
Clustering Near-Identical Sequences for Fast
Homology Search

Michael Cameron1, Yaniv Bernstein1, and Hugh E. Williams2

1 School of Computer Science and Information Technology,
RMIT University, GPO Box 2476V, Melbourne 3001, Australia

{mcam, ybernste}@cs.rmit.edu.au
2 Microsoft Corporation, One Microsoft Way,

Redmond, Washington 98052, USA
hughw@microsoft.com

Abstract. We present a new approach to managing redundancy in se-
quence databanks such as GenBank. We store clusters of near-identical
sequences as a representative union-sequence and a set of corresponding
edits to that sequence. During search, the query is compared to only the
union-sequences representing each cluster; cluster members are then only
reconstructed and aligned if the union-sequence achieves a sufficiently
high score. Using this approach in BLAST results in a 27% reduction is
collection size and a corresponding 22% decrease in search time with no
significant change in accuracy. We also describe our method for cluster-
ing that uses fingerprinting, an approach that has been successfully ap-
plied to collections of text and web documents in Information Retrieval.
Our clustering approach is ten times faster on the GenBank nonredun-
dant protein database than the fastest existing approach, CD-HIT. We
have integrated our approach into FSA-BLAST, our new Open Source
version of BLAST, available from http://www.fsa-blast.org/. As a re-
sult, FSA-BLAST is twice as fast as NCBI-BLAST with no significant
change in accuracy.

1 Introduction

Comprehensive genomic databases such as the GenBank non-redundant pro-
tein database contain a large amount of internal redundancy. Although ex-
act duplicates are removed from the collection, there remain large numbers of
near-identical sequences. Such near-duplicate sequences can appear in protein
databases for several reasons, including the existence of closely-related homo-
logues or partial sequences, sequences with expression tags, fusion proteins, post
translational modifications, and sequencing errors. These minor sequence vari-
ations lead to the over-representation in databases of certain protein domains,
particularly those that are under intensive research. For example, the GenBank
database contains several thousand near-identical protein sequences from the
human immunodeficiency virus.

Database redundancy has several pernicious effects. First, a larger database
takes longer to query; as sequencing efforts continue to outpace improvements in
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computer hardware, this is a problem that will continue to worsen. Second, re-
dundancy can lead to highly repetitive search results for any query that matches
closely with an over-represented sequence. Third, large-scale redundancy has
the effect of skewing the statistics used for determining alignment significance,
ultimately leading to decreased search effectiveness. Fourth, the PSI-BLAST al-
gorithm (1) can be misled by redundant matches during iteration, causing it
to bias the profile towards over-represented domains; this can result in a less
sensitive search or even profile corruption (2; 3).

Redundancy has been managed in the past by the creation of representative-
sequence databases (RSDBs), culled collections in which no two sequences share
more than a given level of identity. Such databases have been shown to signifi-
cantly improve profile training in iterative search tools such as PSI-BLAST by
reducing the amount of over-representation of certain protein domains and con-
sequently reducing profile corruption. However, they are less suitable for regular
search algorithms such as BLAST (4; 1) and FASTA (5; 6) because, by defini-
tion, RSDBs are not comprehensive. This leads to search results that are both
less accurate—the representative sequence for a cluster may not be the one that
aligns best with a given query—and less authoritative because the user is only
shown one representative sequence from a family of similar sequences.

In this paper, we describe a sequence clustering methodology that efficiently
and effectively identifies and manages redundancy. Importantly, it lacks the
drawbacks of previous representative-sequence databases. Previous approaches
choose one sequence from each near-duplicate cluster as a representative to the
database and delete the other sequences. In contrast, we generate for each cluster
a special union-sequence that—through use of wildcard characters—represents
all of the sequences in the cluster simultaneously. Through careful choice of wild-
cards, we are able to achieve near-optimal alignments while still substantially
reducing the number of sequences against which queries need to be matched.
Further, we store all sequences in a cluster as a set of edits against the union-
sequence. This achieves a form of compression and allows us to retrieve cluster
members for more precise alignment against a query should the union-sequence
achieve a good alignment score. Thus, both space and time are saved with no
significant loss in accuracy or sensitivity.

