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Abstract. We have combined four different types of functional genomic
data to create high coverage protein interaction networks for 11 mi-
crobes. Our integration algorithm naturally handles statistically depen-
dent predictors and automatically corrects for differing noise levels and
data corruption in different evidence sources. We find that many of the
predictions in each integrated network hinge on moderate but consis-
tent evidence from multiple sources rather than strong evidence from a
single source, yielding novel biology which would be missed if a single
data source such as coexpression or coinheritance was used in isolation.
In addition to statistical analysis, we demonstrate via case study that
these subtle interactions can discover new aspects of even well studied
functional modules. Our work represents the largest collection of proba-
bilistic protein interaction networks compiled to date, and our methods
can be applied to any sequenced organism and any kind of experimental
or computational technique which produces pairwise measures of protein
interaction.

1 Introduction

Interaction networks are the canonical data sets of the post-genomic era, and
more than a dozen methods to detect protein-DNA and protein-protein interac-
tions on a genomic scale have been recently described [1, 2, 3, 4, 5, 6, 7, 8, 9]. As
many of these methods require no further experimental data beyond a genome
sequence, we now have a situation in which a number of different interaction net-
works are available for each sequenced organism. However, though many of these
interaction predictors have been individually shown to predict experiment[6], the
networks generated by each method are often contradictory and not superpos-
able in any obvious way [10, 11]. This seeming paradox has stimulated a burst
of recent work on the problem of network integration, work which has primarily
focused on Saccharomyces cerevisiae[12, 13, 14, 15, 16, 17]. While the profusion
of experimental network data [18] in yeast makes this focus understandable, the
objective of network integration remains general: namely, a summary network
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for each species which uses all the evidence at hand to predict which proteins
are functionally linked.

In the ideal case, an algorithm to generate such a network should be able to:

1. Integrate evidence sets of various types (real valued, ordinal scale, categor-
ical, and so on) and from diverse sources (expression, phylogenetic profiles,
chromosomal location, two hybrid, etc.).

2. Incorporate known prior information (such as individually confirmed func-
tional linkages), again of various types.

3. Cope with statistical dependencies in the evidence set (such as multiple rep-
etitions of the same expression time course) and noisy or corrupted evidence.

4. Provide a decomposition which indicates the evidence variables which were
most informative in determining a given linkage prediction.

5. Produce a unified probabilistic assessment of linkage confidence given all the
observed evidence.

In this paper we present an algorithm for network integration that satisfies
all five of these requirements. We have applied this algorithm to integrate four
different kinds of evidence (coexpression[3], coinheritance[5], colocation[1], and
coevolution[9]) to build probabilistic interaction networks for 11 sequenced mi-
crobes. The resulting networks are undirected graphs in which nodes correspond
to proteins and edge weights represent interaction probabilities between protein
pairs. Protein pairs with high interaction probabilities are not necessarily in di-
rect contact, but are likely to participate in the same functional module [19],
such as a metabolic pathway, a signaling network, or a multiprotein complex.
We demonstrate the utility of network integration for the working biologist by
analyzing representative functional modules from two microbes: the eukaryote-
like glycosylation system of Campylobacter jejuni NCTC 11168 and the cell
division machinery of Caulobacter crescentus. For each module, we show that a
subset of the interactions predicted by our network recapitulate those described
in the literature. Importantly, we find that many of the novel interactions in
these modules originate in moderate evidence from multiple sources rather than
strong evidence from a single source, representing hidden biology which would
be missed if a single data type was used in isolation.

2 Methods

2.1 Algorithm Overview

The purpose of network integration is to systematically combine different types
of data to arrive at a statistical summary of which proteins work together within
a single organism.

For each of the 11 organisms listed in the Appendix1 we begin by assembling
a training set of known functional modules (Figure 1a) and a battery of different
predictors (Figure 1b) of functional association. To gain intuition for what our

1 Viewable at http://jinome.stanford.edu/pdfs/recomb06182 appendix.pdf
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algorithm does, consider a single predictor E defined on a pair of proteins, such
as the familiar Pearson correlation between expression vectors. Also consider a
variable L, likewise defined on pairs of proteins, which takes on three possible
values: ‘1’ when two proteins are in the same functional category, ‘0’ when they
are known to be in different categories, and ‘?’ when one or both of the proteins
is of unknown function.

