<Master Server>  
select the minimum range;  
transmit the selected range query to all servers;  

<All Servers>  
execute the proposed range search algorithm and transmit the result to the master server;  

<Master Server>  
gather results and sort them according to similarity order;  
return the k results to the client;  

Fig. 7. The third algorithm of k-NN search 
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primary server redistributed the transformed query to servers. The servers process the 
range query and return their results to the primary server. Finally, the primary server 
makes k results from server’s results. Figure 7 shows the third algorithm of k-NN 
search. 

4   Performance Evaluation 

The simulation platform is Sun Enterprise 250 with 1GB main memory and Solaris 
2.7. Simulation programs are developed with gcc 2.8 compiler. We use uniformly 
distributed 100,000 data with 10 ~ 80 dimensionality. We measure response time and 
total number of disk accesses of a query to compare the retrieval performance of our 
index structure with the existing parallel multidimensional index structures. We per-
form several experiments in various environments. We present the results of experi-
ments with varying dimension, the number of disks and page size. We compare our 
proposed index structure with MCR-tree. To our knowledge, the MCR-tree is the 
most recently proposed nP-mD parallel index structure and shows best performance 
among existing parallel multidimensional index structures. 

We perform experiments to measure the response time and the disk accesses of k-
NN queries and range queries with varying dimensions from 10 to 80, page sizes from 
4k ~ 48k and disks from 3 ~ 15. Figure 8 to 10 show the response time and disk ac-
cesses of range searches and three types of k-NN searches. The graph of k-NN type 1 
is omitted from the following charts since the performance difference of k-NN type 1 
and others is too large to present in the charts with others. We carefully observe the 
performance of three k-NN queries. From the performance evaluation, we could con-
clude that our proposed k-NN search algorithms outperform the existing k-NN search 
algorithm (k-NN type 1). Also, as shown in the figures, the k-NN type 2 outperforms 
slightly the k-NN type 1. The reason is that even though the selectivity of transformed 
range query in k-NN type 3 may be smaller than that in k-NN type 2, k-NN type 3 
requires more communication messages and more CPU time to gather and filter re-
sults from the servers.  

We perform various experiments to measure disk accesses and response time of the 
range search operations of the MCR-tree and the PR-tree with varying the number of 
disks from 3 to 15. As shown in Figure 11, the PR-tree outperforms MCR-tree in all 
cases. In the MCR-tree, each server and client construct R-trees on one disk. However, 
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Fig. 8. Search operation with varying dimensions (data set : 100K, page size : 4k, disks : 15, 
servers : 3) 
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Fig. 9. Search operation with varying the number of disks (data set : 100K, page size : 4k, 
dimension : 20, servers : 3) 
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Fig. 10. Search operation with varying page size (data set : 100K, disks : 15, dimension : 20, 
servers : 3) 
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Fig. 11. Search operation with varying dimension (data set : 100K, servers : 3, page size : 4k, 
disks : 15) 

we present an architecture where servers build R-trees on multiple disks.  Also, our 
new range search algorithms improve the disk I/O parallelism. 

Table 1 shows the results of performance comparisons between k-NN search algo-
rithms of PR-trees and MCR-trees. As shown in the table, PR-trees outperform MCR-
trees about 3 times when comparing only k-NN search algorithms. In MCR-trees, 
there is only one global R-tree that contains only internal nodes and leaf nodes of the 
global R-tree are organized as R-trees in multiple clients. The k-NN search algorithms 
require searchers to take paths downward and upward repeatedly.  Therefore, com-
munication messages between master and clients increase. Also, since our k-NN algo-
rithms is to transform k-NN queries to range-queries, searchers get improved disk I/O 
parallelism as described in the previous section. 
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Table 1. Disk Accesses (DA) and Response Time (RT) of search operations (dimension : 9, 
data set : real 100K, disks : 3, servers : 3) 

Range k-NN (type 1) k-NN (type 2) k-NN (type 3) 
Index 

DA RT DA RT DA RT DA RT 

MCR-tree 60 0.047 76 0.12 - - - - 

PR-tree 33 0.21 54 0.036 47 0.031 38 0.034 

5   Conclusion 

We proposed a parallel multidimensional index structure based on nP-n×mD  
structure. We present new range search algorithms that more efficiently use disk I/O 
parallelism. Even though the k-NN search is one of the important query types in mul-
tidimensional index structures, research on improving k-NN search performance in 
parallel multidimensional index structures are hardly noticed. We present a new  
k-NN search algorithm that improves the disk I/O parallelism. Through various ex-
periments, we prove that our proposed index structure outperforms exiting parallel 
multidimensional index structures.  
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Abstract. Incremental access can be essential for top-k queries, as users often 
want to sift through top answers until satisfied. In this paper, we propose the 
progressive rank (PR, for short) algorithm, a new non-blocking top-k query al-
gorithm that deals with data items from remote sources via unpredictable, slow, 
or bursty network traffic. By accessing remote sources asynchronously and 
scheduling background processing reactively, PR hides intermittent delays in 
data arrival and produces the first few results quickly. Experiments results show 
that PR is an effective solution for producing fast query responses in the pres-
ence of slow and bursty remote sources, and can be scaled well. 

1   Introduction 

The objective of the top-k query is to find the “top k” results, according to a user-
specified ranking function. In many database applications, top-k query processing is 
natural behavior, and the database research communities have studied the issue of 
efficient processing of top-k queries [1, 4, 5, 8, 9, 10, 16, 19] for a long time.  

Incremental access can be essential for top-k queries, as users often want to sift 
through top answers until satisfied. Unfortunately, most state-of-the-art top-k query 
techniques in distributed environment [1, 2, 3, 7, 11, 14, 15] are performed in 
blocking mode: A query is submitted, then the system will waiting for a long time 
until the final answer is returned. As the number of results k increases, this blocking 
behavior becomes a serous problem in the pipelined operators and the scenarios that 
the results require user interaction.  

In many emerging distributed applications, e.g. searching Web databases, retrieving 
in wide-area peer-to-peer (P2P) networks, wide-area distribution raises significant 
performance problems for top-k query processing techniques as data access becomes 
less predictable due to link congestion, load imbalances, etc. The main challenge of 
non-blocking top-k query processing techniques in distributed networks is how to deal 
with the unpredictable data accessing. However, the state-of-the-art non-blocking top-k 
                                                           
*  This research is partly supported by the National High Technology Research and Develop-

ment Plan (863 plan) of China under Grants No.2004AA112020 and No.2003AA111020. 
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query techniques [1, 4, 11, 14] were addressed how to avoid random accesses to reduce 
the query cost and don’t take into account network delays. 

In this paper, we propose the progressive rank (PR, for short) algorithm, a new 
non-blocking top-k query algorithm that deals with data items from remote sources 
via unpredictable, slow, or bursty network traffic. The basic idea behind PR is to 
access remote sources asynchronously and produce an object on the fly when it is 
confirmed belonging to the final top-k results set. In this method, PR hides intermit-
tent delays in data arrival and produces the first few results quickly.  

The rest of the paper is organized as follows. Section 2 defines the problem of que-
rying for top k matches in distributed networks. Section 3 discusses the related work. 
Section 4 introduces our new algorithm PR. Section 5 studies of the performance of 
PR. Finally, Section 6 concludes this paper. 

2   Problem Statement 

We consider a distributed environment with m + 1 nodes: a central manager node and 
m remote data source nodes. The central manager is connected to each remote data 
source node. Each remote data source node i has a data list iD . iD is a list 

of )(, OSO i pairs, where O is an object and )(OSi ( 0)( >OSi ) is the score of the 

object. We assume that objects in each list are sorted in descending order by their 
scores. If an object does not appear in a list, we say that its score in that list is 0.  

For each object O, the central manager uses a monotone combining ranking func-
tion f to calculate its aggregate score across the m nodes. The top-k query q is to re-
trieve k objects from the m data lists },...,,{ 21 mDDDD = with the highest )(Of , 

))()...,(),(()( 21 OSOSOSfOf m= . For simplicity, we assume the sum function as the 

ranking function in this paper, i.e. )(...)()()( 21 OSOSOSOf m+++= . 

A partial sum psumf of an object O can be calculated as )()()( ''
1 2

OSOSOf psum +=  

)(... ' OS
m

++ , where )()(' OSOS ii = if O has been seen by node i, and 0)(' =OSi other-

wise. Similarly, an upper bound upperf of an object O can be calculated as =)(Ofupper  

)(...)()( 21 OUOUOU m+++ , where )()( OSOU ii = if O has been seen by node i, and 

)(OUi is equal to iS otherwise, where iS is the score of the last object seen under 

sorted access of node i. We assume the initial value of iS is infinite. Obviously, 

)()()( OfOfOf psumupper ≥≥ for any object O. 

We assume that the first e results are most important to users. We assume 
1.0/ ≤ke . The goals of non-blocking top-k query algorithms in distributed networks 

are: (1) Minimizing the time of producing the first e results, (2) Producing results 
even if the remote sources occasionally get blocked, and (3) Reducing the bandwidth 
consumption of producing the total top-k results. We assume that the computation 
cost in each node is negligible since the communication cost among nodes dominates 
the query response time.  
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3   Related Work 

Among the ample work on top-k query processing, the TA family of algorithms for 
monotonic score aggregation [9, 10, 16] stands out as an extremely efficient and 
highly versatile method. Two main differences between our study and these studies 
are (1) TA is performed in blocking mode while our algorithm is performed in non-
blocking mode, and (2) in distributed systems, TA cannot hide intermittent delays in 
data arrival while our algorithm does. 

The first TA-style non-blocking algorithm, called Stream-combine, has been pre-
sented in [11]. [1, 14] developed a non-blocking algorithm called Upper and a  
blocking algorithm called Pick. [4] presented a blocking algorithm called MPro and 
its non-blocking variation iMPro. All these algorithms were designed for special data 
sources that unsuitable to be accessed randomly and addressed how to avoid random 
accesses to reduce the query cost. In contrast, we are interested in general distributed 
systems that all data sources can be accessed by sorted and random access. 

Our work benefited greatly from [7], which presented a fix round trips algorithm 
called TPUT. TPUT used three phases to get the top k results: (1) fetching the k best 
objects and their scores from each node and calculating the k’th highest fpsum as 1, (2) 
asking each of the m nodes for objects with score ≥ 1/m, then calculating the k’th 
highest fpsum as 2, and (3) fetching the still missing scores of the objects whose aggre-
gate score will greater than 2 using random accesses. The recent work [15] addressed 
to reduce the communication costs of TPUT using histogram-based statistical meta-
data. However, these algorithms are performed in blocking mode. In our work, PR 
accesses data source asynchronously, and divides each node access into two phases. 
Every phase uses non-fix access round trips and produces results on the fly. 

