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Abstract. It is well known that the base composition along eukaryotic
genomes is long-range correlated. Here, we investigate the effect of such
long-range correlations on alignment score statistics. We model the cor-
related score-landscape by means of a Gaussian approximation. In this
framework, we can calculate the corrections to the scale parameter λ of
the extreme value distribution of alignment scores. To evaluate our ap-
proximate analytic results, we perform a detailed numerical study based
on a simple algorithm to efficiently generate long-range correlated ran-
dom sequences. We find that the mean and the exponential tail of the
score distribution are in fact influenced by the correlations along the
sequences. Therefore, the significance of measured alignment scores in
biological sequences will change upon incorporation of the correlations
in the null model.

1 Introduction

Recent years have witnessed an impressive advance of bioinformatics sequence
analysis tools, aiming at deeper insight to the functional organization and evo-
lutionary dynamics of genomic DNA sequences. Popular examples include algo-
rithms for genome annotation, homology detection between genomic regions of
different organisms, or the prediction of transcription factor binding sites [1, 2].

Bioinformatics methods frequently yield probabilistic statements. Usually the
statistical significance of a computational prediction is characterized by a
p-value, specifying the likelihood that this prediction could have arisen by
chance. The calculation of p-values requires an appropriate null model of DNA,
which reflects our assumptions about the “background” statistical features of
the sequence under consideration. The challenging task is to decide on the set of
statistical features a suitable null model should obey. Ideally, one incorporates
those features into the null model which describe the background “noise” of the
DNA sequence, but still allow to discern the specific signal the computational
analysis tries to detect.

The simplest DNA background model is an iid model, given by a random
sequence with letters drawn independently from an identical distribution [2].
The iid model can incorporate the length and the average composition of the
sequences under consideration, but it lacks any specific structure concerning the
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arrangement of the nucleotides along the DNA. In particular, it is not capable of
incorporating correlations in base composition along the sequences. Up to a cer-
tain degree, this additional complexity can be taken into account by an nth order
Markov model, specifying the transition probabilities P (ai+1|ai−n+1, · · · , ai) in a
genomic sequence a = a1, . . . , aN [2]. Assuming the sequences to be generated by
Markov processes already allows to incorporate a multitude of spatial statistical
features into the model, like e.g. the preferential occurrence of DNA motifs, local
peculiarities in genomic composition, or specific dinucleotide frequencies. In con-
trast to iid sequences, where all letters are uncorrelated, Markov processes lead
to, so called, short-range correlations in the nucleotide composition [3]. They are
characterized by an exponential decay of the correlations between two different
bases with increasing distance along the sequence.

A statistical measure of the correlations in genomic base composition is the
autocorrelation function C(r). It quantifies the deviations in the joint probability
of finding equal bases at a distance of r basepairs along the DNA backbone
compared to that in a random sequence of independent letters with the same
nucleotide frequencies pa∈{A,C,T,G},

C(r) ≡
∑

a

[
P (ai = ai+r = a) − p2

a

]
. (1)

We have C(r) = 0 (r > 0) for iid sequences, while C(r) ∝ exp (−βr) for short-
range correlated sequences, e.g. those generated by Markov processes.

With the rapidly growing availability of whole-genome sequence data the cor-
relations along genomic DNA can nowadays be studied systematically over a
wide range of scales and organisms. A striking observation in this field was the
finding of long-range correlations in the base composition of genomes more than
a decade ago [4, 3, 5]. They are characterized by a power-law decay of the corre-
lation function for large r,

C(r) ∝ r−α, (2)

and therefore decay much slower compared to short-range correlations. By now
it is well established that long-range correlations in base composition appear
in the genomes of most eukaryotic species [6, 7, 8] with two examples shown in
Fig. 1. Little is known about the origin of genomic long-range correlations, so
far. However, their ubiquity among eukaryotic genomes points towards a uni-
versal mechanism. A likely dynamical scenario is that they are generated by
the stochastic processes of molecular sequence evolution, as has been discussed
in [9, 10, 11].

