
Clustering Short Gene Expression Profiles

Ling Wang1, Marco Ramoni2, and Paola Sebastiani1

1 Department of Biostatistics, Boston University School of Public Health,
Boston, MA, 02118, USA

{wangling, sebas}@bu.edu
http://www.bu.edu/dbin/sph/departments/biostatistics

2 Children’s Hospital Informatics Program, Harvard Medical School,
Boston, MA, 02115, USA
marco ramoni@harvard.edu

Abstract. The unsupervised clustering analysis of data from temporal
or dose-response experiments is one of the most important and chal-
lenging tasks of microarray data anlysis. Here we present an extension
of CAGED (Cluster Analysis of Gene Expression Dynamics, one of the
most commonly used programs) to identify similar gene expression pat-
terns measured in either short time-course or dose-response microarray
experiments. Compared to the initial version of CAGED, in which gene
expression temporal profiles are modeled by autoregressive equations,
this new method uses polynomial models to incorporate time/dosage in-
formation into the model, and objective priors to include information
about background noise in gene expression data. In its current formula-
tion, CAGED results may change according to the parametrization. In
this new formulation, we make the results invariant to reparametrization
by using proper prior distributions on the model parameters. We com-
pare the results obtained by our approach with those generated by STEM
to show that our method can identify the correct number of clusters and
allocate gene expression profiles to the correct clusters in simulated data,
and produce more meaningful Gene Ontology enriched clusters in data
from real microarray experiments.

1 Introduction

Since the original development of microarray technology, unsupervised machine
learning methods, clustering methods in particular, have provided a data analyt-
ical paradigm and played a central role in the discovery of functionally related
genes. Different unsupervised methods have been used to analyze microarray
data in order to portray various gene functional behaviors. Correlation-based
hierarchical clustering [2] is today one of the most popular analytical methods
to characterize gene expression profiles. In [9], we introduced a Bayesian model-
based clustering method that takes into account the dependency and dynamic
nature of gene expression data measured in temporal experiments. This algo-
rithm, implemented in CAGED (Clustering Analysis of Gene Expression Dy-
namics), models gene expression temporal profiles by autoregressive equations
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and uses improper prior distributions on the model parameters. As a general
framework, CAGED can be used to represent a variety of cross-correlated gene
expression data beyond standard temporal experiment, such as dose response
data.

It has been recently shown in [3] that the model based formulation imple-
mented in CAGED is more appropriate to cluster long temporal gene expression
profiles, possibly measured at regularly spaced time points. There are many sce-
narios in which experiments are conducted either over a short number of time
points, or at a small number of different dosages of drugs. Due to biological
considerations, intervals between consecutive time points may not be the same,
and the variations in dosages may not be constant. Motivated by these situa-
tions, we present an algorithm that uses polynomials models of time or dosage to
capture the dynamics of gene expression profiles. The use of polynomial models
however requires the specification of proper prior distributions for the regression
parameters, so that to ensure the model search algorithm is invariant to repa-
rameterization of time or dosages [7]. A further advantage of the use of proper
priors on the model parameters is to include information about background
noise of gene expression measured at low intensity, with the effect of making the
algorithm more robust to noise and less prone to false positives.

Compared to autoregressive models, polynomial models incorporate informa-
tion about time/dosage in the design matrix. Therefore, they do not require that
the temporal profiles are stationary and appear to be particularly suitable to de-
scribe short expression profiles, possibly sampled at irregularly spaced points.
By using the same heuristic search strategy in [9], our algorithm can automat-
ically cluster the gene expression data into groups of genes whose profiles are
generated by the same process. Furthermore, the Bayesian model-based formu-
lation of the algorithm provides us a principled way to automatically choose
the number of clusters with the maximum posterior probability. By properly
specifying the prior distribution of the parameters, the clustering model is in-
variant to linear transformations of time/dosage. In this paper we first describe
the Bayesian clustering model in Section 2. In Section 3, we evaluated the ac-
curacy of the results obtained using this method on three simulated datasets
and on the immune response data from [4]. We found that compared to STEM,
our method is able to reconstruct the generating processes with higher accuracy
in simulated data, and produce more Gene Ontology enriched clusters for data
from real microarray experiment.

