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Abstract. Permutation of class labels is a common approach to build
null distributions for significance analyis of microarray data. It is as-
sumed to produce random score distributions, which are not affected by
biological differences between samples. We argue that this assumption is
questionable and show that basic requirements for null distributions are
not met.

We propose a novel approach to the significance analysis of microarray
data, called permutation filtering. We show that it leads to a more accu-
rate screening, and to more precise estimates of false discovery rates. The
method is implemented in the Bioconductor package twilight available on
http://www.bioconductor.org.

1 Introduction

Screening thousands of candidate genes using some scoring function is a widely
applied strategy in the analysis of microarrays. A typical scenario is the search for
differentially expressed genes, where the sores can be fold changes or t-statistics.
Screening inherently leads to a multiple testing problem, which requires the def-
inition of a null distribution of scores. It is common practice to use simulated
distributions obtained from randomizations of the original data [1]. With a set
of samples (arrays) and corresponding class labels for the samples, one calcu-
lates scores for the original class labels, and compares them to the distribution
of scores obtained from random shuffling of the class labels. Permutation ap-
proaches are popular because the correlation structure of gene expression levels
is unknown, which makes the definition of a theoretical joint null distribution
difficult. By randomly assigning the class labels to the samples and recomput-
ing scores one circumvents this difficulty and generates a set of random scores,
which serves as a null distribution for statistical inference. One transforms the
scores obtained from the original class labels to empirical p-values by using the
distribution of simulated scores from the permutation null model. Under the as-
sumption that not a single gene is differentially expressed, one expects that this
set of p-values is uniformly distributed. Several methods for estimating global or
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local false discovery rates rely on the assumption that the p-value distribution
for a set of non-differentially expressed genes is uniform [2, 3, 4, 5, 6, 7].

To borrow information across genes, empirical p-values are computed using a
pooled set of scores from all genes on the array [8]. The combined use of class
label permutations and score pooling leads to a conceptual problem. In real ap-
plications, one typically has both differentially and non-differentially expressed
genes. While permutations produce a justifiable null distribution of scores for
the non-differentially expressed genes, one expects that they produce wider score
distributions for the differentially expressed genes. Wide score distributions are
not only expected for genes that are differentially expressed between the class
distinction of interest, but also for genes that are differentially expressed re-
garding some hidden non-random structure in the data, such as the gender of
patients or experimental artefacts. As a consequence, the pooled set of scores is
contaminated by signals resulting from differentially expressed genes and does
not yield a pure null distribution.

In the next section we recall the notation for permutation approaches to
multiple testing in microarray studies. In Section 3 we use a clinical data set
to show that random permutations produce distributions, which do not meet
basic requirements for a null distribution. As a way out of this dilemma, we
describe in Section 4 the details of a novel approach to permutation tests termed
permutation filtering. In Section 5 we show that permutation filtering produces
valid null distributions, increases the accuracy of the screening, and leads to
more precise estimates of false discovery rates.

2 Notation

Let matrix X be an m×n gene-expression matrix with genes in rows and samples
in columns. Entry xij is the value of the ith gene observed for the jth sample
with genes i = 1, . . . , m and samples j = 1, . . . , n. In addition, we have a vector
c0 = (c1, . . . , cn) with cj being the class label of the jth sample. For simplicity of
presentation we only consider binary class labels here. As a real world example,
we shall later discuss a breast-cancer data set, where the class label is either one
of two clinically defined risk groups.

Let s0 denote the vector of scores with entries (si0)i=1,...,m. Let c be a random
permutation of the entries of vector c0. Note that we shuffle only the class labels
to preserve the correlation structure between the genes. We recompute the score
of each gene based on c and derive a set of scores s. Say, we do B permutations
c1, . . . , cB in total. This yields B random score vectors s1, . . . , sB. We join the
original and the random scores into the m × (B + 1) score matrix S defined as:

S := (s0 s1 . . . sB) = (sij) with i = 1, . . . , m and j = 0, . . . , B.

To compute the empirical p-value for score si0, we count how often a random
score exceeds the observed score of the gene of interest:

pi0 =
1

m(B + 1)

m∑

k=1

B∑

l=0

I{|skl| ≥ |si0|} (1)
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with I{x} being an indicator function that returns 1 if x is true and 0 otherwise.
For simplicity of notation, we summarize the whole process in function UC , which
maps a fixed vector of class labels c0 to the vector p0 = (pi0)i=1,...,m of associate
p-values

UC(c0) = p0 (2)

where C = {c0, c1, . . . , cB} is the set of permutations on which we assess the
significance of scores.

