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Abstract. We propose an improved statistic for detecting over-repre-
sented Gene Ontology (GO) annotations in gene sets. While the current
methods treats each term independently and hence ignores the structure
of the GO hierarchy, our approach takes parent-child relationships into
account. Over-representation of a term is measured with respect to the
presence of its parental terms in the set. This resolves the problem that
the standard approach tends to falsely detect an over-representation of
more specific terms below terms known to be over-represented. To show
this, we have generated gene sets in which single terms are artificially
over-represented and compared the receiver operator characteristics of
the two approaches on these sets. A comparison on a biological dataset
further supports our method. Our approach comes at no additional com-
putational complexity when compared to the standard approach. An
implementation is available within the framework of the freely available
Ontologizer application.

1 Introduction

The advent of high-throughput technologies such as microarray hybridization
has resulted in the need to analyze large sets of genes with respect to their
functional properties. One of the most basic approaches to do this is to use the
large-scale functional annotation which is provided for several species by several
groups in the context of the Gene Ontology (GO) ([1], [2], [3]).

The task is to detect GO terms that are over-represented in a given gene set.
The standard statistic for this problem asks for each term whether it appears in
the gene set at a significantly higher number than in a randomly drawn gene set
of the same size. This approach has been discussed in many papers and has been
implemented in numerous software tools ([4], [5], [6], [7], [8], [9], [10]). A p-value
for this statistic can easily be calculated using the hypergeometric distribution.
Since this approach analyzes each term individually, without respect to any
relations to other terms, we refer to it as the term-for-term approach.
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The term-for-term approach becomes problematic if one looks at several or all
GO terms simultaneously.There are two properties of the GO annotation which
result in a complicated dependency structure between the p-values calculated for
the individual GO terms. First, the annotation is done in a hierarchical manner
such that genes which are annotated to a given GO term are also implicitly
annotated to all less specific terms in the hierarchy (the so-called true path
rule). Second, individual genes can be annotated to multiple GO terms, which
reside in very different parts of the GO hierarchy. Both properties have the
effect that information about the over-representation of one GO term can carry
a substantial amount of information about the over-representation of other GO
terms. This effect is especially severe when looking at parent-child pairs. Knowing
that a certain term is over-represented in many cases increases the chance that
some of its descendant terms also appear to be over-represented. We call this
the inheritance problem and we consider it to be the main drawback of the
term-for-term approach.

In this paper, we propose a different statistic to measure the over-representa-
tion of individual GO terms in a gene set of interest. Our method resolves the
inheritance problem by explicitly taking into account parent-child relationships
between the GO terms. It does this by measuring the over-representation of a
GO term given the presence of all its parental terms in the gene set. Again,
p-values can be calculated using the hypergeometric distribution at no increased
computational complexity. We call our approach the parent-child approach. A
related approach was mentioned as a part of a larger comparative analysis of
yeast and bacterial protein interaction data in [11]. However, algorithmic details
were not given and a systematic comparison with the term-for-term approach
was not carried out.

The rest of the paper is organized as follows. In Section 2 we first review the
term-for-term approach and discuss the inheritance problem in more detail. The
new parent-child approach is then explained and the rationale behind it is ex-
plained. Section 3 is devoted to a comparison of the parent-child approach with
the term-for-term approach. We compare the two approaches on gene sets with an
artificial over-representation of individual terms. This illustrates that the parent-
child approach solves the inheritance problem. We finish the section by comparing
the two methods on a biological dataset. The paper is closed by a discussion.

2 Method

Given a set of genes of interest we want to analyze the functional annotation of
the genes in the set. A typical example of such an analysis involves a microarray
experiment where the gene set would consist of the genes which are differentially
expressed under some experimental condition. We will use the name study set
for such a gene set in the following and denote it by S. We suppose that the
study set appears as a subset of the larger set of all the genes which have been
considered in the experiment (such as the set of all genes which are represented
on the microarray). We will call this set the population set and denote it by P .
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The functional annotation we want to analyze consists of an assignment of
some of the genes in the population set to the terms in the GO. Individual genes
can be annotated to multiple GO terms. The relations between the GO terms
have the structure of a directed acyclic graph (DAG) G = (T, H), where T is
the set of GO terms and the relation H ⊂ T × T captures the parent-child
relationships (i.e. we have (t1, t2) ∈ H whenever t1 is a direct parent of t2). In
this relationship the children correspond to the more specific and the parents to
the less specific terms. The set of parents of a term t is denoted by pa(t). We
also use ρ to denote the unique root term of GO which has no parents.

