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Preface

This volume contains the papers presented at the 10th Annual International
Conference on Research in Computational Molecular Biology (RECOMB 2006),
which was held in Venice, Italy, on April 2–5, 2006. The RECOMB conference
series was started in 1997 by Sorin Istrail, Pavel Pevzner and Michael Waterman.
The table on p. VIII summarizes the history of the meetings. RECOMB 2006
was hosted by the University of Padova at the Cinema Palace of the Venice
Convention Center, Venice Lido, Italy. It was organized by a committee chaired
by Concettina Guerra. A special 10th Anniversary Program Committee was
formed, by including the members of the Steering Committee and inviting all
Chairs of past editions. The Program Committee consisted of the 38 members
whose names are listed on a separate page.

From 212 submissions of high quality, 40 papers were selected for presentation
at the meeting, and they appear in these proceedings. The selection was based on
reviews and evaluations produced by the Program Committee members as well as
by external reviewers, and on a subsequent Web-based PC open forum. Following
the decision made in 2005 by the Steering Committee, RECOMB Proceedings are
published as a volume of Lecture Notes in Bioinformatics (LNBI), which is co-
edited by the founders of RECOMB. Traditionally, the Journal of Computational
Biology devotes a special issue to the publication of archival versions of selected
conference papers.

RECOMB 2006 featured seven keynote addresses by as many invited speak-
ers: Anne-Claude Gavin (EMBL, Heidelberg, Germany), David Haussler (Uni-
versity of California, Santa Cruz, USA), Ajay K. Royyuru (IBM T.J. Watson
Research Center, USA), David Sankoff (University of Ottawa, Canada), Michael
S. Waterman (University of Southern California, USA), Carl Zimmer (Science
Writer, USA), Roman A. Zubarev (Uppsala University, Sweden). The Stanislaw
Ulam Memorial Computational Biology Lecture was given by Michael S. Water-
man. A special feature presentation was devoted to the 10th anniversary and is
included in this volume.

Like in the past, an important ingredient for the success of the meeting was
represented by a lively poster session.

RECOMB06 was made possible by the hard work and dedication of many,
from the Steering to the Program and Organizing Committees, from the external
reviewers, to Venice Convention, Venezia Congressi and the institutions and
corporations who provided administrative, logistic and financial support for the
conference. The latter include the Department of Information Engineering of
the University of Padova, the Broad Institute of MIT and Harvard (USA), the
College of Computing of Georgia Tech. (USA), the US Department of Energy,
IBM Corporation (USA), the International Society for Computational Biology
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(ISCB), the Italian Association for Informatics and Automatic Computation
(AICA), the US National Science Foundation, and the University of Padova.

Special thanks are due to all those who submitted their papers and posters
and who attended RECOMB 2006 with enthusiasm.

April 2006 Alberto Apostolico
RECOMB 2006 Program Chair
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Integrated Protein Interaction Networks
for 11 Microbes

Balaji S. Srinivasan1,2, Antal F. Novak3, Jason A. Flannick3,
Serafim Batzoglou3, and Harley H. McAdams2

1 Department of Electrical Engineering
2 Department of Developmental Biology

3 Department of Computer Science, Stanford University,
Stanford, CA 94305, USA

Abstract. We have combined four different types of functional genomic
data to create high coverage protein interaction networks for 11 mi-
crobes. Our integration algorithm naturally handles statistically depen-
dent predictors and automatically corrects for differing noise levels and
data corruption in different evidence sources. We find that many of the
predictions in each integrated network hinge on moderate but consis-
tent evidence from multiple sources rather than strong evidence from a
single source, yielding novel biology which would be missed if a single
data source such as coexpression or coinheritance was used in isolation.
In addition to statistical analysis, we demonstrate via case study that
these subtle interactions can discover new aspects of even well studied
functional modules. Our work represents the largest collection of proba-
bilistic protein interaction networks compiled to date, and our methods
can be applied to any sequenced organism and any kind of experimental
or computational technique which produces pairwise measures of protein
interaction.

1 Introduction

Interaction networks are the canonical data sets of the post-genomic era, and
more than a dozen methods to detect protein-DNA and protein-protein interac-
tions on a genomic scale have been recently described [1, 2, 3, 4, 5, 6, 7, 8, 9]. As
many of these methods require no further experimental data beyond a genome
sequence, we now have a situation in which a number of different interaction net-
works are available for each sequenced organism. However, though many of these
interaction predictors have been individually shown to predict experiment[6], the
networks generated by each method are often contradictory and not superpos-
able in any obvious way [10, 11]. This seeming paradox has stimulated a burst
of recent work on the problem of network integration, work which has primarily
focused on Saccharomyces cerevisiae[12, 13, 14, 15, 16, 17]. While the profusion
of experimental network data [18] in yeast makes this focus understandable, the
objective of network integration remains general: namely, a summary network

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 B.S. Srinivasan et al.

for each species which uses all the evidence at hand to predict which proteins
are functionally linked.

In the ideal case, an algorithm to generate such a network should be able to:

1. Integrate evidence sets of various types (real valued, ordinal scale, categor-
ical, and so on) and from diverse sources (expression, phylogenetic profiles,
chromosomal location, two hybrid, etc.).

2. Incorporate known prior information (such as individually confirmed func-
tional linkages), again of various types.

3. Cope with statistical dependencies in the evidence set (such as multiple rep-
etitions of the same expression time course) and noisy or corrupted evidence.

4. Provide a decomposition which indicates the evidence variables which were
most informative in determining a given linkage prediction.

5. Produce a unified probabilistic assessment of linkage confidence given all the
observed evidence.

In this paper we present an algorithm for network integration that satisfies
all five of these requirements. We have applied this algorithm to integrate four
different kinds of evidence (coexpression[3], coinheritance[5], colocation[1], and
coevolution[9]) to build probabilistic interaction networks for 11 sequenced mi-
crobes. The resulting networks are undirected graphs in which nodes correspond
to proteins and edge weights represent interaction probabilities between protein
pairs. Protein pairs with high interaction probabilities are not necessarily in di-
rect contact, but are likely to participate in the same functional module [19],
such as a metabolic pathway, a signaling network, or a multiprotein complex.
We demonstrate the utility of network integration for the working biologist by
analyzing representative functional modules from two microbes: the eukaryote-
like glycosylation system of Campylobacter jejuni NCTC 11168 and the cell
division machinery of Caulobacter crescentus. For each module, we show that a
subset of the interactions predicted by our network recapitulate those described
in the literature. Importantly, we find that many of the novel interactions in
these modules originate in moderate evidence from multiple sources rather than
strong evidence from a single source, representing hidden biology which would
be missed if a single data type was used in isolation.

2 Methods

2.1 Algorithm Overview

The purpose of network integration is to systematically combine different types
of data to arrive at a statistical summary of which proteins work together within
a single organism.

For each of the 11 organisms listed in the Appendix1 we begin by assembling
a training set of known functional modules (Figure 1a) and a battery of different
predictors (Figure 1b) of functional association. To gain intuition for what our

1 Viewable at http://jinome.stanford.edu/pdfs/recomb06182 appendix.pdf
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algorithm does, consider a single predictor E defined on a pair of proteins, such
as the familiar Pearson correlation between expression vectors. Also consider a
variable L, likewise defined on pairs of proteins, which takes on three possible
values: ‘1’ when two proteins are in the same functional category, ‘0’ when they
are known to be in different categories, and ‘?’ when one or both of the proteins
is of unknown function.

We note first that two proteins known to be in the same functional module are
more likely to exhibit high levels of coexpression than two proteins known to be
in different modules, indicated graphically by a right-shift in the distribution of
P (E|L = 1) relative to P (E|L = 0) (Figure 1b). We can invert this observation
via Bayes’ rule to obtain the probability that two proteins are in the same
functional module as a function of the coexpression, P (L = 1|E). This posterior
probability increases with the level of coexpression, as highly coexpressed pairs
are more likely to participate in the same functional module.

If we apply this approach to each candidate predictor in turn, we can obtain
valuable information about the extent to which each evidence type recapitulates
known functional linkages – or, more precisely, the efficiency with which each
predictor classifies pairs of proteins into the “linked” or “unlinked” categories.
Importantly, benchmarking each predictor in terms of its performance as a binary
classifier provides a way to compare previously incomparable data sets, such as
matrices[6] of BLAST[20] bit scores and arrays of Cy5/Cy3 ratios[3]. Even more
importantly, it suggests that the problem of network integration can be viewed
as a high dimensional binary classifier problem. By generalizing the approach
outlined above to the case where E is a vector rather than a scalar, we can
calculate the summary probability that two proteins are functionally linked given
all the evidence at hand.

2.2 Training Set and Evidence Calculation

It is difficult to say a priori which predictors of functional association will be
the best for a given organism. For example, microarray quality is known to
vary widely, so coexpression correlations in different organisms are not directly
comparable. Thus, to calibrate our interaction prediction algorithm, we require
a training set of known interactions.

To generate this training set, we used one of three different genome scale
annotations: the COG functional categories assigned by NCBI[21], the GO[22]
annotations assigned by EBI’s GOA project[23], and the KEGG[24] metabolic
annotations assigned to microbial genomes. In general, as we move from COG to
GO to KEGG, the fraction of annotated proteins in a given organism decreases,
but the annotation quality increases. In this work we used the KEGG annotation
for all organisms other than Bacillus subtilis, for which we used GO as KEGG
data was unavailable.

As shown in Figure 1a, for each pair we recorded (L = 1) if the proteins had
overlapping annotations, (L = 0) if both were in entirely nonoverlapping cate-
gories, and (L = ?) if either protein lacked an annotation code or was marked
as unknown. (For the GO training set, “overlapping” was defined as overlap
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(b) Evidence vs. Training Set

Fig. 1. Training Sets and Evidence. (a) Genome-scale systematic annotations such as
COG, GO or KEGG give functions for proteins Xi. As described in the text and shown
on example data, we use this annotation to build an initial classification of protein pairs
(Xi, Xj) with three categories: a relatively small set of likely linked (red) pairs and
unlinked (blue) pairs, and a much larger set of uncertain (gray) pairs. (b) We observe
that proteins which share an annotation category generally have more significant levels
of evidence, as seen in the shifted distribution of linked (red) vs. unlinked (blue) pairs.
Even subtle distributional differences contribute statistical resolution to our algorithm.

of specific GO categories beyond the 8th level of the hierarchy.) This “matrix”
approach (consider all proteins within an annotation category as linked) is in
contrast to the “hub-spoke” approach (consider only proteins known to be di-
rectly in contact as linked) [25]. The former representation produces a nontrivial
number of false positives, while the latter incurs a surfeit of false negatives. We
chose the “matrix” based training set because our algorithm is robust to noise
in the training set so long as enough data is present.

Note that we have used an annotation on individual proteins to produce a
training set on pairs of proteins. In Figure 1b, we compare this training set to
four functional genomic predictors: coexpression, coinheritance, coevolution, and
colocation. We include details of the calculations of each evidence type in the
Appendix. Interestingly, despite the fact that these methods were obtained from
raw measurements as distinct as genomic spacing, BLAST bit scores, phyloge-
netic trees, and microarray traces, Figure 1b shows that each method is capable
of distinguishing functionally linked pairs (L = 1) from unlinked pairs (L = 0).

2.3 Network Integration

For clarity, we first illustrate network integration with two evidence types (cor-
responding to two Euclidean dimensions) in C. crescentus, and then move to the
N-dimensional case.
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Fig. 2. 2D Network Integration in C. crescentus. (a) A scatterplot reveals that func-
tionally linked pairs (red,L = 1) tend to have higher coexpression and coinheritance
than pairs known to participate in separate pathways (blue,L = 0). (b) We build the
conditional densities P (E1, E2|L = 0) and P (E1, E2|L = 1) through kernel density es-
timation. Note that the distribution for linked pairs is shifted to the upper right corner
relative to the unlinked pair distribution. (c) We can visualize the classification process
by concentrating on the decision boundary, corresponding to the upper right quadrant
of the original plot. In the left panel, the scatterplot of pairs with unknown linkage
status (gray) are the inputs for which we wish to calculate interaction probabilities. In
the right panel, a heatmap for the posterior probability P (L = 1|E1, E2) is depicted.
This function yields the probability of linkage given an input evidence vector, and in-
creases as we move to higher levels of coexpression and coinheritance in the upper right
corner. (d) By conceptually superimposing each gray point upon the posterior, we can
calculate the posterior probability that two proteins are functionally linked.

2D Network Integration. Consider the set of approximately 310000 protein
pairs in C. crescentus which have a KEGG-defined linkage of (L = 0) or (L = 1).
Setting aside the 6.6 million pairs with (L = ?) for now, we find that P (L =
1) = .046 and P (L = 0) = .954 are the relative proportions of known linked and
unlinked pairs in our training set.

Each of these pairs has an associated coexpression and coinheritance corre-
lation, possibly with missing values, which we bundle into a two dimensional
vector E = (E1, E2). Figure 2a shows a scatterplot of E1 vs. E2, where pairs with
(L = 1) have been marked red and pairs with (L = 0) have been marked blue.

We see immediately that functionally linked pairs aggregate in the upper
right corner of the plot, in the region of high coexpression and coinheritance.
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Crucially, the linked pairs (red) are more easily distinguished from the unlinked
pairs (blue) in the 2-dimensional scatter plot than they are in the accompany-
ing 1-dimensional marginals. To quantify the extent to which this is true, we
begin by computing P (E1, E2|L = 0) and P (E1, E2|L = 1) via kernel density
estimation[26, 27], as shown in Figure 2b. As we already know P (L), we can
obtain the posterior by Bayes’ rule:

P (L = 1|E1, E2) =
P (E1, E2|L = 1)P (L = 1)

P (E1, E2|L = 1)P (L = 1) + P (E1, E2|L = 0)P (L = 0)

In practice, this expression is quite sensitive to fluctuations in the denominator.
To deal with this, we use M -fold bootstrap aggregation[28] to smooth the poste-
rior. We find that M = 20 repetitions with resampling of 1000 elements from the
(L = 0) and (L = 1) training sets is the empirical point of diminishing returns
in terms of area under the receiver-operator characteric (ROC), as detailed in
Figure 4.

P (L = 1|E1, E2) =
1
M

M

i=1

Pi(E1, E2|L = 1)P (L = 1)
Pi(E1, E2|L = 1)P (L = 1) + Pi(E1, E2|L = 0)P (L = 0)

Given this posterior, we can now make use of the roughly 6.6 million pairs with
(L = ?) which we put aside at the outset, as pictured in Figure 2c. Even though
these pairs have unknown linkage, for most pairs the coexpression (E1) and
coinheritance (E2) are known. For those pairs which have partially missing data
(e.g. from corrupted spots on a microarray), we can simply evaluate over the non-
missing elements of the E vector by using the appropriate marginal posterior
P (L = 1|E1) or P (L = 1|E2). We can thus calculate P (L = 1|E1, E2) for every
pair of proteins in the proteome, as shown in Figure 2d. Each of the formerly gray
pairs with (L = ?) is assigned a probability of interaction by this function; those
with bright red values in Figure 2d are highly likely to be functionally linked.

In general, we also calculate P (L = 1|E1, E2) on the training data, as we
know that the “matrix” approach to training set generation produces copious
but noisy data. The result of this evaluation is the probability of interaction for
every protein pair.

N-dimensional Network Integration. The 2 dimensional example in C. cres-
centus immediately generalizes to N-dimensional network integration in an arbi-
trary species, though the results cannot be easily visualized beyond 3 dimensions.
Figure 3 shows the results of calculating a 3D posterior in C. crescentus from co-
expression, coinheritance, and colocation data, where we have once again applied
M -fold bootstrap aggregation.

We see that different evidence types interact in nonobvious ways. For exam-
ple, we note that high levels of colocation (E2) can compensate for low levels
of coexpression (E1), as indicated by the “bump” in the posterior of Figure 3c.
Biologically speaking, this means that a nontrivial number of C. crescentus pro-
teins with shared function are frequently colocated yet not strongly coexpressed.
This is exactly the sort of subtle statistical dependence between predictors that
is crucial for proper classification. In fact, a theoretically attractive property of
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Fig. 3. 3D Network Integration in C. crescentus. (a)-(b) We show level sets of each
density spaced at even volumetric increments, so that the inner most shell encloses
20% of the volume, the second shell encloses 40%, and so forth. As in the 2D case, the
3D density P (E|L = 1) is shifted to the upper right corner. (c) For the posterior, we
show level sets spaced at probability deciles, such that a pair which makes it past the
upper right shell has P (L = 1|E) ∈ [.9, 1], a pair which lands in between the upper two
shells satisfies P (L = 1|E) ∈ [.8, .9], and so on.

our approach is that the use of the conditional joint posterior produces the min-
imum possible classification error (specifically, the Bayes error rate [29]), while
bootstrap aggregation protects us against overfitting[30].

Until recently, though, technical obstacles made it challenging to efficiently
compute joint densities beyond dimension 3. Recent developments[26] in efficient
kernel density estimation have obviated this difficulty and have made it possible
to evaluate high dimensional densities over millions of points in a reasonable
amount of time within user-specifiable tolerance levels. As an example of the
calculation necessary for network integration, consider a 4 dimensional kernel
density estimate built from 1000 sample points. Ihler’s implementation[27] of
the Gray-Moore dual-tree algorithm[26] allowed the evaluation of this density at

the
(

3737
2

)
≈ 7, 000, 000 pairs in the C. crescentus proteome in only 21 minutes

on a 3GHz Xeon with 2GB RAM. Even after accounting for the 2M multiple
of this running time caused by evaluating a quotient of two densities and using
M -fold bootstrap aggregation, the resulting joint conditional posterior can be
built and evaluated rapidly enough to render approximation unnecessary.

Binary Classifier Perspective. By formulating the network integration prob-
lem as a binary classifier (Figure 4), we can quantify the extent to which the
integration of multiple evidence sources improves prediction accuracy over a sin-
gle source. As our training data is necessarily a rough approximation of the true
interaction network, these measures are likely to be conservative estimates of
classifier performance.
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(a) Binary Classifier Paradigm
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(b) Receiver/Operator Curves
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(c) Precision/Recall Curves

Fig. 4. Network Integration as Binary Classifier. (a) We regard the network integration
problem as a binary classifier in a high dimensional feature space. The input features
are a set of evidences associated with a protein pair (A, B), and the output is the
probability that a pair is assigned to the (L = 1) category. (b) The area under the
receiver operator characteristic (AUROC) is a standard measure[29] of binary classifier
performance, shown here for several different ways of doing C. crescentus network in-
tegration. Here we have labeled data types as CV (coevolution), CL (colocation), CX
(coexpression), and CI (coinheritance) and shown a successive series of curves for the
integration of 1,2,3, and finally 4 evidence types. Classifier performance increases mono-
tonically as more data sets are combined. Importantly, the true four dimensional joint
posterior P (L = 1|CV, CL, CX, CI) outperforms the Naive Bayes approximation of the
posterior, where the conditional density P (CV, CL, CX, CI |L = 1) is approximated
by P (CV |L = 1)P (CL|L = 1)P (CX|L = 1)P (CI|L = 1), and similarly for L = 0. For
clarity we have omitted the individual curves for the CL (AUROC=.612), CX (AU-
ROC=.619), and CV (AUROC=.653) metrics. Again, it is clear that the integrated
posterior outperforms each of these univariate predictors. (c) Precision/recall curves are
an alternate way of visualizing classifier performance, and are useful when the number
of true positives is scarce relative to the number of false negatives. Again the integrated
posterior outperforms the Naive Bayes approximation as a classifier. Note that since
the “negative” pairs from the KEGG training set are based on the supposition that two
proteins which have no annotational overlap genuinely do not share a pathway, they
are a more noisy indicator than the “positive” pairs. That is, with respect to functional
interaction, absence of evidence is not always evidence of absence. Hence the computed
values for precision are likely to be conservative underestimates of the true values.
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3 Results

3.1 Global Network Architecture

Applying the posterior P (L = 1|E) to every pair of proteins in a genome gives the
probability that each pair is functionally linked. If we simply threshold this result
at P (L = 1|E) > .5, we will retain only those linkages which are more probable
than not. This decision rule attains the Bayes error rate[29] and minimizes the
misclassification probability. We applied our algorithm with this threshold to
build 4D integrated networks for the 11 microbes and four evidence types listed in
the Appendix. Figure 5 shows the global protein interaction networks produced
for three of these microbes, where we have retained only those edges with P (L =
1|E) > .5.

To facilitate use of these protein interaction networks, we built an interactive
netbrowser, viewable at http://jinome.stanford.edu/netbrowser. As a threshold
of P (L = 1|E) > .5 tends to be somewhat stringent in practice, we allow dy-
namic, user-specified thresholds to produce module-specific tradeoffs between
specificity and sensitivity in addition to a host of other customization options.

Fig. 5. Global visualization of integrated networks for Escherichia coli K12, He-
licobacter pylori 26695, and Caulobacter crescentus. Only linkages with P (L =
1|E1, E2, E3, E4) > .5 are displayed.

3.2 Campylobacter jejuni : N-Linked Protein Glycosylation

N-linked protein glycosylation is one of the most frequent post-translational
modifications applied to eukaryotic secretory proteins. Until recently[31] this
process was thought to be absent from most microbes, but recent work[32] has
shown that an operational N-linked glycosylation system does exist in C. jejuni.
As the entire glycosylation apparatus can be successfully transplanted to E. coli
K12, this system is of much biotechnological interest[33].

Figure 6a shows the results of examining the integrated network for C. jejuni
around the vicinity of Cj1124c, one of the proteins in the glycosylation system. In
addition to the reassuring recapitulation of several transferases and epimerases
experimentally linked to this process[33], we note four proteins which are to
our knowledge not known to be implicated in N-linked glycosylation (Cj1518,
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Cj0881c, Cj0156c, Cj0128c). Importantly, all of these heretofore uncharacterized
linkages would have been missed if only univariate posteriors had been exam-
ined, as they would be significantly below our cutoff of P (L = 1|E) > .5. As
this system is still poorly understood – yet of substantial biotechnological and
pathogenic[34] relevance – investigation of these new proteins may be of interest.

3.3 Caulobacter crescentus: Bacterial Actin and the Sec Apparatus

Van den Ent’s[36] discovery that the ubiquitous microbial protein MreB was a
structural homolog to actin spurred a burst of interest[37, 38, 39] in the biology
of the bacterial cytoskeleton. Perhaps the most visually arresting of these re-
cent findings is the revelation that MreB supports the cell by forming a tight
spiral[37]. Yet many outstanding questions in this field remain, and prime among
them is the issue of which proteins communicate with the bacterial cytoskeletal
apparatus[40].

Figure 6b shows the proteins from the C. crescentus integrated network which
have a 50% chance or greater of interacting with MreB, also known as CC1543.
As a baseline measure of validity, we once again observe that known interaction
partners such as RodA (CC1547) and MreC (CC1544) are recovered by network
integration. More interesting, however, is the subtle interaction between MreB
and the preprotein translocase CC3206, an interaction that would be missed if
data sources were used separately. This protein is a subunit of the Sec machinery,

Probability of linkage: 1.0 ... 0.75 ... 0.50

Cj1124c
putative galactos...

Cj0128c
suhB-like pr

Cj0156c
hypothetical p

Cj0881c
hypothetical protein
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putative transferase

Cj1321
putative transferase
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Cj1550c
e ATP/GTP-...

(a) C. jejuni : Glycosylation
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preprotein transl...

CC3252
hypothetical protein

CC3483
etical protein

CC3705
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(b) C. crescentus: Bacterial cytoskeleton

Fig. 6. Case Studies. (a) Network integration detects new proteins linked to glycosy-
lation in Campylobacter jejuni NCTC 11168. High probability linkages are labeled in
red and generally recapitulate known interactions, while moderately likely linkages are
colored gray. Moderate linkages are generally not found by any univariate method in
isolation, and represent the new biological insight produced by data integration. (b)
In Caulobacter crescentus, data integration reveals that the Sec apparatus is linked
to MreB, a prediction recently confirmed by experiment[35]. Again, moderate linkages
revealed by data integration lead us to a conclusion that would be missed if univariate
data was used.



Integrated Protein Interaction Networks for 11 Microbes 11

and like MreB is an ancient component of the bacterial cell[41]. Its link to MreB is
of particular note because recent findings[35] have shown that the Sec apparatus
– like MreB – has a spiral localization pattern. While seemingly counterintu-
itive, it seems likely from both this finding and other work[42] that the export
of cytoskeleton-related proteins beyond the cellular membrane is important in
the process of cell division. We believe that investigation of the hypothetical
proteins linked to both MreB and Sec by our algorithm may shed light on this
question.

4 Discussion

4.1 Merits of Our Approach

While a number of recent papers on network integration in S. cerevisiae have ap-
peared, we believe that our method is an improvement over existing algorithms.

First, by directly calculating the joint conditional posterior we require no
simplifying assumptions about statistical dependence and need no complex para-
metric inference. In particular, removing the Naive Bayes approximation results
in a better classifier, as quantified in Figure 4. Second, our use of the Gray-Moore
dual tree algorithm means that our method is arbitrarily scalable in terms of
both the number of evidence types and the number of protein pairs. Third, our
method allows immediate visual identification of dependent or corrupted func-
tional genomic data in terms of red/blue separation scatterplots – an important
consideration given the noise of some data types [43]. Finally, because the out-
put of our algorithm is a rigorously derived set of interaction probabilities, it
represents a solid foundation for future work.

4.2 Conclusion and Future Directions

Our general framework presents much room for future development. It is
straightforward to generalize our algorithm to apply to discrete, ordinal, or cat-
egorical data sets as long as appropriate similarity measures are defined. As our
method readily scales beyond a few thousand proteins, even the largest eukary-
otic genomes are potential application domains. It may also be possible to im-
prove our inference algorithm through the use of statistical techniques designed
to deal with missing data[44].

Moving beyond a binary classifier would allow us to predict different kinds
of functional linkage, as two proteins in the same multiprotein complex have a
different kind of linkage than two proteins which are members of the same regu-
lon. This would be significant in that it addresses one of the most widely voiced
criticisms of functional genomics, which is that linkage predictions are “one-size-
fits-all”. It may also be useful to move beyond symmetric pairwise measures of
association to use metrics defined on protein triplets[8] or asymmetric metrics
such that E(Pi, Pj) �= E(Pj , Pi).

While these details of the network construction process are doubtless subjects
for future research, perhaps the most interesting prospect raised by the availabil-
ity of a large number of robust, integrated interaction networks is the possibility
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of comparative modular biology. Specifically, we would like to align subgraphs
of interaction networks on the basis of conserved interaction as well as conserved
sequence, just as we align DNA and protein sequences. A need now exists for a
network alignment algorithm capable of scaling to large datasets and comparing
many species simultaneously.
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Abstract. Relationships among amino acids determine stability and
function and are also constrained by evolutionary history. We develop
a probabilistic hypergraph model of residue relationships that general-
izes traditional pairwise contact potentials to account for the statistics
of multi-residue interactions. Using this model, we detected non-random
associations in protein families and in the protein database. We also
use this model in optimizing site-directed recombination experiments
to preserve significant interactions and thereby increase the frequency
of generating useful recombinants. We formulate the optimization as a
sequentially-constrained hypergraph partitioning problem; the quality of
recombinant libraries wrt a set of breakpoints is characterized by the to-
tal perturbation to edge weights. We prove this problem to be NP-hard
in general, but develop exact and heuristic polynomial-time algorithms
for a number of important cases. Application to the beta-lactamase fam-
ily demonstrates the utility of our algorithms in planning site-directed
recombination.

1 Introduction

The non-random association of amino acids, as expressed in pairwise potentials,
has been usefully applied in a number of situations. Such pairwise contact poten-
tials [1, 2] play a large role in evaluating quality of models in protein structure
prediction [3, 4, 5, 6]. It has been suggested, however, that “it is unlikely that
purely pairwise potentials are sufficient for structure prediction” [7, 8].

To better model evolutionary relationships that determine protein stability
and functionality, it may be necessary to capture the higher-order interactions
that are ignored in simple pairwise models (Fig. 1(a)). Researchers have begun
to demonstrate the importance of accounting for higher-order terms. A sta-
tistical pseudo-potential based on four-body nearest neighbor interactions (as
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Fig. 1. Hypergraph model of evolutionary interactions, and effects of site-directed
protein recombination. (a) Higher-order evolutionary interactions (here, order-3)
determining protein stability and function are observed in the statistics of “hypercon-
servation” of mutually interacting positions. The left edge is dominated by Ala,Val,Ile
and Val,Leu,Leu interactions, while the right is dominated by Glu,Thr,Arg and
Asp,Ser,Lys ones. The interactions are modeled as edges in a hypergraph with weights
evaluating the degree of hyperconservation of an interaction, both generally in the
protein database and specific to a particular family. (b) Site-directed recombination
mixes and matches sequential fragments of homologous parents to construct a library
of hybrids with the same basic structure but somewhat different sequences and thus
different functions. (c) Site-directed recombination perturbs edges that cross one or
more breakpoints. The difference in edge weights derived for the parents and those
derived for the hybrids indicates the effect of the perturbation on maintenance of
evolutionarily favorable interactions.

determined by Delaunay tessellations) has successfully predicted changes in free
energy caused by hydrophobic core mutations [8]. Similar formulations have been
used to discriminate native from non-native protein conformations [9]. Geomet-
rically less restricted higher-order interactions have also been utilized for recog-
nition of native-like protein structures [10]. Recent work on correlated mutation
analysis has moved from identifying pairwise correlations [11] to determining
clusters or cliques of mutually-dependent residues that identify subclasses within
a protein family and provide mechanistic insights into function [12, 13].

This paper develops a rigorous basis for representing multi-order interactions
within a protein family. We generalize the traditional representations of sequence
information in terms of single-position conservation and structural interactions in
terms of pairwise contacts. Instead, we define a hypergraph model in which edges
represent pairwise and higher-order residue interactions, while edge weights rep-
resent the degree of “hyperconservation” of the interacting residues (Sec. 2). Hy-
perconservation can reveal significant residue interactions both within members
of the family (arising from structural and functional constraints) and generally
common to all proteins (arising from general properties of the amino acids). We
then combine family-specific and database-wide statistics with suitable weight-
ing (Sec. 2.1), ensure non-redundancy of the information in super- and sub-edges
with a multi-order potential score (Sec. 2.2), and derive edge weights by mean po-
tential scores (Sec. 2.3). Application of our approach to beta-lactamases (Sec. 4)
shows that the effect of non-redundant higher-order terms is significant and can
be effectively handled by our model.
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Protein recombination in vitro (Fig. 1(b)) enables the design of protein vari-
ants with favorable properties and novel enzymatic activities, as well as
the exploration of protein sequence-structure-function relationships (see e.g.
[14, 15, 16, 17, 18, 19, 20, 21, 22]). In this approach, libraries of hybrid proteins
are generated either by stochastic enzymatic reactions or intentional selection of
breakpoints. Hybrids with unusual properties can either be identified by large-
scale genetic screening and selection, or many hybrids can be evaluated individ-
ually to determine detailed sequence-function relationships for understanding
and/or rational engineering. We focus here on site-directed recombination, in
which parent genes are recombined at specified breakpoint locations, yielding
hybrids in which different sequence fragments (between the breakpoints) can
come from different parents. Both screening/selection and investigational exper-
iments benefit from recombination that preserves the most essential structural
and functional features while still allowing variation. In order to enhance the suc-
cess of this approach, it is necessary to choose breakpoint locations that optimize
preservation of these features.

The labs of Mayo and Arnold [18, 23] have established criteria for non-
disruption of contacting residue pairs and demonstrated the relationship between
non-disruption and functional hybrids [18]. There is an on-going search for algo-
rithms to select breakpoints for recombination based on non-disruption [23, 24],
although none has yet been experimentally validated. Optimizing multi-order
interactions after recombination (Fig. 1(c)) should help identify the best recom-
binants and thus the best locations for breakpoints. In support of this optimiza-
tion, we develop criteria to evaluate the quality of hybrid libraries by considering
the effects of recombination on edge weights (Sec. 2.4). We then formulate the op-
timal selection of breakpoint locations as a sequentially-constrained hypergraph
partitioning problem (Sec. 3), prove it to be NP-hard in general (Sec. 3.1), de-
velop exact and heuristic algorithms for a number of important cases (Secs. 3.2–
3.5), and demonstrate their practical effectiveness in design of recombination
experiments for members of the beta-lactamase family (Sec. 4).

2 A Hypergraph Model of Evolutionary Interactions

In order to more completely model statistical interactions in a protein, it is nec-
essary to move beyond single-position sequence conservation and pairwise struc-
tural contact. We model a protein and its reference structure with a weighted
hypergraph G=(V,E,w), where vertices V ={v1, v2, · · · , v|V |} represent residue
positions in sequential order on the backbone, edges E ⊆ 2V represent mutually
interacting sets of vertices, and weight function w : E → R represents the rel-
ative significance of edges. We construct an order-c edge e = 〈v1, v2, · · · , vc〉 for
each set of residues (listed in sequential order for convenience) that are in mutual
contact; this construction can readily be extended to capture other forms of inter-
action, e.g. long-range interaction of non-contacting residues due to electrostatics.
Note that subsets of vertices associated with a higher-order edge form lower-order
edges. When we need to specify the exact order c of edges in a hypergraph, we use
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notationGc =(V,Ec, w). Since lower-order edges can be regarded as a special kind
of higher-order ones, Gc includes “virtual” lower-order edges.

The definition of the edge weight is key to effective use of the hypergraph
model. In the case where the protein is a member of a family with presumed
similar structures, edge weights can be evaluated both from the general database
and specific to the family. There are many observed residue values (across the
family or database) for the vertices of any given edge. We thus build up to an edge
weight by first estimating the probability of the residue values, then decomposing
the probability to ensure non-redundant information among multi-order edges
for the same positions. Finally we determine the effect on the pattern of these
values due to recombination according to a set of chosen breakpoint locations.

2.1 Distribution of Hyperresidues in Database and Family

Let R = 〈r1, r2, · · · , rc〉 be a “hyperresidue,” a c-tuple of amino acid types
(e.g. 〈Ala,Val, Ile〉). Intuitively speaking, the more frequently a particular hy-
perresidue occurs in functional proteins, the more important it is expected to
be for their folding and function. We can estimate the overall probability p of
hyperresidues from their frequencies in the database D of protein sequences and
corresponding structures:

p(R) = (#R in D) / |D| , (1)

where |D| represents the number of tuple instances in the database. When con-
sidering a specific protein family F with a multiple sequence alignment and
shared structure, we can estimate position-specific (i.e., for edge e) probability
of a hyperresidue:

pe(R) = (#R at e in F) / |F| , (2)

where |F| is the number of tuple instances at specific positions in the family
MSA, i.e. the number of sequences in the family MSA.

Estimation of probabilities from frequencies is valid only if the frequencies are
large. Thus the general probability estimated from the whole database (Eq. 1)
is more robust than the position-specific from a single family (Eq. 2). However,
family-specific information is more valuable as it captures the evolutionarily-
preserved interactions in that family. To combine these two aspects, we adopt
the treatment of sparse data sets proposed by Sippl [25]:

qe(R) = ω1 · p(R) + ω2 · pe(R) , (3)

but employing weights suitable for our problem:

ω1 = 1/(1 + |F|ρ) and ω2 = 1− ω1 , (4)

where ρ is a user-specified parameter that determines the relative contributions
of database and family. Note that when ρ = 0, qe(R) = p(R) and the family-
specific information is ignored; whereas when ρ = ∞, qe(R) = pe(R) and the
database information is ignored. Using a suitable value of ρ, we will obtain a
probability distribution that is close to the overall database distribution for a
small family but approximates the family distribution for a large one.
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2.2 Multi-order Potential Score for Hyperresidues

Since we have multi-order edges, with lower-order subsets included alongside
their higher-order supersets, we must ensure that these edges are not redundant.
In other words, a higher-order edge should only include information not captured
by its lower-order constituents. The inclusion-exclusion principle ensures non-
redundancy in a probability expansion, as Simons et al. [10] demonstrated in
the case of protein structure prediction. We define an analogous multi-order
potential score for hyperresidues at edges of orders 1, 2, and 3, respectively, as
follows:

φvi (rα) = log qvi(rα) , (5)

φvivj (rαrβ) = log
qvivj (rαrβ)

qvi(rα) · qvj (rβ)
, (6)

φvivjvk
(rαrβrγ) = log

qvivjvk
(rαrβrγ) · qvi(rα) · qvj (rβ) · qvk

(rγ)
qvivj (rαrβ) · qvivk

(rαrγ) · qvjvk
(rβrγ)

. (7)

Here, φvi(rα) captures residue conservation at vi; φvivj (rαrβ) captures pairwise
hyperconservation and is zero if vi and vj are not in contact or their residue
types are completely independent; φvivjvk

(rαrβrγ) captures 3-way hyperconser-
vation and is zero if vi, vj , and vk are not in contact or their residue types are
completely independent. The potential score of higher-order hyperresidues can
be defined similarly. The potential score of a higher-order hyperresidue contains
no information redundant with that of its lower-order constituents.

2.3 Edge Weights

In the hypergraph model, edge weights measure evolutionary optimization of
higher-order interactions. For a protein or a set of proteins S ⊆ F , we can evalu-
ate the significance of an edge as the average potential score of the hyperresidues
appearing at the positions forming the edge:

w(e) =
∑
R

#R at e in S
|S| · φe(R) . (8)

2.4 Edge Weights for Recombination

A particular form of edge weights serves as a guide for breakpoint selection in
site-directed recombination. Suppose a set S ⊆ F of parents is to be recombined
at a set X = {x1, x2, · · · , xn} of breakpoints, where xt = vi indicates that
breakpoint xt is between residues vi and vi+1. We can view recombination as
a two-step process: decomposing followed by recombining. In the decomposing
step, each protein sequence is partitioned into n + 1 intervals according to the
breakpoints, and the hypergraph is partitioned into n+ 1 disjoint subgraphs by
removing all edges spanning a breakpoint. The impact of this decomposition can
be individually assessed for each edge, using Eq. 8 for the parents S.
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In the recombining step, edges removed in the decomposing step are recon-
structed with new sets of hyperresidues according to all combinations of parent
fragments. The impact of this reconstruction can also be individually assessed
for each edge, yielding a breakpoint-specific weight:

w(e,X) =
∑
R

#R at e in L
|L| · φe(R) . (9)

In this case, the potential score of hyperresidue R is weighted by the amount of
its representation in the library L. Note that we need not actually enumerate
the set of hybrids (which can be combinatorially large) in order to determine
the weight, as the frequencies of the residues at the positions are sufficient to
compute the frequencies of the hyperresidues.

The combined effect of the two-step recombination process on an individual
edge, the edge perturbation, is then defined as the change in edge weight:

Δw(e,X) = w(e) − w(e,X) . (10)

If all vertices of e are in one fragment, we havew(e) = w(e,X) andΔw(e,X) = 0.
The edge perturbation thus integrates essential information from the database,
family, parent sequences, and breakpoint locations.

3 Optimization of Breakpoint Locations

Given parent sequences, a set of breakpoints determines a hybrid library. The
quality of this hybrid library can be measured by the total perturbation to all
edges due to the breakpoints. The hypothesis is that the lower the perturbation,
the higher the representation of folded and functional hybrids in the library. We
formulate the breakpoint selection problem as follows.

Problem 1. c-RECOMB. Given Gc = (V,Ec, w) and a positive integer n, choose
a set of breakpoints X = {x1, x2, · · · , xn} minimizing

∑
e∈Ec

Δw(e,X).
Recall from Sec. 2 that Gc represents a hypergraph with edge order uniformly c
(where edges with order less than c are also represented as order-c edges).

This hypergraph partitioning problem is significantly more specific than gen-
eral hypergraph partitioning, so it is interesting to consider its algorithmic dif-
ficulty. As as we will see in Sec. 3.1, c-RECOMB is NP-hard for c = 4 (and
thus also for c > 4), although we provide polynomial-time solutions for c = 2 in
Sec. 3.2 and c = 3 in Sec. 3.4.

A special case of c-RECOMB provides an efficient heuristic approach to min-
imize the overall perturbation. By minimizing the total weight of all edges
EX removed in the decomposing step, fewer interactions need to be recovered
in the recombining step.

Problem 2. c-DECOMP. Given Gc = (V,Ec, w) and a positive integer n, choose
a set of breakpoints X = {x1, x2, · · · , xn} minimizing

∑
e∈EX

w(e).
c-DECOMP could also be useful in identifying modular units in protein struc-
tures, in which case there is no recombining step.
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3.1 NP-Hardness of 4-RECOMB

4-RECOMB is combinatorial in the set X of breakpoints and the possible con-
figurations they can take relative to each edge. The number of possible libraries
could be huge even with a small number of breakpoints (e.g. choosing 7 break-
points from 262 positions for beta-lactamase results in on the order of 1013 possi-
ble configurations). The choices made for breakpoints are reflected in whether or
not there is a breakpoint between each pair of sequentially-ordered vertices of an
edge, and thus in the perturbation to the edge. We first give a decision version of
4-RECOMB as follows and then prove that it is NP-hard. Thus the related opti-
mization problem is also NP-hard. Our reduction employs general hypergraphs;
analysis in the geometrically-restricted case remains interesting future work.

Problem 3. 4-RECOMB-DEC. Given G4 = (V,E4, w), a positive integer n, and
an integer W , does there exist a set of breakpoints X = {x1, x2, · · · , xn} such
that

∑
e∈E4

Δw(e,X) ≤W .

Theorem 3.1. 4-RECOMB-DEC is NP-hard.

Proof. We reduce from 3SAT. Let φ = C1 ∧C2 ∧ · · · ∧Ck be a boolean formula
in 3-CNF with k clauses. We shall construct a hypergraph G4 = (V,E4, w) such
that φ is satisfiable iff there is a 4-RECOMB-DEC solution for G4 with n = 3k
breakpoints and W = −|E4|. (See Fig. 2.). For clause Ci = (li,1 ∨ li,2 ∨ li,3) in
φ, add to V four vertices in sequential order vi,1, vi,2, vi,3, and vi,4. Elongate
V with 3k trivial vertices (v′j in Fig. 2), where we can put trivial breakpoints
that cause no perturbation. Let us define predicate b(i, s,X) = vi,s ∈ X for
s ∈ {1, 2, 3}, indicating whether or not there is a breakpoint between vi,s and
vi,s+1. We also use indicator function I to convert a boolean value to 0 or 1.
We construct E4 with three kinds of edges: (1) For the 4-tuple of vertices for
clause Ci, add an edge e = 〈vi,1, vi,2, vi,3, vi,4〉 with Δw(e,X) = −I{b(i, 1, X)∨
b(i, 2, X)∨b(i, 3, X)}. (2) If two literals li,s and lj,t are identical, add an edge e =
〈vi,s, vi,s+1, vj,t, vj,t+1〉 with Δw(e,X) = −I{b(i, s,X) = b(j, t,X)}. (3) If two
literals li,s and lj,t are complementary, add an edge e = 〈vi,s, vi,s+1, vj,t, vj,t+1〉
with Δw(e,X) = −I{b(i, s,X) �= b(j, t,X)}.

There are 7k vertices and at most k+3
(
k
2

)
= O(k2) edges, so the construction

takes polynomial time. It is also a reduction. First, if φ has a satisfying assign-
ment, choose breakpoints X = {vi,s|li,s is TRUE} plus additional breakpoints
between the trivial vertices to reach 3k total. Since each clause is satisfied, one
of its literals is true, so there is a breakpoint in the corresponding edge e and its
perturbation is −1. Since literals must be used consistently, type 2 and 3 edges
also have −1 perturbation. Thus 4-RECOMB-DEC is satisfied with n = 3k and
W = −|E4|. Conversely, if there is a 4-RECOMB-DEC solution with breakpoints
X , then assign truth values to variables such that li,s = b(i, s,X) for s ∈ {1, 2, 3}
and i ∈ {1, 2, · · · , k}. Since perturbation to type 1 edges is −1, there must be
at least one breakpoint in each clause vertex tuple, and thus a true literal in
the clause. Since perturbation to type 2 and 3 edges is −1, literals are used
consistently.
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Fig. 2. Construction of hypergraph G4 = (V, E4, w) from an instance of 3SAT φ =
(z1∨z̄2∨z3)∧(z2∨z3∨z̄4). Type 1 edges e1 and e2 ensure the satisfaction of clauses (−1
perturbation iff there is a breakpoint iff the literal is true and the clause is satisfied),
while type 3 edge e3 and type 2 edge e4 ensure the consistent use of literals (−1
perturbation iff the breakpoints are identical or complementary iff the variable has a
single value).

We note that 4-RECOMB-DEC is in NP, since given a set of breakpoints
X for parents S we can compute Δw(e,X) for all edges in polynomial time
(O(S4E)), and then must simply sum and compare to a provided threshold.

3.2 Dynamic Programming Framework

Despite the NP-hardness of the general sequentially-constrained hypergraph par-
titioning problem c-RECOMB, the structure of the problem (i.e. the sequential
constraint) leads to efficient solutions for some important cases. Suppose we
are adding breakpoints one by one from left to right (N- to C-terminal) in the
sequence. Then the additional perturbation to an edge e caused by adding break-
point xt given previous breakpoints Xt−1 = {x1, x2, · · · , xt−1} can be written:

ΔΔw(e,Xt−1, xt) = Δw(e,Xt)−Δw(e,Xt−1) , (11)

where X0 = ∅ and the additional perturbation caused by the first breakpoint
is ΔΔw(e,X0, x1) = Δw(e,X1). Reusing notation, we indicate the total ad-
ditional perturbation to all edges as ΔΔw(E,Xt−1, xt). Now, if the value of
ΔΔw(E,Xt−1, xt) can be determined by the positions of xt−1 and xt, inde-
pendent of previous breakpoints, then we can adopt the dynamic programming
approach shown below. When the additional perturbation depends only on xt−1
and xt, we write it as ΔΔw(E, xt−1, xt) to indicate the restricted dependence.

Let d[t, τ ] be the minimum perturbation caused by t breakpoints with the
rightmost at position τ . If, for simplicity, we regard the right end of the sequence
as a trivial breakpoint that causes no perturbation, then d[n + 1, |V |] is the
minimum perturbation caused by n breakpoints plus this trivial one, i.e. the
objective function for Problem 1. We can compute d recursively:

d[t, τ ] =

{
Δw(E, {τ}), if t = 1 ;
min

λ≤τ−δ
{d[t− 1, λ] +ΔΔw(E, λ, τ)}, if t ≥ 2 . (12)

where δ is a user-specified minimum sequential distance between breakpoints.
The recurrence can be efficiently computed bottom-up in a dynamic program-
ming style, due to its optimal substructure. In the following, we instantiate this
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Fig. 3. All breakpoint configurations that cause additional perturbation to an edge as
breakpoints in a c-RECOMB problem are added one by one from left to right in the
sequence. The dynamic programming formulation requires that we be able to distin-
guish the configurations from each other and from configurations with no additional
perturbation. For an order-2 edge 〈vi, vj〉, there is additional perturbation if and only
if the current breakpoint (red) is added between vi and vj and the previous breakpoint
(green) is to the left of vi. Similarly, the configurations on an order-3 edge 〈vi, vj , vk〉 can
be distinguished by the positions of the current breakpoint (red) and the preceding one
(green) with respect to the intervals [vi, vj ] and [vj , vk]. However, for an order-4 edge,
configurations 6 and 7 are ambiguous with respect to the intervals of 〈vi, vj , vk, vl〉.
We cannot be certain about the existence of a potential breakpoint between vi and vj

(blue) without potentially looking back at all previous breakpoints (green ellipses).

dynamic programming formulation with different forms of ΔΔw for different
cases of c-RECOMB and c-DECOMP. Due to space limitations, time complex-
ity analyses are omitted.

The special case of 2-DECOMP (disruption of pairwise interactions) has been
previously solved as a shortest path problem [24]. A complexity analysis account-
ing for both the edge weight calculation and dynamic programming shows that
the total time is O(S2E + V E + nV 2).

The instantiation for 2-RECOMB is as follows. Each order-2 edge 〈vi, vj〉
has two states: either there is breakpoint between vi and vj or not (Fig. 3).
The state of e is changed by adding breakpoint xt iff xt−1 < vi < xt < vj .
Thus the additional perturbation caused by adding xt can be determined by
the positions of xt−1 and xt, and is independent of previous breakpoints. Our
dynamic programming framework Eq. 12 is therefore applicable to 2-RECOMB;
the time complexity is O(S2E + V E + nV 2).

3.3 Reduction from c-DECOMP to 2-DECOMP

A significant property of our multi-order potential score (Sec. 2.2) is that the
score of a higher-order edge captures only higher-order hyperconservation and
contains no information about its lower-order constituents. Thus in the decom-
position phase, a higher-order edge is broken if there is a breakpoint anywhere in
the set of residue positions it spans. The lack of breakpoints between any adjacent
pair of its vertices will be captured by the weight of the appropriate lower-order
constituent edge. By this reasoning, we can reduce the c-DECOMP problem to
the 2-DECOMP problem: given hypergraph Gc = (Vc, Ec, wc), construct graph
G2 = (V2, E2, w2) such that V2 = Vc and each edge ec = 〈v1, v2, · · · , vc〉 ∈ Ec is
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mapped to an edge e2 = 〈v1, vc〉 ∈ E2 connecting the first and last vertex of ec,
putting weight wc(ec) on w2(e2). There is a breakpoint decomposing ec in Gc iff
there is one decomposing e2 in G2. G2 can be constructed in O(V +E) time, and
optimal solutions for c-DECOMP on Gc correspond to optimal solutions for 2-
DECOMP onG2. Under this reduction (which adds onlyO(E) computation), the
total time complexity for c-DECOMP isO(SE+V E+nV 2). Thus protein modules
can be computed under c-DECOMP in polynomial time for any order of edge.

3.4 Dynamic Programming for 3-RECOMB

We have seen that the c-RECOMB problem is NP-hard when c≥4 (Sec. 3.1) and
solvable in polynomial time when c=2 (Sec. 3.2). In this section, we instantiate
our dynamic programming framework to give a polynomial-time solution when
c=3.

An order-3 edge has four possible states, according to whether or not there is
at least one breakpoint between each pair of its vertices listed in sequential order.
As Fig. 3 illustrates, given only xt−1 and xt, all breakpoint configurations that
cause additional perturbation can be uniquely determined, and the additional
perturbation can be computed as in Eq. 11. This edge perturbation calculation
meets the restriction required for our dynamic programming framework, and
Eq. 12 and be used to optimize 3-RECOMB in O(S3E + V E + nV 2) time.

3.5 Stochastic Dynamic Programming for 4-RECOMB

Tetrahedra are natural building blocks of 3D structures, and Delaunay tetra-
hedra in the protein core have been shown to capture interactions important
for protein folding [8]. Our results below show significant information in general
order-4 hyperconservation. In order to solve 4-RECOMB problems, we develop
here a heuristic approach based on stochastic dynamic programming. Unlike 2-
RECOMB and 3-RECOMB, the additional perturbation of a breakpoint cannot
always be determined by reference just to the current and previous breakpoint
locations. As Fig. 3 shows, given xt−1 and xt, there is ambiguity only between
configurations 6 and 7.

We can still employ the dynamic programming framework if we move from a
deterministic version, in which both the additional perturbation and next state
are known, to a stochastic version, in which they are predicted as expected
values. In the ambiguous case of configurations 6 and 7 with t ≥ 2, let us assume
that breakpoints before xt−1 are uniformly distributed in the sequence. Then the
probability of finding no breakpoint between vi and vj , i.e. being in configuration
6 rather than 7, is

p = (1− vj − vi

xt−1
)t−2 , (13)

since vj−vi

xt−1
is the probability of a breakpoint being located between vi and vj and

t− 2 is the number of breakpoints before position xt−1. Thus for the ambiguous
cases, the expected additional perturbation to e caused by adding xt is

ΔΔw(e, xt−1, xt, t) = p ·ΔΔw6(e, xt−1, xt) + (1− p) ·ΔΔw7(e, xt−1, xt) , (14)
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where the subscript indicates the configuration. Note that, unlike our previous
formulations, the additional perturbation depends on the number of previous
breakpoints. Thus the time complexity of this stochastic dynamic programming
is increased to O(S4E + nV E + nV 2). This stochastic dynamic programming
technique can also be applied to c > 4 c-RECOMB problems, but the effective-
ness of the approximation is expected to decrease with an increasing number of
ambiguous states.

4 Results and Discussion

We demonstrate our hypergraph model and recombination planning algorithms
in analysis of the beta-lactamase protein family, since previous site-directed re-
combination experiments have employed beta-lactamase parents TEM-1 and
PSE-4 [23]. We identified 123 beta-lactamases for F , including TEM-1 and
PSE-4, with no more than 80% sequence identity, and constructed a multiple
sequence alignment with at most 20% gaps in any sequence. PDB file 1BTL was
used as the representative family structure. Vertices were considered as located
at the average position of non-hydrogen side-chain atoms, and edges formed for
sets of vertices whose positions were within 8 Å of each other.

For the database D, we started with a subset of sequences culled from the
protein data bank according to structure quality (R-factor less than 0.25) and
mutual sequence identity (at most 60%) by PISCES [26]. To minimize the effect
of structural errors on statistical results, chains with nonconsecutive residue
numbers, gaps (Cα-Cαdistance greater than 4.2 Å between consecutive residues),
or incorrect atom composition of residues were excluded [9]. This left 687 chains.
Contact maps were constructed as with the family.

We first considered the information content in higher-order interactions. Fig. 4
shows the distributions of hyperresidue potential scores in both the database and
family, for increasing hyperresidue order. By the non-redundant decomposition,
a higher-order potential score would be 0 if the lower-order terms were inde-
pendent. Non-zero φ(R) scores represent positive and negative correlation. The
figure shows that there is clearly information in the sets of higher-order terms.
Note that the family distributions are biased (μ not at zero), presumably because
many sets of amino acid types are not observed in the MSA. Family distributions
are also more informative than database ones (larger σ for all orders). Dicysteine
pairs are expected to be particularly informative (i.e. cysteines in disulfides are
not independent), as reflected in the clear outliers marked in the c = 2 database
histogram; there are no disulfides in the beta-lactamase family.

A limited amount of data is currently available for evaluating the experimen-
tal effectiveness of a recombination plan. Here, we use the beta-lactamase hybrid
library of [23]. For each hybrid in the library, we computed both the total poten-
tial score and the mutation level. The total potential score is the sum, over all
edges up to order-4, of the edge potential (Eq. 5– 7) for the residues in the hybrid
sequence. The mutation level is the number of residues in the hybrid that differ
from the closest parent. While hybrids with small mutation levels are expected
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Fig. 4. Multi-order potential scores, derived from the database (top) and the beta-
lactamase family (bottom). For each order c of hyperresidues, the distribution of po-
tential scores is shown (pooled over all edges for the family version).
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Fig. 5. Potential score φ(E) (sum over all interactions up to order-4) vs. mutation level
m (# residues different from the closest parent) for all hybrids in a beta-lactamase li-
brary. Blue dots indicate hybrids, and red circles those determined to be functional [23].

to be functional, our potential yields high scores for the functional hybrids at
high mutation levels (Fig. 5).

Next we applied our dynamic programming algorithms to optimize 7-break
point sets for different beta-lactamase parents (Fig. 6), using minimum effective
fragment length δ = 10, database/family weight ρ = 0.01, and maximum order
of edges c = 3. We found the results to be insensitive to ρ, beyond very small
values placing all the emphasis on the database (data not shown). In the 1-parent
case, the plan amounts to decomposing the protein (PDB file 1BTL as represen-
tative family structure) into modules preserving multi-order interactions. The
2-parent and 12-parent cases illustrated here would be useful in site-directed re-
combination experiments. We note that some locations can “float” due to parent
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Fig. 6. Beta-lactamase breakpoint optimization. (Left) Optimized breakpoint locations
when planning with 1, 2, or 12 parents. The sequence is labeled with residue index, with
helices in red and β-sheets in blue. (Right) 3D structure fragments (PDB id: 1BTL)
according to optimized breakpoint locations for the 1-parent case.
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Fig. 7. Distribution of differences in edge perturbations between the two ambiguous
configurations (6 and 7) in 4-RECOMB for the beta-lactamases TEM-1 and PSE-4.
Differences (ε) are expressed in standard deviations units.

sequence identity (e.g. in positions 17–20 with 2 parents). These all represent vi-
able experiment plans, optimizing multi-order interactions according to sequence
characteristics of different parents.

Finally, we considered the error that could be caused by the stochastic approx-
imation in solving 4-RECOMB. Fig. 7 shows the distribution, over all
order-4 edges, of differences in perturbations between the ambiguous states. The
differences are expressed in terms of perturbation standard deviations
ε = |ΔΔw6−ΔΔw7|

(std(ΔΔw6)+std(ΔΔw7))/2 . Edges with identical residues at vi or vj are ex-
cluded, since the perturbation is necessarily the same. Even so, in a majority
of cases the heuristic would lead to no or very small error. Thus the stochas-
tic dynamic programming will provide a near optimal solution, which makes it
reasonable to include 4-way interactions in practice.