We note first that two proteins known to be in the same functional module are
more likely to exhibit high levels of coexpression than two proteins known to be
in different modules, indicated graphically by a right-shift in the distribution of
P (E|L = 1) relative to P (E|L = 0) (Figure 1b). We can invert this observation
via Bayes’ rule to obtain the probability that two proteins are in the same
functional module as a function of the coexpression, P (L = 1|E). This posterior
probability increases with the level of coexpression, as highly coexpressed pairs
are more likely to participate in the same functional module.

If we apply this approach to each candidate predictor in turn, we can obtain
valuable information about the extent to which each evidence type recapitulates
known functional linkages – or, more precisely, the efficiency with which each
predictor classifies pairs of proteins into the “linked” or “unlinked” categories.
Importantly, benchmarking each predictor in terms of its performance as a binary
classifier provides a way to compare previously incomparable data sets, such as
matrices[6] of BLAST[20] bit scores and arrays of Cy5/Cy3 ratios[3]. Even more
importantly, it suggests that the problem of network integration can be viewed
as a high dimensional binary classifier problem. By generalizing the approach
outlined above to the case where E is a vector rather than a scalar, we can
calculate the summary probability that two proteins are functionally linked given
all the evidence at hand.

2.2 Training Set and Evidence Calculation

It is difficult to say a priori which predictors of functional association will be
the best for a given organism. For example, microarray quality is known to
vary widely, so coexpression correlations in different organisms are not directly
comparable. Thus, to calibrate our interaction prediction algorithm, we require
a training set of known interactions.

To generate this training set, we used one of three different genome scale
annotations: the COG functional categories assigned by NCBI[21], the GO[22]
annotations assigned by EBI’s GOA project[23], and the KEGG[24] metabolic
annotations assigned to microbial genomes. In general, as we move from COG to
GO to KEGG, the fraction of annotated proteins in a given organism decreases,
but the annotation quality increases. In this work we used the KEGG annotation
for all organisms other than Bacillus subtilis, for which we used GO as KEGG
data was unavailable.

As shown in Figure 1a, for each pair we recorded (L = 1) if the proteins had
overlapping annotations, (L = 0) if both were in entirely nonoverlapping cate-
gories, and (L = ?) if either protein lacked an annotation code or was marked
as unknown. (For the GO training set, “overlapping” was defined as overlap
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Xi Annotation
CC1 0025,0030
CC2 0025,0040
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CC4 -

→

Xi Xj L(Xi, Xj)
CC1 CC2 1
CC1 CC3 0
CC1 CC4 ?
CC2 CC3 0
CC2 CC4 ?
CC3 CC4 ?

(a) Training Set Generation
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(b) Evidence vs. Training Set

Fig. 1. Training Sets and Evidence. (a) Genome-scale systematic annotations such as
COG, GO or KEGG give functions for proteins Xi. As described in the text and shown
on example data, we use this annotation to build an initial classification of protein pairs
(Xi, Xj) with three categories: a relatively small set of likely linked (red) pairs and
unlinked (blue) pairs, and a much larger set of uncertain (gray) pairs. (b) We observe
that proteins which share an annotation category generally have more significant levels
of evidence, as seen in the shifted distribution of linked (red) vs. unlinked (blue) pairs.
Even subtle distributional differences contribute statistical resolution to our algorithm.

of specific GO categories beyond the 8th level of the hierarchy.) This “matrix”
approach (consider all proteins within an annotation category as linked) is in
contrast to the “hub-spoke” approach (consider only proteins known to be di-
rectly in contact as linked) [25]. The former representation produces a nontrivial
number of false positives, while the latter incurs a surfeit of false negatives. We
chose the “matrix” based training set because our algorithm is robust to noise
in the training set so long as enough data is present.

Note that we have used an annotation on individual proteins to produce a
training set on pairs of proteins. In Figure 1b, we compare this training set to
four functional genomic predictors: coexpression, coinheritance, coevolution, and
colocation. We include details of the calculations of each evidence type in the
Appendix. Interestingly, despite the fact that these methods were obtained from
raw measurements as distinct as genomic spacing, BLAST bit scores, phyloge-
netic trees, and microarray traces, Figure 1b shows that each method is capable
of distinguishing functionally linked pairs (L = 1) from unlinked pairs (L = 0).

