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Abstract. We describe a new approach for comparing cellular-biological
networks, and finding conserved regions in two or more such networks.
We use the length of describing one network, given the description of
the other one, as a distance measure. We employ these distances as in-
puts for generating phylogenetic trees. Our algorithms are fast enough
for generating phylogenetic tree of more than two hundreds metabolic
networks that appear in KEGG. Using KEGG’s metabolic networks as
our starting point, we got trees that are not perfect, but are surpris-
ingly good. We also found conserved regions among more than a dozen
metabolic networks, and among two protein interaction networks. These
conserved regions seem biologically relevant, proving the viability of our
approach.
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1 Introduction

With the advent of bio technologies, huge amounts of genomic data have accu-
mulated. This is true not only for biological sequences, but also with respect to
biological networks. Prominent examples are metabolic networks, protein-protein
interaction networks, and regulatory networks. Such networks are typically fairly
large, and are known for a number of species. On the negative side, they are er-
ror prone, and are often partial. For example, in the KEGG database [17] there
are over 250 metabolic networks of different species, at very different levels of
details. Furthermore, some networks are directly based on experiments, while
others are mostly “synthesized” manually.

The goal in this study is to devise a quantitative and efficient method for lo-
cal and global comparisons of such networks, and to examine their evolutionary
signals. Our method of comparing two networks is based on the notion of relative
description length. Given two labeled network A and B, we argue that the more
similar they are, the fewer bits are required to describe A given B (and vice
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versa). Mathematically, this can give rise to Kolmogorov complexity-like mea-
sures, which are incomputable and inapproximable. Other approaches, based on
labeled graph alignment, subgraph isomorphism, and subgraph homeomorphism,
are computationally intractable [12].

By way of contrast, our algorithm is efficient: Comparing the man-mouse
metabolic networks takes 10 seconds on a 3 years old PC (996 MHZ, 128 MB
RAM, Pentium 3 ), and all (240 × 239)/2 pairwise comparisons of the KEGG
database took less than three days on the same machine. We extend the relative
description length approach to local comparison of two or multiple networks.
For every label of the nodes (describing a metabolic substrate), we identify if
that label exists in the various networks, and build local neighborhoods of equal
radius around these labels. Neighborhoods with high similarity, according to our
criteria, are likely to be conserved. We seek a method that is efficient not only
for one pair of networks, but for all

(
n
2

)
pairs. Our global comparison produces

a matrix for expressing the pairwise distances between networks. To test its
quality we have built an evolutionary tree, based on the distance matrix con-
structed from KEGG’s metabolic networks. To the best of our knowledge, this
is the first time evolutionary trees are constructed based on biological networks.
The results are surprisingly good. For example, the tree for 20 taxa with large
networks (more than 3000) in the KEGG database perfectly clusters the taxa to
Eukaryotes, Prokaryots and Archea, and clusters almost perfectly sub-partitions
within each type. Neither the 20 taxa tree nor another KEGG based tree for 194
taxa are perfect, but this is hardly surprising given the huge disparity in detail
between KEGG’s metabolic networks, where some have more than 3000 nodes
(metabolites) while as many as 10% of species have metabolic networks with
fewer than 10 nodes. Bio networks are still at a state where the available data is
much more fragmented and less accessible than biological sequences data. But
network information certainly goes beyond sequence information, and our work
makes some preliminary steps at the fascinating questions of network comparison
and evolution.

Relative description length proved to be a useful parameter for measuring
the disparity between biological sequences, such as genomes. In [21], Li et al.
describe a distance based on compression [4] that was used for generating phy-
logenetic trees. In [3] Burstain et. al present a simple method based on string
algorithms (average common substring) for generating phylogenetic trees. The
main innovation in the present work is the use of the paradigm of relative de-
scription length in the domain of biological networks, which is very different
than the one dimensional domain of biological sequences. The different domain
necessitates a different approach. Our is based on the reasonable assumption
that homologous nodes in close taxa will share more similar neighborhood, as
compared to remote taxa.

