
Simulating Protein Motions
with Rigidity Analysis�

Shawna Thomas, Xinyu Tang, Lydia Tapia, and Nancy M. Amato

Parasol Lab, Dept. of Comp. Sci., Texas A&M University,
College Station, TX 77843

Abstract. Protein motions, ranging from molecular flexibility to large-
scale conformational change, play an essential role in many biochemi-
cal processes. Despite the explosion in our knowledge of structural and
functional data, our understanding of protein movement is still very lim-
ited. In previous work, we developed and validated a motion planning
based method for mapping protein folding pathways from unstructured
conformations to the native state. In this paper, we propose a novel
method based on rigidity theory to sample conformation space more
effectively, and we describe extensions of our framework to automate
the process and to map transitions between specified conformations.
Our results show that these additions both improve the accuracy of
our maps and enable us to study a broader range of motions for larger
proteins. For example, we show that rigidity-based sampling results in
maps that capture subtle folding differences between protein G and its
mutations, NuG1 and NuG2, and we illustrate how our technique can
be used to study large-scale conformational changes in calmodulin, a 148
residue signaling protein known to undergo conformational changes when
binding to Ca2+ . Finally, we announce our web-based protein folding
server which includes a publically available archive of protein motions:
http://parasol.tamu.edu/foldingserver/

1 Introduction

Protein motions, ranging from molecular flexibility to large-scale conformational
change, play an essential role in many biochemical processes. For example, con-
formational change often occurs in binding. While no consensus has been reached
regarding models for protein binding, the importance of protein flexibility in the
process is well established by the ample evidence that the same protein can exist
in multiple conformations and can bind to structurally different molecules.

Our understanding of molecular movement is still very limited and has not
kept pace with the explosion of knowledge regarding protein structure and func-
tion. There are several reasons for this. First, the structural data in repositories
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like the Protein Data Bank (PDB) [8] consists of the spatial coordinates of each
atom. Unfortunately, the experimental methods used to collect this data can-
not operate at the time scales necessary to record detailed large-scale protein
motions. Second, traditional simulation methods such as molecular dynamics
and Monte Carlo methods are computationally too expensive to simulate long
enough time periods for anything other than small peptide fragments.

There has been some attention focused on methods for modeling protein
flexibility and motion. One notable effort is the Database of Macromolecular
Movements [15, 14]. They generate and archive protein ‘morphs’ that interpo-
late between two different protein conformations. While the method used is more
chemically realistic than straight-line interpolation (as described in Section 2),
it was selected over other more accurate methods for computational efficiency
and is known to have problems for some kinds of large deformations.

In previous work [3, 2, 42, 41], we developed a new computational technique for
studying protein folding that builds an approximate map of a protein’s potential
energy landscape. This map contains thousands of feasible folding pathways to
the known native state enabling the study of global landscape properties. We
obtained promising results for several small proteins (60–100 amino acids) and
validated our pathways by comparing secondary structure formation order with
known experimental results [3].

Our Contribution. We augment our framework with three powerful new con-
cepts that enable us to study a broader range of motions for larger proteins:

– We propose a new method based on rigidity theory to sample conformations.
– We generalize our PRM framework to map specified transitions.
– We present a new framework to automate the map building process.

Our new rigidity-based sampling allows us to study larger proteins by more
efficiently characterizing the protein’s energy landscape with fewer, more re-
alistic conformations. We exploit rigidity information by focusing sampling on
(currently) flexible regions. This results in smaller, better maps. In one dramatic
case study, we show that rigidity-based sampling and analysis reveals the folding
differences between protein G and its mutants, NuG1 and NuG2, which is an
important ‘benchmark’ set that has been developed by the Baker Lab [36].

Extending our framework to focus on particular conformations enables us to
investigate questions related to the transition between particular conformations,
e.g., when studying folding intermediates, allostery, or misfolding. We provide
evidence that the transitions mapped by our approach are more realistic than
those provided by the computationally less expensive Morph Server [14], espe-
cially for transitions requiring large conformational changes.