The widespread presence of long-range correlations in genomes raises the ques-
tion if they need to be incorporated into an accurate null model of eukaryotic
DNA and how that would change the p-value calculations. In this article, we ad-
dress this question in the context of sequence alignment, which constitutes the
most commonly used computational tool of molecular biology today [12, 13]. We
tackle the problem of calculating sequence alignment significance values for null
models with long-range sequence composition correlations with both, analyti-
cal, as well as numerical methods. On the analytical side, we introduce a novel
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Fig. 1. Long-range correlations in the base composition of two eukaryotic chromosomes.
In the double-logarithmic plots, power-law correlations C(r) ∝ r−α show up as straight
lines with slope α. They extend over distances of several orders of magnitude. In (b) we
demonstrate our capability of simulating long-range correlated sequences with similar
amplitude and correlation exponent α ≈ 0.232, as measured in Human chr. 22.

approach, the Gaussian approximation, which allows us to calculate the correc-
tions to the scale parameter λ of the alignment score distribution for correlated
sequences. Long-range correlated sequences cannot be generated by an nth order
Markov process with finite n [3]. The numerical approach therefore only recently
has come within reach due to results derived in [10, 11], where we proposed a
biologically motivated algorithm capable of efficiently generating long-range cor-
related sequences with arbitrary correlation parameters. As the main result of
our analysis, it turns out that long-range correlations in the sequences lead to
considerable deviations in the score statistics of sequence alignment.

After presenting a short review of sequence alignment in section 2, we an-
alytically treat the alignment of long-range correlated sequences in section 3.
A numerical evaluation of the approximative analytic results is presented in
section 4. In section 5, we discuss the relevance of this effect for genomic se-
quence alignment by analyzing the magnitude of the corrections to the score sig-
nificance values using correlation parameters, measured in eukaryotic genomes.
The implications of our findings in a bioinformatics context are discussed at the
end of this article.

2 Sequence Alignment and Significance Assessment

The goal of DNA sequence alignment is to assign to a given pair of genomic
sequences a = a1, · · · , aN and b = b1, · · · , bM a measure of their similarity.
The simplest version of sequence alignment is gapless alignment. A local gapless
alignment A of the two sequences consists of a substring ai−l+1 · · ·ai of length
l of sequence a and a substring bj−l+1 · · · bj of sequence b of the same length.
Each such alignment is assigned a score SA =

∑l−1
k=0 s(ai−k, bj−k), where s(a, b)
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is some given scoring matrix measuring the mutual degree of similarity of the
different letters of the alphabet. For DNA sequence comparison, one often uses
the simple match-mismatch matrix [14]

s(a, b) =
{

1 : a = b
−µ : a �= b

. (3)

The computational task is to find the alignment A, which gives the highest total
score

S ≡ maxSA. (4)

For the purpose of detecting weak sequence homologies, alignment algorithms
can also take into account insertions and deletions in either one of the two
sequences during biological evolution [14]. For such gapped alignments, each gap
contributes a (negative) gap cost γ to the total score of the alignment. Using
affine gap costs, one additionally distinguishes between the gap initiation cost
γi and the gap extension cost γe.

Since an alignment score S is assigned to any pair of sequences, also to bio-
logically completely unrelated ones, it is helpful to know the distribution of S
in an appropriate null model. The knowledge of this distribution gives the pos-
sibility to assign p-values to alignment results; they specify the probability that
a high score could have arisen by chance in order to be able to distinguish true
evolutionary relationship from random similarities. As already mentioned in the
introduction, a frequently used null model for that purpose is the iid model. For
ungapped alignment of long sequences (M, N � 1), the distribution of S for the
iid model has been worked out rigorously [15, 16, 17]; it is a Gumbel or extreme
value distribution, with its probability density function given by

pdf(S) = KMNλ exp (−λS − KMNe−λS). (5)

The distribution is characterized by the two parameters λ and K. In the iid case,
the scale parameter λ is the unique positive solution of the equation

〈exp (λs)〉 =
∑

a,b

papb exp [λs(a, b)] = 1. (6)

The other parameter K then determines the mean of the distribution.
For gapped alignment, no rigorous theory for the distribution of S exists, so

far. However, numerical evidence strongly suggests that the distribution is still of
Gumbel form [18, 19, 20, 21]. Using this empirical applicability, it has been shown
in [22, 23, 24] that λ for local gapped alignment in the iid model can be derived
solely from studying the much simpler global alignment, where one is interested
in the path with the highest score h ≡ max hA, connecting the beginning (a1, b1)
to the end (aN , bN ) of a given pair of sequences a and b (we set M = N , from
now on). One defines a generating function

ZN(λ) ≡ 〈exp (λh)〉, (7)
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where the brackets 〈·〉 denote an average over all possible pairs of random se-
quences a and b of length N . The central conjecture in [22] then states that λ
is determined by the solution of the equation

lim
N→∞

1
N

log ZN(λ) = 0. (8)

Following the results of [25, 26], this allows for a very efficient computation of λ
for gapped alignment in the iid model.