For any GO term t, we denote by Pt the set of genes in the population set
that are annotated to this term. The convention is that the annotation of the
children of t is also passed to t itself (the so-called true path rule). This has
the effect that Pt′ ⊆ Pt whenever t ∈ pa(t′). When we speak about the directly
assigned genes of a term t we mean those genes which are assigned to t but not
to any of its children. Observe that the population set might also contain genes
for which no assignment to any GO term is given. This means that P\Pρ might
be non-empty. As a shorthand notation we will write mt := |Pt| to denote the
size of the set Pt, and the size of the whole population set P will be denoted by
m. For the study set we use a corresponding notation by writing St and defining
nt := |St| and n := |S|.

2.1 The Term-for-Term Approach and the Inheritance Problem

The statistic used by the term-for-term approach to measure the over-repre-
sentation of a GO term t is based on comparing the presence of the term in
the study set to its presence in a randomly drawn subset from the population
set of the same size as the study set. The over-representation is quantified by
calculating the probability of seeing in such a randomly drawn set at least as
many term-t genes as in the study set. Formally, let Σ be a set of size n which
has been drawn randomly from P . We write σt := |Σt| for the number of genes
annotated to term t in this random set. The probability of interest can now be
easily calculated as the upper tail of a hypergeometric distribution

pt(S) := P(σt ≥ nt) =
min(mt,n)∑

k=nt

(
mt

k

)(
m−mt

n−k

)
(
m
n

) .

Heuristically formulated, the inheritance problem lies in the fact that once
it is known that a certain term t is over-represented in the study set there is
also an increased chance that descendant terms of t get a small p-value and are
also classified as over-represented. The reason for this clearly lies in the fact
that the statistical test for each term is carried out in isolation, without taking
annotations of other terms into account. The impact of this can be seen by the
following thought experiment.

In a typical population set, annotation to GO terms is usually not available for
all genes (meaning that mρ < m). Suppose term-for-term p-values are calculated
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with respect to a random sampling of a size-n set from the population set. It
might be the case, that there is an unusually high number of genes from Pρ

in the study set, resulting in a very low pρ(S)-value. In such a case it should
not be surprising that also the terms on the next levels below the root ρ have
small p-values and therefore appear to be over-represented. However, given that
|Σρ| = nρ, this (artificial) over-representation should vanish. This effect has
already been taken into account in as far as the analysis of all terms is often done
with replacing S with Sρ and P with Pρ. Although this is already a reasonable
modification, we claim that the same problem holds true for terms inside the
GO-DAG. Suppose, e.g., that the study set contains a significantly high number
of genes which are annotated to the term metabolism. Again, it should not be
surprising to also see a significant over-representation for the more specific forms
of metabolism which are represented by the children of the term metabolism.

These heuristic considerations motivated us to develop our new parent-child
approach.

2.2 The Parent-Child Approach

The parent-child approach uses a statistic to detect over-represented terms,
which compares the term’s presence with the presence of its parental terms
in the study set.

Let’s first consider a term t which has a unique parent t′ in the hierarchy of
GO terms. The idea behind the parent-child approach is to compare the presence
of term t in the study set to a random set of genes in which t′ is present at the
same number as in the original study set S. To quantify this, we draw a random
subset of size nt′ from Pt and calculate the probability p̂t(S) to see at least
nt term-t genes in that set. Again, this can be done using the hypergeometric
distribution and results in

p̂t(S) := P(σt ≥ nt|σt′ = nt′) =
min(nt′ ,mt)∑

k=nt

(
mt

k

)(
mt′−mt

nt′−k

)
(
mt′
nt′

) , (1)

where (σt)t ∈ T is again defined on a randomly drawn subset Σ of size n.
However, the assumption that a GO term has a single parent is not valid

for the GO hierarchy, since it has the structure of a directed acyclic graph.
Heuristically formulated, when there are several parents of a GO term t, we want
to measure the over-representation of t, given the presence of all its parents in
the study set. When trying to formalize this, we see that there are at least two
ways to quantify the presence of the parents in the study set. Enumerate the
parents of t as pa(t) = {t1, . . . , tl}. The first idea would be to condition on the
numbers (nti)1≤i≤l, i.e. to calculate the probability

P0(σt ≥ nt|σt1 = nt1 , . . . , σtl
= ntl

).