The accuracy of our approach heavily depends on how densely we sample the
conformation space. Previously, this was user specified and fixed. Here, we use an
extension of our basic technique which incrementally samples the conformation
space at increasingly denser resolution until our map of the landscape stabilizes.

Finally, we announce our protein folding server which uses our technique
to generate protein transitions to the native state or between selected
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Table 1. Comparison of protein motion models

Approach Landscape # Paths Path Quality Computation Native Required
Molecular Dynamics No 1 Good Long No

Monte Carlo No 1 Good Long No
Statistical Model Yes 0 N/A Fast Yes

PRM-Based (Our Approach) Yes Many Approx Fast Yes
Lattice Model Not used on real proteins

conformations. We invite the community to help enrich our publicly available
database by submitting to our server: http://parasol.tamu.edu/foldingserver/

2 Related Work

Protein Motion Models. Several computational approaches have been used
to study protein motions and folding, see Table 1. These include lattice models
[10], energy minimization [30, 44], molecular dynamics [29, 16], and Monte Carlo
methods [13, 26]. Molecular dynamics and Monte Carlo methods provide a sin-
gle, high quality transition pathway, but each run is computationally intensive.
Statistical mechanical models [35, 1, 6], while computationally efficient, are lim-
ited to studying global averages of the energy landscape and kinetics and are
unable to produce individual pathways.

Computing Macromolecular Motions. Gerstein et al. have developed the
Database of Macromolecular Movements [15, 14] to classify protein motions.
Their server produces a ‘morph’ movie between two target conformations in
just a few minutes on a desktop PC. Their database currently includes more
than 240 distinct motions.

To ‘morph’ between two target conformations, they first perform an align-
ment. Then, an iterative ‘sieve-fit’ procedure produces a superposition of the
target conformations. The superimposed conformations are ‘morphed’ by in-
terpolating the Cα atom positions. Each intermediate conformation is energy
minimized. This interpolation method, called adiabatic mapping, was selected
because it has modest computational requirements yet produces chemically rea-
sonable ‘morphs.’ Adiabatic mapping, however, is not guaranteed to produce
accurate trajectories and in fact cannot model many large deformations.

Motion Planning and Molecular Motions. The motion planning problem is
to find a valid path for a movable object from a start to a goal. The probabilistic
roadmap method (PRM) [23] has been highly successful in solving high degree
of freedom (dof) problems.

PRMs first sample random points in the movable object’s conformation space
(C-space). C-space is the set of all possible positions and orientations of the mov-
able object, valid or not. Only those samples that meet feasibility requirements
(e.g., collision free or low potential energy) are retained. Neighboring samples
are connected to form a graph (or roadmap) using some simple local planner
(e.g., a straight line). This roadmap can then be used to find the motion be-
tween different start and goal pairs by connecting them to the roadmap and



Simulating Protein Motions with Rigidity Analysis 397

extracting a path, if one exists. PRMs are simple to apply, even for high dof
problems, only requiring the ability to generate random samples in C-space and
test them feasibility.

PRMs have been applied to model molecular motions by modeling the mole-
cule as an articulated linkage and replacing the typical collision detection valid-
ity check with some measure of physical viability (e.g., potential energy). Singh,
Latombe and Brutlag first applied PRMs to protein/ligand binding [40]. In subse-
quent work, our group used another PRM variant on this problem [7]. Our group
was the first to adapt PRMs to model protein folding pathways [3, 2, 42, 41].
Apaydin et. al. [5, 4] also applied PRMs to proteins, however their work differs
from ours in several aspects. First, they model the protein at a much coarser
level, considering all secondary structure elements in the native state to already
be formed and rigid. Second, while our focus is on studying the transition process,
their focus has been to compare the PRM approach with other computational
methods such as Monte Carlo simulation. Cortes and Simeon used a PRM-based
approach to model long loops in proteins [12]. Recently, we adapted the PRM
framework to study RNA folding kinetics [45].