3 Random Permutations Can Produce Invalid Null
Distributions

In this section we show that random permutations can produce score distri-
butions, which do not meet basic requirements of a null distribution. We use
a clinical microarray study comprising a total of 89 samples from breast-cancer
patients measured on Affymetrix GeneChip R© HGU95Av2 arrays, which code for
m = 12625 transcripts/genes [9]. We applied the following preprocessing steps.
The background was calculated similar as in the Affymetrix R© software Microar-
ray Suite 5.0 [10]. The only difference was that we did not use a correction
to avoid negative values. After background correction, we normalized on probe
level using a variance-stabilizing procedure [11]. Perfect match probes within a
probe set were summarized by the median-polish method [12]. For each probe
set, an additive model with probe set, chip and overall effect was fitted using a
robust median-polish procedure. Mismatch probes were not taken into account
at all.

We compare two risk groups, that is 18 patients with high risk of relapse to 19
low-risk patients (n = 37). Again, c0 is a binary vector of length n of class labels
where “1” corresponds to the high-risk and “0” to the low-risk class. We score
each gene i by computing absolute z-scores as described in [13]. The z-scores
are defined as regularized t-statistics with a positive fugde factor added to their
denominators. The fudge factor prevents genes with small variances from having
high scores. We set the fudge factor to the median value of the pooled standard
deviations across genes.

We draw B = 1000 random permutations of the original labeling c0, compute
the matrix S of z-scores and empirical p-values p0 = UC(c0). Each permutation
is assumed to destroy all biological signals in the data, such that the resulting
set of scores consists of random scores, which are not driven by biological signals
at all. Deviations in the scores obtained from the original (not permuted) class
labels give evidence for differentially expressed genes.

Next we introduce a key requirement for a valid null distribution. We let each
permutation of class labels cb in turn play the role of the original class labels and
calculate pb := UC(cb). Hence, we use the function UC not only for assigning a
vector of p-values to the original class labels, but also to each permuted vector of
class labels. If the permutation process truly has destroyed all biological signal
one would expect to observe uniform distributions of p-values. In panel A of
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A: Random permutations
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B: Filtered permutations
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Fig. 1. A: Random permutation does not always produce valid null distri-
butions. The multi-dimensional scaling plot on the left-hand side shows distributional
distances between 1000 sets of p-values resulting from random permutations. Euclidean
distances between the CDFs of the p-value sets were used. The four numbered examples
show that permutations on the right side in the MDS plot have increasing densities,
permutations on the left side have decreasing densities, and only permutations close
to the origin produce uniform densities. No. 3 represents the original class labels c0.
The scatterplot on the right-hand side shows a second MDS mapping of the permu-
tations, now based directly on the Hamming distances of permuted class labels. The
permutations do not cluster but scatter randomly around the origin. B: Filtering
of permutations leaves uniform p-value distributions. The filtering algorithm
returns 1000 permutations that produce uniform p-value distributions, which cluster
around the origin in the MDS plot on the left-hand side. Again, no. 3 represents the
original labeling c0 while the other three permutations were chosen from the extremes
of the filtered set to show that these are still admissible. The MDS plot based on Ham-
ming distances between permutations is similar to the one in A. Filtered permutations
still spread evenly in the permutation space. Note that both pairs of MDS plots were
derived from joint sets of filtered and unfiltered permutations.

Fig. 1 one can see that this is not the case. The top left plot shows a multi-
dimensional scaling (MDS) representation of the p-value distributions obtained
by fixing single permutations. We derived the mapping into two dimensions from
the Euclidean distances between the empirical cumulative distribution functions
(CDFs) of the associated sets of p-values. Close points represent permutations
cb, which produce similarly distributed p-values UC(cb).
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We annotated four exemplary permutations by numbers including the origi-
nal labels, whose p-value distributions are shown in the top middle plot. Only
permutations close to the MDS origin produce uniform p-value distributions.
The majority of permutations, however, deviates substantially from uniformity,
and often produces distributions, which deviate stronger from uniformity than
that of the original class labels.

These results show that random permutations do not produce valid null dis-
tributions. Many permutations produce more differential gene expression than
the original labels. The scores are not random and the randomization process
has not destroyed all biological signal in the data.

4 Permutation Filtering

We now present the permutation filtering procedure. The key idea is to apply the
function UC not only to the original class labels, but also to the permuted ones,
as was already done in the previous section. We argue that a valid permutation-
based null distribution has to be derived from a set C of permutations, satisfying
the requirement that UC(c) is uniformly distributed for all c ∈ C.

Assume we have identified a set of permutations C0, which consists only of
permutations that represent valid null hypotheses across all genes. We expect
that UC0(c) is uniform for all c ∈ C0. If however, we observe strong deviations
from uniformity, either c0 or large parts of the remaining permutations in C0
correlate with some non-random structure in the data.