It turns out that it becomes extremely difficult to combine different hyperge-
ometric weights to calculate this probability. The reason for this is that, for
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example, if we know the value of nt1 and nt2 , it is not clear in how far the genes
annotated to t1 overlap with those annotated to t2. Because of the true path
rule we know that both share at least a set of nt genes. However, there are many
potential ways of partitioning the genes in Pt1 or Pt2 but not in Pt among the
other children of t1 and t2 or among direct annotations to these terms. This
becomes even more complicated when considering combinations of more than
two parents.

We therefore chose another generalization of (1). What we fix in the compar-
ison of t to its parents is the total number of genes in the study set, which are
annotated to any of the parents. A set of this size is randomly drawn from the
collection of all genes in the population set which are annotated to any of the
parents of t and the probability of seeing at least nt term-t genes in such a set
is calculated. To formalize this, define

npa(t) :=
∣∣∣∣

⋃

t′∈pa(t)

St′

∣∣∣∣

and correspondingly mpa(t) and σpa(t). Our final definition of parent-child
p-values is

p̂t(S) := P0(σt ≥ nt|σpa(t) = npa(t)) =
min(npa(t),mt)∑

k=nt

(
mt

k

)(mpa(t)−mt

npa(t)−k

)

(
mpa(t)
npa(t)

) . (2)

This definition simplifies to (1) when there is a unique parent of term t. The
advantage of this definition is that it comes at no increased computational com-
plexity when compared to the term-for-term approach.

2.3 Implementation in the Ontologizer

We have implemented the term-for-term approach and our new parent-child
approach in Version 2.0 of the Ontologizer [9]. Executables and source code are
available from the authors at http://www.charite.de/ch/medgen/
ontologizer and can be used under the GNU public license.

Due to the importance of multiple testing corrections (MTCs) a selection of
different approaches is also available in the Ontologizer. Both of the methods
to calculate raw p-values can be combined with any of the implemented MTC
approaches.

To produce the results in this paper we used both calculation methods in
combination with the standard Bonferroni and the step-down resampling cor-
rection by Westfall & Young [12]. Both control the family-wise error rate. The
resampling method is known to be less conservative.

The resampling needed in the step-down method is done by randomly selecting
a gene set of the same size as the analyzed study set from the whole population
set. This is the natural adaptation of the resampling strategy as described in [13]
for resampling based MTCs in the context of microarray data analysis.

http://www.charite.de/ch/medgen/
ontologizer
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3 Comparing the Two Approaches

To compare our new parent-child approach with the term-for-term approach we
developed a strategy which allows us to compare the respective false positive
rates when over-representation of a certain term is given.

To this end, we generated gene sets in which a given GO term t is artificially
over-represented. The most naive way to do this is to take the subset Pt of genes
which are annotated to the term in the population set P . More realistic examples
of such sets can be obtained by combining a certain proportion of genes from Pt

with a certain amount of genes randomly drawn from P . When testing such sets
for over-representation of GO terms, the term t itself should be detected along
with some other terms which can then be considered as false positives.

The results presented in the next two subsections are based on a population
set of 6456 yeast genes for which we downloaded about 32000 annotations to
a total of 3870 different GO terms from the Saccharomyces Genome Database
(http://www.yeastgenome.org/, version as of August 12th, 2005, [14]). We
used the yeast annotation for no particular reason, results obtained with other
species were comparable.

3.1 All-Subset Minimal p-Values

Suppose we are given a study set S for which we know that a certain term t is
over-represented. To detect this, it is necessary that the p-value calculated under
the respective method for that term t is small enough to remain significant even
after correction for multiple testing.

Since the parent-child method measures over-representation of a term with
respect to the presence of its parental terms in the study set, it can happen that
there are terms for which it can be already seen from the population set P that
any significant over-representation can not occur. This effect can be quantified
by looking at what we call the all-subset minimal p-value p̂min

t of a term t. This
is the minimal p-value one can obtain when minimizing the p̂t(S) values over all
possible study sets or, formally,

p̂min
t := min

S⊆P
p̂t(S) = p̂t(Pt).