Rigidity Theory and Protein Flexibility. Several computational approaches
study protein rigidity and flexibility. One approach infers rigidity and flexibil-
ity by comparing different known conformations [37, 9]. Molecular dynamics has
been used to extract flexibility information from simulated motion [32, 11, 24].
A third method studies rigidity/flexibility of a single conformation [21, 22, 33].
Here, we use a rigidity analysis technique belonging to the third class of ap-
proaches called the pebble game [19, 18] to better simulate motion. It is fast and
efficient; we can apply it to every conformation we sample.

The pebble game is a constraint counting algorithm which determines the
dof in a two-dimensional graph, along with its rigid/flexible regions. In 2D,
the pebble game assigns each vertex two pebbles, representing its two dof, see
Figure 1a. Each edge/constraint is examined to determine if it is independent
or redundant. If two free pebbles can be placed on both endpoints of the edge,
then it is marked independent and covered by a pebble from one of its incident
vertices. Once an edge is covered by a pebble, it remains covered, although which
vertex the pebble comes from may change. Pebbles may be rearranged as shown

move on move off

(a) (b) (c)

Fig. 1. (a) The result of the pebble game on a 2D graph. Pebbles may be free (white) or
covering (black). Constraints are marked as independent (solid) or redundant (dashed).
Pebbles may be rearranged as shown. Rigidity models for a sample molecule: (b) bar-
joint and (c) body-bar.
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in Figure 1a. If pebbles cannot be rearranged to get two free pebbles on both
of an edge’s endpoints, then the edge is marked redundant and indicates a rigid
region. In the end, the remaining free pebbles indicate the graph’s dof.

The 2D pebble does not generalize to 3D for arbitrary graphs, but it can
be applied to 3D bond-bending networks [18]. A bond-bending network is a
truss structure with constraints between nearest neighbors and next-nearest
neighbors. A protein, with fixed bond lengths and bond angles, can be mod-
eled as a bond-bending network where atoms are modeled as vertices with 3
dof and bonds are modeled as edges, called the bar-joint model, see Figure 1b.
It has been successfully used by several applications to study protein rigidity
and flexibility [20, 39, 17, 28]. An alternative model, the body-bar model, repre-
sents atoms as rigid bodies with 6 dof and the torsional bonds between them
as 5 bars/constraints [46], see Figure 1c. Both models are conjectured to be
equivalent [18].

3 Modeling Molecular Motions with PRMs

We have successfully applied the PRM framework to study protein folding path-
ways [3, 2, 42, 41]. We model the protein as an articulated linkage. Using a stan-
dard modeling assumption for proteins that bond angles and bond lengths are
fixed [43], the only dof in our model are the backbone’s phi and psi torsional
angles which are modeled as revolute joints with values [0, 2π).

The strategy follows the general PRM methodology sketched in Section 2.
First, different protein conformations are sampled. A sample q, with potential
energy E(q), is accepted with the probability:

P (accept q) =

⎧
⎨

⎩

1 if E(q) < Emin
Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

where Emin is the potential energy of the open chain and Emax is 2Emin. Next,
node connection is done in the same way as traditional PRMs except that each
connection is assigned a weight to reflect its energetic feasibility. The weight for
the edge (q1, q2) is a function of all the intermediate conformations along the
edge {q1 = c0, c1, . . . , cn−1, cn = q2}. For each pair of consecutive conformations
ci and ci+1, the probability Pi of transitioning from ci to ci+1 depends on the
difference in their potential energies ∆Ei = E(ci+1) − E(ci):

Pi =
{

e
−∆Ei

kT if ∆Ei > 0
1 if ∆Ei ≤ 0

This keeps the detailed balance between two adjacent states, and enables the
weight of an edge to be computed by summing the logarithms of the probabilities
for consecutive pairs of conformations in the sequence. Edge weights are not
transition rates, but the logarithm of transition rates. This enables edge weights
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to follow the summation rule (instead of the multiplication rule for transition
rates) and facilitates the use of graph algorithms to extract shortest paths.