3 The Gaussian Approximation

In this section, we derive approximate analytical results for the parameter λ of
the score distribution one obtains for alignment of random sequences with long-
range correlations. We restrict ourselves to gapless alignment, since we expect
qualitatively similar results for the gapped case. This will also be confirmed by
the numerical data we present in section 5. For simplicity, we furthermore assume
a uniform distribution of the four nucleotides; a generalization to sequences with
biased composition is straightforward.

The approach employed in the following is based on the assumption that for
local gapless alignment of correlated sequences the distribution of the maximal
scores obeys Gumbel form, and λ is still determined by Eq. (8). The score of
the global alignment is given by the sum over all elementary scores si = s(ai, bi)
along the diagonal of the alignment-lattice. Defining s = (s1, . . . , sN), we have

h =
N∑

i=1

si = 1ts. (9)

The ensemble average of Eq. (7) over all realizations of the two sequences a and
b can therefore be expressed in terms of an average over all score vectors s. While
the probability of a score vector factorizes in the iid model, P (s) =

∏
i P (si), this

is no longer the case for correlated sequences. However, approximate values for
the probabilities P (s) in the correlated case can still be derived by a Gaussian
approximation. The idea of this approach is to replace the discrete variables
si by continuous Gaussian variables. More precisely, an individual discrete score
si = {1, −µ} at position i along the diagonal of the alignment-lattice will now be
allowed to take continuous values, distributed according to a normal distribution

pdf(si) =
1√

2πσ2
exp

−(si − 〈s〉)2
2σ2 . (10)

Mean and variance are chosen in accordance with the original discrete score
distribution, i.e., 〈s〉 = 1/4 − 3µ/4, and σ2 = 3(1 + µ)2/16.

The probability P (s) of a score vector s is then determined by an N -dimen-
sional Gaussian distribution

P (s) = [(2π)N detσ]−1/2

exp [−1
2
(s − 〈s〉)tσ−1(s − 〈s〉)], (11)
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with 〈s〉 = (〈s〉, . . . , 〈s〉) and the covariance matrix σ, defined by

σij = 〈s(i)s(j)〉 − 〈s(i)〉〈s(j)〉. (12)

The diagonal elements of σ are given by the variance of an individual score,
σii = σ2. The non-diagonal elements σi�=j can be expressed in terms of the
correlation function C(r) of the sequences a and b,

σij =
1
3
(1 + µ)2C2(|i − j|). (13)

In this expression the correlation function C(r) is squared, since (13) describes
the correlations of the similarity scores which arise from a comparison of two
sequences. The non-diagonal elements vanish for iid sequences.

Using the distribution (11), the calculation of the generating function (7)
amounts to the evaluation of an N -dimensional Gaussian integral, which can be
solved explicitly,

ZN (λ) =
∫

ds P (s) exp (λ1ts)

= [(2π)N det σ]−1/2
∫

ds e−
1
2 (s−〈s〉)tσ−1(s−〈s〉)+λ1ts

= exp (λ1t〈s〉 +
1
2
λ21tσ1). (14)

The central conjecture (8) then implies

0 = lim
N→∞

1
N

(λ1t〈s〉 +
1
2
λ21tσ1). (15)

Notice that this expression coincides with the result obtained by applying the
central conjecture to the Taylor series approximation of the generating func-
tion (7) up to second order. Using Eq. (13) yields

λ =
−2〈s〉

σ2 + 2
3 (1 + µ)2 limN→∞

∑N
i=1 C2(i)

. (16)

The first term σ2 in the denominator of (16) is related to the individual fluctu-
ations of a single score element, irrespective of correlations along the sequences.
The second term, on the other hand, vanishes for iid sequences and determines
the corrections to λ due to correlations.

In case of long-range correlations, i.e., C(r) = cr−α, and assuming α > 1/2,
we obtain

λ =
−2〈s〉

σ2 + 2
3 (1 + µ)2c2ζ(2α)

, (17)

where ζ(x) is the Riemann zeta function. Consequently, the Gaussian approxima-
tion predicts deviations in λ for the alignment of long-range correlated sequences
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compared to iid sequences. A detailed numerical analysis of this analytic result
will be performed in section 4. Notice that for α ≤ 1/2 the sum

∑∞
i=1 C2(i)

diverges, resulting in λ = 0. This might indicate a transition from local to global
alignment in the Gaussian approximation, which will be discussed in section 4.3.