5 Conclusion

We have developed a general hypergraph model of multi-order residue interac-
tions in proteins, along with algorithms that optimize site-directed recombina-
tion experiments under the model. The model has a number of other potential
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applications for which multi-order interactions are significant, after suitable pa-
rameterization, including prediction of ΔG◦ of unfolding, ΔΔG◦ of mutagenesis,
and modularity of protein structures. The algorithms likewise can be employed
using potentials that incorporate additional information (e.g. weighted for active
sites). Interesting future work includes selection of parent sequences, separation
of stability-critical and functionality-critical multi-residue interactions, interpre-
tation of experimental data, and feedback of experimental results to subsequent
rounds of planning.
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Abstract. We describe a new approach for comparing cellular-biological
networks, and finding conserved regions in two or more such networks.
We use the length of describing one network, given the description of
the other one, as a distance measure. We employ these distances as in-
puts for generating phylogenetic trees. Our algorithms are fast enough
for generating phylogenetic tree of more than two hundreds metabolic
networks that appear in KEGG. Using KEGG’s metabolic networks as
our starting point, we got trees that are not perfect, but are surpris-
ingly good. We also found conserved regions among more than a dozen
metabolic networks, and among two protein interaction networks. These
conserved regions seem biologically relevant, proving the viability of our
approach.

Keywords: Biological networks, tree reconstruction, relative description
length, compression, metabolic networks, Conserved regions, networks’
comparison, network evolution.

1 Introduction

With the advent of bio technologies, huge amounts of genomic data have accu-
mulated. This is true not only for biological sequences, but also with respect to
biological networks. Prominent examples are metabolic networks, protein-protein
interaction networks, and regulatory networks. Such networks are typically fairly
large, and are known for a number of species. On the negative side, they are er-
ror prone, and are often partial. For example, in the KEGG database [17] there
are over 250 metabolic networks of different species, at very different levels of
details. Furthermore, some networks are directly based on experiments, while
others are mostly “synthesized” manually.

The goal in this study is to devise a quantitative and efficient method for lo-
cal and global comparisons of such networks, and to examine their evolutionary
signals. Our method of comparing two networks is based on the notion of relative
description length. Given two labeled network A and B, we argue that the more
similar they are, the fewer bits are required to describe A given B (and vice
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versa). Mathematically, this can give rise to Kolmogorov complexity-like mea-
sures, which are incomputable and inapproximable. Other approaches, based on
labeled graph alignment, subgraph isomorphism, and subgraph homeomorphism,
are computationally intractable [12].

By way of contrast, our algorithm is efficient: Comparing the man-mouse
metabolic networks takes 10 seconds on a 3 years old PC (996 MHZ, 128 MB
RAM, Pentium 3 ), and all (240 × 239)/2 pairwise comparisons of the KEGG
database took less than three days on the same machine. We extend the relative
description length approach to local comparison of two or multiple networks.
For every label of the nodes (describing a metabolic substrate), we identify if
that label exists in the various networks, and build local neighborhoods of equal
radius around these labels. Neighborhoods with high similarity, according to our
criteria, are likely to be conserved. We seek a method that is efficient not only
for one pair of networks, but for all

(
n
2

)
pairs. Our global comparison produces

a matrix for expressing the pairwise distances between networks. To test its
quality we have built an evolutionary tree, based on the distance matrix con-
structed from KEGG’s metabolic networks. To the best of our knowledge, this
is the first time evolutionary trees are constructed based on biological networks.
The results are surprisingly good. For example, the tree for 20 taxa with large
networks (more than 3000) in the KEGG database perfectly clusters the taxa to
Eukaryotes, Prokaryots and Archea, and clusters almost perfectly sub-partitions
within each type. Neither the 20 taxa tree nor another KEGG based tree for 194
taxa are perfect, but this is hardly surprising given the huge disparity in detail
between KEGG’s metabolic networks, where some have more than 3000 nodes
(metabolites) while as many as 10% of species have metabolic networks with
fewer than 10 nodes. Bio networks are still at a state where the available data is
much more fragmented and less accessible than biological sequences data. But
network information certainly goes beyond sequence information, and our work
makes some preliminary steps at the fascinating questions of network comparison
and evolution.

Relative description length proved to be a useful parameter for measuring
the disparity between biological sequences, such as genomes. In [21], Li et al.
describe a distance based on compression [4] that was used for generating phy-
logenetic trees. In [3] Burstain et. al present a simple method based on string
algorithms (average common substring) for generating phylogenetic trees. The
main innovation in the present work is the use of the paradigm of relative de-
scription length in the domain of biological networks, which is very different
than the one dimensional domain of biological sequences. The different domain
necessitates a different approach. Our is based on the reasonable assumption
that homologous nodes in close taxa will share more similar neighborhood, as
compared to remote taxa.

To the best of our knowledge, this is the first time relative description length
is used for comparing networks and constructing evolutional signals (trees).
Ogata et al. [25] developed a heuristic for finding similar regions in two metabolic
pathways. Their method is based on comparing the distances between pairs of
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nodes in two metabolic pathways. Schreiber [28] developed a tool for visualiza-
tion of similar subgraphs in two metabolic pathways. Tohsato et al. [31] deals
with alignment of metabolic pathways, where the topology of the pathways is
restricted to chains. Kelley et al. [18] data-mine chains in protein-protein net-
works by searching paths with high likelihood in a global alignments graph,
where each node represents a pair of proteins (one from each network). This
last work was generalized to identify conserved paths and clusters of protein-
protein interaction networks inmultiple organisms, by Sharan at al. [29]. They
build a graph with a node for each set of homologue proteins (one protein for
each organism). Two nodes are connected by an edge if all the pairs of pro-
teins interact in each organism respectively. The second step is searching paths
and clusters in this graph. Koyuturk et al. [19] used a bottom up algorithm for
finding frequent subgraphs in biological networks. Pinter et. al [26] suggested
an O(n3/ log(n)) algorithm for the alignment of two trees. While related, this
does not solve our problem as it is restricted to trees, and is not efficient enough
for multiple species. Another problem with the alignment approach is to define
the costs of deletion, mismatches. This problem is true for both sequences and
graphs’ alignment. Chung, and Matula [5, 23] suggest algorithms for a similar
problem of subgraph isomorphism on trees.

The rest of the paper is organized as follows: In section 2 we discuss the
general problem of comparing directed labelled graphs. Then we describe our
approach, the relative description length (RDL) method. In section 3 we describe
the properties of our measure. In section 4 we describe a method based on
the relative description measure for finding conserved regions in network. In
section 5 we demonstrate the method, where the inputs are metabolic networks
from KEGG. Section 6 contain concluding remarks and suggestions for further
research.

2 Distances and Phylogeny from Biological Networks

In this section we discuss the problem of comparing labeled, directed graphs. We
then describe our RDL method for computing distances between networks. The
“design criteria” is to find measures that accurately reflects biological disparity,
while concurrently be efficiently computable. The networks in this paper are
directed graphs with uniquely labeled nodes. Specifically we used the format
of Jeong et al. [16] for representing a metabolic networks, only the nodes have
labels, the edges have no labels. But our algorithms apply, mutatis mutandis, to
other types of networks with such representation. All metabolic substrates are
represented by graph nodes, and the reaction links in the pathway, associated
with enzymes, are represented by directed graph edges.

The basic measure we are interested in is the amount of bits needed to de-
scribe a network G2, given the network G1. The natural measure to consider
here is Kolmogorove complexity defined as follows k(x) = kU (x) is the length
of a shortest string, z that when given as an input to U , an Universal Tur-
ing Machine (TM) [30], U emits x and halts, namely U(z) = x [22]. One may
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consider relative Kolmogorov complexity. Given two strings x and y, k(x|y) is
defined as the length of the shortest string z one need to add to the the string
y as an input to a universal TM, U , such that U(z, y) = x. A variant of this
measure is known to be a metric [22], i. e. it is symmetric and it satisfies the
triangle inequality. Unfortunately, it is well known that Kolmogorov complex-
ity, in its unconditional and conditional forms, is incomputable. Furthermore,
there is a non constant function f(x), a function that increases with x, such
that even an f(x) approximation of k(x), and thus of k(x|y) is incomputable.
We now turn to the definition of the relative description length measure. Let pai

denote the set of nodes that are parents of i in the network. A directed graph
or network, G, with n labelled nodes can be encoded by using log(n) bits to

denote the number of parents of each node, and log
(

n
|pai|

)
bits to name xi’s

parents (for sparse networks, this is more succinct than the n bits per node of
the naive description). Let DL(G) denote the description length of G. Then for

an n node network DL(G) =
∑n

i=1

(
log(n) + log

(
n
|pai|

))
. Suppose now we

have a collection {Gi} of labelled directed graphs, and let ni denote the num-
ber of nodes in Gi. Let ni,j denote the number of labelled nodes that appear
both in Gi and Gj . Let pav(G) denote the number of parents of node v in the
graph G. For encoding a subset T of a known set S, one needs log(|T |) + log( |S||T |) bits. The first expression describes the size of the group T , and the

second is for describing the subset out of
( |S|
|T |

)
possible subsets. We denote

the number of bits encoding sub-set T of a known set S by Enc(T |S). Two
assumptions underly our procedure for describing one graph given the other:

1. The distance among corresponding pairs of nodes in networks of closely
related species are similar.

2. It is possible that two nodes, corresponding to different species, have the
same role even if their labeling is not identical.

The procedure for describing the graph G2, given the graph G1 was defined as
follows:

DL(G2|G1)

1. There are n1−n1,2 nodes that appear in G1 and do not appear in G2.
Given G1, they can be encoded using Enc(n1 − n1,2|n1) bits.

2. For each node v common to G1 and G2:
(a) The node v has |pav(G1)∩pav(G2)| parents, which appear both in

G1 and G2. We encode these nodes by Enc(pav(G1)∩pav(G2)|n1)
bits.

(b) The node v has |pav(2) \ (pav(G1) ∩ pav(G2))| parents which
appear in G2 but not in G1. We encode these nodes by
Enc (|pav(G2) \ (pav(G1) ∩ pav(G2))| |n2 − n1,2) bits.
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(c) The rest of the parents of the node v in G2 appear in both G1
and G2, but are not parents of v in G1. Denote the size of this
set by nv. Let d denote the minimal bidirectional radius of a ball
around the node v in G1 that contains all these parents. Let nv,d

denote the number of nodes in this ball. We encode these parents

using log(d) + log(nv) + log
(
nv,d

nv

)
bits.

3. For each node v that appears in G2 and not in G1: Let cv denote the
number of bits need to describe the parents of node v by other node
that appear both G1 and G2 using steps 1, 2. We encode the parents

of the node by 1 +min(log(n1) + cv, log(n2) + log
(

n2
|pav|

)
) bits.

Definition 1. Given two labelled, directed networks Gi and Gj , we define their
relative description length “distance”, RDL(Gi, Gj), as follows: RDL(Gi, Gj) =
DL(Gi|Gj)/DL(Gi) +DL(Gj |Gi)/DL(Gj).

The first term in this expression is the ratio of the number of bits needed to de-
scribe Gi when Gj is given and the number of bits needed to describe Gi without
additional information. The second term is the dual. In general, D(G1, G2) is
larger when the two networks are more dissimilar, and 0 ≤ D(G1, G2) ≤ 2. The
extreme cases are G1 = G2, where D(G1, G2) is O(1/|V1| + 1/|V2|), and when
G1, G2 have no nodes in common, where D(G1, G2) = 2.

In the preprocessing stage we first calculate the distances between all pairs of
nodes in G1 and G2 by Dijkstra algorithm [6] or Johnson algorithm [6], we ignore
directionality. The running time of these algorithms isO(|E| · |V |+ |V |2 log(|V |)).
In all metabolic networks, the input degree of each node is bounded (in all the net-
work in KEGG no one havemore than 40 parents, usually it wasmuch less, between
1 and 3 parents), thus E = Θ(V ), and the time complexity is O(|V |2 log(|V |)) for
all pairs. Note that there are algorithms of time complexityO(|V |2.575) for finding
distances between all pairs of nodes without any assumptions on the graphs struc-
ture [32] . We now sort the distance vector of each node in O(|V | log(|V |) time, so
the total time is O(|V |2 log(|V |)). In the next stage, we sort the node names in
each net in lexicographic order in O(|V | log(|V |) time. Then we sort each parent
list in lexicographic order, this is done in O(|V | log(|V |) time.

Stage 1. in the procedure DL(G2|G1) is done in linear time given a lexico-
graphic ordering of the nodes in the two networks. The total of stages 2.(a) for
all the nodes is done in linear time given a lexicographically ordered list of all the
parent list. The total of stages 2.(b) for all the nodes is done in O(|V | log(|V |)
time given a lexicographic sort of the nodes in G1. The total of stages 2.(c)
for all the nodes is done in O(|V | log(|V |) time given the sorted distances ma-
trix of the network. Stage 3 done in total time of O(|V |2 log(|V |) for all the nodes.
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Thus the total time complexity of the pairwise network comparison algorithm is
O(|V |2 log(|V |).

We used neighbor joining algorithm [27] for generating a tree from the dis-
tance matrix. Recent variants of NJ run in in O(N2), where N is the number
of taxa [9]. Thus the total time complexity of our method for generating a phy-
logenetic tree for N networks of up to |V | nodes each, is O(N2 · |V |2 log |V |).
We discovered empirically that by skipping stage 3., the precision decreases by a
few percentage points, while the time complexity becomes close to linear. Such
shortcut may be suitable for larger inputs.

3 Properties of the RDL Networks Comparison Measure

It is easy to see that the measure D(Gi, Gj) is symmetric. While D(G,G) > 0,
it is small for large graphs. In general, our measure does not satisfy the triangle
inequality. For example the distance of the following three networks in KEGG do
not satisfy the triangle inequality. The networks are the bacteria Aquifex aeolicus
(aae), the archea Archaeoglobus fulgidus (afu), and the bacteria Bacteroides
fragilis YCH46 (bfr). The distance between aee and bfr is 4.7, while the distance
between aae and afu is 0.7 and the distance between afu and bfr is 3.92. However,
by empirically checking all the triplets in a distance matrix generated for all the
240 networks in KEGG we found that only a very small fraction of all triplets do
not satisfy the triangle inequality - 363 triplets out of 2, 257, 280 possible triplets.
Usually these triplets involve very partial nets. For example the bfr network
mentioned above includes only four nodes. After removing all the networks with
less than 100 nodes, we got 194 networks left. For this set of species, all the
triplets satisfy the triangle inequality.

We performed preliminary empirical studies, showing that our measure in-
creases linearily as a function of the “evolutionary time”. We used the following
simple minded model: At each time period there is a probability p1 of adding a
new node to a net, probability p2 of removing a node from a net (all nodes have
the same probability to be removed), probability p3 of adding a directed edge
between any two vertices, probability p4 of removing a directed existing edge
between any two vertices (all edges have the same probability to be removed).
We chose p1 = p2 in order to maintain the expected number of nodes in the
graph, and choose p3 = p4 in order to maintain the average number of edges in
the graph.

In the resultant graphs the growth was close to linear, suggesting that for
networks with similar sizes, our method for generating phylogenetic trees using
distances based methods, such as neighbor jointing, is justified. Furthermore, our
method can also be used to estimate branch lengths of phylogenetic trees. These
consequences do not necessarily apply to networks of different sizes. Of course,
the preliminary simulation used a very simplistic model. More sophisticated ones,
including unequal grows and elimination rates, may give a better indication for
more realistic instances.
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4 Finding Conserved Regions in Networks

In this section we describe our method for finding conserved regions in two or
more networks, and the rationale behind it. The method is based on the RDL
measure described in section 2. Consider a ball of bidirectional distance at most
d from node v in the directed graph G. The d conservations score of the node
v in two is ∞ if it is not appear in the two networks, if it appear in the two
networks it defined as follows:

Definition 2. A (d, c) conserved node:
Let v be a shared node among G1 and G2. Let B1 and B2 be the balls of bidi-
rectional radius d around v in G1 and G2, respectively. We say that v is (d, c)
conserved in G1, G2 if D(B1, B2) ≤ c.

The (d, c)–conservated region of the two network G1 = (V1, E1) and G2 =
(V2, E2) is defined as the intersection of the two subgraphs of G1, G2 induced
by the (d, c) conserved nodes with respect to G1, G2. Algorithmically, we get it
as follows

Find the (d, c) conserved region of G2, G1:

1. For each node common to G1 and G2, compute its d-conservations
score.

2. Generate a graph G′
1 = (V ′

1 , E
′
1) where V ′

1 includes the nodes in G1
that are (d, c) conserved with respect to G1, G2. The edge e is an
directed edge in G′

1 if its two endpoints are in V ′
1 , and it is a directed

edge in E.
3. The graph G′

2 = (V ′
2 , E

′
2) is defined analogously.

The parameters d (radius) and c (RDL score), determine the two conserved
regions G′

1, G
′
2. It is easy to see that decreasing c decreases the sizes of G′

1, G
′
2.

Increasing d may either increase or decrease the sizes of the conserved graphs.
In a similar way we now define a conservation score for a node with respect

to more than two network.

Definition 3. (d, c, k) conservation node:
Let k satisfy 1 ≤ k ≤ (

N
2

)
. A node v is (d, c, k) conserved with respect to the

N networks, G1, G2,.., GN , if v is (d, c) conserved in at least k out of the
(
N
2

)
networks pairs.

We adjusted the parameters d, c, k to our input graphs, by choosing parameters
such that a random node is picked as conserved with probability smaller than p,
where p is a pre-defined threshold (usually p = 0.05). The rational behind our
approach is that the probability of mutations in “more important” parts of the
network is smaller (just like for sequences). We filter noise by finding subgraphs
that are conserved for sufficiently many pairs (k) of networks. Since every node
in the network is a part of a process (e.g. a metabolic pathway, or a protein
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signaling pathway in a protein interaction network), we expect an “important”
node to share “important” pathways and thus have a conserved neighborhood,
which our definition is supposed to capture.

5 Experimental Results

In this section we describe the results of running our algorithms on the metabolic
networks in the KEGG database. First, we describe the phylogenetic trees our
method generated (for two different subsets of species), and discuss the similarity
of these trees to the common taxonomy [8]. Then, we describe the results of
applying our method for finding conserved regions and discuss the biological
relevance of the results.

5.1 Phylogenetic Trees

We started with a relatively small subset, containing 19 taxa: 9 eukaryotes, 5
prokaryotes, and 5 archea. We chose species whose networks in KEGG have more
than 900 nodes. We generated a distance matrix based on RDL, and finally con-
structed a tree, using the Phylip [11] implementation of NJ algorithm [27]. The
tree with the true edges’ length is depicted in figure 1. The resulting tree is
reasonably close to the common accepted taxonomy of these species [8]. The five
archea, the five prokaryotes, and the nine eukaryotes form a clade each. Within
the eukaryotes, the three mammals (rat, mouse, and human) are clustered to-
gether. The fruit fly and the worm C. elegance, both from the Bilateria super
family, are clustered together. The three yeasts (S. Scerevisiae, A. Gossyppi, and
S. Pombe) are clustered together. One example of inaccuracy in our tree is the
split inside the mammals, putting the human and mouse together and the rat
as an outgroup. One possible explanation is that mouse is a much more popular
model animal than rat (it indeed have about 30% more nodes in KEGG), con-
sequently its investigated pathways are closer to human and this is reflected in
KEGG. The length of the branches are reasonable, compared to analog methods
for phylogeny that are based on sequences’ compression [3, 21].

In the next step we generated a tree for all the 194 networks having more than
100 nodes in KEGG (KEGG has additional 56 species with smaller metabolic net-
works). The resulting tree is depicted in figure 2. Of the 194 taxa in the tree 13
are eukaryotes, 17 archea, and 164 are prokaryotes. This subset includes about 50
species with networks of a few hundreds nodes, and about 80 species with thou-
sands nodes, the largest network (for example human or the bacteria Bardyrhi-
zobium Japonicum - a gram negative bacteria that develops a symbiosis with the
soybean plant) has more than 3000 nodes. The names of the taxa are their code
name in KEGG. We colored eukaryotes blue, archea grin, and prokaryotes red.

All the archea formed a clade and so did the prokaryotes. All the eukary-
otes but one, plasmodium falciparum (pfa). Plasmodium is placed among the
bacteria. One possible explanation is the loss of genes and mtabolic pathways
that plasmodium, the malaria parasite, went through [13, 20]. The dataset we
used has two super-families of archea. The first is Euryarchaeota, which contains
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Fig. 1. A small phylogenetic tree, built upon distances of metabolic networks as com-
puted using our method (tree topology and edges’ length from NJ algorithm)

the species pab, pho, hal, mja, afu, hma, pto, mth, tac, tyo, and mma. The
other is Crenachaeota, containing the species pai, sto, sso, ape. The only archea
that “jumps family” from the second super family to the first is Pyrobaculum
aerophilum (pai), which an extremely thermoacidophilic anaerobic taxa [1]. The
partitioning within the eukaryotes kingdom is similar to its partition in the tree
for the small dataset (figure 1). Most of the prokaryotes families are clustered to-
gether: For example the gamma proteobacteria vvu, vvy, vpa, ppr, vch, son form
a clade. Most of the alpha bacteria are clustered together: Mlo, Sme, Atu, Atc,
Bme, Bms, Bja, Rpa, and Sil. With the exception of Ehrlichnia ruminantium
Welgevonden (Eru) that joined to the malaria parasite pfa, and of Caulobacter
Crescentus (ccr) that is close (few splits away) but not in the same main cluster
alpha bacteria. The two Bartonella Bhe and Bqu are clustered together, Zmo
and gox are clustered close together but not in the main cluster of alpha bacte-
ria. Considering the large variability in the sizes of the networks and the noisy
inputs, we view the results as very good.

5.2 Conserved Regions in Metabolic Networks

In this section we describe the results of our algorithm for finding conserved re-
gions on few dataset. The first contains two species:A bacteria and human, the
second contains nine eukaryotes, and the last dataset has ten species, including
four eukaryotes, three prokaryotes, and three archea. We also discuss another
dataset of three species (Human, E. Coli and yeast) whose their pathways in
KEGG are known to be constructed independently. For a lack of space we
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Fig. 2. Phylogenetic tree for 194 based on metabolic networks, all with more than 100
nodes in KEGG

describe here only the stoichiometric formulas of the compounds and very small
fraction of the graphs we got,full details of the compounds canbe found in KEGG.
We describe here few of the subgraphs we found in the results conserved sub-
graphs. Note that even the relatively short subgraphs described here have since
by our definition they are surrounded by a relatively conserved neighborhood.

Our first set contains two very far species: Human and the Gamma Enter-
obacteria - Yersinia Pestis KIM. Since these two species were split billions of
years ago, we expect that the conserved regions found are common to many other
taxa. The thresholds to our algorithm was diameter d of 20 nodes, and relative
description score 0.9. From our experience, a threshold of 0.9 or lower is fairly
strict.

KEGG’s metabolic network of human includes more than 3000 nodes, while
the metabolic network of the bacteria includes more than 2000 nodes. The
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resulting conserved networks includes 160 nodes, that are common to the two
species. We describe here few of many other results we found: One of long sim-
ple paths in the conserved graph represents the metabolic pathway C10H14N2O5
(C00214) → C10H15N2O8P (C00364) ↔ C10H16N2O11P2 (C00363) ↔
C10H17N2O14P3 (C00459), which is a part of the pyrimidine metabolism [14].
It includes the last four nodes at the end of the pathway Pyrimidine synthesis.
Pyrimidine are the nucleotides T and C, which are building blocks of DNA.

Another simple path of length four represent the sub metabolic pathway
C5H11O8P (C00620) ↔ C5H11O8P (C00117) → C5H13O14P3 (C00119) ←
C27H46O3 (C01151). This is a part of the the pentose phosphate pathway [24].
One of the functions of this anabolic pathway is to utilizes the 6 carbons of glu-
cose to generate 5 carbon sugars, necessary for the synthesis of nucleotides and
nucleic acids. This pathway is also part of purine synthesis metabolism, again -
one of the building blocks of DNA.

In the next stage we checked for conserved regions in nine Eukaryotes. We
chose Eukaryotes with networks larger than 2000 nodes in KEGG. We generated
the (20, 0.7, 6) conserved graph for this set of species.

The resulting nine conserved metabolic networks includes between 84 to 106
nodes, while each of the input networks has more than 2000 nodes. We describe
here few of the results we found, some ultra conserved regions: The first subgraph
C6H9NO2S2R2 (C00342)↔ C6H7NO2S2R2 (C00343) is shared by all nine sub-
networks. It is part of the pyrimidine synthesis metabolism.

The second pathway is part of the Riboflavin (the left node in the pathway)
synthesis metabolism: C27H33N9O15P2 (C00016) ↔ C17H21N4O9P (C00061)
↔ C17H20N4O6 (C00255) Riboflavin is a vitamin that supports energy meta
bolism and biosynthesis of a number of essential compounds in eukaryotes, such
as human, mouse, fruit fly, rat, S. Cerevisiae, and more [17]. The following ultra
conserved subgraph is part of the Cysteine synthesis metabolism:

C6H12N2O4S2 (C00491) ↔ C3H7NO2S2 (C01962). Cysteine (the right node
in the pathway above) is an amino acid with many important physiological func-
tions in eukaryotes. It is part of Glutathione and is a precursor in its synthesis,
which is found in almost all the eukaryotes tissues and has many functions such
as activating certain enzymes, and degrading toxic compounds and chemical that
contain oxygen.

The last dataset we includs four eukaryotes, three archea, and three bacteria.
From each class, we chose species with a large number of nodes in KEGG, the in-
put networks include between 1500 and 3000 nodes. We generated the (20, 0.7, 6)
conserved graph for this set of species. The resulting ten conserved metabolic
networks include between 58 to 93 nodes. We describe here few of the inter-
esting results. We found a ultra conserved sub-networks, related to nucleotides
metabolism, this is the same part of the pyrimidine synthesis metabolism
described above. Another path is part of the Bile acid biosynthesis metabolism:
C27H48N2O3 (C05444) ↔ C27H46O3 (C05445). Bile acid is essential for fat di-
gestion, and for eliminating wastes from the body. It is also generated by bacteria
in the intestine [15].
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An unexpected ultra conserved path, the subnetwork C2Cl(4) (C06789) →
C2HCl3 (C06790) →(C2H2Cl2 (C06791), C2H2Cl2 (C06792)) → C2H3Cl
(C06793) is the first part of the Tetrachloroethene degradation pathway. Tetra-
chloroethene is a toxin (also known as PCE). Different organisms have developed
different processes for degrading PCE [2, 10, 7]. However, the part of this path-
way we find here is shared by to many species (and in nine out of ten species in
our dataset).

There are few species whose pathway in KEGG were reconstructed inde-
pendently. Three such species are Human, E. Coli, S. cerevisiae (yeast). We
implemented our method for finding conserved regions on these three species
which have between 2000 to 3000 nodes in KEGG. We generated the (20, 0.9, 3)
conserved graph for this set of species. The conserved graphs of the Human, E.
Coli, S. cerevisiae respectively included 79, 79, and 101 nodes respectively. Major
fraction of the pathways found for other sets of species are also found here. One
such example is the sub-graph of Pyrimidine synthesis.

In all the above results we noticed that conserved node, i. e. nodes that
are part of the plotted resulting graphs, tend to be with a relative high in-
and out-degrees, i. e. at least four, in the original networks. Note that in our
graph representation of metabolic networks the edges (enzymes names) were
unlabelled. However, in the case of the conserved sub-graphs described here the
edges were also conserved.

5.3 Conserved Regions in Protein Interaction Networks

In addition to the metabolic networks, we have preliminary results on finding
conserved regions in two protein interaction networks. In this subsection we
report an initial study of finding conserved regions in the protein interaction
networks of yeast and drosophila (7164 and 4737 nodes, respectively). We em-
phasis that these are preliminary results, which mainly establish the application
of our approach to networks whose characteristics differ from metabolic net-
works. In contrast to the metabolic networks, protein interaction networks do
not have labels that are shared across species. To identify corresponding nodes,
we used Blast results. Two protein were declared identical if the drosophila’s pro-
tein have the best blast score for the yeast protein, and the score were < e−10.
We now ran our algorithm. The two nodes with the highest conservation score
the first node is the protein YML064C in yeast and his homolog in drosophila
(the protein CG2108). This protein catalyzed the basic reaction GTP +H2O →
GDP +phosphate, and as such it is expected a-priori to be conserve. The second
protein is Y LR447C in yeast ( the protein CG2934 in drosophila) also involve
in “basic” activities such as hydrogen-exporting ATPeas activity, catalyzing the
reaction: ATP +H2O +H+(in) → ADP + phosphate+H+(out).

6 Concluding Remarks and Further Research

We presented a novel method for comparing cellular-biological networks and
finding conserved regions in two or more such networks. We implemented our
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method, and produced a number of preliminary biological results. It is clear that
networks contains information, which is different than sequence information, and
also differ from information in gene content. This work opens up a number of
algorithmic and biological questions. The various networks in KEGG were not
built independently. This biases the results, especially those of conserved regions.
Interestingly, despite this fact, the our results seem surprisingly good.

The experimental work here concentrated mainly on metabolic networks
taken from the KEGG database. Of course, there is no reason to consider only
KEGG, and only metabolic networks. More importantly, we plan to examine
our methods on more protein interaction networks, regulatory networks, and
possibly a mixture thereof.

Our representation of the networks followed that of Jeong et al. [16] and
ignored the edge labels (enzyme names). As shown in the conserved regions,
identical node labels (substrates) seem to determine the enzymes involved. Yet,
it is desireable to include edge labels explicitly. Indeed, the RDL approach allows
such modification at relative ease. A more meaningful extension is to consider
labels not just as equal or unequal. A continuous scale of similarity, as implied
for example from the chemical description of substrates, can be used. Different
representations of the directed graph (e.g. children instead of parents) are also
possible. Other algorithms, based on variants of labeled subgraph isomorphism,
can be considered as well. However, their efficiency should be carefully analyzed.

When dealing with biological networks, we should always keep in mind that
they are still in their infancy. They are noisy due to experimental conditions,
and they are partial, due to budgetary limitations and biases of the researchers.
Thus the precision of the results is likely to evolve and improve, as more reliable
data are gathered.

Finally, it will be of interest to combine different sources of data, for example
sequence data (proteins and genes) and network data, to construct trees and
find conserved regions. Of special interest are regions where the signals from the
various sources are either coherent or incoherent. Of course, this work is only a
first step, and calls for possible improvements.
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Abstract. Computational and comparative analysis of protein-protein interac-
tion (PPI) networks enable understanding of the modular organization of the cell
through identification of functional modules and protein complexes. These analy-
sis techniques generally rely on topological features such as connectedness, based
on the premise that functionally related proteins are likely to interact densely and
that these interactions follow similar evolutionary trajectories. Significant recent
work in our lab, and in other labs has focused on efficient algorithms for iden-
tification of modules and their conservation. Application of these methods to a
variety of networks has yielded novel biological insights. In spite of algorithmic
advances, development of a comprehensive infrastructure for interaction
databases is in relative infancy compared to corresponding sequence analysis
tools such as BLAST and CLUSTAL. One critical component of this
infrastructure is a measure of the statistical significance of a match or a dense
subcomponent. Corresponding sequence-based measures such as E-values are
key components of sequence matching tools. In the absence of an analytical mea-
sure, conventional methods rely on computer simulations based on ad-hoc models
for quantifying significance. This paper presents the first such effort, to the best of
our knowledge, aimed at analytically quantifying statistical significance of dense
components and matches in reference model graphs. We consider two reference
graph models – a G(n, p) model in which each pair of nodes has an identical
likelihood, p, of sharing an edge, and a two-level G(n, p) model, which accounts
for high-degree hub nodes generally occurring in PPI networks. We argue that by
choosing conservatively the value of p, the G(n, p) model will dominate that of
the power-law graph that is often used to model PPI networks. We also propose
a method for evaluating statistical significance based on the results derived from
this analysis, and demonstrate the use of these measures for assessing significant
structures in PPI networks. Experiments performed on a rich collection of PPI
networks show that the proposed model provides a reliable means of evaluating
statistical significance of dense patterns in these networks.

1 Introduction

Availability of high-throughput methods for identifying protein-protein interactions has
resulted in a new generation of extremely valuable data [2, 38]. Effective analysis of
the interactome holds the key to functional characterization, phenotypic mapping, and
identification of pharmacological targets, among other important tasks. Computational
infrastructure for supporting analysis of the interactome is in relative infancy, compared
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to its sequence counterparts [36]. A large body of work on computational analysis of
these graphs has focused on identification of dense components (proteins that densely
interact with each other) [3, 6, 19, 20, 23, 28]. These methods are based on the premise
that functionally related proteins generally manifest themselves as dense components in
the network [33]. The hypothesis that proteins performing together a particular cellular
function are expected to be conserved across several species along with their interac-
tions is also used to guide the process of identifying conserved networks across species.
Based on this observation, PPI network alignment methods superpose PPI networks
that belong to different species and search for connected, dense, or heavy subgraphs on
these superposed graphs [11, 15, 16, 17, 26, 27].

There are two critical aspects of identifying meaningful structures in data – the al-
gorithm for the identification and a method for scoring an identified pattern. In this
context, the score of a pattern corresponds to its significance. A score is generally com-
puted with respect to a reference model – i.e., given a pattern and a reference model,
how likely it is to observe the pattern in the reference model that often is a probabilis-
tic measure for scoring patterns. The less likely such an occurrence is in the reference
model, the more interesting it is, since it represents a significant deviation from the ref-
erence (expected) behavior. One such score, in the context of sequences is the E-value
returned by BLAST matches [37]. This score broadly corresponds to the likelihood that
a match between two sequences is generated by a random process. The lower this value,
the more meaningful the match. It is very common in a variety of applications to use a
threshold onE-values to identify homologies across sequences. It is reasonable to credit
E-value as one of the key ingredients of the success of sequence matching algorithms
and software.

While significant progress has been made towards developing algorithms on graphs
for identifying patterns (motifs, dense components), conservation, alignment, and re-
lated problems, analytical methods for quantifying the significance of such patterns are
limited. In a related effort, Itzkovitz et al. [12] analyze the expected number of occur-
rences of certain topological motifs in a variety of random networks. On the other hand,
existing algorithms for detecting generalized patterns generally adopt simple ad-hoc
measures (such as frequency or relative density) [3, 15], compute z-scores for the ob-
served pattern based on simplifying assumptions [16, 26, 27], or rely on Monte-Carlo
simulations [26] to assess the significance of identified patterns. This paper represents
the first such effort at analytically quantifying the statistical significance of the exis-
tence of a pattern of observed property, with respect to a reference model. Specifically,
it presents a framework for analyzing the occurrence of dense patterns in randomly
generated graph-structured data (based on the underlying model) with a view to assess-
ing the significance of a pattern based on the statistical relationship between subgraph
density and size.

The selection of an appropriate reference model for data and the method of scoring
a pattern or match, are important aspects of quantifying statistical significance. Using a
reference model that fits the data very closely makes it more likely that an experimen-
tally observed biologically significant pattern is generated by a random process drawing
data from this model. Conversely, a reference model that is sufficiently distinct from ob-
served data is likely to tag most patterns as being significant. Clearly, neither extreme



Assessing Significance of Connectivity and Conservation in PPI Networks 47

is desirable for good coverage and accuracy. In this paper, we consider two reference
models (i) a G(n, p) model of a graph with n nodes, where each pair of nodes has an
identical probability, p, of sharing an edge, and (ii) a two level G(n, p) model in which
the graph is modeled as two separate G(n, p) graphs with intervening edges. The latter
model captures the heavy nodes corresponding to hub proteins. For these models, we
analytically quantify the behavior of the largest dense subgraph and use this to derive a
measure of significance. We show that a simpleG(n, p) model can be used to assess the
significance of dense patterns in graphs with arbitrary degree distribution, with a con-
servative adjustment of parameters so that the model stochastically dominates a graph
generated according to a given distribution. In particular, by choosing p to be maximal
we assure that the largest dense subgraph in our G(n, p) model stochastically domi-
nates that of a power-law graph. Our two-level G(n, p) model is devised to mirror key
properties of the underlying topology of PPI graphs, and consequently yields a more
conservative estimate of significance. Finally, we show how existing graph clustering
algorithms [10] can be modified to incorporate statistical significance in identification
of dense patterns. We also generalize these results and methods to the comparative anal-
ysis of PPI networks and show how the significance of a match between two networks
can be quantified in terms of the significance of the corresponding dense component in
a suitable specified product graph.

Our analytical results are supported by extensive experimental results on a large col-
lection of PPI networks derived from BIND [2] and DIP [38]. These results demonstrate
that the proposed model and subsequent analysis provide reliable means for evaluating
the statistical significance of highly connected and conserved patterns in PPI networks.
The framework proposed here can also be extended to include more general networks
that capture the degree distribution of PPI networks more accurately, namely power-
law [35, 39], geometric [21], or exponential [8] degree distributions.

2 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module are likely to densely interact with
each other while being somewhat isolated from the rest of the network [33], many
commonly used methods focus on discovering dense regions of the network for iden-
tification of functional modules or protein complexes [3, 6, 19, 23, 28]. Subgraph den-
sity is also central for many algorithms that target identification of conserved modules
and complexes [11, 16, 26]. In order to assess the statistical significance of such dense
patterns, we analyze the distribution of the largest “dense” subgraph generated by an
underlying reference model. Using this distribution, we estimate the probability that
an experimentally observed pattern will occur in the network by chance. The reference
model must mirror the basic characteristics of experimentally observed networks in or-
der to capture the underlying biological process correctly, while being simple enough
to facilitate feasible theoretical and computational analysis.

2.1 Modeling PPI Networks

With the increasing availability of high-throughput interaction data, there has been sig-
nificant effort on modeling PPI networks. The key observation on these networks is that
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a few central proteins interact with many proteins, while most proteins in the network
have few interacting partners [13, 22]. A commonly accepted model that confirms this
observation is based on power-law degree distribution [4, 34, 35, 39]. In this model, the
number of nodes in the network that have d neighbors is proportional to d−γ , where γ
is a network-specific parameter. It has also been shown that there exist networks that do
not possess a power-law degree distribution [9, 32]. In this respect, alternative models
that are based on geometric [21] or exponential [8] degree distribution have been also
proposed.

While assessing the statistical significance of identified patterns, existing methods
that target identification of highly connected or conserved patterns in PPI networks
generally rely on the assumption that the interactions in the network are independent
of each other [14, 16, 26]. Since degree distribution is critical for generation of inter-
esting patterns, these methods estimate the probability of each interaction based on
the degree distribution of the underlying network. These probabilities can be estimated
computationally by generating many random graphs with the same degree distribution
via repeated edge swaps and counting the occurrence of each edge in this large collec-
tion of random graphs [26]. Alternately, they can be estimated analytically, by relying
on a simple random graph model that is based on a given degree distribution [7]. In
this model, each node u ∈ V (G) of graph G = (V,E) is associated with expected
degree du and the probability of existence of an edge between u and v is defined as
P (uv ∈ E(G)) = dudv/

∑
u∈V (G) d(u). In order for this function to be a well-defined

probability measure for simple graphs, we must have d2
max ≤

∑
u∈V (G) d(u), where

dmax = maxu∈V (G) du. However, available protein interaction data generally does
not confirm this assumption. For example, based on the PPI networks we derive from
BIND [2] and DIP [38] databases, yeast Jsn1 protein has 298 interacting partners, while
the total number of interactions in the S. cerevisiae PPI network is 18193. Such prob-
lems complicate the analysis of the significance of certain structures for models that are
based on arbitrary degree distribution.

While models that assume power-law [35, 39], geometric [21], or exponential [8]
degree distributions may capture the topological characteristics of PPI networks accu-
rately, they require more involved analysis and may also require extensive computation
for assessment of significance. To the best of our knowledge, the distribution of dense
subgraphs, even maximum clique, which forms a special case of this problem, has not
been studied for power-law graphs. In this paper, we first build a framework on the
simple and well-studied G(n, p) model and attempt to generalize our results to more
complicated models that assume heterogeneous degree distribution.

2.2 Largest Dense Subgraph

Given graph G, let F (U) ⊆ E(G) be the set of edges in the subgraph induced by node
subset U ⊆ V (G). The density of this subgraph is defined as δ(U) = |F (U)|/|U |2.
Note here that we assume directed edges and allow self-loops for simplicity. PPI net-
works are undirected graphs and they contain self-loops in general, but any undirected
network can be easily modeled by a directed graph and this does not affect the asymp-
totic correctness of the results. We define a ρ-dense subgraph to be one with density
larger than pre-defined threshold ρ, i.e., U induces a ρ-dense subgraph if F (U) ≥
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ρ|U |2, where ρ > p. For any ρ, we are interested in the number of nodes in the largest
ρ-dense subgraph. This is because any ρ-dense subgraph in the observed PPI network
with size larger than this value will be “unusual”, i.e., statistically significant. Note that
maximum clique is a special case of this problem with ρ = 1.

We first analyze the behavior of the largest dense subgraph for the G(n, p) model
of random graphs. We subsequently generalize these results to the piecewise degree
distribution model in which there are two different probabilities of generating edges.
In the G(n, p) model, a graph G contains n nodes and each edge occurs independently
with probability p.

Let random variable Rρ be the size of the maximum subset of vertices that induce a
ρ-dense subgraph, i.e.,

Rρ = max
U⊆V (G):δ(U)≥ρ

|U |. (1)

The behavior of R1, which corresponds to maximum clique, is well studied on
G(n, p) model and its typical value is shown to be O(log1/p n) [5]. In the following
theorem, we present a general result for the typical value of Rρ for any ρ.

Theorem 1. If G is a random graph with n vertices, where every edge exists with prob-
ability p, then

lim
n→∞

Rρ

logn
=

1
κ(p, ρ)

(pr.), (2)

where

κ(p, ρ) = −Hp(ρ) = ρ log
ρ

p
+ (1− ρ) log

1− ρ

1− p
. (3)

Here, Hp(ρ) denotes weighted entropy. More precisely,

P (Rρ ≥ r0) ≤ O

(
logn

n1/κ(p,ρ)

)
, (4)

where

r0 =
logn− log logn+ log κ(p, ρ)− log e+ 1

κ(p, ρ)
(5)

for large n.

The proof of this theorem is presented in Section 4. Observe that, if n is large enough,
the probability that a dense subgraph of size r0 exists in the subgraph is very small.
Consequently, r0 may provide a threshold for deciding whether an observed dense pat-
tern is statistically significant or not.

For a graph of arbitrary distribution, let dmax denote the maximum expected degree
as defined in Section 2.1. Let pmax = dmax/n. It can be easily shown that the largest
dense subgraph in the G(n, p) graph with p = pmax stochastically dominates that in
the random graph generated according to the given degree distribution (e.g., power-law
graphs). Hence, by estimating the edge probability conservatively, we can use the above
result to determine whether a dense subgraph identified in a PPI network of arbitrary
degree distribution is statistically significant. Moreover, the above result also provides
a means for quantifying the significance of an observed dense subgraph. For a subgraph
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with size r̂ > r0 and density ρ̂, let ε = r̂−log n/κ(ρ̂,p)
log n/κ(ρ̂,p) . Then, as we show (cf. (12)) in the

proof of Theorem 1 in Section 4, the probability of observing this subgraph in a graph
generated according to the reference model is bounded by

P (Rρ̂ ≥ (1 + ε) logn/κ(ρ̂, p)) ≤
√

1− ρ

2π
√
ρ

(1 + ε) logn
nε(1+ε) log n/κ(ρ̂,p) . (6)

While these results onG(n, p) model provide a simple yet effective way of assessing
statistical significance of dense subgraphs, we extend our analysis to a more compli-
cated model, which takes into account the degree distribution to capture the topology
of the PPI networks more accurately.

2.3 Piecewise Degree Distribution Model

In the piecewise degree distribution model, nodes of the graph are divided into two
classes, namely high-degree and low-degree nodes. More precisely, we define random
graph G with node set V (G) that is composed of two disjoint subsets Vh ⊂ V (G) and
Vl = V (G) \ Vh, where nh = |Vh| � |Vl| = nl and nh + nl = n = |V (G)|. In the
reference graph, the probability of an edge is defined based on the classes of its incident
nodes as:

P (uv ∈ E(G)) =

⎧⎨⎩
ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

(7)

Here, pl < pb < ph. This model captures the key lethality and centrality properties
of PPI networks in the sense that a few nodes are highly connected while most nodes
in the network have low degree [13, 22]. Observe that, under this model, G can be
viewed as a superposition of three random graphs Gl, Gh, and Gb. Here, Gh and Gl

are G(n, p) graphs with parameters (nh, ph) and (nl, pl), respectively.Gb, on the other
hand, is a random bipartite graph with node sets Vl, Vh, where each edge occurs with
probability pb. Hence, we haveE(G) = E(Gl)∪E(Gh)∪E(Gb). This facilitates direct
employment of the results in the previous section for analyzing graphs with piecewise
degree distribution.

Note that the random graph model described above can be generalized to an arbitrary
number of node classes to capture the underlying degree distribution more accurately.
Indeed, with appropriate adjustment of some parameters, this model will approximate
power-law or exponential degree distribution at the limit with increasing number of
node classes. In order to get a better fit, we need to introduce three or four classes in
our piecewise model.

We now show that the high-degree nodes in the piecewise degree distribution model
contribute a constant factor to the typical size of the largest dense subgraph as long as
nh is bounded by a constant.

Theorem 2. Let G be a random graph with piecewise degree distribution, as defined
by (7). If nh = O(1), then

P (Rρ ≥ r1) ≤ O

(
logn

n1/κ(pl,ρ)

)
, (8)
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where

r1 =
logn− log logn+ 2nh logB + log κ(pl, ρ)− log e+ 1

κ(pl, ρ)
(9)

and B = pbql

pl
+ qb, where qb = 1− pb and ql = 1− pl.

Note that the above result is based on asymptotic behavior of r1, hence the logn term
dominates as n → ∞. However, if n is not large enough, the 2nh logB term may
cause over-estimation of the critical value of the largest dense subgraph. Therefore, the
application of this theorem is limited for smaller n and the choice of nh is critical.

A heuristic approach for estimating nh is as follows. Assume that the underlying
graph is generated by a power-law degree distribution, where the number of nodes with
degree d is given by nd−γ/ζ(γ) [1]. Here, ζ(.) denotes the Riemann zeta-function. If
we divide the nodes of this graph into two classes where high-degree nodes are those
with degree d ≥ (n/ζ(γ))1/γ so that the expected number of nodes with degree d is at
most one, then nh =

∑∞
d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is bounded, provided the above series

converges.

2.4 Identifying Significant Dense Subgraphs

We use the above results to modify an existing state-of-the-art graph clustering algo-
rithm, HCS [10], in order to incorporate statistical significance in identification of inter-
esting dense subgraphs. HCS is a recursive algorithm that is based on decomposing the
graph into dense subgraphs by repeated application of min-cut partitioning. The density
of any subgraph found in this recursive decomposition is compared with a pre-defined
density threshold. If the subgraph is dense enough, it is reported as a highly-connected
cluster of nodes, else it is partitioned again. While this algorithm provides a strong
heuristic that is well suited to the identification of densely interacting proteins in PPI
networks [20], the selection of density threshold poses an important problem. In other
words, it is hard to provide a biologically justifiable answer to the question “How dense
must a subnetwork of a PPI network be to be considered biologically interesting?”. Our
framework provides an answer to this question from a statistical point of view by estab-
lishing the relationship between subgraph size and density as a stopping criterion for
the algorithm.

For any subgraph encountered during the course of the algorithm, we estimate the
critical size of the subgraph to be considered interesting by plugging in its density in (5)
or (9). If the size of the subgraph is larger than this probabilistic upper-bound, then we
report the subgraph as being statistically significant. Otherwise, we continue partition-
ing the graph. Note that this algorithm only identifies disjoint subgraphs, but can be eas-
ily extended to obtain overlapping dense subgraphs by greedily growing the resulting
graphs until significance is lost. The Cytoscape [25] plug-in implementing the modi-
fied HCS algorithm is provided as open source at http://www.cs.purdue.edu/
homes/koyuturk/sds/.

2.5 Conservation of Dense Subgraphs

Comparative methods that target identification of conserved subnets in PPI networks in-
duce a cross-product or superposition of several networks in which each node
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corresponds to a group of orthologous proteins [14, 16, 17, 26, 27]. Here, we rely on
ortholog groups available in the COG database [31] to relate proteins in different PPI
networks [17]. Labeling each node in the PPI network with the COG family of the pro-
tein it represents, we obtain an intersection of two PPI networks by putting an edge
between two COG families only if proteins that belong to these families interact in both
graphs. In the case of the G(n, p) model, the above framework directly applies to the
identification of dense subgraphs in this intersection graph, where the probability of
observing a conserved interaction is estimated as pI = p1p2. Here p1 and p2 denote
the probability of observing an edge in the first and second networks, respectively. For
the piecewise degree distribution model, on the other hand, we have to assume that
the orthologs of high-degree nodes in one graph are high-degree nodes in the other
graph as well. If this assumption is removed, it can still be shown that the low-degree
nodes dominate the typical behavior of the largest conserved subgraph. Note that the
reference model here assumes that the orthology relationship between proteins in the
two networks is already established and estimates the conditional probability that the
interactions between these given ortholog proteins are densely conserved.

3 Results and Discussion

In this section, we experimentally analyze connectivity and conservation in PPI net-
works of 11 species gathered from BIND [2] and DIP [38] databases. These networks
vary significantly in size and comprehensiveness and cover a broad range of organisms.
Relatively large amounts of interaction data is available for S.cerevisiae (18192 interac-
tions between 5157 proteins), D. melanogaster (28829 among 8577), H. sapiens (7393
among 4541), C. elegans (5988 among 3345), E. coli (1329 among 1079), while the
networks for other organisms are restricted to a small portion of their proteins.
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Fig. 1. The behavior of the size of largest dense subgraph with respect to number of proteins in
the network where a subgraph is considered dense if ρ = 0.5 and ρ = 1.0 (clique), respectively.
Each sample point corresponds to the PPI network of a particular species, as marked by the initials
of its name. The typical values of largest dense subgraph size based on G(n, p) and piecewise
degree distribution models are also shown.
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In Figure 1, we inspect the behavior of largest subgraph with respect to number of
nodes in the PPI network for two different values of density threshold (ρ). In the figure,
each organism corresponds to a sample point, which is marked with the initials of its
name. Since the sparsity and degree distribution of these networks vary significantly
across different organisms, the estimated values of edge probabilities vary accordingly.
Hence, the curves for r0 (G(n, p) model) and r1 (piecewise degree distribution model)
do not show a linear behavior. As seen in the figure, piecewise degree distribution model
provides a more conservative assessment of significance. This is mainly because of the
constant factor in the critical value of r1. The observed size of the largest dense sub-
graph in smaller networks is not statistically significant, while larger and more compre-
hensive networks contain subgraphs that are twice as large as the theoretical estimate,
with the exception of D. melanogaster PPI network. The lack of dense subnets in the
D. melanogaster network may be due to differences in experimental techniques (e.g.,
two hybrid vs AP/MS) and/or the incorporation of identified interactions in the interac-
tion network model (e.g., spoke vs matrix) [24]. In order to avoid problems associated
with such variability, it may be necessary to revise the definition of subgraph density
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Fig. 2. Behavior of the size of the largest dense subgraph and largest conserved dense subgraph
with respect to density threshold (ρ) for S. cerevisiae and H. sapiens PPI networks. Typical values
of largest dense subgraph size based on G(n, p) and piecewise degree distribution models are also
shown.
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or preprocess the PPI networks to standardize the topological representation of protein
complexes in the network model.

The behavior of largest dense subgraph size with respect to density threshold is
shown in Figure 2 for S. Cerevisiae and H. Sapiens PPI networks and their intersection.
It is evident from the figure that the observed size of the largest dense subgraph follows
a similar trajectory with the theoretical values estimated by both models. Moreover, in
both networks, the largest dense subgraph turns out to be significant for a wide range of
density thresholds. For lower values of ρ, the observed subgraphs are either not signifi-
cant or they are marginally significant. This is a desirable characteristic of significance-
based analysis since identification of very large sparse subgraphs should be avoided
while searching for dense patterns in PPI networks. Observing that the G(n, p) model
becomes more conservative than the piecewise degree distribution model for lower val-
ues of ρ, we conclude that this model may facilitate fine-grain analysis of modularity in
PPI networks.

We implement the modified HCS heuristic described in Section 2.4 using a sim-
ple min-cut algorithm [29]. A selection of most significant dense subgraphs discovered
on S. cerevisiae PPI network are shown in Table 1. In the table, as well as the size,
density and significance of identified subgraphs, we list the GO annotations that are
significantly shared by most of the proteins in the dense subgraph. The GO annotations
may refer to function [F], process [P], or component [C]. The p-value for the annota-
tions is estimated as the probability of observing at least the same number of proteins
with the corresponding annotation if the proteins were selected uniformly at random.

Table 1. Seven most significant dense subgraphs identified in S. cerevisiae PPI network by the
modified HCS algorithm and the corresponding functions, processes, and compartments with
significant enrichment according to the GO annotation of the proteins in the subnet

# Prot # Int p < GO Annotation

24 165 10−175 [C] nucleolus (54%, p < 10−7)
20 138 10−187 [P] ubiquitin-dependent protein catabolism (80%, p < 10−21)

[F] endopeptidase activity (50%, p < 10−11)
[C] proteasome regulatory particle, lid subcomplex (40%, p < 10−12)

16 104 10−174 [P] histone acetylation (62%, p < 10−15)
[C] SAGA complex (56%, p < 10−15)
[P] chromatin modification (56%, p < 10−14)

15 90 10−145 [F] RNA binding (80%, p < 10−12)
[C] mRNA cleavage & polyadenylation spec fac comp (80%, p < 10−24)
[P] mRNA polyadenylylation (80%, p < 10−21)

14 79 10−128 [P] mRNA catabolism (71%, p < 10−16)
[F] RNA binding (64%, p < 10−6)
[P] nuclear mRNA splicing, via spliceosome (57%, p < 10−7)

10 45 10−200 [P] ER to Golgi transport (90%, p < 10−14)
[C] TRAPP complex (90%, p < 10−23)

7 20 10−30 [C] mitochondrial outer memb transloc comp (100%, p < 10−20)
[F] protein transporter activity (100%, p < 10−14)
[P] mitochondrial matrix protein import (100%, p < 10−16)
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This probability is upper-bounded using Chernoff’s bound for the binomial tail; namely
P (Sr,p̂ ≥ k) ≤ exp{rHp̂(k/r)}, where r denotes the number of proteins in the sub-
graph, k denotes the number of proteins among these with the particular annotation,
and p̂ is the estimated probability that a random protein will carry this annotation [5].

For most of the significant dense subgraphs, most of the proteins that induce the sub-
graph are involved in the same cellular process. As an extreme case, the algorithm also
identifies proteins that share a common function or that are part of a particular complex.
For example, the dense subgraph of 7 proteins in the last row corresponds to the mi-
tochondrial outer membrane translocase (TOM) complex, which mediates recognition,
unfolding, and translocation of preproteins [18]. On the other hand, some dense sub-
graphs correspond to proteins that are involved in a range of processes but localize in
the same cellular component, such as the largest dense subgraph identified by modified
HCS, which contains 24 proteins.

The significant dense subgraphs that are conserved in S. cerevisiae and H. sapi-
ens PPI networks are shown in Table 2. Most of these dense components are involved
in fundamental processes and the proteins that are part of these components share a
particular function. Among these, the 7-protein conserved subnet that consists of
6 Exosomal 3’-5’ exoribonuclease complex subunits and Succinate dehydrogenase is
interesting. As in the case of dense subgraphs in a single network, the conserved dense
subgraphs provide an insight on the crosstalk between proteins that perform different
functions. For example, the largest conserved subnet of 11 proteins contains Mismatch
repair proteins, Replication factor C subunits, and RNA polymerase II transcription ini-
tiation/nucleotide excision repair factor TFIIH subunits, which are all involved in DNA

Table 2. Seven most significant conserved dense subgraphs identified in S. cerevisiae and
H. sapiens PPI networks by the modified HCS algorithm and their functional enrichment ac-
cording to COG functional annotations

# # Cons
Prot Int p < COG Annotation

10 17 10−68 RNA polymerase (100%)
11 11 10−26 Mismatch repair (33%)

RNA polymerase II TI/nucleotide excision repair factor TFIIH (33%)
Replication factor C (22%),

7 7 10−25 Exosomal 3’-5’ exoribonuclease complex (86%)
4 4 10−24 Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)
5 4 10−12 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)
5 4 10−12 Histone (40%)

Histone transcription regulator (20%)
Histone chaperone (20%)

3 3 10−9 Vacuolar sorting protein (33%)
RNA polymerase II transcription factor complex subunit (33%)
Uncharacterized conserved protein (33%)
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repair. The conserved subnets identified by the modified HCS algorithm are small and
appear to be partial, since we employ a strict understanding of conserved interaction
here. In particular, limiting the ortholog assignments to proteins that have a COG as-
signment and considering only matching direct interactions as conserved interactions
limits the ability of the algorithm to identify a comprehensive set of conserved dense
graphs. Algorithms that rely on sequence alignment scores and consider indirect or
probable interactions [17, 26, 27] coupled with adaptation of the statistical framework
in this paper have the potential of increasing the coverage of identified patterns, while
correctly evaluating the interestingness of observed patterns.

4 Proof of Theorems

In this section we prove Theorems 1 and 2.

Proof 1. We first prove the upper-bound. Let Xr,ρ denote the number of subgraphs of
size r with density at least ρ, i.e., Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|.
From first moment method, we obtain P (Rρ ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ].

Let Yr denote the number of edges induced by r vertices. Then, E[Xr, ρ] =
(
n
r

)
P (Yr

≥ ρr2). Moreover, since Yr is a Binomial r.v. B(r2, p) and ρ > p, we have

P (Yr ≥ ρr2) ≤ (r2−ρr2)P (Yr = ρr2) ≤
(
r2

ρr2

)
(r2−ρr2)pρr2

(1−p)r2−ρr2
. (10)

Hence, we get P (Rρ ≥ r) ≤ (
n
r

)(
r2

ρr2

)
(r2 − ρr2)pρr2

(1 − p)r2−ρr2
.

