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Abstract. We present a fast converging method for distance-based phy-
logenetic inference, which is novel in two respects. First, it is the only
method (to our knowledge) to guarantee accuracy when knowledge about
the model tree, i.e bounds on the edge lengths, is not assumed. Second,
our algorithm guarantees that, with high probability, no false assertions
are made. The algorithm produces a maximal forest of the model tree,
in time �O �

n3� in the typical case. Empirical testing has been promising,
comparing favorably to Neighbor Joining, with the advantage of making
few or no false assertions about the topology of the model tree; guar-
antees against false positives can be controlled as a parameter by the
user.

1 Introduction

The shortcomings of “naive” distance methods in phylogenetic reconstruction,
such as Neighbor Joining (NJ) [12], are well-known, and reconstructing trees
from small subtrees is evidently both desirable and increasingly popular. All
quartet-based methods are examples of this paradigm. However, this divide-
and-conquer approach presents at least two serious difficulties: (1) identifying
those subsets of taxa on which a tree topology can be accurately inferred; and
(2) retaining accuracy when some subtree topologies cannot be correctly deter-
mined. In particular, quartet methods, such as the Dyadic Closure Method of [4]
and the series of Disk-Covering Methods (DCM) [8, 13] are confined to consid-
ering only quartets of small diameter, so-called short quartets, in the hope that
these provide enough information for a complete reconstruction. These methods,
moreover, are compelled to reconstruct the entire tree; consequently, errors are
incurred when attempting to combine subtrees when the given distance matrix
simply does not justify the attempt.

The first DCM method, DCM1, is a good illustration of these difficulties.
That method iterates over thresholds ̂D(i, j) where ̂D is the given distance
matrix–estimated from sequences, for example. At threshold w, a graph Gw

is constructed, where the vertices of Gw are the taxa, with an edge between
i, j whenever ̂D(i, j) ≤ w. Trees are built on maximal cliques of a triangulation
G∗

w of Gw using a base method such as NJ and merged according to a perfect
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elimination order of G∗
w. In some cases, there may be no accuracy guarantees

for the trees built on maximal cliques of G∗
w, and the merging procedure–using

strict consensus merger–is provable only when ̂D is nearly additive (so that Gw

itself is chordal).
Much recent work in the study of distance-based methods has focused on

the notion of fast convergence. Indeed, the work of [4, 5] can be considered a
breakthrough in this vein; there, the authors delineate an algorithm which ac-
curately infers almost all trees on n leaves when provided sequences of length
O(poly(log(n)), and all trees with O(poly(n)) length sequences. By way of com-
parison, the venerable NJ requires exponentially long sequences. A notable
drawback of the Dyadic Closure method of [4], however, is the dearth of use-
ful performance guarantees when sequence lengths are small. In this paper, we
will present an algorithm which achieves fast convergence, to the same extent
and with similar time complexity as in [5], and further, is guaranteed to return
accurate subtrees even when sequences are too short to infer the whole tree
correctly.

To this end, we adapt the work of [9], a method which reconstructs a collec-
tion of subtrees of the model tree from which only a constant fraction of edges
is omitted, when given O(log n) characters. We have improved on the frame-
work of [9], for we do away with the need for parameters f and g, the lower
and upper bounds on the lengths of edges of the model tree. Specifically, we
prove a local quartet reliability criterion, which is blissfully ignorant of f and g.
This permits our algorithm to produce an accurate subforest which is as large
as possible from the data provided–it builds everything that can be built. Sub-
sequently, such a forest can be used to boost other reconstruction methods by,
for example, inferring sequences at ancestral nodes.

In the following subsection, we will present a number of definitions towards
formulating the optimization problem for which our algorithm is a solution,
namely, the Maximal Forest (MF) problem. In Section 2 we delineate the sub-
tree reconstruction and forest construction algorithms and analyze their perfor-
mance. This section also constitutes a significant simplification of the arguments
in [9], and the efficiency of our methods is such that we have been able to im-
plement them. Experimental results are examined in Section 4. In Section 3,
we prove that our method reconstructs almost all n-leaf trees accurately given
sequences of length O(poly(log(n))); our method achieves this guarantee with
marked improvements in efficiency.