2 Model Formulation

A short time-course/dosage experiment exploring the behavior of J genes usually
consists of a set of n microarrays, each measuring the gene expression level xjti at
a time point/dosage ti, i = 1, 2, ..., n. For each gene, we denote the fold changes of
expression levels relative to the first sample (normalized), transformed in natural
logarithmic scale, by Sj = {xjt1 , xjt2 , ..., xjtn}, j = 1, 2, ..., J . These J genes are
believed to be generated from an unknown number of processes, and our goal
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is to group these J genes into clusters by merging genes with similar expression
patterns.

The clustering method currently implemented in CAGED is based on a novel
concept of similarity for time series from which we derive a model-based de-
scription of a set of clusters. We assume that two gene expression profiles are
similar when they are generated by the same stochastic process represented by
the same parametric model. Under this definition of similarity, the clustering
method groups gene expression profiles that are similar into the same cluster.
To achieve this objective, CAGED has three components:

1. A model describing the dynamics of gene expression temporal profiles;
2. A probabilistic metric to score different clustering models based on the pos-

terior probability of each clustering model;
3. A heuristics to make the search for the best clustering model feasible. The

heuristic was introduced in [8] and adapted to the specific task of clustering
gene expression temporal profiles in [9].

In the current implementation, CAGED uses autoregressive models to repre-
sent temporal cross-correlation. Here, we replace these models with polynomial
models to describe normalized temporal patterns of gene expression data from
short temporal/dose-response microarray experiments. The polynomial model
describing the temporal pattern of expression for a gene j can be written as

xjti |βj , εjt = µj + βj1ti + ... + βjptpi + εjti

where βj = (µj , βj1, ..., βjp)T is the vector of regression coefficients that are as-
sumed to be random variables, and εjti is random error. Using a matrix notation,
we have

xj = Fβj + εj (1)

where xj = (xjt1 , xjt2 , ..., xjtn)T , F is the n × (p + 1) design matrix with the ith

row being (1, ti, t
2
i ..., t

p
i ), εj = (εjt1 , εjt2 , ..., εjtn)T is the vector of uncorrelated

errors that we assume to be normally distributed, with E(εjti ) = 0 and V (εjti ) =
1/τj, and the value p is the polynomial order.

We assume a proper normal-gamma prior density on the parameters βj and
τj . Therefore, the marginal distribution of τj and the distribution of the regres-
sion parameters βj , conditional on τj , are

τj ∼ Gamma(α1, α2)
βj |τj ∼ N(β0, (τjR0)−1)

where R0 is the identity matrix. The prior hyper-parameters α1, α2, β0 are iden-
tical across genes. One of the advantages offered by this novel parametrization
is the possibility to include information about background noise and, in so do-
ing, enables the clustering algorithm to properly handle it. We will show next a
method to define the hyper-parameters so that to incorporate information about
background noise.
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Given the data Sj — a set of observed expression values for gene j — we can
then estimate the model parameters βj and τj by updating their prior distribu-
tion into the posterior distribution using Bayes’ Theorem:

f(βj , τj |xj , p) =
f(xj |βj , τj , p)f(βj , τj)

f(xj |p)
.

Standard conjugate analysis leads to compute the marginal likelihood of the data

f(xj |p) =
1

(2π)n/2

(det R0)1/2

(detRjn)1/2

Γ (αj1n)
Γ (α1)

α
αj1n

j2n

αα1
2

(2)

and hence a closed form solution of the posterior distribution of the model pa-
rameters τj and βj [1]

τj |xj ∼ Gamma(αj1n, αj2n)
βj |xj , τj ∼ N(βjn, (τjRjn)−1)

where

αj1n = α1 +
n

2

1/αj2n =
−βT

jnRjnβjn + xT
j xj + βT

0 R0β0

2
+

1
α2

Rjn = R0 + FT F

βjn = R−1
jn (R0β0 + FT xj)

