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Abstract. We demonstrate an important connection between network
motifs in certain biological networks and validity of evolutionary trees
constructed using parsimony methods. Parsimony methods assume that
taxa are described by a set of characters and infer phylogenetic trees
by minimizing number of character changes required to explain observed
character states. From the perspective of applicability of parsimony
methods, it is important to assess whether the characters used to infer
phylogeny are likely to provide a correct tree. We introduce a graph the-
oretical characterization that helps to select correct characters. Given
a set of characters and a set of taxa, we construct a network called
character overlap graph. We show that the character overlap graph for
characters that are appropriate to use in parsimony methods is char-
acterized by significant under-representation of subnetworks known as
holes, and provide a mathematical validation for this observation. This
characterization explains success in constructing evolutionary trees using
parsimony method for some characters (e.g. protein domains) and lack of
such success for other characters (e.g. introns). In the latter case, the un-
derstanding of mathematical obstacles to applying parsimony methods in
a direct way has lead us to a new approach for dealing with inconsistent
and/or noisy data. Namely, we introduce the concept of persistent char-
acters which is similar but less restrictive than the well known concept of
pairwise compatible characters. Application of this approach to introns
produces the evolutionary tree consistent with the Coelomata hypoth-
esis. In contrast, the direct application of a parsimony method, using
introns as characters, produces a tree which is inconsistent with any of
the two competing evolutionary hypotheses. Similarly, replacing persis-
tence with pairwise compatibility does not lead to a correct tree. This
indicates that the concept of persistence provides an important addition
to the parsimony metohds.

1 Introduction

The term biological network is used in connection to any network where nodes
correspond to biological entities (like proteins, genes, metabolites, etc.) and edges
are defined by a particular relation between these biological units. Can such bi-
ological networks help us to understand evolutionary processes? A number of
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studies have focused on the scale free property – a characteristic power-law like
distribution of node degrees observed in various biological networks [4]. How-
ever, it has been demonstrated [26, 21] that different evolutionary mechanisms
can lead to non-distinguishable scale free-like characteristics. Thus, analysis of
degree distribution alone does not bring sufficient insight into the evolution of a
network. Recently, small size subgraphs, termed network motifs, attracted sig-
nificant attention [23,34,22,24]. The idea is to consider, exhaustively, all possible
subnetworks up to a certain size and identify network motifs which are present
more frequently than expected by chance.

In this work, we introduce the concept of a character overlap graph and re-
late the frequency of occurrences of certain network motifs in these graphs to
the evolution of the corresponding character traits. Consider a set of taxa, where
each taxon is described by a vector of attributes, the so called characters. As-
sume that each character can assume binary values: one – if the taxon has the
property described by the character (we will simply say that the taxon con-
tains the character) and zero – otherwise. We further assume that during the
evolution characters are gained and/or lost. This acquisition and loss of charac-
ter traits is the basis for inferring evolutionary trees using parsimony methods.
Maximum parsimony methods search for the evolutionary tree with the topology
that can explain the observed characters with the minimum number of character
changes (here insertions and deletions). The problem of finding most parsimo-
nious tree, under most parsimony models, is NP-complete [9] and thus the cor-
responding algorithms are computationally intense. However, a more significant
drawback comes from the observation that evolutionary trees constructed with
these methods are sometimes incorrect. In this work, we focus on the second
problem.

The correctness of the evolutionary tree obtained using a parsimony method
depends strongly on the characters used to infer the tree. Intuitively, characters
that are easy to gain and easy to lose are not appropriate to use with maximum
parsimony methods. Extensive independent acquisition and/or loss of characters
in several lineages can make it difficult, if not impossible, to recover the correct
evolutionary relationships. At the same time, any realistic approach has to toler-
ate some events of this type. Therefore, it is important to be able to distinguish
characters that provide a consistent evolutionary signal from those which do not.
We propose a graph theoretical approach to address this problem.