1.1 Definitions and Notation

Let T be an edge-weighted, unrooted binary tree. (In the sequel, all trees are
assumed to be unrooted.) Then, we define L(T ) to be the set of leaves of T . For
any subset X of L(T ), T |X denotes the restriction of T to X . We assume that
T is leaf-labelled by a set of taxa, S, of size n and that S is equipped with a
distance matrix ̂D. For each taxon v ∈ S, let L(v) denote a subset of S such that
if ̂D(v, y) < ̂D(v, x) and x ∈ L(v), then y ∈ L(v). For x, y ∈ S, let P (x, y) denote
the set of edges of the path from x to y in T . We say that L(u) and L(v) are
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edge-sharing if there exist x, y ∈ L(u) and x′, y′ ∈ L(v) such that P (x, y) ∩
P (x′, y′) is nonempty; otherwise, L(u) and L(v) are edge-disjoint. For U ⊆ S,
E(U) is the graph with vertex set {L(x)|x ∈ U} and edges determined by the
edge-sharing relation. Naturally, E(U) is called an edge-sharing graph on U .
For convenience, we will freely identify a node L(x) of E(S) with x itself. Let
N(v) denote the set of neighbors of v in E(S). Then, we define SL(v) = L(v) ∪
⋃

u∈N(v) L(u).
We will make use of the strict consensus merger [3] method for constructing

supertrees. The strict consensus merger of two unrooted leaf-labelled trees is
defined as follows. Let t and t′ be trees. Let L = L(t) ∩ L(t′)and let z = t|L and
z′ = t′|L; let Z be the maximally resolved tree that is a contraction of both z
and z′. We call Z the backbone of t and t′. Finally, reattach the remaining pieces
of t and t′ to Z appropriately (ambiguities and conflicts induce nodes of degree
higher than three). Note that the strict consensus merger of two trees is unique.

Generally, each taxon s ∈ S is identified with a sequence over some alphabet
Σ–for example, Σ = {A, C, G, T }. S is equipped with a distance matrix ̂D, which
is, by definition, symmetric, zero along the diagonal, and positive off the diago-
nal. The following several definitions and Theorem 1 motivate the algorithms of
this paper.

Definition 1. Let T be an edge-weighted binary tree, leaf-labelled by S, and let
D be the associated additive matrix. Suppose 0 < ε < M . We say that ̂D :
S × S → R

+ is a local (ε, M) distortion for S′ ⊆ S if

1. ̂D is a distance matrix.
2. ̂D(x, y) = ∞ implies D(x, y) > M , for all x, y ∈ S′

3. ̂D(x, y) < M implies | ̂D(x, y) − D(x, y)| < ε, for all x, y ∈ S′

Definition 2. Let T be an edge-weighted binary tree, leaf-labelled by S, and let
D be the associated additive matrix. Suppose S = C1�...�Cα such that T |Ci and
T |Cj are edge-disjoint for each 1 ≤ i < j ≤ α. For each i ≤ α, let 0 < εi < Mi

be given. Suppose ̂D : S ×S → R
+. We say that C = {(Ci, εi, Mi) : 0 ≤ i ≤ α} is

a local distortion decomposition of ̂D if ̂D is a local (εi, Mi) distortion for Ci,
for each i = 1, ..., α.

Furthermore, let fi be the weight of the smallest edge in T |Ci, and let εi < fi

2 ;
and let ri ≤ Mi−7εi

6 , and assume Mi > 7εi. For each v ∈ Ci, let L(v) be the ball
of radius ri about v. If E(Ci) are the connected components of E(S), then we say
that C is constructive.

The component reconstruction procedure presented below justifies the use of the
word “constructive”; in the case described, we can accurately reconstruct T |Ci

in polynomial time.

Theorem 1 ([9]). Let T be an edge-weighted binary tree, leaf-labelled by S, and
let D be the associated additive matrix. Suppose ̂D is an (ε, M) distortion for S
with ε < f/2 and M > 7ε, where f is the weight of the smallest edge in T . Let
g be the weight of the largest edge in T . Let E(S) be the edge-sharing graph of
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r-balls around leaves where r = M−7ε
6 , and let C1, ..., Cα be the components of

E(S). Then C = {(Ci, ε, M)} is a constructive local distortion decomposition, and
α ≤ 1+ 60√

2
2−(M−ε)/2g ·n. Moreover, the corresponding forest can be constructed

in polynomial time.

In principle, a binary search on r might be expected to find the decomposition
of Theorem 1. Observe, however that Theorem 1 takes the length of the shortest
edge f as a global criterion for accurate reconstruction of subtrees. But if edge-
disjointness can be maintained, the length fi of the shortest edge in T |Ci has no
bearing on the reconstruction of T |Cj, when i 	= j. One should prefer to consider
ball radii as large as possible, thereby increasing the sizes of the components
of E(S), without incurring false resolutions. Thus, relaxing the edge-disjointness
requirement, our work can be considered a solution of the following optimization
problem:

Definition 3 (Maximal Forest Problem). Given a distance matrix ̂D for a
binary tree T , find a constructive local distortion decomposition of ̂D such that
the number of components α is minimized.