One of our main inspirations is from XJion [17], which extends Symmetric Hash-
Jion [18] to a multi-threaded and online aggregation style [13] join operator. XJion 
fetches all data from remote data sources asynchronously to retrieve totally join re-
sults, while our work is interested in retrieving top k results according to a user-
specified ranking function. 

4   Progressive Rank 

In this Section, we first introduce our new algorithm for non-blocking top-k queries in 
distributed networks termed Progressive Rank (PR, for short) and prove the correct-
ness in Section 4.1, then discuss the efficiency of our approach in Section 4.2.  

4.1   Algorithm 

The basic idea behind PR is to access remote sources asynchronously and produce an 
object on the fly when it has been confirmed belong to the final top-k results set. As 
shown in Figure 1, PR fetches data asynchronously form each node by two phases: 
the sorted phase (line 3 to line 8) and the random phase (line 10 to line 18). The sorted 
phase finds the top-k candidate objects and the random phase looks up the candidate 
objects in all nodes to identify the top-k objects.  
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Algorithm. PR (Input: top-k query q, the indicator p) 
1 Let U = Ø, the counters res= 0, n = 0, and p = 0 
2 For each data lists )1( miDi ≤≤ asynchronously: 

3     Repeat 
4         Do sorted access to get p )(, OSO i pairs 

5         Add the p objects into U and update the fpsum and fupper of objects of U 
6         res = ProduceOntheFly(U, res, m, n) 
7         Let the k’th highest fpsum of U be the partial aggregation threshold p 
8     Until no data available or the score of the last object seen Si < p/m 
9     n = n + 1 
10     Repeat 
11         If there are objects of U have not been seen by node i: 
12             Get the first p unseen objects by node i of U, order by fpsum descending 
13             Do random access to get the scores of the p objects 
14             Add the p pairs into U and update the fpsum and fupper of objects of U 
15             res = ProduceOntheFly(U, res, m, n) 
16         Else: 
17             If n = m: Break 
18     Until res = k 
19 Function ProduceOntheFly (U, res, m, n) 

20 Let the sorted access threshold
=

=
m

i
isorted S

1

   

21 For each object O of U, order by fpsum descending 
22     Let the highest fupper of U - {O} be the upper threshold upper 
23     If n < m: upper  = Max( upper, sorted) 
24     If fpsum(O) ≥ upper: 
25         Output O 
26         Remove )1()(, miOSO i ≤≤ from U 

27         res = res + 1 
28         If res = k: Halt 
29     Else: Break 
30 Return res 

Fig. 1. Algorithm PR 

In the sorted phase, the center manager node calculates the k’th highest fpsum of U 
as the partial aggregation threshold p and asks each of the m nodes for objects with 

mp / score ≥ using sorted access, every p )(, OSO i pairs of each trip, where p is an 

indicator to get smooth runtime behavior and ep ⋅= γ , where γ ( 1≥γ ) is a factor for 

getting the first e results quickly and producing the rest results smoothly. We call γ  

the smooth parameter. We choose 2=γ in our design.  

When all sorted phases finished, PR finds at least k objects with fpsum greater than 
p, and the aggregate score of objects unseen cannot greater than p. Thereby, the 

objects belonging to the final top k results have been seen at least at one node. The 



884 B. Deng, Y. Jia, and S. Yang 

random phase of a node ends if no more object needs to probe at the node (line 11 and 
line 17). When all random phases are finished, all top-k candidate objects have been 
seen at all nodes and PR can identify the top-k results.  

The function ProduceOntheFly checks objects of U. If an object O has fpsum(O) ≥  
the output threshold upper, it belongs to the final top-k results set, and Pro-
duceOntheFly outputs it. By this approach, PR produces the first few results quickly. 
There are two cases for choosing the output threshold upper: 

Case 1: If there are some nodes performing in the sorted phase, ProduceOntheFly 
chooses the bigger of sorted and the highest fpsum of U – {O} as the upper (line 22 and 
line 23). Note that when fpsum(O) ≥ sorted, the aggregate score of unseen objects cannot 
be greater than f (O), when fpsum(O) ≥ the highest fupper of U – {O}, the aggregate score 
of objects of U – {O} cannot be greater than f (O). Thereby, the condition of line 24 
guarantees outputting top-k results in descending order by their aggregate scores. 

Case 2: When all sorted phases are finished (n = m), ProduceOntheFly chooses the 
highest fupper of U – {O} as the upper. As discussed above, the objects belonging to the 
final top k results have been seen at least at one node. Thereby, if fpsum(O) ≥ upper, the 
object O can be outputted as the next result safely. 

Note that not all sorted phases and random phases can be finished before the top-k 
results have been produced. PR can safely terminate in this situation because the func-
tion ProduceOntheFly guarantees outputting the exact top-k results by descending. 
This property makes PR hide intermittent delays in data arrival and produce results 
even some of nodes getting blocked. 

Theorem 1. For any data input, the PR algorithm correctly produces the exact top-k 
objects in descending order by their aggregate scores.  

Proof. As discussed above.                                                                                         

The algorithm is not limited to sum, and can apply to any strict monotonic aggrega-
tion function f as long as there is a way to determine when to stop Sorted Phase. For 
example, if f is multiplication, the stop condition will be m

piS /1< . 

4.2   Efficiency 

As discussed above, PR produces the first few results quickly. We discuses the band-
width needed by PR to produce the total results in the following. 

As defined in [9], instance optimality is a measure of how close an algorithm is to 
the optimal algorithm in the worst case. Let A denote the class of all deterministic 
algorithms, and let D denote the class of data series that we are interested in. For any 
algorithm Aa ∈ , and any data series Dd ∈ , we use ),cost( da to denote the cost of 

running a over d. An algorithm R is instance optimal over A and D if AR ∈ and there 
exist two constants C1 and C2 such that for every Aa ∈ and Dd ∈ : 

2),cost(1),cost( CdaCdR +×≤ . (1) 

The constant C1 is called the optimality ratio of R. 
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As defined in [7], )( jw is denoted as “the value of the j’th position”, a data series 

has a log-log slope function )(nC , if for all j where kj ≤ , njwjnCw /)())(( <× , and 

)(nC  is the smallest value satisfying this criteria (n is an integer here).  

Let the cost metric is the number of ScoreObject, pairs fetched, i.e. the bandwidth 

consumption. As proved in [7]: Let D be the class of all data series that have log-log 
slope function of )(nC . Let A be the class of all deterministic algorithms that correctly 

find the top k answers for each data series in D. The TPUT algorithm is instance-
optimal over A and D, with optimality ratio ))(),2(()1( kmCmCminm ××−  

))(),(( 2 kmCmCmin ×+ . 

Theorem 2. Let D be the class of all data series that have log-log slope function of 
)(nC . Let A be the class of all deterministic algorithms that correctly finds the top k 

answers for every data series in D. If there are max and min performance times for 
each round trip, the PR algorithm is instance-optimal over A and D, and the optimality 
ratio is at most ))(),(())(),2(()1( 2 kmCmCminkmCmCminm ×+××− . 

Proof. Note that in the sorted phase, PR fetches at most pm× ScoreObject, pairs 

more than TPUT after the m nodes have sent their first k ScoreObject, pairs to the 

center manager. We investigate the stage before that the m nodes have sent their first 
k ScoreObject, pairs to the center manager in the following. 

If there are a max performance time maxt and a min performance time mint for each 

round trip (in general, a timeout parameter can be used as the maxt ), let ]/[ minmax ttμ = , 

where ]/[ minmax tt is the big round number minmax tt / . PR fetches at most ×× ppk ]/[  

)1)1(( +×− μm ScoreObject, pairs by sorted access when the m nodes have sent 

their first k ScoreObject, pairs to the center manager, where [ pk / ] is the big round 

number of pk / . Thereby, PR fetches at most more kmμmppk ×−+×−×× )1)1((]/[  

excrescent ScoreObject, pairs than TPUT by sorted access before the m nodes have 

sent their first k objects to the center manager. Even in extreme case, each excres-
cent ScoreObject, pair consists of a distinct object and has been looked up in the 

other 1−m nodes in the random phase, PR fetches at most more a constant of 
))()1)1((]/([ pkmμmppkm −×−+×−××× ScoreObject, pairs than TPUT. 

As discussed above, according to formula (1), when all data series that have log-
log slope function of )(nC  and there are max and min performance times for each 

round trip, PR is an instance-optimal algorithm, and the optimality ratio is at most 
))(),(())(),2(()1( 2 kmCmCminkmCmCminm ×+××− .                                             

Although PR consumes more bandwidth than TPUT in some extreme cases, PR needs 
less bandwidth in most situations because the sorted phase threshold p increases 

when PR is running. When p is greater than the first threshold of TPUT, PR could 

stop the sorted phase earlier than TPUT. 



886 B. Deng, Y. Jia, and S. Yang 

5 Experimentation 

5.1   Experimental Setting 

We experimentally evaluated the performance of our proposed algorithm PR and 
related algorithms in slow and bursty networks, i.e. the sources are subject to 
blocking. We assume that data arrive from the nodes with Pareto distribution, a 
distribution is widely used in case of slow and bursty networks [6]. By varying the 
shape factor ( 20 << ) and the scale factor ( 0> ) of Pareto distribution, we can 
simulate different networks scenarios. For simplicity, we set 5= , which means a 
round trip spends 5 seconds at least. A round trip is considered to be timeout if no tuple 
arrives within a certain time threshold t (60s as default) and the request will be resent.  

We compared the performance of our new PR algorithm with the following two 
techniques. 

• TPUT: This is an efficient 3-phase algorithm for distributed networks as 
described in [7]. We choose TPUT as the blocking counterpart. 

• proTA: We adapted Fagin et al.’s TA algorithm [9] for our scenario. The 
resulting non-blocking algorithm, proTA, probes data lists synchronously, and p 
objects each trip for sorted access. After every random access trip, proTA 
produces the objects that have been confirmed belong to the top-k results set.  

We used both real-world data collections and synthetic to evaluate our new 
algorithm. We used the data from Protein Data Bank (PDB) as the real-world data 
collection. The PDB is the single worldwide repository for the processing and 
distribution of 3-D structure data of large molecules of proteins and nucleic acids, and 
consists of about 32,000 proteins structure descriptions. We chose 12 structures related 
to flu as templates (querying the PDB with keyword “flu”), and calculated the similarity 
factor as the score of the other structures with each template to be 12 data lists.  

For the synthetic data collections, we kept the PDB entry IDs as object IDs in each 
node. We assumed that nodes exhibit different degrees of correlation of each other. 
First, the scores of objects of node 1 were initialized by the Zipf’s distribution [20] 
with a Zipf factor . Then, a random walk mode was used to initialize the other 
nodes. For node i( mi ≤≤2 ), )()()( 1 OVOSOS iii += − , where )(OVi is a random num-

ber in the range of )(1 OSc ×± , c is the correlation factor. For simplicity, we set c = 0.1 
in our experiments. 