Our method supports two modes of operation: users can choose to see all
alignments or only the best alignment from each cluster. In the former mode,
the clustering is transparent and the results comparable to searches on an un-
clustered collection. In the latter mode, the search output is similar to the result
of searching a culled representative database, except that our approach is guar-
anteed to display the best alignment from each cluster and is also able to report
the number of similar alignments that have been suppressed.

Our work also improves on previous approaches by reducing the time and
resources required to create clusters. The most successful existing algorithms use
a form of all-against-all comparison that is quadratic in the number of sequences
in the database. Our innovative clustering approach uses a technique known as
fingerprinting that leads to significantly faster clustering; we are able to process
the entire GenBank collection in one hour on a commodity workstation. By
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contrast, the fastest previously available system, CD-HIT (7), takes almost ten
hours on the same machine.

To investigate the effectiveness of our clustering approach we have integrated
it with our freely available open-source software package, FSA-BLAST. When
applied to the GenBank non-redundant (NR) database, our method reduces the
size of sequence data in the NR database by 27% and improves search times by
22% with no significant effect on accuracy.

2 Existing Approaches

Reducing redundancy in a sequence database is essentially a two-stage process:
first, redundancy within the database must be identified by grouping similar
sequences into clusters; then, the clusters must be managed in some way. In this
section we describe past approaches to these two stages.

The first stage of most clustering algorithms involves identifying pairs of sim-
ilar sequences. An obvious approach to this is to align each sequence with ev-
ery other sequence in the collection using a pairwise alignment scheme such as
Smith-Waterman local alignment (8). This is the approach taken by several ex-
isting clustering algorithms, including d2 cluster (9), OWL (10), and KIND (11).
However, this approach is impractical for any collection of significant size; each
pairwise comparison is computationally intensive and the number of pairs is
quadratic in the number of sequences.

Several schemes, including CLEANUP (12), NRDB90 (13), RSDB (3), CD-
HI (14) and CD-HIT (7), use fast clustering approaches based on greedy incre-
mental algorithms. In general, each proceeds as follows. To begin, the collection
sequences are sorted by decreasing order of length. Then, each sequence is ex-
tracted in turn and used as a query to search an initially-empty representative
database for high-scoring matches. If a similar sequence is found, the query se-
quence is discarded; otherwise, it is added to the database as the representative
of a new cluster. When the algorithm terminates, the database consists of the
representative (longest) sequence of each cluster. This greedy approach reduces
the number of pairwise comparisons but has three drawbacks: first, a match is
only identified when one sequence is a substring of another; second, cases where
the prefix of one sequence matches the suffix of another are neglected; and, third,
clusters form around longer sequences instead of natural centroids, potentially
leading to a suboptimal set of clusters.

Existing greedy incremental algorithms also use a range of BLAST-like heuris-
tics to quickly identify high-scoring pairwise matches. The CLEANUP algo-
rithm (12) builds a rich inverted index of short substrings or words in the
collection and uses this structure to score similarity between sequence pairs.
NRDB90 (13) and RSDB (3) use in-memory hashtables of decapeptides and pen-
tapeptides for fast identification of possible high-scoring sequence pairs before
proceeding with an alignment. CD-HI (14) and CD-HIT (7) use lookup arrays of
very short subsequences to more efficiently identify similar sequences. However,
despite each scheme having fast methods for comparing sequence pairs, the al-
gorithms still operate on a pairwise basis and remain O(n2) in the size of the
database. Indeed, we show in Section 7 that CD-HIT — the fastest of the greedy
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incremental algorithms mentioned and the most successful existing approach —
scales poorly, with superlinear complexity in the size of the collection.