As mentioned above, we use a particular type of network - a character over-
lap graph. The vertices of a character overlap graph are characters, and there
is an edge between two such characters if and only if there exists a taxon that
contains both characters. First, we focus on characters that we call persistent.
A character is persistent if it is gained exactly once and lost at most once.
Thus, the assumption of persistence is weaker than what is required in per-
fect parsimony (where a character can change state only once) but stronger
than in Dollo parsimony (where there is no restriction on the number deletions
of any given character). We show that a character overlap graph for persistent
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characters cannot contain network motifs known as holes. The simplest hole
is a cycle of four nodes with no diagonal edges (chords) and is also referred
to as a square. In general, a hole is a chordless cycle of length at least four
(Figure 2).

The requirement that all characters be persistent, although weaker than the
assumption of perfect parsimony, is still very restrictive. However, the criterion
for recognizing persistent characters suggests a heuristic for evaluating whether
a given set of characters is hard-to-gain and hard-to-lose in a less restrictive
sense. Our simple measure relies on counting squares in the character overlap
graph constructed for a given set of characters, and comparing the count to the
number of squares expected by chance. (This approach can easily be extended to
counting also larger holes, e.g. of size 5, but identifying all holes in a large graph
is computationally infeasible.) Furthermore, nodes involved in a large number
of squares can be used to identify characters whose removal is likely to improve
the results of a parsimony method.

We applied our technique to two types of characters: protein domains and
introns. In eukaryotic organisms, most of the proteins are made up of several
domains. Domains are conserved evolutionary units that are assumed to fold
independently, and are observed in different proteins with different neighboring
domains. Introns are non-coding DNA sequences that interrupt the flow of a
gene coding sequence in eukaryotic genes. It has been widely accepted that the
probability of gaining an intron independently at the same position in two dif-
ferent organisms is relatively low [11]. In terms of introns persisting through the
evolution, the picture is mixed. They are remarkably conserved between some
lineages (e.g. between Arabidopsis and Human), but they are lost at a significant
rate in other organisms (e.g. worm) [27].

We tested a large set of domain overlap graphs and found that squares are
significantly under-represented as compared to what is expected by chance. This
is in line with the results of Deeds et al. [10] and Winstanley et al. [29]. They re-
port a successful reconstruction of evolutionary trees using the Dollo parsimony
where (structural) domains are taken as characters. In contrast, the intron over-
lap graph has nearly as many squares as is expected by chance, indicating a very
noisy signal. This explains the observation that the tree constructed from intron
data using Dollo parsimony method is incorrect [27].

Examining the distribution of squares in each network provides additional in-
sight into the properties of corresponding characters. For both character types,
we find that the distribution of squares is non-uniform. For example, in the do-
main overlap graph, a small number of domains is involved in a large number
of holes (see Figure 2). Removal of about 3% of the domains leaves the domain
overlap graph square-free. Characteristically, the group of removed domains con-
tains known promiscuous domains (domains known to appear in a large number
of diverse proteins). It is indeed appropriate not to include them on equal footing
with other characters in parsimony methods.

As mentioned before, the number of squares in the intron overlap graph is
very large and it was not clear if removal of the inconsistencies represented by
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these squares would lead to a meaningful result. We devised a heuristic algorithm
to remove squares from the intron overlap graph. Interestingly, we obtained the
evolutionary tree consistent with the Coelomata hypothesis [1,2,5,30]. One can
think of squares removal as a process that selects a set of characters that are
likely to yield a correct tree. This is very much like choosing pairwise compatible
characters and building the tree based on these characters alone. However, it is
important to point out that, since the concept of persistence is less stringent than
pairwise compatibility, this method can be successful when the compatibility
method fails. In particular, as shown later in the paper, replacing persistence by
pairwise compatibility in the context of intron data does not lead to a correct
tree.