Using Stirling’s formula, we find the following asymptotics for
(

n
r

)
:(

n

r

)
∼
{ 1√

2πr
nr

rr e
−r if r = o(

√
n)

1√
2πα(1−α)n

2nH(α) if r = αn (11)

where H(α) = −α logα− (1− α) log(1− α) denotes the binary entropy.
Let Q = 1/pρ(1− p)1−ρ. Plugging the above asymptotics into (4), we obtain

P (Rρ ≥ r) ≤ r
√

1− ρ

2π
√
ρ

exp2(−r2 logQ+r logn−r log r+r2H(ρ)−r log e}) (12)

Defining κ(p, ρ) = logQ − H(ρ), we find P (Rρ ≥ r0) ≤ r0
√

1−ρ
2π

√
ρ exp2(f(r0)),

where f(r0) = −r0(r0κ(p, ρ) − logn + log r + log e). Plugging in (5) and working

out the algebra, we obtain f(r0) = −r0
(
1−O

(
log log n

log n

))
. Hence, P (Rρ ≥ r0) ≤

O (2−r0) = O
(

log n
n1/κ(p,ρ)

)
. This completes the proof for the upper-bound.

The lower-bound is not of a particular interest in terms of statistical significance, but
we provide a sketch of the proof for completeness. By the second moment method [30],
we have

P (Rρ < r) ≤ P (Xr,ρ = 0) ≤ Var[Xr,ρ]
E[Xr,ρ]2

=
1

E[Xr,ρ]
+

∑
Ur �=Vr

Cov[XUr
ρ , XVr

ρ ]
E[Xr,ρ]2

,
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where XUr
ρ is the indicator r.v. for the subgraph induced by the vertex set Ur being

ρ-dense. Letting r = (1 − ε) logn/κ(ρ), we observe that 1
E[Xr,ρ] → 0 as n → ∞. We

split the sum
∑

Ur,Vr
Cov[XUr

ρ , XVr
ρ ] = g(r)+h(r), where g(r) spans the set of node

subsets Ur, Vr with intersection of cardinality at most O(ρr2). Observe that when Ur

overlaps with Vr on l vertices, then for m = ρr2

Cov[XUr
ρ , XVr

ρ ] =
min{l2,m}∑

k=max{0,l2−r2+m}

(
l2

k

)
pkql2−k

[(
r2 − l2

m − k

)
pm−kqr2−l2−(m−k)

]2

.

Routine and crude calculations show that g(r) ≤ E[Xr,ρ], while h(r) ≤ α(r)E[Xr,ρ]2

where α((1 − ε) logn/κ(ρ)) → 0 as n→∞, which completes the proof.

Proof 2. Let Xh
r,ρ, X l

r,ρ be the number of ρ-dense subgraphs induced by only nodes in
Gh or Gl, respectively. Let Xb

r,ρ be the number of those induced by nodes from both
sets. Clearly, Xr,ρ = Xh

r,ρ + X l
r,ρ + Xb

r,ρ. The analysis for G(n, p) directly applies
for E[Xh

r,ρ] and E[X l
r,ρ], hence we emphasize on E[Xb

r,ρ]. Since nh = O(1), we have

E[Xb
r,ρ] ≤ (1−ρ)r2∑nh

k=0

(
nh

k

)(
nl

r−k

)∑2k(r−k)
l=0

(2k(r−k)
l

)((r−k)2

ρr2−l

)
pl

bq
2k(r−k)−l
b pρr2−l

l

q
(r−k)2−ρr2+l
l ,where qb = 1− pb and ql = 1− pl. Then,

E[Xb
r,ρ] ≤ c(1− ρ)r2nh

(
nl

r

) 2nhr∑
l=0

(
2nhr

l

)(
r2

ρr2 − l

)
pl

bq
2nhr−l
b pρr2−l

l qr2−ρr2+l
l ,

where c is a constant. Since l = o(ρr2), we have
(

r2

ρr2−l

) ≤ (
r2

ρr2

)
for 0 ≤ l ≤ 2nhr.

Therefore,

E[Xb
r,ρ] ≤ (1− ρ)r2

(
n

r

)(
r2

ρr2

)
pρr2

l qr2−ρr2

l

2nhr∑
l=0

(
2nhr

l

)(
pbql

pl

)l

q2nhr−l
b .

Using B = pbql

pl
+ qb as defined in Theorem 2, we find P (Rρ > r) ≤ O(2f1(r)),

where f1(r) = −r(rκ(ρ)− logn+ log r − log e+ 2nh logB).Hence, P (Rρ > r1) ≤
O(2f1(r1)) ≤ O

(
log n

n1/κ(pl,ρ)

)
for large n.

5 Conclusion

In this paper, we attempt on analytically assessing statistical significance of connectiv-
ity and conservation in PPI networks. Specifically, we emphasize on the notion of dense
subgraphs, which is one of the most well-studied pattern structures in extracting biolog-
ically novel information from PPI networks. While the analysis based on the G(n, p)
model and its extension provides a reasonable means of assessing significance, models
that mirror the topological characteristics of PPI networks should also be analyzed. This
paper provides a stepping stone for the analysis of such complicated models.
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Abstract. The unsupervised clustering analysis of data from temporal
or dose-response experiments is one of the most important and chal-
lenging tasks of microarray data anlysis. Here we present an extension
of CAGED (Cluster Analysis of Gene Expression Dynamics, one of the
most commonly used programs) to identify similar gene expression pat-
terns measured in either short time-course or dose-response microarray
experiments. Compared to the initial version of CAGED, in which gene
expression temporal profiles are modeled by autoregressive equations,
this new method uses polynomial models to incorporate time/dosage in-
formation into the model, and objective priors to include information
about background noise in gene expression data. In its current formula-
tion, CAGED results may change according to the parametrization. In
this new formulation, we make the results invariant to reparametrization
by using proper prior distributions on the model parameters. We com-
pare the results obtained by our approach with those generated by STEM
to show that our method can identify the correct number of clusters and
allocate gene expression profiles to the correct clusters in simulated data,
and produce more meaningful Gene Ontology enriched clusters in data
from real microarray experiments.

1 Introduction

Since the original development of microarray technology, unsupervised machine
learning methods, clustering methods in particular, have provided a data analyt-
ical paradigm and played a central role in the discovery of functionally related
genes. Different unsupervised methods have been used to analyze microarray
data in order to portray various gene functional behaviors. Correlation-based
hierarchical clustering [2] is today one of the most popular analytical methods
to characterize gene expression profiles. In [9], we introduced a Bayesian model-
based clustering method that takes into account the dependency and dynamic
nature of gene expression data measured in temporal experiments. This algo-
rithm, implemented in CAGED (Clustering Analysis of Gene Expression Dy-
namics), models gene expression temporal profiles by autoregressive equations
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and uses improper prior distributions on the model parameters. As a general
framework, CAGED can be used to represent a variety of cross-correlated gene
expression data beyond standard temporal experiment, such as dose response
data.

It has been recently shown in [3] that the model based formulation imple-
mented in CAGED is more appropriate to cluster long temporal gene expression
profiles, possibly measured at regularly spaced time points. There are many sce-
narios in which experiments are conducted either over a short number of time
points, or at a small number of different dosages of drugs. Due to biological
considerations, intervals between consecutive time points may not be the same,
and the variations in dosages may not be constant. Motivated by these situa-
tions, we present an algorithm that uses polynomials models of time or dosage to
capture the dynamics of gene expression profiles. The use of polynomial models
however requires the specification of proper prior distributions for the regression
parameters, so that to ensure the model search algorithm is invariant to repa-
rameterization of time or dosages [7]. A further advantage of the use of proper
priors on the model parameters is to include information about background
noise of gene expression measured at low intensity, with the effect of making the
algorithm more robust to noise and less prone to false positives.

Compared to autoregressive models, polynomial models incorporate informa-
tion about time/dosage in the design matrix. Therefore, they do not require that
the temporal profiles are stationary and appear to be particularly suitable to de-
scribe short expression profiles, possibly sampled at irregularly spaced points.
By using the same heuristic search strategy in [9], our algorithm can automat-
ically cluster the gene expression data into groups of genes whose profiles are
generated by the same process. Furthermore, the Bayesian model-based formu-
lation of the algorithm provides us a principled way to automatically choose
the number of clusters with the maximum posterior probability. By properly
specifying the prior distribution of the parameters, the clustering model is in-
variant to linear transformations of time/dosage. In this paper we first describe
the Bayesian clustering model in Section 2. In Section 3, we evaluated the ac-
curacy of the results obtained using this method on three simulated datasets
and on the immune response data from [4]. We found that compared to STEM,
our method is able to reconstruct the generating processes with higher accuracy
in simulated data, and produce more Gene Ontology enriched clusters for data
from real microarray experiment.

2 Model Formulation

A short time-course/dosage experiment exploring the behavior of J genes usually
consists of a set of n microarrays, each measuring the gene expression level xjti at
a time point/dosage ti, i = 1, 2, ..., n. For each gene, we denote the fold changes of
expression levels relative to the first sample (normalized), transformed in natural
logarithmic scale, by Sj = {xjt1 , xjt2 , ..., xjtn}, j = 1, 2, ..., J . These J genes are
believed to be generated from an unknown number of processes, and our goal
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is to group these J genes into clusters by merging genes with similar expression
patterns.

The clustering method currently implemented in CAGED is based on a novel
concept of similarity for time series from which we derive a model-based de-
scription of a set of clusters. We assume that two gene expression profiles are
similar when they are generated by the same stochastic process represented by
the same parametric model. Under this definition of similarity, the clustering
method groups gene expression profiles that are similar into the same cluster.
To achieve this objective, CAGED has three components:

1. A model describing the dynamics of gene expression temporal profiles;
2. A probabilistic metric to score different clustering models based on the pos-

terior probability of each clustering model;
3. A heuristics to make the search for the best clustering model feasible. The

heuristic was introduced in [8] and adapted to the specific task of clustering
gene expression temporal profiles in [9].

In the current implementation, CAGED uses autoregressive models to repre-
sent temporal cross-correlation. Here, we replace these models with polynomial
models to describe normalized temporal patterns of gene expression data from
short temporal/dose-response microarray experiments. The polynomial model
describing the temporal pattern of expression for a gene j can be written as

xjti |βj , εjt = μj + βj1ti + ...+ βjpt
p
i + εjti

where βj = (μj , βj1, ..., βjp)T is the vector of regression coefficients that are as-
sumed to be random variables, and εjti is random error. Using a matrix notation,
we have

xj = Fβj + εj (1)

where xj = (xjt1 , xjt2 , ..., xjtn)T , F is the n× (p+ 1) design matrix with the ith

row being (1, ti, t2i ..., t
p
i ), εj = (εjt1 , εjt2 , ..., εjtn)T is the vector of uncorrelated

errors that we assume to be normally distributed, with E(εjti ) = 0 and V (εjti ) =
1/τj, and the value p is the polynomial order.

We assume a proper normal-gamma prior density on the parameters βj and
τj . Therefore, the marginal distribution of τj and the distribution of the regres-
sion parameters βj , conditional on τj , are

τj ∼ Gamma(α1, α2)
βj |τj ∼ N(β0, (τjR0)−1)

where R0 is the identity matrix. The prior hyper-parameters α1, α2, β0 are iden-
tical across genes. One of the advantages offered by this novel parametrization
is the possibility to include information about background noise and, in so do-
ing, enables the clustering algorithm to properly handle it. We will show next a
method to define the hyper-parameters so that to incorporate information about
background noise.
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Given the data Sj — a set of observed expression values for gene j — we can
then estimate the model parameters βj and τj by updating their prior distribu-
tion into the posterior distribution using Bayes’ Theorem:

f(βj , τj |xj , p) =
f(xj |βj , τj , p)f(βj , τj)

f(xj |p) .

Standard conjugate analysis leads to compute the marginal likelihood of the data

f(xj |p) =
1

(2π)n/2

(detR0)1/2

(detRjn)1/2

Γ (αj1n)
Γ (α1)

α
αj1n

j2n

αα1
2

(2)

and hence a closed form solution of the posterior distribution of the model pa-
rameters τj and βj [1]

τj |xj ∼ Gamma(αj1n, αj2n)
βj |xj , τj ∼ N(βjn, (τjRjn)−1)

where

αj1n = α1 +
n

2

1/αj2n =
−βT

jnRjnβjn + xT
j xj + βT

0 R0β0

2
+

1
α2

Rjn = R0 + FTF

βjn = R−1
jn (R0β0 + FTxj)

Specification of the hyper-parameters of the prior distribution is an important
component of the analysis and we take the approach to define objective hier-
archical prior distributions on the parameters βj and τj . The main intuition is
to use the expression values of genes that are not used in further analysis to
model the baseline hyper-variability of gene expression measured with microar-
rays. Several statistical software for low-level preprocessing of gene expression
data score the intensities that represent relative expressions. For example the
statistical software implemented in MAS 5.0 and GCOS to process expression
data measured with Affymetrix arrays uses a non-parametric statistical method
to label gene expression as “absent”, “marginally present” or “present”. These
calls are based on significance tests of differences between intensities of matched
probe pairs [10]. Absent calls may denote either technical errors, non-detectable
expression or non-expression of the gene in the target, so that investigators are
recommended not to use genes that are labelled as absent in the majority of the
Affymetrix microarray samples. The more recent Illumina system for microarray
data [5] assigns a quality control score to each expression summary and recom-
mends users not to consider genes that have a score lower than 0.99. In both
systems, between 25–50% of the total number of genes/probes in the arrays are
usually disregarded from further analysis when they are labelled as absent or
scored too low. These data however contain information about the variability of
non expressed genes and therefore we use them to build our prior distributions.



64 L. Wang, M. Ramoni, and P. Sebastiani

We assume that disregarded genes do not exhibit any specific patterns, so af-
ter normalization and log transformation, they are expected to simply represent
noise around zero. Therefore, assuming that β0 = 0, then we only need to con-
sider the precision parameters τj . We further assume that all absent gene have
the same precision. Now let xati be the normalized and log-transformed expres-
sion of one of these genes at time ti, i = 1, ..., n, then xati |τ ∼ N(0, 1/τ), where
τ is the precision parameter whose prior distribution is τ ∼ Gamma(α1, α2).
From the properties of conditional mean and conditional variance, it is easy
to show that the marginal variance of the data is functionally related to the
hyper-parameters:

α2 =
1

(α1 − 1)σ2
a

where σ2
a is the sample variance of the disregarded expression data. So here, with

α1 = 2, we can easily specify the hyper-parameter α2.

3 Evaluation

We evaluate our algorithm by simulation study and analysis of the data from
the microarray experiment on immune response to Helicobacter pylori infec-
tion in [4], and compare it to the program STEM recently introduced in [3].
Section 3.1 reports the results from three simulation studies, and section 3.2
presents the analysis of real data from [4]. All the analysis were done with our
clustering algorithm and STEM.

3.1 Simulation Study

We simulated three sets of 5,000 gene expression profiles measured over 5 differ-
ent time points: 0, 1, 2, 3, 4. All the profiles were generated assuming the gene
expressions were normalized and transformed into natural logarithmic scale. The
first 5,000 profiles were simply noise, and were generated from a normal distri-
bution with mean 0 and a variance representing the average variability of noisy
patterns that we inferred from the analysis of previous real microarray experi-
ments. For this dataset, we generated another 1,000 noise profiles to be the data
from genes with low intensities and we used these to specify the hyperparame-
ters of the model. The second 5,000 profiles had 4 different baseline patterns and
some background noise. Data for each gene expression profile were generated by
adding random noise to one of the four baseline patterns (Figure 1 left panel),
and the gene expression profiles of the background noise were generated from a
normal distribution with mean 0 and a variance inferred from previous analysis
of temporal microarray experiments. The number of genes representing each of
the four patterns and the background noise was randomly chosen from 11 to
5,000. For this dataset, we simulated another set of 5,000 noise profiles with low
intensities to specify the hyperparameters. The third 5,000 expression profiles
had 6 different baseline patterns (Figure 1 right panel) that are more difficult
to discriminate, plus some background noise. The data were generated using the
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Fig. 1. Left: The 4 distinct baseline patterns of the simulated data. Right: The 6
indistinct baseline patterns of the simulated data.

Table 1. Clustering results of simulated datasets from our program and STEM

Simulated number of # of profiles # of significant
dataset true profiles our program found profiles STEM found
noise 0 0 17

4 patterns with noise 4 4 4
6 patterns with noise 6 6 11

same strategy as the second dataset. For the third dataset another 5,000 noise
profiles with low intensities were simulated for the specification of hyperpara-
meters. Note that in the last two datasets with planted patterns, the range of
variability of the simulated patterns was within the range of variability of the
noisy patterns.

Each of the three datasets was analyzed using our clustering algorithm, with
polynomial orders 0, 4 and 4 respectively. We also analyzed these three datasets
using STEM, with the recommended default settings of c = 2, and 50 possible
profiles and used Bonferroni correction to control for multiple comparisons. To be
consistent, we did not filter out any genes in any of these analysis, but rather used
the separately generated noise profiles to specify the hyperparameters. Table 1
reports the clustering results from both our program and STEM, from which
we can observe that our program successfully recovered the correct number of
patterns, plus the background noise, whereas STEM discovered 17 significant
profiles from the noise-only dataset, and 11 significant profiles from the dataset
with 6 true patterns.

Figure 2 shows that our program grouped all the gene expression profiles in
the noise-only dataset into a single cluster, representing the expected indistin-
guishability of pure noise. By contrast, STEM found 17 significant profiles in
these noise-only data. For the simulated data with 4 different baseline patterns,
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Fig. 2. Left: The only noise cluster found by our program. Right: The results from
STEM. The 17 colored profiles are found to be significant by STEM.

our clustering algorithm gave 5 clusters, of which 4 have profiles matching the
baseline profiles in Figure 1 left panel, and 1 noise cluster. For these 5,000 genes,
10 were allocated to the wrong cluster, with 3 false negatives (genes with true
pattern allocated to noise cluster) and 7 false positives (noise genes allocated to
clusters with pattern). The 4 significant profiles that STEM found have 3 pro-
files that are similar to the baseline patterns, but the up-regulated profile that
corresponds to pattern 1 in Figure 1 left panel was not labeled as significant (p
value=1). The simulated dataset with 6 different baseline profiles are designed
to be harder to discriminate, and our program successfully found 7 clusters, of
which 6 had profiles matching the baseline patterns in Figure 1 right panel, and
1 contained only noise. For this set of 5,000 genes, 83 are allocated to the wrong
cluster, with 12 false positives and 41 false negatives. STEM analysis found 11
significant profiles for this data.

3.2 Real Data Analysis

We analyzed the data from the microarray experiment on immune response to
Helicobacter pylori infection in [4] to further evaluate our clustering algorithm.
In this experiment, human cDNA microarrays were used to investigate the tem-
poral behavior of gastric epithelial cells infected with Helicobacter pylori strain
G27 and some other mutants. We used the selected 2,243 genes after the data
pre-processing in [3] for clustering, and the 17,352 genes that were filtered out
were used to specify the hyperparameters. We then normalized and transformed
the data into natural log scale, and performed the cluster analysis with poly-
nomial order of 4. The time points we used in the model were the actual time
at which the experiments were carried out: 0, 0.5, 3, 6 and 12. Our clustering
algorithm returned a total of 11 clusters. Figure 3 shows all the clusters. We then
preformed the Gene Ontology enrichment test with EASE [6]. Because there were
missing annotations for some genes in each cluster, we carried out the enrich-
ment analysis using only the genes with annotations. Seven out of the 11 clusters
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Cluster 9 Cluster 10 Cluster 11

Fig. 3. The 11 clusters our program found in the analysis of data from the microarray
experiment on immune response to Helicobacter pylori infection

had EASE scores less than 0.05 and hence 63% of the clusters were significantly
enriched for GO categories. Cluster 10, which had 38 genes totally and 11 genes
with annotations, represented a stable upregulated pattern over time. This clus-
ter is significantly enriched for the immune response GO category (with EASE
score 6.85× 10−3). Cluster 1 is significantly enriched for mitotic cell cycle genes
(EASE score 4.62× 10−13) and cell cycle genes (EASE score 2.05× 10−10). The
STEM analysis described in [3] identified 10 significant profiles, four of which
only were found significantly enriched by the GO analysis. Compared to the 63%
significantly GO enriched clusters found by our algorithm, the analysis in STEM
therefore produces only 40% significantly GO enriched clusters.

4 Conclusions

We have introduced a model reformulation of CAGED using polynomial mod-
els of time/dosage with proper prior distributions. We find this formulation to
be well suited for clustering analysis of data from short temporal/dosage mi-
croarray experiments. The polynomial models that describe the trend are flex-
ible and do not require the gene expression profile to be stationary. We use
proper priors in the model so that we can incorporate the background noise
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information through specifying the hyperparameters with low-intensity genes,
and the clustering algorithm becomes invariant to linear transformation on
time/dosage. An empirical comparison on simulated data shows that our clus-
tering algorithm can identify the correct number of generating processes, and
allocate genes into clusters with low false positives and false negatives. In the
analysis of data from the human cDNA microarray experiment on immune re-
sponse to Helicobacter pylori infection in [4] we found 11 clusters with our al-
gorithm, 7 out of which are significantly enriched by Gene Ontology analysis.
In both the empirical study and the analysis of the immune response data to
Helicobacter pylori infection, our algorithm performs better than STEM.
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Abstract. Pharmacogenomics and clinical studies that measure the
temporal expression levels of patients can identify important pathways
and biomarkers that are activated during disease progression or in re-
sponse to treatment. However, researchers face a number of challenges
when trying to combine expression profiles from these patients. Unlike
studies that rely on lab animals or cell lines, individuals vary in their
baseline expression and in their response rate. In this paper we present a
generative model for such data. Our model represents patient expression
data using two levels, a gene level which corresponds to a common re-
sponse pattern and a patient level which accounts for the patient specific
expression patterns and response rate. Using an EM algorithm we infer
the parameters of the model. We used our algorithm to analyze multi-
ple sclerosis patient response to Interferon-β. As we show, our algorithm
was able to improve upon prior methods for combining patients data.
In addition, our algorithm was able to correctly identify patient specific
response patterns.

1 Introduction

Time series expression experiments have been used to study many aspects of
biological systems in model organisms and cell lines [1, 2]. More recently, these
experiments are playing an important role in several pharmacogenomics and
clinical studies. For example, the Inflammation and the Host Response to Injury
research program [3], a consortium of several leading research hospitals, stud-
ies the response of over a hundred trauma and burn patients using time series
expression data. Table 1 lists a number of other examples of such studies.

Time series expression experiments present a number of computational prob-
lems [4]. These include handling noise, the lack of repeats and the fact that only
a small number of points are measured (which is particularly true in clinical ex-
periments since tissue or blood needs to be extracted from the patient for each
time point). Clinical experiments, while promising, suffer from all these issues
and also raise a number of new computational challenges. In many cases the
major goal of these experiments is to combine results from multiple patients to
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Table 1. Examples of time series clinical studies1

Reference Treatment/
condition

Num.
patients

Num. time
points

Combining
method

Inflammation and the
Response to Injury[3]

Trauma and
burn

over a
hundred

varying not described

Sterrenburg et al[7] Skeletal my-
oblast differen-
tiation

3 5 averaging and in-
dividual analysis

Weinstock-Guttman et
al[6]

IFN-β for multi-
ple sclerosis

8 8 averaging

Calvano et al[10] bacterial endo-
toxin

8 6 assumed repeats

1 Note that in all cases only a few time points are sampled for each patient. In addition,
in most cases researchers assume that the different patients represent repeats of the
same experiment, even though most of these papers acknowledge that this is not the
case (see citation above). Our algorithm, which does not make such assumption and is
still able to recover a consensus response pattern is of importance to such studies.

identify common response genes. However, unlike lab animals which are raised
under identical conditions, individuals responses may vary greatly. First, individ-
uals may have different baseline expression profiles [5]. These differences result in
some genes being expressed very differently from the common response. Second,
the response rate or patients dynamics varies greatly among individuals [6, 7].
This leads to profiles which, while representing the same response, may appear
different.

Previous attempts to address some of these problems have each focused on
only one of the two aspects mentioned above. For example, many papers ana-
lyzing such data use the average response [6] to overcome individual (baseline)
patterns. Such methods ignore the response rate problem, resulting in inaccu-
rate description of the common response. Alignment methods where suggested
to overcome response rate problems in time series expression data, especially
in yeast [8, 9]. However, these methods rely on pairwise alignment, which is not
appropriate for large datasets with tens of patients. In addition, it is not clear
how to use these methods to remove patient specific response genes.

In this paper we solve the above problems by introducing a model that con-
sists of two levels: The gene level and the patient level. The gene level represents
the consensus response of genes to the treatment or the disease being stud-
ied. The questions we ask at this level are similar to issues that are addressed
when analyzing single datasets experiments including overcoming noise, contin-
uous representation of the measured expression values and clustering genes to
identify common response patterns [16, 17]. The patient level deals with the in-
stances of these genes in specific patients. Here we assume that patient genes
follow a mixture model. Some of these genes represent patient specific response,
or baseline expression differences. The rest of the genes come from the consen-
sus expression response for the treatment studied. However, even if genes agree
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with this consensus response, their measured values still depend on the patient
unique response rate and starting point. Using the consensus curve from the gene
level, we associate with each patient a starting point and speed. These values
correspond to difference in the timing of the first sample from that patient (for
example, if some patients were admitted later than the others) and the patient
dynamics (some patients respond to treatment faster than others [6, 7]).

For the gene level we use a spline based model from [9]. The main focus of this
paper is on the patient level and on the relationship between the patient level and
the gene level. We describe a detailed generative model for clinical expression
experiments and present an EM algorithm for inferring the parameters of this
model.

There are many potential uses for our algorithm. For example, researchers
comparing two groups of patients with different outcomes can use our algo-
rithm to extract consensus expression curves for each group and use comparison
algorithms to identify genes that differ between the two groups. Another use,
which we discuss in the results section is in an experiment measuring a single
treatment. In such experiment researchers are interested in identifying clusters
of genes that respond in a specific way to the treatment. As we show, using
our method we obtain results that are superior to other methods for combining
patient datasets. Finally, we also show that our algorithm can be used to ex-
tract patient specific response genes. These genes may be useful for determining
individualized response to treatment and disease course and outcome.

1.1 Related Work

Time series expression experiments account for over a third of all published
microarray datasets and has thus received a lot of attention [4]. However, we are
not aware of any computational work on the analysis of time series data from
clinical studies. Most previous papers describing such data have relied on simple
techniques such as averaging. See Table 1 for some examples.

As mentioned above, there have been a number of methods suggested for
aligning two time series expression datasets. Aach et al [8] used dynamic pro-
gramming to align two yeast cell cycle expression datasets based on the measured
expression values. Such method can be extended to multiple datasets, but the
complexity is exponential in the number of datasets combined, making it imprac-
tical for clinical studies. Bar-Joseph et al [9] aligned two datasets by minimizing
the area between continuous curves representing expression patterns for genes. It
is not immediately clear how this methods can be extended to multiple datasets.
In addition, the probabilistic nature of our algorithm allows it to distinguish
between patient genes that result from a common response pattern and genes
with an expression pattern unique to this patient. Again, it is not clear how an
area minimization algorithm could have been extended for this goal.

Gaffney et al [11] presented an algorithm that extends the splines framework
of Bar-Joseph et al discussed above to perform joint clustering and alignment.
Unlike our goal of combining multiple expression experiments, their goal was to
apply alignment to recover similar patterns in a single expression experiment.
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In addition, because of the fact that each gene was assumed to have a different
response rate, regularization of the translation parameters was required in their
approach. In contrast, because we assume one set of translation parameters for
all genes in a single patient, such regularization is unnecessary. Finally, their
method did not allow for identifying patient specific response patterns.

A number of methods have been suggested to identify differentially expressed
genes in time series expression data. These include DiffExp [12] and more recently
Edge [13]. It is not clear if and how these could be used to combine large sets of
time series data. If we simply treat the different patients as repeats, we falsely
identify differentially expressed genes due to differences in patient dynamics.

2 A Generative Model for Expression Profiles in Clinical
Experiments

We assume that expression profiles in clinical experiments can be represented
using a generative model. Here we discuss the details of this model. In Section 3
we present an algorithm for inferring the parameters of this model. Following
the execution of this algorithm we can retrieve consensus expression patterns as
well as unique, patient specific, responses.

2.1 Continuous Representation of Time Series Expression Data

In previous work we described a method for representing expression profiles with
continuous curves using cubic splines [9]. Here, we extend this model so that we
can combine multiple time series expression datasets. We first briefly review the
splines based model and then discuss extensions required for combining multiple
time series datasets in the next subsection.

Cubic splines are a set of piecewise cubic polynomials, and are frequently used
for fitting time-series and other noisy data. Specifically, we use B-splines, which
can be described as a linear combination of a set of basis polynomials [18]. By
knowing the value of these splines at a set of control points, one can generate
the entire set of polynomials from these basis functions. For a single time series
experiment, we assume that a gene can be represented by a spline curve and
additional noise using the following equation:

Yi = S(t)Fi + εi

where Yi is the expression profile for gene i in this experiment, Fi is a vector of
spline control points for gene i and S is a matrix of spline coefficients evaluated
at the sampling points of the experiment (t). εi is a vector of the noise terms,
which is assumed to be normally distributed with mean 0. Due to noise and
missing values, determining the parameters of the above equation (Fi and εi) for
each gene separately may lead to overfitting. Instead, we constrain the control
point values of genes in the same class (co-expressed genes) to co-vary, and thus
we use other co-expressed genes to overcome noise and missing values in a single
gene. In previous work [9], we showed that this method provides a superior fit
for time series expression data when compared to previously used methods.
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2.2 Extending Continuous Representation to Multiple Experiments

Unlike the above model, which assumes a single measurement for each gene, in
clinical experiments we have multiple measurements from different individuals.
As mentioned in the introduction, there are two issues that should be addressed.
First, we need to allow for patient genes that represent individual response rather
than the common response for that gene. Second, we should allow for a patient
specific response rate.

To address the first issue, we assume that a patient expression data repre-
sents a mixture that includes genes from a patient specific response and genes
whose expression follows the common response. This mixture model can be
parametrized using a new distribution, wq, which controls the fraction of genes
from patient q that have a unique expression pattern (that is, genes that do
not agree with the common response). To constrain the model, all such genes
are assumed to have expression values that are sampled from the same Gaussian
distribution. Thus, unless a gene instance deviates significantly from its common
response it will be assigned to the consensus curve for that gene. To address the
second issue, we introduce two new parameters for each patient q, aq and bq.
These parameters control the stretch (bq) and shift (aq) of expression profiles
from q w.r.t. the consensus expression curve. In other words, we assume that
expression profiles for genes in individual patient lie on different (overlapping)
segments of the consensus expression curve. The start and end points of these
patient segments are controlled by the time points in which q was sampled and
by aq and bq. Figure 1 presents the hierarchical graphical model for the genera-
tive process we assume in this paper. We denote the vector of values measured
for gene g in patient q by Yg,q. Below, we summarize the different steps for
generating Yg,q according to our model.

Fig. 1. Graphical representation of our generative model. The left part corresponds to
the gene level and the right to the patient level. As can be seen, the two levels are
connected. The node annotated with g represents the common response for a gene. An
instance of this gene at a certain patients is derived from this curve using the patients
response rate parameters (aq, bq). Some of the patient genes are not similar to their
common response. These genes are assumed to come from separate distribution pa-
rameterized by a covariance matrix Σ. See text for complete details on the parameters
shown in the figure.



74 N. Kaminski and Z. Bar-Joseph

1. The first step corresponds to the gene level (left side of Figure 1) and follows
the assumptions discussed in Section 2.1. We assume that in order to generate
a common (or consensus) expression curve for a gene g we sample a class
z according to the class distribution α. Given a class z we use the class
mean (μz) and sample a gene specific correction term (γg,z) using the class
covariance matrix (Γz) as discussed in Section 2.1. Summing the vectors μ
and γ we obtain the spline control points for the consensus curve.

2. We now turn to the patient level (right side of Figure 1). To generate an
instance of gene g in patient q we sample a binary value wg,q according to
the patient specific individual response distribution, β. If wg,q is 0 then the
expression of g in q is unique to q and does not come from the consensus
expression pattern for g. We thus sample values for entries in Yg,q according
to a normal (Gaussian) distribution with a mean of 0 and diagonal covariance
matrix Σ. If wg,q is 1 we continue to step 3.

3. When wg,q is 1, we assume that the expression of g in q lies on the consensus
expression curve for g, perhaps with some added noise. Recall that we already
generated the control points for this curve (in step 1). Since the response rate
of patient q determines where on the consensus expression curve for g the
values of Yg,q will lie, we use aq and bq to construct the basis function matrix,
and denote it by S(at+ b).

4. Finally, the expression values are generated by adding random noise to the
segment of the curve that was extracted in step 3.

3 Inferring the Parameters of Our Model

As described in the previous section, our model is probabilistic. The log likelihood
of the data given the model is:

L(D|Θ) =
∑

q

∑
g

δ(wg,q = 0) log βq,0P0(Yg,q) (1)

+
∑

q

∑
g

δ(wg,q = 1) log βq,1 (2)

+
∑

q

∑
g

∑
i

δ(wg,q = 1)δ(zg = i) logαiPi,q(Yg,q) (3)

+
∑

g

∑
i

logPi(γg) (4)

δ is the Delta function which is 1 if the condition holds and 0 otherwise. β0,q

(β1,q) is the fraction of genes that are patient specific (common) for patient q.
αi is the fractions of genes in class i.

The first row corresponds to the patient specific genes which are not a part of
the common response. These are modeled using the P0 distribution. The second
and third rows correspond to patient genes that are expressed as the common
response profile. These genes are modeled using the parameters of the class and
patient they belong to, Pi,q (the distribution differs between patients because
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of their shift and stretch parameters). The last row is from the gene level and
involves the likelihood of the gene specific correction term γ.

To infer the parameters of the model we look for parameter assignment that
maximize the likelihood of the data given the model. There are a number of
normally distributed parameters in our model, including the noise term ε and
the gene specific parameters γ. For such a model determining the maximum
likelihood estimates is a non convex optimization problem (see [19]). We thus
turn the the EM algorithm, which iterates between two steps. In the E step
we compute the posterior probabilities (or soft assignments) of the indicator
variables. In the M step we use these posteriors to find the parameter assignments
that maximize the likelihood of our model. Below we discuss these two steps in
detail, focusing mainly on the new parameter that were introduced for the patient
level.

E Step: The posterior of our missing data (indicators) is p(wg,q, zg|Y ). As can
be seen from the third row of Equation 1 the two indicators are coupled and
thus wg,q and zg are not independent given Y . However, we can factorize this
posterior if either of these indicators were observed or estimated. Specifically, we
can write:

p(wg,q, zg|Y ) = p(wg,q|Y, zg)p(zg|Y )

Which can be further expanded to compute wg,q using Bayes rule by setting:

p(wg,q|Y, zg) =
Pzg

(Yg,q)β1,q

Pzg
(Yg,q)β1,q + P0(Yg,q)β0,q

Alternatively we can factor the posterior by conditioning on wg,q which leads to:

p(wg,q, zg|Y ) = p(zg|Y,wg,q)p(wg,q|Y )

Again, using Bayes rule we can further derive p(zg|Y,wg,q):

p(zg|Y,wg,q) =

∑
q wg,qαzg

Pzg
(Yg,q)∑

q

∑
c wg,qαiPi(Yg,q)

This observation leads to a message passing algorithm which relies on varia-
tional methods to compute a joint posterior [20]. We start with an initial guess
for zg (or the values retained in the previous EM iteration). Next, we compute
the posterior for wg,q conditioned on Y and zg. We now send a ’message’ along
the edge that connects the gene level and the patient level. This message contains
our new estimate of wg,q and is used to compute zg and so forth. This process is
repeated until convergence. In [20] it is shown that for graphical models in which
nodes can be separated into disjoint ’clusters’ (as is the case for the parameters
associated with the gene level and the patient level in our model) such message
passing algorithm converges to a lower bound estimate of the joint posterior.
The estimates we obtain are used to compute the expected log likelihood which
is maximized in the M step.

M Step: In the M step we maximize the parameters of the algorithm. There
are two types of parameters. The first are the gene level parameters γ, μ, Γ, α
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and σ2. These parameters are the same as the parameters in the original model
(section 2.1), that assumed a single dataset. The only difference when maximiz-
ing these parameters between the single experiment and multiple experiments
settings is the weighting by the patient specific posterior value. For example, the
mixture fractions in the single experiment case are computed by setting:

αi =

∑
g zi,g∑

g

∑
j zj,g

where zg,i is the posterior computed in the E step for the indicator zi for gene g.
In the multiple experiment setting these sums are weighted by the patient indi-
cator:

αi =

∑
q

∑
g wg,qzi,g∑

q

∑
g

∑
j wg,qzj,g

where wg,q is the posterior for the patient common response indicator. Due
to lack of space we do not include the complete derivation for the rest of the
parameters. The interested reader is referred to [9] for these update rules.

The second type of parameters are the patient specific parameters:β,Σ, aq, bq.
Taking the derivative w.r.t β we arrive at

βp,1 =

∑
g wg,q

n

where n is the total number of genes.
Similarly, because we assume a Gaussian distribution with mean 0 for patient

specific parameters, Σ can be computed by setting

Σ =

∑
q

∑
g wg,q(Yp,g)T (Yp,g)∑

q

∑
g wg,q

And zeroing out not diagonal values (Σ is assumed to be diagonal).
Things are more complicated for the stretch and shift parameters. Changing

these parameters results in change to the parameterization of the spline basis
functions. Fortunately, splines are continuous in the first derivative and so we
can compute ∂

∂aq
S(aq + bqt) and similarly for bq. This leads to a polynomial

function in a and b and an optimum can be computed using gradient descent.
In practice, we have found that it is better to maximize these parameters

using line search. For example, in an experiment with a total time of one hour
we can limit our interest to a scale of 1 minute for a. This leads to a search for
a between 0 and 60 with increments of 1. Similarly, we usually can place upper
and lower bounds on b and use a search in increments of .05. Denote by |a| the
total number of a value we are looking for and similarly for b. Note that the
search for a and b is done independently for each patient and so the running
time for of the a, b search is |q||a||b|n where |q| is the number of patients. This
is linear in n|q| when |a| and |b| are small.

The total running time of the M step is linear in |q|nTC where T is the
number of time points measured and C is the number of clusters. Each iteration
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in the E step involves updates to the wg,q (there are n|q| such parameters) and
zg (n) parameters. These updates take TC time for the wg,q and TC|q| for the
zg parameters. The E step usually converges within a few iteration and thus
the total running time of the algorithm is |q|nTC which is linear in n when the
number of time points, clusters and patient is small.

4 Results

We have tested our algorithm on simulated data and on two biological datasets.
The first biological dataset is from a non clinical experiment in yeast and the
second is from a clinical multiple sclerosis (MS) experiment. While the yeast
dataset is not the target of this method, since it was studied before using pairwise
alignment methods it is an appropriate dataset for comparing the results of the
two approaches.

4.1 Simulated Data

We generated three datasets. The first contained 100 rows of sines and 100 rows
of cosine measured between 0 and 4π every π/4. The other two also contained
sines and cosines, however, both were measured starting at a different point
(π/4) and with different rates (one slower by 0.8 and the other faster by 1.2).
We added normally distributed random noise to each value in each dataset and
used our algorithm to cluster and combine the three dataset.

Our algorithm was able to correctly retrieve both the shift and translation
parameters for the second and third datasets. In addition, the algorithm correctly
clustered the rows, perfectly separating the (shifted and stretched) sines and
cosines. See website [21] for full details and figures.

4.2 Yeast Cell Cycle Data

As mentioned above, a number of previous methods were suggested for aligning
the three yeast cell cycle expression experiments from Spellman et al [1]. In
that paper, yeast cells were arrested using three different methods (cdc15, cdc28
and alpha) and results were combined to identify cell cycle genes. However, as
noted in that paper and subsequent papers, each of these methods arrests cells
at different points along the cycle. In addition, different arrest methods result
in different cell cycle duration (ranging from 60 minutes to almost two hours).
This has led to a number of suggestion’s for aligning these datasets. Some of the
suggested methods use the peak expression time for alignment. Such methods
are only appropriate for cell cycle data and are thus not appropriate for the
more general setting we consider in this paper. In [9] we presented a method
for pairwise alignment of time series data by minimizing the squared integral
between expression profiles of genes was presented, and it was shown that this
method outperform previously suggested methods.

We have used the algorithm discussed in this paper to combine the the three
datasets. Figure 2 (a) presents the average expression value for genes in four
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Fig. 2. Aligning yeast cell cycle datasets. (a) Curves plotted based on measured time.
(b) Curves aligned using our algorithm. Note that by aligning the different experiments
we can clearly see the agreement between the three repeats.

clusters using the measured time points. Figure 2 (b) presents the same curves,
this time aligned according to the results of our algorithm. The clusters were
determined according to the gene level parameter assignments. The blue curve
represents the consensus curve computed for this cluster. As can be seen, our
algorithm was successful in aligning the three datasets. The alignment shows
the inherent agreement between the three experiments, indicating that the data
truly represents cyclic behavior.

Next ,we compared our results to the results in [9]. While the value for the
stretch and shift parameters where slightly different, overall the results where
very similar (both shift parameters where within 10 minutes and stretch pa-
rameters varied less than 10%). To quantify the differences we have computed
the area between the gene curves in different arrest methods following align-
ment using the stretch and shift parameters determined by our algorithm and
the corresponding parameters from [9]. While this quantity (area difference) is
the target function to be minimized by that the algorithm, our algorithm has a
slightly different objective function (based on the noise distribution). Based on
the parameters in [9] we obtained an average absolute difference of 0.335, be-
tween cdc15 and alpha, 0.304 between cdc15 and cdc28 and 0.305 between cdc28
and alpha. The corresponding numbers for our algorithm were 0.330, 0.308 and
0.310. Thus, the values obtained by our algorithm were either very close or in one
case better than the values obtained by the pairwise alignment method. As men-
tioned in the introduction, such pairwise alignment may not be appropriate for
larger datasets. Thus, our algorithm, which is designed for larger datasets, allows
us to enjoy both worlds, multiple datasets alignment with high quality results.

4.3 Clinical Data from Multiple Sclerosis Patients

To test our algorithm on clinical expression data, we used data from experiments
that were carried out to test the effects of interferon-β (IFN-β) on multiple scle-
rosis (MS) patients [6]. In that experiment, eight patients with active relapsing
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MS were given IFN-β therapy. Peripheral blood was obtained from these patients
at 9 time points (0, 1, 2, 4, 8, 24, 48, 120 and 168 hours).

In the original paper, the authors analyzed a small number of pre-selected
genes using their average expression values. However, they also noted that such
a method may be problematic. Based on figures for a number of genes in five
of the patients they conclude that: “The dynamics of the three patients ... are
different from those of the other two patients”. We have applied our algorithm to
cluster this data, to infer patient dynamics and to extract the consensus response
curve for each of the genes. In the results we discuss below we focus on six of
the eight patients, mainly for presentation reasons.

Our algorithm determined that all patients have the same shift value (ap = 0).
This is reasonable, since unlike clinical trials that measure response with an un-
known start time (for example, disease progression) these experiments measured
response to treatment which was given at the same time in all patients. In con-
trast, our algorithm found that the dynamics of two of the patients where differ-
ent from the other four. While the first four patients had a stretch parameter of
1 or .96, the other two had a stretch value of 0.84 indicating they they responded
slower the the other four patients. These results are in good agreement with the
(anecdotal) observations in the original paper mentioned above.

As mentioned before (Table 1), previous attempts to combine patient expres-
sion data used the average expression value for each time point. To compare our
results with these methods we used k-means to cluster the average and median
expression values from all six patients. Following several previous papers we used

(a) Measured value (b) Aligned curves profile.

Fig. 3. Using GO to compare our results to other methods that have been suggested for
combining patient data. (a) Comparison of the clustering achieved by our algorithm (y
axis) with clustering of the average expression values using k-means (x axis). The same
number of clusters (3) were used in both cases. P-value enrichments for GO categories
were computed using the hypergeometric distribution. As can be seen, in most cases
our algorithm was able to better separate the clusters, obtaining higher enrichments
for relevant GO categories. (b) A similar comparison when using the median patient
value instead of the average. See supporting website [21] for complete lists of categories
and p-values.
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the Gene Ontology (GO) annotations to compare these sets of clusters. Figure 3
presents the results of these comparison using the negative log p-value. The set of
categories that were retrieved are reasonable for this experiment. For example our
analysis reveals an enrichment of inflammatory related GO annotations (including
immune and defense responses, Figure 3). These results agree well with previous
studies [22]. In both case (average and median), our algorithm was able to obtain
better enrichment for 9 categories, whereas the other method was better at only
3 (average) or 4 (median). Note also that for the most enriched categories (with a
p-value < 10−5) our algorithm was always better than the other methods.

One of the main reasons for our improved results in this case is the ability of
our algorithm to exclude certain expression instances (genes in specific patients)
if it believes that these were not coming from the common response curve. Thus,
the curves that are clustered are more coherent and the algorithm is able to
infer better groupings for sets of genes. To examine this and to test the ability
of our algorithm to identify specific patient responses we compared two sets of
genes with different posteriors. The first set (top row of Figure 4) contains genes
for which the posterior (wg,q) in all patients were above 0.9. The second set
(bottom row of Figure 4) contains genes for which 5 of the 6 patient instances
had a posterior greater then 0.9 and the six patient had a posterior less than
0.1. Many of the genes in the first (always common) case are known interferon
induced genes, including the protein kinase, interferon-inducible PRKR and the
interferon regulatory factors 5 and 7 (IRF5, IRF7). However, a number of known
response genes are also included in the second set, indicating that they may have
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Fig. 4. Top row: Three genes expressed in a similar way in all six patients according to
the posterior computed by our algorithm. Bottom row: Three genes that were expressed
similarly in five of the patients, but differently in the six. Time is on a log scale due to
the sampling rate. Note that the average computed in the bottom row (dotted line) is
affected by the outlier, while the consensus computed by our algorithm (blue line) is
not.
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different function in different patients. These include the tyrosine kinase TXK
that functions as a Th1 cell-specific transcription factor that regulates IFN-
gamma gene transcription [23] and the immunoglobulin lambda-like polypeptide
1 (IGLL1) which participates in immune response. While the meaning of this
failure to induce a subset of genes in one patient is unclear, tools like ours that
allow individual analysis of temporal changes in gene expression may lead to
better diagnosis and treatment based on individual responses. See supporting
website [21] for complete lists of genes in each of these sets.

5 Conclusions and Future Work

We have presented the first algorithm for combining time series expression data
in clinical experiments. In these experiments researchers face a number of chal-
lenges including problems related to different response rates in individuals and
the differences in baseline expression values for many genes. Using a hierarchical
generative model, we were able to provide a probabilistic algorithm that can
solve the above problems. Our algorithm generates a consensus expression curve
for each gene. We then learn the patient response rates, which in turn deter-
mine where on the curves the values for this patient lies. Our algorithm can also
identify genes that represent patient specific response and remove them when
computing the consensus expression curve.

There are a number of future directions we wish to explore. First, our as-
sumption that patients have a single response rate may be too strict. As an
alternative, we can assume that different pathways (or clusters) have unique re-
sponse rates, and that these may be different even in a single patient. Another
possible extension is to cluster the patients as well as the genes. In such appli-
cation we will assume that groups of patients can be represented by consensus
expression curves. We will then employ an algorithm to identify the different
patients clusters, and for each cluster to determine its expression profiles.
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Abstract. Recent developments in the omics field have provided the
community with comprehensive repertoires of RNAs, proteins, metabo-
lites that constitute the cell building blocks. The next challenge resides
in the understanding of how the “pieces” of this huge puzzle assem-
ble, combine and contribute to the assembly of a coherent entity: a cell.
Biology relies on the concerted action of a number of molecular interac-
tions of gene products and metabolites operationally organized in cellular
pathways. Impairment of pathway flow or connections can lead to pathol-
ogy. The majority of targets of current therapeutics cluster in a limited
number of these cellular pathways. However, current appreciation of the
“wiring diagram” or “molecular maps” of these pathways is scanty. By
applying tandem affinity purification (TAP)/MS approaches to various
human pathways that lie beneath major pathologies, we could gener-
ate the comprehensive cartography of all proteins functionally involved.
For example, the systematic mapping of the protein interaction network
around 32 components of the pro-inflammatory TNF-alpha/NF-kappa
B signalling cascade led to the identification 221 molecular associations.
The analysis of the network and directed functional perturbation studies
using RNA interference highlighted 10 new functional modulators that
provided significant insight into the logic of the pathway as well as new
candidate targets for pharmacological intervention.

The approach has also been applied to the proteome of a whole or-
ganism, S.cerevisiae. The proteome-wide analysis provides the first map
depicting the organization of a eukaryotic proteome into functional units,
or protein complexes. The resulting cellular network goes beyond “clas-
sical” protein interaction maps. It depicts how proteins assemble into
functional units and contribute their biochemical properties to higher
level cellular functions. It also reveals the functional interconnection and
circuiting between the various activities of the protein complexes. In col-
laboration with the structural and bioinformatics program at the EMBL
we systematically characterized the structure of protein complexes by
electron microscopy and in silico approximations. The work does not
only bring new insights on how protein complexes operate, but may also
open new avenues in the field of systems biology. Recent developments
in 3D tomography may soon make it possible to fit such structures into
a whole cell tomogram enabling the quantitative and dynamics study of
protein complexes in their relevant cellular context; this may contribute
a bridge to our understanding of the anatomy of the cell at the molecular
level.
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Abstract. Genomic distances based on the number of rearrangement
steps – inversions, transpositions, reciprocal translocations – necessary
to convert the gene or segment order of one genome to that of another are
potentially meaningful measures of evolutionary divergence. The signifi-
cance of a comparison between two genomes, however, depends on how it
differs from the case where the order of the n segments constituting one
genome is randomized with respect to the other. In this presentation, we
discuss the comparison of randomized segment orders from a probabilistic
and statistical viewpoint as a basis for evaluating the relationships among
real genomes. The combinatorial structure containing all the information
necessary to calculate genomic distance d is the bicoloured “breakpoint
graph”, essentially the union of two bipartite matchings within the set
of 2n segment ends, a red matching induced by segment endpoint adja-
cencies in one genome and black matching similarly determined by the
other genome. The number c of alternating-colour cycles in the break-
point graph is the key component in formulae for d. Indeed, d ≥ n − c,
where equality holds for the most inclusive repertory of rearrangement
types postulated to account for evolutionary divergence.

Over a decade ago, it was observed in simulations of random genomes
with hundreds of genes that the distance d seldom differed from n by
more than a few rearrangements, even though it is easy to construct ex-
amples where d is as low as n

2 . Our main result is that in expectation
c = C + 1

2 log n for a small constant C, so that n − d = O(log n), thus
explaining the early observations. We derive this for a relaxed model
where chromosomes need not be totally ordered – they may include cir-
cular “plasmids” – since the combinatorics of this case are very simple.
We then present simulations and partial analytical results to show that
the case where all chromosomes are totally linearly ordered (no plasmids)
behaves virtually identically to the relaxed model for large n.

Consider the “reuse” statistic r = 2d
n

. Although r can be as low as 1,
in which case the breakpoint graph contains d cycles of the smallest size
possible, r can also be as high as 2, in which case the cycles become
larger and less numerous. Our results show that the latter is the case for
random gene orders as well. Inference about evolution based on r, then, is
compromised by the fact that a pattern of larger and fewer cycles occurs
both when comparing genomes that have actually diverged through via
high “reuse” rates and in genomes that are purely randomly ordered with
respect to each other.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, p. 84, 2006.
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Abstract. We propose an improved statistic for detecting over-repre-
sented Gene Ontology (GO) annotations in gene sets. While the current
methods treats each term independently and hence ignores the structure
of the GO hierarchy, our approach takes parent-child relationships into
account. Over-representation of a term is measured with respect to the
presence of its parental terms in the set. This resolves the problem that
the standard approach tends to falsely detect an over-representation of
more specific terms below terms known to be over-represented. To show
this, we have generated gene sets in which single terms are artificially
over-represented and compared the receiver operator characteristics of
the two approaches on these sets. A comparison on a biological dataset
further supports our method. Our approach comes at no additional com-
putational complexity when compared to the standard approach. An
implementation is available within the framework of the freely available
Ontologizer application.

1 Introduction

The advent of high-throughput technologies such as microarray hybridization
has resulted in the need to analyze large sets of genes with respect to their
functional properties. One of the most basic approaches to do this is to use the
large-scale functional annotation which is provided for several species by several
groups in the context of the Gene Ontology (GO) ([1], [2], [3]).

The task is to detect GO terms that are over-represented in a given gene set.
The standard statistic for this problem asks for each term whether it appears in
the gene set at a significantly higher number than in a randomly drawn gene set
of the same size. This approach has been discussed in many papers and has been
implemented in numerous software tools ([4], [5], [6], [7], [8], [9], [10]). A p-value
for this statistic can easily be calculated using the hypergeometric distribution.
Since this approach analyzes each term individually, without respect to any
relations to other terms, we refer to it as the term-for-term approach.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 85–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The term-for-term approach becomes problematic if one looks at several or all
GO terms simultaneously.There are two properties of the GO annotation which
result in a complicated dependency structure between the p-values calculated for
the individual GO terms. First, the annotation is done in a hierarchical manner
such that genes which are annotated to a given GO term are also implicitly
annotated to all less specific terms in the hierarchy (the so-called true path
rule). Second, individual genes can be annotated to multiple GO terms, which
reside in very different parts of the GO hierarchy. Both properties have the
effect that information about the over-representation of one GO term can carry
a substantial amount of information about the over-representation of other GO
terms. This effect is especially severe when looking at parent-child pairs. Knowing
that a certain term is over-represented in many cases increases the chance that
some of its descendant terms also appear to be over-represented. We call this
the inheritance problem and we consider it to be the main drawback of the
term-for-term approach.

In this paper, we propose a different statistic to measure the over-representa-
tion of individual GO terms in a gene set of interest. Our method resolves the
inheritance problem by explicitly taking into account parent-child relationships
between the GO terms. It does this by measuring the over-representation of a
GO term given the presence of all its parental terms in the gene set. Again,
p-values can be calculated using the hypergeometric distribution at no increased
computational complexity. We call our approach the parent-child approach. A
related approach was mentioned as a part of a larger comparative analysis of
yeast and bacterial protein interaction data in [11]. However, algorithmic details
were not given and a systematic comparison with the term-for-term approach
was not carried out.

The rest of the paper is organized as follows. In Section 2 we first review the
term-for-term approach and discuss the inheritance problem in more detail. The
new parent-child approach is then explained and the rationale behind it is ex-
plained. Section 3 is devoted to a comparison of the parent-child approach with
the term-for-term approach. We compare the two approaches on gene sets with an
artificial over-representation of individual terms. This illustrates that the parent-
child approach solves the inheritance problem. We finish the section by comparing
the two methods on a biological dataset. The paper is closed by a discussion.

2 Method

Given a set of genes of interest we want to analyze the functional annotation of
the genes in the set. A typical example of such an analysis involves a microarray
experiment where the gene set would consist of the genes which are differentially
expressed under some experimental condition. We will use the name study set
for such a gene set in the following and denote it by S. We suppose that the
study set appears as a subset of the larger set of all the genes which have been
considered in the experiment (such as the set of all genes which are represented
on the microarray). We will call this set the population set and denote it by P .
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The functional annotation we want to analyze consists of an assignment of
some of the genes in the population set to the terms in the GO. Individual genes
can be annotated to multiple GO terms. The relations between the GO terms
have the structure of a directed acyclic graph (DAG) G = (T,H), where T is
the set of GO terms and the relation H ⊂ T × T captures the parent-child
relationships (i.e. we have (t1, t2) ∈ H whenever t1 is a direct parent of t2). In
this relationship the children correspond to the more specific and the parents to
the less specific terms. The set of parents of a term t is denoted by pa(t). We
also use ρ to denote the unique root term of GO which has no parents.

For any GO term t, we denote by Pt the set of genes in the population set
that are annotated to this term. The convention is that the annotation of the
children of t is also passed to t itself (the so-called true path rule). This has
the effect that Pt′ ⊆ Pt whenever t ∈ pa(t′). When we speak about the directly
assigned genes of a term t we mean those genes which are assigned to t but not
to any of its children. Observe that the population set might also contain genes
for which no assignment to any GO term is given. This means that P\Pρ might
be non-empty. As a shorthand notation we will write mt := |Pt| to denote the
size of the set Pt, and the size of the whole population set P will be denoted by
m. For the study set we use a corresponding notation by writing St and defining
nt := |St| and n := |S|.

2.1 The Term-for-Term Approach and the Inheritance Problem

The statistic used by the term-for-term approach to measure the over-repre-
sentation of a GO term t is based on comparing the presence of the term in
the study set to its presence in a randomly drawn subset from the population
set of the same size as the study set. The over-representation is quantified by
calculating the probability of seeing in such a randomly drawn set at least as
many term-t genes as in the study set. Formally, let Σ be a set of size n which
has been drawn randomly from P . We write σt := |Σt| for the number of genes
annotated to term t in this random set. The probability of interest can now be
easily calculated as the upper tail of a hypergeometric distribution

pt(S) := P(σt ≥ nt) =
min(mt,n)∑

k=nt

(
mt

k

)(
m−mt

n−k

)(
m
n

) .