One way to avoid an all-against-all comparison is to pre-process the collection
using an index that can efficiently identify high-scoring candidate pairs. Malde
et al. 2003 (15) and Gracey et al. 1998 (16) investigated the use of suffix struc-
tures such as suffix trees (17) and suffix arrays (18) to identify groupings of
similar sequences in linear time. However, traditional suffix structures consume
large amounts of memory and are not suitable for processing large sequence
collections such as GenBank on desktop workstations. Malde et al. 2003 (15)
report results for only a few thousand EST sequences. The algorithm described
by Gracey et al. 1998 (16) requires several days to process a collection of around
60,000 sequences. External suffix structures, which record information on disk,
are also unsuitable; they use a large amount of disk space, are extremely slow
for searching, or have slow construction times (19). Nonetheless, we believe that
investigating data structures for identifying all pairs of similar sequences in a
fixed number of passes is the correct approach.

Once a set of clusters have been identified, most existing approaches retain a
single representative sequence from each cluster and delete the rest (13; 3; 14; 7).
The result is a representative database with fewer sequences and less redundancy.
However, purging near-duplicate sequences can significantly reduce the quality
of results returned by search tools such as BLAST. There is no guarantee that
the representative sequence from a cluster is the sequence that best aligns with a
given query. Therefore, some queries will fail to return matches against a cluster
that contains sequences of interest, which reduces sensitivity. Further, results
of a search lack authority because they do not show the best alignment from
each cluster. Also, the existence of highly-similar alignments, even if strongly
mutually redundant, may be of interest to a researcher.

3 Clustering Using Wildcards

In this section we describe our approach to representing and searching clusters
of highly-similar sequences using union-sequences and special-purpose wildcard
characters to represent clusters.

Let us define E = {e1, ..., en} as the set of sequences in a collection where each
sequence is a string of residues ei = r1...rn | r ∈ R. Our approach represents the
collection as a set of clusters C, where each cluster contains a union-sequence
U and edit information for each member of the cluster. The union-sequence
is a string of residues and wildcards U = u1...un|ui ∈ R ∪ W where W =
{w1, ..., wn | wi ⊆ R} is the set of available wildcards. Each wildcard represents
a set of residues and is able to act as a substitute for any of these residues. By
convention, wn is assumed to be the default wildcard wd that can represent any
residue; that is, wn = R.

Figure 1 shows an example cluster constructed using our approach. The union-
sequence is shown at the top and cluster members are aligned below. Columns
where the member sequences differ from each another and a wildcard has been
inserted are shown in bold face. In this example, W = {wd} — that is, only the
default wildcard is used and it is represented by an asterisk.
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KNQVAMN * QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV * QAEVDV * RFRSNT * ER (union-seq)
PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156103)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156105)
QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTKER (gi 156121)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTK (gi 552059)
KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552055)
KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 552057)

PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTKER (gi 156098)
QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRS (gi 156100)

VFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 156111)
NQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552056)

Fig. 1. Example cluster of heat shock proteins from the GenBank NR database. The
union-sequence is shown at the top, followed by the ten member sequences.

When a cluster is written to disk, the union-sequence — shown at the top of
the figure — is stored in its complete form, and each member of the cluster is
recorded using edit information. The edit information for each member sequence
includes start and end offsets that specify a range within the union-sequence,
and a set of residues that replace the wildcards in that range. For example, the
first member of the cluster with GI accession 156103 would be represented by
the tuple (8,44,PI); the member sequence can be reconstructed by copying the
substring between positions 8 and 44 of the union-sequence and replacing the
wildcards at union-sequence positions 8 and 40 with characters P and I respec-
tively. Note that we do not permit gaps; insertions and deletions are heavily
penalised during alignment and any scheme that allows gaps in representative
sequences is likely to reduce search accuracy. A more complex cluster represen-
tation such as a partial-order graph (20) could tolerate gaps; while the increased
complexity of such a representation leads inevitably to larger on-disk footprint
and longer alignment times, the potential increase in cluster size that gapping
would allow means that such a technique merits future investigation.