The samples and connections form a roadmap from which we can typically
extract thousands of transition pathways. With our original method, in just a
few hours on a desktop PC, we obtained promising results for many small pro-
teins (60–100 residues) and validated our pathways by comparing the secondary
structure formation order with known experimental results [3]. In one case study,
our technique was sensitive enough to identify folding differences for structurally
similar proteins G and L [42].

Potential Energy Calculations. As in our previous work, we use a coarse
potential function similar to [29]. We use a step function approximation of the
van der Waals component and model all side chains as equal radii spheres with
zero dof. If two spheres are too close (i.e., < 2.4Å during sampling and 1.0Å
during connection), a very high potential is returned. Otherwise the potential is:

Utot =
∑

restraints

Kd{[(di − d0)2 + d2
c ]

1/2 − dc} + Ehp

where Kd is 100 kcal/mol and d0 = dc = 2 Å as in [29]. The first term represents
constraints favoring known secondary structure through main-chain hydrogen
bonds and disulphide bonds, and the second term is the hydrophobic effect. The
hydrophobic effect is computed as follows: if two hydrophobic residues are within
6Å of each other, then the potential is decreased by 100 kJ/mol.

3.1 Rigidity-Based Sampling

The roadmap produced by our technique is an approximation of the protein’s en-
ergy landscape. Roadmap quality is measured both by how realistic (as compared
to experimental data) its pathways are and by how many samples are required
to achieve the desired accuracy. The latter is important because it determines
what size molecules can be analyzed.

Hence, sampling is the key to producing a good approximation of the land-
scape. Note that only a relatively small portion of the conformation space ‘near’
the target conformation(s) is of interest in modeling motions. This implies that
we should use biased sampling to cover the regions of interest efficiently.

In previous work [3, 2, 42, 41], we obtained a denser distribution of samples
near the target conformation through an iterative sampling process where we
apply small Gaussian perturbations to existing conformations, beginning with
the target conformation. This approach still requires many samples (e.g., 10,000)
for relatively small proteins (e.g., 60–100 residues). To apply our method to larger
proteins, we need strategies to generate ‘better’ samples; they should be more
physically realistic and represent ‘stepping stones’ for conformational transitions.

In this work, we follow the same strategy as before, but use rigidity analysis
to restrict how to perturb a conformation. We first use rigidity analysis to de-
termine which bonds are independently flexible, dependently flexible, and rigid,
see Figure 2b. Independently flexible bonds can be perturbed without affecting
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(a)

2 DOF

1 DOF

1 DOF

(b)

Fig. 2. (a) Model of a 5 residue protein. Each residue has two rigid bodies. We model
peptide bonds and disulphide bonds with 5 bars, hydrogen bonds with 2 bars, and
hydrophobic interactions with 1 bar. Redundant constraints (dashed lines) identified
by the pebble game. (b) Pebble game results: a rigid cluster (dotted box), a 2 dof
dependent hinge set (dashed lines), and independently flexible bonds (arcs).

the rest of the bonds in the system. Dependently flexible bonds form a set of
bonds such that perturbing any one of these bonds results in a corresponding
perturbation in the rest of the set.

If the bond is independently flexible, we perturb with a high probability,
Pflex. If the bond is rigid, we perturb with a low probability, Prigid. For each
dependently flexible set, we randomly select d bonds to perturb with probability
Pflex and perturb the remaining bonds with probability Prigid, where d is the
internal dof in the set. Perturbing rigid dof ensures good coverage of the space.

Rigidity Model. We employ the body-bar model to analyze a conformation’s
rigidity. With the body-bar model, we can represent the protein at a residue
level, a closer match to our phi-psi model for sampling than the bar-joint model
with a more detailed all-atoms view.

We model the protein simply as a chain of rigid bodies, each representing one
torsional dof, see Figure 2a. We model each peptide bond and disulphide bond
with 5 bars, each hydrogen bond with 2 bars, and each hydrophobic contact with
1 bar. On all conformations tested, this yields the same rigid and flexible regions
as the equivalent bar-joint model on an all-atoms representation of the protein.