2 Our Algorithm

We start off by giving a high level picture of the algorithm–Algorithm 1–with
the details of the various pieces to be described in later sections. Intuitively,
in order to maximize the radii ri of Definition 2, when minimal edge weights
are unknown, it is reasonable to grow radii incrementally. Thus, we sort the
set of pairs {x, y}, x, y ∈ S, under ̂D. We would like to continue throwing in
pairs {x, y} just as long as we are confident of the accuracy of every T |SL(v).
Accuracy will be guaranteed by virtue of Algorithm 2 for quartet reliability.

2.1 A Local Quartet Reliability Criterion

We describe a test which, given sequences at 4 leaves, returns the correct quartet
split with high probability or fails if the sequences at the leaves are too noisy. For
succinctness of description, we will present the test in the context of the Cavender-
Farris-Neyman 2-state model, but as will become clear, it can be easily generalized
to the general Markov model by virtue of the analysis in section 7 of [5].

We begin with a high level description of the CFN model and introduce some
notation. Suppose T is a rooted tree and p : E(T ) → (0, 1/2) is a function asso-
ciating to each edge a transition probability. Under the CFN model, a character
is chosen at the root of the tree uniformly at random from Σ = {−1, 1}, and this
value is propagated towards the leaves, mutating along each edge with proba-
bility p(e). An equivalent description of the corresponding Markov model is the
following: along every edge of the tree with probability θ(e) = 1 − 2p(e), the
child copies its value from the father, and with probability 1 − θ(e), it random-
izes uniformly in {−1, 1}. It follows easily from the above definitions that the
probability p(u, v) that the endpoints u, v of a path P (u, v) of topological length
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Algorithm 1. (Forest Reconstruction Algorithm)
For every v ∈ L(v) set rv := 0; /*rv is the local radius around v*/
Sort the set of pairs E of vertices in ascending order under �D;
Let Forest be the set of subtrees of T ; initially each subtree consists of a single leaf;
while E �= ∅ do

(x, y) := pop(E);
if ( �D(x, y) > rx and �D(x, y) > ry) then

L(x) := L(x) ∪ {y} and L(y) := L(y) ∪ {x};
Compute E(S) and SL(·) trees (Algorithm 3)
if Algorithm 3 failed, i.e. a quartet induced by the new edge (x, y) is unreliable
then

E := E \ {(x, y)}; undo L(·) augmentations;
rx := ∞; ry := ∞; /* freeze nodes x and y */

else
If E(S) changed, update Forest (Algorithm 4)
rx := �D(x, y); ry := �D(x, y); /* update local radii of nodes x, y */

end if
end if

end while

k are in different states is related to the mutation probabilities pe1 , pe2 , . . . , pek

of the edges of P (u, v) by the formula p(u, v) = 1
2 (1 − θ(u, v)) where

θ(u, v) =
k

∏

i=1

θ(ei)

This formula justifies the definition of d(u, v) = − 1
2 log θ(u, v) as a path metric

on the tree.
Now, given k samples of the process at the leaves of the tree, {σt

L(T )}k
t=1, we

can empirically estimate θ(u, v) for all u, v ∈ L(T ), using the following empirical
measure:

c(u, v) =
1
k

k
∑

t=1

σt
uσt

v

The local test for finding quartet splits reliably is described briefly in Algorithm
2 and its correctness is proved in Theorem 2.

Theorem 2. If Algorithm 2 outputs a quartet split, then this split is correct
with probability at least 1 − δ1.