Our clustering method is designed so that each union-sequence aligns to the
query with a score that is—with high probability—equal to or higher than the
best score for aligning the query to members of the cluster (see Section 5). During
search, the query is compared to the union-sequence of each cluster; if the union-
sequence produces a statistically significant alignment, then the members of the
cluster are restored from their compressed representations and aligned to the
query. Our approach supports two modes of operation: users can choose to see
all high-scoring alignments, or only the best alignment from each cluster. The
latter mode reduces redundancy in the results.

4 Clustering Algorithm

In this section we briefly describe our approach to efficiently clustering large
sequence collections. A more detailed description of the algorithm is given in
Bernstein and Cameron 2006 (21).

In our approach, we use a largely linear-time algorithm that has low main-
memory overheads for identifying candidate pairs. Document fingerprinting (22;
23; 24; 25; 26) has been used for grouping highly similar documents in ex-
tremely large collections and has been successfully applied to text and web
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data for several applications including plagiarism detection, copyright protec-
tion, and search-engine optimisation. Fingerprinting operates by selecting fixed-
length subsequences — known as chunks — from each document. This set of
chunks is known as the document fingerprint and acts as a compact surrogate
for the document. As highly similar documents are expected to share a large
number of chunks, fingerprints are used to efficiently detect similar documents
in a collection.

The basic process of fingerprinting can be applied to biological sequence data
by substituting sequences for documents, although some alterations in approach
are necessary because genomic sequences do not contain natural word-delimiters
such as punctuation and whitespace. We have modified our deco fingerprinting
package (26; 27) for use with sequence data and it is used as the first stage of
our clustering algorithm.

The fingerprinting process identifies chunks that occur in the collection more
than once. In the context of sequence data we use subsequences or words of
length W as our chunks. For each word, deco outputs a postings list of se-
quences that contain the word and the offset into each sequence where the word
occurs. Our clustering algorithm uses these lists to calculate the number of iden-
tical words shared by each pair of sequences in the collection. The number of
matching words is normalised by the length of the overlapping region between
the two sequences; this provides a good quality estimate of the degree of mutual
redundancy between the sequences. If this measure exceeds a threshold then
the two sequences are aligned using the similarity score measure we describe
next. Highly similar candidate pairs with a score below threshold T are then
recorded.

Given the list of candidate pairs, we use a variation on single-linkage hierar-
chical clustering (28) to identify clusters. Each sequence is initially considered as
a cluster with one member. Candidate pairs are processed in increasing order of
similarity score, from most- to least-similar, and clusters are merged. To merge
a pair of candidate clusters CX and CY with union-sequences X and Y respec-
tively, the overlapping regions of X and Y are aligned. A new union-sequence
U is then created by replacing each mismatched residue in the overlap region
with a suitable wildcard w. The clusters will only be merged if the mean align-
ment score increase Q̄ in the overlap region is below a specified threshold T —
this prevents union-sequences from containing too many wildcards and reducing
search performance.

If the clusters are merged, a new cluster CU is created consisting of all mem-
bers of CX and CY . When inserting wildcards into the union-sequence, if more
than one wildcard is suitable then the one with the lowest expected match score
e(w) =

∑
R s(w, r)p(r) is selected, where p(r) is the background probability of

residue r (29) and s(w, r) is the alignment score for matching wildcard w to
residue r. We discuss how alignment vectors s(w, ·) are constructed in Section 5
and how wildcards are chosen in Section 6.

The alignment score increase Q for a wildcard w is calculated as

Q(w) =
∑

R

s(w, r)p(r) −
∑

R×R

s(r1, r2)p(r1)p(r2)
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where s(r1, r2) is the score for matching a pair of residues as defined by a scoring
matrix such as BLOSUM62 (30). This value estimates the increase in alignment
score one can expect against arbitrary query residues by aligning against w
instead of against the actual residue at that position.