Heuristically formulated, the inheritance problem lies in the fact that once
it is known that a certain term t is over-represented in the study set there is
also an increased chance that descendant terms of t get a small p-value and are
also classified as over-represented. The reason for this clearly lies in the fact
that the statistical test for each term is carried out in isolation, without taking
annotations of other terms into account. The impact of this can be seen by the
following thought experiment.

In a typical population set, annotation to GO terms is usually not available for
all genes (meaning that mρ < m). Suppose term-for-term p-values are calculated
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with respect to a random sampling of a size-n set from the population set. It
might be the case, that there is an unusually high number of genes from Pρ

in the study set, resulting in a very low pρ(S)-value. In such a case it should
not be surprising that also the terms on the next levels below the root ρ have
small p-values and therefore appear to be over-represented. However, given that
|Σρ| = nρ, this (artificial) over-representation should vanish. This effect has
already been taken into account in as far as the analysis of all terms is often done
with replacing S with Sρ and P with Pρ. Although this is already a reasonable
modification, we claim that the same problem holds true for terms inside the
GO-DAG. Suppose, e.g., that the study set contains a significantly high number
of genes which are annotated to the term metabolism. Again, it should not be
surprising to also see a significant over-representation for the more specific forms
of metabolism which are represented by the children of the term metabolism.

These heuristic considerations motivated us to develop our new parent-child
approach.

2.2 The Parent-Child Approach

The parent-child approach uses a statistic to detect over-represented terms,
which compares the term’s presence with the presence of its parental terms
in the study set.

Let’s first consider a term t which has a unique parent t′ in the hierarchy of
GO terms. The idea behind the parent-child approach is to compare the presence
of term t in the study set to a random set of genes in which t′ is present at the
same number as in the original study set S. To quantify this, we draw a random
subset of size nt′ from Pt and calculate the probability p̂t(S) to see at least
nt term-t genes in that set. Again, this can be done using the hypergeometric
distribution and results in

p̂t(S) := P(σt ≥ nt|σt′ = nt′) =
min(nt′ ,mt)∑

k=nt

(
mt

k

)(
mt′−mt

nt′−k

)(
mt′
nt′

) , (1)

where (σt)t ∈ T is again defined on a randomly drawn subset Σ of size n.
However, the assumption that a GO term has a single parent is not valid

for the GO hierarchy, since it has the structure of a directed acyclic graph.
Heuristically formulated, when there are several parents of a GO term t, we want
to measure the over-representation of t, given the presence of all its parents in
the study set. When trying to formalize this, we see that there are at least two
ways to quantify the presence of the parents in the study set. Enumerate the
parents of t as pa(t) = {t1, . . . , tl}. The first idea would be to condition on the
numbers (nti)1≤i≤l, i.e. to calculate the probability

P0(σt ≥ nt|σt1 = nt1 , . . . , σtl
= ntl

).

It turns out that it becomes extremely difficult to combine different hyperge-
ometric weights to calculate this probability. The reason for this is that, for
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example, if we know the value of nt1 and nt2 , it is not clear in how far the genes
annotated to t1 overlap with those annotated to t2. Because of the true path
rule we know that both share at least a set of nt genes. However, there are many
potential ways of partitioning the genes in Pt1 or Pt2 but not in Pt among the
other children of t1 and t2 or among direct annotations to these terms. This
becomes even more complicated when considering combinations of more than
two parents.

We therefore chose another generalization of (1). What we fix in the compar-
ison of t to its parents is the total number of genes in the study set, which are
annotated to any of the parents. A set of this size is randomly drawn from the
collection of all genes in the population set which are annotated to any of the
parents of t and the probability of seeing at least nt term-t genes in such a set
is calculated. To formalize this, define

npa(t) :=
∣∣∣∣ ⋃

t′∈pa(t)

St′

∣∣∣∣
and correspondingly mpa(t) and σpa(t). Our final definition of parent-child
p-values is

p̂t(S) := P0(σt ≥ nt|σpa(t) = npa(t)) =
min(npa(t),mt)∑

k=nt

(
mt

k

)(mpa(t)−mt

npa(t)−k

)(
mpa(t)
npa(t)

) . (2)

This definition simplifies to (1) when there is a unique parent of term t. The
advantage of this definition is that it comes at no increased computational com-
plexity when compared to the term-for-term approach.

2.3 Implementation in the Ontologizer

We have implemented the term-for-term approach and our new parent-child
approach in Version 2.0 of the Ontologizer [9]. Executables and source code are
available from the authors at http://www.charite.de/ch/medgen/
ontologizer and can be used under the GNU public license.

Due to the importance of multiple testing corrections (MTCs) a selection of
different approaches is also available in the Ontologizer. Both of the methods
to calculate raw p-values can be combined with any of the implemented MTC
approaches.

To produce the results in this paper we used both calculation methods in
combination with the standard Bonferroni and the step-down resampling cor-
rection by Westfall & Young [12]. Both control the family-wise error rate. The
resampling method is known to be less conservative.

The resampling needed in the step-down method is done by randomly selecting
a gene set of the same size as the analyzed study set from the whole population
set. This is the natural adaptation of the resampling strategy as described in [13]
for resampling based MTCs in the context of microarray data analysis.
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3 Comparing the Two Approaches

To compare our new parent-child approach with the term-for-term approach we
developed a strategy which allows us to compare the respective false positive
rates when over-representation of a certain term is given.

To this end, we generated gene sets in which a given GO term t is artificially
over-represented. The most naive way to do this is to take the subset Pt of genes
which are annotated to the term in the population set P . More realistic examples
of such sets can be obtained by combining a certain proportion of genes from Pt

with a certain amount of genes randomly drawn from P . When testing such sets
for over-representation of GO terms, the term t itself should be detected along
with some other terms which can then be considered as false positives.

The results presented in the next two subsections are based on a population
set of 6456 yeast genes for which we downloaded about 32000 annotations to
a total of 3870 different GO terms from the Saccharomyces Genome Database
(http://www.yeastgenome.org/, version as of August 12th, 2005, [14]). We
used the yeast annotation for no particular reason, results obtained with other
species were comparable.

3.1 All-Subset Minimal p-Values

Suppose we are given a study set S for which we know that a certain term t is
over-represented. To detect this, it is necessary that the p-value calculated under
the respective method for that term t is small enough to remain significant even
after correction for multiple testing.

Since the parent-child method measures over-representation of a term with
respect to the presence of its parental terms in the study set, it can happen that
there are terms for which it can be already seen from the population set P that
any significant over-representation can not occur. This effect can be quantified
by looking at what we call the all-subset minimal p-value p̂min

t of a term t. This
is the minimal p-value one can obtain when minimizing the p̂t(S) values over all
possible study sets or, formally,

p̂min
t := min

S⊆P
p̂t(S) = p̂t(Pt).

The claim of the last equation enables us to calculate the all-subset minimal
p-values and can easily be checked using elementary probability theory. The
corresponding statement is also true for the term-for-term approach, where we
have pmin

t := minS⊆P pt(S) = pt(Pt). The behavior of the all-subset minimal
p-values differs tremendously between the two approaches.

The histogram in Figure 1 a) shows that for the parent-child approach there is
obviously a large number of terms for which the all-subset minimal p-values are
not small. This can be explained by almost trivial parent-child relations which
are already fixed by the annotations of the population set P . More explicitly,
denote by Pt ⊆ Ppa(t) :=

⋃
t′∈pa(t) Pt′ the set of genes annotated to at least one

of the parents of t. If there is no sufficiently large (set-)difference between Pt and
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a) All−subset minimal p−values for parent−child method
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Fig. 1. a) The distribution of all-subset minimal p-values of the parent-child approach.
It can be seen that there is a substantial amount of terms for which the all-subset
minimal p-value is not small. In contrast, all-subset minimal p-values of the term-for-
term approach are always small (below 1.55 · 10−4 in this dataset). We discuss the
reasons for this in the text. b) Scatterplot of the logarithm of the number of genes
annotated to a term against the all-subset minimal p-values of the term. It can be
seen that high minimal p-values are more likely to appear at terms with only a few
genes annotated. The obvious arrangement in curves corresponds to cases where mt

and mpa(t) differ only by 0, 1, 2,. . . annotated genes. The maximal value of mt for which
we observe a trivial p̂min

t value of one goes up to 297 (ln(297) ≈ 5.7) (the dot in the
upper right corner corresponds to the root term, which is always trivial).

Ppa(t), the value of p̂min
t cannot be small. In the extreme cases where p̂min

t = 1
we have Pt = Ppa(t).

From Figure 1 b), where we plot p̂min
t values against the corresponding ln(Pt)

values for all terms t, it can be seen that large values mainly occur for those
terms to which only few genes are annotated in the population set (cf. figure
legend for more details).

In contrast to the parent-child approach, the term-for-term approach always
produces extremely small all-subset minimal p-values. This is not surprising, be-
cause since pt(Pt) is the probability that a set of size mt := |Pt| drawn randomly
from P consists exactly of the genes in Pt it should always be small. This is
related to our criticism of the term-for-term approach. We criticize that once we
know about the presence of a certain term in the study set, we also have some
information about the presence of its descendant terms in the set. This knowl-
edge is reflected by our parent-child approach but neglected by the term-for-term
approach.

3.2 False Positive (Descendant) Terms

Our strategy to compare the two approaches with respect to the false posi-
tive prediction of over-represented GO terms is the following. We create a large
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number of (artificial) study sets for each of which a single term is intentionally
over-represented. When analyzing such a set with one of the methods, any term
found to be over-represented can be counted as a false positive classification,
unless it is the intentionally over-represented term itself. We compare those false
positive counts in terms of receiver operator characteristics (ROC) curves to vi-
sualize the differences between the two approaches. The technical details of this
strategy need a more thorough description which we give now.

We start by selecting those terms which we will intentionally over-represent
in the creation of the study sets. According to the results from the last sub-
section, we restrict ourself to those terms for which a statistically significant
over-representation is possible. Therefore, we identified the set

Tgood := {t ∈ T : p̂min
t < 10−7}

of terms with a small enough all-subset minimal p-value. We chose a cutoff of
10−7 because it leaves us enough room to get small p-values even after correction
for multiple testing. In our concrete dataset, a total of 1472 out of 3870 terms
made it into Tgood.

For each term in t ∈ Tgood we construct artificial study sets at different levels
of over-representation of t and different levels of noise as follows. We start with
the set Pt from which we keep a certain proportion (called term proportion) in
the study set by a random selection. To those genes we add another proportion
(called population proportion) of genes from the whole population set as random
noise. We did this for term proportions of 100%, 75% and 50% and population
proportions ranging from 0% to 25% at steps of 5% resulting in a total of 18
parameter combinations.

Let S be a study set constructed as just described and let tover(S) be the term
over-represented in the its construction. S is analyzed with both methods and the
results are further processed to count the respective false positive and negative
predictions. Observe that any analysis of S naturally divides the total set of
terms T into two parts. First, there is the set of terms which do not annotate
any of the genes in S. We do not consider those terms as true negatives in the
calculation of the false positive rate, because both methods will never have a
chance to falsely predict any of those terms as over-represented and therefore
will agree. Moreover, we restrict ourselves to those terms which reside in the
same of the subontologies (defined by the terms biological process, molecular
function and cellular component) of GO as the term tover(S). The reason for
this is that there are many biologically meaningful relations between terms in
different subontologies which are also respected in the annotation of the genes.
The set of terms which is left after this reduction will be considered in the
calculation of true/false positives and be denoted by Ttest(S). By construction,
any term in Ttest(S) other than tover(S) will be treated as a false positive when
predicted as over-represented at a certain p-value cutoff by either method. The
term tover(S) itself is counted as a false negative when not detected at that
cutoff.
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A last distinction has to be explained to understand the two final analyses we
present. To better highlight the inheritance problem we first intersect Ttest with
the set of all strict descendant terms of tover(S) and count the false positives only
on this set which we denote by Tdesc(S). In the second analysis, the counting is
done on the whole of Ttest to compare the general tendency to falsely classify
terms as over-represented.
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Fig. 2. Descendant-term ROC at different combinations of term and population pro-
portions. Each point corresponds to the false and true positive rate calculated at a
certain p-value cutoff π. We did not connect the points with lines, because those would
indicate nonexisting combinations of the two rates. The parent-child method drasti-
cally reduces the number of descendant terms falsely predicted to be over-represented.
Adding noise or reducing the level of over-representation makes it harder for both meth-
ods to correctly detect the over-represented term. This is the reason for the breaking off
of the curves. ROC analysis of other combinations of term and population proportions
always showed a clear advantage of the parent-child approach.
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To calculate true/false positive rates, we combine the results from all study
sets for a fixed combination of term and population proportions. Let S be such
a collection of study sets.

We begin with the analysis where we count false positives on Tdesc(S) only.
For a given p-value cutoff π we define the descendant-term false positive rate
FPRdesc(π) of the term-for-term method over the set S as

FPRdesc(π) :=
∑

S∈S
∣∣{t ∈ Tdesc(S) : pt(S) < π}∣∣∑

S∈S |Tdesc(S)| (3)
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Fig. 3. All-term ROC at different combinations of term and population proportions. It
can be seen that the parent-child method performs at least as well as the term-for-term
method. Again, adding noise or reducing the level of over-representation has an impact
on both method’s ability to correctly detect the over-represented term. Additional
remarks are in the legend to Figure 2.
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and the descendant-term true positive rate TPRdesc(π) as

TPRdesc(π) :=

∣∣{S ∈ S : ptover(S) < π}∣∣
|S| . (4)

The corresponding descendant-term false and true positive rates for the parent-
child method are denoted by F̂PRdesc(π) and T̂PRdesc(π) and calculated by
replacing p with p̂ in (3) and (4).

A receiver operator characteristics (ROC) curve is obtained from those values
by plotting the false positive rate versus the true positive rate for all p-value
cutoffs π between 0 and 1. The results for the descendant-term analysis are
shown in Figure 2 for some combinations of term and population proportions.
It can be seen that the parent-child method drastically reduces the number of

parent-child

term-for-term

GO:0006139

nucleobase, nucleoside, nucleotide and

nucleic acid metabolism

GO:0006289

nucleotide-excision

repair

GO:0006269

DNA replication, synthesis of RNA primer

GO:0006284

base-excision

repair

GO:0006281

DNA repair

GO:0006298

mismatch repair

GO:0000731

DNA synthesis during DNA repair

GO:0006301

postreplication

repair

GO:0006974

response to DNA damage stimulus

GO:0043283

biopolymer metabolism

GO:0006273

lagging strand elongation

GO:0045005

maintenance of fidelity during DNA-dependent

DNA replication

GO:0006272

leading strand elongation

GO:0006271

DNA strand elongation

GO:0006259

DNA metabolism

GO:0006310

DNA recombination

GO:0006260

DNA replication

GO:0006312

mitotic recombination

GO:0006261

DNA-dependent DNA replication

Fig. 4. Excerpt of the graph displaying over-represented terms in a set of 300 yeast
genes shown to be specific for cell-cycle phase G1 ([15]). A gray marker below a term
means that the term is over-represented in the term-for-term approach while a black
marker indicates over-representation in the parent-child method. The inheritance prob-
lem of the term-for-term approach can be seen among the descendant terms of the two
terms DNA repair and DNA replication. The range of the specific aspects of DNA
replication and DNA repair found by the term-for-term approach is so wide, that no
specific biological information can be gained from this. The figure was generated by
post-processing output from the Ontologizer with the Graphviz program [16].
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descendant terms falsely predicted to be over-represented when compared to the
term-for-term approach.

In the second analyses we calculate the false positive rates using all terms in
Ttest(S). The results in Figure 3 show that the parent-child approach performs
comparably to the term-for-term approach with respect to this general counting
of false positives.

3.3 A Biological Example

We compare the two approaches on a study set from a set of Saccharomyces
cerevisiae cell cycle experiments, in which approximately 800 genes were shown
to be cell-cycle regulated ([15]). We present an analysis of the 300 G1-specific
genes, taking the entire set of genes on the microarray as population set. GO
annotations from the Saccharomyces Genome Database ([14]) were used.

Although the G1 stage precedes the S, or synthesis, stage when DNA repli-
cation occurs, the G1 cluster contains many genes involved in DNA replica-
tion and repair, budding, chromatin and the spindle pole body (cf. Fig. 7
of [15]).

In Figure 4 we present a portion of the results of the GO analysis using
both the parent-child and the standard term-for-term method. For both meth-
ods p-values were corrected by Westfall & Young’s step-down resampling cor-
rection ([12]). We think that most of the terms which are identified by the
term-for-term approach but not by the parent-child method are there because
of the inheritance problem. According to the parent-child method, the key
terms in this dataset are DNA repair and DNA replication. The descendant
terms which are additionally identified by the term-for-term approach don’t
show a tendency towards a selection of closely related more specific terms,
but rather cover a wide range of different terms. We don’t claim that these
more specific terms are biologically irrelevant. We only claim that there is no
evidence that a certain collection of those terms plays an increased role in the
study set.

4 Discussion

With the parent-child approach we have introduced a novel statistic to measure
over-representation of GO terms in GO annotated gene sets. The motivation
for this was the inheritance problem of the term-for-term approach which is the
current standard. The inheritance problem refers to the fact that if a certain
GO term is over-represented in a gene set, the term-for-term approach has a
tendency to incorrectly show an over-representation of some of its descendant
terms. We have illustrated this problem by analyzing gene sets in which we ar-
tificially introduced different levels of over-representation of individual terms.
Analyzing the gene sets with both approaches shows that the parent-child ap-
proach drastically reduces the number of descendant terms falsely predicted to
be over-represented.



An Improved Statistic for Detecting Over-Represented GO Annotations 97

Given this systematic analysis of the advantages of the parent-child approach
we think that it should become the future standard. However, it should be clear
that, since the two approaches use different statistics, the interpretation of results
obtained with the term-for-term approach cannot be carried over to the parent-
child approach. The following proper understanding of how the parent-child
results have to be interpreted is necessary on the user’s side.

One might argue that the inheritance problem of the term-for-term approach
is in fact not a problem, but an advantage, since it also detects interesting
descendant terms of over-represented terms which the parent-child approach
would miss. Still, the parent-child approach does not state that those descendant
terms are biologically irrelevant. It states that the experiment which resulted
in the study set does not give enough information to claim that some of those
descendant terms are more relevant than others and that therefore all descendant
terms might be equally important in further studies. In turn, the additional
emergence of descendant terms under the parent-child approach clearly indicates
their increased importance. With that interpretation in mind one can claim that
the parent-child approach gives more detailed insights into the GO annotation
of the study set than the term-for-term approach.

The all-subset minimal p-values which we introduced in Subsection 3.1 are
another key quantity which we think is of great importance in the context of
the parent-child approach. Knowing about the parent-child combinations for
which the all-subset minimal p-values are rather large gives important insights
into the nature of the GO annotations of the underlying population set. We
therefore plan to incorporate the all-subset minimal p-values into a visualization
of the results obtained from the parent-child approach as it is produced by the
Ontologizer.

We explicitly did not focus on the problem of multiple testing corrections
(MTCs) in the context of finding over-represented GO terms in gene sets. Al-
though some of the standard approaches have meanwhile been implemented and
tested in this context, we think that there is still room for improvement and we
will broaden our research to that topic. The problem of finding the optimal MTC
is hard, because of the complicated dependencies between the GO terms which
are caused by the DAG structure and by the annotation of individual genes
to multiple terms. The parent-child approach corrects for some of those depen-
dencies, but there remain other non-trivial dependencies between parent-child
p-values. The parent-child approach therefore adds a new facet to the topic of
MTCs, because it is not clear that the same strategy will turn out to be optimal
for both approaches.
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Abstract. Reliable automatic protein function annotation requires
methods for detecting orthologs with known function from closely re-
lated species. While current approaches are restricted to finding ortholog
clusters from complete proteomes, most annotation problems arise in
the context of partially sequenced genomes. We use a combinatorial op-
timization method for extracting candidate ortholog clusters robustly
from incomplete genomes. The proposed algorithm focuses exclusively
on sequence relationships across genomes and finds a subset of sequences
from multiple genomes where every sequence is highly similar to other
sequences in the subset. We then use an optimization criterion similar to
the one for finding ortholog clusters to annotate the target sequences.

We report on a candidate annotation for proteins in the rice genome
using ortholog clusters constructed from four partially complete cereal
genomes - barley, maize, sorghum, wheat and the complete genome of
Arabidopsis.

1 Introduction

To reliably annotate a protein sequence, computational methods strive to find a
group of proteins, from closely related species, which have evolved from a com-
mon ancestral sequence [1]. Such proteins, from different species, related through
speciation events are called orthologs [2]. Current methods for protein function
annotation can be broadly divided into (complete sequence) homology based and
(domain) model based methods, depending on the protein sequence segment
they annotate. Homology based methods, such as [1, 3, 4], annotate an entire
protein based on the annotation of existing well-studied orthologous proteins
whereas model based approaches [5] annotate segment(s) of a protein sequence
based on models of protein sequence segments from well studied proteins. Models
for protein segments include protein domains (ProDom [6]), functional families
(Pfam [7]), structural domains (SCOP, [8]) etc.
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Protein annotation by homology hinges on accurately identifying orthologs
of a target protein in related species, whereas model based approaches must ac-
curately identify and model conserved protein segments in a set of orthologous
proteins. So, a reliable method for extracting orthologs is central to either ap-
proach. As the model based approaches build on orthologous sequences, the space
of protein functions covered by orthologous sequences is larger than that covered
by models of segments of sequences, for instance, many cereal-specific ortholog
groups do not have any representation in Pfam, PRODOM and PROSITE. In
contrast, ortholog clusters from cereals can be used to annotate proteins from
a newly sequenced cereal genome providing accurate and detailed annotations
for an entire protein when the members of ortholog clusters are themselves well-
studied. An advantage of the model-based approaches is the localization of the
functional segments and domain architecture for the target sequence. Recog-
nizing these limitations, current automatic high throughput annotation systems
such as TrEMBl [9], Ensembl [10] and PIR [5] are implemented as expert systems
using state of the art methods from both categories.

Protein annotation using orthologs is widely recognized [11, 12], but in the
absence of reliable automatic tools for identifying such evolutionarily related
proteins, functional annotation is carried out by semi-automatic methods re-
quiring expert intervention. A popular method for annotating a target protein
is by transferring the annotation of the nearest-neighbors from closely related
species [12]. For proteins, the neighbor-relationship is multi-faceted and encom-
passes similarity in sequence composition, proximity on the chromosome, expres-
sion levels in the cell etc. In practice, however, the nearest neighbor relationship
is solely guided by sequence similarity, and is often implemented using the clos-
est Blast [13] hit. Annotations based on best-Blast-hit can be error-prone [14],
and have resulted in uncontrolled propagation of function annotation errors in
protein sequence databases [1]. So, an effective automatic function annotation
approach must have (i) a reliable method for ortholog clustering, (ii) a sensi-
tive criterion for identifying ortholog neighbors for a target protein, and (iii) a
source of data, with trustworthy annotations, for constructing ortholog clusters.
We constructively address these issues by demonstrating how partially complete
genomes (whose proteins are experimentally annotated) can be used to build
ortholog clusters which then together with a robust criterion allow annotation
of target proteins.

Finding candidate orthologs in partially complete genomes is an inadequately
addressed problem that is critical to protein function annotation. It allows
incorporation of high quality protein functional annotation which has been ex-
perimentally determined by biologists. Well before the complete set of proteins in
a species is known, biologists experimentally study proteins and proceed to func-
tionally annotate them. During a high throughput annotation for a related pro-
teome, the experimentally studied proteins from the partially completed genomes
are a valuable resource.

Current popular approaches for finding orthologs are based on reciprocal
best hits [2, 15, 16, 17]. These methods involve finding pairs of mutually most
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similar proteins in two species as seeds for ortholog clusters, and differ primarily
in the method for aggregating the seed clusters to get the final clusters. Finding
the reciprocal best hits requires complete genomes, so these approaches cannot
work for incomplete genomes. Moreover, it is not robust for detecting orthologs
for protein families that have undergone duplication events recently [18]. Such
events are frequent in higher species, so ortholog detection based on reciprocal
best hits is not robust. Furthermore, even when the reciprocal best hits are re-
liable orthologs, the aggregation step can be error prone. Consequently, these
approaches are best suited for ortholog extraction in a pair of complete genomes
and require a careful manual curation by experts [2, 17]. In fact, these approaches
are known to produce good results for complete genomes but they have limita-
tions since they were not designed for addressing problems arising in ortholog
detection in incomplete genomes.

A solution for detecting orthologs in a large set of incomplete genomes lies in
reformulating the problem by finding orthologs, directly, as a subset of highly
similar genes from multiple species. Based on this, we use a combinatorial opti-
mization formulation of the ortholog clustering [19]. Here, we use an objective
function that is based on sequence similarity viewed in the context of the phy-
logenetic relationships between the species, and the conserved gene-order such
that the resulting method is suitable for ortholog clustering in partially complete
genomes. We have also developed a robust criterion for annotating a target se-
quence with an ortholog cluster. This has been applied to annotate rice protein
sequences using ortholog clusters constructed from plants, mostly cereals.

In section 2, we present our solution to ortholog clustering, while section 3
describes the method for extracting ortholog clusters and annotating query pro-
teins with them. Section 4 presents the data used for this study. Section 5 de-
scribes the clustering results, while the results of annotating proteins from rice
are presented in section 6 with conclusions in Section 7.

2 Addressing Challenges in Ortholog Clustering

A challenge in finding ortholog clusters is to avoid paralogs which result from du-
plication events. From a functional perspective, correct identification of orthologs
is critical since they are usually involved in very similar functions whereas par-
alogs, although highly similar, functionally diverge to acquire new functions. If
a duplication event follows a speciation event, orthology becomes a relationship
between a set of paralogs [2]. Due to this complex relationship, paralogs related
to ancient duplications are placed in different ortholog clusters whereas recently
duplicated paralogs are placed in the same ortholog cluster [2]. This is justified
from a functional perspective because recently duplicated genes are most likely
to have the same function.

As orthologs cannot be within a species, we only consider similarities between
sequences from different species, ignoring similarities between sequences within
a species. This allows us to focus exclusively on inter-genome relationships and
avoids intra-genome relationships which are paralogs anyway. Accordingly, it
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is convenient to think of the underlying graph of similarities as a multipartite
graph where each of the vertex classes represents a species and protein sequences
correspond to vertices in a vertex class. Such a multipartite graph representation
provides a powerful framework for many comparative genomics studies as it aptly
captures cross-species relationships.

Due to functional constraints, orthologs with the same function are likely to
display higher levels of similarity compared to paralogs which tend to diverge
in sequence and function. So, we consider only a subset of the most similar
matches for any given protein sequence, as in [20]. To be precise, if a sequence i
in species s(i) has the sequence j as its best-match in species s(j) with score mij

(considered as a Blast Z-score, the bit-score), we considered all those matches for
i from species s(j) which score higher than αmij (0 ≤ α < 1). The idea behind
this is to avoid low-scoring spurious matches (most likely paralogs) without
filtering out potential orthologs. Although, the precise choice of the value of α
seems to be critical, in our experiments we found that clustering results do not
vary significantly for 0.5 ≤ α ≤ 0.8. So, we chose a conservative value, α = 0.5,
to avoid ignoring any potential orthologs 1.

A challenge specific to ortholog detection in multiple species is the variation
in the observed sequence similarities between orthologs from different pairs of
species. Within an ortholog family, orthologs from anciently diverged species are
less similar compared to those from the closely related species. So, automatic
methods based on quantitative measures of sequence similarity must correct the
observed similarities. The issue related to the correction is more complicated
due to variations in evolutionary rates across lineages and protein families [21].
Here, we do not wish to correct for the absolute rates of evolution, but only
wish to correct the bias in observed similarity values for their use in a computa-
tional approach for ortholog clustering. From this perspective, we can rescale the
observed similarity values between sequences from a pair of genomes using the
distance (time since divergence) between those species. This does not introduce
any inconsistency related to diverse rates of evolution because irrespective of
protein families, the similarity between sequences in two species is scaled by the
same constant (distance between the species); so, the variation in evolutionary
rates across protein families is not corrected. We use the species tree for rescal-
ing observed similarities between sequences. Computationally, this requires the
ortholog detection method to simultaneously consider two graphs: a multipartite
graph between genes from different species and the graph for distances between
the species.

One of the indicators of orthology in closely related higher organisms is the
synteny (the conservation in the ordering of genetic elements in a set of genomes)

1 Here α is chosen to be a constant for all sequences. However, its value will vary across
protein functional families. It can be determined by a separate study of divergence
in sequence similarity among paralogs following a duplication event. To be precise,
it requires modeling sequence evolution for the duplicates to bring out the critical
level of divergence in the sequence similarity that leads to neo-functionalization or
sub-functionalization of paralogs.
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[21, 22, 23], and is widely used in comparative genomics [24, 25, 26]. This auxiliary
information, when available, is useful in correctly identifying orthologs [27] as
it can help differentiate orthologs from paralogs. This is particularly useful for
discovering orthologs in incomplete genomes of closely related species. If a protein
i in species s(i) is similar and syntenous (conserved in gene-order) to protein j in
species s(j), we lock them together as orthologs and the optimization procedure
treats these genes as a unit when discovering orthologs.

Finally, we address the problems due to the incompleteness of genomes by
focusing on all the relationships in a subset of genes from multiple species. Unlike
the popular approaches based on reciprocal blast hits, we directly test the subsets
of genes from multiple species for candidates of ortholog clusters. Intuitively, by
simultaneously analyzing all the relationships between genes in a subset, we
extract a subset of genes in which all genes are highly similar to each other.

3 Clustering Method

Let V = ∪n
k=1Vk be the set of all proteins from n species where Vk, k = 1, 2, . . . , n

is the set of proteins from species k. An arbitrary subset H (H ⊆ V ) can be
decomposed as H = ∪n

k=1Hk where Hk ⊆ Vk is a subset (possibly empty) of
sequences from the species k. Let mij (≥ 0) be the observed similarity be-
tween the sequence i from species s(i) and the sequence j from species s(j). Let
p(s(i), s(j)) be the evolutionary distance (explained later) between s(i) and s(j),
then we define the similarity of a protein i (i ∈ H) to the subset H as:

π(i,H) =
n∑

t=1
t�=s(i)

p(s(i), t)

⎧⎨⎩∑
j∈Ht

mij −
∑

j∈Vt\Ht

mij

⎫⎬⎭ (1)

The evolutionary distance p(s(i), s(j)) is used to correct the observed sequence
similarities by magnifying the sequence similarity between sequences from an-
ciently diverged species. The evolutionary distance can be defined as the estimate
of the divergence time between the species s(i) and s(j), but such estimates are
usually not available. So, we used the topology of the species tree to define this
distance. Using the tree topology, there are various ways to formalize p(s(i), s(j))
such as the height, hs(i),s(j), of the subtree rooted at the last common ancestor
of s(i) and s(j). The exact definition of p(s(i), s(j)) as a function of hs(i),s(j) de-
pends on the species in data for ortholog detection. When the species are closely
related (such as the members of the grass family in our data), a function that
depends on hs(i),s(j) but grows slower will better model the distance between
the species. Choosing an appropriately growing function is critical because a
faster growing function will have the undesirable effect of clustering together
sequences from distance species but leaving out sequences from closely related
species. So, the distance p(s(i), s(j)) (≥ 0) between s(i) and s(j) is defined as
(1 + log2 hs(i),s(j)).

The term
∑

j∈Ht
mij in (1) aggregates the similarity values between the se-

quence i from species s(i) and all other sequences in the subset H that do not
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belong to species s(i), while the second term
∑

j∈Vt\Ht
mij estimates how this

sequence is related to sequences from species t that are not included in Ht. A
large positive difference between these two terms ensures that the gene i is highly
similar to genes in Ht but very dissimilar from genes not included in Ht. From
a clustering point of view, this ensures large values of intra-cluster homogene-
ity and inter-cluster separability. Applied to ortholog clustering, this enables
separation of the ortholog clusters related to anciently duplicated paralogs.

Using the coefficient of similarity in (1) between a protein and a subset of
proteins from other species, any arbitrary subset H of proteins from multiple
species is associated with a score, F (H) indicating the strength of the ortholo-
gous relationship among proteins in the subset H:

F (H) = min
i∈H

π(i,H), ∀i ∈ H ∀H ∈ V (2)

So, F (H) is the π(i,H) value of the least similar (outlier) protein in H. Then,
a candidate ortholog cluster H∗ is defined as the subset that has the maximum
score over all possible subsets of proteins from the set of all proteins, V , in the
given set of species:

H∗ = arg max
H⊆V

F (H) (3)

In other words, H∗ contains sequences such that similarity of the least similar
sequence in H is maximum, so all sequences in H∗ must be highly similar.
Equation (3) requires us to solve a combinatorial optimization problem. This
problem can be solved efficiently [19] and the details of the algorithm for finding
the optimal solution for (3) are given in the Appendix.

The above problem formulation in (1), (2) and (3) yields one ortholog cluster.
However, many such clusters are present in a given set of proteins from multiple
species. If we assume that these clusters are unrelated (or, weakly related) to
one another, then a simple heuristic of iteratively applying the above procedure
finds all these clusters. To do this we remove the proteins belonging to the first
cluster H∗ from V and extract another ortholog cluster in the set of proteins
V \H∗. This is iteratively applied until no more clusters are left. An advantage of
this process is that it automatically determines the number of ortholog clusters.
This method has been implemented in C++ and is available upon request.

3.1 Criterion for Annotating Target Proteins

Annotating a query sequence requires finding an ortholog cluster whose proteins
are orthologous to the query protein. In an extreme case, ortholog clusters may
need to be reconstructed using the target sequences as part of the input data.
On the other hand, if the existing ortholog clusters are stable and the annotation
criterion is stringent and similar to the one for extracting clusters, then existing
clusters will be retained merely as extensions of clusters obtained on extended
input data. However, such results depend on the criterion used for annotating
the query sequences. We describe such a criterion.
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Every ortholog cluster H∗
t is associated with a score value F (H∗

t ). A query
protein sequence q is annotated with the cluster, Ĥ whose proteins are orthol-
ogous to it. So, the degree of orthologous membership (1) of q to the ortholog
cluster Ĥ should be large. Also, since protein q is orthologous to proteins in Ĥ,
we expect the following to hold:

π(q, Ĥ) ≥ F (Ĥ) (4)

In other words, inclusion of q should not adversely affect the score F (Ĥ), and q
should lie close to the center of the cluster. We use (4) to select the candidate
ortholog clusters with which a query protein can be potentially annotated. It
is possible that no candidate ortholog cluster satisfies (4), and in such a case q
cannot be annotated using the ortholog clusters. On the other hand, multiple
ortholog clusters, Hq = {H∗ : π(q,H∗) ≥ F (H∗)} may satisfy (4). To uniquely
annotate q, we select the cluster with highest average similarity to q

Ĥq = arg max
H∈Hq

π(q,H) / |H| (5)

The criteria (4) and (5) to annotate proteins are derived from the score func-
tion for extracting the clusters. Unlike the nearest-neighbor based criterion for
annotation queries with ortholog clusters, our criteria are less sensitive to slight
changes in pair-wise similarity values between proteins. By integrating similarity
values between the query protein and proteins in an ortholog cluster, our crite-
rion (4) estimates the degree of orthologous relationship between the query and
sequences in the ortholog cluster. Additionally, this criterion is very sensitive to
the homogeneity of an ortholog cluster, as the condition (4) will not be satis-
fied unless all members of a cluster are similar. Our criteria are more stringent
than the best-Blast-hit criterion (where a query sequence is annotated with the
cluster of its best Blast hit). As indicated by (4), the set of query sequences
annotated by our criteria is contained in those annotated by the best-Blast-
hit criterion. So, our criterion provides smaller but more sensitive annotation
coverage.

4 Data

The protein sequences in the partially sequenced genomes from maize (Zea mays,
3,318 sequences), sorghum (Sorghum bicolor, 468) and wheat (Triticum aestivum,
1,693), were downloaded from PlantGDB [28] and the complete Arabidopsis
thaliana proteome (26,639 sequences) was downloaded from MAtDB at MIPS
[29]. These sequences along with the species tree for these plants [30] (shown
in Fig. 1) were used for constructing candidate ortholog clusters. The sequences
from the rice proteome (61,250), available from TIGR (the size is based on data
downloaded from ftp://ftp.tigr.org/pub/data/Eukaryotic Projects/o
sativa/annotation dbs/), were used as targets for annotation.

To validate the candidate ortholog clusters and the annotations based on
them, we used the Pfam family [7] annotations for protein sequences. We
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AW B SMR

Fig. 1. The species tree for Arabidopsis (A), barley (B), maize (M), rice (R), sorghum
(S), and wheat (W)

annotated all sequences with Pfam families (rel. 12) using Blast [13] search (with
default parameters but filtering out low complexity and coil-coil regions and e-
value threshold e−10). The pair-wise sequence similarity between the protein
sequences was computed using Blast (as above but using default e-value) and
bit-score was used as a measure of similarity. Finally, we used DiagHunter [27]
to identify the proteins located in syntenous regions in a pair of genomes and
those groups of sequences were treated as single units for clustering.

5 Clustering Results

We applied our method to the 33,227 protein sequences from the five plants.
The clustering process took less than 20 minutes (discounting the blast com-
parison time) on a Pentium 2.8GHz machine, and produced 22,442 sequences
as singletons (94 sorghum + 1,038 maize + 185 barley + 286 wheat + 20,839
Arabidopsis). The remaining 10,785 sequences were grouped into 1,440 clusters,
which we call the ortholog clusters.

The distribution of species in the ortholog clusters is shown in Table 1. As
can be seen from this table, most clusters are small and contain only a few
sequences from each species. The presence of 66 large clusters (size ≥ 25) is
intriguing as one would expect ortholog clusters to contain only a few sequences
from each genome. We investigated these and found them to be related to various
transposable elements and retrotransposons which are wide spread in plants and,
in fact, are not true proteins.

Table 1. Joint distribution of size and species in clusters. S: sorghum M: maize B:
barley W: wheat A: Arabidopsis cereal: one of S,M,B,W.

Organisms Cluster size

in Clusters 2 3 4 5 6-10 11-25 >25

S+M 2 1 1

B+W 8 10 1 3 1

S+M+B+W 1 1

A+S+M+B+W 1 5 17 26

A + cereal(s) 251 358 180 132 234 131 39

others 20 10 1 2 5 4

Total 279 375 183 139 244 155 66
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Fig. 2. Consistency of members of ortholog clusters as shown by Pfam annotations

An evaluation of the quality of ortholog clusters requires comparing the clus-
ters with benchmark (manually curated) ortholog clusters, which are not avail-
able for this data. So, an assessment of the homogeneity of clusters was performed
using Pfam as an independent source of annotation. It must be emphasized that
the same Pfam annotation for proteins from different species does not imply or-
thology, however, when proteins are orthologous, they are likely to be involved in
similar functions, so they must have similar Pfam annotations. Moreover, when
multiple Pfam families are associated with orthologous proteins, they must ap-
pear in the same (domain) order in all members of the ortholog family.

As shown in Fig. 2, almost 75% (1,063) of the clusters contain sequences
with the same set of Pfam annotations. Moreover, when multiple Pfam annota-
tions were associated with sequences in a cluster, the order of their appearance
(domain architecture) in different sequences was preserved, indicating their or-
thology. There are 1,239 (86%) clusters in which all sequences share at least
one Pfam family annotation, while sequences in 185 (13%) clusters could not
be annotated. There are 26 (1%) clusters with sequences from different Pfam
families, but the keywords associated with those annotations are very similar.
These statistics indicate that our ortholog clusters are homogeneous.

There are 49 clusters with sequences from all the 5 species. Most (33 clusters)
of these clusters are large (size ≥ 10) and contain multiple sequences from each
species. An inspection of these clusters revealed that their members are consis-
tently annotated and are related to vital processes, such as transcription and
RNA synthesis, and to pathways that are specific to plants such as disease resis-
tance, chlorophyll, phytochromes, gibberlin, starch branching enzymes etc . These
annotations confirm the obvious: genomic regions known to contain sequences
of interest are likely to have been the first sequenced, and so these well-studied
proteins are critical for function annotation.

Our clustering results also show some lineage-specific expansion of novel pro-
tein families. We analyzed 23 clusters containing sequences exclusively from bar-
ley and wheat, and 4 clusters containing maize and sorghum sequences only. The
barley-wheat clusters contain genes specific to relatives of wheat, for instance,
one cluster (with annotation Hordoindoline) containing 19 sequences is related
to seed hardness in relatives of wheat [31] while another cluster is annotated
as Sucrose-phosphate synthase, which has recently diverged significantly from
orthologs in other plants [32]. Other barley-wheat and sorghum-maize clusters
represent similar cases of family-specific proteins. For instance, a sorghum-maize
cluster annotated as kafirin and zein has 22 zein-proteins from maize and 20
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kafirin proteins from sorghum; the zein and kafirin proteins are known to be
orthologous proteins found specifically in the sorghum-maize lineage [33].

6 Rice Sequence Annotation

We were able to annotate 25,540 protein sequences with 1,310 of the 1,440 or-
tholog clusters, and 130 clusters were not used for annotating any sequence.
(Computationally, the annotation stage is inexpensive and was completed within
5 minutes on a Pentium 2.8 GHz machine.) Most of the clusters annotated a
few sequences (see Fig. 3), for instance 241 clusters annotated 1 sequence each.
However, 10,894 were annotated by 35 clusters alone. A manual inspection of
annotations of members of these clusters revealed that these are related to fam-
ilies of genetic elements, such as transposable elements (10 clusters), retrotrans-
posons (17 clusters including a polyprotein related cluster that annotates 1728
sequences) and other repeat elements (such as PPR repeats) widely present in
plants.

An evaluation of automatic annotation can be performed by comparison with
the existing manually curated annotations available for rice sequences. Unfor-
tunately, these annotations do not use standardized terminology and cannot be
used for automated validation. So, for a systematic evaluation, we used Pfam
annotation for clusters. An ortholog cluster was annotated with the set of Pfam
families shared by at least 80% of its member sequences. However, we found that
varying this threshold between 50% to 95% has negligible effect on the annota-
tions for clusters as most clusters contain members with the same set of Pfam
annotations. The 1,310 candidate ortholog clusters used for annotation can be
divided into 1,090 clusters that are annotated with at least one Pfam family and
220 clusters that could not be annotated with any Pfam family.

The annotation results are summarized in Table 2. About 68% (17,356 of
25,540) of the annotated rice sequences exactly match the Pfam annotation of
their corresponding clusters (including the organization of different Pfam families
when multiple Pfams are present) and about 82% (20,844 of 25,540) share at least
one Pfam annotation with their clusters. Among all the annotated sequences,
14% (3,656) rice sequences and the 243 clusters used to annotate them are not
associated with any Pfam family. The existing annotations (available as part of
the input data) for these clusters and rice sequences show that they are annotated
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Table 2. Results of annotation and comparison with best hit based annotation
approach

Statistics Annotation us-
ing our criterion

Annotation
using bBh

Sequences Annotated 25,540 33,144

Exact match between Pfam annota-
tion for rice sequence and correspond-
ing ortholog cluster

17,356 20,224

Partial match between Pfam annota-
tion for rice sequence and correspond-
ing ortholog cluster

3,488 3,301

Clusters used for Annotation 1,310 1,316

Pfam annotated Clusters used for An-
notation

1,014 1,030

as hypothetical or putative proteins. It must be emphasized that these are the
cases where ortholog based methods provides more annotations (although not
specific) while model based methods fail to provide any annotation at all.

Evaluation of performance of our annotation criterion: We compared our
annotation results using the criteria (4) with those obtained using the best-Blast-
hit (bBh) criteria (shown in Table 2). The bBh criterion annotated 33,144 rice
sequences compared to 25,540 sequences annotated by our criterion. Although
more sequences could be annotated using the bBh criterion, it used almost the
same (1,310 vs 1,316) number of clusters for annotation. The usage of same clus-
ters for annotation by both criteria further supports our earlier observation that
the unused clusters are related to lineage-specific protein families not present
in rice. As mentioned earlier, 68% of sequences annotated using our criterion
exactly matched the Pfam annotation for their clusters compared to 61% for the
bBh criterion. When we require that sequences share at least one Pfam family
annotation with the corresponding cluster, results are 82% to 71% in favor of
our criterion. Thus, our criterion for annotating sequences with ortholog clusters
gives smaller but more sensitive coverage.

The primary reason for smaller coverage is the use of only one available com-
plete plant genome for constructing the ortholog clusters. This limited the space
of functions covered by the extracted ortholog clusters. A solution for improv-
ing annotation coverage while retaining the advantages (higher sensitivity) of
the proposed method is by combining it with the bBh approach - the proposed
method should be used whenever it successfully annotates a query sequence but
if it fails, we should resort to the bBh approach for annotating the query sequence
with sequences that do not belong to any ortholog clusters.

7 Conclusion

Discovering ortholog clusters in partially completed genomes is important for
taking advantage of experimentally determined annotations for sequences in
those genomes. Existing ortholog finding methods have limitations in solving
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this problem. We have presented a novel reformulation of the ortholog finding
problem by directly finding them as a subset of highly similar genes from multi-
ple species. Computationally, this is formulated as a combinatorial optimization
problem whose solution can be found efficiently. This formulation along with the
use of an enhanced similarity measure that considers observed pair-wise sequence
similarity, distance between the species, and synteny between genomes allowed
us to find ortholog clusters in the incomplete genomes. Further, by formulating
the problem on a multipartite graph and using gene-specific and genome-specific
cut-offs for similarities, we avoided anciently duplicated paralogs (likely to have
acquired new functions) but keeping the recently duplicated paralogs (paralogs
having similar functions) in ortholog clusters, conforming to the existing expert
based ortholog clustering paradigms [2].

We are currently working on further enhancing ortholog detection by incor-
porating various aspects of similarities for genes that are indicative of their
orthology. Such similarities include structural similarity, exon-intron organiza-
tion, similarity in cellular/tissue location where genes express, and the pathways
in which genes are involved. By including these diverse features, we hope to get
closer to an expert based ortholog detection. The current software is available
upon request and we soon hope to make it available over the web.
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Appendix

Algorithm for finding H∗: The objective of (3) is to find the subset H∗ for
which F (H) is maximum over all possible subsets of V . Observe that π(i,H) is an
increasing function of the second argument because when an additional element
k is included in H, we get π(i,H ∪ {k}) − π(i,H) = 2p(s(i), s(k))mik ≥ 0.
Because of this property, increasing the subset H can only increase the value
π(i,H) for any i ∈ H. This property is the basis of the algorithm for finding H∗.

Starting from V , the only possibility to get a subset with a larger score than
F (V ) is to remove the element i∗ = arg mini∈V π(i, V ) with the minimum value
of the function π(i, V ). This is because the element i∗ is the least similar element
in V and defines the score for the set V . By removing any other element, i′ (i′ �=
i∗), the value of the resulting subset V \{i′} can only decrease, i.e, F (V \{i′}) ≤
F (V ) because π(i∗, V \{i′}) ≤ π(i∗, V ) due to the property described above. But
we are interested in moving toward a subset with the largest score value, and
the only way to achieve this is by removing i∗ from V . After removing i∗, this
argument still holds and we again remove the least similar element, and continue
to do so until all elements are exhausted. Pictorially, this approach is described
in Fig. 4, and the algorithm is described in Table 3. As result, the subset with
the highest score encountered in this shelling-out process of the least similar
element is the optimal solution.

The algorithms runs in time O(|E| + |V |2), where E and V are the set of
edges and vertices, respectively, in the sequence similarity graph. For computing
the π(i, V ) values, we must look at all the edges which requires O(|E|) time.
At each iteration, the vertex corresponding to the least similar element is found
(requiring time O(|V |)) and removed. This removal entails deleting the edges
(and updating the function π() which takes time proportional to the number
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d = min
i∈V

π(i, V )
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Fig. 4. The motivation for the algorithm explained on a toy example, V = {a, b, c, d}.
All the subsets of V are shown by the Hasse diagram representation of the power set
lattice of V , and the objective is to find the subset, H with the largest F (H) value. As-
sume d = arg mini∈V π(i, V ). Then, F (V ) = π(d, V ) because F (H) = mini∈H π(i, H).
As π(i, H) is an increasing function of H, for all S � d, we have π(d, S) ≤ π(d, V ).
This implies F (S) ≤ F (V )∀S � d. Then, the only way to obtain a subset with a higher
score is to explore the subsets of V \ {d}. After removing d, the same argument holds
for the set V \ {d} and we can continue until all the elements are shelled-out.

Table 3. Pseudocode for extracting H∗

Algorithm 7.1. Algorithm for finding H∗()

t ← 1; Ht ← V ; H∗ ← V ;
F (H∗) ← min

i∈V
π(i, V )

while (Ht �= ∅)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mt ← {α ∈ Ht : π(α, Ht) = min
j∈Ht

π(j, Ht)};
F (Ht) ← min

j∈Ht

π(j, Ht);

if (Ht \ Mt) = ∅) ∨ (π(i, Ht) = 0 ∀i ∈ Ht)

then
{

output H∗ as the optimal set and
F (H∗) as the optimal value.

else

⎧⎪⎪⎨⎪⎪⎩
Ht+1 ← Ht \ Mt;
t ← t + 1;
if (F (Ht) > F (H∗))
then

{
H∗ = Ht;

of edges deleted), but each edge is deleted only once, so deleting edges for all
iterations together takes O(|E|) time. The maximum number of iterations is
bounded by |V |, so the algorithm runs in O(|E|+ |V |2) time. However, using the
Fibonacci heaps [34] to store the values of π(i,H) for elements of V , allows a
faster implementation of the algorithm [19] that runs in time O(|E|+|V | log |V |).
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Abstract. MicroRNAs (miRNAs) have recently been discovered as an
important class of non-coding RNA genes that play a major role in regu-
lating gene expression, providing a means to control the relative amounts
of mRNA transcripts and their protein products. Although much work
has been done in the genome-wide computational prediction of miRNA
genes and their target mRNAs, two open questions are how miRNAs
regulate gene expression and how to efficiently detect bona fide miRNA
targets from a large number of candidate miRNA targets predicted by ex-
isting computational algorithms. In this paper, we present evidence that
miRNAs function by post-transcriptional degradation of mRNA target
transcripts: based on this, we propose a novel probabilistic model that
accounts for gene expression using miRNA expression data and a set
of candidate miRNA targets. A set of underlying miRNA targets are
learned from the data using our algorithm, GenMiR (Generative model
for miRNA regulation). Our model scores and detects 601 out of 1, 770
targets obtained from TargetScanS in mouse at a false detection rate of
5%. Our high-confidence miRNA targets include several which have been
previously validated by experiment: the remainder potentially represent
a dramatic increase in the number of known miRNA targets.

1 Introduction

Recent results show that there may not be many more mammalian protein-
coding genes left to be discovered [9]. As a result, one of the main goals in
genomics is now to discover how these genes are regulated. In the basic model
for gene regulation, transcription factors act to enhance or suppress the tran-
scription of a gene into messenger RNA (mRNA) transcripts. Recent evidence
points to the existence of an alternative, post-transcriptional mechanism for gene
regulation in which the abundances of transcripts and/or their protein products
are reduced. In particular, microRNAs (miRNAs), a subclass of so-called non-
coding RNA genes [8], have been identified as such a component of the cell’s
regulatory circuitry. miRNA genes do not go on to produce proteins, but in-
stead produce short, 22-25 nt-long mature miRNA molecules. These then target
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mRNA transcripts through complementary base-pairing to short target sites.
miRNAs are believed to either trigger the degradation of their targets [3, 20] or
repress translation of the transcript into protein [1]. There is substantial evidence
that miRNAs are an important component of the cellular regulatory network,
providing a post-transcriptional means to control the amounts of mRNA tran-
scripts and their protein products. Previous work has focused primarily on the
genome-wide computational discovery of miRNA genes [5, 19, 23] and their cor-
responding target sites [13, 16, 17, 24]. Experiments have shown that multiple
miRNAs may be required to regulate a targeted transcript [16] and that miR-
NAs can regulate the expression of a substantial fraction of protein-coding genes
with a diverse range of biological functions [1, 4].

Although many miRNA genes and target sites have been discovered by com-
putational algorithms [5, 6], there remain two open problems in miRNA ge-
nomics. One is to determine whether miRNAs regulate their targets through
the post-transcriptional degradation mechanism, through the translational re-
pression mechanism, or possibly both. Another problem is the fact that there
are relatively few miRNA targets which have experimental support [13, 16]. The
computational algorithms used to find targets have limited accuracy [16, 17] due
to the short lengths of miRNA target sites and thus empirical methods are
needed to tease out true miRNA targets from false ones. Experimental valida-
tion of targets is currently done through in vitro reporter assays [13, 18] which
provide some measure as to whether the miRNA binds to a target site. One con-
cern with this type of assay is that a miRNA-target pair validated in vitro might
not be biologically relevant inside the cell [1]. In addition, assays performed on
a single miRNA-target pair might also erroneously reject the pair given that the
combinatorial nature of miRNA regulation isn’t taken into account and many
miRNAs may be required to observe down-regulation of the targeted transcript.
Finally, such assays are relatively expensive and time-consuming to conduct, so
that only a handful of targets have been validated using this method. Expres-
sion profiling has been proposed as an alternative method for validating miRNA
targets [20], but this has the problem of becoming intractable due to the combi-
natorial nature of miRNA regulation in which the action of many miRNAs must
be taken into account.

While computational sequence analysis methods for finding targets and ex-
pression profiling methods have their own respective limitations, we can bene-
fit from the advantages of both by combining the two methods [11] to detect
miRNA targets. Given the thousands of miRNA targets being output by target-
finding programs [13, 16, 17] and given the ability to profile the expression of
thousands of mRNAs and miRNAs using microarrays [12, 21], we motivate a
high-throughput computational technique for detecting miRNA targets in which
both sequence and gene expression data are combined. The pipeline for detect-
ing targets is shown in Fig. 1: a set of candidate miRNA targets is first gener-
ated using a target-finding program. Our model uses this set of candidates to
account for gene expression using miRNA microarray expression data while tak-
ing into account the combinatorial nature of miRNA regulation. In this paper,
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Fig. 1. Pipeline for detecting miRNA targets using GenMiR: a set of candidate targets
is generated using a target-finding program (e.g.: TargetScanS). The candidates, along
with expression data for mRNAs and miRNAs, are input into the GenMiR probability
model. The output of the model consists of a set of miRNA targets which are well-
supported by the data.

we first address the question as to how miRNAs regulate gene expression: we
will present evidence in favor of the post-transcriptional degradation model for
miRNA regulation. From this, we will formulate a probabilistic graphical model
in which miRNA targets are learned from expression data. Under this model,
the expression of a targeted mRNA transcript can be explained through the reg-
ulatory action of multiple miRNAs. Our algorithm, GenMiR (Generative model
for miRNA regulation), learns the proposed model to find a set of miRNA tar-
gets which are biologically relevant. We will show that our model can accurately
identify miRNA targets from expression data and detect a significant number of
targets, many of which provide insight into miRNA regulation.

2 Post-transcriptional Degradation (PTD) vs.
Translational Repression (TR)

We will begin by addressing the question of whether miRNAs regulate gene ex-
pression by post-transcriptional degradation of target mRNAs [3] or by repress-
ing translation of a targeted transcript [1] into proteins. In the first scenario,
we expect that both mRNA expression levels and protein abundances will be
decreased through the action of a miRNA. In the second scenario, protein abun-
dances would be decreased without any necessary change in the expression of
their parent mRNA. To determine which of the two mechanisms of miRNA reg-
ulation is most likely given biological data, we will present two simple Bayesian
networks for the proposed mechanisms, shown in Figure 2a. Each network con-
sists of a directed graph where nodes representing both miRNA and mRNA
expression measures as well as protein abundances are linked via directed edges
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Fig. 2. (a) Bayes nets for degradation and repression regulatory mechanisms: each
network presents a particular set of dependencies between miRNA, mRNA and protein
measures (b) Scatter plot of scores obtained from both models for each miRNA-mRNA-
protein triplet: most of the data is better accounted for by the PTD model than by
the TR model

representing dependencies between the 3 variables. Thus, each network encodes
a different set of dependencies between miRNA, mRNA and protein measures:
our aim here is to see which set of dependencies best describes biological reality.

To do so, we examined data profiling the expression of 78 mouse miRNAs [2]
with mRNA expression data [25] paired to protein mass-spectrometry data [15]
consisting of the measurements of 3, 080 mRNA-protein pairs across 5 tissues
common to the 3 data sets. All the measured values were then ranked across
tissues to get discrete rank values. We then used a set of human miRNA targets
output from the target-finding program TargetScanS [17, 26]. These consisted
of a total of 12, 839 target sites in human genes which were identified based
both on miRNA-target site complementarity as well as conservation in 3’-UTR
regions across 5 mammalian species (human, mouse, rat, dog and chicken). After
mapping these targeted transcripts to the mouse mRNAs and miRNAs in the
above data using the Ensembl database and BLAT [7], we were left with 473
candidate miRNA-target interactions involving 211 unique mRNA-protein pairs
and 22 unique miRNAs.