Specification of the hyper-parameters of the prior distribution is an important
component of the analysis and we take the approach to define objective hier-
archical prior distributions on the parameters βj and τj . The main intuition is
to use the expression values of genes that are not used in further analysis to
model the baseline hyper-variability of gene expression measured with microar-
rays. Several statistical software for low-level preprocessing of gene expression
data score the intensities that represent relative expressions. For example the
statistical software implemented in MAS 5.0 and GCOS to process expression
data measured with Affymetrix arrays uses a non-parametric statistical method
to label gene expression as “absent”, “marginally present” or “present”. These
calls are based on significance tests of differences between intensities of matched
probe pairs [10]. Absent calls may denote either technical errors, non-detectable
expression or non-expression of the gene in the target, so that investigators are
recommended not to use genes that are labelled as absent in the majority of the
Affymetrix microarray samples. The more recent Illumina system for microarray
data [5] assigns a quality control score to each expression summary and recom-
mends users not to consider genes that have a score lower than 0.99. In both
systems, between 25–50% of the total number of genes/probes in the arrays are
usually disregarded from further analysis when they are labelled as absent or
scored too low. These data however contain information about the variability of
non expressed genes and therefore we use them to build our prior distributions.
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We assume that disregarded genes do not exhibit any specific patterns, so af-
ter normalization and log transformation, they are expected to simply represent
noise around zero. Therefore, assuming that β0 = 0, then we only need to con-
sider the precision parameters τj . We further assume that all absent gene have
the same precision. Now let xati be the normalized and log-transformed expres-
sion of one of these genes at time ti, i = 1, ..., n, then xati |τ ∼ N(0, 1/τ), where
τ is the precision parameter whose prior distribution is τ ∼ Gamma(α1, α2).
From the properties of conditional mean and conditional variance, it is easy
to show that the marginal variance of the data is functionally related to the
hyper-parameters:

α2 =
1

(α1 − 1)σ2
a

where σ2
a is the sample variance of the disregarded expression data. So here, with

α1 = 2, we can easily specify the hyper-parameter α2.

3 Evaluation

We evaluate our algorithm by simulation study and analysis of the data from
the microarray experiment on immune response to Helicobacter pylori infec-
tion in [4], and compare it to the program STEM recently introduced in [3].
Section 3.1 reports the results from three simulation studies, and section 3.2
presents the analysis of real data from [4]. All the analysis were done with our
clustering algorithm and STEM.

3.1 Simulation Study

We simulated three sets of 5,000 gene expression profiles measured over 5 differ-
ent time points: 0, 1, 2, 3, 4. All the profiles were generated assuming the gene
expressions were normalized and transformed into natural logarithmic scale. The
first 5,000 profiles were simply noise, and were generated from a normal distri-
bution with mean 0 and a variance representing the average variability of noisy
patterns that we inferred from the analysis of previous real microarray experi-
ments. For this dataset, we generated another 1,000 noise profiles to be the data
from genes with low intensities and we used these to specify the hyperparame-
ters of the model. The second 5,000 profiles had 4 different baseline patterns and
some background noise. Data for each gene expression profile were generated by
adding random noise to one of the four baseline patterns (Figure 1 left panel),
and the gene expression profiles of the background noise were generated from a
normal distribution with mean 0 and a variance inferred from previous analysis
of temporal microarray experiments. The number of genes representing each of
the four patterns and the background noise was randomly chosen from 11 to
5,000. For this dataset, we simulated another set of 5,000 noise profiles with low
intensities to specify the hyperparameters. The third 5,000 expression profiles
had 6 different baseline patterns (Figure 1 right panel) that are more difficult
to discriminate, plus some background noise. The data were generated using the



Clustering Short Gene Expression Profiles 65

Fig. 1. Left: The 4 distinct baseline patterns of the simulated data. Right: The 6
indistinct baseline patterns of the simulated data.

Table 1. Clustering results of simulated datasets from our program and STEM

Simulated number of # of profiles # of significant
dataset true profiles our program found profiles STEM found
noise 0 0 17

4 patterns with noise 4 4 4
6 patterns with noise 6 6 11

same strategy as the second dataset. For the third dataset another 5,000 noise
profiles with low intensities were simulated for the specification of hyperpara-
meters. Note that in the last two datasets with planted patterns, the range of
variability of the simulated patterns was within the range of variability of the
noisy patterns.

Each of the three datasets was analyzed using our clustering algorithm, with
polynomial orders 0, 4 and 4 respectively. We also analyzed these three datasets
using STEM, with the recommended default settings of c = 2, and 50 possible
profiles and used Bonferroni correction to control for multiple comparisons. To be
consistent, we did not filter out any genes in any of these analysis, but rather used
the separately generated noise profiles to specify the hyperparameters. Table 1
reports the clustering results from both our program and STEM, from which
we can observe that our program successfully recovered the correct number of
patterns, plus the background noise, whereas STEM discovered 17 significant
profiles from the noise-only dataset, and 11 significant profiles from the dataset
with 6 true patterns.