We propose the following filtering procedure to derive a set of permutations
C0, which consistently produces uniform p-value distributions when calculating
p-values for a fixed permutation using the remaining permutations in C0:

1. Let C = {c1, . . . , cB} be a set of unique random permutations of the original
class labels c0. Apply function UC to all cb ∈ C, which yields the p-value
vectors p1, . . . , pB. Choose a stepsize k and set v = 1.

2. Let Fb be the empirical CDF of the p-values in pb. Test each permutation
for uniformity of its p-value CDF by computing the Kolmogoroff-Smirnoff
statistic

KSb = max
i=1,...,m

|Fb(pib) − pib|.

Keep the v · k permutations with the smallest KS statistic in the set C0.
Increase v = v + 1.

3. Generate a new set of unique random permutations C, join it with C0 and
apply UC0∪C to all cb ∈ C0 ∪ C.

4. Iterate steps 2 and 3 until |C0| reaches a predefined number of permutations.
5. Compute the final vector of empirical p-values p0 = UC0∪c0(c0) for the orig-

inal class labels.

We chose an iterative design to reduce computational time and save memory.
Only a subset of unique random permutations is drawn and tested for uniformity
in each step. We keep the admissible permutations in C0. We do not have to
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recompute the corresponding scores for the kept permutations. Only when we
join C0 with a new set of permutations, we need to recompute the p-values since
we then use an altered set of permutations.

The proposed algorithm is flexible and adaptable to various types of screening
studies. We provide an implemention of the procedure in the statistical software
language R. We included the algorithm in the Bioconductor package twilight for
estimating global and local false discovery rates [7, 14, 15, 16, 17].

5 Results

We apply permutation filtering to the breast-cancer data set described in
Section 3. Again we use the z-scores for testing. As default parameters in the
filtering process we set the stepsize to k = 50, the number of permutations per
iteration to 1000 and the stopping criterion to |C0| ≥ 1000.

5.1 Permutation Filtering Produces Valid Null Distributions

The effect of permutation filtering is shown in panel B of Fig. 1. Both pairs of
plots were derived from joint sets of filtered and unfiltered permutations. Hence
the axes of the MDS plots equal those in panel A. As expected, the filtered
permutations lie closer to the origin, and even permutations from the margins
of the cloud produce acceptable uniform p-value distributions (middle plot).

We removed identical permutations within the iterative filtering. One might
suspect that filtering introduces a selection bias in that the filtered permutations
cluster strongly and do not spread over the entire permutation space. To show
that this is not the case, we display a two-dimensional MDS mapping of the
permutations that we derived from the Hamming distances between the binary
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Fig. 2. Permutation filtering does not introduce biased permutations. Dis-
tribution of the percentage of the 18 high-risk patients re-assigned to the high-risk
group based on random (grey bars) and filtered permutations (black bars). The two
distributions do not differ substantially indicating that the filtering does not introduce
biased permutations.
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vectors of permuted class labels before (panel A) and after (panel B) filtering.
Filtered permutations do not form clusters but spread evenly over the permu-
tation space in the MDS representation. There is no visible difference to the
corresponding plot for random permutations. We further examine the distribu-
tion of the number of samples being randomly re-assigned to their original group.
To this end, we count the occurrences of the 18 high-risk patients in the high-risk
group for both random and filtered permutations. The result is shown in Fig. 2.
We do not observe substantial difference between the two distributions and hence
conclude that filtering does not lead to a biased selection of permutations.

5.2 Permutation Filtering Leads to More Significant Genes

A widely used approach to account for multiplicity in microarray studies is to
estimate the false discovery rate (FDR) of a list of genes with scores above some
prespecified cutoff [18, 19]. The FDR is the expected rate of false positives in
this list of genes. Filtering has the effect that one identifies more genes on the
same FDR level than without filtering. Hence it increases the sensitivity of the
screening for differentially expressed genes.

To show this, we compute p-values of the original labeling c0 based on the
random as well as on the filtered set of permutations. For both sets, we estimate
false discovery rates as defined in [8]. In Fig. 3, we display FDRs versus the corre-
sponding number of significant genes. As an example, we marked the FDR cutoff
of 0.2 with the dashed line. With filtering, this leads to a list of 103 significant
genes, which more than doubles the size of a list without filtering (45 genes).

The increase of significant genes is due to the removal of permutations with
p-value distributions similar to that of the original labeling, that is with more
small p-values than expected. These distributions correspond to score distribu-
tions with heavy tails. The removal of these distributions increases the empirical
p-values of genes with high scores.
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Fig. 3. Permutation filtering leads to more significant genes. FDR cutoffs are
plotted versus corresponding numbers of significant genes. The same FDR cutoff leads
to more significant findings with filtering (black line) than without (grey line).
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5.3 Permutation Filtering Leads to a Higher Accuracy of the
Screening

On real data, we can only show an increase of sensitivity since we do not know a
priori whether a significant gene is truly induced or not. If the higher sensitivity
came for the price of a reduced specificity nothing would be won. To show that
this is not the case we use a simulation experiment where the true positives genes
are known by design of the simulation.