To the best of our knowledge, this is the first time relative description length
is used for comparing networks and constructing evolutional signals (trees).
Ogata et al. [25] developed a heuristic for finding similar regions in two metabolic
pathways. Their method is based on comparing the distances between pairs of
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nodes in two metabolic pathways. Schreiber [28] developed a tool for visualiza-
tion of similar subgraphs in two metabolic pathways. Tohsato et al. [31] deals
with alignment of metabolic pathways, where the topology of the pathways is
restricted to chains. Kelley et al. [18] data-mine chains in protein-protein net-
works by searching paths with high likelihood in a global alignments graph,
where each node represents a pair of proteins (one from each network). This
last work was generalized to identify conserved paths and clusters of protein-
protein interaction networks inmultiple organisms, by Sharan at al. [29]. They
build a graph with a node for each set of homologue proteins (one protein for
each organism). Two nodes are connected by an edge if all the pairs of pro-
teins interact in each organism respectively. The second step is searching paths
and clusters in this graph. Koyuturk et al. [19] used a bottom up algorithm for
finding frequent subgraphs in biological networks. Pinter et. al [26] suggested
an O(n3/ log(n)) algorithm for the alignment of two trees. While related, this
does not solve our problem as it is restricted to trees, and is not efficient enough
for multiple species. Another problem with the alignment approach is to define
the costs of deletion, mismatches. This problem is true for both sequences and
graphs’ alignment. Chung, and Matula [5, 23] suggest algorithms for a similar
problem of subgraph isomorphism on trees.

The rest of the paper is organized as follows: In section 2 we discuss the
general problem of comparing directed labelled graphs. Then we describe our
approach, the relative description length (RDL) method. In section 3 we describe
the properties of our measure. In section 4 we describe a method based on
the relative description measure for finding conserved regions in network. In
section 5 we demonstrate the method, where the inputs are metabolic networks
from KEGG. Section 6 contain concluding remarks and suggestions for further
research.

2 Distances and Phylogeny from Biological Networks

In this section we discuss the problem of comparing labeled, directed graphs. We
then describe our RDL method for computing distances between networks. The
“design criteria” is to find measures that accurately reflects biological disparity,
while concurrently be efficiently computable. The networks in this paper are
directed graphs with uniquely labeled nodes. Specifically we used the format
of Jeong et al. [16] for representing a metabolic networks, only the nodes have
labels, the edges have no labels. But our algorithms apply, mutatis mutandis, to
other types of networks with such representation. All metabolic substrates are
represented by graph nodes, and the reaction links in the pathway, associated
with enzymes, are represented by directed graph edges.

The basic measure we are interested in is the amount of bits needed to de-
scribe a network G2, given the network G1. The natural measure to consider
here is Kolmogorove complexity defined as follows k(x) = kU (x) is the length
of a shortest string, z that when given as an input to U , an Universal Tur-
ing Machine (TM) [30], U emits x and halts, namely U(z) = x [22]. One may
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consider relative Kolmogorov complexity. Given two strings x and y, k(x|y) is
defined as the length of the shortest string z one need to add to the the string
y as an input to a universal TM, U , such that U(z, y) = x. A variant of this
measure is known to be a metric [22], i. e. it is symmetric and it satisfies the
triangle inequality. Unfortunately, it is well known that Kolmogorov complex-
ity, in its unconditional and conditional forms, is incomputable. Furthermore,
there is a non constant function f(x), a function that increases with x, such
that even an f(x) approximation of k(x), and thus of k(x|y) is incomputable.
We now turn to the definition of the relative description length measure. Let pai

denote the set of nodes that are parents of i in the network. A directed graph
or network, G, with n labelled nodes can be encoded by using log(n) bits to

denote the number of parents of each node, and log
(

n
|pai|

)
bits to name xi’s

parents (for sparse networks, this is more succinct than the n bits per node of
the naive description). Let DL(G) denote the description length of G. Then for

an n node network DL(G) =
∑n

i=1

(
log(n) + log

(
n

|pai|

))
. Suppose now we

have a collection {Gi} of labelled directed graphs, and let ni denote the num-
ber of nodes in Gi. Let ni,j denote the number of labelled nodes that appear
both in Gi and Gj . Let pav(G) denote the number of parents of node v in the
graph G. For encoding a subset T of a known set S, one needs log(|T |) + log(
|S||T |