The above approach has a quadratic complexity in the length of each post-
ings list. While most lists remain quite short even in large databases, a small
proportion of words can appear a large number of times. As the database be-
ing processed grows, common words can come to dominate overall processing
time. For example, a postings lists with 500 entries produces 124,750 potential
sequence pairs, which will take a very long time to process. We therefore process
frequently occurring words —those with more than M occurrences in the collec-
tion, where we use M = 100 by default—in a different, top-down manner before
proceeding to the standard hierarchical clustering approach described above.

Given a list of sequences l containing a particular frequently occurring word,
the top-down approach extracts all sequences in l and selects an exemplar; this
is the sequence with the highest percentage identity to the other sequences in the
list. The exemplar is then aligned against each sequence in l and used to create a
cluster as defined above. All sequences in the new cluster are removed from l and
the process is repeated until |l| < M . The shortened list is then processed using
the hierarchical clustering method. This process still has an O(n2) worst-case in
the length of the list, but is significantly quicker than the hierarchical approach
when processing long lists in practice.

5 Scoring Wildcards

We have modified BLAST to work with our clustering algorithm. Instead of
comparing the query sequence to each member of the database, our approach
compares the query only to the union-sequence representing each cluster, where
the union-sequence may contain wildcard characters. If a high-scoring alignment
between the union-sequence and query is identified, the members of the cluster
are reconstructed and aligned to the query. In this section we discuss how, given
a set of wildcards W , we determine the scoring vectors s(wi, ·) for each wi ∈ W .

Ideally, we would like the score between a query sequence Q and a union-
sequence U to be precisely the highest score that would result from aligning
Q against any of the sequences in cluster CU . This would result in no loss in
sensitivity as well as no false positives. Unfortunately, such a scoring scheme
is not likely to be achievable without aligning against each sequence in every
cluster, defeating much of the purpose of clustering in the first place.

To maintain the speed of our approach, scoring of wildcards against residues
must be on the basis of a standard scoring vector s(w, ·) and cannot take into
consideration any data about the sequences represented by the cluster. Thus,
scoring will involve a compromise between sensitivity (few false negatives) and
speed (few false positives). We describe two such compromises below, and finally
show how to combine them to achieve a good balance of sensitivity and speed.

During clustering, wildcards are inserted into the union-sequence to denote
residue positions where the cluster members differ. Let us define S = s1...sx | si ∈
W as the ordered sequence of x wildcards substituted into union-sequences
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during clustering. Each occurrence of a wildcard is used to represent a set of
residues that appear in its position in the members of the cluster. We define
o ⊆ R as the set of residues represented by an occurrence of a wildcard in the
collection and O = o1...ox | oi ⊆ R as the ordered sequence of substituted residue
sets. The kth wildcard sk that is used to represent the set of residues ok must
be chosen such that ok ⊆ sk.

Our first scoring scheme, sexp, builds the scoring vector by considering the ac-
tual occurrence pattern of residues represented by the wildcard in the collection.
Formally, we calculate the expected best score sexp as:

sexp(w, r) =

∑

k∈Pi

max
f∈ok

s(r, f)

|Pi|
where Pi is the set of ordinal numbers of all substitutions using the wildcard wi:

Pi = {j | j ∈ N, j ≤ x, sj = wi}.

This score can be interpreted as the mean score we would get by aligning
residue r against the actual residues represented by the wildcard w. This score
has the potential to reduce search accuracy; however, it distributes the scores
well, and provides an excellent tradeoff between sensitivity and speed.