With the above data in hand, we gathered statistics over mRNA, protein and
miRNA measurements x, y, z across tissues t = 1, · · · , 5 for each putative miRNA
targets. We then scored the two regulatory models for each miRNA/mRNA/
protein triplet using Bayesian scores [10] computed as

BayesianScore(PTD) =
∑

t

log
(
p(yt|xt)p(xt|zt)p(zt)

)
BayesianScore(TR) =

∑
t

log
(
p(yt|xt, zt)p(xt, zt)

)
(1)

where each conditional probability term is a multinomial probability averaged
over a Dirichlet prior distribution. These scores correspond to the log-likelihood
of a miRNA/mRNA/protein data triplet given one of the two models for miRNA
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regulation. Figure 2b shows a scatter plot of the 2 scores for each mRNA-miRNA-
protein triplet: we can see that in the vast majority of cases, the PTD model
offers a far better fit to our data than the TR model, providing good evidence
in favor of the PTD model within the current debate of whether miRNAs act by
degrading targets or by repressing translation [1, 3]. With this result in hand, we
will now motivate the use of both mRNA and miRNA expression data to detect
miRNA targets.

3 Exploring miRNA Targets Using Microarray Data

To explore putative relationships between mRNAs and miRNAs, we used the
above microarray expression data profiling the expression of a total of 41, 699
mRNA transcripts and 78 miRNAs across 17 tissues common to both data sets:
expression values consisted of arcsinh-normalized intensity values in the same
range, with negative miRNA intensities were thresholded to 0. From the above
set of 12, 839 TargetScanS targets, 1, 770 are represented across this set of miR-
NAs and mRNAs in the form of 788 unique mRNAs and 22 unique miRNAs: the
set of putative miRNA-mRNA pairs are shown in Fig. 3. Given the expression

Fig. 3. Rank expression profiles of targeted mRNAs and corresponding miRNAs: each
profile measures expression across 17 mouse tissues. For targeted mRNA transcripts
(top row), a rank of 17 (black) denotes that the expression in that tissue was the highest
amognst all tissues in the profile whereas a rank of 1 (white) denotes that expression in
that tissue was lowest amongst all tissues. miRNA intensities are shown using a reverse
colormap (bottom row), with a rank of 17 (white) denoting that the expression was
highest and a rank of 1 (black) denotes that expression in that tissue was lowest. Each
miRNA targets and down-regulates multiple mRNA transcripts and a given mRNA
transcript may be targeted by multiple miRNAs.
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data and a set of putative targets, we looked for examples of down-regulation in
which the expression of a targeted mRNA transcript was low in a given tissue
and the targeting miRNA was highly expressed in that same tissue.

Among miRNAs in the data from [2], miR-16 and miR-205 are two that are
highly expressed in spleen and embryonic tissue respectively (Fig. 3). The cu-
mulative distribution of expression of their targeted mRNAs in these two tissues
is shown in Fig. 4. The plots show that the expression of targeted mRNAs is
negatively shifted with respect to the background distribution of expression in
these two tissues (p < 10−7 and p < 0.0015 using a one-tailed Wilcoxon-Mann-
Whitney test, Bonferroni-corrected at α = 0.05/22). This result suggests that
regulatory interactions predicted on the basis of genomic sequence can be ob-
served in microarray data in the form of high miRNA/low targeted transcript
expression relationships. While it is feasible to find such relationships for a single
miRNA using an expression profiling method [20], to test for the more realistic
scenario in which mRNA transcripts are down-regulated by multiple miRNAs,
we would require a large number of microarray experiments for a large number
of miRNAs. Additional uncertainty would be introduced by miRNAs that are
expressed in many tissues. An alternative is to use data which profiles the ex-
pression of mRNAs and miRNAs across many tissues and formulate a statistical
model which links the two using a set of candidate miRNA targets. A sensible
model would account for negative shifts in tissue expression for targeted mRNA
transcripts given that the corresponding miRNA was also highly expressed in
the same tissue. By accounting for the fact that miRNA regulation is combi-
natorial in nature [4, 16], we will construct such a model which will hopefully
capture the basic mechanism of miRNA regulation. The model takes as inputs a
set of candidate miRNA targets and expression data sets profiling both mRNA
transcripts and miRNAs: it then accounts for examples of down-regulation in
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Fig. 4. Effect of miRNA negative regulation on mRNA transcript expression: shown are
cumulative distributions for (a) Expression in embryonic tissue for mRNA transcripts
targeted by miR-205 (b) Expression in spleen tissue for mRNA transcripts targeted
by miR-16. A shift in the curve corresponds to down-regulation of genes targeted by
miRNAs. Targets of miR-205 and miR-16 (solid) show a negative shift in expression
with respect to the background distribution (dashed) in tissues where miR-205 and
miR-16 are highly-expressed.
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the expression data to output a subset of the candidate miRNA targets which
are well-supported by the data.

4 A Probabilistic Graphical Model for miRNA
Regulation

In this section, we describe our model of miRNA regulation. Under this model,
the expression of a targeted transcript can be reduced by the action of one
or many miRNAs, each of which will be allowed to reduce it by some fixed
amount. Conditioned on observing high expression of one or many miRNAs,
the expression of a targeted transcript is negatively shifted with respect to a
background level which is to be estimated. The particular miRNAs that will
participate in targeting a transcript will be selected using a set of unobserved
binary indicator variables; the problem of detecting miRNA targets will therefore
consist of inferring which of these indicator variables are turned on and which
are turned off given observed data.

Consider two separate expression data sets profiling N mRNA transcripts
and M miRNAs across T tissues. Let indices i = 1, · · · , N and j = 1, · · · ,M
denote particular mRNA transcripts and miRNAs in our data sets. Let xi =
[xi1 · · ·xiT ]T and zj = [zj1 · · · zjT ]T be the expression profiles over the T tissues
for mRNA transcript i and miRNA j such that xit is the expression of the ith

transcript in the tth tissue and zjt is the expression of the jth miRNA in the
same tissue. Suppose now that we are given a set of candidate miRNA-target
interactions in the form of an N ×M binary matrix C where cij = 1 if miRNA
j putatively targets transcript i and cij = 0 otherwise. The matrix C therefore
contains an initial set of candidate miRNA targets for different miRNAs: these
are putative miRNA-mRNA regulatory relationships within which we will search
for cases which are supported by the microarray data.

Due to noise in the sequence and expression data, the limited accuracy of
computational target-finding programs as well as incomplete knowledge of the
regulatory network of the cell, there is uncertainty as to which miRNA targets
are in fact biologically relevant. We can represent this uncertainty using a set of
unobserved binary random variables indicating which of the candidate miRNA
targets are well supported by the data. We will assign an unobserved random
variable sij to each candidate miRNA-target interaction such that sij = 1 if
miRNA j genuinely targets mRNA transcript i. Then, the problem of detecting
miRNA targets can be formulated in terms of finding a subset {(i, j)∈C|sij =1}
such that miRNA-target interactions in this subset are supported by the observed
expression data.

We can now describe a relationship between the expression of a targeted
mRNA transcript and a miRNA in tissue t:

E[xit|sij = 1, zjt, Θ] = μt − λjzjt, λj > 0 (2)
E[xit|sij = 0, zjt, Θ] = μt
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where λj is some positive regulatory weight that determines the relative amount
of down-regulation incurred by miRNA j, μt is a background expression pa-
rameter and Θ consists of the λj and μt parameters. Thus, the above explicitly
models the relationship observed in Fig. 4 in which the expression of a tar-
geted transcript is negatively shifted with respect to the background given that
a miRNA is highly expressed. Thus, miRNAs can never directly increase the
expression of their target transcripts, in accordance with current evidence about
their functions [1, 20].

We can extend the above to allow for multiple miRNAs to cooperate in tuning
the expression of a targeted transcript. Here, each miRNA is allowed to decrease
the expression of its target transcript by some relative amount λj such that

E[xit|{sij}, {zjt}, Θ] = μt −
∑

j

λjsijzjt, λj > 0

We are now able to present our model for miRNA regulation: we will do so
using the framework offered by probabilistic graphical models, where we can
explicitly represent dependencies between observed and unobserved variables as
well as model parameters using a directed graph. If we denote the prior targeting
probabilities as p(sij = 1|cij = 1) = π and S as the set of sij variables, we can
write the probabilities in our model given the expression of the miRNAs and a
set of candidate miRNA targets as

p(xi|Z,S, Θ) = N (xi;μ−∑
j λjsijzj ,Σ), λj ≥ ε > 0

p(S|C, Θ) =
∏

(i,j) p(sij |C, Θ) =
∏

(i,j)/∈C δ(sij , 0)
∏

(i,j)∈C πsij (1− π)1−sij

p(X,S|C,Z, Θ) =
∏

i p(xi|Z,S, Θ)
∏

j p(sij |C, Θ) (3)

where ε is a lower bound on the regulatory weights λj , δ(·, ·) is the Dirac delta
function, X and Z are the sets of observed expression profiles for mRNAs and
miRNAs, C is the set of candidate miRNA targets and Θ = {μ,Σ, π, {λj}M

j=1}
is the set of model parameters containing the background expression μ and
covariance matrix Σ, the prior targeting probability π and the miRNA regulatory
weights λj . The parameter ε addresses the constraint that miRNAs cannot make
a null contribution to the expression of its target given that the interaction
between the miRNA and its target is valid.

The above model links the expression profiles of mRNA transcripts and
miRNAs given a set of candidate miRNA targets: within these, we will search for
relationships which are supported by the data by inferring the settings for the
unobserved sij variables. Fig. 5 shows the Bayesian network corresponding to
Equation 3: each mRNA transcript in the network is assigned a set of indicator
variables which select for miRNAs that are likely to regulate it given the data.

Having presented the above probabilistic model for miRNA regulation, we
are now faced with the task of inference, or computing the posterior probability
p(sij |xi,Z,C, Θ) ∝ ∑

S\sij
p(xi,S|Z,C, Θ) that a given miRNA target is valid

conditioned on the data. Exact inference would require summing over a number
of terms exponential in the number of miRNAs. Unfortunately, this summation
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Fig. 5. Bayesian network used for detecting miRNA targets: each mRNA transcript is
assigned a set of indicator variables which select for miRNAs that are likely to regulate
it given the data

will be computationally prohibitive for transcripts which are targeted by a large
number of miRNAs. Thus, we will turn instead to an approximate method for
inference which will make the problem tractable.

5 Variational Learning for Detecting miRNA Targets

For variational learning [14, 22] in a graphical model with latent variables H and
observed variables E , the exact posterior p(H|E) is approximated by a distri-
bution q(H;φ) parameterized by a set of variational parameters φ. Variational
inference therefore consists of an optimization problem in which we optimize the
fit between q(H;φ) and p(H, E) with respect to the variational parameters φ.
This fit is measured by the Kullback-Leibler (KL) divergence D(q||p) between
the q and p distributions, which can be written as

D(q||p) =
∫
H
q(H;φ) log

q(H;φ)
p(H, E)

dH =
∑
S

q(S|C) log
q(S|C)

p(X,S|C,Z, Θ)

where X, Z, C and S have been substituted as the observed and latent variables
E and H respectively.

The approximating distribution can be further simplified via a mean-field de-
composition of the q-distribution in which all the latent sij variables are assumed
to be independent and thus

q(S|C) =
∏
i,j

q(sij |C) =
∏

(i,j)∈C

β
sij

ij (1− βij)1−sij (4)

where the variational parameters βij will be fitted to the observed data X, Z, C.
We will therefore approximate the intractable posterior p(sij |xi,Z,C, Θ) with
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a simpler distribution q(sij |C) which will make inference tractable. If we write
the expected sufficient statistics ui, W and V as

ui =
∑

j:(i,j)∈C

λjβijzj (5)

W =
1
N

∑
i

(
xi − (μ− ui)

)(
xi − (μ− ui)

)T

V =
1
N

∑
i

∑
j:(i,j)∈C

(βij − β2
ij)λ

2
jzjzT

j

then the KL divergence D(q||p) can be written simply as

D(q||p) =
∑

(i,j)∈C

(
βij log

βij

π
+ (1− βij) log

1− βij

1− π

)
+
N

2
log |Σ|

+
N

2
tr
(
Σ−1(W + V)

)
+ const. (6)

Approximate inference and parameter estimation will be accomplished via
the variational EM algorithm [14, 22], which iteratively minimizes D(q||p) with
respect to the set of variational parameters (E-step) and the model parame-
ters (M-step) until convergence to a local minimum. Thus, taking derivatives of
D(q||p) and setting to zero yields the following updates:

Variational E-step:

∀(i, j) ∈ C,

βij

1 − βij
=

π

1 − π
exp

[
− λjzT

j Σ−1
(
xi −

(
μ − (

∑
k �=j:(i,k)∈C

λk

2
βikzk +

λj

2
zj)

))]
(7)

Variational M-step:

μ =
1
N

∑
i

(xi + ui) (8)

Σ = diag
(
W + V

)
∀j, λj = max

(
−
∑

i βijzT
j Σ−1

(
xi − (μ−∑

k �=j:(i,k)∈C
λk

2 βikzk)
)

∑
i βijzT

j Σ−1zj
, ε

)

π =

∑
(i,j)∈C βij

card(C)
(9)
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where the expected sufficient statistics ui, W and V are obtained from the E-
step. Now that we have defined the update equations for performing inference
and estimating model parameters, we will use the above algorithm to learn a
subset of candidate miRNA targets which are biologically relevant.

6 Results

We can now turn to the problem of detecting miRNA targets. We start from
the above set of 1, 770 TargetScanS 3’-UTR targets and use the microarray data
from [2] and [25] to learn our model. The GenMiR algorithm was initialized
with βij = π = 0.5 ∀(i, j) ∈ C, λj = 0.01 ∀j = 1, · · · ,M and the parameters
μ,Σ were initialized to the sample mean and covariance of the mRNA expression
data. The algorithm was run for 200 iterations or until convergence with ε = 0.01.
Once our model has been learned from the data, we assign a score to each of the
candidate interactions (i, j) ∈ C according to

Score(i, j) = log10

(
βij

1− βij

)
(10)

Thus a miRNA-mRNA pair is awarded a higher score if it was assigned a higher
probability of being bona fide under our model given the data.

To assess the accuracy of our model, we performed a series of permutation
tests in which we learned scores from data where the mRNA transcript labels
were permuted, under the null hypothesis is that there are no regulatory in-
teractions between mRNAs and miRNAs. We generated 100 data sets in which
transcript labels were permuted and we learned our model on each data set. The
resulting empirical cumulative distributions over scores for both the permuted
and unpermuted data are shown in Fig. 6a. The plot indicates that many of
the candidate miRNA targets may be bona fide, as significantly more miRNA
targets can be learned from the unpermuted data than from the permuted data
(p < 10−24, WMW).

To make a set of predictions, we can threshold the score: for different values
of this threshold, we get a certain number of false detections. We can estimate
the sensitivity and specificity of each threshold value by comparing the num-
ber of miRNA targets with score above the threshold to the average number of
targets corresponding to the permuted data which also have a score above the
threshold. By varying the threshold, we obtain the curve shown in Fig. 6b which
relates the fraction of candidate targets detected ({# of candidate targets de-
tected}/{# of candidate targets}) to the average false detection rate ({Average
# of permuted targets detected}/{# of candidate targets}) for different thresh-
old values, where the average false detection rate is computed for each threshold
value using the average fraction of permuted miRNA-targets that are detected
over the 100 permutations. Setting the threshold score to −0.022 to control for
an average false detection rate of 5%, we have detected a total of 601, or 34% of
the 1, 770 TargetScanS candidates. This suggests that many biologically relevant
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Fig. 6. (a) Empirical cumulative distribution of scores for the permuted data (dashed)
and unpermuted data (solid); all scores above the threshold score correspond to de-
tected miRNA targets (b) Fraction of candidate targets detected ({# of candidate tar-
gets detected}/{# of candidate targets}) VS. average false detection rate ({Average
# of permuted targets detected}/{# of candidate targets}) using both GenMiR scor-
ing (circle) and naive Pearson correlation scoring (cross), with areas under the curves
(AUC) shown.

miRNA targets can be found in our expression data and that our model is able
to accurately find them.

While the above results are encouraging, we might wonder as to whether our
model offers any real advantage over naively detecting miRNA targets using
Spearman correlation, where we would expect that the expression profiles cor-
responding to valid miRNA-mRNA pairs are anti-correlated across tissues. By
looking at candidate miRNA targets independently of one another using this
score, we obtain the curve shown in Fig. 6b. The plot shows that by looking
at a single miRNA-mRNA pair and ignoring the action of other miRNAs, the
naive method leads to poor performance. In contrast, the GenMiR algorithm
can detect a higher number of candidate miRNA targets for a given number of
false detections by taking into account multiple miRNAs per targeted transcript,
obtaining a good overall fit to the data.

6.1 Biologically Relevant Targets Detected by GenMiR

Within our set of high-confidence miRNA targets, we observe some of the small
number of targets that have experimental support (Fig. 7). In particular, we
correctly predict the interaction between miR-101 and the mouse homolog of
the human N-MYC gene [18], as well as the relationship between miR-92 and
MAP2K4 [18], a gene involved in signal transduction. In addition, we recovered
7 mouse homologs of human transcripts that were shown to be downregulated
[20, 26] in brain by miR-124a.

The remainder of our miRNA targets potentially represent a dramatic increase
in the number of known targets. The full list of miRNA targets detected using
GenMiR and their corresponding scores is available on the project web page (see
Appendix), along with GO annotations. The broad range of GO annotations
for our miRNA targets further reinforces the prevalent hypothesis [1, 4] that
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miRNA Human Gene ID GenMiR score
miR-124a LRRC1 -0.0210
miR-124a PARP16 0.0170
miR-124a ITGB1 0.0108
miR-124a DHCR24 -0.0132
miR-124a PGRMC2 -0.0022
miR-124a SLC15A4 0.0142
miR-124a SLC16A1 -0.0026
miR-92 MAP2K4 0.0133
miR-101 N-MYC -0.0064

Fig. 7. Rank expression profiles of experimentally validated miRNA targets across 17
mouse tissues which are also detected by our model. For targeted mRNA transcripts, a
rank of 17 (black) denotes that the expression in that tissue was the highest amongst
all tissues in the profile whereas a rank of 1 (white) denotes that expression in that
tissue was lowest amongst all tissues. Targeting miRNA intensities are shown using a
reverse colormap, with a rank of 17 (white) denoting that the expression was highest
and a rank of 1 (black) denotes that expression in that tissue was lowest.

miRNAs indeed regulate a wide variety of biological processes. Given the above
results, we believe that most of these targets are biologically relevant and provide
insight into miRNA regulation.

7 Discussion

In this paper we have presented evidence that miRNAs indeed regulate gene
expression by degrading their target transcripts. Using this as a foundation,
we have developed GenMiR, a novel probabilistic model and learning algorithm
for detecting miRNA targets by combining candidate targets with a model for
mRNA and miRNA expression. Our model accounts for both mRNA and miRNA
expression microarray data given a set of candidate targets and learns the un-
derlying set of biologically relevant miRNA targets. We have shown how to learn
the model from expression data: the learned model has been shown to provide a
good representation of miRNA regulation and can be used to accurately identify
miRNA targets from expression data.

Our model is the first to explicitly use expression data and the combinatorial
aspect of miRNA regulation to detect miRNA targets. Previous work done in
[24] has focused on de novo finding of targets based on sequence and then as-
sociating miRNAs to their activity conditions through mRNA expression data
alone. Our work differs from [24] in that we use observed miRNA expression to
detect miRNA targets, whereas the model from [24] did not detect targets on the
basis of miRNA expression data. In contrast to that method, we are explicitly
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modeling the generative process for mRNA expression given both miRNA ex-
pression and a set of candidate targets to perform detection: our model also ex-
plicitly takes into account the influence of multiple miRNAs on the expression of
a single targeted mRNA transcript, an important feature which the model of [24]
lacks.

We note that there are many sources of noise in our pipeline for detect-
ing miRNA targets: these include the significant amounts of noise in the mi-
croarray data sets and different hybridization conditions for the two microarray
experiments. Additional noise is introduced by errors in the human genomic
sequence data used to find the candidate targets, false positives within the set
of candidate targets and the lossy mapping between the human and mouse
genomes when mapping targets to our data. As a result, the fraction of can-
didate miRNA targets (34%) that we detect in our mouse expression data is
surprisingly high. Given that we can accurately detect many miRNA targets in
the presence of abundant noise using a relatively simple model, we can think of
several ways in which we could extend the model to mitigate these sources of
uncertainty.

We could learn from expression data given candidate miRNA targets from
several target-finding programs and examine over-represented high-scoring tar-
gets. We could also relax the current assumption that the entire population of
genes is generated from a single background expression profile: instead, we could
model the background expression of co-expressed groups of genes. We expect
that extending the model along these dimensions will greatly increase the ac-
curacy with which we can identify biologically relevant miRNA targets from
expression data and we are actively pursuing these ideas. In closing, our model
provides a probabilistic framework for finding miRNA targets which uses mi-
croarray data. The model makes significant progress towards understanding the
functional genomics of miRNAs, providing insight into a key mechanism of gene
regulation.
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Abstract. There is a resurgence of interest in RNA secondary structure predic-
tion problem (a.k.a. the RNA folding problem) due to the discovery of many new
families of non-coding RNAs with a variety of functions. The vast majority of
the computational tools for RNA secondary structure prediction are based on free
energy minimization. Here the goal is to compute a non-conflicting collection of
structural elements such as hairpins, bulges and loops, whose total free energy
is as small as possible. Perhaps the most commonly used tool for structure pre-
diction, mfold/RNAfold, is designed to fold a single RNA sequence. More
recent methods, such as RNAscf and alifold are developed to improve the
prediction quality of this tool by aiming to minimize the free energy of a num-
ber of functionally similar RNA sequences simultaneously. Typically, the (stack)
prediction quality of the latter approach improves as the number of sequences
to be folded and/or the similarity between the sequences increase. If the number
of available RNA sequences to be folded is small then the predictive power of
multiple sequence folding methods can deteriorate to that of the single sequence
folding methods or worse.

In this paper we show that delocalizing the thermodynamic cost of form-
ing an RNA substructure by considering the energy density of the substructure
can significantly improve on secondary structure prediction via free energy
minimization. We describe a new algorithm and a software tool that we call
Densityfold, which aims to predict the secondary structure of an RNA se-
quence by minimizing the sum of energy densities of individual substructures.
We show that when only one or a small number of input sequences are available,
Densityfold can outperform all available alternatives. It is our hope that this
approach will help to better understand the process of nucleation that leads to the
formation of biologically relevant RNA substructures.

1 Introduction

Given an RNA sequence, RNA secondary structure prediction problem (sometimes re-
ferred to as the RNA folding problem) asks to compute all pairs of bases that form
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A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 130–142, 2006.
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hydrogen bonds. Although the problem is one of the earliest in computational biology,
it has attracted considerable fresh attention due to the recent discoveries of many non-
coding RNA molecules such as siRNAs, riboswitches and catalytic RNAs with a variety
of novel functions. (See for example, the September 2, 2005 issue of Science magazine,
devoted to “Mapping RNA form and function”, which investigates the relationship be-
tween RNA structure and functionality [1].)

Much of the literature on RNA secondary structure prediction is devoted to the free
energy minimization approach. This general methodology (which is sometimes called
the thermodynamic approach) aims to compute the secondary structure by minimizing
the total free energy of its substructures such as stems, loops and bulges.

Free energy minimization can be applied either to a single RNA sequence, or, si-
multaneously to a number of functionally similar RNA sequences. Free energy mini-
mization of a single RNA sequence has been studied since early 70s [21] and a number
of dynamic programming algorithms have been developed [17, 22, 13]. The popular
Mfold and its more efficient version RNAfold (from the Vienna package) are
implementations of these algorithms.

Despite a 25 year long effort to perfect secondary structure prediction of a single
RNA sequence via energy minimization, the end result is still far from perfect. The
limitations of this approach are usually attributed to the following factors. The total free
energy is affected by tertiary interactions which are currently poorly understood and
thus ignored in the energy tables [15] currently used by all structure prediction tools.
There are also external, non-RNA related factors that play important roles during the
folding process. Furthermore, the secondary structure of an RNA sequence is formed as
the molecule is being transcribed. A highly stable substructure, formed only after a short
prefix of the RNA sequence is transcribed, can often be preserved after the completion
of the transcription, even though it may not conform to a secondary structure with the
minimum free energy. 1

In order to address these issues, much of the recent research on RNA secondary
structure is focused on simultaneously predicting the secondary structure of many func-
tionally similar RNA sequences. The intuition underlying this approach is that func-
tional similarity is usually due to structural similarity, which, in many cases, correspond
to sequence similarity. Because this approach can utilize the commonly observed co-
varying mutations among aligned base pairs in a stem, the accuracy of this approach
can outperform single sequence structure prediction approach.

There are two main techniques for simultaneously predicting the secondary struc-
ture of multiple sequences via energy minimization.

– The first general technique, used in particular by the alifold program [10] of
the Vienna package, assumes that the multiple alignment between the input

1 Another crucial issue that limits the prediction accuracy of many energy minimization based
tools is that they do not allow pseudoknots. This is due to the the fact that the energy mini-
mization problem allowing arbitrary pseudoknots is NP-hard [3]. The only software tool we
are aware of which allows certain types of pseudoknots (as described by [6]) is Pknots [18],
which suffers from efficiency problems. Thus our current implementation does not allow any
pseudoknots due to efficiency considerations; however it can easily be extended to allow the
class of pseudoknots captured by Pknots.
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RNA sequences (in the case of alifold, computed by the Clustal-W pro-
gram [20]) corresponds to the alignment between their substructures. The structure
is then derived by folding the multiple alignment of the sequences. Clearly this
method crucially relies on the correctness of the multiple sequence alignment; thus
its prediction quality is usually good for highly similar sequences (60% or more)
but can be quite poor for more divergent sequences.

– The second general technique aims to compute the sequence alignment and the
structure prediction simultaneously [19, 8, 16]. When formulated as a rigorous dy-
namic programming procedure, the computational complexity of this technique be-
comes very high; it requiresO(n6) time even for two sequences and is NP-hard for
multiple sequences [7]. In order to decrease the computational complexity, it may
be possible to restrict the number of substructures from each RNA sequence to be
aligned to the substructures from other sequences. In [5], this is done through a
preprocessing step which detects all statistically significant potential stems of each
RNA sequence by performing a local alignment between the sequence and its re-
verse complement. When computing the consensus structure, only those substruc-
tures from each RNA sequence which are enclosed by such stems are considered
for being aligned to each other. This strategy is successfully implemented by the
RNAscf program recently developed by Bafna et al. [5].

One final approach to multiple sequence structure prediction is the so called con-
sensus folding technique. Rather than minimizing free energy, the consensus folding
technique first extracts all potential stems of each input RNA sequence. The consensus
structure is then computed through determining the largest set of compatible potential
stems that are common to a significant majority of the RNA sequences. A good example
that uses the consensus folding technique is the comRNA program [11] which, once all
stems of length at least � are extracted from individual sequences, computes the maxi-
mum number of compatible stems2 that are common to at least k of the sequences via a
graph theoretic approach. As one can expect, the consensus technique also relies on the
availability of many sequences that are functionally (and hopefully structurally) similar.

1.1 Our Approach

As described above, the most common objective in secondary structure prediction is
total free energy minimization. In the context of multiple sequence structure prediction,
this objective can be used in conjunction with additional criteria such as covariation
in mutations on predicted stems etc., yet the effectiveness of such criteria very much
depends on (1) the availability of sufficient number of RNA sequences with similar
functions, and (2) reasonably high sequence similarity between the input sequences.
When these two conditions are not met, single sequence energy minimization meth-
ods still provide the most accurate prediction. Furthermore, because multiple sequence
folding methods generate consensus structures that involve those substructures found
in the majority of the sequences, the stems they return get shorter and thus the number
of correct base pairs they predict get worse with increasing number of input sequences.

2 The notion of compatibility here allows the types of pseudoknots that are captured by the
Pknots program.
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The goal of this paper is to show that delocalizing the thermodynamic cost of
forming an RNA substructure by considering the energy density of the substructure
can improve on secondary structure prediction via free energy minimization. We de-
scribe a new algorithm and a software tool that we call Densityfold which aims
to predict the secondary structure of an RNA sequence by minimizing the sum of en-
ergy densities of individual substructures. We believe that our approach may help un-
derstand the process of nucleation that is required to form biologically relevant RNA
substructures.

Our starting observation is that potential stems that are most commonly realized in
the actual secondary structure are those whose free energy density (i.e. length normal-
ized free energy) is the lowest. Figure 1(a) depicts the known secondary structure of
the E.coli 5S rRNA sequence. This sequence is one of the central examples used in [5]
for illustrating the advantage of multiple sequence structure prediction approach (i.e.
RNAscf) over single sequence structure prediction (i.e. mfold/RNAfold). Indeed,
the mfold/RNAfold prediction for this sequence is quite poor as can be seen in fig-
ure 1(d). However, although RNAscf prediction using 20 sequences from 5s rRNA
family is quite good, as reported in [5], the accuracy of the prediction deteriorates con-
siderably when only 3 sequences, E.coli, asellus aquaticus and cyprinus carpio are
used; this is illustrated in figure 1(e).3 The prediction accuracy of the alifold pro-
gram is also poor as depicted in figure 1(f). Most importantly, all of the above programs
miss the most significant stem (enclosed by the base pair involving nucleotides 79 and
97) depicted in figure 1(b); when normalized by length, the mfold/RNAfold free
energy table entry of this base pair is the smallest among all entries. (Compare this to
the prediction of our program Densityfold, given in figure 1(c).)

We believe that some of the accuracy loss in structure prediction via total energy
minimization can be attributed to “chance stems” which are sometimes chosen over
“actual stems” due to problems commonly encountered in local sequence alignment. A
stem is basically a local alignment between the RNA sequence and its reverse comple-
ment. Some of the energy minimization approaches (e.g. RNAscf program [5]) explic-
itly perform a local alignment search between the input RNA sequence and its reverse
complement, in order to extract all potential stems of interest. However not all signifi-
cant potential stems are realized in the actual secondary structure.

In the context of searching for significant alignments, the problems attributed to
Smith-Waterman approach is usually considered to be a result of:

(1) the shadow effect, which refers to long alignments with relatively low conservation
levels often having a higher score (and thus higher priority) than short alignments with
higher conservation levels, and
(2) the mosaic effect, which refers to two highly conserved alignments with close
proximity being identified as a single alignment, hiding the poorly aligned interval in
between.

It is possible that the stem discovery process, which is performed either explicitly
(e.g. in RNAscf) or implicitly (e.g. in mfold), may encounter with similar problems.

3 This example is particularly interesting as the independent mfold/RNAfold prediction for
some of these sequences are very accurate.
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For example, two potential stems, which, by chance, occur in close proximity, can eas-
ily be chosen over a conflicting longer stem due to the mosaic effect: the free energy
penalty of an internal loop (which will be left in between the two chance stems) is often
insignificant compared to the benefit of “merging” two stems.

In the context of local sequence alignment, the impact of these effects could be re-
duced by the use of normalized sequence alignment introduced by Arslan, Egecioglu
and Pevzner [4]. The normalized local alignment problem asks to find a pair of sub-
strings with maximum possible alignment score, normalized by their length (+L, a
user defined parameter to avoid “trivial” alignments of length 1).

Inspired by this approach we propose to apply a normalized free energy or energy
density criteria to compute the secondary structure of one or more RNA sequences. The
algorithms we present aim to minimize the sum of energy densities of the substructures
of an RNA secondary structure.4 The energy density of a base pair is defined as the
free energy of the substructure that starts with the base pair, normalized by the length
of the underlying sequence. The energy density of an unpaired base is then defined to
be the energy density of the closest base pair that encloses it. The overall objective of
secondary structure prediction is thus to minimize the total energy density of all bases,
paired and unpaired, in the RNA sequence.

The algorithms we describe in this paper also enables one to minimize a linear
combination of the total energy density and total free energy of an RNA sequence.
Based on these algorithms, we developed the Densityfold program for folding a
single sequence and the MDensityfold program for folding multiple sequences. We
tested the predictive power of our programs on the RNA sequence families used by
Bafna et al. [5] to measure the performance of the RNAscf program. We compare
Densityfold and MDensityfold against all major competitors based on energy
density minimization criteria - more specifically mfold/RNAfold, the best example
of single sequence energy minimization, RNAscf, the best example of multiple se-
quence energy minimization without an alignment and alifold, the best example of
multiple sequence energy minimization with an alignment. We show that when only
one or a small number of functionally similar sequences are available, Densityfold
can outperform the competitors, establishing the validity of energy density criteria as
an alternative to the total energy criteria for RNA secondary structure prediction.

In the remainder of the paper we first describe a dynamic programming approach
for predicting the secondary structure of an RNA sequence by minimizing the to-
tal free energy density. Then we show how to generalize this approach to minimize
a linear combination of the free energy density and total free energy, a criteria that
seems to capture the secondary structure of longer sequences. Because the running time
of the most general approach is exponential with the maximum number of branches
allowed in a multibranch loop we show how to approximate the energy density of
such loops through a divide and conquer approach which must be performed iteratively
until a satisfactory approximation is achieved. We finally provide some experimental
results.

4 Note that, unlike the Arslan, Egecioglu, Pevzner approach we do not need to introduce an
additive factor, L, artificially: a base pair in an RNA structure has at least three nucleotides in
between.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Known secondary structure of the E.coli 5S rRNA sequence. (b) The substructure with
minimum energy density (missed by mfold/RNAfold, RNAscf and alifold programs). (c)
Structure prediction by our Densityfold program. We capture the substructure with minimum
energy density and correctly predict 28 of the 37 base pairs in the known structure. (d) Structure
prediction by mfold/RNAfold program - only 10 of the 37 base pairs correctly predicted (e)
Structure prediction by RNAscf program (consensus with the the asellus aquaticus and cypri-
nus carpio 5S rRNA sequences) - only 10 of the 37 base pairs correctly predicted (f) Structure
prediction by alifold program (consensus with the asellus aquaticus and cyprinus carpio 5S
rRNA sequences) - only 3 of the 37 base pairs correctly predicted.

2 Energy Density Minimization for a Single RNA Sequence

We start with description of our dynamic programming formulation for minimizing the
total free energy density of the secondary structure of an RNA sequence. We denote
the input sequence by S = S[1 : n]; the ith base of S is denoted by S[i] and S[i].S[j]
denotes a base pair. Given input sequence S, its secondary structure ST (S) is a col-
lection of base pairs S[i].S[j]. A substructure ST (S[i, j]) is always defined for a base
pair S[i].S[j] and corresponds to the structure of the substring S[i, j] within ST (S).
The base pair S[i].S[j] is said to enclose the substructure ST (S[i, j]). The free energy
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of the substructure ST (S[i, j]) is denoted by ES(i, j). Thus the free energy density of
ST (S[i, j]), denoted by EDS(i, j), is defined to be ES(i, j)/(j − i+ 1).

The notion of the free energy density of a substructure enables us to attribute an
energy density value to each base S[i]. The individual energy density of S[i], denoted
ED(i) is defined as the energy density of the smallest substructure that encloses S[i].
More specifically, let k be the largest index in S such that S[k].S[�] form a base pair in
ST (S) for some � with the property that k < i < �. Then the energy density attributed
to S[i] is EDS(k, �).

Our goal is to compute a secondary structure where the total energy density at-
tributed to the bases is minimum possible. In this section we show how to minimize the
total free energy density for S.

We first give some notation. The values of the following thermodynamic energy
functions are provided in [15].

1. eH(i, j): free energy of a hairpin loop enclosed by the base pair S[i].S[j].
2. eS(i, j): free energy of the base pair S[i].S[j] provided that it forms a stacking pair

with S[i+ 1].S[j − 1].
3. eBI(i, j, i′, j′): free energy of the internal loop or a bulge that starts with base pair

S[i].S[j] and ends with base pair S[i′].S[j′] (an internal loop becomes a bulge if
i′ = i+ 1 or j′ = j − 1).

4. eM(i, j, i1, j1, i2, j2, . . . , ik, jk): free energy of a multibranch loop that starts with
base pair S[i].S[j] and branches out with basepairs S[i1, j1], S[i2, j2],. . . , S[ik,jk].

5. eDA(j, j − 1): free energy of an unpaired dangling base S[j] when S[j− 1] forms
a base pair with any other base (used for approximating eM ).

By using the above functions we need to compute the following tables that corre-
spond to total energies and energy densities of potential substructures.

1. ED(j): minimum total free energy density of a secondary structure for substring
S[1, j].

2. E(j): free energy of the energy density minimized secondary structure for substring
S[1, j].

3. EDS(i, j): minimum total free energy density of a secondary structure for S[i, j],
provided that S[i].S[j] is a base pair.

4. ES(i, j): free energy of the energy density minimized secondary structure for the
substring S[i, j], provided that S[i].S[j] is a base pair.

5. EDBI(i, j): minimum total free energy density of a secondary structure for S[i, j],
provided that there is a bulge or an internal loop starting with base pair S[i].S[j].

6. EBI(i, j): free energy of an energy density minimized structure for S[i, j], pro-
vided that a bulge or an internal loop starting with base pair S[i].S[j].

7. EDM (i, j): minimum total free energy density of a secondary structure for S[i, j],
such that there is a multibranch loop starting with base pair S[i].S[j].

8. EM (i, j): free energy of an energy density minimized structure for S[i, j], provided
there is a multibranch loop starting with base pair S[i].S[j].

The above tables are computed via the following dynamic programming formula-
tion. Note that as per mfold/RNAfold method we do not have any penalty for the
unpaired bases at the very ends of the secondary structure.
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ED(j) = min ED(j − 1)
min1≤i≤j−1 {ED(i − 1) + EDS(i, j)}

EDS(i, j) = min

+∞, (i)
eH(i, j), (ii)
2 eS(i,j)+ES(i+1,j−1)

j−i+1 + EDS(i + 1, j − 1), (iii)
EDBI(i, j), (iv)
EDM (i, j) (v)

Note that in the item (iii) of the formula above, we need to use constant number 2.
This is because the energy values are assigned to single bases; and the item (iii) com-
putes the energy density of a substructure where the energy values of two different bases
contribute to the total energy density of the corresponding substructure.

EDBI(i, j) = min
i′,j′|i<i′<j′<j

eBI(i, j, i′, j′) + ES(i′, j′)
j − i + 1

· [(i′ − i) + (j − j′)] + EDS(i′, j′)

EDM (i, j) = min
i1, j1, .., ik, jk|
i < i1 < j1 < ..ik < jk < j

eM (i,j,i1,j1,..ik,jk)+ES(i1,j1)+...ES(ik,jk)
j−i+1

·[i1 − i.. + j − jk] + [EDS(i1, j1) + ..EDS(ik , jk)]

For each (i, j), once the total energy density under the three possible structures (stack,
bulge/internal loop and multibranch loop) are computed, the corresponding free ener-
gies can be computed as follows.

ES(i, j) =

(i) : + ∞,
(ii) : eH(i, j),
(iii) : ES(i + 1, j − 1) + eS(i, j),
(iv) : EBI(i, j),
(v) : EM (i, j)

EBI (i, j) = eBI(i, j, i′, j′) + ES(i′, j′) for i′, j′ computed above

EM (i, j) = eBI(i, j, i1, j1, . . . ik, jk) + ES(i1, j1) . . . + ES(ik, jk)
for i1, j1 . . . ik, jk computed above

The algorithm above assumes that the maximum number of branches in a multibranch
loop is k. Under this assumption the running time of the algorithm is O(nk+2) and
the space complexity is O(n2). Clearly this is not very practical for large values of k.
Thus for k > 2 we make a number of simplifying assumptions on the free energy of
a multibranch loop akin to the assumptions made by the mfold/RNAfold method.
In particular we assume that the multibranch loop energy eM(i, j, i1, j1, . . . ik, jk) is a
linear function of the number of unpaired bases and the dangling energies of the bases
that follow the base pairs in the multibranch loop, namely eDA(i + 1, i), eDA(j −
1, j), . . .. This assumption helps mfold/RNAfold to partition a multibranch loop
into two iteratively, so that its minimum possible free energy can be computed in time
linear with the size of the loop.

However, because we want to minimize the normalized free energy of the multi-
branch loop, which is non-linear, we can not apply the same divide-and-conquer ap-
proach directly. Thus we provide an alternative formulation which (at least in practice)
converges to the correct value of the multibranch loop energy density in a small number
of iterations. We describe this formulation in the next section.



138 C. Alkan et al.

3 Minimizing a Linear Combination of the Energy Density and
Energy

The initial tests we performed on the above dynamic programming formulation pro-
vided good outcomes for short RNA sequences; however as the sequence length in-
creased, the predictive performance of this formulation deteriorated considerably. We
noticed that although the energy density itself can help identify short structural motifs
well, it may not provide the right criteria for “stitching them together”. Thus, in this
section we describe a modified version of the dynamic programming formulation we
gave above for energy density minimization. The goal of this modified version is to
minimize a linear combination of the energy density and the total free energy. More
specifically, for any x ∈ {S,BI,M} let ELCx(i, j) = EDx(i, j) + σ · Ex(i, j). The
function we would like to optimize is thus ELC(n) = ED(n) +E(n).

ELC(j) = min ELC(j − 1)
min1≤i≤j−1 {ELC(i − 1) + ELCS(i, j)}

ELCS(i, j) = min

+∞, (i)
eH(i, j) · (1 + σ), (ii)
2 eS(i,j)+ES(i+1,j−1)

j−i+1 + ELCS(i + 1, j − 1) + σ · eS(i, j), (iii)
ELCBI (i, j), (iv)
ELCM (i, j) (v)

ELCBI(i, j) = min
i′,j′|i<i′<j′<j

eBI(i,j,i′ ,j′)+ES(i′,j′)
j−i+1 · [(i′ − i) + (j − j′)]

+ELCS(i′, j′) + σ · eBI(i, j, i′, j′)

For computing the value of our optimization function for multibranch loops effi-
ciently we have to perform an approximation to the multibranch loop energy density
through a divide and conquer approach For this we have to define a new energy table

ELC
[i,j]
M (k, �) = ED

[i,j]
M (k, �)+σ ·E[i,j]

M (k, �) whereE
[i,j]
M (k, �) andED

[i,j]
M (k, �) are

the free energy and the energy density of the optimal substructures for S[k, �] provided
that both S[k] and S[�] are on a multibranch loop starting with the base pair S[i].S[j].

ELCM (i, j) = σ · a+ min
i<k<j

{
ELC

[i,j]
M (i, k) + ELC

[i,j]
M (k + 1, j)

}
Here a is the multibranch loop opening score. Define:

b =
ÊM (i, j)

(j − i+ 1)

where ÊM (i, j) is an estimation (a lower bound) for EM (i, j) of the optimal structure.
The initial value of ÊM (i, j) is obtained through the following dynamic programming
routine.

ÊM (i, j) = a+ min
i<k<j

{
EM (i, k) + EM (k + 1, j)

}
EM (k, k) = b
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EM (k, �) = min
{
ES(k, �) + c+ eDA(k − 1, k) + eDA(�, �+ 1)
mink≤h<�{EM (k, h) + EM (h+ 1, �)}

}
Here c is the contribution for each base pair on the multibranch loop and b is the un-
paired base penalty. Based on this initial estimation ÊM (i, j) we have:

ELC
[i,j]
M (k, k) = b+ σ · b

ELC
[i,j]
M (k, �) = min

{
ELCS(k, �) + σ · [c+ eDA(k − 1, k) + eDA(�, �+ 1)]

mink≤h<�{ELC[i,j]
M (k, h) + ELC

[i,j]
M (h+ 1, �)}

}
The corresponding energies of the substructures are as in the previous section:

ES(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) : +∞,
(ii) : eH(i, j),
(iii) : ES(i+ 1, j − 1) + eS(i, j),
(iv) : EBI(i, j),
(v) : EM (i, j)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
EBI(i, j) = eBI(i, j, i′, j′) + ES(i′, j′) for i′, j′ computed above

EM (i, j) = eM(i, j, i1, j1, . . . ik, jk) + ES(i1, j1) . . .+ ES(ik, jk)
for i1, j1 . . . ik, jk computed above

Note that if EM (i, j) ≥ ÊM (i, j) + ε for some user defined (small) value of ε
we set ÊM (i, j) = ÊM (i, j) + ε and re-iterate the above procedure for computing
ELCM (i, j). The reader can easily verify that the running time of this dynamic pro-
gramming algorithm is O(n4).

3.1 Multiple Sequence Energy Density Minimization

The dynamic programming algorithm for minimizing ELC(n) for a single sequence is
generalizable to multiple sequences without difficulty. Here we follow the general ap-
proach taken by the alifold program: we start with the multiple sequence alignment
of the input sequences (obtained by the Clustal-W program) and fold the aligned
sequences simultaneously, with the objective of minimizing the sum of energy densities
of all bases from each sequence. This is somewhat different from the alifold and
RNAscf methods as both of them assigns the maximum energy among aligned sub-
structures to the energy of the consensus structure. We assign the total energy and total
energy density of the aligned substructures to the energy and, respectively, energy den-
sity of the consensus structure. The gaps are also included in the calculations as a base.

The reader can verify that for m sequences the running time of this dynamic pro-
gramming algorithm is O(m · n4).

4 Experimental Results and Discussion

We implemented and tested the performance of our algorithms for minimizing the linear
combination of the energy density and the total free energy of a single sequence as well
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as of multiple sequences, respectively called Densityfold and MDensityfold.
Our test set is comprised of the same 12 RNA families from the Rfam database [9]
used by Bafna et al. [5] for testing the performance of RNAscf program. Using this
test set, we compared the performance of Densityfold and MDensityfold with
varying values of σ (which determines the contribution of the total energy to the opti-
mization function) against mfold/RNAfold, the best single sequence energy mini-
mization program, alifold the best multiple sequence energy minimization program
that uses the alignment between the input sequences, and RNAscf the best multiple
sequence energy minimization program that computes the alignment and the folding
simultaneously. In the context of multiple sequence folding, our goal is to demonstrate
the predictive power of MDensityfoldwhen only a limited number of sequences are
available; thus we only report on the jointly predicted structures of a pair of sequences,
randomly selected from each family.

The most common measure for demonstrating the predictive power of a single se-
quence secondary structure determination method is the number of correct base pairs
(see for example [11]). Unfortunately the Rfam database only provides the consensus
structure of a family and not individual sequences; thus it is not possible to reliably
count the number of predicted base pairs which appear in the actual structure of an
individual sequence and vice versa. To overcome this problem Bafna et al. used an al-
ternative, stack counting measure [5] which is defined as the number of actual stacks
and predicted stacks that overlap. As mentioned in [5] this measure is intended for com-
paring methods that explicitly extract stacks - which is not performed by most of the
methods we compare.

We thus measure the predictive power of the programs we tested under the struc-
tural edit distance measure [12, 14]. which considers the differences between two RNA
molecules in terms of both sequence/stack composition and structural elements. Given
the tree representation of two RNA secondary structures, where each branch is labeled
with a stack and every node represents a loop, their structural edit distance is defined
to be the minimum possible sum of edit distances between the stack compositions of
branch pairs and sequences of node pairs that are aligned to each other.

We computed the structural edit distances between the actual (consensus) structure
of each of the 12 test families and the structure predictions by each test program via
the RNA align tool, publicly available on the web [2]. A distance of 0 corresponds
to an identical sequence and structure, i.e. a perfect prediction. A higher distance value
implies a poorer prediction.

The results of our comparative tests are summarized in the table above. (In addition,
figure 1 demonstrates the outcome of Densityfold on the E.coli 5s rRNA sequence
(from RF00001 family) with that of mfold/RNAfold, alifold and RNAscf.)
We used the default parameters in all programs we tested. We list the outcome of
Densityfold for σ = 1.5, 3.0 and 5.0, and list the outcome of MDensityfold
for the best possible σ value. As can be seen, Densityfold is at the top or near
the top for most of the families. Densityfold with σ = 5.0 is always better than
Densityfold with σ = 3.0. However Densityfold with σ = 1.5 outper-
forms both in a number of examples. Note that as σ approaches to ∞ the outcome
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Table 1. Structural edit distances between the actual (consensus) structure of a family and the
predicted structures by each one of the programs tested

Single sequence methods Multiple sequence methods
Name mfold/ Densityfold MDensity RNAscf alifold

(Rfam id) RNAfold σ = 1.5 σ = 3 σ = 5 fold

5s rRNA (RF00001) 149 84 89 89 92 134 122
Rhino CRE (RF00220) 94 93 93 93 77 88 30

ctRNA pGA1 (RF00236) 45 83 83 83 48 91 44
glmS (RF00234) 194 288 230 230 189 249 198

Hammerhead 3 (RF00008) 2 2 2 2 74 2 88
Intron gpII (RF00029) 100 93 103 103 85 113 78

Lysine (RF00168) 182 256 194 186 178 131 173
Purine (RF00167) 64 103 103 103 133 56 141

Sam riboswitch (RF00162) 124 129 129 99 110 133 121
Thiamine (RF00059) 156 170 179 149 187 179 149

tRNA (RF00005) 31 67 67 67 50 31 32
ykok (RF00380) 158 200 189 189 168 203 157

of Densityfold gets more and more similar to the outcome of mfold/RNAfold.5

However Densityfold with σ = 5.0 (the highest value we report) significantly out-
performs mfold/RNAfold in a number of examples. Furthermore there is no clear
winner between Densityfold and MDensityfold, each one outperforming the
other in almost equal number of examples. However, in general, the longer the sequence
gets, the better MDensityfold seemed to perform.

In conclusion, Densityfold demonstrates that an energy density minimization
objective is a valid alternative to the total energy minimization objective. It can be
used both on a single sequence or on multiple sequences. Our goal for the future is to
test non-linear combinations of energy density and total energy as well as non-linear
normalizations of the free energy as objective functions; we hope that such variations
can explain the better performance of MDensityfold overDensityfold on longer
sequences.
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Abstract. In this paper, we address the problem of discovering novel non-coding
RNA (ncRNA) using primary sequence, and secondary structure conservation,
focusing on ncRNA families with pseudo-knotted structures. Our main techni-
cal result is an efficient algorithm for computing an optimum structural align-
ment of an RNA sequence against a genomic substring. This algorithm finds two
applications. First, by scanning a genome, we can identify novel (homologous)
pseudoknotted ncRNA, and second, we can infer the secondary structure of the
target aligned sequence. We test an implementation of our algorithm (PAL), and
show that it has near-perfect behavior for predicting the structure of many known
pseudoknots. Additionally, it can detect the true homologs with high sensitiv-
ity and specificity in controlled tests. We also use PAL to search entire viral
genome and mouse genome for novel homologs of some viral, and eukaryotic
pseudoknots respectively. In each case, we have found strong support for novel
homologs.

1 Introduction

Ribonucleic acid (RNA) is the third, and (until recently) most underrated of the trio of
molecules that govern most cellular processes: the other two being proteins and DNA.
While much of cellular RNA carries a message encoding an amino-acid sequence, other,
’non-coding’ RNA participate directly in performing essential functions. Recent and
unanticipated discoveries of novel ncRNA families [1, 2, 3, 4, 5] point to the possibility
of a ‘Modern RNA world’ in which RNA molecules are as abundant, and diverse as
protein molecules [6]. The analog of the computational gene-finding problem: ”given
genomic DNA, identify all substrings that encode ncRNA” is increasingly relevant,
and relatively unexplored. While potentially abundant, RNA signals are weaker than
proteins making them harder to identify computationally. Possibly, the strongest clue
is from secondary structure. Being single-stranded, the base-pairs stabilize by form-
ing hydrogen bonds, leading to a characteristic secondary and tertiary structure. With
a few exceptions, the base-pairs are non-crossing, and form a tree-like structure. This
recursive structure is the basis for efficient algorithms to predict RNA structure [7, 8].
With this extensive work in structure prediction, it is natural to expect that novel non-
coding RNA could be discovered simply by looking for genomic sub-strings that fold
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into low-energy structures. Unfortunately, that idea doesn’t work. Rivas and Eddy [9]
showed that random DNA (usually with high GC-content) can also ’fold’ into low-
energy configurations, making it unlikely for a purely de novo approach to be success-
ful. Therefore, a comparative approach is employed, often typified by the question:
“Given a query RNA with known structure, and a genome, identify all genomic sub-
strings that match the query sequence and structure”. The query itself can be either a
single molecule or a model (covariance model/stochastic context free grammar) of an
RNA structure. This approach has been quite successful and single queries as well as
covariance based models are routinely used to annotate genomes with ncRNA [10, 11].
Central to these approaches is an algorithm for computing a local alignment between a
query structure and a DNA string. The search itself is simply a scan of the genome to
obtain all high scoring local alignments.

Here we pose a related question: Given a query RNA with known structure, al-
lowing for pseudoknots, and a genome, identify all genomic sub-strings that match
the query sequence and structure. Without being precise, pseudoknots are base-pairs
that violate the non-crossing rule (See Figure 1). While not as common as other sub-
structures (bulges,loops), they are often critically important to function. Pseudoknotted
RNAs are known to be active as ribozymes [12], self-splicing introns [13], and partici-
pate in telomerase activity [14]. They have also been shown to alter gene expression by
inducing ribosomal frame-shifting in many viruses [15]. However, understanding the
extent and importance of these molecules is partially handicapped by the difficulty of
identifying them (computationally). The algorithm presented here will facilitate identi-
fication.

In order to compute a local structural alignment, we must start with a formal defi-
nition of a pseudoknot in Section 2. Many definitions of pseudoknots have been postu-
lated [16, 17, 18, 19, 20], and recent research investigates the power of these definitions
in describing real pseudoknots [21]. We start here with Akutsu’s formalism (simple
pseudoknots) [16], which has a clean recursive structure and encompasses a majority
of the known cases [21, 22]. We also present algorithms that extend this class of al-
lowed pseudoknots (standard pseudoknots). Section 3 describes the chaining procedure
which is key to the alignment algorithm that follows (Section 4). However, the sim-
ple pseudoknots usually do not occur independently, but are embedded in regular RNA
structures. In Section 5, we extend the algorithm to handle these cases. Other exten-
sions are considered in Section 7. It has been brought to our attention that a recent
publication [23] considers the identical problem using the formation of tree adjoining
grammars to model pseudoknots. The pseudoknots considered by them are a restricted
version of our simple pseudoknots. Futhermore, our alignment combines sequence and
structural similarity. A detailed comparison is deferred to the full version of the paper.

The local alignments can be used in two ways. First, they can be used to infer the
structure of the aligned substring that is conserved with the query. We show in Sec-
tion 8.1 that in a majority of the cases, this leads to a perfect prediction of secondary
(pseudoknotted) structure. Next, they can be used to predict novel ncRNA in genomic
sequences. While our algorithms are computationally intensive, they can be used in
combination with database filtering approaches to search large genomic regions. In Sec-
tion 8.2, we validate our approach on real sequences embedded in random sequence.
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Fig. 1. (a) Simple pseudoknot. (b) Standard pseudoknot of degree d. (c) Recursive simple pseudo-
knot. (d) Recursive standard pseudoknot of degree d.

Finally, in Section 9, we identify (putative) novel pseudoknotted ncRNA in a search of
viral and eukaryotic genomes.

2 Definitions and Preliminary Information

Let A = a1...an be an RNA sequence. The secondary structure is represented simply
as the set of base-pairs

M = {(i, j)|1 ≤ i < j ≤ n, (ai, aj) is a base pair}

Also, let Mi0,k0 ⊆ M be defined by Mi0,k0 = {(i, j) ∈ M |i0 ≤ i < j ≤ k0}.
The secondary structure, in the absence of crossing or interweaving base-pairs is called
regular, and has the following recursive definition.

Definition 1. An RNA secondary structure Mi0,k0 is regular if and only if Mi0,k0 = φ
or ∃(i, j) ∈Mi0,k0 such that

– Mi0,k0 = Mi0,i−1 ∪Mi+1,j−1 ∪Mj+1,k0 ∪ {(i, j)} (No base-pairs cross the par-
titions).

– Each of Mi0,i−1,Mi+1,j−1,Mj+1,k0 is regular.

Next, we can define the class of allowed pseudoknots ([16]).

Definition 2. Mi0,k0 is a simple-pseudoknot (see Figure 1(a)) if and only if Mi0,k0

is regular or ∃j1, j2 ∈ N (i0 ≤ j1 < j2 ≤ k0) such that the resulting partition,
D1 = [i0, j1 − 1], D2 = [j1, j2 − 1], D3 = [j2, k0], satisfies the following:
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– Mi0,k0 = (SL ∪ SR), where SL = {(i, j) ∈ Mi0,k0 |i ∈ D1, j ∈ D2} and SR =
{(i, j) ∈Mi0,k0 |i ∈ D2, j ∈ D3, }.

– SL and SR are regular.

Definition 3. Mi0,k0 is a standard-pseudoknot with degree d (d ≥ 3, see Figure 1(b))
if and only if Mi0,k0 is regular or ∃j1, ..., jd−1 ∈ N (i0 ≤ j1 < ... < jd−1 ≤ k0) which
divide [i0, k0] into d parts, D1 = [i0, j1 − 1], D2 = [j1, j2 − 1], ..., Dd = [jd−1, k0],
and satisfy the following:

– Mi0,k0 =
⋃d−1

l=1 Sl, where Sl ={(i, j) ∈Mi0,k0 |i ∈ Dl, j ∈ Dl+1}for all 1 ≤ l<d.
– Sl is regular for all 1 ≤ l < d,

Note that a simple-pseudoknot is a standard-pseudoknot of degree 3.

Definition 4. Mi0,k0 is recursive-standard-pseudoknot with degree d (d ≥ 3, see Fig-
ure 1(d)) if and only if Mi0,k0 is a standard pseudoknot of degree d or ∃i1, k1, ..., it, kt

∈ N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the
following:

– (Mi0,k0 −
⋃t

l=1Mil,kl
) is a standard pseudoknot of degree ≤ d.

– Mil,kl
(1 ≤ l ≤ t) is a recursive standard pseudoknot of degree ≤ d.