The claim of the last equation enables us to calculate the all-subset minimal
p-values and can easily be checked using elementary probability theory. The
corresponding statement is also true for the term-for-term approach, where we
have pmin

t := minS⊆P pt(S) = pt(Pt). The behavior of the all-subset minimal
p-values differs tremendously between the two approaches.

The histogram in Figure 1 a) shows that for the parent-child approach there is
obviously a large number of terms for which the all-subset minimal p-values are
not small. This can be explained by almost trivial parent-child relations which
are already fixed by the annotations of the population set P . More explicitly,
denote by Pt ⊆ Ppa(t) :=

⋃
t′∈pa(t) Pt′ the set of genes annotated to at least one

of the parents of t. If there is no sufficiently large (set-)difference between Pt and

http://www.yeastgenome.org/
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a) All−subset minimal p−values for parent−child method

all−subset minimal p−value
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Fig. 1. a) The distribution of all-subset minimal p-values of the parent-child approach.
It can be seen that there is a substantial amount of terms for which the all-subset
minimal p-value is not small. In contrast, all-subset minimal p-values of the term-for-
term approach are always small (below 1.55 · 10−4 in this dataset). We discuss the
reasons for this in the text. b) Scatterplot of the logarithm of the number of genes
annotated to a term against the all-subset minimal p-values of the term. It can be
seen that high minimal p-values are more likely to appear at terms with only a few
genes annotated. The obvious arrangement in curves corresponds to cases where mt

and mpa(t) differ only by 0, 1, 2,. . . annotated genes. The maximal value of mt for which
we observe a trivial p̂min

t value of one goes up to 297 (ln(297) ≈ 5.7) (the dot in the
upper right corner corresponds to the root term, which is always trivial).

Ppa(t), the value of p̂min
t cannot be small. In the extreme cases where p̂min

t = 1
we have Pt = Ppa(t).

From Figure 1 b), where we plot p̂min
t values against the corresponding ln(Pt)

values for all terms t, it can be seen that large values mainly occur for those
terms to which only few genes are annotated in the population set (cf. figure
legend for more details).

In contrast to the parent-child approach, the term-for-term approach always
produces extremely small all-subset minimal p-values. This is not surprising, be-
cause since pt(Pt) is the probability that a set of size mt := |Pt| drawn randomly
from P consists exactly of the genes in Pt it should always be small. This is
related to our criticism of the term-for-term approach. We criticize that once we
know about the presence of a certain term in the study set, we also have some
information about the presence of its descendant terms in the set. This knowl-
edge is reflected by our parent-child approach but neglected by the term-for-term
approach.

3.2 False Positive (Descendant) Terms

Our strategy to compare the two approaches with respect to the false posi-
tive prediction of over-represented GO terms is the following. We create a large
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number of (artificial) study sets for each of which a single term is intentionally
over-represented. When analyzing such a set with one of the methods, any term
found to be over-represented can be counted as a false positive classification,
unless it is the intentionally over-represented term itself. We compare those false
positive counts in terms of receiver operator characteristics (ROC) curves to vi-
sualize the differences between the two approaches. The technical details of this
strategy need a more thorough description which we give now.

We start by selecting those terms which we will intentionally over-represent
in the creation of the study sets. According to the results from the last sub-
section, we restrict ourself to those terms for which a statistically significant
over-representation is possible. Therefore, we identified the set

Tgood := {t ∈ T : p̂min
t < 10−7}

of terms with a small enough all-subset minimal p-value. We chose a cutoff of
10−7 because it leaves us enough room to get small p-values even after correction
for multiple testing. In our concrete dataset, a total of 1472 out of 3870 terms
made it into Tgood.

For each term in t ∈ Tgood we construct artificial study sets at different levels
of over-representation of t and different levels of noise as follows. We start with
the set Pt from which we keep a certain proportion (called term proportion) in
the study set by a random selection. To those genes we add another proportion
(called population proportion) of genes from the whole population set as random
noise. We did this for term proportions of 100%, 75% and 50% and population
proportions ranging from 0% to 25% at steps of 5% resulting in a total of 18
parameter combinations.