Our implementation of the test-bed and the related algorithms was written in GNU 
C++. All the experiments are conducted on Intel Pentium IV CPU 2.4GHz with 
512MB RAM running Red Hat Linux 9. All experiments queries were for the top-100 
results. We set 10=e , which means the first 10 results are most important to user. 
Thereby, the indicator p was set to 20 for PR and proTA. We measured the time and 
bandwidth needed to producing the results. 

5.2   Experimental Results 

5.2.1   Results for Synthetic Data Sets 
Figure 2 (a) shows the time of producing the top-k results with the nodes number m = 
20. We show results for 1.2= and 0.7= , (similar results occur with all other tested 
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values of and , and are omitted for the space reasons). We see that the PR shows 
excellent performance. For the first 10 results response time, PR outperforms proTA 
and TPUT by a factor approximately 1.8 and 8. For the total results response time, PR 
outperforms proTA by a factor approximately 2.2 and slightly better than TPUT. This 
is because PR accesses nodes asynchronously, while proTA and TUPT need to wait 
the longest delay of all nodes to continue next round trip.  

Figure 2 (b) shows the bandwidth results with the setting in Figure 2 (a). The over-
all performance of PR outperforms proTA and TPUT by a factor approximately 1.5 
and approximately 1.2. The main reason of PR outperforming proTA is that PR finds 
candidate top-k objects by sorted access while proTA consumes more bandwidth on 
random access. The main reason of PR outperforming TPUT is that PR accesses 
nodes with p objects each round trip while TPUT uses simply 3-phases to identify 
top-k results, which brings more bandwidth consumption for redundant data. 

Figure 3 shows the first 10 results response time (Figure 3 (a)), the total results re-
sponse time (Figure 3 (b)), and the bandwidth (Figure 3 (c)) in different scales with m 
= 10, 20, 50, and 100. In the case of m = 10, TPUT performs slightly better than PR to 
the term of the total results response time (Figure 3 (b)). The reason is that when the 
node number is small, nodes seldom get blocked, and TPUT only needs 3 round trips. 
As the number of nodes increases, the advantage of PR over proTA and TPUT will be 
magnified. The main reason is that proTA and TPUT encounter timeout almost every 
round trip when m is greater than 50. 
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Fig. 2. Performance of synthetic data sets 
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5.2.2 Results for Real Data Sets 
Figure 4 (a) gives the time for producing the top-k result with 1.2= , (similar results 
occur with all other tested values of , and are omitted for the space reasons). The 
real data set consists of 12 data lists. Similar to the case m = 10 discussed above, 
TPUT performs slightly better than PR in terms of the total results response time. For 
the first 10 results response time, PR outperforms proTA and TPUT with a factor 
approximately 2 and 4. For the total results response time, PR outperforms proTA 
with a factor approximately 2.5. Figure 4 (b) shows that in terms of bandwidth con-
sumption, PR outperforms proTA and TPUT with a factor approximately 1.7 and 1.2. 
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Fig. 4. Performance of real data sets 

6   Conclusions 

In this paper, we have presented the PR algorithm, an efficient non-blocking top-k 
query algorithm in distributed networks. PR hides intermittent delays in data arrival 
and produces the first few results quickly. PR produces results even if the remote 
sources occasionally get blocked, and consumes low data traffic to produce the total 
top-k results. The experiments results have shown that PR is an effective solution for 
producing fast query responses in the presence of slow and bursty remote sources, and 
can be scaled well. Several interesting and important problems still remain open, such 
as how to choose appropriate p to get better runtime behavior. 
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Abstract. Continuous range monitoring on moving objects has been
increasingly important in mobile environments. With the computational
power and memory capacity on the mobile side, the distributed pro-
cessing could relieve the server from high workload and provide real-
time results. The existing distributed approaches typically partition the
space into subspaces and associate the monitoring regions with those
subspaces. However, the spatial irrelevance of the subspaces and the
monitoring regions incurs the redundant processing as well as the ex-
tra communication cost. In this paper, we propose continuous expansion
(CEM), a novel approach for efficient processing of continuous range
monitoring in mobile environments. Considering the concurrent execu-
tion of multiple continuous range queries, CEM abstracts the dynamic
relations between the movement of objects and the change of query an-
swers, and introduces the concept of query view. The query answers
are affected if and only if there are objects changing their current query
views, which lead to the minimum transmission cost on the moving object
side. CEM eliminates the redundant processing by handling the updates
only from the objects that potentially change the answers. The experi-
mental results show that CEM achieves the good performance in terms
of server load and communication cost.

1 Introduction

Given a set of spatial regions of interest, a continuous range query retrieves
the moving objects inside the regions, and continuously provides real-time up-
dates as moving objects move in and out of these regions. Efficient processing
of continuous range monitoring could enable many of the location-aware appli-
cations, such as traffic monitoring and intelligent transportation systems. With
various applications, a large number of continuous range queries are repeatedly
evaluated in a concurrent execution environment. One challenge is the real-time
response to query answers, which is critical for actual applications. Any delay
of the query response results in an obsolete answer. Examples are digital battle
fields and enhanced 911 services. Another challenge is the concurrent execu-
tion. With a large quantity of queries, many query regions interact and lead to
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overlapping. Movement of a single object can affect the answers of multiple
queries, which increase the complexity of evaluation.

Much work has focused on the efficient evaluation of continuous range queries
in a centralized location monitoring system [3, 4, 5, 6]. With the equipment of
battery-powered mobile devices, which have constrained computational capabil-
ity and memory capacity, the distributed processing of continuous range moni-
toring could reduce the expensive location updates and relieve the server from
high workload. The existing typical approaches are MobiEyes [2] and MQM [1].
Both of the approaches partition the space into subspaces, such as the grid cells
in MobiEyes and the subdomains in MQM, and associate the monitoring regions
with those subspaces. However, since the partition of subspaces does not depend
on the distribution of continuous monitoring regions, two kinds of changes, that
an object enters/exits a certain monitoring region or changes its resident sub-
space, have to be updated separately, which incur the redundant processing and
extra communication cost on both the server side and the moving object side.
Furthermore, energy efficiency on the mobile side becomes a primary concern
in distributed environments. Therefore the distributed processing should aim at
saving the energy consumption and prolonging the lifetime of moving objects.

In this paper, we propose the continuous expansion monitoring (CEM)
method for efficient processing of continuous range monitoring in mobile environ-
ments. Different from the existing approaches, CEM views the object’s resident
spaces and the monitoring regions in a unified way, and abstracts the dynamic
relations between the movement of objects and the change of query answers.
We introduce the concept of query view. The query answers are affected if and
only if there are objects changing their current query views, which lead to the
minimum transmission cost on the moving object side. Thus CEM could effi-
ciently reduce the message communication and save the energy consumption on
the mobile side. CEM handles the updates only from the objects that potentially
change the answers, and eliminates the redundant processing. By storing all the
queries that a query view contains beforehand, there is no need to perform the
dynamic computation on the server side to determine the new queries an object
falls in. We conduct a comprehensive set of simulation based experiments and
show that CEM outperforms the existing approaches in terms of server load and
communication cost.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 presents the CEM method in detail. Section 4 conducts the
experimental evaluation and we conclude the paper in Section 5.

2 Related Work

Much effort has been put into the efficient evaluation of continuous range queries
over moving objects in a centralized location monitoring system [3, 4, 5, 6]. One
way is to directly evaluate queries on an object index [4] at each time, where
frequent updates of the object index is a major problem. Another way is to build
an index structure on queries instead of objects [3, 5, 6].
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With the advances in mobile hardware, the distributed processing of continu-
ous range monitoring has many advantages. The existing typical techniques are
MobiEyes [2] and MQM [1].

MobiEyes [2] partitions the space into grid cells of equal sizes. For each grid
cell, MobiEyes maintains the corresponding queries whose monitoring regions
intersect with it. Each moving object stores a local query table LQT, which
contains the queries intersecting with the grid cell the object currently lies in.
When an object falls in a grid cell, it checks LQT to determine whether itself is
covered by the nearby query regions. It notifies the server to update the query
answers if the result is different. When an object changes its current grid cell, it
notifies the server of this change. At the same time, the server determines the
new queries that intersect with the new grid cell and send them to the objects.

MQM [1] dynamically partitions the space into disjoint rectangular subdo-
mains. Each mobile object is associated with a resident domain consisting of
adjacent subdomains, and maintains the list of monitoring regions inside its
current resident region. When an object enters or exits a monitoring region, it
sends a message to the server and updates the query results. When an object
exits its current resident region, it requests a new one from the server. To decide
the new redisent region, the server maintains a binary partition tree (BP-tree),
which stores the subdomains and the corresponding monitoring regions. The
maximum number of monitoring regions a mobile object can load and process
at one time depends on its computational capability.

As in most existing mobile environments, we have three underlying assump-
tions on moving objects: (1) Moving objects are equipped with positioning
technologies like GPS devices or embedded sensors and are able to locate their
positions. (2) Moving objects have limited battery power, computational capabil-
ity and memory capacity. (3) Moving objects are able to communicate with the
server. As is in [5], we employ the incremental evaluation to compute only the up-
dates of the previous answers. Positive/Negative updates indicate that a certain
object needs to be added to/removed from the result set of a certain query. In our
discussion, each continuous range query is represented by a rectangular region.

3 Continuous Expansion Monitoring

3.1 Motivation

The existing distributed approaches, such as MQM and MobiEyes, typically
partition the space into subspaces, such as the subdomains in MQM and the grid
cells in MobiEyes, and associate the monitoring regions with those subspaces.
However, since the partition of subspaces does not depend on the distribution of
continuous queries, there arise the following limited aspects in these approaches:

1. The spatial irrelevance of the subspaces and the continuous monitoring re-
gions leads to the redundant processing. Whenever an object moves cross the
boundary of the subspace, the client update to the server is required. The re-
gion continuity is broken up since a monitoring region can reside in multiple
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subspaces. For example, the location p1 and p2 in the same monitoring regions
might be in two different subspaces. When an object moves from p1 and p2, it
has to communicate with the server and makes a new request although it remains
within the same monitoring regions and does not change any query answer.

2. The system performance is sensitive to the size of the subspace. If the
size is too small, the frequent spanning of two resident subspaces leads to the
unnecessary communication between mobile objects and the server. If the size
is too large, a large number of queries maintained locally are heavy burdens on
moving objects.

3. Since different monitoring regions may be applied for different applications,
the concurrent execution of continuous range queries results in the continuous
overlapping of monitoring regions, which increases the length of the query list
maintained locally on the moving object side as well as the evaluation complexity.