As a first evaluation of the Gaussian approximation, we investigate its predic-
tions for sequences a=(a1, . . . , aN ) generated by a Markov process. We consider
a first order process with four different states Ai ∈{A, C, T, G}. Starting with a
random nucleotide a1, the transition probabilities are defined by

P (ai+1|ai) =
{

p : ai+1 = ai
1
3 (1 − p) : ai+1 �= ai

. (18)

This process generates short-range correlations in the sequences of the form
C(r) = c exp (−βr) with β = − log (4p/3 − 1/3) and c = 3/4. For this case, the
Gaussian approximation (16) yields

λ =
−2〈s〉

σ2 + 2
3 (1 + µ)2c2/(exp (2β) − 1)

. (19)

This can be compared to an exact analytical result for λ obtained by equat-
ing the largest eigenvalue of a modified λ-dependent transition matrix of the
underlying Markov process to one [16]. As is shown in Fig. 2, the Gaussian ap-
proximation (19) fits well to the exact resuls; deviations for large β vanish for
decreasing β. Notice that the limit β → ∞ corresponds to p → 1/4, describing
the asymptotics of an uncorrelated iid sequence. The deviations of the Gaussian

0.0 1.0 2.0 3.0 4.0
β

0.0

0.5

1.0

1.5

λ

iid asymptotics
exact analytics
Gaussian approx.

Fig. 2. λ for sequences with short-range correlations generated by a Markov process.
The dashed line is the exact result [16] for the Markov process defined in (18), using
µ = 3. The solid line is the corresponding result of the Gaussian approximation, as
derived in Eq. (19). Solving Eq. (6) yields the iid asymptotics λ ≈ 1.374 (dotted line).
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approximation for this regime result from the fact that the third and all higher
cumulants of the distribution (10) vanish, which they do not for the discrete
distribution.

4 Numerical Results

4.1 Generation of Long-Range Correlated Random Sequences

Numerical evaluation of the results obtained in the previous section hinges on the
knowledge of the score distribution pdf(S) for local gapless alignment of pairs
of long-range correlated random sequences. However, the efficient generation of
such sequences is quite intricate. In [10], we have proposed a biologically moti-
vated model of sequence evolution which generates sequences with the desired
statistical features. Furthermore, it has recently been shown [11] that there exists
a much larger class of dynamical processes, so called, expansion-randomization
processes, which allow for the efficient generation of sequences with arbitrary
long-range correlations.

Based on [11], we use a single-site duplication-mutation algorithm to gener-
ate long-range correlated sequences. We start with a sequence of one random
nucleotide a1, and the dynamics of the model is defined by the following update
rules:

1. A random position j of the sequence is chosen.
2. The nucleotide aj is either mutated to a random but different nucleotide

with probability Pmut, or duplicated with probability Pdup = 1 − Pmut. The
duplication process inserts a copy of aj at position j + 1, thereby increasing
the sequence length by one.

This process generates sequences of arbitrary length N in a time O[N log (N)]
with asymptotic long-range correlations in their nucleotide composition. The
correlation function of the generated sequences is given in terms of the Euler
beta function B(x, y) by [10]

C(r) =
3
4
αB(r + 1, α). (20)

In the large r limit, this yields C(r) ∝ r−α. By varying the mutation probability
0 < Pmut < 1, the decay exponent α of the long-range correlations can be tuned
to any desired positive value, as it is determined by

α =
8
3

Pmut

1 − Pmut
. (21)

Using this model, we are now in the position to efficiently generate large en-
sembles of long-range correlated sequences needed for an accurate measurement
of the tail of the distribution pdf(S). For the alignment, we use the standard
Smith-Waterman dynamic programming algorithm [14] with scoring matrix (3)
and µ = 3.
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Fig. 3. Convergence of the distribution pdf(S) for long-range correlated sequences
with α = 2.0 to a Gumbel form. The solid line is a Gumbel distribution, as specified
in Eq. (5) with N = M = 104 and fitted parameters λ = 0.9614 and K = 0.119. λ
was obtained by fitting a linear function to log[pdf(S)] for 21 < S < 31, K has then
been estimated by fitting the data to (5) in the same interval. In order to be able to
compare the shape of pdf(S) for different N , the distributions have to be rescaled by
a transformation pdf(S) → pdf(S + 2 ln [N/N0]) with reference length N0 = 104.