Proof. By the Azuma-Hoeffding inequality, it is not hard to see that for all
i, j ∈ {1, 2, 3, 4},

P [|θ(i, j) − c(i, j)| ≥ α(k, δ1)] ≤ 2 · exp
{

−α(k, δ1)2k
2

}

From the choice of α(k, δ1) it follows that, with probability at least 1 − δ1, we
have |θ(i, j)−c(i, j)| ≤ α(k, δ1) for all i, j ∈ {1, 2, 3, 4} Without loss of generality,



286 C. Daskalakis et al.

Algorithm 2. (Quartet Reliability Criterion)
INPUT: k samples of the CFN model on four leaves {1, 2, 3, 4} and a parameter
δ1 > 0
OUTPUT: a quartet split of {1, 2, 3, 4} or “fail” if not enough data; if a quartet
split is returned, it is correct with probability at least 1 − δ1

Take α(k, δ1) :=
�

2
k

ln 12
δ1

and 1
ε

:= minu,v∈{1,2,3,4}

�
c(u,v)

α(k,δ1)

�
if ε ≥ 1 then

return “fail” /* the estimation error is too large */
end if
for i, j ∈ {1, 2, 3, 4}, i �= j do

if
�

c(i,k)c(j,l)
c(i,j)c(k,l) <

�
1−ε
1+ε

�
for all k, l ∈ {1, 2, 3, 4} − {i, j}, k �= l then

return ij|kl
end if

end for
return “fail”

suppose that the correct quartet on the leaves {1, 2, 3, 4} is 12|34. Suppose that
the middle “edge” of the quartet split corresponds to a path p in T with and
endpoints a and b and θ(p) =

∏

e∈p θ(e). Assume that leaves 1 and 2 lie in the
same subtree when b is removed from T , and 3 and 4 lie in the same subtree
when a is removed from T . It follows that, for example,

θ(1, 3)θ(2, 4)
θ(1, 2)θ(3, 4)

=
θ(1, a)θ(p)θ(b, 3)θ(2, a)θ(p)θ(b, 4)

θ(1, 2)θ(3, 4)
=

= θ(p)2 · θ(1, 2)θ(3, 4)
θ(1, 2)θ(3, 4)

Since the algorithm does not return “fail,” we may assume that ε < 1. Moreover,
by a simple union-bound and some straightforward calculations, we can show
that for every four distinct i, j, k, l

√

c(i, j)c(k, l)
c(i, k)c(j, l)

⎧

⎨

⎩

> 1
θ(p) ·

(

1−ε
1+ε

)

, if {i, j} = {1, 2} and {k, l} = {3, 4}

< θ(p) ·
(

1+ε
1−ε

)

, otherwise
(1)

if and only if 12|34 is the correct split, with probability at least 1 − δ1. Subse-
quently, (1) surely holds if

√

c(1, 3)c(2, 4)
c(1, 2)c(3, 4)

<

(

1 − ε

1 + ε

)

and
√

c(1, 4)c(2, 3)
c(1, 2)c(3, 4)

<

(

1 − ε

1 + ε

)

Thus, Algorithm 2 returns 12|34, which is correct with probability at least 1−δ1.
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2.2 Local Tree Reconstruction

In this section we will prove that Algorithms 3 and 4 correctly reconstruct a
forest corresponding to a set of L(·)’s as long as the sequence length permits
correct estimation of the quartet splits. If this is not the case, the algorithms
will fail without returning an incorrect tree. All the above claims are with high
probability for k > c(T, f, g) logn.

Theorem 3. If algorithm 3 does not fail, then the tree output by algorithm 4 is
correct with probability at least 1 − n4δ1.

Proof. Suppose that algorithm 3 does not “fail”. It follows that every quartet it
considers passes the test of Algorithm 2. Now, since there are at most

(

n
4

)

of them
and each is estimated correctly with probability at least 1 − δ1, the probability
that they are all estimated correctly is at least 1−n4δ1. It only remains to argue
that if all quartets are estimated correctly, the tree output by algorithm 4 is
correct. Note that the T |SL(v)’s that are computed by algorithm 3 are correct
so that the input to algorithm 4 is correct. So we have to show that 4 finds the
supertree of these trees correctly. The proof of the later is given by lemmas 1, 2
and 3 which, also, provide a streamlined proof of the correctness of [9].

Lemma 1. [7] Let G be a graph. Then the following are equivalent: (1) G is a
subtree intersection graph; (2) G is chordal; (3) G admits a perfect elimination
ordering.

Lemma 2. Suppose E(S) is correct and T |SL(v) is accurate for each v ∈ C.
Then, for each i ≤ n, Ti = T |{vi, ..., vr}. Moreover, T1 = T |C.

Proof. The argument is similar to that in [8]. We include it for the sake of
completeness. We proceed by induction on i. The claim is obvious for i = r.
Assume Ti+1 = T |{vi+1, ..., vr}. Observe that L(ti) ∩ L(Ti+1) = Xi, so Xi is the
leaf set of the backbone Z of the merger of ti and Ti+1. As ti and Ti+1 are both
correct, we know that there is no edge contraction in the merger, so we need
only show that there are no collisions.