)
bits. The first expression describes the size of the group T , and the

second is for describing the subset out of
(

|S|
|T |

)
possible subsets. We denote

the number of bits encoding sub-set T of a known set S by Enc(T |S). Two
assumptions underly our procedure for describing one graph given the other:

1. The distance among corresponding pairs of nodes in networks of closely
related species are similar.

2. It is possible that two nodes, corresponding to different species, have the
same role even if their labeling is not identical.

The procedure for describing the graph G2, given the graph G1 was defined as
follows:

DL(G2|G1)

1. There are n1 −n1,2 nodes that appear in G1 and do not appear in G2.
Given G1, they can be encoded using Enc(n1 − n1,2|n1) bits.

2. For each node v common to G1 and G2:
(a) The node v has |pav(G1)∩pav(G2)| parents, which appear both in

G1 and G2. We encode these nodes by Enc(pav(G1)∩pav(G2)|n1)
bits.

(b) The node v has |pav(2) \ (pav(G1) ∩ pav(G2))| parents which
appear in G2 but not in G1. We encode these nodes by
Enc (|pav(G2) \ (pav(G1) ∩ pav(G2))| |n2 − n1,2) bits.
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(c) The rest of the parents of the node v in G2 appear in both G1
and G2, but are not parents of v in G1. Denote the size of this
set by nv. Let d denote the minimal bidirectional radius of a ball
around the node v in G1 that contains all these parents. Let nv,d

denote the number of nodes in this ball. We encode these parents

using log(d) + log(nv) + log
(

nv,d

nv

)
bits.

3. For each node v that appears in G2 and not in G1: Let cv denote the
number of bits need to describe the parents of node v by other node
that appear both G1 and G2 using steps 1, 2. We encode the parents

of the node by 1 + min(log(n1) + cv, log(n2) + log
(

n2
|pav|

)
) bits.

Definition 1. Given two labelled, directed networks Gi and Gj , we define their
relative description length “distance”, RDL(Gi, Gj), as follows: RDL(Gi, Gj) =
DL(Gi|Gj)/DL(Gi) + DL(Gj |Gi)/DL(Gj).

The first term in this expression is the ratio of the number of bits needed to de-
scribe Gi when Gj is given and the number of bits needed to describe Gi without
additional information. The second term is the dual. In general, D(G1, G2) is
larger when the two networks are more dissimilar, and 0 ≤ D(G1, G2) ≤ 2. The
extreme cases are G1 = G2, where D(G1, G2) is O(1/|V1| + 1/|V2|), and when
G1, G2 have no nodes in common, where D(G1, G2) = 2.

In the preprocessing stage we first calculate the distances between all pairs of
nodes in G1 and G2 by Dijkstra algorithm [6] or Johnson algorithm [6], we ignore
directionality. The running time of these algorithms is O(|E| · |V |+ |V |2 log(|V |)).
In all metabolic networks, the input degree of each node is bounded (in all the net-
work in KEGG no one havemore than 40 parents, usually it wasmuch less, between
1 and 3 parents), thus E = Θ(V ), and the time complexity is O(|V |2 log(|V |)) for
all pairs. Note that there are algorithms of time complexity O(|V |2.575) for finding
distances between all pairs of nodes without any assumptions on the graphs struc-
ture [32] . We now sort the distance vector of each node in O(|V | log(|V |) time, so
the total time is O(|V |2 log(|V |)). In the next stage, we sort the node names in
each net in lexicographic order in O(|V | log(|V |) time. Then we sort each parent
list in lexicographic order, this is done in O(|V | log(|V |) time.