Furthermore, different from the centralized approaches, the communication
cost on moving objects is a primary concern in distributed processing because
message communication in wireless environments is the main consumer of bat-
tery power. It has been shown that the energy consumption on communication
is up to three orders of magnitude more than that required by computation
[7], and transmitting data requires much more power than receiving data [7].
Therefore the distributed processing should minimize the communication cost
incurred, especially the transmission cost on the moving object side.

Taking into consideration the aspects above, the basic idea behind CEM is to
abstract the dynamic relations between the movement of objects and the change
of query answers. We introduce the concept of query view. When an object moves
within a query view, the range of its movement can be continuously expanded
until it crosses the boundary of the query view, which indicates the change of
query answers. Only at this time needs the object communicate with the server.
For example, as long as the location p1 and p2 are in the same monitoring
regions, they will be within the same query view, and no extra communication
with the server is needed when an object moves from p1 to p2 since its movement
does not change any query answer.

3.2 Query View

In this subsection we introduce the formal definition of the query view and
provide the theoretical basis of CEM.

Definition 1 (Query View). A query view is a combined query consisting of
one or more continuous queries q1, ..., qi. The monitoring region of the query
view, called the view region, is defined as the intersection of the monitoring
regions of q1, ..., qi.

Definition 2 (Relation contains). A query view contains a query q if the view
region is fully covered by the monitoring region of q.

From the definition, we see that the locations are in the same query view re-
gion if and only if they are within the monitoring regions of the same queries.
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Different from the subspace which is independently partitioned from the space,
the query view considers both the combined effect of multiple continuous moni-
toring regions and the possible continuous movement of objects. From the view
of queries, it is a high-level abstract of all the monitoring regions. From the view
of objects, it is the continuous expanded region in which the object’s movement
does not affect any query answer. The change of any query answer corresponds
to the event that objects enter/leave a certain view region. For the representa-
tion of query views, we introduce the concept of Minimum Bounding Rectangle
and Maximum Extended Rectangle.

Definition 3 (Minimum Bounding Rectangle; Maximum Extended
Rectangle). The Minimum Bounding Rectangle (MBR) of a query view is a
rectangle with the minimum size that closely bounds the view region. The ex-
tended region within the MBR is included by a minimum number of rectangles,
each of which is called the Maximum Extended Rectangle (MER).

A non-rectangular query view is represented by its MBR with one or more MERs.
An example with three queries is illustrated in Figure 1. Five query views V 1
to V 5 are generated. They contains {q1}, {q1, q2}, {q2}, {q2, q3} and {q3}
respectively. Rectangle R1 is the MBR closely bounding the view region V 3. The
extended regions are included by two MERs R2 and R3. Thus the query view
V 3 is represented by the form < R1, {R2, R3} >. The partition of a minimum
number of rectangles (MER) guarantees the minimum information needed to
represent the extended region. Moreover, the dead space can be regarded as
a specific view region. Since it is not close, an approximate region is used to
represent it, for example, the region R4 bounded by dashed lines in Figure 1.

For the construction of query views, we employ the ”splitting-merging” strat-
egy. We first divide the space into the small grid cells of the same size and map
all the monitoring ranges on the grid space. For each grid cell, we check whether
it is fully or partially covered by one or more query regions, and maintain a tem-
porary structure to record the corresponding queries. Finally we collect all the
grid cells, merge those that are covered by the same query regions, and generate
the whole query views. Since the view regions are not overlapped, a query view
is said to be an object’s query view if the current location of the object is within
the view region.

We introduce a theorem below, which reveals the dynamic relation between the
object’s movements and the query answers. Based on the theorem, Corollary 1
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R2

R3

q2
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q1

R4

Fig. 1. An example of query views



Continuous Expansion: Efficient Processing of Continuous Range Monitoring 895

shows that CEM minimizes the transmission cost on the mobile side, which further
save the energy consumption on the moving objects.

Theorem 1 (Correlation Rule). The query answers are changed if and only
if there are objects changing their query views.

Proof. (1) Suppose there is an object o changing its current query view from
v1 to v2. QSet1 and QSet2 are the sets of the corresponding queries that v1
and v2 contains respectively. From the definition of query view, there at least
exists one query q satisfying 1) q ∈ QSet1 and q /∈ QSet2, or 2) q ∈ QSet2 and
q /∈ QSet1. Otherwise, v1 and v2 can be merged into one query view. Therefore
the answer of q is changed by the movement of o. If in case 1, o falls into the
negative answer of q, since the new query view v2 does not contain q and o exits
the monitoring region of q. If in case 2, o falls into the positive answer of q.
(2) Suppose there is a query q changing its answer. This indicates that at least
one object o enters/exits the monitoring region of q, which correspond to the
positive/negative answer. Thus the current query view of o is different from its
previous view, because q can not be included in both of two views at the same
time. So the change of q’s answer corresponds to the change of o’s query view.

Corollary 1 (Minimum Transmission Cost). CEM incurs the minimum
transmission cost on the moving object side.

Proof. When its movement affects the query answers, an object is required
to transmit the message to notify the server of this change, which leads to the
lower bound of the transmission cost. According to Theorem 1, the change of the
query answers on the server side and the change of the query views on the moving
object side form a one-to-one relationship in CEM. Besides the notification of the
change of query views, there is no other transmission incurred from the moving
objects to the server. So CEM incurs the minimum transmission cost on the
moving object side.

3.3 Data Structure

In this subsection, we describe the design of the data structures on the server side
and on the moving object side. A query, query view and object are respectively
identified by QID, VID, and OID.

During the course of its execution, CEM maintains the following data struc-
tures on the server side:

• Query View Table (QVT). Query views are organized within the disk-
based sequential table QVT. Each entry has the form (VID, VR, QList). VID
is the query view identifier, on which QVT is indexed. VR is the monitoring
region of the query view. If it is a rectangular region, a single rectangle is
used to represent it. Otherwise, its MBR with the MERs is used to represent
it. QList is a list including all the queries that the query view VID contains.

• Grid-Based View Index (GVI). GVI is an in-memory k∗k grid structure
to index the query views. The space is uniformly divided into k ∗k grid cells.
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For each grid cell, GVI maintains a list VList of VIDs of query views whose
monitoring regions overlap with this cell.

• Query Table (QT). QT is a disk-based table indexed on QID. Each entry
in QT has the form (QID, QR), where QID is the query identifier, and QR
is the monitoring region of the query. QT is used only when there are new
queries to be inserted or deleted.

• Query Result Buffer (QRB). QRB is an in-memory sequential buffer
that stores the incoming query results.

Each moving object maintains the following data structures on the mobile
side:

• Query View Region (QVR). QVR is the monitoring region of the query
view that the moving object currently lies in. The representation of QVR
corresponds to that of VR in QVT. If the view region is non-rectangular,
QVR is represented by its MBR with the MERs. Otherwise, it is represented
by a rectangle.

• Grid-Based Location Index (GLI). GLI is an auxiliary structure used
to fast determine whether the current location of the moving object is within
the view region. Note that GLI is employed only when the view region is
not rectangular, because with a rectangular view region we can easily know
whether the position lies within it in constant time. According to the grid
partition of the MBR of the non-rectangular view region, GLI is implemented
as a bit vector and the details can be further found in [9].

3.4 The Processing Algorithm

In this subsection, we present the details of the CEM processing algorithm on the
moving object side and the server side. The algorithm is based on the Correlation
Rule in Subsection 3.2, which guarantees the correctness of the evaluation.

Processing on the moving object side. A moving object communicates with
the server only when it enters or leaves the monitoring region of a query view,
which means the change of query answers. While it has been within the view
region VR, two steps are processed when the object moves at each time step:

1. Determine whether the current location is in the view region VR using GLI.
2. If it is not within VR, which indicates that it has left the old view region and

might enter a new one, the object notifies the server of this change by sending its
object identifier OID, its previous query view identifier VID, and its new position
to the server. It also clears up its local structure QVR and GLI. After receiving
the response from the server, which contains its new query view identifier and
the corresponding view region, the object builds up the new location index GLI
according to the grid partition of the view region. If it is still within VR, the
object does nothing since its movement does not change any query answer.

Processing on the server side. The server communicates with the moving
objects in two situations: (1) The server has received the notification from an
object and then sends to it a message about the new query view. (2) When
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there are new queries to be inserted or deleted, the server broadcasts the related
information to the objects.

When an object moves within its current view region, it falls into the answers
of the queries that the current query view contains and does not need to com-
municate with the server. When an object changes its view region, the server
updates the query answers in QRB upon receipt of the notification.

The processing logic is described as follows. Three parameters OID, VID, and
pos, that is, the object identifier, the previous query view identifier, and the new
position, are sent to the server by the moving object. The server first gets the old
queries that the previous query view VID contains by QVT. Then it maps the
new position pos to the corresponding grid cell in the view index GVI and gets
the new query view where pos is located in. Then the server again use QVT to
obtain the new queries that the new query view contains and the corresponding
view region. Two difference operations are performed on the old query set and
new query set to get the incremental positive and negative answers. The server
updates the answers in QRB, and finally sends the message to the object, which
contains its new query view identifier and the corresponding view region.

Note that only the query views rather than the queries are visible from the
view of moving objects. All the query information and the incremental answers
are kept on the server side, and no local query list is maintained on the mobile
side. In fact, the main operation that an object carries out each time it moves
is just to determine whether it is still within the current view region. On the
server side, there is no need to perform the dynamic computation to determine
the new queries an object falls in, because the object’s location is tied up with
the corresponding query view, and all the queries that a query view contains
have been stored in QVT in advance.

Index maintenance. We take the similar strategy like the ”splitting-merging”
to deal with the change of queries. When a new query q is inserted or deleted on
the server side, three steps proceed: (1) Determine the affected query views. (2)
Update the index structures. (3) Broadcast the messages. Details of the update
of query views can be found in [9].

4 Experimental Evaluation

We conduct a set of simulation based experiments and compare CEM with Mo-
biEyes and MQM. All the experiments are performed on Pentium IV 2.0GHz
with 512 MB RAM running Windows Server 2003. The size of disk page is set
to 4KB. We use synthetic datasets generated by GSTD [8]. All the objects are
uniformly distributed in a unit-square space and can move arbitrarily with a
maximum moving distance of 0.1. The monitoring regions in the space follow a
uniform distribution and their average sizes are 0.05. The performance measures
are the I/O overhead incurred on the server side and the communication cost.