The only possible collision is the following. Suppose e is an edge of Z, and
both vi and a subtree τ of Ti+1 are attached at e. Clearly, L(τ) ⊆ {vi+1, ..., vr}−
Xi. We will derive a contradiction to this fact. In the true tree T , e corresponds to
a path P with endpoints, say, a and b. Let T0 denote the subtree of T consisting
of the internal nodes and edges of P along with the subtrees attached at those
nodes. Now, observe that (1) vi ∈ L(T0) and L(τ) ⊂ L(T0). Furthermore, (2) we
know L(T0) ∩ Xi = ∅, just because Z, ti and Ti+1 are correct. Finally, we will
prove below that (3) E(L(T0)) is path connected.

By (3), let π be a simple path in E(L(T0)) from vi to a node in L(τ), and let
x be the first node of π which lies in L(τ); that is, we may assume that

π = (vj1 = vi, vj2 , ..., vjk
= x)

with vjl
/∈ L(τ) whenever l < k. By (2), we know that each vjl

is in {v1, ..., vi}.
We claim now that there must be an edge (vi, x) in E(C). For suppose that
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Algorithm 3. (Construction of Edge Sharing Graph and SL(·) trees)
INPUT: {L(v)}v∈L(T )

OUTPUT: Edge Sharing Graph and T |SL(v)’s or “fail”

/* Determine edge-sharing between leaf-balls */
for each pair of leaf balls L(u), L(v) do

EdgeSharing = FALSE; UnreliableQuartetFound = FALSE;
for any choice of xu, yu ∈ L(u), xv, yv ∈ L(v) do

find quartet for leaves {xu, yu, xv, yv} using algorithm 2
if not enough information to find split then

UnreliableQuartetFound = TRUE;
else if xuxv|yuyv is reliable according to algorithm 2 then

L(u), L(v) are edge-sharing; EdgeSharing = TRUE;
end if

end for
if (¬ EdgeSharing and UnreliableQuartetFound) then

return “fail”; /*Not enough information to be certain about the edge sharing
graph.*/

end if
end for

/* Build subtrees */
for v ∈ L(T ) do

if every quartet on SL(v) is reliable then
Build T |SL(v) using some base method (e.g. NJ)

else
return “fail”

end if
end for

Algorithm 4. (Component reconstruction)
INPUT: SL(·) trees of a connected component C of E(S)
OUTPUT: T |C

Let v1, ..., vr be a perfect elimination order of the leaves of a component C of E(S)
(by lemma 1 C is triangulated).
for 1 ≤ i ≤ r do

Let Xi = SL(vi) ∩ {vi, ..., vr}
Get ti = T |(Xi ∪ {vi}) by restricting T |SL(vi)

end for
Set Tr = tr

for i = r − 1 to 1 do
Ti := strict consensus merger of ti and Ti+1

end for
return T1
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j1 > ... > jp and jp+1 > jp. Then there must be an edge (vjp−1 , vjp+1) in E(C)
because v1, ..., vr is a perfect elimination ordering. Hence, vjp can be removed
from π without breaking the path. By induction on k, then, there must be an
edge (vi, x) in E(C), as claimed. It follows that x ∈ Xi, which is a contradiction.
Thus, there are no collisions, and the claim is proven.

Lemma 3. E(L(T0)) is path-connected.

Proof. Let Ta denote the subtree of T rooted at a containing no internal nodes
of P . Define Tb similarly. Let v ∈ L(T0). Since E(C) is path connected, let π be
a simple path from v to a leaf of Ta, and let x be the last node of E(L(T0)) along
this path, so that L(x) and L(z) are edge-sharing for some z /∈ L(Ta). Thus, if
we take (a, c) to be a terminal edge of P , we can see that L(x) must contain a
node x′ which does not lie in L(Ta) and such that P (x, x′) contains (a, c). Let
y, y′ and (b, d) be the corresponding construction for Tb.

Suppose u, v ∈ L(T0). Since E(C) is connected, there is a simple path (u =
w1, w2, ..., wq = v) in E(C). Suppose w1, ..., wj , wj+s+1 ∈ L(T0) andwj+1, ..., wj+s

∈ L(Ta). Then L(wj) and L(wj+s+1) must be edge-sharing at (a, c). We may, then,
remove the excursion inL(Ta), obtaining the path (w1, ..., wj , wj+s+1, ..., wq).Con-
tinuing in this manner, we remove from the path all excursions out of L(T0). It
follows that E(L(T0)) is path connected.