Stage 1. in the procedure DL(G2|G1) is done in linear time given a lexico-
graphic ordering of the nodes in the two networks. The total of stages 2.(a) for
all the nodes is done in linear time given a lexicographically ordered list of all the
parent list. The total of stages 2.(b) for all the nodes is done in O(|V | log(|V |)
time given a lexicographic sort of the nodes in G1. The total of stages 2.(c)
for all the nodes is done in O(|V | log(|V |) time given the sorted distances ma-
trix of the network. Stage 3 done in total time of O(|V |2 log(|V |) for all the nodes.
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Thus the total time complexity of the pairwise network comparison algorithm is
O(|V |2 log(|V |).

We used neighbor joining algorithm [27] for generating a tree from the dis-
tance matrix. Recent variants of NJ run in in O(N2), where N is the number
of taxa [9]. Thus the total time complexity of our method for generating a phy-
logenetic tree for N networks of up to |V | nodes each, is O(N2 · |V |2 log |V |).
We discovered empirically that by skipping stage 3., the precision decreases by a
few percentage points, while the time complexity becomes close to linear. Such
shortcut may be suitable for larger inputs.

3 Properties of the RDL Networks Comparison Measure

It is easy to see that the measure D(Gi, Gj) is symmetric. While D(G, G) > 0,
it is small for large graphs. In general, our measure does not satisfy the triangle
inequality. For example the distance of the following three networks in KEGG do
not satisfy the triangle inequality. The networks are the bacteria Aquifex aeolicus
(aae), the archea Archaeoglobus fulgidus (afu), and the bacteria Bacteroides
fragilis YCH46 (bfr). The distance between aee and bfr is 4.7, while the distance
between aae and afu is 0.7 and the distance between afu and bfr is 3.92. However,
by empirically checking all the triplets in a distance matrix generated for all the
240 networks in KEGG we found that only a very small fraction of all triplets do
not satisfy the triangle inequality - 363 triplets out of 2, 257, 280 possible triplets.
Usually these triplets involve very partial nets. For example the bfr network
mentioned above includes only four nodes. After removing all the networks with
less than 100 nodes, we got 194 networks left. For this set of species, all the
triplets satisfy the triangle inequality.

We performed preliminary empirical studies, showing that our measure in-
creases linearily as a function of the “evolutionary time”. We used the following
simple minded model: At each time period there is a probability p1 of adding a
new node to a net, probability p2 of removing a node from a net (all nodes have
the same probability to be removed), probability p3 of adding a directed edge
between any two vertices, probability p4 of removing a directed existing edge
between any two vertices (all edges have the same probability to be removed).
We chose p1 = p2 in order to maintain the expected number of nodes in the
graph, and choose p3 = p4 in order to maintain the average number of edges in
the graph.

In the resultant graphs the growth was close to linear, suggesting that for
networks with similar sizes, our method for generating phylogenetic trees using
distances based methods, such as neighbor jointing, is justified. Furthermore, our
method can also be used to estimate branch lengths of phylogenetic trees. These
consequences do not necessarily apply to networks of different sizes. Of course,
the preliminary simulation used a very simplistic model. More sophisticated ones,
including unequal grows and elimination rates, may give a better indication for
more realistic instances.
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4 Finding Conserved Regions in Networks

In this section we describe our method for finding conserved regions in two or
more networks, and the rationale behind it. The method is based on the RDL
measure described in section 2. Consider a ball of bidirectional distance at most
d from node v in the directed graph G. The d conservations score of the node
v in two is ∞ if it is not appear in the two networks, if it appear in the two
networks it defined as follows:

Definition 2. A (d, c) conserved node:
Let v be a shared node among G1 and G2. Let B1 and B2 be the balls of bidi-
rectional radius d around v in G1 and G2, respectively. We say that v is (d, c)
conserved in G1, G2 if D(B1, B2) ≤ c.