4.2 The Gumbel Distribution of Alignment Scores

The Gaussian model is based on the assumption that the score distribution
pdf(S) is of Gumbel form for long-range correlated sequences. Consequently,
our first numerical analysis aims at a verification of this conjecture. In Fig. 3,
we show the measured pdf(S) for long-range correlated sequences with α = 2.0,
estimated from ensembles of 107 pairs of random sequence realizations generated
by the above specified algorithm. For large N , the distribution asymptotically
approaches a Gumbel form. As is the case for the iid model, finite-size corrections
come into play for short sequence lengths [20, 27, 28]. These deviations primarily
show up in the small S regime, while the more relevant large S regime converges
fast for increasing N .

Now, that we have verified the shape of the score distribution to be of Gumbel
form, we can test the accuracy of the analytic predictions for λ derived by
the Gaussian approximation. Here we restrict ourselves to the discussion of the
regime α > 1/2, where the Gaussian approximation predicts finite values of λ;
the regime α ≤ 1/2 will be investigated below.

We compare our numerical data to Eq.(16), using correlations of the form (20).
Results are shown in Fig. 4. The Gaussian approximation captures the qualita-
tive behavior of the numerical data. Again, the right side of the plot reveals
the deviations of the Gaussian approximation concerning its iid asymptotics
given by α → ∞. With increasing correlation strength, i.e., smaller values of
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Fig. 4. λ for a null model with long-range correlated sequences in dependence of the
correlation exponent α. The solid line is the analytic result of the Gaussian approxi-
mation, one obtains by estimating Eq. (16) using the correlations (20) of our simulated
sequences. Numerically measured values of λ for different correlation parameters α are
denoted by symbols. For our simulation, we use sequences of length N = 103 and
average over ensembles of 108 pairs of sequences.

α, λ decreases, confirming that long-range correlations systematically raise the
probability of measuring high alignment scores.

So far, our investigations of the alignment score distribution for long-range
correlated sequences have focused on the exponential tail of pdf(S). We now
turn to the second parameter K. For that purpose, we recall that the mean of a
Gumbel distribution (5) is determined by

〈S〉 =
Γ + log (KN2)

λ
, (22)

Table 1. Dependence of 〈S〉 and K on the exponent α. We use simulated sequences of
length N = 103 and average over ensembles of 108 pairs of sequences for each value of
α to obtain numerical values of λ and 〈S〉. The values of K have been calculated using
Eq. (22).

α λ 〈S〉 K

(iid) 1.374 9.71 3.50 × 10−1

4.0 1.240 10.61 2.90 × 10−1

2.0 0.967 12.65 1.15 × 10−1

1.0 0.556 18.07 1.30 × 10−2
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where Γ ≈ 0.5772 is the Euler-Mascheroni constant. Thus, knowing λ, the pa-
rameter K can easily be calculated by measuring the mean 〈S〉 of the score
distribution. As shown in Table 1, K is significantly affected by the presence of
long-range correlations in the sequences to be aligned; it decreases with increas-
ing correlation-strength. However, the mean of the distribution is, as expected,
shifted to larger values of S for decreasing values of α, since K contributes
only logarithmically in Eq. (22) and the change in 〈S〉 is dominated by the
decrease of λ.

4.3 The Score Distribution for α ≤ 1/2

In the regime α > 1/2, the score distribution is of Gumbel form and the Gaussian
approximation suitably fits the numerical values of λ. For values of α ≤ 1/2, the
Gaussian approximation yields λ = 0, which might indicate a transition from
local to global alignment. For simulated sequences of finite length, on the other
hand, one still measures finite values of λ (Fig. 4). The numerical investigation
of this regime is complicated by a distinct finite size effect: according to the
results derived in [11], an individual alignment of two finite sequences will have
a systematic bias of 〈s〉 towards either 〈s〉 = 1, or 〈s〉 = −µ, depending on
whether by chance the two initial random letters a1 and b1 of our sequence
generation algorithm were equal for the two sequences to be aligned, or not.
This effect causes strong deviations of pdf(S) from a Gumbel form for small S.
However, the tail of the distribution is still exponential for finite sequences, and
therefore allows for a measurement of λ. It is dominated by those realizations of
the ensemble, where both sequences started with the same letter since they lead
to systematically higher values of 〈s〉 and therefore also higher scores S.

As can be seen in Fig. 4, λ approaches zero for finite sequences not until the
“infinite” correlation strength limit α → 0. Further analysis is needed to decide
on whether there actually is a transition to global alignment for a particular
α > 0 in the limit N → ∞, or not. If this is the case, then the rate of convergence
for λ → 0 is at most logarithmically.