To this end, we generate random data for 2500 genes and 10 samples per
condition. We draw a vector of 2500 random values from a lognormal distribution
with location parameter 2 and scale parameter 0.3, and, taking these as mean
values, generate 20 random samples from a normal distribution with variance 1.
To induce the first 500 genes, we add a value of 2 to the samples of one condition.
By adding a value of 4 to five samples of each condition, we introduce hidden
non-random structure affecting the following 1000 genes. Note that only the first
500 genes are differentially expressed between populations.

We proceed with the analysis as before and compute p-values based on 1000
filtered and 1000 unfiltered permutations. We rank the genes by p-values and
for every rank we estimate the FDR as in [8]. We repeat the data generating
procedure 100 times, each time calculating the number of truly induced genes
within the list of genes with estimated FDR ≤ 5%. Filtering increases the num-
ber of correctly identified genes. Without filtering, the list of significant genes
includes an average of 457 true positive findings out of 500. Filtering improves
the accuracy to 482 correctly identified genes on average. This difference is highly
significant in a t-test (p < 0.0001).

Hence the filtering increases the sensivity, that is the number of true positives
among 500 induced genes, from 0.9134 to 0.9639 on average. The specificity,
that is the number of true negatives among 2000 non-induced genes, decreased
slightly from 0.9957 to 0.9892. We argue that this loss is negligible regarding the
improved sensitivity.

5.4 Permutation Filtering Produces More Precise Estimates of the
False Discovery Rate

We use the simulation data from the previous section. The thick black line in
Fig. 4 shows the true fraction of induced genes among the top ranking genes.
To calculate this line, one has to know a priori which genes are differentially
expressed between populations. Hence we can only calculate it in a simulation.
The false discovery rate estimates this quantity without knowing the truly dif-
ferentially expressed genes. Again, one can use both random permutations and
filtered permutations to estimate the FDR. The two thin lines in Fig. 4 are
the estimated FDR based on filtered (black line) and unfiltered permutations
(grey line). While random permutations yield conservative estimates of the false
discovery rate, they substantially overestimate it. In contrast, filtered permuta-
tion based estimates match the gold standard well. Hence, permutation filtering
improves the accuracy of estimated false discovery rates.
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Fig. 4. Permutation filtering leads to more precise FDR estimates. Ranks of
high-scoring genes versus the true and estimated FDRs. The FDRs based on filtered
permutations (thin black line) estimate the true FDR (thick black line) with high
accuracy for the first 500 ranks. FDRs computed without filtering (grey line) lead to
conservative but inaccurate estimates.

6 Conclusion

We propose a filtering algorithm that searches for a set of class label permuta-
tions where each permutation produces a uniform distribution of p-values. The
filtered permutations are then used for calculating empirical p-values and for
estimating false discovery rates. The benefits of filtering are valid null distribu-
tions, increased numbers of significant genes, a higher accuracy of the screening
and more precise estimates of false discovery rates.

We have implemented permutation filtering in the Bioconductor package twi-
light where it is used for calculating both local and global false discovery rates.
Permutation filtering is a general concept applicable in many screening studies.
It is a novel approach for building valid null distributions. We expect that it will
improve the accuracy of high-throughput screenings in various applications in
bioinformatics.
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3. Dalmasso, C., Broët, P., Moreau, T.: A simple procedure for estimating the false
discovery rate. Bioinformatics 21 (2005) 660–668

4. Liao, J., Lin, Y., Selvanayagam, Z.E., Shih, W.J.: A mixture model for estimating
the local false discovery rate in DNA microarray analysis. Bioinformatics 20 (2004)
2694–2701

5. Nettleton, D., Hwang, J.G.: Estimating the number of false null hypothesis when
conducting many tests. Technical Report 9, Department of Statistics & Statistical
Laboratory, Iowa State University (2003)

6. Pounds, S., Morris, S.W.: Estimating the occurrence of false positives and false
negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values. Bioinformatics 19 (2003) 1236–1242

7. Scheid, S., Spang, R.: A stochastic downhill search algorithm for estimating the
local false discovery rate. IEEE Transactions on Computational Biology and Bioin-
formatics 1 (2004) 98–108

8. Storey, J.D., Tibshirani, R.: Statistical significance for genomewide studies. Pro-
ceedings of the National Academy of Sciences 100 (2003) 9440–9445

9. Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M., Horng, C., Bild, A.,
Iversen, E., Liao, M., Chen, C., West, M., Nevins, J., Huang, A.: Gene expression
predictors of breast cancer outcomes. Lancet 361 (2003) 1590–1596

10. Affymetrix: Microarray Suite User Guide, Version 5.0. Affymetrix, Santa Clara,
CA, USA. (2001)
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