The (d, c)–conservated region of the two network G1 = (V1, E1) and G2 =
(V2, E2) is defined as the intersection of the two subgraphs of G1, G2 induced
by the (d, c) conserved nodes with respect to G1, G2. Algorithmically, we get it
as follows

Find the (d, c) conserved region of G2, G1:

1. For each node common to G1 and G2, compute its d-conservations
score.

2. Generate a graph G′
1 = (V ′

1 , E′
1) where V ′

1 includes the nodes in G1
that are (d, c) conserved with respect to G1, G2. The edge e is an
directed edge in G′

1 if its two endpoints are in V ′
1 , and it is a directed

edge in E.
3. The graph G′

2 = (V ′
2 , E′

2) is defined analogously.

The parameters d (radius) and c (RDL score), determine the two conserved
regions G′

1, G′
2. It is easy to see that decreasing c decreases the sizes of G′

1, G′
2.

Increasing d may either increase or decrease the sizes of the conserved graphs.
In a similar way we now define a conservation score for a node with respect

to more than two network.

Definition 3. (d, c, k) conservation node:
Let k satisfy 1 ≤ k ≤

(
N
2

)
. A node v is (d, c, k) conserved with respect to the

N networks, G1, G2,.., GN , if v is (d, c) conserved in at least k out of the
(
N
2

)

networks pairs.

We adjusted the parameters d, c, k to our input graphs, by choosing parameters
such that a random node is picked as conserved with probability smaller than p,
where p is a pre-defined threshold (usually p = 0.05). The rational behind our
approach is that the probability of mutations in “more important” parts of the
network is smaller (just like for sequences). We filter noise by finding subgraphs
that are conserved for sufficiently many pairs (k) of networks. Since every node
in the network is a part of a process (e.g. a metabolic pathway, or a protein
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signaling pathway in a protein interaction network), we expect an “important”
node to share “important” pathways and thus have a conserved neighborhood,
which our definition is supposed to capture.

5 Experimental Results

In this section we describe the results of running our algorithms on the metabolic
networks in the KEGG database. First, we describe the phylogenetic trees our
method generated (for two different subsets of species), and discuss the similarity
of these trees to the common taxonomy [8]. Then, we describe the results of
applying our method for finding conserved regions and discuss the biological
relevance of the results.

5.1 Phylogenetic Trees

We started with a relatively small subset, containing 19 taxa: 9 eukaryotes, 5
prokaryotes, and 5 archea. We chose species whose networks in KEGG have more
than 900 nodes. We generated a distance matrix based on RDL, and finally con-
structed a tree, using the Phylip [11] implementation of NJ algorithm [27]. The
tree with the true edges’ length is depicted in figure 1. The resulting tree is
reasonably close to the common accepted taxonomy of these species [8]. The five
archea, the five prokaryotes, and the nine eukaryotes form a clade each. Within
the eukaryotes, the three mammals (rat, mouse, and human) are clustered to-
gether. The fruit fly and the worm C. elegance, both from the Bilateria super
family, are clustered together. The three yeasts (S. Scerevisiae, A. Gossyppi, and
S. Pombe) are clustered together. One example of inaccuracy in our tree is the
split inside the mammals, putting the human and mouse together and the rat
as an outgroup. One possible explanation is that mouse is a much more popular
model animal than rat (it indeed have about 30% more nodes in KEGG), con-
sequently its investigated pathways are closer to human and this is reflected in
KEGG. The length of the branches are reasonable, compared to analog methods
for phylogeny that are based on sequences’ compression [3, 21].