However, for practical applications this transition is irrelevant. Finite se-
quences always have a positive λ, also in the regime α ≤ 1/2. For these particular
choices of parameters, λ needs to be measured numerically.

5 Consequences for Alignments of Genomic Sequences

It has been shown that long-range correlations in base composition increase the
probability of measuring high scores for pairwise sequence alignment. In a bi-
ological context, this raises the question whether the effect causes a significant
change of the p-values for DNA alignment? In order to address this issue, we
investigate the deviations of the score distribution for correlation parameters of
genomic magnitude compared to iid sequences. As an example, we consider the
measured correlation function of Human chromosome 22, shown in Fig. 1(b).
Using the simulation algorithm introduced in section 4.1 we can generate long-
range correlated random sequences with the corresponding exponent α ≈ 0.232.
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By randomly mutating 85% of the sites after sequence build up, the correla-
tion amplitude is reduced to the genomic value, while the exponent remains
unchanged [11]. As can be seen in Fig. 1(b), this procedure allows us to generate
random sequences featuring comparable correlations as Human chr. 22.

We perform ungapped, as well as gapped alignment with affine gap costs for
107 pairs of random sequences with length N = 103 from the above specified
ensemble. Alignment parameters are chosen in accordance with the NCBI default
values µ = 3, gap initiation cost γi = 5, and gap extension cost γe = 2 [29].
In Fig. 5 we show the measured score distributions for the simulated chr. 22
sequences compared to iid sequences. The resulting parameters λ and 〈S〉 are
presented in Table 2. It turns out that the difference in the score distributions
between ungapped and gapped alignment is negligible for the parameters used.
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Fig. 5. The score distribution for ungapped and gapped alignment of simulated se-
quences with correlations comparable to those of Human chromosome 22. The straight
lines are the fits to the exponential tails of the score distributions, obtained by fitting
a linear function to log[pdf(S)] in the depicted intervals.

Table 2. Fitted parameters λ and 〈S〉 for the iid ensemble and simulated Human chr.
22 sequences of length N = 103. In the last column, exemplary p-values of a score
S′ = 18 are shown.

ensemble λ 〈S〉 P (S ≥ 18)

iid (ungapped) 1.374 9.714 3.3 × 10−6

sim. chr. 22 (ungapped) 1.191 10.164 2.8 × 10−5

iid (gapped) 1.373 9.714 3.2 × 10−6

sim. chr. 22 (gapped) 1.215 10.163 2.7 × 10−5
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The deviations in λ between the iid ensemble and the simulated Human chr.
22 sequences are approximately 15% in both cases, and the mean of the score
distributions for the correlated sequences is significantly higher. In combination,
both effects substantially change the p-values of high scores compared to the iid
model, as can be seen in Table 2. The p-value of a specific score S′ is thereby
defined by the integral P (S ≥ S′) =

∫ ∞
S′ pdf(S)dS. For an exemplary score

S′ = 18, this p-value will be increased by almost one order of magnitude if one
incorporates the genomic correlations into the null model.

6 Discussion

Long-range correlations are a widespread statistical feature of eukaryotic DNA.
In this article, it has been shown that incorporation of this feature into the null
model substantially influences the score statistics of sequence alignment. While
the p-values of the scores are systematically increased, the ranking of hits will not
be significantly changed. The effect is therefore relevant whenever one is actually
interested in p-values, e.g., when specifying a cutoff in order to distinguish true
evolutionary relationship from random similarities.

One has to keep in mind that genomic DNA is a highly heterogeneous envi-
ronment: it consists of genes, noncoding regions, repetitive elements etc., and all
of these substructures may imprint their signature on the amount of correlations
found in a particular genomic region. Long-range correlations are by definition
a feature on larger scales. Our findings are therefore naturally applicable to the
alignment of larger genomic regions. This includes the identification of dupli-
cated regions, or conserved syntenic segments between chromosomes of different
species, which often extend over many kilobases up to several megabases. How-
ever, long-range correlations will also influence the statistics of search algorithms
for short DNA motifs if the query sequences are large enough for long-range cor-
relations to be measured.

Moreover, it will be interesting to analyze possible effects of long-range cor-
relations on the statistics of other widely used sequence analysis tools, e.g., the
prediction of transcription factor binding sites. Further investigation is needed
to assess the relevance of long-range correlations for other statistical predictions.
Finally, more accurate null models of DNA sequences utilizing quantitative cor-
relation features will help to reduce the often encountered high false-positive
rate of bioinformatics analysis tools.
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