2.3 Network Integration

For clarity, we first illustrate network integration with two evidence types (cor-
responding to two Euclidean dimensions) in C. crescentus, and then move to the
N-dimensional case.
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Fig. 2. 2D Network Integration in C. crescentus. (a) A scatterplot reveals that func-
tionally linked pairs (red,L = 1) tend to have higher coexpression and coinheritance
than pairs known to participate in separate pathways (blue,L = 0). (b) We build the
conditional densities P (E1, E2|L = 0) and P (E1, E2|L = 1) through kernel density es-
timation. Note that the distribution for linked pairs is shifted to the upper right corner
relative to the unlinked pair distribution. (c) We can visualize the classification process
by concentrating on the decision boundary, corresponding to the upper right quadrant
of the original plot. In the left panel, the scatterplot of pairs with unknown linkage
status (gray) are the inputs for which we wish to calculate interaction probabilities. In
the right panel, a heatmap for the posterior probability P (L = 1|E1, E2) is depicted.
This function yields the probability of linkage given an input evidence vector, and in-
creases as we move to higher levels of coexpression and coinheritance in the upper right
corner. (d) By conceptually superimposing each gray point upon the posterior, we can
calculate the posterior probability that two proteins are functionally linked.

2D Network Integration. Consider the set of approximately 310000 protein
pairs in C. crescentus which have a KEGG-defined linkage of (L = 0) or (L = 1).
Setting aside the 6.6 million pairs with (L = ?) for now, we find that P (L =
1) = .046 and P (L = 0) = .954 are the relative proportions of known linked and
unlinked pairs in our training set.

Each of these pairs has an associated coexpression and coinheritance corre-
lation, possibly with missing values, which we bundle into a two dimensional
vector E = (E1, E2). Figure 2a shows a scatterplot of E1 vs. E2, where pairs with
(L = 1) have been marked red and pairs with (L = 0) have been marked blue.

We see immediately that functionally linked pairs aggregate in the upper
right corner of the plot, in the region of high coexpression and coinheritance.
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Crucially, the linked pairs (red) are more easily distinguished from the unlinked
pairs (blue) in the 2-dimensional scatter plot than they are in the accompany-
ing 1-dimensional marginals. To quantify the extent to which this is true, we
begin by computing P (E1, E2|L = 0) and P (E1, E2|L = 1) via kernel density
estimation[26, 27], as shown in Figure 2b. As we already know P (L), we can
obtain the posterior by Bayes’ rule:

P (L = 1|E1, E2) =
P (E1, E2|L = 1)P (L = 1)

P (E1, E2|L = 1)P (L = 1) + P (E1, E2|L = 0)P (L = 0)

In practice, this expression is quite sensitive to fluctuations in the denominator.
To deal with this, we use M -fold bootstrap aggregation[28] to smooth the poste-
rior. We find that M = 20 repetitions with resampling of 1000 elements from the
(L = 0) and (L = 1) training sets is the empirical point of diminishing returns
in terms of area under the receiver-operator characteric (ROC), as detailed in
Figure 4.

P (L = 1|E1, E2) =
1
M

M�

i=1

Pi(E1, E2|L = 1)P (L = 1)
Pi(E1, E2|L = 1)P (L = 1) + Pi(E1, E2|L = 0)P (L = 0)

Given this posterior, we can now make use of the roughly 6.6 million pairs with
(L = ?) which we put aside at the outset, as pictured in Figure 2c. Even though
these pairs have unknown linkage, for most pairs the coexpression (E1) and
coinheritance (E2) are known. For those pairs which have partially missing data
(e.g. from corrupted spots on a microarray), we can simply evaluate over the non-
missing elements of the E vector by using the appropriate marginal posterior
P (L = 1|E1) or P (L = 1|E2). We can thus calculate P (L = 1|E1, E2) for every
pair of proteins in the proteome, as shown in Figure 2d. Each of the formerly gray
pairs with (L = ?) is assigned a probability of interaction by this function; those
with bright red values in Figure 2d are highly likely to be functionally linked.