A recursive-simple-pseudoknot is a recursive-standard-pseudoknot of degree 3 (Fig-
ure 1(c)). While we can devise algorithms to align recursive-standard-pseudoknots,
they are computationally expensive, and most known families have a simpler struc-
ture. Therefore, we will limit our description and tests to a simpler structure (with a
single level of recursion), defined as follows:

Definition 5. Mi0,k0 is embedded-simple-pseudoknot if and only if ∃i1, k1, ..., it, kt ∈
N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the following:

– (Mi0,k0 −
⋃t

l=1Mil,kl
) is regular.

– Mil,kl
(1 ≤ l ≤ t) is a simple-pseudoknot.

In the full version of the paper, we extend these algorithms to the case of standard-
pseudoknots. The full version of the paper will present the algorithm for the most gen-
eral case (recursive-standard-pseudoknot).

2.1 Structural Alignment Preliminaries

For alignment purposes, we do not distinguish between RNA and DNA, as every sub-
string in the genome might encode an RNA string. Let q[1 · · ·m] and t[1 · · ·n] be two
RNA strings over the alphabet

∑
= {A,C,G,U} where q has a known structure M .

An alignment of q and t is defined by a 2-rowd matrixA, in which row 1 (respectively, 2)
contains q (respectively, t) interspersed with spaces, and for all columns j,A[1, j] �=′ −′

or A[2, j] �=′ −′. For r ∈ {1, 2}, define ιr[i] = i− |{l < i s.t. A[r, l] =′ −′}|. In other
words, if A[1, i] �=′ −′, it contains the symbol q[ι1[i]]. The score of alignment A is
given by ∑

j

γ(A[1, j], A[2, j]) +
∑

i,js.t.(ι1[i],ι1[j])∈M

δ(ι1[i], ι1[j], ι2[i], ι2[j])
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The function γ scores for sequence similarity, while δ scores for conservation of struc-
ture. While this formulation encodes a linear gap penalty, we note here that alignments
of RNA molecules may contain large gaps, particularly in the loop regions, and we
implement affine penalties for gaps (details omitted). Naturally, we wish to compute
alignments with the maximum score.

The key ideas are as follows: First, note that regular and pseudoknotted structures
have a recursive formulation. Therefore, the problem of structurally aligning an RNA
structure against a subsequence, can be decomposed into the problems of (recursively)
aligning its sub-structures against the appropriate sub-sequences, and combining the
results. For regular-structures, the structure is tree-like, and the recursion follows the
nodes of the tree. For simple-pseudoknots, the structure is more complex, and will be
described in Section 4. The structure for embedded-simple-pseudoknots is simply a
combination of the two (See Section 7).

However, it is not sufficient to consider structural elements alone, as we wish to
score for sequence conservation as well. The recursive structure described only contains
a subset of the nucleotides that participate in structure. Therefore, we employ a second
trick of introducing spurious structural elements (base-pairs) to M . The augmented
structure M ′ must have the following properties:

– Each nucleotide i appears in M ′.
– |M ′| = O(m), so that the size of the structure does not increase too much.
– The recursive structure of M is maintained.

Pseudoknots and regular structures have very different recursive structure, and require
different augmentation procedures. In Section 3, we present chaining, a novel augmen-
tation procedure for simple pseudoknots. An augmentation for regular structures, bina-
rization was presented in [24], and is implicit in the covariance models used to align
regular RNA [25]. Here, we extend binarization to include chaining for embedded-
simple-pseudoknots (Figure 5). These augmentations are used in the alignment algo-
rithms for simple (Section 4), and embedded-simple-pseudoknots (Section 5).

3 Chaining

Before describing the chaining procedure, we revisit the problem of aligning a simple
pseudoknot to a genomic sub-string. Unlike regular structures, we cannot partition the
genome into contiguous substrings, because of interweaving base pairs. Thus, we need
a new substructure for simple pseudoknot structures.

We start by defining a total ordering among the base pairs of a simple pseudoknot.
Recall (Definition 3) that a simple-pseudoknot structure Mi0,k0 can be divided into 3
parts: D1 = [i0, j0 − 1], D2 = [j0, j′0 − 1], D3 = [j′0, k0]. (See Figure 2(a)) For each
base pair (i, j) ∈ M , exactly one of i and j is in D2 part. We define an ordering of
the base pairs in M by sorting the coordinate in D2. Formally, define D2(i, j) for all
(i, j) ∈ M as follows: D2(i, j) = i if (i, j) ∈ SR, and D2(i, j) = j otherwise. For
each (i, j), (i′, j′) ∈M ,

(i, j) ≥p (i′, j′) iff D2(i, j) ≥ D2(i′, j′)
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i j k

(a) (b)

i0

k 0

i0

k 0

Fig. 2. (a) Base pairs in a simple pseudoknot are ordered according to the index of the endpoint
along [j0, j′

0]. Therefore, (i1, j1) > (i2, j2) > (j3, k3) > (i4, j4) > (j5, k5) > (j6, k6) >
(i7, j7). (b) Subpseudoknot structure.

As distinct base-pairs do not share any coordinates, ≥p defines a total ordering on
the actual base-pairs, and can be used to define a partial order on substructures that
we can recurse on. Define a subpseudoknot P(i, j, k) as the union of two subintervals
P(i, j, k) = [i0, i] ∪ [j, k] (Figure 2 (b)). Denote the triple (i, j, k) as the frontier for
P(i, j, k). Note that i0 is implicit from the context. Suppose that we are aligning frontier
(i′, j′, k′) of the query against frontier (i, j, k) of the target, with the score represented
by B[i, j, k, i′, j′, k′]. A naive algorithm would need to consider O(m3n3) pairs of
frontiers. We improve this as follows: consider the special case of (i′, j′) ∈ M where
(i′, j′) ∈ SL. The following recursion gives the score for B (proof omitted).

Theorem 1

B[i, j, k, i′, j′, k′] = max{ MATCH,INSERT,DELETE} (1)

MATCH = B[i − 1, j + 1, k, i′ − 1, j′ + 1, k′] + δ(q[i′], q[j′], t[i], t[j])

+γ(q[i′], t[i]) + γ(q[j′], t[j]), (2)

DELETE = max
B[i − 1, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′], t[i]) + γ(q[j′],′ −′),
B[i, j + 1, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′ −′) + γ(q[j′], t[j]),
B[i, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′ −′) + γ(q[j′],′ −′)

(3)

INSERT = max
B[i − 1, j, k, i′, j′, k′] + γ(′−′, t[i]),
B[i, j + 1, k, i′, j′, k′] + γ(′−′, t[j]),
B[i, j, k − 1, i′, j′, k′] + γ(′−′, t[k])

(4)

Note that in every sub-case of MATCH and DELETE, we move from the query frontier
(i′, j′, k′) to the frontier (i′ − 1, j′ + 1, k), because if either i′ or j′ is not used, we
cannot score for the pair (i′, j′). In the INSERT case, we stay at the frontier (i′, j′, k′).
The situation is symmetric when (j′, k′) ∈ SR ⊆ M , but is not defined when (i′, j′) �∈
M ∧ (j′, k′) �∈ M . The key idea for the chaining procedure is that we can define a
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unique frontier to move to in all cases, and still ensure that each nucleotide is touched
by at least one frontier. By starting with a fixed frontier, and always moving to a fixed
child, we only have O(m) frontiers to consider.

From Definition 2, there exist indices j1, j2 which divide the simple pseudoknot
structure into D1, D2 and D3. We choose (j1 − 1, j1, k0) as the root frontier. Note
that P(j1 − 1, j1, k0) represents the entire simple-pseudoknot (See Figure 3(a)). We
maintain the invariant that if (i, j, k) is a frontier and j participates in a base-pair, then
the base-pair must be ’below’ or within the frontier. In other words, if (i′, j) ∈ SL,
then i′ ≤ i. Likewise, if (j, k′) ∈ SR, then k′ ≤ k. For a frontier (i, j, k), we have
different cases: for example, if (i′, j) ∈ SL, we add spurious base pairs (i, j), (i −
1, j), . . . (i′, j). These base pairs define an ordered set of frontiers (i, j, k) ≥ (i −
1, j, k) ≥ . . . , (i′, j, k) ≥ (i′ − 1, j + 1, k). Likewise, if (j, k′) ∈ SR, we add spurious
base-pairs (j, k), (j, k − 1), . . . , (j, k′), which define the frontiers (i, j, k) ≥ . . . ≥
(i, j + 1, k′ − 1). The chaining algorithm, with a complete listing of cases is described
in Figure 3. The output of chaining is a directed path of ’frontiers’. The number of
nucleotides in a frontier (i, j, k) is given by the expression ((i−i0 +1)+(k−j+1)) ≤
m. Further, this number decreases by at least 1 for each adjacent frontier. Thus the

CHAINING(i, j, k)
1 if i = i0 − 1 and j > k
2 then return NIL

3 if (i, j) ∈ S
4 then v = CHAINING(i − 1, j + 1, k);
5 return CREATENODE(i, j, solid, move(1, 1, 0), v)
6 if (j, k) ∈ S
7 then v = CHAINING(i, j + 1, k − 1);
8 return CREATENODE(j, k, solid, move(0, 1, 1), v)
9 if j ∈ VL

10 then v = CHAINING(i − 1, j, k);
11 return CREATENODE(i, j, empty, move(1, 0, 0), v)
12 if j ∈ VR

13 then v = CHAINING(i, j, k − 1);
14 return CREATENODE(j, k, empty, move(0, 0, 1), v)
15 if i ∈ VL

16 then v = CHAINING(i, j + 1, k);
17 return CREATENODE(i, j, empty, move(0, 1, 0), v)
18 if k ∈ VR

19 then v = CHAINING(i, j + 1, k);
20 return CREATENODE(j, k, empty, move(0, 1, 0), v)
21 if i > i0
22 then v = CHAINING(i − 1, j, k);
23 return CREATENODE(i, j, empty, move(1, 0, 0), v)
24 if i = i0
25 then v = CHAINING(i − 1, j + 1, k);
26 return CREATENODE(i, j, empty, move(1, 1, 0), v)
27 if i = i0 − 1
28 then v = CHAINING(i, j + 1, k);
29 return CREATENODE(j, k, empty, move(0, 1, 0), v)

j1j1-1

i 0

k0

j2

P(j1-1,j1, k0)

P(j1-1,j1, k0-1 )
P ( j1-1,j1, k0-2 )

P(j1-1,j1, k0-3 )

P(j1-1,j1, k0-4 )

P(j1-1,j1+1, k0-5 )

P(j1-2,j1+1, k0-5 )

P(j1-3,j1+2, k0-5 )

(a)

(b)

Fig. 3. The chaining procedure on a simple pseudoknot structure Mi0,k0 . (a) Solid base pairs are
the actual base pairs, dotted ones are the spurious base pairs. (b) Chain structure representing
the simple pseudoknot structure Mi0,k0 . Solid nodes represents a sub-pseudoknot with frontier
(i, j, k) where (i, j) or (j, k) is an actual base pair. Empty nodes represents a sub-pseudoknot
with frontier (i, j, k) where neither (i, j) nor (j, k) is an actual base pair.
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(a) ALIGN-SP(M ′, t[1...n])
1 // M ′ is the chain representing the simple pseudoknot region to be aligned in query q
2 for all intervals (i0, k0) in t[1...n]
3 do for all (i, j, k), i0 ≤ i < j ≤ k ≤ k0
4 do for all nodes v ∈ M ′

5 do if v ∈ ML

6 then B[i, j, k, v] = max

B[i − 1, j + 1, k, child(v)] + δ(q[lv ], q[mv ], t[i], t[j])
+γ(q[lv], t[i]) + γ(q[mv], t[j]),

B[i − 1, j, k, child(v)] + γ(q[lv], t[i]) + γ(q[mv],′ −′),
B[i, j + 1, k, child(v)] + γ(q[lv],′ −′) + γ(q[mv], t[j]),
B[i, j, k, child(v)] + γ(q[lv],′ −′) + γ(q[mv],′ −′)

7 if v ∈ MR

8 then B[i, j, k, v] = max

B[i, j + 1, k − 1, child(v)] + δ(q[mv ], q[rv ], t[j], t[k])
+γ(q[mv], t[j]) + γ(q[rv], t[k]),

B[i, j, k − 1, child(v)] + γ(q[mv],′ −′) + γ(q[rv], t[k]),
B[i, j + 1, k, child(v)] + γ(q[mv], t[j]) + γ(q[rv ],′ −′),
B[i, j, k, child(v)] + γ(q[mv],′ −′) + γ(q[rv],′ −′)

9 if v ∈ MS and move(v) = (1, 0, 0)

10 then B[i, j, k, v] = max
B[i − 1, j, k, child(v)] + γ(q[lv], t[i]),
B[i, j, k, child(v)] + γ(q[lv],′ −′)

11 if v ∈ MS and move(v) = (0, 0, 1)

12 then B[i, j, k, v] = max
B[i, j, k − 1, child(v)] + γ(q[rv], t[k]),
B[i, j, k, child(v)] + γ(q[rv],′ −′)

13 if v ∈ MS and move(v) = (0, 1, 0)

14 then B[i, j, k, v] = max
B[i, j + 1, k, child(v)] + γ(q[mv], t[k]),
B[i, j, k, child(v)] + γ(q[mv],′ −′)

15 B[i, j, k, v] = max

B[i, j, k, v]
B[i − 1, j, k, v] + γ(′−′, t[i]),
B[i, j + 1, k, v] + γ(′−′, t[j]),
B[i, j, k − 1, v] + γ(′−′, t[k])

16
17 BSP [i0, k0, iSP , kSP ] = maxj=i+1,k=k0{B(i, j, k, ROOT(M ′))}

(b) IMPROVED ALIGN-SP()
1 for all v ∈ M ′

2 do for i0 = 1 to n − 1
3 do for i = i0 − 1 to n − 1
4 do for j = n + 1 downto i + 1
5 do for k = j − 1 to n
6 do Compute B[i, j, k, v]

Fig. 4. (a) Align-SP procedure for alignment of a simple pseudoknot structure to a target se-
quence t[1...n]. (b) Improved Align-SP procedure.

number of nodes in the chain is O(m). We still need to consider O(n3) target frontiers
in aligning, for a complexity of O(mn3).

4 Alignment Algorithm for Simple-Pseudoknots

Figure 4(a) describes the algorithm ALIGN-SP for aligning a simple-pseudoknot to a
DNA substring. Its input is a chain of query sub-pseudoknots, which is aligned to all
sub-pseudoknotsP(i, j, k) of the target sequence t[1 . . . n]. Let ML (respectively MR)
be the set of solid nodes representing subpseudoknots P(i, j, k) where (i, j) ∈ SL

(respectively, (j, k) ∈ SR). Let MS be set of the nodes representing subpseudoknots
P(i, j, k) where neither (i, j) �∈ SL, and (j, k) �∈ SR.

As an example, suppose we are aligning sub-pseudoknot P(i, j, k) in t to the sub-
chain rooted at v. Let B[i, j, k, v] be the score of the optimal alignment. First, we have
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BINARIZE-SP(i, j)
1 if (i, j) is a simple pseudoknot structure
2 then return CHAINING(i, j, pseudo − node, Nil);
3 if i = j
4 then return CREATENODE(i, j, empty, Nil);
5 if (i, j) ∈ M
6 then v = BINARIZE-SP(i + 1, j − 1);
7 return CREATENODE(i, j, solid, v);
8 if (k, j) ∈ M for some i < k < j
9 then

10 vl = BINARIZE-SP(i, k − 1);
11 vr = BINARIZE-SP(k, j);
12 (A empty node with 2 children, vl and vr.)
13 return CREATENODE(i, j, empty, vl, vr);
14 if i < j
15 then v = BINARIZE-SP(i, j − 1);
16 return CREATENODE(i, j, empty, v);

a
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Fig. 5. Binarization procedure revised for embedded-simple-pseudoknots and an illustration. (a)
An embedded-simple-pseudoknot with spurious base pairs added. (b) Resulting binary tree. Solid
nodes correspond to actual base pairs while empty (circular) nodes correspond to spurious base
pairs. A ’�’ represents a pseudonode and subtree rooted at a pseudonode is formed by Chaining
procedure.

cases involving insertion of target nucleotides: t[i], t[j], and t[k], as described by the
recurrence in Figure 4(a)(Line 15). Next, we have the cases corresponding to match
or deletion of v. We consider the case v ∈ ML corresponding to the subpseudoknot
P(lv,mv, rv) in q. The following cases can occur

1. (t[i], t[j]) is a pair in t corresponding to the pair (q[lv], q[mv]) in q.
2. q[lv] is substituted with t[i] and q[mv] is deleted.
3. q[mv] is substituted with t[j] and q[lv] is deleted.
4. q[lv] and q[mv] are both deleted.

The corresponding recurrences are shown on Line 6 of the procedure. The other
cases are handled in an analogous fashion and are described in Figure 4.

5 Alignment Algorithm for Embedded-Simple-Pseudoknots

We consider now the special case of aligning recursive-simple-pseudoknots in which
simple-pseudoknots are embedded in a regular structure. This is by far the most com-
mon occurrence of pseudoknots. While it is relatively easy to extend our algorithms to
handle the full generality of recursive-pseudoknots, the complexity increase makes the
algorithms untractable for real problems. Thus, this special case offers a compromise
between generality and practicality.

The first step in the procedure is to binarize the query RNA, so that every nucleotide
is in a base-pair, and can be represented by a binary tree of size O(m) [24]. The main
difference is that we invoke the chaining procedure whenever a simple-pseudoknot is
encountered. Thus, in the binary tree, the simple pseudoknot substructure appears as a
chain rooted at a pseudo-node.
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After the binary tree structure M ′ of query sequence q is created, target sequence
t is aligned to this tree. The following procedure ALIGN aligns a given subsequence
(t[i . . . j]) in target sequence to a subtree of M ′. The scores of optimal alignments are
stored in matrix A. The entry A[i, j, v] keeps the optimal alignment of the subproblem
of aligning a subsequence (t[i], t[j]) to the subtree rooted at the node v, in other words
to the subinterval (q[lv], q[rv]) of the query sequence.

6 Complexity

In Align-SP, lines 3 − 15 runs in O(n3) time to align all subpseudoknots in target to a
node. Those lines are executed for each subinterval (i0, k0) in target and for each node
in the query tree. Then, time complexity of procedure Align-SP becomes O(mn5).
However, we do not need to compute O(n3) scores for each subinterval (i0, k0). Since
k0 does not appear in the recurrences of Align-SP procedure and B[i, j, k] does not
depend on B[i′, j′, k′] such that k′ > k, B[i, j, k] does not depend on k0. Thus, it
is enough to compute O(n3) scores for each i0 as shown in Figure 4(b). Then, total
running time of Align-SP is O(mn4).

In Align procedure in Figure 6, we first call Binarization-SP procedure which runs
in O(m) time. We also call Align-SP procedure whenever we encounter with a pseudo-
node in the binary tree formed. Let mp be the length of the pseudoknot regions in
q[1 · · ·m], m1 and m2 be the number of the nodes with one child and two children in
the binary tree of q representing the regions with regular structure. Then, the total run-
ning time of Align procedure will be O(mpn

4 +m1n
2 +m2n

3). It is useful to note that
very often, mp,m2 ∈ o(m), and so the true complexity is better than the worst case
complexity. Also, in computing good alignments, we can often bound the gap-lengths.

ALIGN(q[1...m], t[1...n])
1 M ′ = BINARIZE-SP(Q)
2 for all intervals (i, j) in t and all nodes v in M
3 do if v is NIL
4 then A[i, j, NIL] = j

l=i γ(t[l],′ −′)
5 if v is a pseudo node
6 then A[i, j, v] = return ALIGN-SP(i, j, v)
7 if v ∈ M

8 then A[i, j, v] = max

A[i + 1, j − 1, child(v)] + δ(t[i], t[j], q[lv], q[rv])
A[i, j − 1, v] + γ(′−′, t[j])
A[i + 1, j, v] + γ(′−′, t[i])
A[i + 1, j, child(v) + γ(q[lv], t[i]) + γ(q[rv],′ −′)
A[i, j − 1, child(v)] + γ(q[lv],′ −′) + γ(q[rv], t[j])
A[i, j, v] + γ(q[lv],′ −′) + γ(q[rv],′ −′)

9 if v ∈ M ′ − M and v has one child

10 then A[i, j, v] = max

A[i, j − 1, child(v)] + γ(q[rv], t[j])
A[i, j, child(v)] + γ(q[rv],′ −′)
A[i, j − 1, v] + γ(′−′, t[j])
A[i + 1, j, v] + γ(′−′, t[i])

11 if v ∈ M ′ − M and v has two children
12 then A[i, j, v] = max

i≤k≤j
{A[i, k − 1, left child(v)] + A[k, j, right child(v)]}

Fig. 6. Alignment Algorithm for aligning an embedded-simple-pseudoknot q[1...m] to a target
sequence t[1...n]



Structural Alignment of Pseudoknotted RNA 153

To take advantage of this, we employ a banding procedure (details not shown). A dis-
cussion of scoring matrices and gap penalties is deferred to the full-version of the paper.

7 Alignment Algorithm for Standard Pseudoknots

It is possible to extend the algorithm for aligning a simple pseudoknot to an alignment
algorithm for a standard pseudoknot with degree d > 3. In the full version of the paper,
we present an extension of our algorithm for standard pseudoknot structures with degree
4, and achieve the following result:

Theorem 2 The optimal alignment for a standard pseudoknot with degree 4 can be
computed in O(mn4) time which is identical to the degree 3 case (simple pseudoknots).
In general, standard pseudoknots of degree 2k − 1 and 2k can be aligned in O(mn2k)
time.

8 Results

A C++ implementation of the algorithm given for simple pseudoknots (PAL) is done.
PAL takes an RNA query and target sequence, and returns all high scoring structural
local alignments in the target sequence. All tests were performed on a PC (3.4 Ghz,
1 GB RAM) unless otherwise stated. The structure of the target sub-sequence is in-
ferred from the alignment (Ex: Figure 8). In order to assess the performance of PAL, we
tested 6 RNA families from Rfam database: UPSK, Antizyme, Parecho CRE, Corona-
FSE, Corona-pk3 and IFN-gamma. Each of these families has an embedded-simple-
pseudoknot structure. General information about these families are shown in Table 1.

Table 1. 6 Simple Pseudoknotted RNA families. Avg Id stands for the average sequence identity
between two seed members, n for the number of seed members, L for the length, LP for the
length of the pseudoknot region and t for the average time PAL takes for the alignment of a pair.

RNA Family Rfam Id Avg Id n L LP t(sec)
UPSK RF00390 92.78% 4 23 − 23 ∼ 22 0.0

Antizyme RF00381 83.07% 13 57 − 59 ∼ 54 12.8

Parecho CRE RF00499 81.99% 5 102 − 115 ∼ 33 1.4

Corona-FSE RF00507 67.44% 18 79 − 85 ∼ 76 31.5

Corona-pk3 RF00165 69.42% 14 62 − 64 ∼ 56 19.9

IFN-gamma RF00259 89.83% 5 166 − 169 ∼ 113 51.7

8.1 Predicting Structure with PAL

To test structural inference, we select a pair of members from a family as the query
and target. PAL is used to align the query to the target. The inferred structure of the
target is compared against the annotated structure in the Rfam database. We evaluate
the predicted structure by computing TP (true positives), FP (false positives) and FN



154 B. Dost et al.

(false negatives), defined as follows: TP is the number of base pairs in inferred target
structure that are correct: FP is the number of base pairs in the inferred structure that
are not in the true structure, and FN is number of base pairs in the true structure that
are not inferred. We define Specificity = TP / (TP + FP) and Sensitivity = TP / (TP +
FN). Good performance is indicated by both being close to 1. Table 2 summarizes the
result of testing each pair in the 6 families. As the results show, PAL is a strong predictor
of structure, with mean sensitivity and specificity of 0.95. We also investigated the few
cases in which the prediction was away from the mean. In most of those cases, the target
had stem loops that were longer than the query. As they were not aligned to the query
structure, they were not inferred. In practice, we would augment the inferred structure
by a local extension of stem loops in both directions. A second source of errors was
incorrect annotation in Rfam. Other than these two scenarios, the structure inference
was essentially correct.

There is a second caveat in these results which is not apparent. Many (but not all)
of the sequences have high sequence similarity, which might be making the alignment
task easier. We believe this is because a sequence search tool like Blast is used to fish
out candidates, which are then manually aligned, and experimentally validated. We will
show in the following sections that our tool can pick out candidates that BLAST cannot
find, and also align them structurally. Also, in the cases where there isn’t high sequence
similarity, the structure inference was just as good.

Table 2. Pairwise tests: Statistics for Specificity and Sensitivity values. Mean is the average of
Specificity (Sensitivity) values and median is the mid-point of Specificity (Sensitivity) values
over all seed member pairs in an RNA family.

Specificity Sensitivity

RNA Family Mean StdDev Median Range Mean StdDev Median Range

UPSK 1.000 0.000 1.000 (1.000-1.000) 1.000 0.000 1.000 (1.000-1.000)

Antizyme 0.991 0.020 1.000 (0.941-1.000) 0.991 0.020 0.941 (0.941-1.000)

Parecho 0.951 0.052 0.976 (0.848-1.000) 0.938 0.053 0.952 (0.844-1.000)

Corona-FSE 0.944 0.100 1.000 (0.737-1.000) 0.937 0.105 1.000 (0.737-1.000)

Corona-pk3 0.971 0.053 1.000 (0.765-1.000) 0.968 0.056 1.000 (0.722-1.000)

IFN-gamma 0.937 0.092 1.000 (0.782-1.000) 0.934 0.093 1.000 (0.782-1.000)

8.2 Searching for Structural Homologs

In this test, we use one of the members of an RNA family as a query, and look for
its homolog in a large random sequence, with the other members inserted. Figure 7(a)
shows the results for the Corona-FSE family, in which 17 members were embedded in
a 19kb random sequence. The windowed scores are shown by solid lines. The actual
positions of the remaining 17 members are denoted by ’*’. We note that the true hits
are easily the highest scoring regions along the sequence, and that all true positives
score higher than all the false hits. The lowest scoring TP has a score of 988 and the
highest scoring FP has a score of 606. Moreover, the random sequence scores do not
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Fig. 7. Use of PAL as a pseudoknot RNA search tool (a) Score plot for Corona-FSE homologue
search. ’*’ denotes actual positions of the members and ’+’ denotes the members located by
Blastn. (b) Comparison against BLAST on other families.

show a large variation. We do not compute P -values on the hits, but in future work,
we will use the distribution of scores on random, or genomic sequence (with differing
GC-content) to compute the P -value. In general, the distribution is not understood, and
we will either use a non-parametric value such as the Chebyshev’s inequality [26], or
perhaps the Gumbel distribution, which has been shown to be a good approximation
to the actual distribution [11]. In contrast, Blastn (E-value 10, Word-size 7) is able to
locate only 4 of the members. These results also show the significance of the secondary
structure for searching homologue in addition to the primary structure. We repeat the
same experiment for RNA families, UPSK, Antizyme, Parecho, Corona-FSE, Corona-
pk3 and IFN-gamma. In all cases, PAL locates all members as the topmost hits (See
Figure 7(b)). We agree that Blast is not the most appropriate tool for comparison as other
tools such as RSEARCH, and our own tool FastR can search for structural homologs
of RNA [11, 26]. However, these other tools cannot align psuedoknotted RNA and the
search must be followed up with a correct alignment to determine homologs. Also, the
complexity of these methods often force a use of Blast to determine initial candidates.
In the next section, we show that our tool used in conjunction with RNA filters can
efficiently search large genomes.

9 Searching Genomes for Pseudoknots

While PAL is accurate in fishing for structural homologs, it is computationally inten-
sive, making genome scale searches intractable. However, there has been much recent
research (including our own work) on computational filters for RNA, which quickly
eliminate much of the database, while retaining the true homologs [27, 26]. We used
PAL in conjunction with sequence based filters [28] to search genomes, for the 3 most
interesting families.



156 B. Dost et al.

Query: Human chromosome 12, minus, 66839786 – 66839618
Subject: Mouse chromosome 10, plus, 118018890-118019061

.......AAAAAAA<<<<<<<< ..<<<<<. . <<<<<....<<<<<<<<..
Query: CAUUGUUCUGAUCAUCUGAAGA---------UCAGCUAU--U--AGAAGAGAAAGAUCAGUUA

|| +**++ +*+*+++* ||+***+ | ** ** | * **** |
Sbjct: CA-----GAGAGGUGCAGGCUAUAGCUGCCAUCGGCUGACCUAGAGAAG--ACACAUCAGCU-

.......AAAAAAA<<<<<<<<...........<<<<<......<<<<<....<<<<<<<<..

<<<..<<<<....aaaaaaa .......>>>>.>>>>>>>>>>>...>>>>>.>>>>>....>
Query: AGUCCUUUGGACCUGAUCAG-CUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUU

++*||****|| ++**+ ||||| |**++|++* ++*+ *| ** ** +***+ *
Sbjct: GAUCCUUUGGA--CCCUCUGACUUGAGACAGAAGUUCUGGGCUUCUCCUCCUGCGGCC----U

<<<..<<<<....aaaaaaa........>>>>.>>>>>>>>>>>...>>>>>.>>>>>....>

>>.>>>>><<<<<<<.. <<<<<.....>>>>>...<<<<....>>>>... >>>>>>>
Query: CUCUCGGAAACGAUGAA--AUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUG---CAUCGUU

++|**+**+ *+***|| * +*|| *+ * |||****|| |****|| ***+* *
Sbjct: AGCUCUGAGACAAUGAACGCUACACA--CUGCAUCUUGGCUUUGCAGCUCUUCCUCAUGGCU

>>.>>>>><<<<<<<....<<<<<.....>>>>>...<<<<....>>>>......>>>>>>>
Start codon

Fig. 8. Structural alignment of the Human Interferon-γ pseudoknot against mouse upstream ge-
nomic DNA. The structure of the query is denoted by parenthesis <, >” , and ”A,a” for the
pseudoknot. The symbols describe the conservation: (*) sequence and structure is conserved. (+)
structure is conserved but not sequence. (|) sequence is conserved, but not structure.

The Corona-FSE family (RF00507) is a conserved pseudoknot in Coronaviruses
which can promote ribosomal frameshifting [29]. We searched the entire Viral genome
(79 Mb) for homologs of this family in 33.8 CPU hours on 1.6GHz AMD Opteron
Grid, and identified 11 novel members of the sub-family. Like other known members,
these are found in coronaviruses, murine hepatitis virus, and Avian flu viruses. Only 2
of the 11 were similar enough in sequence to be identified by BLAST. The alignments
can be retrieved from (http://www.cse.ucsd.edu/∼bdost/RF00507.htm). A similar result
was obtained for Corona-pk3. This family has a conserved∼ 55nt pseudoknot structure
which has been shown to be necessary for viral genome replication [30]. We identified
20 novel members of this family with significant scores (See http://www.cse.ucsd.edu/
∼bdost/RF00165.htm). Only 1 of the 20 was similar enough in sequence to be identified
by BLAST.

The Interferon-gamma family is an interesting example of a pseudoknot that is
found in the 5’UTR of the Interferon-gamma gene. It regulates translation of the down-
stream gene by binding to the kinase PKR, a known regulator of IFN-gamma trans-
lation [31]. After its discovery in 2002, the pseudoknot was found to be conserved in
many mammals. Its presence in rodents was speculated, but the homolog was not lo-
cated. We searched in mouse and rat genomic DNA, and in the complete gene of gerbil.
In all 3 species, we clearly identified the homologs as the top-scoring alignment. The
alignment of human and mouse pseudoknots are shown in Figure 8. The conserved
location in the two species, just upstream of the start codon, and conservation of key el-
ements validates the hit. We are working with collaborators on experimental validation,
and to locate more members of this family.

In conclusion, we demonstrate that the algorithm for aligning pseudoknots, imple-
mented as PAL represents a viable tool for searching for novel homologs, and for struc-
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tural inference. We hope that our tool will help increase the impact and influence of
pseudoknotted RNA in cellular function. PAL and supplemental data are available upon
request.
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Abstract. In each the 10 years Recomb has existed as an annual con-
ference, there has been an Ulam Lecture, beginning with the 1997 Ulam
Lecture delivered in Santa Fe by Eric Lander. While intended by the
conference organizers to be a less technical and more casual lecture, it is
difficult for a scientist not to speak about their own science and under-
standably that is just what has happened. In this year’s Ulam lecture
I will attempt to give a sketch of the life and accomplishments of this
fascinating and rather enigmatic person. At the conclusion I will try to
make a few comments about the current state of computational biology.
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Abstract. In this paper, we present CONTRAlign, an extensible and
fully automatic framework for parameter learning and protein pairwise
sequence alignment using pair conditional random fields. When learn-
ing a substitution matrix and gap penalties from as few as 20 exam-
ple alignments, CONTRAlign achieves alignment accuracies competitive
with available modern tools. As confirmed by rigorous cross-validated
testing, CONTRAlign effectively leverages weak biological signals in se-
quence alignment: using CONTRAlign, we find that hydropathy-based
features result in improvements of 5-6% in aligner accuracy for sequences
with less than 20% identity, a signal that state-of-the-art hand-tuned
aligners are unable to exploit effectively. Furthermore, when known sec-
ondary structure and solvent accessibility are available, such external
information is naturally incorporated as additional features within the
CONTRAlign framework, yielding additional improvements of up to 15-
16% in alignment accuracy for low-identity sequences.

1 Introduction

In comparative structural biology studies, analyzing or predicting protein three-
dimensional structure often begins with identifying patterns of amino acid sub-
stitution via protein sequence alignment. While the evolutionary information
obtained from alignments can provide insights into protein structure, construct-
ing accurate alignments may be difficult when proteins share significant struc-
tural similarity but little sequence similarity. Indeed, for modern alignment tools,
alignment quality drops rapidly when the sequences compared have lower than
25% identity, the “twilight zone” of protein alignment [1].

In recent years, most alignment methods that have claimed improvements in
alignment accuracy have done so not by proposing substantially new algorithms
for alignment but rather by incorporating additional sources of information. For
instance, when structures of some sequences are available, the 3DCoffee pro-
gram [2] uses pairwise alignments from existing threading-based (FUGUE [3])
and structural (SAP [4] and LSQman [5]) alignment tools to guide sequence
alignment construction. When homologous sequences are available and com-
putational expense is of less concern, the PRALINEPSI program [6] uses PSI-
BLAST–derived [7] sequence profiles to augment the amount of evolutionary

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 160–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

M

Ix

Iy

x GFAG
y GY-G

Fig. 1. Traditional sequence alignment model. (a) A simple three-state HMM for se-
quence alignment. (b) An example sequence alignment, a.

information available to the aligner. The SPEM program [8] takes the additional
step of heuristically incorporating PSIPRED [9] predictions of protein secondary
structure, a strategy also adopted in the latest version of PRALINEPSI [10].

As these programs demonstrate, incorporating additional information can
often yield considerable benefits to alignment quality. However, choosing pa-
rameters for more complex models can be difficult. In traditional dynamic-
programming–based alignment programs, log-odds–based substitution matrices
are estimated from large external databases of aligned protein blocks [11], and
gap parameters are typically “hand chosen” to maximize performance on bench-
mark tests [12]. When dealing with more expressive models, however, the high-
dimensionality of the parameter space hinders such manual procedures. From
the perspective of numerical optimization, the non-convexity of aligner perfor-
mance as a function of parameters makes hand-tuning difficult for alignment
algorithms that rely on complicated ad hoc scoring schemes.

Furthermore, optimizing benchmark performance often leads to overfitting,
a situation in which the selected parameters are nearly optimal for training
benchmark alignments but work poorly on new test data. To combat overfitting,
many machine learning studies make use of cross-validation, a technique in which
an algorithm is trained and tested on independent data sets in order to estimate
the ability of the method to generalize to new situations [13].1

In this paper, we present CONTRAlign, an extensible and fully automatic
framework for parameter selection and protein pairwise sequence alignment
based on a probabilistic model known as a pair conditional random field (pair-
CRF) [15, 16]. In the CONTRAlign methodology, the user first defines an ap-
propriate model topology for pairwise alignment. Unlike for ad hoc algorithms
in which model complexity (and hence risk of overfitting) corresponds roughly
with the number of free parameters in the model, the effective complexity of
a CONTRAlign pair-CRF–based model is controlled by a set of regularization
parameters, allowing the user to adjust the trade-off between model expressiv-
ity and the risk of overfitting. Given a set of gold standard partially labeled

1 Properly conducted alignment cross-validation studies are extremely rare in the lit-
erature. In the past, a typical defense for benchmark tuning was that aligners with
few adjustable parameters are less susceptible to overfitting [14]; such reasoning,
however, is less applicable to the complicated procedures of some modern aligners.
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alignments, CONTRAlign uses gradient-based optimization and holdout cross
validation to automatically determine regularization constants and a set of align-
ment parameters with good expected performance for future alignment problems.

We show that even under stringent cross-validation conditions, CONTRAlign
can learn both substitution and gap parameters that generalize well to previ-
ously unseen sequences using as few as 20 training alignments. Augmenting
the aligner with sequence-based and external features is seamless in the CON-
TRAlign framework, yielding large accuracy improvements over modern tools
for “twilight zone” sequence sets.

2 Methods

In this section, we first review the standard three-state pair hidden Markov model
(pair-HMM) formulation of the sequence alignment problem. We also describe
the generalization of the standard pair-HMM to a pair conditional random field
(pair-CRF), the use of regularization for trading off between the risk of over-
fitting and expressivity in a pair-CRF, and a standard optimization procedure
for learning pair-CRF parameters from data. We then discuss a variety of model
topologies and features possible within the CONTRAlign pair-CRF framework.

2.1 Pair-HMMs for Sequence Alignment

Consider the state diagram shown in Figure 1 (a). In the standard model, an
alignment corresponds to a sequence of independent events describing a path
through the state diagram. First, an initial state s is chosen from {M, Ix, Iy}
with probability πs. Then, the alignment process alternates between emitting a
pair of aligned residues (c, d) upon entry into some state s with probability δ(c,d)

s

(or a single unaligned residue c with probability δ(c,-)s or δ(-,c)s ) and transitioning
from some state s to another state t with probability τs→t [17].

Since each event is independent, the probability of the alignment decomposes
as a product of several terms. For instance, the joint probability of generating
an alignment a and sequences x and y shown in Figure 1 (b) is

P (a, x, y) = πM · δ(G,G)M · τM→M · δ(F,Y)M · τM→Ix · δ(A,-)Ix
· τIx→M · δ(G,G)M . (1)

Alternatively, we may rewrite (1) as P (a, x, y;w) = exp(wT f(a, x, y)) where w
is a parameter vector and f(a, x, y) is a vector of “feature counts” indicating the
number of times each parameter appears in the product on the right-hand side.
More explicitly, if w = [ log πM , log δ

(G,G)
M , log τM→M , ··· ]T , then the corresponding

feature count vector is given by

f(a, x, y) =

⎡⎢⎢⎢⎣
# of times alignment starts in state M

# of times alignment generates (G, G) in state M
# of times alignment follows M →M transition

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
2
1
...

⎤⎥⎥⎥⎦ . (2)
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Given two sequences x and y, the Viterbi algorithm computes an alignment a
that maximizes P (a | x, y;w) in O(|x|·|y|) time. For the model shown in Figure 1,
the Viterbi algorithm is equivalent to the Needleman-Wunsch algorithm [18]. In
this paper, we use an alternative parsing algorithm for finding alignments with
the maximum expected number of correct matches; for details, see [17, 19, 20].

Given a collection of aligned training examples D =
{
(a(i), x(i), y(i))

}m

i=1,
the standard parameter estimation procedure (known as generative training
in the machine learning literature [21]) is to maximize the joint log-likelihood
�(w : D) :=

∑m
i=1 logP (a(i), x(i), y(i);w) of the data and alignments, subject to

constraints ensuring that the original parameters (πM , δ(G,G)M , etc.) are nonnega-
tive and normalize. When training with fully-specified alignments, the optimiza-
tion problem not only is convex but also has a closed-form solution.

In some benchmark alignment databases, such as BAliBASE [22] and PRE-
FAB [23], reference alignments are partially ambiguous: certain columns are
marked as reliable (known as core blocks) while the alignment of other positions
may be left unspecified. In these cases, the training set D̂ =

{
(â(i), x(i), y(i))

}m

i=1
thus consists of partial alignments â(i). Letting A(i) denote the set of alignments
consistent with the known reliable columns of â(i), the joint log-likelihood be-
comes �(w : D̂) :=

∑m
i=1 log

∑
a∈A(i) P (a, x(i), y(i);w). Despite the nonconvexity

of the new optimization problem, most numerical optimization approaches, such
as EM or gradient ascent, work well in practice [17].2

2.2 From Pair-HMMs to Pair-CRFs

In the pair-HMM formalism, the constraints on the parameters w to represent
initial, transition, or emission log probabilities allowed us to interpret a pair-
HMM as defining P (a, x, y;w), the probability of stochastically generating an
alignment. Unlike pair-HMMs, pair-CRFs do not define this joint probability
but instead directly model the conditional probability,

P (a | x, y;w) =
P (a, x, y;w)∑

a′∈A P (a′, x, y;w)
=

exp(wT f(a, x, y))∑
a′∈A exp(wT f(a′, x, y))

, (3)

where A denotes the set of all possible alignments of x and y. As before, the
parameter vector w completely parameterizes the pair-CRF, but this time, we
impose no constraints on the entries of w. Here, a parameter entry wi does not
corresponds to the log probability of an event (as in a pair-HMM) but rather is
a real-valued feature weight that either raises or lowers the “probability mass”
of a relative to other alignments in A. Similar models have been proposed for
string edit distance in natural language processing applications [24, 25].

Clearly, pair-CRFs are at least as expressive as their pair-HMM counter-
parts, as any suitable parameter vector w for an alignment pair-HMM is a valid
parameter vector for its corresponding alignment pair-CRF. Furthermore, while

2 In practice, the only step needed to ensure good convergence was to break symmetries
in the model by initializing parameters to small random values.
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pair-CRFs assume a particular factorization of the conditional probability distri-
bution P (a | x, y;w), they make far weaker independence assumptions regarding
feature counts f(a, x, y). Thus, these models are amenable to using complex fea-
ture sets that may be difficult to incorporate within a generative pair-HMM.

Training a pair-CRF involves maximizing the conditional log-likelihood of
the data (known as discriminative or conditional training [21]). Unlike genera-
tive training, discriminative training directly optimizes predictive ability while
ignoring P (x, y), the model used to generate the input sequences. When a pair-
CRF places undue importance on unreliable features (i.e. the magnitude of
some parameter wj is large), overfitting may occur. To prevent this, we place
a Gaussian prior, P (w) ∝ exp(−∑j Cjw

2
j ), on the parameters w. Thus, we

maximize �(w : D) :=
∑m

i=1 logP (a(i) | x(i), y(i);w) + logP (w), or equivalently,

m∑
i=1

(
wT f(a(i), x(i), y(i))− log

∑
a′∈A

exp(wT f(a′, x(i), y(i)))

)
−
∑

j

Cjw
2
j . (4)

The final term in (4) encourages parameters to be “small” unless increased size
yields a sufficient increase in likelihood. This technique, known as regularization,
leads to improved generalization both in theory and in practice [26].

Parameter learning for pair-CRFs using a fixed set of regularization para-
meters C = {Cj} is straightforward. The objective function in (4) is convex for
fully-specified alignments and hence a global maximum of the regularized like-
lihood can be found using any efficient gradient-based optimization algorithm
(such as conjugate gradient, or L-BFGS [27]). The gradient ∇w�(w : D) is

m∑
i=1

(
f(a(i), x(i), y(i))−Ea∼P (A|x(i),y(i))f(a, x

(i), y(i))
)
− 2C ◦w, (5)

where C ◦w denotes the component-wise product of the vectors C and w. Dis-
regarding regularization, we see that the partial derivative of the log-likelihood
with respect to each parameter wj is zero precisely when the observed and ex-
pected counts for the corresponding feature fj (taken with respect to the distri-
bution over unobserved alignments) match. For fully-specified alignments a(i),
the former term in the parentheses can be directly tabulated from the alignment
a(i), and the latter term can be computed using the forward-backward algorithm.
The partially-specified alignment case follows similarly [17].

2.3 Pairwise Alignments with CONTRAlign

In the previous subsections, we described the standard pair-HMM model for
sequence alignment and its natural extension to pair-CRFs. In this subsection,
we present CONTRAlign, a feature-rich alignment framework that leverages
the power of pair-CRFs to support large non-independent feature sets while
controlling model complexity via regularization.
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Fig. 2. Model variants. (a) CONTRAlignLOCAL topology with N/C-terminal flanking
inserters, (b) CONTRAlignDOUBLE-AFFINE topology with two insert state pairs.

Choice of model topology. As a baseline, we used the standard three-state
pair-HMM model (CONTRAlignBASIC) shown in Figure 1 (a). We experimented
with a variety of other model topologies as well, including:

– CONTRAlignLOCAL: a model with flanking N -terminal and C-terminal in-
sert states to allow for local homology detection (see Figure 2 (a)), and

– CONTRAlignDOUBLE-AFFINE, a model with an extra pair of gap states in
order to model both long and short insertions (see Figure 2 (b)).

Hydropathy-based gap context features. The CLUSTALW protein mul-
tiple alignment program incorporates a large number of heuristics designed to
improve performance on the BAliBASE benchmark reference [28]. One heuristic
applicable to pairwise alignment is the reduction of gap penalties in runs of 5
or more hydrophilic residues. Typically, the core regions of globular proteins,
where insertions and deletions are less likely, consist of hydrophobic residues.
Reducing gap penalties in hydrophilic regions encourages the aligner to place
gaps in regions less likely to be part of the hydrophobic core; similar heuristics
are incorporated in the MUSCLE [23] alignment program as well.

In CONTRAlign, we tested a variant of this idea (CONTRAlignHYDROPATHY)
by incorporating hydropathy-based context features for insertion scoring. Specif-
ically, for each insertion open, insertion continue, or insertion close event in se-
quence x, we defined the number of hydrophilic residues in a window of length 6
in sequence y to be the hydrophilic count context of that event (and vice versa
for insertions in sequence y). We added a total of fourteen features to the model,
seven indicating whether an insertion open or close occurred with a hydrophilicity
context of 0, 1, . . . , or 6, and similarly for insertion continues.

Incorporating external information. To test the ability of CONTRAlign
to incorporate external information, we also experimented with giving CON-
TRAlign information about secondary structure (CONTRAlignDSSP) and sol-
vent accessibility (CONTRAlignACCESSIBILITY) of the sequences being aligned,
as extracted from the PDBFinderII database [29]. In particular, DSSP anno-
tations of sequences from PDBFinderII were converted to a three-letter code
using the grouping employed in the EVA automatic structure prediction bench-
mark server, {{G, H, I}, {E, B}, {T, S, C}} [30]. Similarly, annotations of
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positional amino acid solvent accessibilities were converted from the PDBFind-
erII 0-9 scale using the grouping {{0}, {1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. To as-
sess the value of using predicted external tracks of information, we also tested
variants using PSIPRED single (CONTRAlignPSIPRED-SINGLE) and multiple
(CONTRAlignPSIPRED-MULTI) sequence secondary structure predictions.

For each annotation track, we added emission features to the match and in-
sertion states of the basic model that would allow them to simultaneously emit
both sequence and annotation. A similar method based on “two-track HMMs”
was previously used to improve the quality of fold recognition via predicted
local structure [31]. In that work, the authors constructed an HMM that si-
multaneously emitted two observation signals and relied on the assumed in-
dependence of the two character emission tracks during parameter learning. To
compensate for the violated independence assumption, the authors added heuris-
tic weights to each emission; thus, the “probability” of a two-track emission
was given by P (o1|s)w1P (o2|s)w2 , where the weights w1 and w2 were selected
manually. In contrast, such correction factors are not needed in the pair-CRF
model presented here, as pair-CRF learning makes no assumptions regarding the
independence of the emission features of each state. Thus, pair-CRFs provide
a consistent framework for incorporating multiple sources of evidence without
the need for artificial compensation as present in multi-track generalizations of
HMMs.

3 Results

In the protein sequence alignment literature, benchmark databases of reference
alignments have emerged as the standard metric for evaluating aligner perfor-
mance. First, the aligner-to-be-tested performs alignments for all sequence sets
in the database. Then, accuracy is measured with respect to known reliable
columns of a hand-curated reference alignment.

While benchmark tests have been an invaluable asset to the development of
alignment algorithms, statistics in the literature often misrepresent the signifi-
cance of accuracy differences between aligners. Some reference databases, such
as BAliBASE and PREFAB, contain multiple copies of a single sequence in
several different alignments. Ignoring the non-independence of these test cases
artificially lowers p-values when using rank tests to compare the performance
of two aligners. Even more dangerous is the common practice of “tuning” para-
meters to improve performance on individual benchmark datasets. Due to the
absence of (or improper use of) cross-validation in most studies in the literature,
good benchmark results may not indicate good alignment accuracy for novel
proteins.

With this in mind, we designed a series of carefully controlled cross-validation
experiments to assess the contribution of the different model topologies/features
toward CONTRAlign alignment accuracy, and the ability of the learned align-
ment model to generalize across different benchmark reference databases.
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3.1 Cross-Validation Methodology

We extracted alignments from four standard benchmarking databases:

1. BAliBASE 3.0 [32], a collection of 218 manually refined reference multiple
alignments based on 3D structural superpositions;

2. SABmark 1.65 [33], a collection of 236 very low to low identity (“Twilight
Zone”) and 462 low to intermediate identity (“Superfamilies”) sets of all-
pairs pairwise consensus structural alignments derived from the SCOP [34]
classification;

3. PREFAB 4.0 (beta) [23], a collection of 1932 pairwise structural alignments
supplemented by PSI-BLAST homologs from the NCBI nonredundant pro-
tein sequence database [35]; and

4. HOMSTRAD (September 1, 2005 release), a curated database of 1032
structure-based multiple alignments for homologous families [36].

We projected the BAliBASE and HOMSTRAD reference multiple alignments
into all-pairs pairwise structural alignments. Then, for each multiple sequence
set from BAliBASE, HOMSTRAD, and SABmark, we computed percent identity
for all pairwise alignments and retained the alignment with median identity.

To construct independent training and testing sets for cross-validation, we
relied on the CATH protein structure classification hierarchy [37]; a similar pro-
tocol was followed in benchmarking the PSIPRED protein secondary structure
prediction program. Specifically, we considered a pair of alignments A and B
independent if no two proteins x ∈ A and y ∈ B share the same CATH classifi-
cation at the “homology” level. Using this criterion, we used a greedy procedure
to select alignments for training and testing; at each step in the alignment selec-
tion process, we selected an alignment, which was independent of all alignments
previously selected, from the database with the fewest representatives. The re-
sulting selected pairwise alignments consisted of 38 alignments from BAliBASE,
123 from SABmark, 139 from PREFAB, and 187 from HOMSTRAD.

For parameter learning in CONTRAlign, we considered all matched positions
(in core blocks where applicable) to be labeled and treated gapped or unanno-
tated regions as missing data. To select regularization constants in a manner
strictly independent of the testing set, we used a staged holdout cross validation
procedure on the training data only. Specifically, for a given training collection
D, we randomly chose 20% of the alignments for a holdout set and performed
training only on the remaining 80%. We manually divided model features into a
small number of regularization groups (usually two or three) and constrained the
regularization constants for features in each group to be the same. Starting from
a model with only transition features, we introduced new features, one group at
a time. In each iteration, we used a golden section search and standard L-BFGS
optimization to optimize holdout set conditional log-likelihood over possible set-
tings of the regularization parameter for the newly introduced group. Once all
features were introduced, we retrained the model on all of the training data using
the chosen regularization constants.
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We measured alignment accuracy using the Q score [23], the proportion of
true alignment character matches correctly predicted. For pairwise alignments,
the Q score is equivalent to both the sum-of-pairs (SP) and total column (TC)
score commonly used for measuring multiple alignment accuracy [22].

3.2 Comparison of Model Topologies and Feature Sets

In our first set of cross-validation experiments, we selected each of the reference
databases in turn as the testing set, and used alignments pooled from the other
three databases as the training set.3 Table 1 compares the various models de-
scribed in Section 2.3 as evaluated on each of the four databases. As shown in
the table, changes in model topology (also possible in pair-HMM aligners) give
small improvements in overall accuracy. As expected, the major improvements
come with the incorporation of features based on external information, such as
DSSP secondary structure or solvent accessibility annotations.

Interestingly, accounting for some sequence features present in the input se-
quence alone (in particular, hydropathy) gives a larger increase in performance
than any change in model topology. We return to this observation in Section 3.3.
Also, in contrast to the massive performance gains when using real DSSP sec-
ondary structure annotations, our numbers suggest that predicted PSIPRED sin-
gle sequence secondary structures are not informative for alignment. PSIPRED
multiple sequence predictions, however, are substantially more accurate and give
strong improvements in aligner performance.

Based on these observations, we constructed the CONTRAlignCOMBINED
model, which incorporated the four most informative components: double-affine

Table 1. Comparison of CONTRAlign variants. We counted the number of times each
variant outperformed or was outperformed by the basic model, and assigned p-values
using a simple yet robust statistical sign test to check for deviations from a symmetric
distribution in which either aligner is equally likely to do better. Accuracy improve-
ments relative to the basic model are significant in every case with the exceptions of
the local and PSIPRED single sequence prediction models.

CONTRAlign variant BAliBASE SABmark PREFAB HOMSTRAD Overall p-value
(38) (123) (139) (187) (487)

BASIC 78.93 42.04 74.40 82.61 69.73 n/a
LOCAL 79.10 42.06 74.46 83.34 70.05 7.8 × 10−2

DOUBLE-AFFINE 78.85 44.50 75.40 84.02 71.17 0.00040
HYDROPATHY 82.07 45.61 76.75 84.78 72.38 1.5 × 10−9

ACCESSIBILITY 80.80 52.09 79.47 86.84 75.49 3.1 × 10−27

PSIPRED-SINGLE 77.97 44.94 74.97 82.40 70.47 2.9 × 10−1

PSIPRED-MULTI 83.13 51.91 79.25 85.35 74.99 2.3 × 10−21

DSSP 83.01 57.50 81.89 86.88 77.73 1.2 × 10−33

COMBINED 88.46 61.85 83.66 88.68 80.45 1.2 × 10−44

3 For most reference databases, with the notable exception of SABmark 1.65, align-
ment accuracies are roughly consistent. This difference is likely explained by the
substantially higher proportion of low-identity alignments in SABmark, though we
did not conduct a careful investigation of this phenomenon.
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insertion scoring, hydropathy, DSSP secondary structure, and solvent accessib-
lity. To do this, we built an alignment model incorporating the latter two types
of features as separate “tracks” of information. A variety of other encodings are
possible that allow for more explicit dependencies between secondary structure
and solvent accessibility, but we did not explore this further. For the model de-
scribed, resulting alignments are on average 10% more accurate than those using
the basic model alone.

3.3 Comparison to Modern Sequence Alignment Tools

Next, we compared the CONTRAlignHYDROPATHY model to a variety of modern
sequence alignment methods, including MAFFT 5.732 (both L-INS-i and G-
INS-i) [38, 39], CLUSTALW 1.83 [28], MUSCLE 3.6 [23], T-Coffee 2.66 [40],
and ProbCons 1.10 [20].4 In these experiments, we used the existing multiple
alignment tools to compute pairwise alignments from the cross-validation setup.

Obtaining a proper cross-validated estimate of an aligner’s performance re-
quires tuning the program to multiple training collections, unbiased by testing set
performance. For most modern alignment programs, avoiding testing set bias is
difficult since parameters are typically tuned by hand. Methods with automatic
training procedures, like ProbCons, permit cross-validation to some extent,
with the caveat that the program by default uses BLOSUM62-based amino acid
frequencies estimated from data overlapping all testing sets.

In Table 2, the overall accuracies of most modern hand-tuned methods fall
within a one percent range (68-69%). The ProbCons (Bali) method, which
uses an automatic unsupervised learning algorithm to infer parameters from all
141 BAliBASE 2 alignments, outperforms most other methods on the BAliBASE
dataset except CLUSTALW, which is based on a much more complex model with
many internal parameters adjusted to maximize performance on BAliBASE [41].
As previously suggested [41, 42], CLUSTALW’s lower relative performance on
other databases suggest that it may indeed be overfit to its training set.

To demonstrate the dangers of such overfitting, we trained CONTRAlign on
the small set of 38 BAliBASE sequences, with and without regularization. In this
situation, omitting regularization leads to tremendous overfitting to BAliBASE,
with regularization giving a significant improvement in accuracy. Regularization,
however, is not a substitute for proper cross-validation; when overfitting to all
four databases, CONTRAlign yields clearly over-optimistic numbers compared
to the properly cross-validated test. Similarly, cross-validated ProbCons (de-
spite using BLOSUM62 amino acid frequencies and thus having an easier learn-
ing task than CONTRAlign) performs worse than the non-cross-validated model
as expected, confirming that absence of cross-validation can give significantly un-
realistic estimates of aligner performance.

As shown, cross-validated CONTRAlign (i.e., CONTRAlignHYDROPATHY)
beats current state-of-the-art methods by 3-4% despite (1) estimating all model
4 The Align-m program, which was developed by the creator of the SABmark reference

set, could not be tested on pairwise alignments since the current version (2.3) requires
at least three input sequences for an alignment.
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Table 2. Comparison of modern alignment methods. p-values indicate significance of
performance difference between each method and CONTRAlignHYDROPATHY based on
a sign test, as in Table 1.