The second scoring scheme, sopt, calculates the optimistic alignment score of
the wildcard w against each residue. The optimistic score is the highest score
for aligning residue q to any of the residues represented by wildcard w. This is
calculated as follows:

sopt(w, r) = max
f∈w

s(r, f)

The optimistic score guarantees no loss in sensitivity: the score for aligning
against a union-sequence U using this scoring scheme is at least as high as the
score for any of the sequences represented by U . The problem is that in many
cases the score for U is significantly higher, leading to false-positives where the
union-sequence is flagged as a match despite none of the cluster members being
sufficiently close to the query. The result is substantially slower search.

The expected and optimistic scoring schemes represent two different compro-
mises between sensitivity and speed. We can adjust this balance by combining
the two approaches using a mixture model. We define a mixture parameter, λ,
such that 0 ≤ λ ≤ 1. The mixture-model score for aligning wildcard w to residue
r is defined as:

sλ(w, r) = λsopt(w, r) + (1 − λ)sexp(w, r)

The score sλ(w, r) for each w, r pair is calculated when the collection is being
clustered and then recorded on disk. During a BLAST search, the wildcard scores
are loaded from disk and used to perform the search. We report experiments with
varying values of λ in Section 7.

6 Selecting Wildcards

Having defined a system for assigning a scoring vector to an arbitrary wildcard,
we now describe a method for selecting a set of wildcards to be used during the
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clustering process. Each wildcard w represents a set of residues w ⊆ R and can
be used in a union-sequence to substitute for any set of residues of which it is
a superset. A set of wildcards, W = {w1, ..., wn} is used during clustering. We
assume that one of these wildcards wn is the default wildcard that can be used
to represent any of the 24 residue and ambiguous codes, that is wn = R. The
remaining wildcards must be selected carefully; large residue sets can be used
more frequently but provide poor discrimination with higher average alignment
scores and more false positives. Small residue sets can be used less frequently,
increasing the use of larger residue sets such as the default wildcard.

The first aspect of choosing a set of wildcards to use for substitution is to
decide on the size of this set. It would be ideal to use as many wildcards as
necessary, so that each substitution si = oi. However, each wildcard must be
encoded as a different character leading to an extremely large alphabet. An
enlarged alphabet would in turn lead to inefficiencies in BLAST due to larger
lookup and scoring data structures. Thus, a compromise is required. BLAST uses
a set of 20 character codes to represent residues, as well as 4 IUPAC-IUBMB
ambiguous residue codes and an end-of-sequence code, for a total of 25 distinct
codes. Each code is represented using 5 bits, permitting a total of 32 codes.
This leaves 7 unused character codes. We have therefore chosen to use |W | = 7
wildcards.

We treat the task of selecting a good set of wildcards as an optimisation
problem. To do this, we first cluster the collection as described in Section 4
using only the default wildcard, ie. W = {wd}. We use the residue-substitution
sequence O from this clustering to create a set W ∗ of candidate wildcards. Our
goal can then be defined as follows: we wish to select the set of wildcards W ⊆
W ∗ such that the total average alignment score A =

∑

w∈S

∑

r∈R

s(w, r)p(r) for all

substitutions S is minimised. A lower A implies a reduction in the number of
high-scoring matches between a typical query sequence and union-sequences in
the collection, thereby reducing the number of false-positive situations in which
cluster members are fruitlessly recreated and aligned to the query.

In selecting the wildcard set W that minimises A we use the following greedy
approach: first, we initialize W to contain only the default wildcard wd. We
then scan through W ∗ and select the wildcard that leads to the greatest overall
reduction in A. This process is repeated until the set W is filled, at each iteration
considering the wildcards already in W in the calculation of A. Once W is full
we employ a hill-climbing strategy where we consider replacing each wildcard
with a set of residues from W ∗ with the aim of further reducing A.

A set of wildcards was chosen by applying this strategy to the GenBank
NR database described in Section 7. The following wildcards were identified
and are used for all reported experiments: LVIFM, GEKRQH, AVTIX, SETKDN,
LVTPRFYMHCW, AGSDPH, LAGSVETKDPIRNQFYMHCWBZXU.