The default number of objects and queries is 10K and 1K respectively. Exactly
100 snapshots are recorded for each moving objects. We set k in GLI to 100. The
grid cell side length in MobiEyes is set to 0.016 to accord with the setting in [2].
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Fig. 2. Performance Results

The minimum number of monitoring regions in MQM follows the distribution
from 10 to 100. For the I/O, we consider that both the SQT in MobiEyes and
the BP-tree in MQM are resident on disk. At each time step the incremental
answers are computed on the server side.

We first investigate the performance of server load in term of the average
number of disk I/O at each time step (snapshot). Figure 2(a) and 2(b) show the
effect of increasing the number of queries and objects on I/O cost respectively. In
Figure 5(a), we vary the number of queries from 1K to 10K. All the approaches
increase the number of disk I/O accordingly, because with more queries to be
evaluated, the structures maintained for queries, that is, the SQT in MobiEyes,
the BP-tree in MQM and the QVT in CEM, need more disk space, which lower
the performance of one disk access. CEM improves the performance slightly due
to the fact that in CEM there is no need of additional searching for the queries
overlapped with the subspaces, and all the monitoring regions corresponding to
a certain query view have been stored beforehand. In Figure 5(b), the number of
objects varies from 10K to 50K. We see that the server processing cost becomes
higher with more objects. CEM performs better than the other approaches, and
the curve shows that its gain on the server performance becomes larger with the
increasing number of objects.

We then investigate the communication cost in the distributed solutions. As
is in [1, 2], we use the number of messages at each time step to measure the
communication cost since the messages in the transmission are usually very
short. Two kinds of metrics are reported, the uplink messages and the total
messages (including uplink messages and downlink messages).
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Figure 2(c) and 2(d) show the number of uplink messages with the different
number of queries and objects. In Figure 2(c), the mobile transmission cost in
MQM and CEM keep stable, and are not much affected by the increase of queries.
CEM significantly saves the message cost compared with the other approaches,
since by query views CEM combines the update effect of the monitoring regions
and the resident spaces. For MobiEyes, it incurs the higher transmission cost,
since frequent grid cell spanning increases the number of messages transmitted
on the mobile side. In Figure 2(d), we see that with the increasing objects, more
and more messages are transmitted on the mobile client. CEM preserves the
relative gain against the other two approaches, and the gain increases with the
number of objects. Figure 2(e) and 2(f) give the effect of the number of queries
and objects on the total communication cost. Since the total communication cost
includes the mobile transmission cost, the curves are somewhat similar to those
in Figure 2(c) and 2(d). An interesting result is that in CEM the total commu-
nication cost almost has a one-to-one relationship with the mobile transmission
cost, because CEM handle the updates, both on the server side and on the mo-
bile side, in a unified way, and the number of downlink messages corresponds to
that of uplink messages.

5 Conclusion

In this paper, we propose an efficient method, the continuous expansion moni-
toring (CEM), for the distributed processing of continuous range monitoring in
mobile environments. In the future work, we would like to extend the basic idea
to other types of continuous queries over moving objects.
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Abstract. To facilitate power saving via wireless data broadcast, index
information is typically broadcast along with the data. By first accessing
the broadcast index, the mobile client is able to predict the arrival time of
the desired data. However, it suffers from the drawback that the client has
to wait and tune for an index segment, in order to conserve battery power
consumption. Moreover, the average time elapsed between the request for
the data and its receipt may increase as a result of these additional mes-
sages. In this paper, we present a broadcast-based spatial query process-
ing method designed to support K-NN(K-Nearest Neighbor) queries via
wireless data broadcast. With the proposed schemes, the client can per-
form NN query processing without having to tune into an index segment.
Experiments are conducted to evaluate the performance of the proposed
methods. The resulting latency and energy consumption are close to the
optimum values, as the analysis and simulation results indicate.

1 Introduction

The recent convergence of internet, wireless communications, mobile location-
aware clients, and geo-processing has given rise to a new generation of Location-
Based Service(LBS). LBS provide the ability to retrieve the geographical lo-
cation of a mobile device, providing services based on location. Examples of
such applications include emergency services, car navigation systems and tourist
tour planning. The field of LBS, which only emerged a few years ago, presents
many research and industrial challenges. An important class of queries of LBS is
K-NN(K-Nearest Neighbor) queries, which finds the k-point objects closest to a
query point.

Definition 1.1. For a query point q and a query parameter k, the k-nearest
neighbor query returns the smallest set NNq,(k) ⊆ S that contains(at least) k
objects from S, and for which the following condition holds:

∀Oi ⊆ NNq(k), ∀Oi′ ∈ S − NNq(k) : dist(Oi, q) < dist(Oi′, q) (1)

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 900–909, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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With a large candidate data set, answering LBS via scanning through the
whole data set becomes extremely expensive. Thus, index structures and related
search algorithms have been proposed to provide efficient processing of LBS
queries [1]. Air indexing is one technique used to address this issue, and operates
by interleaving indexing information among broadcast data items. The mobile
client is able to predict the arrival time of the desired data and only needs to tune
into the broadcast channel when the requested data arrives, by first accessing
the broadcast index. Thus, mobile client can stay in power save mode most of
time, and tune into the broadcast channel only when the requested data arrives
[2, 3]. Air indexing techniques can be evaluated in terms of the following factors;
First, Access latency: The average time elapsed from the moment a user issues
a query to the client to the moment when the required data item is received
by the client. Second Tuning Time: The amount of time spent by a client
listening to the channel. Then, the Access Latency consists of two separate
components, namely: Probe Wait: The average duration for getting to the next
index segment. If we assume that the distance between two consecutive index
segment is L, then the probe wait is L/2. Bcast Wait: The average duration
from the moment the index segment is encountered to the moment when the
required data item is downloaded. The Access Latency is the sum of the
Probe Wait and Bcast Wait, and these two factors work against each other.

Among the most popular indexes for LBS is R-tree [4] and its variations,
notably the R*-tree. The R-tree serves as the basis of many later spatial in-
dexing structures. All of these R-tree-based indexes share the basic assumption
that spatial objects are approximated by their bounding rectangles before being
inserted into the indexes.

2 Related Work

A lot of research has been carried out with regard to solving the K-NN search
problem for spatial databases. In [5], authors propose a branch-and-bound
R-tree traversal algorithm to find the nearest neighbor object to a point, and then
generalize it to find the K-nearest neighbors. In [6], authors propose a Shared
Execution Algorithm for evaluating a large set of Continuous K-NN(CKNN)
queries. The authors investigate the problem of evaluating a large set of contin-
uous K-NN queries. Within incremental evaluation, only queries affected by the
motion of objects are reevaluated. In [7], the authors address the issues of sup-
porting spatial queries of LBS via wireless data broadcast. They present a new
index structure based on the Hilbert curve, which enables the linear broadcasting
of data objects in a multi-dimensional space. In [8], authors present a mechanism
performing an exact K-NN search over conventional sequential-access R-trees,
optimizing established K-NN search algorithms. They propose an optimization
technique, which improves the tune-time of K-NN search, and also discusses
the tradeoffs involved in organizing the index on the broadcast medium. Fur-
thermore, the use of histograms was investigated as a technique for improving
tune-in time and memory requirements of a K-NN search.
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2.1 Broadcast Sequence

In a recent paper [9], the concept of data sorting for broadcasting called Broad
cast-Based location dependent data delivery Scheme (BBS) has been proposed.
In this method, the server periodically broadcasts the IDs and coordinates of
data objects, without an index segment and these broadcast data objects are
sorted sequentially, according to the location of the data objects, before being
sent to the clients. In this method, since the data objects broadcast by the server
are sequentially ordered, based on their location, it is not necessary for the client
to wait for the index segment, if the desired data object is able to be identified
before the associated index segment has arrived. In this method, the structure
of the broadcast affects the distribution of the data object. The BBS provides
the fastest access time, since no index is broadcast along with the data and thus,
the size of the entire broadcast cycle is minimized. Preliminary simulation-based
results have shown that BBS significantly reduces the AT(access time).

Proposed algorithms are simple but efficient technique to support linear trans-
mission of spatial data and processing of K-NN queries. A simple sequential
broadcast can be generated by linearizing the two dimensional coordinates in two
different ways: i.e., Horizontal Broadcasting(HB) or Vertical Broadcasting(VB).
In HB, the server broadcasts the location dependent data (LDD) in horizontal
order, that is, from the leftmost coordinate to the rightmost coordinate. Con-
versely, in VB, the server broadcasts the LDD in vertical order, that is, from the
bottom coordinate to the top coordinate. In this paper, the server is assumed to
broadcast data objects using HB.

2.2 Energy Efficient Selective Tuning

Previous index schemes utilize indexes to conserve battery power. The wait-
ing time required to reach the forthcoming index segment can be reduced, by
replicating the index m times in a broadcast cycle. However, the drawback of
this solution is that broadcast cycles are lengthened due to the additional in-
dexing information, and has the worst possible latency, because the clients are
required to wait until the beginning of the next broadcast, even if the desired
data is just in front of them. Thus, the existing indexing methods are unsuit-
able for LBS. With the BBS scheme [9], the clients can significantly reduce
their access time, since this scheme eliminates the probe wait time(See Section
1) for the clients. However, the average TT(tuning time) may increase, since
the client is required to tune into the broadcast channel until the desired data
item has arrived. In the previous index schemes [3], each data item contains a
pointer to the next occurrence of the index segment, additionally, every data
item contains a pointer to the next data item that has the same attribute value.
In our scheme, every data item contains pointers containing the IDs, locations
and arrival times of the data items that will subsequently be broadcast. In this
section, energy efficient K-NN schemes for the BBS environment are presented,
namely the Efficient K-NN Schemes(EKS). This scheme provides clients with the
ability to perform selective tuning, assisting reduction in the client’s tuning time.
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Fig. 1. Sequence of the Exponential Pointer

In this method, the client utilizes exponential pointers from each data item
for the purpose of reducing energy consumption. Each data item contains the
following information;

– It’s ID and location information.
– Initial Pointer(IP): arrival time of the first data item to be broadcasted in

the next broadcast cycle
– Exponential Pointer(EP): IDs locations and arrival times of the data items

that will be broadcasted at Ti. The maximal number of EP from the each
data item is loge N , where e is the exponent value and N is the number
of data items that will be broadcasted(e.g., if e = 2 and N=32, the first
broadcasted data item O1 has the following EPs: the data items located in
T 2, T 3, T 4, T 5 and T 6(See Fig. 1))

– Boundary Pointer(BP): EP contains y-coordinate of uppermost and lower-
most lines between Ti and Ti+n as shown in Fig. 2(b).