Let S be a study set constructed as just described and let tover(S) be the term
over-represented in the its construction. S is analyzed with both methods and the
results are further processed to count the respective false positive and negative
predictions. Observe that any analysis of S naturally divides the total set of
terms T into two parts. First, there is the set of terms which do not annotate
any of the genes in S. We do not consider those terms as true negatives in the
calculation of the false positive rate, because both methods will never have a
chance to falsely predict any of those terms as over-represented and therefore
will agree. Moreover, we restrict ourselves to those terms which reside in the
same of the subontologies (defined by the terms biological process, molecular
function and cellular component) of GO as the term tover(S). The reason for
this is that there are many biologically meaningful relations between terms in
different subontologies which are also respected in the annotation of the genes.
The set of terms which is left after this reduction will be considered in the
calculation of true/false positives and be denoted by Ttest(S). By construction,
any term in Ttest(S) other than tover(S) will be treated as a false positive when
predicted as over-represented at a certain p-value cutoff by either method. The
term tover(S) itself is counted as a false negative when not detected at that
cutoff.
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A last distinction has to be explained to understand the two final analyses we
present. To better highlight the inheritance problem we first intersect Ttest with
the set of all strict descendant terms of tover(S) and count the false positives only
on this set which we denote by Tdesc(S). In the second analysis, the counting is
done on the whole of Ttest to compare the general tendency to falsely classify
terms as over-represented.
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Fig. 2. Descendant-term ROC at different combinations of term and population pro-
portions. Each point corresponds to the false and true positive rate calculated at a
certain p-value cutoff π. We did not connect the points with lines, because those would
indicate nonexisting combinations of the two rates. The parent-child method drasti-
cally reduces the number of descendant terms falsely predicted to be over-represented.
Adding noise or reducing the level of over-representation makes it harder for both meth-
ods to correctly detect the over-represented term. This is the reason for the breaking off
of the curves. ROC analysis of other combinations of term and population proportions
always showed a clear advantage of the parent-child approach.
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To calculate true/false positive rates, we combine the results from all study
sets for a fixed combination of term and population proportions. Let S be such
a collection of study sets.

We begin with the analysis where we count false positives on Tdesc(S) only.
For a given p-value cutoff π we define the descendant-term false positive rate
FPRdesc(π) of the term-for-term method over the set S as

FPRdesc(π) :=
∑

S∈S
∣∣{t ∈ Tdesc(S) : pt(S) < π}

∣∣
∑

S∈S |Tdesc(S)| (3)
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Fig. 3. All-term ROC at different combinations of term and population proportions. It
can be seen that the parent-child method performs at least as well as the term-for-term
method. Again, adding noise or reducing the level of over-representation has an impact
on both method’s ability to correctly detect the over-represented term. Additional
remarks are in the legend to Figure 2.
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and the descendant-term true positive rate TPRdesc(π) as

TPRdesc(π) :=

∣∣{S ∈ S : ptover(S) < π}
∣∣

|S| . (4)

The corresponding descendant-term false and true positive rates for the parent-
child method are denoted by F̂PRdesc(π) and T̂PRdesc(π) and calculated by
replacing p with p̂ in (3) and (4).

A receiver operator characteristics (ROC) curve is obtained from those values
by plotting the false positive rate versus the true positive rate for all p-value
cutoffs π between 0 and 1. The results for the descendant-term analysis are
shown in Figure 2 for some combinations of term and population proportions.
It can be seen that the parent-child method drastically reduces the number of
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Fig. 4. Excerpt of the graph displaying over-represented terms in a set of 300 yeast
genes shown to be specific for cell-cycle phase G1 ([15]). A gray marker below a term
means that the term is over-represented in the term-for-term approach while a black
marker indicates over-representation in the parent-child method. The inheritance prob-
lem of the term-for-term approach can be seen among the descendant terms of the two
terms DNA repair and DNA replication. The range of the specific aspects of DNA
replication and DNA repair found by the term-for-term approach is so wide, that no
specific biological information can be gained from this. The figure was generated by
post-processing output from the Ontologizer with the Graphviz program [16].
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descendant terms falsely predicted to be over-represented when compared to the
term-for-term approach.