2 Characters, Character Overlap Graphs and Parsimony
Methods

Characters and parsimony methods. Assume that we are given a set of
taxa such that each taxon is characterized by a vector of characters. Intuitively,
a character can be anything that describes the properties of a taxa, e.g. exter-
nal characteristics (like wings, legs, etc.) or a molecular information (like genes,
protein domains, etc.). In this work, we assume binary characters, that is, char-
acters that take either value one or value zero (interpreted respectively as the
presence/absence of the given characteristics in the taxon). Assume that, during
the evolution, characters can be gained and/or lost. Under this assumption, the
evolution of a given set of taxa is often reconstructed using parsimony methods.
The underlying assumption of parsimony methods is that the characters evolve
in a way that minimizes character changes. The maximum parsimony tree is
a tree whose leaves are labeled with the character vectors associated with the
input taxa, and internal nodes are labeled with the inferred character vectors of
ancestral taxa such that the total number of character changes along the tree
branches is minimized. Additional restrictions on the type, number, and direc-
tion of changes lead to a variety of specific parsimony models [11]. For example,
in Dollo parsimony, a character may be inserted (change state from zero to one)
only once, but it can be lost multiple times [15]. In Camin-Sokal parsimony, no
reversal of character changes is allowed [8]. The problem of computing the max-
imum parsimony tree is NP-complete for most of parsimony models, including
Dollo parsimony and Camin-Sokal parsimony mentioned above [9].

A major problem with parsimony methods is (in addition to their computa-
tional cost) that they sometimes produce an obviously incorrect tree. This eluci-
dates the importance of being able to decide if a given character set is likely to be
misleading when used in conjunction with a parsimony method. Intuitively, we
are interested in characters that are not very easy to gain (thus the number of in-
dependent insertions of the same character is limited) and which persist through
evolution, i.e. they are not too easy to lose. We propose a graph-theoretical mea-
sure that can be used to test whether a given selection of characters is likely to
produce the correct evolutionary tree.
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256 394 105  255  256  291  312  394

Sc      0    0    0    1    0    0
Dr      1    0    0    0    0    0
Ar 0    0    1    0    0    1
Ce 1    0    1    0    0    0
Hs      1    0    1    0    1    0
Sp      0    1    0    0    0    0
Ag      1    0    0    0    0    0
Pf      0    0    1    0    0    0

Fig. 1. The intron overlap graph for KOG0009 [28]. The introns are identified by the
position in the multiple alignment of the corresponding genes. In the matrix on the
right side, of the figure rows correspond to the species included in the KOG Arabidopsis
thaliana (At), Homo sapiens (Hs), C.elegans (Ce), Drosophila melanogaster (Dm),
Anopheles gambaie (Ag), Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe
(Sp), and Plasmodium falciparum (Pf), and colums correspond to introns identified by
Rogozin et al. [27] where 1 correspond to the presence and 0 to the absence of the
intron at a given position in the multiple alignment.

Character overlap graph. To answer the question whether a given set of char-
acters is hard-to-gain and hard-to-lose, we introduce the concept of a character
overlap graph. A character overlap graph is a graph G = (V, E), where V is a
set of characters, and (u, v) ∈ E if there exists a taxon T in the set such that
both u and v are present T .

In this paper, we consider two examples of character overlap graphs: a domain
overlap graphs and intron overlap graphs. The first family of graphs, also known
as domain co-occurrence graphs or domain graphs, has been studied before
[31,3,25,32]. A set of taxa used to construct a domain overlap is a family of mul-
tidomain proteins. The vertices of the domain overlap graph correspond to pro-
tein domains and two domains are connected by an edge if and only if there is a
protein that contains both domains. In turn, a set of taxa used in the construction
of an intron overlap is a set of completely sequenced genomes. The nodes of an
intron overlap graph correspond to the introns and there is an edge between two
introns if and only if there is a genome that contains both introns (see Figure 2).
No construction equivalent to intron overlap graph has been considered before.

a) b)

Fig. 2. a) An example of a chordal graph. b) A graph that is not chordal. The red
(dotted) circle forms a hole of size four – a square.
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Holes and chordal graphs. Chordal graphs constitute a well studied family
of graphs [14]. A chord in a graph is an edge that connects two non-consecutive
vertices of a cycle. A chordal graph is a graph which does not have chordless
cycles of length greater than three. Chordless cycles of length more than three
are called holes. Figure 2 (a) shows an example of a chordal graph and Figure 2
(b) a graph which contains a hole of size four – a square.