In general, we also calculate P (L = 1|E1, E2) on the training data, as we
know that the “matrix” approach to training set generation produces copious
but noisy data. The result of this evaluation is the probability of interaction for
every protein pair.

N-dimensional Network Integration. The 2 dimensional example in C. cres-
centus immediately generalizes to N-dimensional network integration in an arbi-
trary species, though the results cannot be easily visualized beyond 3 dimensions.
Figure 3 shows the results of calculating a 3D posterior in C. crescentus from co-
expression, coinheritance, and colocation data, where we have once again applied
M -fold bootstrap aggregation.

We see that different evidence types interact in nonobvious ways. For exam-
ple, we note that high levels of colocation (E2) can compensate for low levels
of coexpression (E1), as indicated by the “bump” in the posterior of Figure 3c.
Biologically speaking, this means that a nontrivial number of C. crescentus pro-
teins with shared function are frequently colocated yet not strongly coexpressed.
This is exactly the sort of subtle statistical dependence between predictors that
is crucial for proper classification. In fact, a theoretically attractive property of
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Fig. 3. 3D Network Integration in C. crescentus. (a)-(b) We show level sets of each
density spaced at even volumetric increments, so that the inner most shell encloses
20% of the volume, the second shell encloses 40%, and so forth. As in the 2D case, the
3D density P (E|L = 1) is shifted to the upper right corner. (c) For the posterior, we
show level sets spaced at probability deciles, such that a pair which makes it past the
upper right shell has P (L = 1|E) ∈ [.9, 1], a pair which lands in between the upper two
shells satisfies P (L = 1|E) ∈ [.8, .9], and so on.

our approach is that the use of the conditional joint posterior produces the min-
imum possible classification error (specifically, the Bayes error rate [29]), while
bootstrap aggregation protects us against overfitting[30].

Until recently, though, technical obstacles made it challenging to efficiently
compute joint densities beyond dimension 3. Recent developments[26] in efficient
kernel density estimation have obviated this difficulty and have made it possible
to evaluate high dimensional densities over millions of points in a reasonable
amount of time within user-specifiable tolerance levels. As an example of the
calculation necessary for network integration, consider a 4 dimensional kernel
density estimate built from 1000 sample points. Ihler’s implementation[27] of
the Gray-Moore dual-tree algorithm[26] allowed the evaluation of this density at

the
(

3737
2

)
≈ 7, 000, 000 pairs in the C. crescentus proteome in only 21 minutes

on a 3GHz Xeon with 2GB RAM. Even after accounting for the 2M multiple
of this running time caused by evaluating a quotient of two densities and using
M -fold bootstrap aggregation, the resulting joint conditional posterior can be
built and evaluated rapidly enough to render approximation unnecessary.

Binary Classifier Perspective. By formulating the network integration prob-
lem as a binary classifier (Figure 4), we can quantify the extent to which the
integration of multiple evidence sources improves prediction accuracy over a sin-
gle source. As our training data is necessarily a rough approximation of the true
interaction network, these measures are likely to be conservative estimates of
classifier performance.
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(a) Binary Classifier Paradigm
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(b) Receiver/Operator Curves
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Fig. 4. Network Integration as Binary Classifier. (a) We regard the network integration
problem as a binary classifier in a high dimensional feature space. The input features
are a set of evidences associated with a protein pair (A, B), and the output is the
probability that a pair is assigned to the (L = 1) category. (b) The area under the
receiver operator characteristic (AUROC) is a standard measure[29] of binary classifier
performance, shown here for several different ways of doing C. crescentus network in-
tegration. Here we have labeled data types as CV (coevolution), CL (colocation), CX
(coexpression), and CI (coinheritance) and shown a successive series of curves for the
integration of 1,2,3, and finally 4 evidence types. Classifier performance increases mono-
tonically as more data sets are combined. Importantly, the true four dimensional joint
posterior P (L = 1|CV, CL, CX, CI) outperforms the Naive Bayes approximation of the
posterior, where the conditional density P (CV, CL, CX, CI |L = 1) is approximated
by P (CV |L = 1)P (CL|L = 1)P (CX|L = 1)P (CI |L = 1), and similarly for L = 0. For
clarity we have omitted the individual curves for the CL (AUROC=.612), CX (AU-
ROC=.619), and CV (AUROC=.653) metrics. Again, it is clear that the integrated
posterior outperforms each of these univariate predictors. (c) Precision/recall curves are
an alternate way of visualizing classifier performance, and are useful when the number
of true positives is scarce relative to the number of false negatives. Again the integrated
posterior outperforms the Naive Bayes approximation as a classifier. Note that since
the “negative” pairs from the KEGG training set are based on the supposition that two
proteins which have no annotational overlap genuinely do not share a pathway, they
are a more noisy indicator than the “positive” pairs. That is, with respect to functional
interaction, absence of evidence is not always evidence of absence. Hence the computed
values for precision are likely to be conservative underestimates of the true values.
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3 Results