We also considered defining wildcards based on groups of amino acids with
similar physico-chemical properties by using the amino acid classifications de-
scribed in Taylor 1986 (31). However, a preliminary investigation of this ap-
proach resulted in 3% slower search times and reduced search accuracy compared
to the approach we have described.



184 M. Cameron, Y. Bernstein, and H.E. Williams

7 Results

The Structural Classification of Proteins (SCOP) database (32; 33) is widely
used to evaluate the accuracy of sequence search tools (34; 35). For our own
assessments, we used version 1.65 of the ASTRAL Compendium (36) that uses
information from the SCOP database to classify sequences with fold, superfam-
ily, and family information. The database contains a total of 67,210 sequences
classified into 1,538 superfamilies.

A set of 8,759 test queries were extracted from the ASTRAL database such
that no two of the queries shared more than 90% identity. To measure search ac-
curacy, each query was searched against the ASTRAL database and the Receiver
Operating Characteristic (ROC) score (37) was calculated. A match between two
sequences was considered positive if they came from the same superfamily, oth-
erwise it was considered negative. The ROC50 score provides a measure between
0 and 1, where a higher score represents better sensitivity (detection of true
positives) and selectivity (ranking true positives ahead of false positives).

The SCOP database is too small to provide an accurate measure of search
time, so we use the GenBank non-redundant (NR) protein database to measure
search times. The GenBank collection was downloaded August 18, 2005 and
contains 2,739,666 sequences in around 900 megabytes of sequence data. Per-
formance was measured using 50 queries randomly selected from GenBank NR.
Each query was searched against the entire collection three times with the best
runtime recorded and the results averaged. Experiments were conducted on a
Pentium 4 2.8GHz machine with two gigabytes of main memory.

We used FSA-BLAST1—our open-source version of BLAST—with default
parameters as a baseline. To assess the clustering scheme, the GenBank and
ASTRAL databases were clustered and FSA-BLAST was configured to report
all high-scoring alignments, rather than only the best alignment from each clus-
ter. All reported collection sizes include sequence data and edit information but
exclude sequence descriptions. CD-HIT version 2.0.4 beta was used for experi-
ments with 95% clustering threshold and maximum memory set to 1.5 Gb. We
also report results for NCBI-BLAST version 2.2.11 and our own implementation
of Smith-Waterman that uses the exact same scoring functions and statistics as
BLAST (38). No sequence filtering was performed.

The overall results of our clustering method are shown in Table 1. When used
with default settings of λ = 0.2 and T = 0.25, our clustering approach reduces
the overall size of the NR database by 27% and improves search times by 22%.
Importantly, the ROC score indicates that there is no significant effect on search
accuracy, with the highly redundant SCOP database reducing in size by 80%
when clustered. If users are willing to accept a small loss in accuracy, then the
parameters λ = 0 and T = 0.3 improve search times by 27% and reduce the size
of the sequence collection by 28% with a decrease of 0.001 in ROC score when
compared to our baseline. Since we are interested in improving performance with
no loss in accuracy we do not consider these non-default settings further. Overall,
our clustering approach with default parameters combined with improvements
to the gapped alignment (39) and hit detection (40) stages of BLAST more than
1 Available from: http://www.fsa-blast.org
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Table 1. Average runtime for 50 queries searched against the GenBank NR database,
and SCOP ROC50 scores for the ASTRAL collection

Scheme GenBank NR ASTRAL
Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

FSA-BLAST
No clustering (baseline) 28.75 (100%) 900 (100%) 0.398
Cluster λ = 0.2, T = 0.25 22.54 (78%) 655 (73%) 0.398
Cluster λ = 0, T = 0.3 20.97 (73%) 650 (72%) 0.397

NCBI-BLAST 45.75 (159%) 898 (100%) 0.398

Smith-Waterman — — 0.415
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Fig. 2. Clustering performance for GenBank NR databases of varying sizes

double the speed of FSA-BLAST compared to NCBI-BLAST with no significant
effect on accuracy. Both versions of BLAST produce ROC scores 0.017 below
the optimal Smith-Waterman algorithm.