In the next step we generated a tree for all the 194 networks having more than
100 nodes in KEGG (KEGG has additional 56 species with smaller metabolic net-
works). The resulting tree is depicted in figure 2. Of the 194 taxa in the tree 13
are eukaryotes, 17 archea, and 164 are prokaryotes. This subset includes about 50
species with networks of a few hundreds nodes, and about 80 species with thou-
sands nodes, the largest network (for example human or the bacteria Bardyrhi-
zobium Japonicum - a gram negative bacteria that develops a symbiosis with the
soybean plant) has more than 3000 nodes. The names of the taxa are their code
name in KEGG. We colored eukaryotes blue, archea grin, and prokaryotes red.

All the archea formed a clade and so did the prokaryotes. All the eukary-
otes but one, plasmodium falciparum (pfa). Plasmodium is placed among the
bacteria. One possible explanation is the loss of genes and mtabolic pathways
that plasmodium, the malaria parasite, went through [13, 20]. The dataset we
used has two super-families of archea. The first is Euryarchaeota, which contains
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C. Elegans
Ffruit Fly

Rat
Mouse Human S. Pombe

S. Scerevisiae
A. Gossyppi

Arabidopsis

Y. Pestis K.
E. Coli C.

E. Coli O.
E. Coli W.E. Coli M.

M. Mazei
M. AcetivoransM. Kandleri

M. Thermoa

M. Jannaschii

Fig. 1. A small phylogenetic tree, built upon distances of metabolic networks as com-
puted using our method (tree topology and edges’ length from NJ algorithm)

the species pab, pho, hal, mja, afu, hma, pto, mth, tac, tyo, and mma. The
other is Crenachaeota, containing the species pai, sto, sso, ape. The only archea
that “jumps family” from the second super family to the first is Pyrobaculum
aerophilum (pai), which an extremely thermoacidophilic anaerobic taxa [1]. The
partitioning within the eukaryotes kingdom is similar to its partition in the tree
for the small dataset (figure 1). Most of the prokaryotes families are clustered to-
gether: For example the gamma proteobacteria vvu, vvy, vpa, ppr, vch, son form
a clade. Most of the alpha bacteria are clustered together: Mlo, Sme, Atu, Atc,
Bme, Bms, Bja, Rpa, and Sil. With the exception of Ehrlichnia ruminantium
Welgevonden (Eru) that joined to the malaria parasite pfa, and of Caulobacter
Crescentus (ccr) that is close (few splits away) but not in the same main cluster
alpha bacteria. The two Bartonella Bhe and Bqu are clustered together, Zmo
and gox are clustered close together but not in the main cluster of alpha bacte-
ria. Considering the large variability in the sizes of the networks and the noisy
inputs, we view the results as very good.

5.2 Conserved Regions in Metabolic Networks

In this section we describe the results of our algorithm for finding conserved re-
gions on few dataset. The first contains two species:A bacteria and human, the
second contains nine eukaryotes, and the last dataset has ten species, including
four eukaryotes, three prokaryotes, and three archea. We also discuss another
dataset of three species (Human, E. Coli and yeast) whose their pathways in
KEGG are known to be constructed independently. For a lack of space we
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Fig. 2. Phylogenetic tree for 194 based on metabolic networks, all with more than 100
nodes in KEGG

describe here only the stoichiometric formulas of the compounds and very small
fraction of the graphs we got,full details of the compounds canbe found in KEGG.
We describe here few of the subgraphs we found in the results conserved sub-
graphs. Note that even the relatively short subgraphs described here have since
by our definition they are surrounded by a relatively conserved neighborhood.

Our first set contains two very far species: Human and the Gamma Enter-
obacteria - Yersinia Pestis KIM. Since these two species were split billions of
years ago, we expect that the conserved regions found are common to many other
taxa. The thresholds to our algorithm was diameter d of 20 nodes, and relative
description score 0.9. From our experience, a threshold of 0.9 or lower is fairly
strict.