In the second analyses we calculate the false positive rates using all terms in
Ttest(S). The results in Figure 3 show that the parent-child approach performs
comparably to the term-for-term approach with respect to this general counting
of false positives.

3.3 A Biological Example

We compare the two approaches on a study set from a set of Saccharomyces
cerevisiae cell cycle experiments, in which approximately 800 genes were shown
to be cell-cycle regulated ([15]). We present an analysis of the 300 G1-specific
genes, taking the entire set of genes on the microarray as population set. GO
annotations from the Saccharomyces Genome Database ([14]) were used.

Although the G1 stage precedes the S, or synthesis, stage when DNA repli-
cation occurs, the G1 cluster contains many genes involved in DNA replica-
tion and repair, budding, chromatin and the spindle pole body (cf. Fig. 7
of [15]).

In Figure 4 we present a portion of the results of the GO analysis using
both the parent-child and the standard term-for-term method. For both meth-
ods p-values were corrected by Westfall & Young’s step-down resampling cor-
rection ([12]). We think that most of the terms which are identified by the
term-for-term approach but not by the parent-child method are there because
of the inheritance problem. According to the parent-child method, the key
terms in this dataset are DNA repair and DNA replication. The descendant
terms which are additionally identified by the term-for-term approach don’t
show a tendency towards a selection of closely related more specific terms,
but rather cover a wide range of different terms. We don’t claim that these
more specific terms are biologically irrelevant. We only claim that there is no
evidence that a certain collection of those terms plays an increased role in the
study set.

4 Discussion

With the parent-child approach we have introduced a novel statistic to measure
over-representation of GO terms in GO annotated gene sets. The motivation
for this was the inheritance problem of the term-for-term approach which is the
current standard. The inheritance problem refers to the fact that if a certain
GO term is over-represented in a gene set, the term-for-term approach has a
tendency to incorrectly show an over-representation of some of its descendant
terms. We have illustrated this problem by analyzing gene sets in which we ar-
tificially introduced different levels of over-representation of individual terms.
Analyzing the gene sets with both approaches shows that the parent-child ap-
proach drastically reduces the number of descendant terms falsely predicted to
be over-represented.
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Given this systematic analysis of the advantages of the parent-child approach
we think that it should become the future standard. However, it should be clear
that, since the two approaches use different statistics, the interpretation of results
obtained with the term-for-term approach cannot be carried over to the parent-
child approach. The following proper understanding of how the parent-child
results have to be interpreted is necessary on the user’s side.

One might argue that the inheritance problem of the term-for-term approach
is in fact not a problem, but an advantage, since it also detects interesting
descendant terms of over-represented terms which the parent-child approach
would miss. Still, the parent-child approach does not state that those descendant
terms are biologically irrelevant. It states that the experiment which resulted
in the study set does not give enough information to claim that some of those
descendant terms are more relevant than others and that therefore all descendant
terms might be equally important in further studies. In turn, the additional
emergence of descendant terms under the parent-child approach clearly indicates
their increased importance. With that interpretation in mind one can claim that
the parent-child approach gives more detailed insights into the GO annotation
of the study set than the term-for-term approach.

The all-subset minimal p-values which we introduced in Subsection 3.1 are
another key quantity which we think is of great importance in the context of
the parent-child approach. Knowing about the parent-child combinations for
which the all-subset minimal p-values are rather large gives important insights
into the nature of the GO annotations of the underlying population set. We
therefore plan to incorporate the all-subset minimal p-values into a visualization
of the results obtained from the parent-child approach as it is produced by the
Ontologizer.

We explicitly did not focus on the problem of multiple testing corrections
(MTCs) in the context of finding over-represented GO terms in gene sets. Al-
though some of the standard approaches have meanwhile been implemented and
tested in this context, we think that there is still room for improvement and we
will broaden our research to that topic. The problem of finding the optimal MTC
is hard, because of the complicated dependencies between the GO terms which
are caused by the DAG structure and by the annotation of individual genes
to multiple terms. The parent-child approach corrects for some of those depen-
dencies, but there remain other non-trivial dependencies between parent-child
p-values. The parent-child approach therefore adds a new facet to the topic of
MTCs, because it is not clear that the same strategy will turn out to be optimal
for both approaches.
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