Rigidity Map. We can also use rigidity analysis to define a new residue mapping
and distance metric. A rigidity map, r, is similar to a contact map. Rigid body
pairs (i, j) from the rigidity model are marked if they have the same rigidity
relationship: 2 if they are in the same rigid cluster, 1 if they are in the same
dependent hinge set, and 0 otherwise. (Recall that there are two rigid bodies
for each residue representing the two torsional dof.) Figure 3a shows the rigidity
map of the native state for protein G with rigid clusters (black) and dependent
hinge sets (green/shaded). Rigidity maps provide a convenient way to define a
rigidity distance metric, rdist(q1, q2), between two conformations q1 and q2 where
n is the number of residues:

rdist(q1, q2) =
∑

0≤i<j≤2n

(rq1 (i, j) �= rq2 (i, j)).
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3.2 Automatic Roadmap Construction

Roadmap accuracy depends on the sampling density. Previously, this was user
specified and difficult to tune. Here, we automate roadmap construction by build-
ing the roadmap incrementally [47]. We first build a roadmap with a low sam-
pling density as described above. Then, we test the roadmap to see if it has
stabilized as specified by a set of evaluation criteria. We continue to augment
the roadmap with more samples and connections until it satisfies the evalua-
tion criteria. This provides two key advantages over our previous work: (1) the
roadmap is constructed automatically at the appropriate resolution, and (2) we
reuse all previous computation reducing runtime cost by several factors.

For protein folding, we build a roadmap until the secondary structure for-
mation order along its pathways stabilizes. A piece of secondary structure is
‘formed’ when the distance between its rigidity map (defined in Section 3.1) and
that piece’s rigidity map in the target state is within 0.8, normalized to the range
[0,1]. The pathway’s secondary structure formation order is then the order at
which pieces are ‘formed.’ We examine every pathway in the roadmap from an
unstructured conformation to the target state and group them by this ordering.
We consider the roadmap stable when the percentage of each group does not
vary from the previous roadmap by more than 10%.

3.3 Mapping Specified Transitions

We extend our PRM framework to study specific large-scale conformational
changes by iteratively sampling around each target conformation and connecting
samples together as described earlier in Section 3. Thus our roadmaps contain
the target conformations, as well as the transitions between them, and approxi-
mate the energy landscape encompassing the transition under study.

We can study problems such as transitions between known folding inter-
mediates, transitions between bound and unbound conformations to a ligand,
misfolded proteins, and allostery interactions. For example, several devastating
diseases such as scrapie in sheep and goats, bovine spongiform encephalopathy
(Mad Cow disease), and Creutzfeldt-Jakob disease in humans are caused by mis-
folded proteins called prions [38]. Insight into how these proteins misfold could
help develop better drugs.

To map specific large-scale transitions, we interleave sampling and connection
to incrementally build a roadmap as in Section 3.2. The only difference here is we
sample around each target conformation (as in Section 3.1) during each round
of roadmap construction. Then we connect samples together and compute edge
weights as before. We continue until the roadmap adequately represents the pro-
tein’s energy landscape near the target conformations and between them. From
this roadmap, we can extract multiple low energy transition pathways between
target conformations and characterize the energy barriers between them.

We build the roadmap until the maximum network flow between each target
conformation pair is above a threshold. For maximum network flow, edges are
assigned a capacity, and the goal is to determine how much flow can be achieved
between two points in the graph. Here, we define edge capacity as the inverse of
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the edge weight. Thus, the maximum network flow between two conformations
approximates the transition rate between them [27].

4 Results and Discussion

We investigate the ability of our rigidity-based sampling strategy to efficiently
sample the protein’s conformation space. We also look at examples of large-scale
conformational change between specific target states for several small proteins
and compare our results with ‘morphs’ from the Database of Macromolecular
Movements [15, 14]. In all experiments, we set Pflex to 0.8 and Prigid to 0.2. We
use a straight line local planner and attempt to connect each conformation with
its 50 nearest neighbors. We measure distance between two conformations as the
difference between their rigidity maps (see Section 3.1).