There is a powerful connection between chordal graphs and trees [12,7,19,18,
25], which has been exploited before in the context of phylogenetic trees. We do
not use this connection in the paper explicitly, but it is a key result in chordal
graph theory and our approach is motivated by this relation.

3 Holes and Parsimony Methods

Graph chordality and persistent characters. We start with an extreme
case in which we assume that each character can be gained exactly once and lost
at most once. We call such characters persistent. Thus a persistent character can
undergo at most two changes and these changes are required to respect the order:
0 → 1 → 0. Note that the persistence property is independent of the way a tree
is rooted. We show the following simple theorem about persistent characters.

Theorem [characterization of persistent characters]. If all characters are
persistent then the corresponding character overlap graph is chordal.

Proof. By induction on the size k of the hole.1 For k = 4, assume that there ex-
ists a square spanning nodes (characters) A, B, C, and D. This implies that there
are four taxa containing respectively pairs of characters AB, BC, CD, and DA,
but there does not exist a taxon containing diagonal pairs AC or BD. In fact, no
taxon can contain three or more of A, B, C, D simultaneously. Ignoring all other
characters, there are, (up to symmetry), two possible binary topologies for the
parsimony tree for the four taxa (Figure 3). Since there can be only one inser-
tion per character, all taxa (ancestral or not) containing a specific character must
form a connected subtree in the parsimony tree. For example, all nodes on the
path from the taxon with characters AB to the taxon with characters BC must
contain character B (see Figure 3). Repeating this argument for all pairs of taxa,
we infer that the labeling of the two internal nodes in Figure 3 a must contain,
respectively, characters A, B, D and B, C, D. By examining all the possibilities
it can be seen that this labeling cannot be achieved without deleting at least one
character twice. The argument for the case represented in Figure 3 (b) is similar.

Assume now that the graph has a hole A0, A1, . . . Ak−1 of size k, where k > 4.
Then for any i there exists a taxon containing the pair of characters AiAi+1 (in-
dex additions/subtractions are mod k) but not containing any other Aj where
j �= i, i + 1. Assume that there exists a parsimony tree T that allows for at most

1 A shorter proof can be made based on the relation between chordal graphs and
trees mentioned in the previous section, but in the interest of keeping the paper
self-contained we present here a direct argument.
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AB BC

DA CD

AB BC

DA CD

ABD BCD

a)

BCAB

DACD

b)

ABCD ABCD
B

Fig. 3. The two possible (up to symmetry) topologies for an evolutionary tree for four
taxa containing respectively characters: AB,BC, CD and DA. Under the assumption
that only one insertion per character is allowed, in each case there must exist a character
which is deleted twice.

one insertion and one deletion of each character. Consider the subtree of T span-
ning the taxa involved in the cycle. Let X be an internal node of this tree which
is adjacent to two leaves (such node must exist). First, we argue that the two
leaves must correspond to two consecutive taxa on the circle. Assume otherwise
and let the two leaves be described by character pairs AiAi+1 and AjAj+1 where
j �= i + 1 and i �= j + 1. Then X must contain characters AiAi+1AjAj+1. (This
observation follows from the fact that each of the four characters also belongs to
a taxon other than the two taxa corresponding to the leaves AiAi+1 and AjAj+1
and that no double insertions are allowed.) Consider now the subtree spanned
by the leaves AiAi+1, AjAj+1, the internal node X , and the leaves containing
characters Ai, Ai+1, Aj , Aj+1 other than the leaves corresponding to the pairs
AiAi+1 and AjAj+1. By a case analysis similar to the one for the base case if
find that the topology of this tree contradicts the assumption of single inser-
tion/deletion. Thus the two leaves must correspond to two consecutive taxa in
the circle, that is without loss of generality, Ai+1 = Aj . Now we are ready to
use the inductive hypothesis. Replace the pair of taxa with characters AiAi+1
and Ai+1Ai+2 with one taxon with characters AiAi+1Ai+2 and consider the tree
T ′ obtained from the tree T by removing leaves corresponding to AiAi+1 and
Ai+1Ai+2. If T is a tree that does not require more than one insertion and more
than one deletion per character so is T ′ with respect to the modified set of taxa.
By the inductive hypothesis, this is impossible since the character overlap graph
for the reduced set of taxa contains a cycle of size k − 1. QED.