The client obtains the ID, location information and EP from the first tuned
data item. Then, the client switches to power save mode until the desired data
item appears on the broadcast channel. The client repeatedly switches between
the power-save and wake up modes until the desired data item is retrieved. Let
us consider the example of the nearest neighbor search in Fig. 1. First, the client
tunes to the broadcast channel at T1 and obtains the following pointers ID={O2,
O4, O8, O16, O32} from data item O1. Then, the client switches to power-save
mode until O16(at T5) has appeared on the broadcast channel, since T5 is the
nearest boundary line on the left-hand side of the query point q up to the present
time. Then, the client wakes up at T5, and obtains EP ID={O17, O19, O23,
O31} from data item O16. The client again switches to power-save mode until
O23 appears on the broadcast channel. Finally, the client wakes up at T4’ and
tunes the broadcast channel until O26 as the final result.

2.3 Exact K-NN Search

Assume the data objects are sequentially broadcast in horizontal order. If the
client starts to tune into the broadcast at TN, in order to find K-NN, wrong



904 K. Park et al.

O2
O4

O8

O1

T2
(21)

T3
(22)

T4
(23)

T
1

(20)

X-axis

extended
circleO5

O6

O7
O3

0 2 4 6 8 10 12

2

4

6

8

O2

O4

O8

O1

T2
(21)

T3
(22)

T4
(23)

T1
(20)

X-axis

O5

O6

O7

O3

0 2 4 6 8 10 12

2

4

6

8 Uppermost Line

Lowermost Line

Tarc

r (a line between q and

longer Max Line of T n)

Y-axis Y-axis

(a) (b)

Fig. 2. Client’s Processing for the Exact K-NN Search

answers may be returned. Let us consider the example in Fig. 2(a). Assume
value of k=3. As shown in the figure, the client starts to tune the broadcast
channel at T3(e.g., O4), where T3 is the nearest boundary line on the left-hand
side of the q. Then, the client returns the final results as O4, O5 and O7, even
though the exact K-NN results are O3, O4 and O7. This can be explained by
the fact that EP only contains information regarding data items corresponding
to a value of e(i.e., exponential value). That is, the client is unable to obtain
information regarding data objects between Tn and Tn+1(i.e., O3 between T2
and T3), if the client starts to tune into the broadcast channel at T1 in Fig.
2(a)). Therefore, the client must satisfy the following conditions, in order to re-
turn exact K-NN:

Notations

– O: data object
– r: A line between q and farthest point from q and Tn, e.g., Max line or Min

Line of Tn(See Fig. 2(b))
– B-sector(q, r): the sector centered at query point q and having r as the

radius(shaded area in Fig. 2(b)).
– Tarc: perpendicular boundary line located on the left-side of the B-sector,

where Tarc to q contains K-NN query points.
– TS: safety bound line, nearest Tn from the left-side of Tarc, where the x-

coordinate of TS≤ x-coordinate of Tarc

– Of : the client’s first tuned data item in the broadcast channel
– Ti: boundary lines of the current broadcast data object
– T : set of Ti,
– TN : nearest boundary line on the left-hand side of the q, e.g., T5 in Fig. 1
– ON : data object of TN , e.g., O16 in Fig. 1

Lemma 4.3.1. While the client processes the K-NN query, if the client start to
tune the broadcast channel at Tn, where x-coordinate of Tn< x-coordinate of
Tarc, then the client misses any K-NN.
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Proof. Let Tm−n denote the data objects between Tm and Tn, where the x-
coordinate of Tm< x-coordinate of Tn and m,n≥1. Given a query point q, let k=3.
If a B-sector is drawn, centered at query point q and having r, Tarc is obtained.
Then, the nearest Tn from the left-side of Tarc is selected as TS(e.g., T2 in Fig.
2(b)). Now the client can guarantee that it does not miss the K-NN, if it starts
to tune the broadcast channel at T2, since the data objects of T2−4⊃ K-NN. �
Lemma 4.3.2. Let Tarc−k denote the data objects between Tarc and Tk. If
the number of Tm−n is larger than or equal to K-NN, then Tarc−k ⊇ K-NN,
where (x-coordinate of Tn)< (x-coordinate of Tarc) and (x-coordinate of Tk)>
(x-coordinate of q).

Proof. It is clear that there are five objects of T2−3, since T2=22 and T3=23.
Given a query point q, let k=5. If a B-sector is drawn, centered at query point
q and having r, where r be a line between q and uppermost line of T3(22) as
shown in Fig. 2(b), and if the client begins to tune the broadcast at T2, then
the client misses any K-NN(See Lemma 4.3.1). �
Theorem 4.3.1. Let us assume that the number of data objects of Tm−n>K-
NN, where x-coordinate of Tm<x-coordinate of Tn<x-coordinate of Tarc. Then,
the client can guarantee that it does not miss the K-NN, if it starts to tune the
broadcast channel at Tm.

Definition 4.3.1. Let kth-NN denote one of data objects among K-NN. Then,
K-NN �∈ Tm−n or kth-NN �⊂ Tm−n, if x-coordinate of Tn<x-coordinate of TS.

Algorithm 1. The client algorithm used to process the K-NN

Sn: the first tunes data object after it turns into active mode
Qi: data object from queue
FarQi: k-th NN from K-NN in the queue
queue <- initially set to ∅ Input: locations of the clients and the data objects;
Output: K-NN ;
Procedure:

1: do
2: wake-up and read(EP from Sn)
3: find(TN)
4: if(Sn=TN (i.e., (x-coordinate of Sn + 1)≥(x-coordinate of q))) // Satisfy Definition 4.3.2
5: then TN=>Tn and find TS from Tn, where Tm−n satisfy Lemma 3.2 and turn into

power-save mode until TS arrives from the broadcast channel
6: wake-up at TS
7: do
8: read(Oc)
9: if queue=∅
10: then add queue(Oc)
11: else sort queue by the distance from query point q
12: find FarQi and delete Qi from queue, if Qi is out of K-NN
13: do compare distance of (q and Oc) and (q and FarQi)
14: if distance of(q and Oc)< (q and FarQi)
15: then delete FarQi from queue and add queue(Oc)
16: else FarQi=>FarQi
17: while (satisfy Lemma 4.3.3)
18: return K-NN as a result
19: else turn into power-save mode until TN
20: while ((x-coordinate of Sn+1)≤(x-coordinate of q))
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Theorem 4.3.2. Let Ocandi denote the candidate for the K-NN and farthest
data object among the Ocandi be denoted as Ocandi′ . While the client obtains
k-th Ocandi, if the dist(Ocandi′ and q)<dist(x-coordinate of q and Oi), then Oi

and the rest of the broadcast data objects are located outside of the K-NN range.

Definition 4.3.2. If x-coordinate of Oi that is broadcast right after the client’s
first tunes data object is larger than the x-coordinate of q, then the client stops
selective tuning.

Definition 4.3.3. If the x-coordinate of Of>x-coordinate of q, the client can
not identify the K-NN in the current broadcast cycle.

2.4 Analytic Evaluation

In this section, we compare the performance of the proposed BBS scheme with
that of the (1, m) index scheme. Let m be the number of times broadcast in-
dices, N be the number of data items and C be the average number of buckets
containing records with the same attribute value. Let k′ be the index search cost
for single data item and AAT be the average access time:

Probe Wait : In the BBS method, since the data objects broadcasted by the server
are sequentially ordered based on their location and thus, it is not necessary for
the client to wait for an index segment. Therefore, Probe Wait of BBS=0.

– Previous index method: 1
2 × (index + N

m )
– BBS method: None

Bcast Wait :

– Previous index method: 1
2 × (N − k + (index × m)) + k + (k′ × k)

– BBS method: N−k
2 + k

Since the AT is the sum of the Probe Wait and the Bcast Wait, average AT for:

Previous index method is:

AATPRE =
1
2

× (index × (m + 1) + N(
1
m

+ 1) − k) + k + (k′ × k) (2)

BBS is:

AATBBS =
N − k

2
+ k (3)

Tuning Time. Let ATT be the average tuning time and k be the number of
levels in the multileveled index tree. The ATT for previous index is:

ATTPRE = 1 + (k′ × k) + k × C (4)

Let e be Se(i) be the digit sum [10] and ATTEKS be the average tuning time
for EKS. Then, The ATT for:

ATTEKS =
∑N−k

i=0 Se(i)
N − k + 1

+
k

2
× C (5)
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3 Performance Evaluation

This section presents the numerical results obtained through the analysis and
simulation. The broadcast channel has a bandwidth of 144 kbps. The clients are
equipped with a Hobbit Chip(AT&T). The power consumption of the chip in
sleep mode is 10uW and the consumption in active mode is 486.1uW [3, 11]. The
server generates the broadcast data stream with appropriate index information.
In the experiment, the initial probe position and the target data objects are
uniformly distributed in the broadcast. The broadcast data objects are assumed
to be static, such information as restaurants, hospitals and hotels.

Access Latency. In this experiment, the AT is evaluated for various parame-
ter settings. First, the effect of the number of the broadcast data items on the
access time is studied. The number is varied from 100 to 1000. The query arrival
time increases proportional to the amount of data. As shown in Fig. 3(a), EKS
outperforms the other schemes, since it is not necessary for the client to wait
for an index segment, in order to locate the desired data items and to deter-
mine when to tune into the broadcast channel to receive them. Thus, the search
cost required to identify the desired data items is significantly reduced. The pro-
posed scheme provides superior access time, since no index is broadcast along
with data items. Thus, the size of the entire broadcast is minimal in this way.
Fig. 3(b) and 3(c) present the access latency as the value of k and the size of
the data increases, respectively. This is due to the previous index technique of
broadcasting data without considering the properties of the locality of the data,
resulting in increased client search cost and access time.

Energy Consumption. Fig. 4(a) presents the energy consumption, as the size
of the data items increases from 128 bytes to 4096 bytes. The average tuning
time of EKS is longer than (1,m) method but provides minimum latency(See
Section 2.4, Tuning Time). As shown in this figure, in this case, the proposed
scheme outperforms the 1,m R-tree and 1,m Hilbert, since (1,m) method min-
imizes the tuning time but not the access time, while the proposed schemes
reduce the TT and AT at the same time. In other words, when the energy con-
sumption is estimated, it is necessary to consider not only the active time, but

(a) (b) (c)

Fig. 3. Access Latency
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(a) (b) (c)

Fig. 4. Energy Consumption

also the doze time, even if the doze time is considerably smaller than the ac-
tive time, the client also consumes battery power when it stays in power save
mode. Fig. 4(b) and 4(c) present the energy consumption as the number of the
data items and value of k increase, respectively. As shown in this figure, EKS
demonstrates best performance as the amount of data increases, since the (1,m)
with r-tree and Hilbert significantly increases access latency as the amount of
the data increases.