Method BAliBASE SABmark PREFAB HOMSTRAD Overall p-value
(38) (123) (139) (187) (487)

MAFFT (G-INS-i) 74.56 41.25 71.37 80.53 67.53 9.8 × 10−22

MAFFT (L-INS-i) 78.08 39.58 71.95 82.01 68.12 7.1 × 10−17

T-Coffee 74.73 42.84 72.99 82.40 69.12 1.2 × 10−11

CLUSTALW 79.43 41.36 73.29 81.62 68.90 1.5 × 10−5

CLUSTALW (-nohgap) 79.65 40.92 73.51 81.35 68.77 6.2 × 10−7

MUSCLE 77.42 41.72 72.67 82.63 69.05 2.1 × 10−13

MUSCLE (-hydrofactor 0.0) 74.78 37.78 69.19 77.83 65.01 7.1 × 10−32

CONTRAlign (Bali, no reg) 92.57 39.33 68.77 80.45 67.68 5.7 × 10−14

CONTRAlign (Bali, reg) 84.75 39.08 73.45 82.21 69.01 1.2 × 10−7

CONTRAlign (All, reg) 82.42 47.39 76.74 85.22 73.03 0.00021
ProbCons (Bali) 78.62 42.53 73.75 83.64 70.04 4.8 × 10−8

ProbCons (cv) 78.48 43.31 71.78 81.36 68.79 9.7 × 10−11

CONTRAlignHYDROPATHY 82.07 45.61 76.75 84.78 72.38 n/a

parameters, including the emission matrix, and (2) following a rigorous cross-
validated training procedure. Based on the comparison of the hydropathy and
basic models in Table 1, it is clear that these accuracy gains result directly from
the use of hydropathy-based gap scoring. Perhaps most striking, however, is that
a variety of existing methods, including CLUSTALW and MUSCLE, already in-
corporate hydropathy-based modifications in their alignment scoring, yet do not
manage to achieve above 70% accuracy on our benchmarks. Disabling these mod-
ifications in the respective programs gives no substantial change in performance
for CLUSTALW and greatly reduces MUSCLE accuracy.5 Our result confirms
that hydropathy is indeed an important signal for protein sequence alignment
and that properly accounting for this can yield significantly higher alignment
accuracy than the current state-of-the-art.

3.4 Regularization and Generalization Performance

To understand the effects of regularization at low training set sizes, we reserved
a set of 200 randomly chosen pairwise alignments pooled from all four reference
databases to use as a testing set. We then experimented with learning parameters
for the CONTRAlignHYDROPATHY topology using varying training set sizes. For
staged regularization, we considered a variant of the basic model in which we
introduced amino emission features corresponding to the six-character reduced
amino alphabet, {{A, G, P, S, T}, {C}, {D, E, N, Q}, {F, W, Y}, {H, K, R}, {I,
L, M, V}}, in addition to the regular twenty-letter amino acid emissions [43]. In
the first regularization stage, the program learns a coarse-grained substitution
matrix, followed by finer-grained refinements in the second stage.

The results in Figure 3 (a) demonstrate that with intelligent use of regular-
ization, good accuracy can be achieved with only 20 example alignments, far
5 Performing a sign test to compare performance when hydropathy scoring is either

enabled or disabled yields p-values of 0.56 and 6.28 × 10−31 for CLUSTALW and
MUSCLE, respectively.



CONTRAlign: Discriminative Training for Protein Sequence Alignment 171

+

+

+
+ +

0.25

0.35

0.45

0.55

0.65

0.75

2 4 8 16 32 64
Training set size

A
cc

ur
ac

y

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0-10 10-20
Percent identity (%)

A
cc

ur
ac

y

(b)

Fig. 3. Alignment accuracy curves. (a) Accuracy as a function of training set size. The
three curves give performance when using no (+), simple (�), and staged (•) regular-
ization. All data points are averages over 10 random training/test splits. (b) Accuracy
in the “twilight zone.” For each conservation range, the uncolored bars (�) give accu-
racies for MAFFT (L-INS-i), T-Coffee, CLUSTALW, MUSCLE, and ProbCons (Bali)
in that order, and the colored bar (�) indicates the accuracy for CONTRAlign.

fewer than the number of blocks used to estimate traditional alignment substi-
tution matrices such as BLOSUM [11]; nevertheless, the simpler regularization
scheme was still quite effective compared to having no regularization at all.

For specific classes of alignments, such as sequences with long insertions
or compositional biases, a robust training procedure allows one to tailor the
alignment algorithm to the data; when, in addition, training data is sparse,
regularization deters overfitting and enables further customization of alignment
parameters. Furthermore, as the amount of available training data grows, accu-
racy will continue to increase as well.

3.5 Alignment Accuracy in the “Twilight Zone”

To understand the situations in which CONTRAlignHYDROPATHY was most
effective, we stratified the 487 sequences of our dataset into several percent
identity ranges and measured the accuracy of all methods for each range. For
alignments with at least 20% identity, all methods obtained similar accuracies,
ranging from 87.2% to 88.7%. In the 0-10% and 10-20% identity ranges, how-
ever, CONTRAlign accuracy was substantially higher than that of other meth-
ods; here, CONTRAlign achieved cross-validated accuracies of 32.2% and 52.8%
compared to non-cross-validated accuracy ranges of 25.7-26.8% and 43.0-46.5%
for all other methods (see Figure 3 (b)). Incorporating external sequence fea-
tures such as in the combined model of Section 3.2 yields accuracies of 48.0%
and 68.5% (not shown in figure), indicating that external sequence information
can significantly increase the reliability of alignments when available.

4 Discussion

Construction of a modern high-performance sequence alignment program involves
understanding the variety of biological features available when performing
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alignment, building a model of interactions demonstrating how those features may
be combined in an aligner, and careful cross-validation experiments to ensure good
generalization performance of the aligner on future data. In this paper, we pre-
sented CONTRAlign, a pair conditional random field for learning alignment pa-
rameters effectively even when small amounts of training data are available. Using
regularization and holdout cross-validation, our algorithm automatically learns
parameters with good generalization performance. Public domain source code for
CONTRAlign, datasets used in experiments from this paper, and a web server
for submitting sequences are available online at http://contra.stanford.edu/
contralign.

Since CONTRAlign specifies a conditional probability distribution over
pairwise alignments, the ProbCons methodology provides one straightforward
extension of CONTRAlign to multiple alignment. The main limitation of the
CONTRAlign framework, however, is training time: L-BFGS gradient-based op-
timization is expensive, especially in the context of the holdout cross validation
procedure used. Typical training runs for the experiments in this paper (includ-
ing holdout cross-validation to find regularization constants) took approximately
an hour on a 40-node Pentium IV cluster. Perceptron learning [44], a recent tech-
nique for discriminatively training structured probabilistic models, may provide
a scalable alternative to gradient-based optimization.

The primary advantage of CONTRAlign is its ability to free aligner de-
velopers to focus on the biology of sequence alignment—modelling and feature
selection—while transparently taking care of details such as parameter learning
and generalization performance. The models described in this paper were only
the first steps toward a better understanding of the sequence alignment prob-
lem. Combining new CONTRAlign topologies and features with known success-
ful variants should result in even higher performance. A systematic exploration
of such possibilities remains to be done.
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Abstract. We present a new approach to managing redundancy in se-
quence databanks such as GenBank. We store clusters of near-identical
sequences as a representative union-sequence and a set of corresponding
edits to that sequence. During search, the query is compared to only the
union-sequences representing each cluster; cluster members are then only
reconstructed and aligned if the union-sequence achieves a sufficiently
high score. Using this approach in BLAST results in a 27% reduction is
collection size and a corresponding 22% decrease in search time with no
significant change in accuracy. We also describe our method for cluster-
ing that uses fingerprinting, an approach that has been successfully ap-
plied to collections of text and web documents in Information Retrieval.
Our clustering approach is ten times faster on the GenBank nonredun-
dant protein database than the fastest existing approach, CD-HIT. We
have integrated our approach into FSA-BLAST, our new Open Source
version of BLAST, available from http://www.fsa-blast.org/. As a re-
sult, FSA-BLAST is twice as fast as NCBI-BLAST with no significant
change in accuracy.

1 Introduction

Comprehensive genomic databases such as the GenBank non-redundant pro-
tein database contain a large amount of internal redundancy. Although ex-
act duplicates are removed from the collection, there remain large numbers of
near-identical sequences. Such near-duplicate sequences can appear in protein
databases for several reasons, including the existence of closely-related homo-
logues or partial sequences, sequences with expression tags, fusion proteins, post
translational modifications, and sequencing errors. These minor sequence vari-
ations lead to the over-representation in databases of certain protein domains,
particularly those that are under intensive research. For example, the GenBank
database contains several thousand near-identical protein sequences from the
human immunodeficiency virus.

Database redundancy has several pernicious effects. First, a larger database
takes longer to query; as sequencing efforts continue to outpace improvements in
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computer hardware, this is a problem that will continue to worsen. Second, re-
dundancy can lead to highly repetitive search results for any query that matches
closely with an over-represented sequence. Third, large-scale redundancy has
the effect of skewing the statistics used for determining alignment significance,
ultimately leading to decreased search effectiveness. Fourth, the PSI-BLAST al-
gorithm (1) can be misled by redundant matches during iteration, causing it
to bias the profile towards over-represented domains; this can result in a less
sensitive search or even profile corruption (2; 3).

Redundancy has been managed in the past by the creation of representative-
sequence databases (RSDBs), culled collections in which no two sequences share
more than a given level of identity. Such databases have been shown to signifi-
cantly improve profile training in iterative search tools such as PSI-BLAST by
reducing the amount of over-representation of certain protein domains and con-
sequently reducing profile corruption. However, they are less suitable for regular
search algorithms such as BLAST (4; 1) and FASTA (5; 6) because, by defini-
tion, RSDBs are not comprehensive. This leads to search results that are both
less accurate—the representative sequence for a cluster may not be the one that
aligns best with a given query—and less authoritative because the user is only
shown one representative sequence from a family of similar sequences.

In this paper, we describe a sequence clustering methodology that efficiently
and effectively identifies and manages redundancy. Importantly, it lacks the
drawbacks of previous representative-sequence databases. Previous approaches
choose one sequence from each near-duplicate cluster as a representative to the
database and delete the other sequences. In contrast, we generate for each cluster
a special union-sequence that—through use of wildcard characters—represents
all of the sequences in the cluster simultaneously. Through careful choice of wild-
cards, we are able to achieve near-optimal alignments while still substantially
reducing the number of sequences against which queries need to be matched.
Further, we store all sequences in a cluster as a set of edits against the union-
sequence. This achieves a form of compression and allows us to retrieve cluster
members for more precise alignment against a query should the union-sequence
achieve a good alignment score. Thus, both space and time are saved with no
significant loss in accuracy or sensitivity.

Our method supports two modes of operation: users can choose to see all
alignments or only the best alignment from each cluster. In the former mode,
the clustering is transparent and the results comparable to searches on an un-
clustered collection. In the latter mode, the search output is similar to the result
of searching a culled representative database, except that our approach is guar-
anteed to display the best alignment from each cluster and is also able to report
the number of similar alignments that have been suppressed.

Our work also improves on previous approaches by reducing the time and
resources required to create clusters. The most successful existing algorithms use
a form of all-against-all comparison that is quadratic in the number of sequences
in the database. Our innovative clustering approach uses a technique known as
fingerprinting that leads to significantly faster clustering; we are able to process
the entire GenBank collection in one hour on a commodity workstation. By
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contrast, the fastest previously available system, CD-HIT (7), takes almost ten
hours on the same machine.

To investigate the effectiveness of our clustering approach we have integrated
it with our freely available open-source software package, FSA-BLAST. When
applied to the GenBank non-redundant (NR) database, our method reduces the
size of sequence data in the NR database by 27% and improves search times by
22% with no significant effect on accuracy.

2 Existing Approaches

Reducing redundancy in a sequence database is essentially a two-stage process:
first, redundancy within the database must be identified by grouping similar
sequences into clusters; then, the clusters must be managed in some way. In this
section we describe past approaches to these two stages.

The first stage of most clustering algorithms involves identifying pairs of sim-
ilar sequences. An obvious approach to this is to align each sequence with ev-
ery other sequence in the collection using a pairwise alignment scheme such as
Smith-Waterman local alignment (8). This is the approach taken by several ex-
isting clustering algorithms, including d2 cluster (9), OWL (10), and KIND (11).
However, this approach is impractical for any collection of significant size; each
pairwise comparison is computationally intensive and the number of pairs is
quadratic in the number of sequences.

Several schemes, including CLEANUP (12), NRDB90 (13), RSDB (3), CD-
HI (14) and CD-HIT (7), use fast clustering approaches based on greedy incre-
mental algorithms. In general, each proceeds as follows. To begin, the collection
sequences are sorted by decreasing order of length. Then, each sequence is ex-
tracted in turn and used as a query to search an initially-empty representative
database for high-scoring matches. If a similar sequence is found, the query se-
quence is discarded; otherwise, it is added to the database as the representative
of a new cluster. When the algorithm terminates, the database consists of the
representative (longest) sequence of each cluster. This greedy approach reduces
the number of pairwise comparisons but has three drawbacks: first, a match is
only identified when one sequence is a substring of another; second, cases where
the prefix of one sequence matches the suffix of another are neglected; and, third,
clusters form around longer sequences instead of natural centroids, potentially
leading to a suboptimal set of clusters.

Existing greedy incremental algorithms also use a range of BLAST-like heuris-
tics to quickly identify high-scoring pairwise matches. The CLEANUP algo-
rithm (12) builds a rich inverted index of short substrings or words in the
collection and uses this structure to score similarity between sequence pairs.
NRDB90 (13) and RSDB (3) use in-memory hashtables of decapeptides and pen-
tapeptides for fast identification of possible high-scoring sequence pairs before
proceeding with an alignment. CD-HI (14) and CD-HIT (7) use lookup arrays of
very short subsequences to more efficiently identify similar sequences. However,
despite each scheme having fast methods for comparing sequence pairs, the al-
gorithms still operate on a pairwise basis and remain O(n2) in the size of the
database. Indeed, we show in Section 7 that CD-HIT — the fastest of the greedy
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incremental algorithms mentioned and the most successful existing approach —
scales poorly, with superlinear complexity in the size of the collection.

One way to avoid an all-against-all comparison is to pre-process the collection
using an index that can efficiently identify high-scoring candidate pairs. Malde
et al. 2003 (15) and Gracey et al. 1998 (16) investigated the use of suffix struc-
tures such as suffix trees (17) and suffix arrays (18) to identify groupings of
similar sequences in linear time. However, traditional suffix structures consume
large amounts of memory and are not suitable for processing large sequence
collections such as GenBank on desktop workstations. Malde et al. 2003 (15)
report results for only a few thousand EST sequences. The algorithm described
by Gracey et al. 1998 (16) requires several days to process a collection of around
60,000 sequences. External suffix structures, which record information on disk,
are also unsuitable; they use a large amount of disk space, are extremely slow
for searching, or have slow construction times (19). Nonetheless, we believe that
investigating data structures for identifying all pairs of similar sequences in a
fixed number of passes is the correct approach.

Once a set of clusters have been identified, most existing approaches retain a
single representative sequence from each cluster and delete the rest (13; 3; 14; 7).
The result is a representative database with fewer sequences and less redundancy.
However, purging near-duplicate sequences can significantly reduce the quality
of results returned by search tools such as BLAST. There is no guarantee that
the representative sequence from a cluster is the sequence that best aligns with a
given query. Therefore, some queries will fail to return matches against a cluster
that contains sequences of interest, which reduces sensitivity. Further, results
of a search lack authority because they do not show the best alignment from
each cluster. Also, the existence of highly-similar alignments, even if strongly
mutually redundant, may be of interest to a researcher.

3 Clustering Using Wildcards

In this section we describe our approach to representing and searching clusters
of highly-similar sequences using union-sequences and special-purpose wildcard
characters to represent clusters.

Let us define E = {e1, ..., en} as the set of sequences in a collection where each
sequence is a string of residues ei = r1...rn | r ∈ R. Our approach represents the
collection as a set of clusters C, where each cluster contains a union-sequence
U and edit information for each member of the cluster. The union-sequence
is a string of residues and wildcards U = u1...un|ui ∈ R ∪ W where W =
{w1, ..., wn | wi ⊆ R} is the set of available wildcards. Each wildcard represents
a set of residues and is able to act as a substitute for any of these residues. By
convention, wn is assumed to be the default wildcard wd that can represent any
residue; that is, wn = R.

Figure 1 shows an example cluster constructed using our approach. The union-
sequence is shown at the top and cluster members are aligned below. Columns
where the member sequences differ from each another and a wildcard has been
inserted are shown in bold face. In this example, W = {wd} — that is, only the
default wildcard is used and it is represented by an asterisk.
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KNQVAMN * QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV * QAEVDV * RFRSNT * ER (union-seq)
PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156103)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156105)
QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTKER (gi 156121)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTK (gi 552059)
KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552055)
KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 552057)

PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRSNTKER (gi 156098)
QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVL RFRS (gi 156100)

VFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 156111)
NQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552056)

Fig. 1. Example cluster of heat shock proteins from the GenBank NR database. The
union-sequence is shown at the top, followed by the ten member sequences.

When a cluster is written to disk, the union-sequence — shown at the top of
the figure — is stored in its complete form, and each member of the cluster is
recorded using edit information. The edit information for each member sequence
includes start and end offsets that specify a range within the union-sequence,
and a set of residues that replace the wildcards in that range. For example, the
first member of the cluster with GI accession 156103 would be represented by
the tuple (8,44,PI); the member sequence can be reconstructed by copying the
substring between positions 8 and 44 of the union-sequence and replacing the
wildcards at union-sequence positions 8 and 40 with characters P and I respec-
tively. Note that we do not permit gaps; insertions and deletions are heavily
penalised during alignment and any scheme that allows gaps in representative
sequences is likely to reduce search accuracy. A more complex cluster represen-
tation such as a partial-order graph (20) could tolerate gaps; while the increased
complexity of such a representation leads inevitably to larger on-disk footprint
and longer alignment times, the potential increase in cluster size that gapping
would allow means that such a technique merits future investigation.

Our clustering method is designed so that each union-sequence aligns to the
query with a score that is—with high probability—equal to or higher than the
best score for aligning the query to members of the cluster (see Section 5). During
search, the query is compared to the union-sequence of each cluster; if the union-
sequence produces a statistically significant alignment, then the members of the
cluster are restored from their compressed representations and aligned to the
query. Our approach supports two modes of operation: users can choose to see
all high-scoring alignments, or only the best alignment from each cluster. The
latter mode reduces redundancy in the results.

4 Clustering Algorithm

In this section we briefly describe our approach to efficiently clustering large
sequence collections. A more detailed description of the algorithm is given in
Bernstein and Cameron 2006 (21).

In our approach, we use a largely linear-time algorithm that has low main-
memory overheads for identifying candidate pairs. Document fingerprinting (22;
23; 24; 25; 26) has been used for grouping highly similar documents in ex-
tremely large collections and has been successfully applied to text and web
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data for several applications including plagiarism detection, copyright protec-
tion, and search-engine optimisation. Fingerprinting operates by selecting fixed-
length subsequences — known as chunks — from each document. This set of
chunks is known as the document fingerprint and acts as a compact surrogate
for the document. As highly similar documents are expected to share a large
number of chunks, fingerprints are used to efficiently detect similar documents
in a collection.

The basic process of fingerprinting can be applied to biological sequence data
by substituting sequences for documents, although some alterations in approach
are necessary because genomic sequences do not contain natural word-delimiters
such as punctuation and whitespace. We have modified our deco fingerprinting
package (26; 27) for use with sequence data and it is used as the first stage of
our clustering algorithm.

The fingerprinting process identifies chunks that occur in the collection more
than once. In the context of sequence data we use subsequences or words of
length W as our chunks. For each word, deco outputs a postings list of se-
quences that contain the word and the offset into each sequence where the word
occurs. Our clustering algorithm uses these lists to calculate the number of iden-
tical words shared by each pair of sequences in the collection. The number of
matching words is normalised by the length of the overlapping region between
the two sequences; this provides a good quality estimate of the degree of mutual
redundancy between the sequences. If this measure exceeds a threshold then
the two sequences are aligned using the similarity score measure we describe
next. Highly similar candidate pairs with a score below threshold T are then
recorded.

Given the list of candidate pairs, we use a variation on single-linkage hierar-
chical clustering (28) to identify clusters. Each sequence is initially considered as
a cluster with one member. Candidate pairs are processed in increasing order of
similarity score, from most- to least-similar, and clusters are merged. To merge
a pair of candidate clusters CX and CY with union-sequences X and Y respec-
tively, the overlapping regions of X and Y are aligned. A new union-sequence
U is then created by replacing each mismatched residue in the overlap region
with a suitable wildcard w. The clusters will only be merged if the mean align-
ment score increase Q̄ in the overlap region is below a specified threshold T —
this prevents union-sequences from containing too many wildcards and reducing
search performance.

If the clusters are merged, a new cluster CU is created consisting of all mem-
bers of CX and CY . When inserting wildcards into the union-sequence, if more
than one wildcard is suitable then the one with the lowest expected match score
e(w) =

∑
R s(w, r)p(r) is selected, where p(r) is the background probability of

residue r (29) and s(w, r) is the alignment score for matching wildcard w to
residue r. We discuss how alignment vectors s(w, ·) are constructed in Section 5
and how wildcards are chosen in Section 6.

The alignment score increase Q for a wildcard w is calculated as

Q(w) =
∑
R

s(w, r)p(r) −
∑
R×R

s(r1, r2)p(r1)p(r2)
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where s(r1, r2) is the score for matching a pair of residues as defined by a scoring
matrix such as BLOSUM62 (30). This value estimates the increase in alignment
score one can expect against arbitrary query residues by aligning against w
instead of against the actual residue at that position.

The above approach has a quadratic complexity in the length of each post-
ings list. While most lists remain quite short even in large databases, a small
proportion of words can appear a large number of times. As the database be-
ing processed grows, common words can come to dominate overall processing
time. For example, a postings lists with 500 entries produces 124,750 potential
sequence pairs, which will take a very long time to process. We therefore process
frequently occurring words —those with more than M occurrences in the collec-
tion, where we use M = 100 by default—in a different, top-down manner before
proceeding to the standard hierarchical clustering approach described above.

Given a list of sequences l containing a particular frequently occurring word,
the top-down approach extracts all sequences in l and selects an exemplar; this
is the sequence with the highest percentage identity to the other sequences in the
list. The exemplar is then aligned against each sequence in l and used to create a
cluster as defined above. All sequences in the new cluster are removed from l and
the process is repeated until |l| < M . The shortened list is then processed using
the hierarchical clustering method. This process still has an O(n2) worst-case in
the length of the list, but is significantly quicker than the hierarchical approach
when processing long lists in practice.

5 Scoring Wildcards

We have modified BLAST to work with our clustering algorithm. Instead of
comparing the query sequence to each member of the database, our approach
compares the query only to the union-sequence representing each cluster, where
the union-sequence may contain wildcard characters. If a high-scoring alignment
between the union-sequence and query is identified, the members of the cluster
are reconstructed and aligned to the query. In this section we discuss how, given
a set of wildcards W , we determine the scoring vectors s(wi, ·) for each wi ∈ W .

Ideally, we would like the score between a query sequence Q and a union-
sequence U to be precisely the highest score that would result from aligning
Q against any of the sequences in cluster CU . This would result in no loss in
sensitivity as well as no false positives. Unfortunately, such a scoring scheme
is not likely to be achievable without aligning against each sequence in every
cluster, defeating much of the purpose of clustering in the first place.

To maintain the speed of our approach, scoring of wildcards against residues
must be on the basis of a standard scoring vector s(w, ·) and cannot take into
consideration any data about the sequences represented by the cluster. Thus,
scoring will involve a compromise between sensitivity (few false negatives) and
speed (few false positives). We describe two such compromises below, and finally
show how to combine them to achieve a good balance of sensitivity and speed.

During clustering, wildcards are inserted into the union-sequence to denote
residue positions where the cluster members differ. Let us define S = s1...sx | si ∈
W as the ordered sequence of x wildcards substituted into union-sequences
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during clustering. Each occurrence of a wildcard is used to represent a set of
residues that appear in its position in the members of the cluster. We define
o ⊆ R as the set of residues represented by an occurrence of a wildcard in the
collection and O = o1...ox | oi ⊆ R as the ordered sequence of substituted residue
sets. The kth wildcard sk that is used to represent the set of residues ok must
be chosen such that ok ⊆ sk.

Our first scoring scheme, sexp, builds the scoring vector by considering the ac-
tual occurrence pattern of residues represented by the wildcard in the collection.
Formally, we calculate the expected best score sexp as:

sexp(w, r) =

∑
k∈Pi

max
f∈ok

s(r, f)

|Pi|
where Pi is the set of ordinal numbers of all substitutions using the wildcard wi:

Pi = {j | j ∈ N, j ≤ x, sj = wi}.
This score can be interpreted as the mean score we would get by aligning

residue r against the actual residues represented by the wildcard w. This score
has the potential to reduce search accuracy; however, it distributes the scores
well, and provides an excellent tradeoff between sensitivity and speed.

The second scoring scheme, sopt, calculates the optimistic alignment score of
the wildcard w against each residue. The optimistic score is the highest score
for aligning residue q to any of the residues represented by wildcard w. This is
calculated as follows:

sopt(w, r) = max
f∈w

s(r, f)

The optimistic score guarantees no loss in sensitivity: the score for aligning
against a union-sequence U using this scoring scheme is at least as high as the
score for any of the sequences represented by U . The problem is that in many
cases the score for U is significantly higher, leading to false-positives where the
union-sequence is flagged as a match despite none of the cluster members being
sufficiently close to the query. The result is substantially slower search.

The expected and optimistic scoring schemes represent two different compro-
mises between sensitivity and speed. We can adjust this balance by combining
the two approaches using a mixture model. We define a mixture parameter, λ,
such that 0 ≤ λ ≤ 1. The mixture-model score for aligning wildcard w to residue
r is defined as:

sλ(w, r) = λsopt(w, r) + (1− λ)sexp(w, r)

The score sλ(w, r) for each w, r pair is calculated when the collection is being
clustered and then recorded on disk. During a BLAST search, the wildcard scores
are loaded from disk and used to perform the search. We report experiments with
varying values of λ in Section 7.

6 Selecting Wildcards

Having defined a system for assigning a scoring vector to an arbitrary wildcard,
we now describe a method for selecting a set of wildcards to be used during the
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clustering process. Each wildcard w represents a set of residues w ⊆ R and can
be used in a union-sequence to substitute for any set of residues of which it is
a superset. A set of wildcards, W = {w1, ..., wn} is used during clustering. We
assume that one of these wildcards wn is the default wildcard that can be used
to represent any of the 24 residue and ambiguous codes, that is wn = R. The
remaining wildcards must be selected carefully; large residue sets can be used
more frequently but provide poor discrimination with higher average alignment
scores and more false positives. Small residue sets can be used less frequently,
increasing the use of larger residue sets such as the default wildcard.

The first aspect of choosing a set of wildcards to use for substitution is to
decide on the size of this set. It would be ideal to use as many wildcards as
necessary, so that each substitution si = oi. However, each wildcard must be
encoded as a different character leading to an extremely large alphabet. An
enlarged alphabet would in turn lead to inefficiencies in BLAST due to larger
lookup and scoring data structures. Thus, a compromise is required. BLAST uses
a set of 20 character codes to represent residues, as well as 4 IUPAC-IUBMB
ambiguous residue codes and an end-of-sequence code, for a total of 25 distinct
codes. Each code is represented using 5 bits, permitting a total of 32 codes.
This leaves 7 unused character codes. We have therefore chosen to use |W | = 7
wildcards.

We treat the task of selecting a good set of wildcards as an optimisation
problem. To do this, we first cluster the collection as described in Section 4
using only the default wildcard, ie. W = {wd}. We use the residue-substitution
sequence O from this clustering to create a set W ∗ of candidate wildcards. Our
goal can then be defined as follows: we wish to select the set of wildcards W ⊆
W ∗ such that the total average alignment score A =

∑
w∈S

∑
r∈R

s(w, r)p(r) for all

substitutions S is minimised. A lower A implies a reduction in the number of
high-scoring matches between a typical query sequence and union-sequences in
the collection, thereby reducing the number of false-positive situations in which
cluster members are fruitlessly recreated and aligned to the query.

In selecting the wildcard set W that minimises A we use the following greedy
approach: first, we initialize W to contain only the default wildcard wd. We
then scan through W ∗ and select the wildcard that leads to the greatest overall
reduction in A. This process is repeated until the set W is filled, at each iteration
considering the wildcards already in W in the calculation of A. Once W is full
we employ a hill-climbing strategy where we consider replacing each wildcard
with a set of residues from W ∗ with the aim of further reducing A.

A set of wildcards was chosen by applying this strategy to the GenBank
NR database described in Section 7. The following wildcards were identified
and are used for all reported experiments: LVIFM, GEKRQH, AVTIX, SETKDN,
LVTPRFYMHCW, AGSDPH, LAGSVETKDPIRNQFYMHCWBZXU.

We also considered defining wildcards based on groups of amino acids with
similar physico-chemical properties by using the amino acid classifications de-
scribed in Taylor 1986 (31). However, a preliminary investigation of this ap-
proach resulted in 3% slower search times and reduced search accuracy compared
to the approach we have described.
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7 Results

The Structural Classification of Proteins (SCOP) database (32; 33) is widely
used to evaluate the accuracy of sequence search tools (34; 35). For our own
assessments, we used version 1.65 of the ASTRAL Compendium (36) that uses
information from the SCOP database to classify sequences with fold, superfam-
ily, and family information. The database contains a total of 67,210 sequences
classified into 1,538 superfamilies.

A set of 8,759 test queries were extracted from the ASTRAL database such
that no two of the queries shared more than 90% identity. To measure search ac-
curacy, each query was searched against the ASTRAL database and the Receiver
Operating Characteristic (ROC) score (37) was calculated. A match between two
sequences was considered positive if they came from the same superfamily, oth-
erwise it was considered negative. The ROC50 score provides a measure between
0 and 1, where a higher score represents better sensitivity (detection of true
positives) and selectivity (ranking true positives ahead of false positives).

The SCOP database is too small to provide an accurate measure of search
time, so we use the GenBank non-redundant (NR) protein database to measure
search times. The GenBank collection was downloaded August 18, 2005 and
contains 2,739,666 sequences in around 900 megabytes of sequence data. Per-
formance was measured using 50 queries randomly selected from GenBank NR.
Each query was searched against the entire collection three times with the best
runtime recorded and the results averaged. Experiments were conducted on a
Pentium 4 2.8GHz machine with two gigabytes of main memory.

We used FSA-BLAST1—our open-source version of BLAST—with default
parameters as a baseline. To assess the clustering scheme, the GenBank and
ASTRAL databases were clustered and FSA-BLAST was configured to report
all high-scoring alignments, rather than only the best alignment from each clus-
ter. All reported collection sizes include sequence data and edit information but
exclude sequence descriptions. CD-HIT version 2.0.4 beta was used for experi-
ments with 95% clustering threshold and maximum memory set to 1.5 Gb. We
also report results for NCBI-BLAST version 2.2.11 and our own implementation
of Smith-Waterman that uses the exact same scoring functions and statistics as
BLAST (38). No sequence filtering was performed.

The overall results of our clustering method are shown in Table 1. When used
with default settings of λ = 0.2 and T = 0.25, our clustering approach reduces
the overall size of the NR database by 27% and improves search times by 22%.
Importantly, the ROC score indicates that there is no significant effect on search
accuracy, with the highly redundant SCOP database reducing in size by 80%
when clustered. If users are willing to accept a small loss in accuracy, then the
parameters λ = 0 and T = 0.3 improve search times by 27% and reduce the size
of the sequence collection by 28% with a decrease of 0.001 in ROC score when
compared to our baseline. Since we are interested in improving performance with
no loss in accuracy we do not consider these non-default settings further. Overall,
our clustering approach with default parameters combined with improvements
to the gapped alignment (39) and hit detection (40) stages of BLAST more than
1 Available from: http://www.fsa-blast.org
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Table 1. Average runtime for 50 queries searched against the GenBank NR database,
and SCOP ROC50 scores for the ASTRAL collection

Scheme GenBank NR ASTRAL
Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

FSA-BLAST
No clustering (baseline) 28.75 (100%) 900 (100%) 0.398
Cluster λ = 0.2, T = 0.25 22.54 (78%) 655 (73%) 0.398
Cluster λ = 0, T = 0.3 20.97 (73%) 650 (72%) 0.397

NCBI-BLAST 45.75 (159%) 898 (100%) 0.398

Smith-Waterman — — 0.415
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Fig. 2. Clustering performance for GenBank NR databases of varying sizes

double the speed of FSA-BLAST compared to NCBI-BLAST with no significant
effect on accuracy. Both versions of BLAST produce ROC scores 0.017 below
the optimal Smith-Waterman algorithm.

Figure 2 shows a comparison of clustering times between CD-HIT and our
clustering approach for four different releases of the GenBank NR database;
details of the collections used are given in Table 2. The results show that the
clustering time of our approach is linear with the collection size and the CD-
HIT approach is superlinear (Figure 2). On the recent GenBank non-redundant
collection, CD-HIT is almost 10 times slower than our approach; we expect this
ratio to further increase with collection size.

Table 2. Redundancy in GenBank NR database over time

Number of Collection Overall size Percentage
Release date sequences Size (Mb) reduction (Mb) of collection
16 July 2000 521,662 157 45 28.9%
22 May 2003 1,436,591 443 124 28.1%
30 June 2004 1,873,745 597 165 27.4%
18 August 2005 2,739,666 900 245 27.3%
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Fig. 3. Search accuracy for collections clustered with varying values of λ and T . Default
values of λ = 0.2, T = 0.25 are highlighted.
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Fig. 4. Average BLAST search time using λ = 0.2 and varying values of T

Table 2 shows the amount of redundancy in the GenBank NR database as
it has grown over time, measured using our clustering approach. We observe
that the degree of redundancy is not changing significantly with the percentage
reduction through clustering remaining between 27% and 29% across versions of
the collection tested.

Figure 3 shows the effect on accuracy for varying values of λ and T . We have
chosen λ = 0.2 as a default value because smaller values of λ result in a larger
decrease in search accuracy, and larger values reduce search speed. We observe
that for λ = 0.2 there is little variation in search accuracy for values of T between
0.05 and 0.3.

Figure 4 shows the effect on search times for varying values of T where λ = 0.2.
As T increases the clustered collection becomes smaller, leading to faster search
times. However, if T is too large then union-sequences with a high percentage of
wildcards are permitted, leading to an increase in the number of cluster members
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that are recreated and a corresponding reduction in search speed. We have chosen
the value T = 0.25 that maximises search speed.

8 Conclusion

Sequence databanks such as GenBank contain a large number of redundant se-
quences. Such redundancy has several negative effects including larger collection
size, slower search, and difficult-to-interpret results. Redundancy within a col-
lection can lead to over-representation of alignments within particular protein
domains, distracting the user from other potentially important hits.

We have proposed a new scheme for managing redundancy. Instead of dis-
carding near-duplicate sequences, our approach identifies clusters of redundant
sequences and constructs a special union-sequence that represents all members of
the cluster through the careful use of wildcard characters. We present a new ap-
proach for searching clusters that, when combined with a well-chosen set of wild-
cards and a system for scoring matches between wildcards and query residues,
leads to faster search times without a significant loss in accuracy. Moreover, by
recording the differences between the union-sequence and each cluster member
using edit information our approach compresses the collection. Our scheme is
general and can be adapted to most homology search tools.

We have integrated our algorithm into FSA-BLAST, a new version of BLAST
that is substantially faster than NCBI-BLAST and freely available for download
at http://www.fsa-blast.org/. Our results show that our clustering scheme
reduces BLAST search times against the GenBank non-redundant database by
22% and compresses sequence data by 27% with no significant effect on accuracy.
We have also described a new system for identifying clusters that uses finger-
printing, a technique that has been successfully applied to duplicate-document
detection in information retrieval. Our implementation can cluster the entire
GenBank NR protein database in one hour on a standard workstation and scales
linearly in the size of the collection. We propose that pre-clustered copies of the
GenBank collection be made publicly available for download.

We have confined our experimental work to protein sequences and plan to
investigate the effect of our clustering scheme on nucleotide data as future work.
We also plan to investigate the effect of our approach on iterative search algo-
rithms such as PSI-BLAST, and how our scheme can be used to improve the
current measure of the statistical significance of BLAST alignments.
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Abstract. So far, most methods for identifying sequences under selec-
tion based on comparative sequence data have either assumed selectional
pressures are the same across all branches of a phylogeny, or have fo-
cused on changes in specific lineages of interest. Here, we introduce a
more general method that detects sequences that have either come un-
der selection, or begun to drift, on any lineage. The method is based
on a phylogenetic hidden Markov model (phylo-HMM), and does not
require element boundaries to be determined a priori, making it particu-
larly useful for identifying noncoding sequences. Insertions and deletions
(indels) are incorporated into the phylo-HMM by a simple strategy that
uses a separately reconstructed “indel history.” To evaluate the statisti-
cal significance of predictions, we introduce a novel method for comput-
ing P -values based on prior and posterior distributions of the number
of substitutions that have occurred in the evolution of predicted ele-
ments. We derive efficient dynamic-programming algorithms for obtain-
ing these distributions, given a model of neutral evolution. Our methods
have been implemented as computer programs called DLESS (Detection
of LinEage-Specific Selection) and phyloP (phylogenetic P -values). We
discuss results obtained with these programs on both real and simulated
data sets.

1 Introduction

In recent years, abundant sequence data has led to widespread interest in meth-
ods for detecting genomic sequences that are evolving faster, slower, or by differ-
ent patterns of substitution than would be expected under neutral drift. While
some such sequences could result from non-uniformities in mutational and repair
processes, the majority are thought to be subject to pressure by natural selection,
and to have evolutionarily important biological functions. The genomes of most
species of interest are too vast, and laboratory assays are still too labor-intensive,
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to permit exhaustive wet-laboratory searches for functional elements. Computa-
tional screens based on comparative sequence data allow whole genomes to be
reduced to much smaller sets of candidate functional elements, which can more
feasibly be tested in the lab (e.g., [1, 2]).

In the comparative genomics community, much attention has focused on two
problems in particular: (1) identifying (especially noncoding) sequences that are
unusually conserved across species, and thus are likely to be subject to negative
selection (e.g., [3, 4, 5, 6]); and (2) identifying protein-coding genes that show
unusually high dN/dS ratios, and thus might be subject to positive selection
(e.g., [7, 8, 9, 10, 11, 12]). Methods focused on problem (1) generally have made
the assumption (explicitly or implicitly) that selectional pressures are the same
across all branches of a phylogeny—i.e., that each candidate sequence is under
selection in all species or not under selection in any species. This assumption
is sometimes relaxed in methods focused on problem (2) (e.g., [8, 10, 11]), but
these methods generally can be used only with protein-coding sequences, whose
boundaries are predetermined by annotations of known genes. In addition, most
methods that allow for lineage-specific selection have required a priori specifi-
cation of the branches of the tree on which the mode of selection may change
[8, 10].

In recent work, we have developed methods for identifying sequences (coding
or noncoding) that are significantly changed in the human lineage (K. Pollard,
S. Salama, B. King, et al., submitted). These methods are efficient enough to
be applied at the scale of complete vertebrate genomes, given the locations of
candidate sequences. Our aim here is to develop more general methods capa-
ble of detecting sequences that have been subject to lineage-specific selection
on any (unspecified) branch of a phylogeny, and that do not require predefined
element boundaries. These methods must remain highly efficient and suitable
for use with noncoding sequences. We focus on the case of negative selection,
although our methods can be extended to positive selection (see Discussion).
We describe two programs, called DLESS (Detection of LinEage Specific Selec-
tion) and phyloP (phylogenetic P -values), that address the problem of detecting
lineage-specific selection, and show good power and low false positive rates in
simulation experiments. These programs are fast enough to run in a few minutes
on multiple alignments for the ENCODE regions [13] (which span ∼1% of the
human genome), using a small compute cluster. We describe our methods in
detail, and discuss results for both real and simulated data.

2 Methods

2.1 The Model

HMM and Phylogenetic Models. DLESS is based on a phylogenetic hidden
Markov model (phylo-HMM), an HMM that emits columns of a multiple align-
ment according to probability distributions that are defined by phylogenetic
models associated with its states [14, 15] (reviewed in [16]). DLESS’s model is a
generalization of the two-state phylo-HMM used by the phastCons program [6].
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Fig. 1. (A) State-transition diagram for DLESS. The probability of beginning with each
state (not shown) is taken to be that state’s probability at stationarity. (B) Neutral
phylogenetic model (ψn), with a branch i indicated, and derived phylogenetic models
for a “gain” (ψgi

) and “loss” (ψli
) of a conserved element on branch i.

PhastCons has a state c for conserved sequences and a state n for nonconserved
sequences; these states are associated with two phylogenetic models, ψc and ψn,
respectively, which are identical except that the branch lengths of ψc are scaled
by a factor ρ ∈ (0, 1). Based on this two-state model, phastCons parses an align-
ment into likely “conserved” and “nonconserved” segments. DLESS works by the
same principle, but also allows for conserved elements that have been “gained”
or “lost” on any branch of the phylogeny. The new model has 2k + 2 states,
labeled c (the “fully conserved” state), n (“nonconserved”), g1, . . . , gk (“gain”),
and l1, . . . , lk (“loss”), where k is the number of branches in the tree in question
(Fig. 1A). (For a phylogeny of N present-day species, k = 2N − 3, assuming a
reversible model and an unrooted tree.).

To limit the number of parameters, the states are arranged in a “hub and
spokes” configuration (Fig. 1A). As a result, predicted conserved elements are
required to be separated from one another by at least one base of nonconserved
sequence. In practice, this is not a severe limitation, because, conserved ele-
ments in vertebrates are relatively sparse. In addition, conserved elements of all
classes are assumed to have the same (geometric) length distribution, and all
lineage-specific elements are assumed to occur with the same (prior) probability.
Three parameters—μ, ν, and φ—define all transition probabilities in the HMM
(Fig. 1A). For interpretability, it is useful to reparameterize μ and ν as ω = 1

μ ,
the expected length of conserved elements, and γ = ν

μ+ν , the expected fraction
of bases in conserved elements [6]. The third free parameter, φ, is the proba-
bility that an element is lineage-specific given that it is conserved. Note that
this model fails to allow for scenarios in which single elements undergo multiple
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“gain” and “loss” events over evolutionary time, even if these events occur on
separate lineages (see Discussion).

As with phastCons, the phylogenetic models associated with the states are
identical, except that certain branches are scaled by the parameter ρ ∈ (0, 1).
The neutral model, ψn, is assumed to be given (it can be estimated, e.g., from
fourfold degenerate sites in coding regions), and all other models are derived
from it. The model for a gain event on branch i, ψgi

, is equal to ψn, except that
branch i and all branches in the subtree beneath it are scaled by the factor ρ.
Similarly, the model for a loss event on branch i, ψli is equal to ψn, except that
all branches outside the subtree beneath (and including) branch i are scaled by
the factor ρ (Fig. 1B). The model parameters can be estimated by maximum
likelihood or treated as “tuning” parameters to be set according to some other
principle (see below).

Model for Indels. Most efforts to use phylogenetic models in the identification
of functional elements have finessed the issue of indels (which have long been a
thorny problem in phylogenetic analysis), by treating alignment gaps as missing
data (e.g., [6]), treating indels like substitutions (e.g., [17, 18]), or using other
heuristics (e.g., [19, 5]). Previous approaches, however, are inadequate for the
problem of identifying elements under lineage-specific selection. In some cases,
alignment gaps are the strongest indication that an element has been “lost” or
“gained” (consider an element that was completely deleted on some branch of the
tree), so they cannot be treated as missing data. On the other hand, methods
that assume site-independence of gaps tend to be too sensitive to occasional
indels of moderate length. Other methods (e.g., [19]) cannot be readily applied.

Ideally, one would sample over indel scenarios conditional on an alignment,
and possibly sample over alignments as well (e.g., [20, 21]), but we take a short-
cut here, which is simpler, faster, and adequate for our purposes. Briefly, we
reconstruct an “indel history” (a history of insertion and deletion events on all
branches of the tree) by parsimony, using a slightly modified version of the in-
ferAncestors program [22]. We then compute emission probabilities of indels for
a phylo-HMM conditional on this history. Given an alignment and indel history,
probabilities of indels can be computed using well-known pair-HMM methods,
and indel parameters can easily be estimated by maximum likelihood. In addi-
tion, it turns out to be straightforward to integrate this indel model into a phylo-
HMM (see full paper at http://www.bscb.cornell.edu/Homepages/Adam Siepel/
dless.pdf). This approach, of course, is only as good as the accuracy of the align-
ment and the indel history, but simulation experiments suggest that their ac-
curacy is quite good, at least for mammalian genomes at modest evolutionary
distances [22].

2.2 Assessing Significance

The significance of predicted conserved elements is summarized by a P -value, in-
dicating how surprising the aligned sequences (within the region of the
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prediction) would be under neutral evolution. We introduce a novel method for
computing P -values that is based on counts of substitutions. It appears to have
nearly as much power as the likelihood ratio tests (LRTs) more commonly used
in statistical phylogenetics (e.g., [7, 8, 11]), and it has certain advantages over
LRTs (see Discussion).

The Distribution for One Branch. We first derive a solution to the problem
of finding the distribution of the number of substitutions along a single branch
of a phylogenetic tree, under a general continuous-time Markov model of sub-
stitution. To our knowledge, a general solution for this problem has not been
published, although methods for computing the mean and variance of such a
distribution have been developed [23].

Consider a branch of length t in a phylogenetic tree, connecting a “child”
sequence and a “parent” sequence. Assume that substitutions occur by a cont-
inuous-time Markov model, defined by a rate matrix Q = {qa,b}, where qa,b is
the instantaneous rate at which base a changes to base b. Thus, the probability
of a base b in the child species given an orthologous base a in the parent species,
denoted P (b|a, t), is given by element (a, b) of the matrix P(t) = exp(Qt) =∑∞

i=0
(Qt)i

i! . We assume that Q is scaled such that t has units of expected sub-
stitutions per site.

The probability mass function of interest is P (n|t), where n is the number of
substitutions per site, allowing for so-called “multiple hits”—i.e., substitutions
that obscure other substitutions. The expected value of this distribution, E[n|t],
is equal to t, but the entire distribution is not known; it depends not only on t but
on the particular process by which sequences of substitutions occur, as defined
by the matrix Q. This distribution is sometimes assumed to be Poisson with
rate t, and indeed, under certain conditions (e.g., when all substitutions occur
at the same rate, as in the Jukes-Cantor model [24]) this assumption is correct.
In general, however, the Poisson postulates are violated by the dependency of
substitution rates on the starting base in the continuous-time Markov chain. For
example, this state-dependency causes the numbers of events in disjoint time
intervals to be dependent. It is possible to come up with matrices Q that cause
P (n|t) to be quite unlike a Poisson distribution (Fig. 2A). The mean and variance
of P (n|t), for general Q, are of interest in computing the widely used index of
dispersion [25, 23].

Solving directly for P (n|t) appears to be difficult (for general Q), but the
distribution can be obtained fairly easily by working with the embedded discrete
Markov process associated with Q. We decompose the substitution process into
a “jump process,” which does obey the Poisson postulates, and a substitution
process conditional on jumps. The construction is such that every substitution
follows a jump, but not every jump is followed by a substitution. Let λt be
the rate of the jump process, and let R = {ra,b} be a matrix of conditional
probabilities of substitution given a single jump; i.e., ra,b = P (b|a, 1 jump).
Both λ and R can be derived from Q (see full paper). The desired distribution
can now be written as:
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P (n|t) =
∞∑

j=0

P (n|j)Pois(j|λt), (1)

where P (n|j) is the probability of n substitutions given j jumps and Pois(j|λt)
is the probability of j jumps in time t. P (n|j) is a function of R only, and can
be precomputed for all n and j less than some adequately large jmax and stored
in a table. This computation can be done efficiently by dynamic programming
(see full paper). Subsequently, P (n|t) can be approximated arbitrarily closely,
for any n and t of interest, by taking the sum of the first jmax terms of the RHS
of equation 1. Using similar methods, it is also possible to obtain the posterior
distribution, P (n|a, b, t), and the distribution in the presence of rate variation
(see full paper).

To compute P -values of conservation for conserved elements, we need the
distribution of the number of substitutions in an interval consisting of m sites.
As long as m is not too large, this distribution can be obtained by taking a
convolution of the individual-site distributions, assuming site independence. In
the case of the prior distribution, these individual-site distributions are identical,
but in the case of the posterior distribution, they differ according to the bases
observed at each site.
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Fig. 2. (A) Distribution of the number of substitutions per site (n) for a rate matrix Q∗

and a single branch of length t = 2, obtained with phyloP, and the Poisson distribution
of the same mean. Q∗ has very high rates of substitution between bases A and G, but
much lower rates (1000×) between other pairs of bases. The stationary distribution is
uniform, and the model is reversible. The left peak in the bimodal distribution reflects a
starting base of C or T and the right peak reflects a starting base of A or G. (B) Prior
and posterior distributions for a phylogeny of 10 vertebrates and for two alignment
columns, one highly variable and one invariant (see full paper for details). The prior
distribution is indistinguishable from a Poisson distribution. The posterior distributions
have modes corresponding to maximum parsimony solutions but also give considerable
weight to nonparsimonious scenarios. Note that some numbers of substitutions have
zero probability in the posterior.
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The Distribution for a Full Phylogeny. The distribution of the number of
substitutions per site for a general phylogeny can be computed by an algorithm
that takes a convolution of the distributions for each branch, using the recursive
structure of the tree.

Let X be a (possibly observed) column in an alignment, let u be a node in
the tree, let tu be the length of the branch above node u, let Xu be a random
variable representing the base at node u, and let xu indicate any observed data
at the leaves beneath node u. In addition, let v and w be the children of node
u. The key recurrence relation is:

P (n, xu|Xu = a) =
n∑

i=0

[∑
b

i∑
j=0

P (j, xv|Xv = b)P (i − j, b|a, tv)

]
×

[∑
c

n−i∑
k=0

P (k, xw|Xw = c)P (n − i − k, c|a, tw)

] (2)

where P (n, xu|Xu = a) is the probability of n substitutions beneath node u
and the data beneath node u, given that the base at node u is a. The terms
P (i − j, b|a, tv) and P (n − i − k, c|a, tw) represent branch-specific distributions
related to those of the previous section (see full paper).

The algorithm for computing the distribution resembles Felsenstein’s pruning
algorithm [26]. It differs only slightly in the cases of the prior distribution and
the posterior distribution. Details are given in the full paper. As for a single
branch, the distribution for m sites can be obtained by taking a convolution of
the individual-site distributions.

The Joint Distribution for a Subtree and Supertree. In the case of
lineage-specific selection, the tree is partitioned at some branch B of interest into
a subtree and its complementary “supertree.” What is of interest in this case is
the joint distribution of nsub, the number of substitutions in the subtree beneath
B, and nsup, the number of substitutions in the supertree. If the substitution
model is reversible, then the tree can be rerooted at the node above branch B,
so that the original subtree becomes one subtree of the root, and the original
supertree becomes the other subtree of the root. The joint distribution of interest
can then be computed by a slight modification of the algorithm described in the
previous section. Only the termination step of the algorithm, which is applied
at the root of the tree, needs to be altered. Details are given in the full paper.

As above, the distribution form sites can be computed by taking a convolution
of individual-site distributions. In this case, however, these distributions are
bivariate.

The Computation of P -Values. The methods above allow a prior distribu-
tion P (n|m,ψn) and a posterior distribution P (n|X,ψn) to be computed for
any alignment fragment X of length m and any neutral model ψn. To compute
a P -value, we interpret the prior distribution as a null distribution, reflecting
the hypothesis of neutral evolution, and we take the mean of the posterior dis-
tribution as a proxy for an “observed” number of substitutions. With ample
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data and branches of modest length, the variance of the posterior distribution
is fairly small (Fig. 2B), and it is reasonable to summarize the distribution by
its mean. In computing the posterior distribution, the neutral model can be
used as a prior, but this influences the posterior mean toward the prior mean,
making the P -values conservative. To avoid this problem, we use an empiri-
cal Bayes approach: based on the alignment fragment of interest, we estimate
a scale factor for the neutral model by maximum likelihood (using a numerical
optimization algorithm), then use the scaled neutral model as a prior when com-
puting the posterior distribution. A P -value for a posterior mean E[n|X, ρ̂ψn]
is computed as:

P =
∑

0≤i≤E[n|X,ρ̂ψn]

P (i|m,ψn) (3)

where ρ̂ is the estimated scale factor and ρ̂ψn denotes the scaled neutral model.
In the case of lineage-specific selection, separate scale factors are estimated

for the subtree and supertree, and four P -values are computed. The first two
P -values are as described above, except that they are based on marginal distri-
butions (prior and posterior, derived from the corresponding joint distributions)
for the subtree and supertree in question. These P -values indicate whether, con-
sidered separately, the numbers of substitutions in the subtree and supertree are
surprising in comparison to the null model. The other two P -values are condi-
tional P -values, indicating how surprising are the numbers of substitutions in
the subtree and supertree, given the total number of substitutions in the whole
tree. These P -values allow for the possibility that the substitution rate across the
whole tree does not fit the neutral model well, and focus attention more directly
on differences between the subtree and supertree. Note that all four P-values
are computed independently and do not account for correlation between tests.
Adjustments for multiple hypothesis tests are needed when jointly interpreting
the marginal P -values for a collection of elements.

2.3 Implementation and Experimental Design

The DLESS (Detection of LinEage Specific Selection) and phyloP (phylogenetic
P -value) programs were implemented in C, as new modules in the PHAST (Phy-
logenetic Analysis with Space/Time models) package [6]. Simulation experiments
were conducted to test the false positive rates and power of both programs. All
experiments were based on a set of about 100,000 fourfold degenerate sites ex-
tracted from alignments of up to 19 species for the 44 ENCODE regions [13],
and on a model of neutral evolution estimated from these sites using the REV
substitution model (E. Margulies, pers. comm.). We looked at both the full 19-
species set and a subset of 10 species (Fig. 3). We simulated neutral alignments
using both a “parametric” method (generating sites from the estimated neu-
tral model) and a “nonparametric” method (randomly drawing sites from the
original alignment, with replacement). The phyloBoot program in PHAST was
used. False positive rates were estimated by running the two programs on these
neutral alignments.
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Fig. 3. Phylogenetic tree for the 19-species considered, with neutral branch lengths
estimated from fourfold degenerate sites in the ENCODE regions. The 10-species subset
is highlighted in black, and three subtrees of interest are indicated: the primates (P ),
rodents (R), and laurasiatherians (L).

To estimate power, we measured the ability of the programs to correctly
identify simulated conserved elements, after controlling for false positive rates.
Conserved alignment columns were generated parametrically using versions of
the neutral model in which either all branches, or some subset of branches (in
the case of lineage-specific conservation), were scaled by a factor ρ ∈ (0, 1). In
tests of the power to detect fully conserved elements, we also used a nonparam-
eteric method in which columns were drawn randomly from protein-coding sites
extracted from the ENCODE alignments. (Note that some of these sites are
in reality not conserved.) Conserved elements of 15–200bp were generated. In
tests of DLESS, conserved elements were embedded within neutral alignments
of 300bp. Predictions of the correct types overlapping the embedded elements
were counted as correct.

The programs were also run on a full set of ENCODE alignments, consisting
of 19 species and about 35 million sites (including gaps in the human reference
sequence), and produced by the TBA program [27]. The DLESS predictions are
available as a track in the UCSC Genome Browser (http://genome.ucsc.edu/enc-
ode). Clicking on individual predictions causes the statistics computed by phyloP
to be displayed.

3 Results

3.1 Simulation Results

Power of DLESS. Based on simulated neutral data sets of 1 million columns,
we adjusted the tuning parameters of DLESS to permit a false positive rate of
approximately one base per thousand, as estimated by the parametric method.
We found that γ and φ needed to be increased substantially from their maximum
likelihood estimates (MLEs; based on the ENCODE data)—from γ = 0.06 to
γ = 0.35, and from φ = 0.18 to φ = 0.8—to achieve a reasonable tradeoff between
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false positive and false negative rates. The MLEs led to high specificity but
relatively weak sensitivity, especially for lineage-specific elements having short
lengths, weak conservation, or small subtrees. This tendency to under-predict
lineage-specific elements presumably results from these elements effectively being
supported by less data than are fully conserved elements—i.e., it is primarily only
the sequences in the subtree (in the case of a gain) or supertree (in the case of
a loss) of interest that support the hypothesis of lineage-specific conservation,
while all sequences support the hypothesis of full conservation. The parameter
ω was set to 20 and the parameter ρ was set to 0.3, based on our experience
with the phastCons program.