Persistence versus Compatibility. The persistence criterion provided above
is similar to the well known compatibility criterion [11] at the basic level. Namely,
they both seek to identify characters that are in some sense inconsistent. Then,
one can look for a set of characters whose removal leaves a set of consistent
characters and construct the tree based on these consistent characters. There are,
however, important differences. In the case of persistent characters, a character
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A0   A1   A2   A3   A4  A5
T1  1    1    0    0    0    0 
T2  0    1    1    0    0    0 
T3  0    0    1    1    0    1  
T4  0    0    0    1    1    0  
T5  0    0    0    0    1    1  
T6  1    0    0    0    0    1  

A1

A0

A5 A4

A3

A2A1

A0

A5 A4

A3

A2

T1

T2 T3 T4 T5

T6

a)

b)

c)

Fig. 4. a) An artificial example of 6 taxa and 6 characters; (b) corresponding character
overlap graph; c)the most parsimonious tree after removing character A0. Note that
in this case half of the characters would have to be removed to obtain a pairwise
compatible set.

can change the state at most twice (one insertion and at most one deletion)
while for pairwise compatible characters each character changes state at most
once. Thus the assumption of persistence is a weaker assumption than that of
compatibility. In particular it is easy to see that every edge in a hole identifies
a pair of non-compatible characters. Consider for example a set of n taxa each
described by two characters A0A1, A1A2, . . . AnA0. Then characters AiAi+1 are
incompatible. Removing just one character will ensure persistence (and later in
this paper we propose a method to decide which one) while one has to remove
half of the characters to obtain pairwise compatible set (see figure 4). This weaker
consistency requirement is particularly useful when one cannot assume that there
exist a sufficiently large set of characters which once inserted are never lost. An
example of such situation occurs in the case of intron evolution.

Finally, we shall point out that, unlike the compatibility criterion, the the-
orem shown provides a necessary but not sufficient condition for persistence of
characters.

Graph motifs and persistent characters. The requirement that each char-
acter must be persistent is very restrictive. For example, the fact that bats and
birds gained wings independently (that is the character wings is gained twice)
does not lead to an incorrect evolutionary tree as long as other characters are
used to complement this information. So, even if characters are occasionally
gained/lost more than once, we may still be able to apply parsimony methods
successfully. However, if characters are gained and/or lost independently on mas-
sive scale, then there is not much hope of recovering the correct tree. How can
one distinguish between these two cases?

One solution would be to measure how far the corresponding character overlap
graph is from being a chordal graph. This can be measured, for example, by
counting the minimal number of edges whose addition makes the graph chordal.
Unfortunately, the problem of finding such a minimal set is NP-complete [17].
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We propose a simple heuristic based on the network motifs approach. Rather
than considering all holes, we consider only holes of size four (squares). All
squares can be easily enumerated. The number of squares in an attribute overlap
graph can then be compared to the number of squares in a null model, where
the characters are gained/lost randomly. The ratio of these two counts can be
used to measure how easily the characters are gained/lost.

Our null model assumes the same number of taxa as the real data and the same
set of characters. Furthermore, there is a one-to-one correspondence between the
real taxa and the taxa in the null model. In the null model, the characters of
each taxon are selected randomly in a way that for each taxon the expected
number of characters equals the number of characters of the corresponding real
taxon.

In general, each square in a character overlap graph indicates existence of a
non-persistent character. While a small number of squares is clearly an indication
of a persistent nature of most of the characters, the large number of squares does
not necessarily indicate that the number of non-persistent characters is equally
large. Squares can overlap and a small number of non-persistent characters can
result in a relatively large number of squares. Thus, characters involved in a
large number of squares introduce significant noise to the data. One can address
this problem by assigning a smaller weight to these characters, or simply by
removing them from the data.