3.1 Global Network Architecture

Applying the posterior P (L = 1|E) to every pair of proteins in a genome gives the
probability that each pair is functionally linked. If we simply threshold this result
at P (L = 1|E) > .5, we will retain only those linkages which are more probable
than not. This decision rule attains the Bayes error rate[29] and minimizes the
misclassification probability. We applied our algorithm with this threshold to
build 4D integrated networks for the 11 microbes and four evidence types listed in
the Appendix. Figure 5 shows the global protein interaction networks produced
for three of these microbes, where we have retained only those edges with P (L =
1|E) > .5.

To facilitate use of these protein interaction networks, we built an interactive
netbrowser, viewable at http://jinome.stanford.edu/netbrowser. As a threshold
of P (L = 1|E) > .5 tends to be somewhat stringent in practice, we allow dy-
namic, user-specified thresholds to produce module-specific tradeoffs between
specificity and sensitivity in addition to a host of other customization options.

Fig. 5. Global visualization of integrated networks for Escherichia coli K12, He-
licobacter pylori 26695, and Caulobacter crescentus. Only linkages with P (L =
1|E1, E2, E3, E4) > .5 are displayed.

3.2 Campylobacter jejuni : N-Linked Protein Glycosylation

N-linked protein glycosylation is one of the most frequent post-translational
modifications applied to eukaryotic secretory proteins. Until recently[31] this
process was thought to be absent from most microbes, but recent work[32] has
shown that an operational N-linked glycosylation system does exist in C. jejuni.
As the entire glycosylation apparatus can be successfully transplanted to E. coli
K12, this system is of much biotechnological interest[33].

Figure 6a shows the results of examining the integrated network for C. jejuni
around the vicinity of Cj1124c, one of the proteins in the glycosylation system. In
addition to the reassuring recapitulation of several transferases and epimerases
experimentally linked to this process[33], we note four proteins which are to
our knowledge not known to be implicated in N-linked glycosylation (Cj1518,
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Cj0881c, Cj0156c, Cj0128c). Importantly, all of these heretofore uncharacterized
linkages would have been missed if only univariate posteriors had been exam-
ined, as they would be significantly below our cutoff of P (L = 1|E) > .5. As
this system is still poorly understood – yet of substantial biotechnological and
pathogenic[34] relevance – investigation of these new proteins may be of interest.

3.3 Caulobacter crescentus: Bacterial Actin and the Sec Apparatus

Van den Ent’s[36] discovery that the ubiquitous microbial protein MreB was a
structural homolog to actin spurred a burst of interest[37, 38, 39] in the biology
of the bacterial cytoskeleton. Perhaps the most visually arresting of these re-
cent findings is the revelation that MreB supports the cell by forming a tight
spiral[37]. Yet many outstanding questions in this field remain, and prime among
them is the issue of which proteins communicate with the bacterial cytoskeletal
apparatus[40].

Figure 6b shows the proteins from the C. crescentus integrated network which
have a 50% chance or greater of interacting with MreB, also known as CC1543.
As a baseline measure of validity, we once again observe that known interaction
partners such as RodA (CC1547) and MreC (CC1544) are recovered by network
integration. More interesting, however, is the subtle interaction between MreB
and the preprotein translocase CC3206, an interaction that would be missed if
data sources were used separately. This protein is a subunit of the Sec machinery,

Probability of linkage: 1.0 ... 0.75 ... 0.50

Cj1124c
putative galactos...

Cj0128c
suhB-like pr

Cj0156c
hypothetical p

Cj0881c
hypothetical protein

Cj1120c
putative sugar ep... Cj1123c

putative transferase

Cj1321
putative transferase

Cj1518
possible molybdop...