KEGG’s metabolic network of human includes more than 3000 nodes, while
the metabolic network of the bacteria includes more than 2000 nodes. The
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resulting conserved networks includes 160 nodes, that are common to the two
species. We describe here few of many other results we found: One of long sim-
ple paths in the conserved graph represents the metabolic pathway C10H14N2O5
(C00214) → C10H15N2O8P (C00364) ↔ C10H16N2O11P2 (C00363) ↔
C10H17N2O14P3 (C00459), which is a part of the pyrimidine metabolism [14].
It includes the last four nodes at the end of the pathway Pyrimidine synthesis.
Pyrimidine are the nucleotides T and C, which are building blocks of DNA.

Another simple path of length four represent the sub metabolic pathway
C5H11O8P (C00620) ↔ C5H11O8P (C00117) → C5H13O14P3 (C00119) ←
C27H46O3 (C01151). This is a part of the the pentose phosphate pathway [24].
One of the functions of this anabolic pathway is to utilizes the 6 carbons of glu-
cose to generate 5 carbon sugars, necessary for the synthesis of nucleotides and
nucleic acids. This pathway is also part of purine synthesis metabolism, again -
one of the building blocks of DNA.

In the next stage we checked for conserved regions in nine Eukaryotes. We
chose Eukaryotes with networks larger than 2000 nodes in KEGG. We generated
the (20, 0.7, 6) conserved graph for this set of species.

The resulting nine conserved metabolic networks includes between 84 to 106
nodes, while each of the input networks has more than 2000 nodes. We describe
here few of the results we found, some ultra conserved regions: The first subgraph
C6H9NO2S2R2 (C00342) ↔ C6H7NO2S2R2 (C00343) is shared by all nine sub-
networks. It is part of the pyrimidine synthesis metabolism.

The second pathway is part of the Riboflavin (the left node in the pathway)
synthesis metabolism: C27H33N9O15P2 (C00016) ↔ C17H21N4O9P (C00061)
↔ C17H20N4O6 (C00255) Riboflavin is a vitamin that supports energy meta
bolism and biosynthesis of a number of essential compounds in eukaryotes, such
as human, mouse, fruit fly, rat, S. Cerevisiae, and more [17]. The following ultra
conserved subgraph is part of the Cysteine synthesis metabolism:

C6H12N2O4S2 (C00491) ↔ C3H7NO2S2 (C01962). Cysteine (the right node
in the pathway above) is an amino acid with many important physiological func-
tions in eukaryotes. It is part of Glutathione and is a precursor in its synthesis,
which is found in almost all the eukaryotes tissues and has many functions such
as activating certain enzymes, and degrading toxic compounds and chemical that
contain oxygen.

The last dataset we includs four eukaryotes, three archea, and three bacteria.
From each class, we chose species with a large number of nodes in KEGG, the in-
put networks include between 1500 and 3000 nodes. We generated the (20, 0.7, 6)
conserved graph for this set of species. The resulting ten conserved metabolic
networks include between 58 to 93 nodes. We describe here few of the inter-
esting results. We found a ultra conserved sub-networks, related to nucleotides
metabolism, this is the same part of the pyrimidine synthesis metabolism
described above. Another path is part of the Bile acid biosynthesis metabolism:
C27H48N2O3 (C05444) ↔ C27H46O3 (C05445). Bile acid is essential for fat di-
gestion, and for eliminating wastes from the body. It is also generated by bacteria
in the intestine [15].
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An unexpected ultra conserved path, the subnetwork C2Cl(4) (C06789) →
C2HCl3 (C06790) →(C2H2Cl2 (C06791), C2H2Cl2 (C06792)) → C2H3Cl
(C06793) is the first part of the Tetrachloroethene degradation pathway. Tetra-
chloroethene is a toxin (also known as PCE). Different organisms have developed
different processes for degrading PCE [2, 10, 7]. However, the part of this path-
way we find here is shared by to many species (and in nine out of ten species in
our dataset).