Improved Sampling. Rigidity analysis coupled with automatic roadmap con-
struction greatly improves the efficiency of our PRM framework by restricting the
sample space in a physically realistic way. We can build smaller roadmaps that
better reflect the landscape. We built roadmaps for several previously studied
proteins [2, 41]. For each protein, we compare our new automatic framework with
rigidity-based sampling to our previous sampling technique with fixed sampling
density. Table 2 shows the roadmap size and connectivity from both methods.
Both methods give the same secondary structure formation order distribution.
When available, these results also indicate the same dominant secondary struc-
ture formation order seen in experiment [31]. In all cases, the rigidity-based
roadmaps produce equivalent folding pathways as the previous method with
smaller, more efficient roadmaps and increases connectivity. Thus, we can study
much larger proteins than before.

Case study of proteins G, L NuG1, and NuG2. Proteins G, L, and mutants
of protein G, NuG1 and NuG2 [36], present a good test case for our technique
because they are known to fold differently despite having similar structure. All
proteins are composed of a central α-helix and a 4-stranded β-sheet: β strands
1 and 2 form the N-terminal hairpin (β1-2) and β strands 3 and 4 form the
C-terminal hairpin (β3-4). Native state out-exchange experiments and pulse la-
beling/competition experiments for proteins G and L indicate that β1-2 forms
first in protein L, and β3-4 forms first in protein G [31]. This is consistent with
Φ-value analysis on G [34] and L [25]. In [36], protein G is mutated in both hair-
pins to increase the stability of β1-2 and decrease the stability of β3-4. Φ-value
analysis indicates that the hairpin formation order for both NuG1 and NuG2 is
switched from the wild type.

Our previous sampling strategy [42] was able to capture the folding differences
between proteins G and L, but not between protein G and NuG1 or NuG2. Our
new rigidity-based sampling and analysis is able to also capture the correct
folding behavior of NuG1 and NuG2, see Table 3. In addition, our rigidity-based
technique can also help to explain the stability shift in NuG1 and NuG2. For



Simulating Protein Motions with Rigidity Analysis 403

Table 2. Comparison of rigidity-based sampling to previous work for several proteins.
In all cases, rigidity-based sampling significantly reduces the required roadmap size
(N+E) to produce equivalent pathways. It also increased roadmap connectivity (E/N).

PDB Gaussian Sampling Rigidity Sampling
Identifier Length Structure Nodes Edges N + E E/N Nodes Edges N + E E/N

1AB1 46 2α + 2β 24206 386974 411180 15.99 6000 158286 164286 26.38
1CCM 46 1α + 3β 43646 728964 772610 16.70 10000 456080 466080 45.61
1RDV 52 2α + 3β 33691 457392 491083 13.58 4000 166702 170702 41.68
1EGF 53 3β 27356 391146 418502 14.30 4000 164902 168902 41.23
1PRB 53 5α 44551 696708 741259 15.64 4000 126562 130562 31.64
1SMU 54 3α + 3β 35501 557416 592917 15.70 4000 158852 162852 39.71
1FCA 55 2α + 4β 38216 489840 528056 12.82 4000 162526 166526 40.63
1VGH 55 1α + 4β 38216 631936 670152 16.54 4000 157454 161454 39.36
1GB1 56 1α + 4β 34236 912908 947144 26.66 4000 160552 164552 40.14
1SHG 57 5β 24696 270232 294928 10.94 18000 654884 672884 36.38
1BPI 58 2α + 2β 28426 399418 427844 14.05 4000 112010 116010 28.00
4PTI 58 2α + 2β 39121 389468 428589 9.96 4000 160100 164100 40.03
1HCC 59 7β 33691 453628 487319 13.46 28000 1079904 1107904 38.57
1BDD 60 3α 58486 888298 946784 15.19 6000 195950 201950 32.66
1TCP 60 2α + 2β 32786 354262 387048 10.81 4000 163692 167692 40.92
2ADR 60 2α + 2β 42723 701942 744665 16.43 8000 339498 347498 42.44
2PTL 62 1α + 4β 23921 281334 305255 11.76 4000 159728 163728 39.93
1COA 64 1α + 5β 27746 403438 431184 14.54 4000 160838 164838 40.21
2CI2 65 2α + 5β 27746 389670 417416 14.04 8000 228706 236706 28.59
1NYF 67 5β 23921 262376 286297 10.97 6000 249450 255450 41.58
1MJC 69 7β 23481 226942 250423 9.66 4000 153140 157140 38.29
1HOE 74 7β 30626 184012 214638 6.01 4000 103668 107668 25.92
1UBQ 76 1α + 5β 25206 236216 261422 9.37 4000 154192 158192 38.55
1O6X 81 2α + 3β 40931 342138 383069 8.36 4000 133544 137544 33.39
1PBA 81 4α + 3β 26476 203974 230450 7.70 8000 282960 290960 35.37
2ABD 86 5α 27956 681796 709752 24.39 18000 953900 971900 52.99