Cj1550c
e ATP/GTP-...

(a) C. jejuni : Glycosylation

Probability of linkage: 1.0 ... 0.75 ... 0.50

CC1543
rod shape-determi...

CC0082
hypothetical protein

CC0228
hypothetical protein

CC0706
hypothetical protein

CC0827
ypothetical protein

CC0955
flagellar hook-ba...

CC1365
hypothetical protein

CC1544
rod shape-determi...

CC1547
rod shape-determi...

CC1887
hypothetical protein

CC2002
hypothetical protein

CC2003
hypothetical protein

CC2102
hypothetical protein

CC2208
hypothetical p

CC2271
hypothetical protein

CC2428
polysaccharide de...

CC3206
preprotein transl...

CC3252
hypothetical protein

CC3483
etical protein

CC3705
hypothetical protein

(b) C. crescentus: Bacterial cytoskeleton

Fig. 6. Case Studies. (a) Network integration detects new proteins linked to glycosy-
lation in Campylobacter jejuni NCTC 11168. High probability linkages are labeled in
red and generally recapitulate known interactions, while moderately likely linkages are
colored gray. Moderate linkages are generally not found by any univariate method in
isolation, and represent the new biological insight produced by data integration. (b)
In Caulobacter crescentus, data integration reveals that the Sec apparatus is linked
to MreB, a prediction recently confirmed by experiment[35]. Again, moderate linkages
revealed by data integration lead us to a conclusion that would be missed if univariate
data was used.
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and like MreB is an ancient component of the bacterial cell[41]. Its link to MreB is
of particular note because recent findings[35] have shown that the Sec apparatus
– like MreB – has a spiral localization pattern. While seemingly counterintu-
itive, it seems likely from both this finding and other work[42] that the export
of cytoskeleton-related proteins beyond the cellular membrane is important in
the process of cell division. We believe that investigation of the hypothetical
proteins linked to both MreB and Sec by our algorithm may shed light on this
question.

4 Discussion

4.1 Merits of Our Approach

While a number of recent papers on network integration in S. cerevisiae have ap-
peared, we believe that our method is an improvement over existing algorithms.

First, by directly calculating the joint conditional posterior we require no
simplifying assumptions about statistical dependence and need no complex para-
metric inference. In particular, removing the Naive Bayes approximation results
in a better classifier, as quantified in Figure 4. Second, our use of the Gray-Moore
dual tree algorithm means that our method is arbitrarily scalable in terms of
both the number of evidence types and the number of protein pairs. Third, our
method allows immediate visual identification of dependent or corrupted func-
tional genomic data in terms of red/blue separation scatterplots – an important
consideration given the noise of some data types [43]. Finally, because the out-
put of our algorithm is a rigorously derived set of interaction probabilities, it
represents a solid foundation for future work.

4.2 Conclusion and Future Directions

Our general framework presents much room for future development. It is
straightforward to generalize our algorithm to apply to discrete, ordinal, or cat-
egorical data sets as long as appropriate similarity measures are defined. As our
method readily scales beyond a few thousand proteins, even the largest eukary-
otic genomes are potential application domains. It may also be possible to im-
prove our inference algorithm through the use of statistical techniques designed
to deal with missing data[44].

Moving beyond a binary classifier would allow us to predict different kinds
of functional linkage, as two proteins in the same multiprotein complex have a
different kind of linkage than two proteins which are members of the same regu-
lon. This would be significant in that it addresses one of the most widely voiced
criticisms of functional genomics, which is that linkage predictions are “one-size-
fits-all”. It may also be useful to move beyond symmetric pairwise measures of
association to use metrics defined on protein triplets[8] or asymmetric metrics
such that E(Pi, Pj) �= E(Pj , Pi).

While these details of the network construction process are doubtless subjects
for future research, perhaps the most interesting prospect raised by the availabil-
ity of a large number of robust, integrated interaction networks is the possibility
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of comparative modular biology. Specifically, we would like to align subgraphs
of interaction networks on the basis of conserved interaction as well as conserved
sequence, just as we align DNA and protein sequences. A need now exists for a
network alignment algorithm capable of scaling to large datasets and comparing
many species simultaneously.
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