There are few species whose pathway in KEGG were reconstructed inde-
pendently. Three such species are Human, E. Coli, S. cerevisiae (yeast). We
implemented our method for finding conserved regions on these three species
which have between 2000 to 3000 nodes in KEGG. We generated the (20, 0.9, 3)
conserved graph for this set of species. The conserved graphs of the Human, E.
Coli, S. cerevisiae respectively included 79, 79, and 101 nodes respectively. Major
fraction of the pathways found for other sets of species are also found here. One
such example is the sub-graph of Pyrimidine synthesis.

In all the above results we noticed that conserved node, i. e. nodes that
are part of the plotted resulting graphs, tend to be with a relative high in-
and out-degrees, i. e. at least four, in the original networks. Note that in our
graph representation of metabolic networks the edges (enzymes names) were
unlabelled. However, in the case of the conserved sub-graphs described here the
edges were also conserved.

5.3 Conserved Regions in Protein Interaction Networks

In addition to the metabolic networks, we have preliminary results on finding
conserved regions in two protein interaction networks. In this subsection we
report an initial study of finding conserved regions in the protein interaction
networks of yeast and drosophila (7164 and 4737 nodes, respectively). We em-
phasis that these are preliminary results, which mainly establish the application
of our approach to networks whose characteristics differ from metabolic net-
works. In contrast to the metabolic networks, protein interaction networks do
not have labels that are shared across species. To identify corresponding nodes,
we used Blast results. Two protein were declared identical if the drosophila’s pro-
tein have the best blast score for the yeast protein, and the score were < e−10.
We now ran our algorithm. The two nodes with the highest conservation score
the first node is the protein Y ML064C in yeast and his homolog in drosophila
(the protein CG2108). This protein catalyzed the basic reaction GTP +H2O →
GDP +phosphate, and as such it is expected a-priori to be conserve. The second
protein is Y LR447C in yeast ( the protein CG2934 in drosophila) also involve
in “basic” activities such as hydrogen-exporting ATPeas activity, catalyzing the
reaction: ATP + H2O + H+(in) → ADP + phosphate + H+(out).

6 Concluding Remarks and Further Research

We presented a novel method for comparing cellular-biological networks and
finding conserved regions in two or more such networks. We implemented our
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method, and produced a number of preliminary biological results. It is clear that
networks contains information, which is different than sequence information, and
also differ from information in gene content. This work opens up a number of
algorithmic and biological questions. The various networks in KEGG were not
built independently. This biases the results, especially those of conserved regions.
Interestingly, despite this fact, the our results seem surprisingly good.

The experimental work here concentrated mainly on metabolic networks
taken from the KEGG database. Of course, there is no reason to consider only
KEGG, and only metabolic networks. More importantly, we plan to examine
our methods on more protein interaction networks, regulatory networks, and
possibly a mixture thereof.

Our representation of the networks followed that of Jeong et al. [16] and
ignored the edge labels (enzyme names). As shown in the conserved regions,
identical node labels (substrates) seem to determine the enzymes involved. Yet,
it is desireable to include edge labels explicitly. Indeed, the RDL approach allows
such modification at relative ease. A more meaningful extension is to consider
labels not just as equal or unequal. A continuous scale of similarity, as implied
for example from the chemical description of substrates, can be used. Different
representations of the directed graph (e.g. children instead of parents) are also
possible. Other algorithms, based on variants of labeled subgraph isomorphism,
can be considered as well. However, their efficiency should be carefully analyzed.

When dealing with biological networks, we should always keep in mind that
they are still in their infancy. They are noisy due to experimental conditions,
and they are partial, due to budgetary limitations and biases of the researchers.
Thus the precision of the results is likely to evolve and improve, as more reliable
data are gathered.

Finally, it will be of interest to combine different sources of data, for example
sequence data (proteins and genes) and network data, to construct trees and
find conserved regions. Of special interest are regions where the signals from the
various sources are either coherent or incoherent. Of course, this work is only a
first step, and calls for possible improvements.
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