A similar argument demonstrates the following fact, which will be used in
section 4:

Lemma 4. For each edge e of T |C, e appears in T |SL(v) for some v ∈ C.

2.3 Time Complexity

Suppose that r is the largest radius of a leaf set L(u) in a run of Algorithm 1,
and let f be the length of the shortest edge in the tree T . Then for every taxon v,

|SL(v)| ≤ 2
6r
f −1 = κ(r, f)

Thus, the base method for tree reconstruction is only deployed against SL(v)’s
whose size is bounded by κ(r, f). By the fast convergence analysis of our algo-
rithm (section 3) it follows that for every tree our algorithm will reconstruct the
whole topology for r = O(g log n). On the other hand, for a typical tree (one
drawn, for example, uniformly at random from the set of leaf-labelled trees) the
algorithm will get the correct tree for r = O(g log log n), so the base method will
be typically applied on trees of size O(2g/f log n).

Now suppose we are joining two taxa from separate connected components.
Updating E(S) requires no more than O(nκ4) time by modifying intelligently
algorithm 3 so that only the necessary checks are performed. A perfect elimina-
tion order of a chordal graph on n vertices can be computed in O(n2) time, and
computing the strict consensus merger of two trees takes O(n) time. So every
call of Algorithm 3 and 4 takes time O(nκ4) and O(n2) respectively.
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Since there are at most n2 iterations in Algorithm 1 there are at most n2 exe-
cutions of Algorithm 3. Therefore, the total time spent in executions of Algorithm
3 is O(n3κ4), typically ˜O(n3). On the other hand, each time Algorithm 4 is called
the number of trees in the forest decreases by one. And since we start off with n
trees, Algorithm 4 is called at most n times, hence O(n3) time is spent in execu-
tions of this algorithm overall. Thus, the total running time is typically ˜O(n3).

Finally, we note that, for clarity of exposition, the described algorithms are
not optimized. Using hash tables to store the results of Algorithm 2 and the
partial T |SL(v) trees, each quartet is evaluated once along the course of the
algorithm, and T |SL(v) trees are built at each step on top of partially recon-
structed topologies.

3 Log-Length Sequences

In this section, we will prove that our method reconstructs almost all n-leaf trees
provided that the sequence length k is O(poly(log(n))) under the Cavender-
Farris-Neyman 2-state model of evolution [2, 6, 11]. More specifically, we argue
that our method achieves the same performance guarantees as does the Dyadic
Closure Method of [4]. A key notion in the analysis is the depth of a tree T ,
defined as follows: for an edge e of T , let T1 and T2 be the rooted subtrees
obtained by deleting e, and let di(e) denote the topological distance from the
root of Ti to its nearest leaf in Ti; subsequently, we define

depth(T ) = max
e

{max(d1(e), d2(e))}

letting e range over the set of internal edges of T . A quartet {i, j, k, l} is called
short if T |{i, j, k, l} consists of a single edge connected to four disjoint paths of
topological length no more than depth(T )+1. Let Qshort denote the set of short
quartets of T . Given a set of quartets Q, we let Q∗ denote the set of quartet
topologies induced by T .

Given sequences x, y of length k, let hxy = H(x, y)/k where H(x, y) is the
Hamming distance of the sequences. Let Exy = E[hxy].

Let Qw denote the set of quartet topologies q such that hij ≤ w for all
i, j ∈ q. In [4], it is proved that if Q∗

short ⊆ Qw and Qw is consistent, then
cl(Qw) = Q(T ) where cl(Q) is the dyadic closure of a set of quartet topologies.
But observe that by lemma 4 if Q∗

short ⊆ Qw ⊆ Q6w ⊆ Q(T ) for some w,
then Algorithm 1 correctly reconstructs T . Let E denote this event, and further,
define the following events: A for Q∗

short ⊆ Qw; B for Q6w ⊆ Q(T ); and C for
“Qw contains all quartets containing pairs i, j such that Eij < b, and Q6w does
not contain any pairs i, j such that Eij > 13b.” If i, j lie in a short quartet, then
Eij ≤ 1−e−2g(2depth(T )+3)

2 = b. We take w = 2b.
It’s easy to see that

P[E] = P[A ∩ B] ≥ P[A ∩ B ∩ C] =

= P[C] · P[A|C] · P[B|A, C] = P[C] · P[B|C]
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We will bound probability P[B|C] first. Suppose q = {u, v, w, z} ∈
(

n
4

)

s.t.
∀i, j ∈ q : Eij ≤ 13b. Then, the quartet split of q is found with probability at
least 1 − δ1 if:

(I) (1 − 26b)
(

1 + 2ε
1−ε

)

<
(

1 − 2ε
1−ε

)

⇔ ε < 13b
2−13b

(II) 1
ε = mini,j∈{u,v,w,z}

{

c(i,j)
α(k,δ1)

}

> 1

If k >
8 ln 12

δ1
(2−13b)2

(1−26b)2(13b)2 , by the Azuma-Hoeffding inequality it follows that the

probability that event I ∩ II does not hold is at most 6 exp {− (1−26b)2k
8 } so

P[I ∩ II] ≥ 1 − exp {− (1−26b)2k
8 }. Now, we can lower bound the probability of

estimating quartet q correctly as follows:

P[q is estimated correctly] ≥ 1 − δ1 − P[II ∩ I] ≥ 1 − δ1 − exp
{

− (1 − 26b)2k
8

}

Since the quartets are at most
(

n
4

)

we can bound the probability of P[B|C]
roughly as follows:

P[B|C] ≥ 1 −
(

n

4

)

δ1 −
(

n

4

)

exp
{

− (1 − 26b)2k
8

}

It remains to bound P[C]. Define Sr = {{i, j} | hij < 1
2 − r}. Then, if i, j are

such that Eij ≥ 1
2 − 13b, then

P[{i, j} ∈ S12b] = P[hij <
1
2

− 12b] ≤

≤ P[hij − Eij <
1
2

− 12b − Eij ] ≤ P[hij − Eij ≤ −b] ≤ e−b2k/2

by the Azuma-Hoeffding inequality. A similar analysis shows that if Eij < 1
2 −3b,

then P[{i, j} /∈ S2b] ≤ e−b2k/2. Thus, P[C] ≥ 1 −
(

n
2

)

e−b2k/2, and P[E] is not less
than

1 −
(

n

4

)

δ1 −
(

n

4

)

exp
(

− (1 − 26b)2

8
k

)

−
(

n

2

)

e−b2k/2

We have, therefore, proved

Lemma 5. Suppose k sites evolve on binary tree T according to the Cavender-
Farris-Neyman model, such that f ≤ D(e) ≤ g for each edge e of T . Then
Algorithm 1 reconstructs T with probability 1 − o(1) whenever

k >
c · ln δ1

(1 − 26b)2b2 =
c′ · log n

(1 − 26b)2b2

and δ1 is chosen δ1 < n−5

where b = 1−e−2g(2depth(T )+3)

2 .
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In [4], it is also proven that a random n-leaf binary tree T has

depth(T ) ≤ (2 + o(1)) log log 2n

with probability 1 − o(1). Thus,

Theorem 4. Under the Cavender-Farris-Neyman model, Algorithm 2 correctly
reconstructs almost all trees on n leaves with sequences of length k = O(poly
(log n)).

4 Experiments

In all of our experiments, we used the CFN 2-state model of evolution. Empirical
distances were computed as described in Section 2. Random trees were obtained
via the r8s package, with mutation probabilities scaled into the range [0.1, 0.3]
by affine transformation.

If M is a forest reconstruction method and D is a distance matrix, then
M [D] denotes the set of trees returned by M applied to D. If T is a binary edge-
weighed tree and k is a positive integer, then Dk

T is a distance matrix on the
leaves of T obtained by generating binary sequences of length k to the leaves of
T according to the CFN model of evolution and computing empirical distances
as discussed previously.

4.1 Experiment 1: Comparisons of Variations on the Theme

In this experiment, we examine the practicality of the quartet reliability crite-
rion. The Global Radius (GR) method is a strict implementation of [9], recover-
ing a global accuracy threshold as in that result via binary search on the list of
pairwise distances between leaves. The Local Radii (LR) method is implemen-
tation of our algorithm without the quartet reliability criterion–that is, of some
heuristics underlying the algorithm. In LR, the accuracy threshold is not read
from the model tree a priori; rather, balls around leaves are grown dynamically
during the run of the algorithm. Finally, LR+Qδ denotes the method described
in previous sections of this paper, wherein balls around leaves grow dynamically
and only statistically reliable quartets (with error tolerance δ, see theorems 2
and 3) are permitted in construction.

Method: For each method, we examined both the number of subtrees of a model
tree the method returned and the aggregated accuracy of the subtrees.