4 Conclusion

In this paper, two issues involved with data organizing and selective tuning for
K-NN queries on air were investigated. For the purpose of data broadcasting in
LBSs, the BBS method is presented, and for the purpose of selective tuning with
the BBS method, EKS is presented. With the proposed schemes, the client can
perform K-NN query processing without having to tune into an index segment.
The experimental results demonstrate that the proposed schemes significantly
reduce not only the AT, but also the energy consumption, since the client does
not always have to wait for the index segment. As future work, the extension of
the proposed schemes for Continuous KNN(CKNN) queries on the air is being
investigated. Examples of CKNN queries are everywhere in our daily life, e.g.,
“Continuously report the 5 nearest gas stations until I reach my destination”.
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Abstract. Given a query point q, finding the nearest neighbor (NN)
object is one of the most important problem in computer science. In this
paper, a bottom-up search algorithm for processing NN query in R-trees
is presented. An additional data structure, hash, is introduced to increase
the pruning capability of the proposed algorithm. Based on hash, whole
data space is disjointly partitioned into n × n cells. Each cell contains
the pointers of leaf nodes which intersect with the cell. The experiment
shows that the proposed approach outperforms the existing NN search
algorithms including the BFS algorithm which is known as I/O optimal
algorithm.

1 Introduction

Given a query point q, finding the nearest neighbor object, so-called nearest
neighbor (NN) search, is one of the most important problem in computer science.
As a general form of the problem, the NN search is formally defined in the
following. A point set P is a set of points in a d-dimensional data space DS,
point set P = {p0, p1, . . . , p|P |−1}, pi ∈ DS ⊆ Rd. Given query point q, the result
of the NN search is

NN(q) = {p ∈ P | ∀p′ ∈ P : dist(p, q) ≤ dist(p′, q)}. (1)

For this purpose, we need a multidimensional data structure and a search
algorithm that efficiently traverses the structure for processing the NN query.
Since 1984 when Guttman proposed his work [2], R-trees have become the most
popular data structure for indexing multidimensional data for various purpose.
There are two different approaches to process NN queries on R-trees. One was
developed by Roussopoulos et al. [4]. Owing to its searching behavior, it is re-
ferred to as depth-first search (DFS) algorithm in the following. The other, called
best-first search (BFS), is proposed by Hjaltason and Samet [7]. To the best of
our knowledge, the BFS algorithm is known as optimal NN search algorithm
for R-trees. This means that it visits node only if necessary. Since the top-down
approaches should visit from the root node to leaf node, the minimum I/O cost
per query cannot be smaller than the height of R-tree.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 910–919, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we propose a new NN search algorithm in a bottom-up manner
for R-trees, which outperforms existing optimal NN search algorithm. In con-
trast the two existing algorithms that work in a top-down manner, the proposed
approach starts at the leaf level and traverses to the Root node. In order to
select more appropriate leaf node, it exploits hash structure in which whole data
space is disjointly partitioned into n × n cells. Each cell contains the pointers
of leaf nodes which intersect with the cell. Experimental results show that our
proposed NN search algorithm ourperforms the existing NN search algorithms
including the BFS algorithm which is known as I/O optimal algorithm.

2 Nearest Neighbor Search Using R-Trees

As one of the most promising indexes for searching spatial data, R-tree was
proposed by Guttman [2]. It is d-dimensional extension of B+-tree for multidi-
mensional objects. In the data structure, any geometric object is represented by
its minimum bounding rectangle (MBR). An MBR is minimal approximation of
a geometric object and a multidimensional rectangle R = [l1, u1] × · · · × [ld, ud],
also called (hyper-)rectangle, in the data space. Every nodes have between m
and M entries (m ≤ M/2) unless it is the root node. Figure 1 shows an R-tree for
point set P = {a, b, ..., p} in which the maximum node capacity M is 3. Points
that are spatially close in space (e.g., k, l, and m) are clustered in the same leaf
node (E7). Nodes are then recursively grouped together with the same principle
until the top level, which consists of a single root, so-called the Root node.

Roussopoulos et al. [4] proposed a branch-and-bound algorithm for NN search
in a depth-first manner. We refer to this algorithm as the depth-first search
(DFS) algorithm. They suggested three pruning heuristics based on two dis-
tance metrics (mindist and minmaxdist) to discard candidates nodes, so that
the number of disk access can be minimized. mindist is minimum possible dis-
tance between the query point and a node (or MBR R), while minmaxdist is the
minimum of maximum possible distances from the query point to a face of the
MBR. Conceptually speaking, mindist and minmaxdist provide a lower- and an
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upperbound on the actual distance of object O from query point q respectively.
Based on these metrics, Roussopoulos et al. [4] proposed the following three
pruning heuristics:

– PH1: An MBR R with mindist(q, R) greater than the minmaxdist(q, R′) of
another MBR R′, is discarded because it cannot contain the NN.

– PH2: An actual distance from q to a given object O, which is greater than
the minmaxdist(q, R) for an MBR R, can be discarded because R contains
an object O′ that is nearer to q.

– PH3: Every MBR R with mindist(q, R) greater than the actual distance from
q to a given object O is discarded because it cannot enclose an object nearer
than O.

DFS algorithm visits the nodes with minimum mindist order from the Root.
In the example of query point q1 in Figure 1, after visiting the root node, then
it visits the minimum mindist node (e.g., E1) from q1. The process is repeated
recursively until the leaf node E5 which contains the potential NN f . When
backtracking to the previous level (node E1), remaining entries (E3 and E4) are
easily pruned by PH3. Backtracking again to the root level and following the
search path E2E7, the actual NN m can be found. In summary, the order of
nodes visited in DFS algorithm for query point q1 is Root, E1, E5, E2, E7. The
DFS algorithm has proven to be sub-optimal [6]. This means that it visits more
nodes than actually necessary.

Given a query point q, let V C(q) be the vicinity circle of query point q that
centers at the query point q and has radius equal to mindist(q, NN(q)). As
proven in [6], an optimal NN search algorithm should visit only the nodes inter-
secting with the vicinity circle V C. In [7], the best-first search (BFS) algorithm
which achieves the optimal I/O performance has been proposed by Hjaltason
and Samet. It maintains a heap H of the entries visited so far in ascending
order by mindist. Similar to DFS, BFS starts from the Root and insert all
entries in the node into heap H. In the example of Figure 1, for instance, it
insert all entries (e.g., E1 and E2) in the Root node into heap. Then the heap
H = {〈E2,mindist(q1, E2)〉, 〈E1,mindist(q1, E1)〉}. At each step, the first item in
the heap is selected to visit, and its all entries is inserted into the heap H. The al-
gorithm follows the same procedure until a data object is visited. Therefore, the
order of nodes visited in the BFS algorithm for query point q1 is Root, E1, E2, E7
(without visiting E5). To the best of our knowledge, the BFS algorithm proposed
by Hjaltason and Samet is known as optimal NN search algorithm for R-trees
especially in I/O cost.

3 Bottom-Up Search (BUS) Algorithm

The performance limits of conventional top-down algorithms is the height of tree
owing to their algorithmic characteristic. This limit should be broken in order
to support database application for high performance computing recently. This
increasing demand lead us to propose a new search algorithm – bottom-up search
algorithm.
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3.1 Hash Structure

In order to access from the bottom (i.e., leaf level), the conventional R-trees
have to be modified slightly. In this paper, we propose a hash data structure
to support our bottom-up search algorithm. Definition 1 and 2, which follow,
describe the basic concept of Hash and cell. For the simplicity of presentation,
we assume d = 2 in the rest of paper. But the extension for the representation
of higher-dimensional data (d > 2) is straightforward.

Definition 1 (Hash). The data space DS is two-dimensional unit space [0, 1]2.
In hash structure H, DS is disjointly divided into n × n cell structure, each of
size 1

n × 1
n . Each cell is denoted by H(i, j), 0 ≤ i, j ≤ n − 1 and n is called the

granularity of Hash.

Definition 2 (Cell). Each cell H(i, j) represents a region of space [iδ, (i +
1)δ) × [jδ, (j + 1)δ) generated by uniform partitioning, where δ is the length of
cell size of 1

n . Each cell contains an intersection list, called IL, of all leaf nodes
that intersect with the cell. For any two-dimensional query point q = (q1, q2), the
corresponding cell of query q can simply be computed as H(� q1

δ �, � q2
δ �).

Fig. 2. R-tree and its Hash Structure
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In a sense, the hash data structure H is nothing but pointer information about
leaf nodes that intersect with each cell H(i, j). In Figure 2, the relation between
R-tree and its hash structure is depicted. For the sake of brevity, the IL of each
cell only contains the pointer to all leaf nodes that intersect with the cell itself.
We consider, for instance, 4 × 4 hash structure in Figure 3. In this example, the
intersection list of H(0, 2) denoted as H(0, 2).IL is {E3, E4}.
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3.2 Basic Algorithm

As shown in Figure 3, the intuitive meaning of such a data structure is that it has
a low-cost in finding the objects which are spatially close to the corresponding
cell. We denote the potential NN obtained by hash currentNN and NNdist
means mindist(q, currentNN). Given query point q, let NNcircle(q) be the
circle of query q that centers at q and has radius equal to NNdist. This circle
provides an upperbound which guarantees that the actual NN must be included
within the circle. Our proposed bottom-up search algorithm is based on the hash
as a starting point.

Algorithm 1. Basic BUS algorithm
Procedure BottomUpNNSearch(Query q)
1: Determine the corresponding cell of q denoted as C = H(� q1

δ
�, � q2

δ
�).

2: Read the all leaf nodes in C.IL and currentNN ← nearest object.
3: Searching point Ň ← the leaf node that contains currentNN ∈ C.IL
4: repeat
5: Ň ← Ň ’s parent
6: foreach entry Ei ∈ Ň do
7: if mindist(Ei, q) < NNdist do /* PH3 */
8: currentNN ← TopDownNNSearch(Ei, NNdist, q)
9: end-if
10: end-for
11: until (Ň is the Root node)

This algorithm is called bottom-up search (for short BUS) depicted in
Algorithm 1 The corresponding cell C of query q is obtained in line 1. In line
2, the potential NN (denoted as currentNN) is obtained by calculating the
distances of all objects in the all leaf nodes in C.IL. As the searching point
for the proposed algorithm, node Ň is initialized to the leaf node containing
currentNN . The repeat-until-loop of lines 4–11 is the main loop for the al-
gorithm. Ň is updated as its parent node (line 5), then TopDownNNSearch() is
applied to the children of node Ň which lying closer to q than NNdist (using
PH3). Starting at the node Ei, TopDownNNSearch(Ei, dist, q) traverses only
nodes which has smaller distance from q than dist. As a top-down search al-
gorithm, it is either DFS or BFS. The procedure continues until the searching
point Ň is the Root node. The ideal case would be that (from the leaf level to
root node) the search algorithm traverses only one node for each level of the
tree, which is called one-path search. As shown in q1 of Figure 1(a), the more
subtrees V C intersects the more nodes visited in the search algorithm. On the
other hand, in the case of q2 and q3, the one-path search is possible, if there is
no intersection between the V C and other nodes which don’t belong to “search
path”.
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4 Pruning Heuristics

In addition to PH1–3 [4], we introduce two more pruning heuristics, PH4 and
PH5, on the basis of the Hash structure H .