Table 3. Comparison of secondary structure formation orders for proteins G, L, NuG1,
and NuG2 with known experimental results: 1hydrogen out-exchange experiments [31],
2pulsed labeling/competition experiments [31], and 3Φ-value analysis [36]. Brackets
indicate no clear order. In all cases, our technique predicted the secondary structure
formation order seen in experiment. Only formation orders greater than 1% are shown.

Protein Experimental Formation Order Rigidity Formation Order %
G [α,β1,β3,β4], β21 [α,β4], [β1,β2,β3]2 α, β3-4, β1-2 99.4
L [α,β1,β2,β4], β31 [α,β1], [β2,β3,β4]2 β1-2, α, β3-4 100.0
NuG1 β1-2, β3-43 α, β1-2, β3-4 97.6

β1-2, α, β3-4 1.6
NuG2 β1-2, β3-43 α, β1-2, β3-4 96.6

β1-2, α, β3-4 1.1
β3-4, β1-2, α 1.1

example, consider their native state rigidity maps shown in Figure 3. In all four
proteins, the central alpha helix remains completely rigid. We also see increased
rigidity in β1-2 from protein G to NuG1 and NuG2 as suggested in [36].

We can also use rigidity-based analysis to study dynamic changes along a
folding pathway, see Figure 4. We see a distinction between the profiles for
protein G where β3-4 forms first and the others where β1-2 forms first. For
protein G, the rigidity profile (a) shows a plateau halfway along the folding
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Fig. 3. Rigidity maps for the native states of proteins (a) G, (b) L, (c) NuG1, and (d)
NuG2. Rigid clusters are black and dependent hinge sets are shaded/green.
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Fig. 4. Folding pathway profiles for proteins G, L, NuG1, and NuG2: (a) rigidity dis-
tance to the target state, (b) relative rigidity distance to the target state, and (c)
contacts present. There is a distinction between the profiles for protein G where β3-4
forms first and the others where β1-2 forms first.

pathway, where the others do not. Protein G (b) also exhibits larger changes in
rigidity earlier in the pathway while the others exhibit larger changes later.

Large-Scale Conformational Change. Calmodulin is a 148-residue signaling
protein that binds to Ca2+ to regulate several processes in the cell. It is com-
posed of 4 EF-hands joined by a flexible central α helix. When binding to Ca2+,
it undergoes two large-scale conformational changes: (1) the central α helix un-
ravels to bring the protein from a dumbbell conformation to a more globular
conformation (Figure 5a–b) and (2) the α helices in each domain reorganize
(Figure 5c–d).