Figure 2 shows that our program grouped all the gene expression profiles in
the noise-only dataset into a single cluster, representing the expected indistin-
guishability of pure noise. By contrast, STEM found 17 significant profiles in
these noise-only data. For the simulated data with 4 different baseline patterns,
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Fig. 2. Left: The only noise cluster found by our program. Right: The results from
STEM. The 17 colored profiles are found to be significant by STEM.

our clustering algorithm gave 5 clusters, of which 4 have profiles matching the
baseline profiles in Figure 1 left panel, and 1 noise cluster. For these 5,000 genes,
10 were allocated to the wrong cluster, with 3 false negatives (genes with true
pattern allocated to noise cluster) and 7 false positives (noise genes allocated to
clusters with pattern). The 4 significant profiles that STEM found have 3 pro-
files that are similar to the baseline patterns, but the up-regulated profile that
corresponds to pattern 1 in Figure 1 left panel was not labeled as significant (p
value=1). The simulated dataset with 6 different baseline profiles are designed
to be harder to discriminate, and our program successfully found 7 clusters, of
which 6 had profiles matching the baseline patterns in Figure 1 right panel, and
1 contained only noise. For this set of 5,000 genes, 83 are allocated to the wrong
cluster, with 12 false positives and 41 false negatives. STEM analysis found 11
significant profiles for this data.

3.2 Real Data Analysis

We analyzed the data from the microarray experiment on immune response to
Helicobacter pylori infection in [4] to further evaluate our clustering algorithm.
In this experiment, human cDNA microarrays were used to investigate the tem-
poral behavior of gastric epithelial cells infected with Helicobacter pylori strain
G27 and some other mutants. We used the selected 2,243 genes after the data
pre-processing in [3] for clustering, and the 17,352 genes that were filtered out
were used to specify the hyperparameters. We then normalized and transformed
the data into natural log scale, and performed the cluster analysis with poly-
nomial order of 4. The time points we used in the model were the actual time
at which the experiments were carried out: 0, 0.5, 3, 6 and 12. Our clustering
algorithm returned a total of 11 clusters. Figure 3 shows all the clusters. We then
preformed the Gene Ontology enrichment test with EASE [6]. Because there were
missing annotations for some genes in each cluster, we carried out the enrich-
ment analysis using only the genes with annotations. Seven out of the 11 clusters
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Cluster 9 Cluster 10 Cluster 11

Fig. 3. The 11 clusters our program found in the analysis of data from the microarray
experiment on immune response to Helicobacter pylori infection

had EASE scores less than 0.05 and hence 63% of the clusters were significantly
enriched for GO categories. Cluster 10, which had 38 genes totally and 11 genes
with annotations, represented a stable upregulated pattern over time. This clus-
ter is significantly enriched for the immune response GO category (with EASE
score 6.85 × 10−3). Cluster 1 is significantly enriched for mitotic cell cycle genes
(EASE score 4.62 × 10−13) and cell cycle genes (EASE score 2.05 × 10−10). The
STEM analysis described in [3] identified 10 significant profiles, four of which
only were found significantly enriched by the GO analysis. Compared to the 63%
significantly GO enriched clusters found by our algorithm, the analysis in STEM
therefore produces only 40% significantly GO enriched clusters.

4 Conclusions

We have introduced a model reformulation of CAGED using polynomial mod-
els of time/dosage with proper prior distributions. We find this formulation to
be well suited for clustering analysis of data from short temporal/dosage mi-
croarray experiments. The polynomial models that describe the trend are flex-
ible and do not require the gene expression profile to be stationary. We use
proper priors in the model so that we can incorporate the background noise
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information through specifying the hyperparameters with low-intensity genes,
and the clustering algorithm becomes invariant to linear transformation on
time/dosage. An empirical comparison on simulated data shows that our clus-
tering algorithm can identify the correct number of generating processes, and
allocate genes into clusters with low false positives and false negatives. In the
analysis of data from the human cDNA microarray experiment on immune re-
sponse to Helicobacter pylori infection in [4] we found 11 clusters with our al-
gorithm, 7 out of which are significantly enriched by Gene Ontology analysis.
In both the empirical study and the analysis of the immune response data to
Helicobacter pylori infection, our algorithm performs better than STEM.
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