4.1 PH4: Remnant

The currentNN determined in lines 1–4 of Algorithm 1 is essentially the nearest
object from q among every leaf nodes which intersects with C(q). Hence the
intuitive meaning of NNdist is the semantically upperbound of possible distance
to NN(q).That is to say, NN(q) must be enclosed by NNcircle (simply denoted

Fig. 4. Remnant and its MBR

as V C(q) ⊆ NNcircle). From the char-
acteristics of hash H , it is guarantee that
there is no object in the region of C ∩
NNcircle. Therefore, if there is an object
which closer to q than the already found
currentNN , then it will be exist in the
region of NNcircle − C.

The relationship between C and
NNcircle in the middle of the BUS NN
search is depicted in Figure 4. We will
call the spherical cut of NNcircle−C the
“remnant” of NNcircle on C (or simply
called remnant). There are at most four
possible remnants in case of d = 2.

Lemma 1 (NNcircle and Remnant). There is no object in the area of C ∩
NNcircle. However, we cannot guarantee that such condition is also true for the
region of remnant (NNcircle − C). Therefore, if there exists a closer object to
the query point than currentNN , the object must reside in the remnant area.

Proof. Let suppose that there exists an object NN ′ in the area of C ∩NNcircle.
As a result, obviously NNdist(= mindist(q, currentNN)) becomes greater than
mindist(q, NN ′), and this leads to a contradiction on the meaning of NNdist.
Hence, we can guarantee that there is no object in the area of C ∩ NNcircle.
But, for the remnant area, we couldn’t ensure the above guarantee because of the
possible existence of other nodes that does not intersect with C(q) but include
any object closer than currentNN . �

Based on the remnant concept, we introduce new heuristic for pruning un-
necessary nodes. As stated in Lemma 1, there is no object in the region of
C ∩ NNcircle. By utilizing this characteristic, we can prune some additional
nodes which are not pruned by PH3.

Lemma 2 (PH4: Remnant Property). The nodes which only intersect with
the region of C ∩ NNcircle can never include NN , therefore they should be
pruned. Consequently, the search procedure traverses the only nodes that intersect
with the remnant of NNcircle(q). We call this heuristic the remnant property.
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Proof. As we stated in Lemma 1, there is no object in the area of C∩NNcircle.
Thus, every node that intersects with C ∩NNcircle could not contains NN also,
and these nodes should be pruned. �

Corollary 1. From Lemma 2, if NNcircle ⊂ C, then currentNN is simply
evaluated as the actual NN and the search procedure will terminate.

Proof. Owing to the characteristic of remnant, NNcircle ⊂ C leads remnant =
∅ properly. When remnant = ∅, from Lemma 2, we can guarantee that there
exists no further node that intersects with the remnant. Therefore, the search
procedure will terminate. �

4.2 PH5: The Concept of Safe MBR

What is important in PH4 is that the search procedure only traverses nodes
that intersect with the remnant. Therefore, it is needed to traverse the tree until
there is no such node that intersects with the remnant. Similar to Corollary 1,
the NN search procedure may be terminated, if it does guarantee such condition
before the whole tree is traversed.

In order to guarantee such condition, each node in the tree will require some
additional information. The extra information on each node is called safe MBR,
which is defined as follows.

Definition 3 (Safe MBR). Given node N and the set S of its siblings {N0, N1,
. . . , N|S|−1}, the safe MBR of node N , safeMBR(N) = MIR(

⋂
(safeMBR

(N ′sparent), MBR(N),
⋂

0≤i≤s−1 Ni
c)) except for root node. MIR(·) is the func-

tion of Maximum Inscribed Rectangle. The safe MBR of the root node is its MBR.

Figure 5 illustrates two different examples of safe MBR. In general, increasing
the intersection between sibling nodes leads decreasing the size of safe MBR.
This is closely related to the splitting policy of R-tree [2]. The safe MBRs have
no intersection between sibling nodes in character. Thus, we can introduce the
following heuristic to prune unnecessary nodes.

N

N�s sibling

N1

N2

N3

N�s sibling

N

N1

N2

N3

Fig. 5. Safe MBR

Lemma 3 (PH5: Safe MBR Property). If NNcircle is completely enclosed
by the safe MBR of the searching point Ň , then the search procedure will terminate.

Proof. If NNcircle is completely enclosed by the safe MBR of node Ň , the rest
nodes should be pruned by PH4. The underlying reason is that those nodes will
never intersect with the remnant area in the characteristic of the safe MBR. �
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By utilizing PH5, the optimal cost of the proposed algorithm is the average
number of nodes in a cell while that of conventional top-down algorithms is the
height of tree.

4.3 Algorithm Description and Example

The entire procedure of proposed algorithm is depicted in Algorithm 2. Lines
1–4 are the same as in Algorithm 1 except that calls TopDownNNSearch() at
Root and returns its result in the case of C.IL = null (line 2). At line 5, if
NNcircle is covered by C or the safe MBR of Ň , then return currentNN and
terminates the search procedure (using Corollary 1 and Lemma 3). The repeat-
until-loop of lines 7–16 is the main loop for the algorithm. Ň is updated as
its parent node (line 8), then TopDownNNSearch() is applied to the children
of node Ň which lying closer to q than NNdist (using PH3) and intersecting
with at least one remnant in the remnant set RemMBRSet (using PH4). The
procedure continues until the searching point Ň is the Root node or NNcircle
is totally covered by the safe MBR of Ň (using PH5).

Algorithm 2. The entire BUS algorithm
Procedure BottomUpNNSearch(Query q)
1: Determine the corresponding cell of q denoted as C = H(� q1

δ
�, � q2

δ
�).

2: if C.IL is null then return TopDownNNSearch(Root, ∞, q)
3: Read the all leaf nodes in C.IL and currentNN ← nearest object.
4: Searching point Ň ← the leaf node that contains currentNN ∈ C.IL
5: if NNcircle is totally covered by C or N.SafeMBR then return currentNN
6: RemMBRSet ← computeRemnantMBR(q, NNdist, C)
7: repeat
8: Ňold ← Ň ; Ň ← Ň ’s parent
9: foreach child entry Ei in Ň and Ei �= Ňold do
10: if mindist(q, Ei) < NNdist and ∃γ, such that
11: Ei has intersection with γ ∈ RemMBRSet then /* PH3,PH4 */
12: currentNN ← TopDownNNSearch(Ei, NNdist, q)
13: RemMBRSet ← computeRemnantMBR(q, NNdist, C)
14: end-if
15: end-for
16: until (Ň is Root or NNcircle is totally covered by Ň .SafeMBR) /* PH5 */
17: return currentNN

As an example, we reconsider the above example that we want to find the
nearest neighbor to the query points q1, q2, and q3 in Figure 3. For q1, the
algorithm starts by probing currentNN from the hash, after which it exe-
cutes the following steps: (1) currentNN = f , Ň = E5, and NNdist =
mindist(q1, f). (2) currentNN = f , Ň = E1, and NNdist = mindist(q1, f). (3)
currentNN = f , Ň = Root, and NNdist = mindist(q1, f). (4) currentNN =
m =TopDownNNSearch(E2, NNdist, q1), and NNdist = mindist(q1, m). (5)
The algorithm terminates and reports m as the NN. For q2, the algorithm
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executes the following steps: (1) currentNN = i, Ň = E6, and NNdist =
mindist(q2, i). (2) The algorithm terminates and reports i as the NN. For q3,
the algorithm executes the following steps: (1) currentNN = b, Ň = E3,
and NNdist = mindist(q3, b). (2) currentNN = b, Ň = E1, and NNdist =
mindist(q3, b) (3) The algorithm terminates and reports b as the NN.

The algorithm presented above can be easily generalized to answer kNN query,
although the above algorithm and example only focused NN query. A heap is
needed instead of single currentNN . It maintains at most k current NN results in
ascending order by mindist. And NNdist should be interpreted as mindist of kth
entry in the heap. Obviously, the rest of generalization will be straightforward.

5 Performance Evaluation

We performed various experiments to demonstrate the significant impact of the
proposed bottom-up NN search algorithm on R-trees and compared it to the
conventional algorithms. First, we implements R*-tree and the conventional NN
search algorithms such as DFS [4] and BFS [7] using Java language. And the
proposed algorithm is implemented as three variations: basic BUS algorithm
(BUS), BUS algorithm with PH4 (BUS4), and BUS algorithm with PH4 and
PH5 (BUS45). All experiments were conducted on a Pentium M 900Mhz machine
with 512M main memory and 60GB secondary storage. As the experimental
datasets, 10k random points are generated by pseudo-random number generator
within [0, 1]2. The 10k query points are also generated randomly, then each query
carefully evaluated by five different algorithms in the average node accesses.

Figure 6 show the result of experiment using the synthetic dataset described
above in different setting in which R-tree was constructed from different M (node
capacity) with a fixed m of M/3 (minimum entries), and Hash has a different
granularity n. There is a tendency that BFS always outperforms DFS and the av-
erage I/O cost of these two top-down approaches remains greater than the height
h of the tree. This observation implies that at least h node access are needed
to accomplish the conventional algorithms. On the other hand, the proposed
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algorithm only accesses far smaller number of nodes than the tree height h espe-
cially in a reasonable granularity n of hash. The relative order of the performance
of proposed algorithms is BUS < BUS4 � BUS45 properly. BUS4 shows slightly
better performance than BUS in all case, and these two algorithms (BUS and
BUS4) maintains a competitive performance with conventional algorithms such
as DFS and BFS. BUS45 which is combined with PH5 can provide great perfor-
mance benefit of 15%∼61% over the conventional approaches. This improvement
has a meaning that the proposed algorithm outperforms BFS algorithm which
known as I/O optimal.

6 Conclusions

In this paper, we have proposed an efficient nearest neighbor algorithm for
R-trees, which far outperforms the best known I/O optimal algorithm called
BFS. To this end, we have proposed two new pruning heuristics based on hash
structure we designed. One is the remnant property, the other is the safe MBR
property. The former is that the algorithm only traverses those nodes that are
intersected with a special region so-called remnant, so that more pruning capa-
bility than conventional pruning heuristic for R-trees can be achieved. The latter
means that smaller number of nodes than the height of tree are only needed to
answer the NN query by appending a special MBR called safe MBR to each
node. In our future work, we plan to extend this work to the continuous NN
query processing, high-dimensional indexing, and multiple NN query processing.
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