4 Applications and Experimental Results

Construction of intron overlap graph and domain overlap graphs. To
construct intron overlap graph, we used the data from a study by Rogozin et
al. [27]. This data contains information about introns found in conserved (and
orthologous) genes of eight fully sequenced organisms: Arabidopsis thaliana (At),
Homo sapiens (Hs), C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles
gambaie (Ag), Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp),
and Plasmodium falciparum (Pf). Introns are identified by their starting position
with respect to the coding sequence. The data contains information about 7236
introns, however most of these introns are observed in one organism only. After
eliminating these single-organism entries, we were left with 1790 introns.

To construct domain overlap graphs, we used the data from a study by Przy-
tycka et al. [25] containing 479 multi-domain superfamilies. This data was built
using the non-redundant multidomain proteins in Swiss-prot [6], where the do-
mains were recognized using CDART [13]. Proteins in this set are grouped into
overlapping superfamilies. Each superfamily is defined to be the maximal set
of proteins that have a specific domain in common. For example, all proteins
containing the kinase domain form one superfamily, proteins containing the SH2
domain form another superfamily and these two superfamilies intersect. Each
such superfamily is considered to have its own evolutionary history, therefore,
each superfamily is treated separately. For each such superfamily there is a sep-
arate domain overlap graph. Domain overlap graphs with less than four nodes
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Fig. 5. Three tree topologies for organisms: Arabidopsis thaliana (At), Homo sapiens
(Hs), C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falciparum
(Pf) a) The incorrect Dollo parsimony tree computed from intron data b) The tree con-
sistent with Coelomata hypothesis. This is also exactly the tree obtained after applying
our squares removal procedure. c) The tree consistent with Ecdysozoa hypothesis.

Table 1. The frequencies of occurrences of squares in intron overlap graph and domain
overlap graph relative to the corresponding null random model. Observe significant
under-representation of squares in the domain overlap graph.

Character type # squares in character overlap graph (s) # squares expected by chance
Introns 954 667 368 1 389 751 510
Domains 251 3 822

were ignored. Similarly, networks in which the number of edges was smaller than
the number of nodes were disregarded.

Counting squares. The relative numbers of squares for both types of overlap
graphs are summarized in Table 1. In the domain overlap graphs, the total
number of squares is relatively small. This indicates that domains tend to be
persistent and thus provide a good set of characters to be used by parsimony
methods. In contrast, the intron overlap graph contains nearly as many squares
as it is expected by chance. This suggests that applying parsimony methods to
this data is likely to give an incorrect result. Indeed, Rogozin et al. constructed
such tree (using Dollo parsimony) and found that it is completely wrong. Figure 5
shows the result of this construction, Figure 5 (b) the tree consistent with the
Coelomata hypothesis, and Figure 5 (c) the tree consistent with the Ecdysozoa
hypothesis. Interestingly, the incorrect Dollo tree is supported by high bootstrap
values [27] suggesting that the incorrectness of the tree is due to a systematic
bias rather than a random noise.

Eliminating squares in domain overlap graphs. Figure 6 shows the dis-
tribution of number squares summed up over all domain overlap graphs. We
observe that a few domains are involved in a large number of squares. Since the
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Fig. 6. The distribution of squares. The domains (x axis) are sorted in the increasing
order of the number of squares they belong to.

problem of removing the smallest number of nodes to obtain a hole-free graph
is NP-complete ( [33]), we iteratively removed the node involved in the highest
number of squares (re-computing the number of squares each time). The first
two domains removed by our greedy approach are two functionally uncharac-
terized domains (smart00267 and smart00052 [16]). Subsequently, the algorithm
identifies for removal two known promiscuous domains (domains that are known
to appear in many diverse multidomain proteins): SH2, ABC-ATPase. Removal
of these four domains reduces the already small number of squares by nearly
80%. After this step, there are still a few domains involved in squares including:
PDZ, PH, SH3, EGF, IG-like. However, none of these domains are involved in
more than 11 squares.