Our measure of accuracy is as follows. For a pair of trees T and T ′ with a
common leaf set S, RF (T, T ′) denotes the Robinson-Foulds distance between
them. In our case, it is impossible to compare a forest F and a tree using the
Robinson-Foulds distance directly, so we will apply the distance measure only to
subtrees of the model tree induced by the leaf sets of trees in F . Let T be a model
tree, and suppose F = {t1, ..., tk} is the forest returned by one the reconstruc-
tion methods from a distance matrix generated on T . Then we may assess the
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accuracy of the forest F with respect to T by A(F , T ) =
∑k

i=1 RF (T |L(ti), ti).
We refer to this measure as IRF (Induced Robinson-Foulds) distance.

We compared the three methods–GR, LR, and LR + Qδ–on randomly gen-
erated n-leaf model trees, for n = 16, 32, 64, and 128, and on each model tree we
generated sequences of length k2, k3, k4, k5, k6, and k7 and k = 4. That is to say,
for each n, we generated s trees, say T1, ..., Ts, and for i = 1, ..., s, we generated
binary sequences of length kt, for t = 2, ..., 7. For M = GR, LR, we recorded
IRF (n, kt), the mean IRF distance of M on n-leaf trees with sequences of length
kt, and DisM (n, kt), the average number of disjoint subtrees. For M = LR+Qδ,
we need to consider the error tolerance submitted to the quartet test (i.e. δ in
Algorithm 2); therefore, we recorded IRFM,δ(n, kt) and DisM,δ(n, kt) for several
values of δ.

As expected the IRF distance of GR and LR is similar while LR pro-
duces forests with fewer subtrees than does GR. As δ increases, we expect that
DisM,δ(n, kt) will decrease while IRFM,δ(n, kt) increases.

4.2 Experiment 2: Local Accuracy Comparison with Existing
Methods

We compare LR + Q to an industry-standard implementation of the Neighbor-
Joining (NJ) method, examining the latter for local accuracy in two different
ways. That is, we wish to compare the accuracy of NJ on the disjoint leaf sets
induced by our method. Suppose LR + Q returns a forest F = {t1, ..., tα} when
given a distance matrix D generated on a model tree T . Define

preNJ(F , T ) =
α

∑

i=1

RF (T |L(ti), NJ [D|L(ti)])

measuring the accuracy of NJ when applied to subsets of L(T ) independently,
and

postNJ(F , T ) =
α

∑

i=1

RF (T |L(ti), NJ [D]|L(ti))

measuring the accuracy of NJ applied to D and subsequently restricted to dis-
joint subsets of L(T ). Then, following Experiment 1, we define preNJ (n, kt) to
be the mean over preNJ ’s and postNJ(n, kt), the mean over postNJ ’s. It is then
reasonable to compare preNJ and postNJ with IRFLR+Qδ

. We expect LR + Q
to outperform NJ under both of these measures.

4.3 Results and Discussion

Detailed results are available on the web at the following URL:

http://www.cs.berkeley.edu/~satishr/recomb2006

Herein, we present a brief summary. As anticipated, LR outperforms GR sig-
nificantly in terms of the number of subtrees, producing smaller forests for each
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Fig. 1. Comparison of Neighbor-Joining, Global-Radius and Local-Radii methods on
128 taxa for various sequence lengths

sequence length. For example, for 64 taxa, GR returns 38, 29, 13, 9, and 5 trees
with sequences of length 64, 256, 1024, 4096, and 16384, respectively, and by
comparison, LR returns 13, 7, 5, 2, and 1 trees, respectively. Simultaneously, LR
turns out to be more accurate for long sequences, attaining Induced Robinson-
Foulds distance of 13.5, 5.5, 3, 1 and 0.5 at the corresponding sequence lengths;
GR obtained IRF distance 3.5, 6.0, 5.5, 4.5, and 2.5. Moreover, the advantages
of our method seems to be amplified for larger sets of taxa. This advantage also
holds in comparison to NJ applied to the distance matrix naively. For exam-
ple, for 128 taxa with sequences of length 4096, LR returns 6 trees with IRF
3, whereas GR returns 40 trees with IRF 11 and NJ achieves RF distance 93
(while returning one tree). A graphical illustration can be found at figure 1.

We did not measure running-times carefully; however, they appear compa-
rable to popular algorithms.

Due to optimization issues and the delicacy of the probabilistic bounds, we
must still look forward to detailed testing of LR + Q, and detailed analyses will
also appear at the URL above. Results of experiment 2 are also to be found
there, and are similarly promising.
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