We built a roadmap biased towards both target states as outlined in Sec-
tion 3.3. Figure 6 compares pathway profiles of the most energetically feasi-
ble transition between the two states in our roadmap and ‘morphs’ of various

(a) (b) (c) (d)

Fig. 5. Conformational changes of calmodulin: (a) calcium-free state (1CFD) to (b)
bound state (1CLL) and of the N-terminal domain: (c) calcium-free to (d) bound
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Fig. 6. Pathway profiles for the calmodulin N-terminal domain: (a) contacts present,
(b) coarse potential energy, (c,f) all-atoms potential energy, (d) dof computed by rigid-
ity analysis, and (e) RMSD to both target states. For RMSD, only the 30 frame ‘morph’
shown because all resolutions are nearly identical.

resolution obtained from the Morph server [15, 14]. We examined pathway pro-
files for energy, contacts present, dof computed by rigidity analysis, RMSD dis-
tance to the target states, and rigidity distance to the target states. Note that
since the Morph server alters the original target conformations, their profile
endpoints do not always align with our pathways. One striking observation is
the regularity of the concavities for the ‘morphs’ corresponding to the various
resolution levels across all the profiles except for the RMSD profiles in which
the RMSD to the target states seems to change monotonically with the path
step. These regularities in the ’morphs’ would not be expected in actual transi-
tion pathways, e.g., one would not expect a monotonic increase in RMSD from
1CFD to 1CLL. In contrast, our roadmap pathways profiles are more plausible
— they exhibit trends, but also have reasonable fluctuations. Indeed, this type of
behavior has also been observed by other researchers, e.g., in [48], Monte Carlo
simulations indicate a wide range of transition pathways and event durations.

Figure 6a,d shows the contacts present and dof computed by rigidity anal-
ysis along the pathway. Note that the protein does not completely unfold, but
maintains a large number of contacts and loses few dof. Generally, the actual
dof is inversely proportional to the number of contacts present. It is interesting
to note, however, that we see a slight break in this relationship on the second
half of the pathway where the peaks in dof do not match up with the peaks in
number of contacts. Regions of the protein become stressed when the number of
contacts increases without a corresponding decrease in dof.

We investigated several other protein transitions in a similar way, see Table 4.
We measure % dof gained as the difference between the maximum dof along
the pathway and the minimum dof of the starting/ending conformations, as a
percentage of the total dof possible (2*length). Most transitions do not involve
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Table 4. Pathway results for transitions studied. Most do not involve large unfolding.

Transition IDs Length % Dof Gained # Barriers
2VGH 1VGH 55 21.8 2
1PRV 1PRU 56 5.4 0
1BMR 1FH3 67 32.8 0
1CFD 1CLL 72 18.1 1
1CMF 1CMG 73 24.7 2
1FOX 2FOW 76 3.9 0
1PFH 1HDN 85 43.5 1

a complete unfolding of the protein. In fact, several have % dof gain less than
10%. We also captured different types of transitions including smooth transitions
without any significant energy barriers (i.e., 1PRV, 1BMR, and 1FOX) and those
with multiple energy barriers (i.e., 2VGH and 1CMF).

We also compared ‘morphs’ of various resolutions to our transition path-
ways when possible. (The Morph server was not able to produce some higher
resolution ‘morphs’ for transitions 1BMR–1FH3 and 1PRV–1PRU.) Across all
transitions, we observed the same concavity pattern phenomenon for the ‘morph’
transitions as seen in calmodulin (Figure 6) for energy, contacts, degrees of free-
dom, and rigidity distance to the targets. Here also, the RMSD to the tar-
get states essentially changed monotonically with the path step. Again, our
pathways did not exhibit these unrealistic regularities. Additional path pro-
files for all the transitions studied here can be found on our folding server:
http://parasol.tamu.edu/foldingserver/

5 Conclusion

In this paper, we describe how to augment our PRM-based approach to study a
broader range of motions for larger proteins. We proposed a method based on
rigidity theory to sample more efficiently and to generate transitions between
specified conformations. We also demonstrated that our approach yields more
physically realistic transitions than those produced by the computationally less
expensive Morph server. We invite the community to help enrich our publicly
available motion database at http://parasol.tamu.edu/foldingserver/
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