Figure 2 shows a comparison of clustering times between CD-HIT and our
clustering approach for four different releases of the GenBank NR database;
details of the collections used are given in Table 2. The results show that the
clustering time of our approach is linear with the collection size and the CD-
HIT approach is superlinear (Figure 2). On the recent GenBank non-redundant
collection, CD-HIT is almost 10 times slower than our approach; we expect this
ratio to further increase with collection size.

Table 2. Redundancy in GenBank NR database over time

Number of Collection Overall size Percentage
Release date sequences Size (Mb) reduction (Mb) of collection
16 July 2000 521,662 157 45 28.9%
22 May 2003 1,436,591 443 124 28.1%
30 June 2004 1,873,745 597 165 27.4%
18 August 2005 2,739,666 900 245 27.3%
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Fig. 3. Search accuracy for collections clustered with varying values of λ and T . Default
values of λ = 0.2, T = 0.25 are highlighted.
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Fig. 4. Average BLAST search time using λ = 0.2 and varying values of T

Table 2 shows the amount of redundancy in the GenBank NR database as
it has grown over time, measured using our clustering approach. We observe
that the degree of redundancy is not changing significantly with the percentage
reduction through clustering remaining between 27% and 29% across versions of
the collection tested.

Figure 3 shows the effect on accuracy for varying values of λ and T . We have
chosen λ = 0.2 as a default value because smaller values of λ result in a larger
decrease in search accuracy, and larger values reduce search speed. We observe
that for λ = 0.2 there is little variation in search accuracy for values of T between
0.05 and 0.3.

Figure 4 shows the effect on search times for varying values of T where λ = 0.2.
As T increases the clustered collection becomes smaller, leading to faster search
times. However, if T is too large then union-sequences with a high percentage of
wildcards are permitted, leading to an increase in the number of cluster members
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that are recreated and a corresponding reduction in search speed. We have chosen
the value T = 0.25 that maximises search speed.

8 Conclusion

Sequence databanks such as GenBank contain a large number of redundant se-
quences. Such redundancy has several negative effects including larger collection
size, slower search, and difficult-to-interpret results. Redundancy within a col-
lection can lead to over-representation of alignments within particular protein
domains, distracting the user from other potentially important hits.

We have proposed a new scheme for managing redundancy. Instead of dis-
carding near-duplicate sequences, our approach identifies clusters of redundant
sequences and constructs a special union-sequence that represents all members of
the cluster through the careful use of wildcard characters. We present a new ap-
proach for searching clusters that, when combined with a well-chosen set of wild-
cards and a system for scoring matches between wildcards and query residues,
leads to faster search times without a significant loss in accuracy. Moreover, by
recording the differences between the union-sequence and each cluster member
using edit information our approach compresses the collection. Our scheme is
general and can be adapted to most homology search tools.

We have integrated our algorithm into FSA-BLAST, a new version of BLAST
that is substantially faster than NCBI-BLAST and freely available for download
at http://www.fsa-blast.org/. Our results show that our clustering scheme
reduces BLAST search times against the GenBank non-redundant database by
22% and compresses sequence data by 27% with no significant effect on accuracy.
We have also described a new system for identifying clusters that uses finger-
printing, a technique that has been successfully applied to duplicate-document
detection in information retrieval. Our implementation can cluster the entire
GenBank NR protein database in one hour on a standard workstation and scales
linearly in the size of the collection. We propose that pre-clustered copies of the
GenBank collection be made publicly available for download.

We have confined our experimental work to protein sequences and plan to
investigate the effect of our clustering scheme on nucleotide data as future work.
We also plan to investigate the effect of our approach on iterative search algo-
rithms such as PSI-BLAST, and how our scheme can be used to improve the
current measure of the statistical significance of BLAST alignments.
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