Eliminating squares in the intron overlap graph. In the case of intron
overlap graph, the number of squares is not much smaller than what is expected
by chance. The most frequently occurring squares are of type: (At, Hs, Ce, X),
where X is Dm or Ag. Note that each intron is represented by a binary pattern
of length eight (the number of genomes in the data) where one corresponds to
the intron being present in the given genome and zero to its absence. Introns
with the same pattern are indistinguishable from the perspective of parsimony
methods and are involved in the same number of squares. Note further that with
eight species there are 28 −9 intron patterns (the subtraction corresponds to the
assumption that each intron must be in at least two species) out of which 90
patterns were populated. Thus, some patterns are represented multiple times.
The patterns that appear significantly more often than it is expected by chance
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are considered to be more informative (more significant). Let ni be the number
of times pattern i is observed in the intron data, and ri expected number of
occurrences of the pattern in the null model. Define pi = ni

ri
to be the signifi-

cance the intron pattern i. (Using pi = max(log ni

ri
, ε), where ε is a real number

closed to zero (here = 10−10) gave the same results.) Let Si be the number of
squares in which an intron with pattern i is involved. Our greedy square removal
algorithm removes iteratively intron patterns that maximize the value Si

pi
. This

provides a trade off between maximizing the number of removed squares and
minimizing the significance of the removed intron patterns. After all squares are
removed, we apply the Dollo parsimony to the remaining introns. The procedure
removed intron 52 (57 % ) patterns. We also introduce a modification to the
Dollo parsimony with enforces that the contribution of each intron is weighted
with the significance of the corresponding intron pattern. The resulting tree is
presented on Figure 5 (b). Thus we obtained a tree which is consistent with the
Coelomata hypothesis.

We also applied the same greedy approach with the persistence criterion re-
placed with the compatibility criterion. The procedure removed 86 (95 %) of
intron patterns and produced 15 incorrect trees.

5 Discussion, Conclusions, and Further Work

We demonstrated that the character overlap graph for persistent characters is
chordal. This suggests that the character overlap graph for characters that are
hard-to-gain and hard-to-lose is expected to contain relatively few holes as com-
pared to a null model. In particular, the number of holes of size four (squares)
is also expected to be relatively small. The last property is easily testable, and
provides a fast method for checking whether a set of characters can be used to
produce a correct evolutionary tree. In practical applications, we found that the
number of squares in the domain overlap graph is very small, supporting the
findings that domains can be used as characters in a parsimony approach. In
contrast, the number of squares in the intron overlap graph is not much smaller
than it is expected by chance. This explains why the Dollo tree built based on
intron data is incorrect.

A large number of squares does not necessarily indicate that all characters are
non-persistent. For example, we demonstrated that in the domain overlap graph,
the majority of squares come from the existence of a handful of promiscuous
domains. Consequently, removing a small number of domains from this character
set leaves the domain overlap graph square free.

A similar approach applied to the intron overlap graph also produced an
interesting result. While it is known that introns can be remarkably conserved in
some lineages, they are not so conserved in others. This leads to a large number
of squares. However, we found that the distribution of these squares is non-
uniform. Thinking of squares as inconsistencies in the data, we applied a greedy
algorithm to remove introns that are involved in square formation, choosing
introns of low significance and high involvement in square motifs. We used this
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truncated intron data to construct a weighted Dollo parsimony tree. That is,
we weighted the contribution of each intron according to the significance of the
corresponding intron pattern. With these two changes, we obtained a parsimony
tree which is consistent with the tree constructed using other methods [30]. This
is in contrast to the previous applications of parsimony methods, which have
been unable to recover a tree consistent with any of the proposed evolutionary
hypotheses.

The results of this work strongly suggest that removal of non-persistent char-
acters involved in a large number of squares may significantly improve the ap-
plicability of parsimony methods.
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