The power of DLESS to detect conserved elements depends on many factors,
including the lengths of the elements, the sizes of the whole phylogeny and of the
subtree and supertree in question (numbers of species and total branch length),
and the degree of conservation (Fig. 4). The power is generally quite good when
elements are of length 50bp or greater and the scaling parameter ρ ≤ 0.3. The
power for detecting fully conserved elements is excellent, even when element
lengths are as small as 15bp. The power is also reasonably good for detecting
elements gained or lost in subtrees with relatively large numbers of species and
large total branch length (e.g., the laurasiatherian subtree; see Fig. 3), but it
is significantly reduced when the number of species in a subtree is small (e.g.,
the rodent subtree), or when the total branch length is small (e.g., the primate
subtree). Still, in these cases, longer and more conserved elements can be detected
fairly reliably. Interestingly, the method has considerably more power to detect
lineage specific “losses” than lineage-specific “gains,” particularly for smaller
subtrees (see full paper). Apparently, there is more to be gained by switching
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Fig. 4. Estimated power of DLESS to detect fully conserved elements (C), and elements
gained or lost in the primate (P ), rodent (R), or laurasiatherian (L) clades. Plots show
the power to detect (A) lineage-specific losses as a function of element length (for
ρ = 0.3), and (B) lineage-specific gains as a function of the scale parameter ρ (for
elements of length 100). Results are for the 19-species phylogeny and 100 simulated
data sets.
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states in the HMM when the supertree has short branches and the subtree has
long ones (as in a loss) than when the supertree has long branches and the
subtree has small ones (as in a gain). This effect might be compensated for by
alternative parameterizations of the transition probabilities of the model.

False Positive Rates and Power of PhyloP. Because of the estimation of
the scale factors and the use of the posterior mean as a proxy for an observed
number of substitutions, the P -values reported by phyloP for data sets drawn
from the null model are not guaranteed to be uniformly distributed. In practice,
the reported P -values are nearly uniform but usually slightly conservative—i.e.,
the fraction of reported P -values below some p0 is generally less than p0, implying
a false positive rate below the target value. The P -values are somewhat more
conservative for short elements than for longer elements, and somewhat more
conservative in the case of lineage-specific selection than in the case of fully
conserved elements (see full paper).

Despite the conservative P -values, the method has good power. The power to
detect fully conserved elements is excellent with ρ ≤ 0.5, very good with ρ = 0.7,
and respectable even for ρ = 0.9 at lengths of ≥ 100bp (Fig. 5A). With smaller
values of ρ, elements as short as 15bp can reliably be detected. The nonpara-
metric results, based on protein-coding sites (“CDS” curve in Fig. 5A), suggest
that the method’s performance in detecting these more conserved elements may
be a reasonable indication of its ability to detect real functional elements. For
lineage-specific elements (Fig. 5B), the power is reduced but still quite good
as long as ρ is not too large, elements are not too short, and subtrees have
adequate phylogenetic information. As with DLESS, the power to detect losses
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Fig. 5. Power of phyloP in simulation experiments to detect (A) fully conserved ele-
ments and (B) elements gained in primates. Power is estimated as the fraction of 1000
simulated data sets in which the null hypothesis was correctly rejected, with a P -value
threshold of 0.05. Conditional P -values were used for lineage-specific elements. These
experiments were based on the 10-species set. The results of the nonparametric test,
based on sites from coding regions, are shown as the dashed “CDS” line in (A).
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is greater than the power to detect gains, but the difference between losses and
gains is less pronounced with phyloP than with DLESS. The primate (Fig. 5B)
and rodent (not shown) subtrees had similar power curves, and power increased
in the laurasiatherian subtree. The method has low power to detect elements in
very small subtrees, such as the one consisting of just human (which is of obvi-
ous interest). Nevertheless, across a wide range of parameter values, the power
of the method is nearly as good as that of an empirically calibrated likelihood
ratio test (LRT), which is asymptotically most powerful, and is expected to be
close to optimal in practice. The gap between phyloP and the LRT is greatest
for short elements, and is more evident with lineage-specific elements than with
fully conserved elements (see full paper).

3.2 Results for ENCODE Data

DLESS predicted 24,011 elements covering 5.7% of the 29.9 million human bases
in ENCODE regions. Retaining only fully conserved predictions with P < 0.05
(as reported by phyloP) and lineage-specific predictions with conditional P <
0.05 reduced these numbers to 20,959 and 4.8%, respectively. The resulting set
of predictions is conservative because maximum-likelihood estimates were used
for γ and φ, which, as noted above, produced high specificity (and relatively
low sensitivity) in simulation experiments, especially for short elements, small
subtrees, and weak conservation. In addition, phyloP does not consider indels in
computing its P -values, so some of the discarded predictions (with P ≥ 0.05)
might be strongly supported by indel evidence.

About 76% of the predictions (covering 52% of bases) were of fully conserved
elements, 14% (36%) were of lineage-specific losses, and the remaining 9% (12%)
were of lineage-specific gains. These numbers are undoubtedly affected by differ-
ences in power in detecting lineage-specific versus conserved elements, and gains
versus losses (Fig. 4). Still, because the method favors fully conserved elements,
these results suggest that the number of elements under negative selection in
any species is at least 30% higher than the number conserved in all species,
and nearly twice as many bases are conserved in any species as are conserved
in all species. The predictions covered 70% of bases in coding regions, of which
74% were fully conserved, 21% were losses, and only 5% were gains. In con-
trast, predictions in introns and intergenic regions covered about 3% of bases,
and in these regions we saw more gains (18–20% of predicted bases) and fewer
losses (29–30%) than average, while the fully conserved fraction was about av-
erage (52%). The most common type of lineage-specific prediction, by far, was a
gain on the branch above the last common ancestor of the eutherian mammals,
suggesting extensive gain-of-function evolution on this branch.

4 Discussion

In this paper, we have introduced DLESS, a phylo-HMM-based program for
identifying sequences that are subject to lineage-specific selection, and phyloP,
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a new method for computing P -values of conservation (or acceleration) based
on prior and posterior distributions of numbers of substitutions. These meth-
ods have performed quite well in simulation experiments and yielded promis-
ing results with real data. Nevertheless, much work remains to be done in this
area.

DLESS currently allows only for neutral evolution and negative selection, and
it allows conserved sequence to undergo at most a single “gain” or “loss” event
on the branches of the tree. A straightforward extension to positive selection
would be possible if the assumption of at most one change in selective “mode”
per element were maintained. It is likely, however, that some sequences expe-
riencing adaptive evolution undergo multiple changes in their selective mode.
The codon model of Guindon et al. [11] allows for any number of such changes
in continuous time, but assumes no correlation between codons. This approach
may be reasonable for very deep alignments of protein coding sequences, but
a similar model applied to current alignments of noncoding DNA would likely
have weak power. A more promising approach for our purposes may be to use
a generalization of a phylo-HMM with a separate state-transition Markov chain
per node of the tree, rather than one shared chain for all nodes. Unfortunately,
models of this type (like models for context-dependent substitution [16]) have
“loops” of dependency and do not permit exact probabilistic inference; Markov
chain Monte Carlo (MCMC) methods or variational methods would be needed
for likelihood evaluation, parameter estimation, and prediction of lineage-specific
elements.

A more standard way to compute P -values of conservation would be to use
a likelihood ratio test (LRT) (e.g., [28]). LRTs have many appealing statisti-
cal properties, and have some advantages over our method. For example, they
allow for the fact that some substitutions (e.g., transitions) are generally less
surprising than others (e.g., transversions), while our test statistic (a count of
substitutions) does not. Also, an LRT would avoid the problem that the statis-
tic in question is not actually observed, which leads to some loss of power in
our method. On the other hand, in our method, the exact null distribution of
the test statistic can be computed from a model of neutral evolution, without
needing to assume asymptotic behavior (e.g., [28]) or to conduct extensive sim-
ulation experiments (e.g., [12]), specific to each new set of model parameters.
(Among other things, this means that very small P -values can be accurately
computed—something which is important when ranking extreme cases, as in
genome-wide screens for sequences of interest.) In addition, the test statistic—a
count of substitutions—has a clear, intuitive meaning, unlike a likelihood ratio.
The descriptions of the prior and posterior distributions produced by phyloP
(mean, variance, 95% confidence interval, etc.) are easy to interpret and infor-
mative to the user. Moreover, the cost in power of using phyloP appears to
be minimal. Interestingly, phyloP seems to have better power, in comparison
with an LRT, than methods for the identification of positively selected amino
acid sites that were also based on substitution counts [29]. This may be because
the method is more similar than these methods to an LRT, the main difference
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being in the choice of the test statistic (R. Nielsen, pers. comm.). Given that
relatively little power is sacrificed, interpretability and convenience of applica-
tion may make our method an attractive alternative to an LRT for a variety of
purposes.

While the number of substitutions is not Poisson-distributed for general Q
matrices (Fig. 2A), it appears to have essentially a Poisson distribution for
most realistic Q matrices. (Here we restrict ourselves to models of DNA sub-
stitution; the situation may be quite different with amino acid models
[J. Felsenstein, pers. comm.].) We generated Q matrices under the HKY
model [30] for a wide range of base compositions and transition/transversion
ratios, then computed the distribution P (n|t) for a range of values of t and
compared each one to a Poisson distribution of the same mean. The symmet-
ric KL divergence of the two distributions was never more than 0.053 bits,
suggesting that in many cases it may be quite reasonable to assume a Poisson
distribution (see related observations by Zheng [23]). We have not, however,
considered rate variation in these experiments (either among sites, among lin-
eages, or along individual branches), which is known to alter the distribution
of the number of substitutions. Certain kinds of rate variation can be accom-
modated with our methods (see full paper). With or without rate variation, of
course, the posterior distribution of the number of substitutions is decidedly
non-Poisson (Fig. 2B).

Related to detecting lineage-specific selection is the issue of the rate of
“turnover” of functional elements. The rate of turnover is a critical factor in
the relationship between the fraction of sites in a genome that are conserved
(e.g., between human and mouse) and the fraction that are functional [31]. The
methods described here may lead to improved estimates of the rate of turnover,
but certain hurdles remain to be cleared. In particular, the strong dependency
of the power of the method on element length, degree of conservation, properties
of the subtree and supertree in question, and whether an event is a “gain” or a
“loss,” make it difficult to estimate the rate of turnover accurately. Obtaining
good estimates of turnover rates remains an exciting challenge.
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Abstract. We introduce a Markov model for the evolution of a gene
family along a phylogeny. The model includes parameters for the rates
of horizontal gene transfer, gene duplication, and gene loss, in addition to
branch lengths in the phylogeny. The likelihood for the changes in the size
of a gene family across different organisms can be calculated in O(N +
hM2) time and O(N +M2) space, where N is the number of organisms,
h is the height of the phylogeny, and M is the sum of family sizes. We
apply the model to the evolution of gene content in Proteobacteria using
the gene families in the COG (Clusters of Orthologous Groups) database.

1 Introduction

At this time, 294 microbial genomes have been sequenced, and that figure is ex-
pected to soon double (this in addition to 19 complete eukaryotic genomes, see
http://www.ncbi.nlm.nih.gov/Genomes/). These numbers continue to grow
exponentially with advances in technology and expertise [1]. The wealth of
genome sequence data has already caused a revolution in molecular evolution
methods [2,3]. A few years ago, scientific studies had to focus on nucleotide-level
differences between orthologous genes, mainly because of the technical and finan-
cial limitations on DNA sequence collection. With increasing amounts of whole
genome information, however, it becomes possible to analyze genome-scale dif-
ferences between organisms, and to identify the evolutionary forces responsible
for these changes. In particular, sizes of gene families can be compared, allow-
ing us to better understand adaptive evolutionary mechanisms and organismal
phylogeny. Several studies suggest that gene content may carry sufficient phylo-
genetic signal for the construction of evolutionary trees [4,5,6,7,8,9,10,11,12,13].
Comparative analyses of genome-wide protein domain content [7,14,15] have
also provided important insights into evolution. Gene content and similar fea-
tures have been used to construct viral [16,17], microbial [4,5,12], and universal
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trees [6,14,18]. Comparative gene content analysis is also used to estimate ances-
tral genome composition [19,20]. The presence-absence pattern of homologs in
different organisms, the so-called phyletic pattern [21,22], provides clues about
gene function [23] and the evolution of metabolic pathways [20].

A number of processes shape the gene content of an organism. New genes may
be created by duplication of an existing gene, horizontal transfer from a different
lineage, and rarer events such as gene fusion and fission [19]. It has been widely
debated how the extent of horizontal gene transfer (HGT) compares to vertical
inheritance [18,19,24,25,26,27,28]. It is clear that horizontal gene transfer plays
a major role in microbial evolution [29], but there is still need for adequate
mathematical models in which that role can be measured.

We introduce a probabilistic model for the evolution of gene content along
a phylogeny. Our model accounts for gene duplication, gene loss and horizontal
transfer. We consider the evolution of the size of a gene family, where the different
processes add new genes to the family or erase members of it, and arrive at
the family sizes observed at the terminal taxa. We describe an algorithm that
calculates the likelihood of gene family sizes in different organisms, given an
evolutionary tree. The algorithm computes the likelihood of family sizes in O(N+
M2h) time where M is the total number of genes in the family, N is the number
of genomes, and h is the height of the tree. Note that the tree height is at most
linear in N , and on average, it is O(

√
N) or O(log N) for uniform or Yule-Harding

distribution of random trees.
To our knowledge, no tractable stochastic model has yet been introduced

that simultaneously accounts for horizontal transfer, gene loss, and duplication.
These processes cannot be modeled by using only two parameters: whereas the
intensity of gene loss and duplication depend on the size of a gene family, the rate
of horizontal transfer has a constant component. Among other applications, a
model that accounts for duplication and transfer is useful for analyzing the evo-
lution of metabolic networks [30]: do new paths evolve by gene duplication and
adaptive selection, or by accommodating genes with new functions via horizontal
gene transfer?

A few probabilistic models were proposed for gene content evolution, which
are less general than ours. Most studies use stochastic models with two param-
eters. Huson and Steel [11] analyzed a two-parameter model that accounts for
gene loss and horizontal transfer but not for gene duplication. They derived a
distance measure based on gene family sizes using likelihood maximization argu-
ments. They further showed that traditional scores for shared gene content [5] are
not as suitable for phylogeny reconstruction as either Dollo parsimony or their
own distance function. Gu and Zhang [12] relied on a model that includes gene
loss and gene duplication but no other modes of gene genesis, and assumes iden-
tical rates across different branches. They showed how gene family sizes can be
used to define additive distances in such a model. Interestingly enough, the data
can be reduced to a three-letter alphabet for the purposes of distance calcula-
tions: only 0, 1 or “many” homologs per family need to be counted. The distance
metric relies on estimates of the rate parameters, which are obtained through
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likelihood optimization. Hahn et al. [31] developed an alternative likelihood-
based approach for the same two-parameter model with constant rates across
lineages. Karev et al. developed a rich probabilistic model of gene content evolu-
tion in a series of papers [32,33,34]. The model explains the distribution of gene
family sizes found in different organisms. It is, however, too general for exact
detailed calculations, and for likelihood computations in particular. Our likeli-
hood algorithm is also notable for its computational efficiency. For instance, the
likelihood calculations of [31] in a two-parameter model take cubic time in M ,
and involve the evaluation of infinite sums that are truncated heuristically.

Not all comparative studies of gene content rely on gene family sizes. A fre-
quently employed approach is to measure shared gene content [5,6,8,9,10] by
identifying orthologs between each pair of genomes. Pairwise scores of shared
gene content can be analyzed using distance-based methods of phylogeny con-
struction or other clustering techniques. Lake and Rivera [13] proposed an im-
proved technique of assessing shared gene content: for each genome, the presence
and absence of homologs are marked with respect to genes of a reference genome.
The presence-absence marks are encoded in a binary sequence for every genome.
The sequences are used to compute a pairwise distance matrix using standard
methods of phylogeny construction. Finally, a number of studies rely on families
of homologous genes across many organisms, and record the absence or pres-
ence of each family in the genomes [4,7,24,35]. The resulting absence-presence
data are further analyzed with traditional parsimony or distance-based methods.
Some specialized parsimony methods were purposely devised to analyze absence-
presence data [20,36] for gene families. Our work is concerned with the actual
numbers of paralogs within the gene families, which give an even richer signal
for evolutionary analyses [11,19,31].

The paper is organized in the following manner. Section 2 introduces our
stochastic model of gene content evolution, and describes formulas for computing
various associated probabilities, including likelihood. The formulas are used in
an algorithm described in Section 3. Section 4 describes our initial experiments
in modeling gene content evolution in 51 proteobacteria and 3555 gene families
from the database of Clusters of Orthologous Groups (COGs) [22]. Section 5
concludes the paper.

2 Mathematical Model

Let T be a phylogenetic tree over a set of organisms S. The tree T is a rooted tree
with node set V (T ) and edge set E(T ), in which leaves are bijectively labeled
with elements of S. Non-leaf nodes have at least two children. Every edge e has
a length te > 0. We are interested in modeling the evolution of a gene family.
The family size changes along the edges: genes may be duplicated, lost, or gained
from an unknown source. We model the evolution of gene counts (family size) at
the tree nodes: the gene count at every node u ∈ V (T ) is a random variable χ(u)
that can take non-negative integer values. In addition to its length, each edge
is equipped with a duplication rate λ, a loss rate μ, and a transfer rate κ. The
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loss rate accounts for all possible mechanisms of gene loss, including deletion
and pseudogenization. The transfer rate accounts for processes of gene genesis,
including HGT from another lineage in the same tree, or HGT from an unknown
organism. The tree topology, the edge lengths and rates determine the joint
distribution of the gene counts.

In our model, the evolution of the gene counts on a branch follows a linear
birth-and-death process [37] parametrized by λ, κ, and μ. Let {X(t) : t ≥ 0}
denote the continuous-time Markov process formed by the gene counts along an
edge uv: χ(u) = X(0) and χ(v) = X(tuv). The transition probabilities of the
process are the following:

P
{
X(t + ε) = n + 1

∣∣∣ X(t) = n
}

=
(
κ + nλ

)
ε + o(ε)

P
{
X(t + ε) = n− 1

∣∣∣ X(t) = n
}

= nμε + o(ε)

P
{
|X(t + ε)− n| > 1

∣∣∣ X(t) = n
}

= o(ε).

In other words, every existing gene produces an offspring through duplication
with an intensity of λ, or disappears with an intensity of μ, and new genes are
acquired with an intensity of κ, independently from the number of existing genes.
Remark. For simplicity of notation, we impose the same rates across all
edges throughout the paper. Nevertheless, the presented method accommodates
branch-dependent rates in a straightforward manner.

The histories of individual genes on an edge form a Galton-Watson forest,
see Figure 1. The figure illustrates a scenario where the gene count changes from
three to five. The gene count at the child node is the result of many duplication,
transfer and loss events. The change involves three horizontally transferred genes,
from among which one survives, another one does not, and the third one produces
two surviving paralogs.

While it is not too difficult to calculate the probabilities for any particular
gene count on a branch (see §2.1), the likelihood L of observed gene counts at the
leaves involves an infinite number of possible gene counts at intermediate nodes:

t
o

o * * * * *

***

Fig. 1. Galton-Watson forest showing the evolution of genes in the same family along
a tree edge. The top line represents the ancestral genome with three genes; the bottom
line represents the descendant genome, in which there are five family members. Symbol
o represents the source from which genes might be transferred horizontally, symbols 
represent paralogous genes in the genome at the beginning and the end of the investi-
gated time span t. Each o or  in the ancestral genome is the root of a Galton-Watson
tree. Note that the physical order of genes is immaterial: here they are simply drawn
next to each other for clarity.
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L =
∑

〈mx : x∈V (T )〉
γ(mroot)

∏
xy∈E(T )

P
{
χ(y) = my

∣∣∣ χ(x) = mx

}
, (1)

where γ(·) defines the gene count distribution at the root, and the summation
over the 〈mx〉 vectors takes all values in agreement with the gene counts at the
leaves in the input data. Our main technique for computing the likelihood is to
restrict the computation to genes that have at least one surviving descendant at
the leaves. In what follows we develop the formulas to compute the likelihood.

2.1 Basic Transition Probabilities

First we analyze the blocks of homologs at a node comprising genes of common
origin. A xenolog block consists of the genes that trace back to a horizontal
transfer event on the branch from the parent. For every gene at the parent,
its descendants form an inparalog block. (Our terminology follows [38].) The
homologs in Figure 1 belong to four blocks: a xenolog block of size three, an
inparalog block of size zero for the deceased parental gene, and two inparalog
blocks of size one. The independent birth-and-death processes associated with
the blocks have been analyzed in the statistical literature.

Definition 1. Define the following basic transition probabilities for gene count
evolution on a branch. Let ht(n) denote the probability that there are n genes of
foreign origin after time t. Let gt(n) denote the probability that a single gene has
n copies after time t.

In other words, ht(n) is the probability mass function for the number of xenologs
at time t, and gt(n) defines the size distribution of an inparalog block at time t.

Theorem 1. The basic transition probabilities can be written as follows.

ht(n) =
(κ

λ + n− 1
n

)(
1− λβ(t)

) κ
λ
(
λβ(t)

)n (2)

where β(t) = 1−e−(μ−λ)t

μ−λe−(μ−λ)t , and

(κ
λ + n− 1

n

)
=

⎧⎨⎩1 if n = 0;(
κ
λ

)(
κ
λ +1

)
···
(

κ
λ +n−1

)
n! if n > 0.

Furthermore,

gt(n) =

{
μβ(t) if n = 0;(
1− μβ(t)

)(
1− λβ(t)

)(
λβ(t)

)n−1 if n > 0.
(3)

Proof. The size of the xenolog block follows a birth-and-death process with a
constant immigration rate κ and no emigration. The transition probabilities of
(2) for such a process were analyzed by Karlin and McGregor [39]. An inparalog
block evolves by a simple birth-and-death process: the transition probabilities of
(3) are derived in, e.g., [37]. �
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2.2 Gene Extinction and Survival

Definition 2. A surviving gene at a node x is such that it has at least one
modern descendant at the leaves below x.

Let Dx denote the probability that a gene present at node x is not surviving,
i.e., that it has no modern descendants.

Lemma 1. The extinction probability Dx can be calculated as follows. If x is a
leaf, then Dx = 0. Otherwise, let x be the parent of x1, x2, . . . , xd.

Dx =
d∏

j=1

(
μβ(tj) +

(
1− μβ(tj)

)(
1− λβ(tj)

) Dxj

1− λβ(tj)Dxj

)
(4)

where tj is the length of the branch leading from x to xj.

Proof. For leaves, the statement is trivial. When x is not a leaf, condition on the
gene counts at the children:

Dx =
d∏

j=1

∞∑
m=0

gtj(m)
(
Dxj

)m
.

Plugging in gt(m) from Eq. (3) and replacing the infinite series with a closed
form gives (4). �

2.3 Effective Transition Probabilities

We introduce two new probabilities, denoted by Hx(n) and Gx(n), for having n
surviving genes in a block at node x. The effective transition probabilities are
related to ht(n), and gt(n), but take into consideration eventual extinction below
node x. A formal definition follows.

Definition 3. Let y be a non-root node. Define the following effective transition
probabilities. Let Hy(n) denote the probability that the xenolog block at node y
contains n surviving genes. Let Gy(n) denote the probability that an inparalog
block at node y contains n surviving genes.

Lemma 2. Let y be a non-root node, let x be its ancestor, and let t be the length
of the edge xy. The effective transition probabilities can be written as follows.

Hy(n) =
(κ

λ + n− 1
n

)(
1− λβ(t)

1−Dyλβ(t)

) κ
λ
(

(1 −Dy)λβ(t)
1−Dyλβ(t)

)n

(5)

Gy(0) = 1−
(
1− μβ(t)

)
(1−Dy)

1−Dyλβ(t)
; (6a)

Gy(n) =

(
1− μβ(t)

)(
1− λβ(t)

)(
λβ(t)

)
(1−Dyλβ(t))

(
(1−Dy)λβ(t)
1−Dyλβ(t)

)n

, n > 0. (6b)
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Proof. We condition on the number of xenologs at y (whether or not they
survive).

Hy(n) =
∞∑

i=0

(
n + i

i

)
ht(n + i)

(
Dy

)i(1−Dy

)n
.

Using Eq. (2) leads to an infinite series that can be simplified to get (5). Similarly,
write

Gy(n) =
∞∑

i=0

(
n + i

i

)
gt(n + i)

(
Dy

)i(1−Dy

)n
.

Taking the values of gt(n + i) from Eq. (3) and simplifying the resulting infinite
series yields (6). �

2.4 Number of Surviving Genes on a Branch

Definition 4. Let y be a non-root node, and let x be its ancestor. Let py(m|n)
denote the survival probability defined as the probability of the event that there
are m surviving genes at node y under the condition that there are n genes at
node x (not necessarily surviving).

Lemma 3. The survival probabilities can be computed as follows.

py(m|0) = Hy(m) (7a)

py(0|n) = Hy(0)
(
Gy(0)

)n 0 < n (7b)
py(1|n) = Gy(0)py(1|n− 1) + Gy(1)py(0|n− 1) 0 < n (7c)

py(m|n) = αpy(m− 1|n)

+
(
Gy(1)− αGy(0)

)
py(m− 1|n− 1)

+Gy(0)py(m|n− 1)

0 < n, 1 < m (7d)

where

α =
(1−Dy)λβ(t)
1−Dyλβ(t)

. (8)

Proof. For py(m|0) and py(0|n), the equations are straightforward. Otherwise,
we condition on the surviving copies of a single gene at y:

py(m|n) =
m∑

i=0

Gy(i)py(m− i|n− 1). (9)

Now, using that Gy(i+1)=αGy(i) whenever i>0, and comparing (9) for py(m|n)
and py(m− 1|n), we can write py(m|n) in a recursive form as shown. �

2.5 Conditional Likelihoods

Definition 5. Let x be a node in the tree. Define the conditional likelihood
Lx(n) for all n as the probability of having the observed gene counts at the leaves
in the subtree rooted at x, under the condition that there are n surviving genes
at x.
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Theorem 2. The conditional likelihoods can be calculated as follows. In the case
when x is a leaf, Lx(n) = 1 if n is the observed gene count at x, otherwise the
likelihood is 0. If x is not a leaf, and has children x1, x2, . . . , xd, then the following
recursions hold.

Lx(0) =
d∏

j=1

Mj∑
m=0

pxj(m|0)Lxj (m); (10a)

Lx(n) = (1 −Dx)−n

( d∏
j=1

Mj∑
m=0

pxj (m|n)Lxj(m)

−
n−1∑
i=0

(
n

i

)
(Dx)n−i(1−Dx)iLx(i)

)
; 0 < n ≤

d∑
j=1

Mj , (10b)

where Mj is the sum of gene counts at the leaves in the subtree rooted at xj. If
n >

∑d
j=1 Mj, then Lx(n) = 0.

Proof. For a leaf node, or for n >
∑d

j=1 Mj , the theorem is trivial. Otherwise,
consider the likelihood �x(n) of the observed gene counts at the leaves in the
subtree rooted at x, conditioned on the event that there are n genes present
at x, which may or may not survive. We write the likelihood in two ways. First,
by conditioning on the number of surviving genes at the children,

�x(n) =
d∏

j=1

Mj∑
m=0

pxj (m|n)Lxj(m). (11)

Secondly, by conditioning on the number of surviving genes at x,

�x(n) =
n∑

i=0

(
n

i

)(
Dx

)n−i(1−Dx

)i
Lx(i). (12)

Now, rearranging the equality of the two right-hand sides gives the desired
result. �

Remark. Clearly, the gene counts Mx of Theorem 2 are easily computed for
all x. If m(x) is the gene count for every leaf x then

Mx =

{
m(x) if x is a leaf;∑d

j=1 Mxj if x1, . . . , xk are the children of x.
(13)

2.6 Likelihood

It is assumed that the family size at the root is distributed according to the
equilibrium probabilities:

γ(n) = h∞(n) =
(κ

λ + n− 1
n

)(
1− λ

μ

) κ
λ
(

λ

μ

)n

. (14)
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Theorem 3. Let M be the total number of genes at the leaves. The likelihood
of the observed gene counts equals

L =
M∑

n=0

Lroot(n)

( κ
λ +n−1

n

)(
1− λ

μ

) κ
λ
(
(1−Droot)λ

μ

)n

(
1− λ

μDroot

) κ
λ +n

. (15)

Proof. By summing the likelihoods conditioned on the surviving genes at the
root,

L =
M∑

n=0

Lroot(n)
∞∑

i=0

γ(n + i)
(

n + i

i

)
(Droot)i(1−Droot)n. (16)

Now, plugging in the values of γ(·) from Eq. (14) and replacing the infinite series
by a closed form gives the theorem’s formula. �

Remark. In place of the equilibrium probabilities of (14), many other prior
distributions can be accommodated by the summation in (16).

3 Algorithm

This section employs the formulas of Section 2 in a dynamic programming algo-
rithm to compute the likelihood exactly. More precisely, the algorithm computes
the likelihood of gene counts at the tree leaves, given the duplication rate λ,
the transfer rate κ, and the loss rate μ. Algorithm ComputeLikelihood below
proceeds by a depth-first traversal; the necessary variables are calculated from
the leaves towards the root. Let m(u) denote the gene count at every leaf u.

ComputeLikelihood
Input λ, κ, μ, T , gene counts m(u) : u is a leaf of T
Output likelihood of the m(·) values

1 for each node x ∈ V (t) in a depth-first traversal
2 Compute Dx using Eq. (4).
3 Compute the sum of gene counts Mx by Eq. (13).
4 if x is not the root then
5 Let y be the parent of x.
6 for n = 0, . . . , My do
7 for m = 0, . . . , Mx do compute px(m|n) by Eq. (7).
8 for n = 0, . . . , Mx do compute Lx(n) by Eq. (10).
9 Compute the likelihood L at the root using Eq. (15).
10 return L.

Theorem 4 below analyzes the algorithm’s complexity in terms of the topol-
ogy of T . In particular, it uses the notions of height of a node x, defined as the
number of edges on the path leading from the root to x, levels of nodes, which are
sets of nodes with the same height, and height of the tree, which is the maximum
of the leaf heights.
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Theorem 4. Let h be the height of T in Algorithm ComputeLikelihood,
let N be the number of its leaves, and let M = Mroot be the sum of gene counts.
The algorithm can be implemented in such a way that it uses O(N + M2) space
and runs in O(N + hM2) time.

Proof. Computing Dx and Mx takes O(1) time when x is a leaf, or O(d) for
an inner node with d children. There are O(N) nodes in the tree and, thus,
computing Dx and Mx for all x is done in O(N) time. The computed values are
stored in O(N) space.

In order to analyze the computations in Lines 4–8, we consider nodes at the
same level. Line 8 computes Lx(n) for all n = 0, . . . , Mx in O((Mx + 1)(Mx +
dx)) total time where dx is the number of children of node x. Lines 5–7 com-
pute px(m|n) for (Mx + 1)(My + 1) pairs of n, m values. (Notice that Hy(m)
can be computed in O(1) time for each m in the iteration over m using that
Hy(m) = αm+κ/λ−1

m Hy(m−1) with the α of Eq. (8).) For the children x1, . . . , xdy

of the same node y, the total time spent in Lines 5–7 is O((My + 1)(My + dy)).
Terms of the type O(dx) sum up to O(N) in the tree. Considering all nodes at
the same level k, other terms’ contribution to the running time is

O
( ∑

all y at level k − 1

(M2
y + dMy) +

∑
all x at level k

(M2
x + dMx)

)
,

where d is the maximum number of children. Clearly,
∑

x Mx ≤ M if the sum-
mation goes over x for which their subtrees do not overlap, such as nodes at
the same level. Now,

∑
x M2

x ≤ (
∑

x Mx)2 ≤ M2, and, thus, O(M2 + Md) time
is spent on each level. Therefore, the total time spent in the loop of Line 4
is O

(
N + h(M2 + Md)

)
. Line 9 takes O(M) time. Ignoring degenerate cases

with M � d, the theorem’s claim follows.
In order to obtain the space complexity result, notice that at the end of

the loop in Line 8 the computed variables for the children of x are not needed
anymore. Therefore, the nodes for which px(·|·) is needed are such that their
subtrees do not overlap. By the same type of argument as with time spent on a
level, the number of variables that need to be kept in memory is O(M2). �

4 Gene Content Evolution in Proteobacteria

Proteobacteria form one of the most diverse groups of prokaryotes. Proteobac-
teria provide an excellent case study for gene content evolution: they include
pathogens, endosymbionts, and free-living organisms. Genome sizes vary ten-
fold within this group, and horizontal transfer is abundant [25]. Their phylogeny
is still not resolved to satisfaction [40,41,42,43]. We used 51 proteobacteria in
the first application of our likelihood method. Gene counts were based on the
newer version [22] of the COG database. Each COG is a manually curated pro-
tein family of homologs. The COGs are classified into 23 functional categories.
(For each of the 51 proteobacteria, the number of genes in each COG family
was established by Pál et al. [30]. There are 3555 COG families that have at
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least one member in the organisms. The organisms and the phylogeny are shown
at http://www.iro.umontreal.ca/~csuros/gene_content/.) The purpose of
applying the likelihood method was not to carry out in-depth data analysis, but
rather to get a first impression of our method’s performance on realistic data.

First we optimized the branch lengths and the λ, κ parameters while keeping
μ = 1.0 to fix the scaling of edge lengths. In a second pass, we clustered the COG
families with different rates in different groups. The groups were established in
several iterations of Expectation Maximization: in an E-step, each family was
assigned to the best group (the one whose rates give the highest likelihood), in
an M-step, rates were optimized within each group separately to maximize the
likelihood of the COG gene counts within the group’s families. Figure 2 shows
the rates in different groups (Groups 0–8), as well as the distribution of COG
functional classes across clusters. The picture shows that various rate groups
are needed to describe the evolution of the families. While the results and the

Group 0

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

0.01.02.0

rates

103 22 48 19 5 9 36 4 15 23 27 12 40 31 48 17 7 1 58 168676

22 7 19 8 1 16 18 15 14 32 33 17 44 13 40 9 34 6 45 66431

5 19 17 2 5 18 19 11 7 22 31 27 19 15 23 8 27 9 98 220583

2 5 6 2 2 7 17 4 15 14 18 31 25 5 13 3 41 4 44 64308

9 7 9 2 1 5 22 22 15 20 25 10 30 12 14 10 25 5 32 16263

0 9 8 0 5 10 7 9 6 1 15 11 16 1 4 4 11 3 30 14142

3 18 23 2 6 13 13 4 1 8 22 30 14 3 3 9 9 18 81 208473

1 10 8 1 8 13 15 7 14 8 30 28 13 7 2 8 28 18 79 117405

1 14 22 2 0 18 6 3 13 7 12 22 21 1 2 4 10 13 55 61274

J K L D V T M N U O C G E F H I P Q R Ssize

loss(μ)
h. transfer(κ)

duplication(λ)

Fig. 2. Rates in different groups and the distribution of COG functional categories. The
functional categories are: J–translation, K–transcription, L–replication and repair, D–
cell cycle control and mitosis, V—defense mechanisms, T–signal transduction, M–cell
wall/membrane/envelope biogenesis, N–cell motility, U–intracellular trafficking and se-
cretion, O–posttranslational modification, protein turnover and chaperones, C–energy
production and conversion, G–carbohydrate transport and metabolism, E–amino acid
transport and metabolism, F–nucleotide transport and metabolism, H–coenzyme trans-
port and metabolism, I–lipid transport and metabolism, P–inorganic ion transport
and metabolism, Q–secondary metabolites biosynthesis, transport and catabolism, R–
general function prediction only, S–function unknown. The “size” columns gives the
number of COGs in each rate group. (The numbers in a row do not always add up
to the value in the “size” column because some COGs have more than one functional
assignment.)
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methodology still need a thorough critical assessment, some interesting patterns
already emerge. About 19% of the families are very stable (Group 0), including
the large majority of genes involved in translation (category J) such as tRNA
synthetases and ribosomal proteins, and cell cycle control (category D). About
one in nine families fall into groups with large horizontal transfer rates (Groups
4 and 5), while one in three families are in groups with very low transfer rates. In
some categories duplication plays only a minor role: the evolution of cell motility
(category N), and various metabolic functions (F,H,I) seem to be shaped mainly
by horizontal transfer and loss.

5 Conclusion

We presented the first three-parameter model of gene content evolution, along
with a fast algorithm for computing likelihoods. We implemented parameter opti-
mization and a gene family clustering method and carried out a pilot experiment
using COG family sizes in 51 Proteobacteria.

We modeled gene family evolution by a birth-and-death process. It was shown
that birth-and-death processes of various complexity explain the observed power-
law behavior of gene family sizes [32,33,34,44]. In order to develop a truly realistic
likelihood model, rate variation must be permitted across lineages and families.
Our formulas can be readily adapted to branch-dependent rates. The challenge
lies rather in the parametrization: introducing four parameters (three rates and
branch length) for every tree edge and every family will lead to overfitting. A
possible solution is to work with two sets of parameters: a branch-specific and
a family-specific set. We are now working on developing adequate rate-variation
models along these lines. In another related inquiry, we are investigating the
possibility of pairing this model with sequence evolution models, to achieve a
more nuanced modeling of homologies than simple counts. Incorporating gene
similarity will undoubtedly lead to an improved likelihood model of gene content
evolution.

This paper focuses on the core algorithmic problems of likelihood computa-
tions in a biologically realistic model of gene content evolution. The presented
likelihood algorithm can be utilized in a number of contexts. The computations
can be used in parameter optimization to estimate duplication, loss, and trans-
fer rates in different gene families. By comparing the maximum likelihood values
achieved with different evolutionary tree topologies, organismal phylogeny can
be derived from gene content. “Unusual” branches with excess transfer, loss,
etc., can be identified by examining the likelihoods, adapting an idea of [31].
The conditional likelihoods of §2.5 can be used in likelihood-based computations
of ancestral gene content, similarly to standard methods employed in case of
molecular sequences [45] and introns [46]. The likelihood computation allows
for the sampling of different trees in a Bayesian Markov Chain Monte Carlo
method. We believe that our approach — the efficient computation of exact
likelihoods in a three-parameter model — will find many important applications
in comparative gene content analysis.
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discussions concerning gene content evolution, as well as Csaba Pál and Martin
Lercher for providing us with pre-publication data. This work was supported in
part by the e-Science Regional Knowledge Center at Eötvös Lóránd University,
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Abstract. The Robinson-Foulds (RF) metric is the measure most widely used
in comparing phylogenetic trees; it can be computed in linear time using Day’s
algorithm. When faced with the need to compare large numbers of large trees,
however, even linear time becomes prohibitive. We present a randomized approx-
imation scheme that provides, with high probability, a (1 + ε) approximation of
the true RF metric for all pairs of trees in a given collection. Our approach is
to use a sublinear-space embedding of the trees, combined with an application
of the Johnson-Lindenstrauss lemma to approximate vector norms very rapidly.
We discuss the consequences of various parameter choices (in the embedding
and in the approximation requirements). We also implemented our algorithm as a
Java class that can easily be combined with popular packages such as Mesquite;
in consequence, we present experimental results illustrating the precision and
running-time tradeoffs as well as demonstrating the speed of our approach.

1 Introduction

The need to compare phylogenetic trees is common. Many reconstruction methods (par-
ticularly maximum parsimony and Bayesian methods) produce a large number of possi-
ble trees. Trees are also built for the same collection of organisms from different types
of data (e.g., nucleotide or codon sequences for one or more genes, gene-order data,
protein folds, but also metabolic and morphological data). Phylogenetic trees can be
compared and the result summarized in many ways; for instance, consensus methods
[1] return a single tree that best summarizes the information present in the entire col-
lection, while supertree methods (typically used when the trees are built on different,
overlapping subsets of organisms) [2] combine the individual trees into a single larger
one. A more elementary step is to produce estimates of how much the trees differ from
each other, by computing pairwise similarity or distance measures. Here again, many
approaches have been used, such as computing pairwise edit distances based on tree
rearrangement operators [3, 4]; the most common distance measure between two trees,
however, is the Robinson-Foulds (RF) metric [5]. This measure is in widespread use
because it can be computed in linear time [6], is based directly on the edge structure
of the trees and their induced bipartitions, and is a lower bound on the more expensive
edit distances. Yet, as the size of datasets used by researchers grows ever larger, even a
linear-time computation of pairwise distances becomes onerous.
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In this paper, we present the first sublinear-time algorithm to compute pairwise RF
distances among a collection of trees. Our algorithm is a randomized approximation
scheme: it returns, with high probability, an approximation that is guaranteed to be
within (1 + ε) of the true distance, where ε > 0 can be chosen arbitrarily small. Our
approach uses a sublinear-space embedding of the trees, combined with an applica-
tion of the Johnson-Lindenstrauss lemma [7] to approximate vector norms rapidly. We
discuss the consequences of various parameter choices (in the embedding and in the
approximation requirements). We also implemented our algorithm as a Java class that
can easily be combined with popular packages such as Mesquite [8]; in consequence,
we present experimental results illustrating the precision and running-time tradeoffs as
well as demonstrating the speed of our approach.

2 Terminology and Definitions

A phylogenetic tree is an undirected, connected, acyclic graph; its leaves (also called
tips) correspond to the taxa about which data was collected, while its internal nodes all
have degree at least 3. If every internal node of a phylogenetic tree has degree equal
to 3, the tree is said to be binary or fully resolved. We will use Tn to denote a set of
phylogenetic trees on n taxa.

Removing an edge (a,b) from a tree T disconnects the tree, creating two smaller
trees, Ta (containing a) and Tb (containing b). Note that a (resp., b) might now have
only degree 2 in Ta (resp., Tb), in which case we remove it (connecting its two neighbors
directly to each other) in order to preserve the constraint that each internal node have
degree at least 3. Cutting T into Ta and Tb induces a bipartition (or split) of the set S of
taxa of T into the set A of taxa of Ta and the set B of taxa of Tb, a bipartition that we
denote A|B. Thus there exists a one-to-one correspondence between the bipartitions of S
and the edges of T , so that each tree is uniquely characterized by the set of bipartitions
it induces. If S has n taxa, then any (unrooted) phylogenetic tree for S has at most 2n−3
edges and so induces at most 2n−3 bipartitions, only a small subset of the

NB =
� n

2 �
∑
i=1

(
n
i

)
≈ 2n−1

possible bipartitions of the set S. Moreover, n of these bipartitions are trivial biparti-
tions that split S into a one-element set against the remaining n− 1 elements—trivial,
because these n bipartitions are common to all phylogenetic trees on S and thus need
not be explicitly recorded. We shall denote by B(T ) the set of (at most n−3) nontrivial
bipartitions of S induced by T .

The Robinson-Foulds distance [5] between two trees on the same set S of taxa is
simply a normalized count of the bipartitions induced by one tree, but not by the other.

Definition 1. Given a set S of taxa and two phylogenetic trees, T1 and T2, on S, the
Robinson-Foulds distance between T1 and T2 is

RF(T1,T2) =
1
2

(|B(T1)−B(T2)|+ |B(T2)−B(T1)|)
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This measure of dissimilarity is easily seen to be a metric [5] and can be computed in
linear time [6].

We mentioned that one could also define edit distances between trees, in the context
of one or more operators that alter the structure of a tree. Two commonly used operators
are the Nearest Neighbor Interchange (NNI) and the more powerful Tree Bisection and
Reconnection (TBR)—see [4, 9] for definitions and discussions of these operators. Ap-
plying the NNI operator to T1 can change RF(T1,T2) by at most 1, while applying the
TBR operator to T1 can change RF(T1,T2) almost arbitrarily. We use these operators in
generating test sets for our RF approximation routine, as discussed in Section 5.

3 Theoretical Basis for the Algorithm

The key concept in our approach is representation. Our approximation algorithm is a re-
duction to the computation of vector norms in a suitable vector space and the sublinear
running time results from our ability to represent the necessary characteristics of phy-
logenetic trees in sublinear space. More specifically, we represent phylogenetic trees as
vectors in such a way that RF distances become simply the ‖ ·‖1-norm of the difference
vector, then generalize the result to arbitrary ‖ ·‖p-norms for p≥ 1.1 We then borrow a
technique from high-dimensional geometry to reduce the dimensionality of tree vectors
while maintaining pairwise ‖ ·‖2-norms. Finally we combine these techniques to obtain
a fast approximation algorithm for computing RF distances.

3.1 Bit-Vector Representation

Consider a (bijective) function f : T∈Tn
B(T )→ IN that assigns a unique integer in the

interval [1,NB] (recall that NB is the number of possible bipartitions of the set) to each
bipartition.

Definition 2. The bit-vector representation of a phylogenetic tree T is vT ∈ IRb where
we have

vT [i] =

{
1 f−1(i) ∈ T

0 otherwise

Obviously, this representation is quite space-consuming and proportionally time-
consuming to produce; fortunately, we need only consider the bits set to 1, as discussed
in Section 4.2. By construction the ‖.‖1-norm between tree vectors is the
(non-normalized) RF distance.

Theorem 1. ∀T1,T2 ∈ Tn, RF(T1,T2) = 1
2‖vT1 − vT2‖1.

Proof. For all s ∈ B(T1)−B(T2) (resp., B(T2)−B(T1)), we have vT1 [ f (s)] = 1 (resp.,
vT2 [ f (s)] = 1) and vT2 [ f (s)] = 0 (resp., vT2 [ f (s)] = 0). For all s ∈ B(T1)∩B(T2), we also
have vT1 = vT2 = 1 and, for all s∈ T∈Tn

B(T )−(B(T1)∪B(T2)), we have vT1 = vT2 = 0.
Thus we can conclude

‖vT1 −vT2‖1 = |B(T1)−B(T2)|+ |B(T2)−B(T1)|= 2 ·RF(T1,T2)  !
1 The ‖ · ‖p-norm of a vector v = (v1v2 . . .vk) is ‖v‖p =

(
∑k

i=1 |vi|p
) 1

p .
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3.2 Properties of ‖ · ‖p-Norms of Bit-Vectors

Theorem 2. For an arbitrary vector v∈ IRb where every element is chosen from the set
{−k,0,k} (for arbitrary k > 0), we have ‖v‖1 = k1−p · (‖v‖p)p.

Proof. Assume that v has c entries of value ±k; we can write

‖v‖p =

(
b

∑
i=1

(|vi|)p

) 1
p

= (ckp)
1
p = c

1
p k

‖v‖1 =
b

∑
i=1

|vi|= ck = c
p−1

p (c
1
p k) = c

p−1
p ‖v‖p

Raising the first result to the power (p−1) and solving for c
p−1

p yields

c
p−1

p = k1−p · (‖v‖p)p−1

and substituting into the second result finally yields

‖v‖1 = k1−p · (‖v‖p)p  !
Corollary 1. For bit-vectors (k = 1) we have ‖v‖1 = (‖v‖p)p; in particular, we have
‖v‖1 = (‖v‖2)2.

3.3 Reducing Dimensionality

We briefly outline a result of Johnson and Lindenstrauss [7] for norm-preserving em-
beddings; see [10, 11, 12] for a more detailed treatment and proofs.

Consider an m×NB matrix V in which we want to compute the ‖ · ‖2-norm be-
tween pairs of row vectors. Naı̈vely calculating a pairwise norm costs O(NB) time. The
Johnson-Lindenstrauss lemma states that, if we first multiply V by another matrix F
of size NB× 4lnm

ε2 , filled with random numbers from the normal distribution (0,1), we
can then use the pairwise norms between rows of V ·F as good approximations of the
pairwise norms between corresponding rows of V . Specifically, for given ε and F , we
have, with probability at least 1−m−2,

NB O(      m)

=

V F V’

xm NB m O(      m)x x

logx

log

Fig. 1. A sketch of randomized embedding. Each tree is a row in V ; F is a random matrix; each
row of V ′ is the embedded representation of the corresponding row vector in V .
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∀u,v ∈V, (1− ε)‖u− v‖2 ≤ ‖(u− v)F‖2 ≤ (1 + ε)‖u− v‖2

The dimensionality of (u− v)F is now 4lnm
ε2 and thus independent of NB. Other prob-

ability distributions can also be used for populating the elements of F , as discussed in
Section 4.3. Figure 1 illustrates the basic embedding technique.

3.4 Assembling the Pieces

By combining Theorem 1, the Johnson-Lindenstrauss Lemma, and Corollary 1, we can
produce our algorithm. Given a set of m phylogenetic trees:

1. stack their bit-vector representations (recall that each has dimensionality NB) to
form an m×NB matrix;

2. perform the embedding of Section 3.3 (see also Section 4.3 for implementation
considerations) thereby compacting the row dimensionality of the matrix while pre-
serving pointwise ‖ · ‖2-norms between row vectors; and

3. for any pair of row vectors vT 1, vT 2 (i.e., embedded trees), compute the approximate
RF distance by computing (‖vT1− vT2‖2)2.

However, this is the theoretical form of the algorithm. In practice, we do not compute
the large matrix, but use a compact representation from the beginning, one whose size is
determined by the number of bipartitions present in a tree, which is just n−3. We also
use a sampling matrix with entries in {−1,0,+1} (see Section 4.3) rather than arbitrary
reals in [0,1]. Since the dimensionality of the embedded row vectors is O(logm), the
time complexity of for our approximate RF distance between two trees is also O(logm),
so that our technique is asymptotically faster whenever we have logm = o(n).

4 Implementation

We have implemented our algorithm as a Java class that can be used as one of many dis-
tance functions from within popular packages such as TreeViz [14, 15] and
Mesquite [8]. Our source code can be obtained from http://compbio.unm.edu.

Implementation raises a number of nontrivial issues, which we now address.

4.1 Dimensionality Is Not Prohibitive

Although the bit-vector representation is presented as having dimensionality NB ≈
2n−1, we need not produce, store, or manipulate exponentially large vectors. Since the
number of bipartitions present in a single tree is at most n− 3, tree vectors are very
sparse; by representing them as lists of indices (corresponding to the bits that are set),
we avoid the issue of exponentially large vectors.

4.2 Indexing Bipartitions

In order to embed a tree we must read the entire tree, so that the embedding step, for
each tree, must run in Ω(n) time. Day’s algorithm [6] computes the RF distance in O(n)
time. Thus our algorithm (with inclusion of the embedding step) cannot asymptotically
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outperform Day’s algorithm for a single distance computation. We can expect an asymp-
totic speedup, however, if we compute an all-pairs distance matrix for a set of trees: for
such a computation the standard technique costs O(n) per pair on

(m
2

)
= O(m2) pairs,

yielding a total complexity of O(m2n). If embedding costs some function g(n), our
technique will cost O(m ·g(n)) for the embedding step and O(m2 logm) for the distance
computations on pairs of embedded trees, for a total of O(m · (g(n)+ m logm)).

One of the notable attributes of Day’s algorithm, that we have not yet achieved in
our embedding routine, is the ability to determine in constant time whether a biparti-
tion found in one tree exists in the other tree. As currently implemented, our cluster-
matching routine takes O(n) time, inflating the cost of embedding a single tree to O(n2)
and thus causing the overall all-pairs algorithm to run in O(m(n2 + m logm)) time. We
are pursuing the design of a subquadratic-time embedding algorithm, but note that the
current implementation already performs well in practice, especially in the common
situation where the number of trees to be compared far exceeds the number of taxa in
these trees.

4.3 Filling the F Matrix

Generating a large number of Gaussian random numbers and performing floating-point
arithmetic (for matrix-vector multiplications) on them is costly. Fortunately Achlioptas
[13] has shown that simpler distributions can populate the embedding matrix. The best
distribution in implementation terms is as follows:

p(X =−
√

3) = 1/6

p(X = 0) = 2/3

p(X =
√

3) = 1/6

The
√

3 is just a normalizing factor and can be omitted until the very end of the com-
putation, so we use values in {−1,0,1}, with two major advantages: (i) it is an easy
distribution to sample with a uniform random number generator; and (ii) multiplying
by elements in {0,±1} can be done through additions embedded in a three-way condi-
tional. Using this distribution requires a slightly different row dimensionality for F : for
some β > 0, F must have size NB× k0 with

k0 ≥ (4 + 2β) · logm
ε2

2 − ε3

3

and the embedded matrix is normalized by
√

k0. The dimensionality is O(logm) and
the error bound of (1 + ε) is obeyed with probability at least 1−m−β.

5 Experiments

Two major factors influence the usefulness of our technique in practice: the effect of ε
and the overhead of embedding. We ran a series of experiments to assess both factors.
The experiments were run on the CIPRES cluster at the San Diego Supercomputing
Center, a 16-node Western Scientific Fusion A8 running Linux, in which each node is
an 8-way Opteron 850 system with 32GB of memory.
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5.1 The Effect of ε on Clustering Quality

Choosing a large ε cuts down the dimensionality of embedded trees and thus speeds up
the computation. To assess the effect on clustering quality of a big ε, we generated a
large set of test data using the following procedure:

1. Generate a phylogenetic tree Tseed uniformly at random from TnumTaxa

2. do numClusters times
(a) create a new tree TclusterSeed by doing a random number (0≤ k < maxTBR) of

TBR operations to Tseed .
(b) write TclusterSeed to file
(c) do treesPerCluster times

i. create a new tree T ′ by doing a random number (0≤ j <maxNNI) of NNI
operations to TclusterSeed .

ii. write T ′ to file

with the following parameters:

– numTaxa = 100
– numClusters = 2,3,4,5,6,7,8,9,10
– treesPerCluster = 50,100
– maxTBR = 5,8,11,14
– maxNNI = 10,20,30,40,50,60,70,80,90,100

This procedure creates the classic “islands” of trees [16] by providing pairwise distant
trees as seeds and generating a cluster of new trees around each seed tree. We created
10 files for each combination of parameters, yielding a total of 7,200 data files, varying
from easy to very hard to cluster correctly.

For each data set we performed hierarchical agglomerative clustering with a range
of ε values. We then compared the results with the known intended clustering by using
the Rand index [17]. Figure 2 shows the results. These results indicate that, even with
ε = 1.0, we identify the correct clustering quite often, even on very challenging datasets.
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Fig. 2. The mean Rand index, 〈R〉, obtained by running the entire battery of 7,200 datasets for
values of ε ranging from 0.1 to 1.0 by increments of 0.1. The datapoint at ε = 0 was obtained by
the standard RF algorithm.
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Fig. 3. The running time for computing an all-pairs distance matrix as a function of the number
of trees with 250 taxa (left) and 1,000 taxa (right)

Given that biological datasets tend to yield well resolved clusters of trees (due to the
nature of the algorithms that produce them), we expect that our algorithm will perform
well in analyses of biological data.

5.2 The Effect of Embedding on Running Time

Figure 3 demonstrates the speedup afforded by our technique when we hold constant the
number of taxa and plot the running time (of an all-pairs distance matrix computation)
as a function of the number of trees. We include results form experiments in which the
number of taxa is held fixed at 250 (typical of trees being used today) as well as 1,000
(typical of trees to be used in the near future). Times shown are somewhat pessimistic as
a “cold” run (with memory management overhead) was averaged into each of the trials.

If we fix the number of trees and vary the number of taxa—admittedly not a real-
istic scenario—, we are limited by the O(mn2) embedding cost. In this case we do not
perceive a significant advantage to using our technique, but our algorithm will easily
outperform the standard technique even in this setting if we can design an embedding
technique that runs in subquadratic time.

6 Conclusion

We used an embedding in high-dimensional space and techniques for computing vector
norms from high-dimensional geometry to design the first sublinear-time approximation
scheme to compute Robinson-Foulds distances between pairs of trees. We implemented
our algorithm and provided experimental support for its computational advantages. As
computational biologists everywhere increasingly turn to phylogenetic computations to
further their understanding of genomic, proteomic, and metabolomic data, and do so on
larger and larger datasets, a fast computational method to compare large collections of
trees will enable interactive analyses (in the type of setting provided by Mesquite).
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While our algorithm easily outperforms repeated applications of Day’s algorithm
for large collections of trees, its relatively expensive embedding step prevents it from
achieving similarly spectacular speedups for smaller collections of very large trees (al-
though even there it runs nearly as fast as Day’s algorithm). A natural question is
whether the embedding can be run in subquadratic time. Given the close connection
between RF distances and the strict consensus tree, another natural question is whether
similar randomized techniques could be used to speed up the computation of consensus
trees.
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Abstract. Meiotic recombination is a fundamental biological event and
one of the principal evolutionary forces responsible for shaping genetic
variation within species. In addition to its fundamental role, recombi-
nation is central to several critical applied problems. The most impor-
tant example is “association mapping” in populations, which is widely
hoped to help find genes that influence genetic diseases [3, 4]. Hence, a
great deal of recent attention has focused on problems of inferring the
historical derivation of sequences in populations when both mutations
and recombinations have occurred. In the algorithms literature, most of
that recent work has been directed to single-crossover recombination.
However, gene-conversion is an important, and more common, form of
(two-crossover) recombination which has been much less investigated in
the algorithms literature.

In this paper we explicitly incorporate gene-conversion into discrete
methods to study historical recombination. We are concerned with algo-
rithms for identifying and locating the extent of historical crossing-over
and gene-conversion (along with single-nucleotide mutation), and prob-
lems of constructing full putative histories of those events. The novel
technical issues concern the incorporation of gene-conversion into re-
cently developed discrete methods [20, 26] that compute lower and upper-
bound information on the amount of needed recombination without gene-
conversion. We first examine the most natural extension of the lower
bound methods from [20], showing that the extension can be computed
efficiently, but that this extension can only yield weak lower bounds.
We then develop additional ideas that lead to higher lower bounds, and
show how to solve, via integer-linear programming, a more biologically
realistic version of the lower bound problem. We also show how to com-
pute effective upper bounds on the number of needed single-crossovers
and gene-conversions, along with explicit networks showing a putative
history of mutations, single-crossovers and gene-conversions.

We validate the significance of these methods by showing that they
can be effectively used to distinguish simulation-derived sequences gen-
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erated without gene-conversion from sequences that were generated with
gene-conversion. We apply the methods to recently studied sequences
of Arabidopsis thaliana, identifying many more regions in the sequences
than were previously identified [22], where gene-conversion may have
played a significant role. Demonstration software is available at www.cs.
ucdavis.edu/∼gusfield.

1 Introduction

Sequence variations in populations (in a single species) are caused in part by mu-
tations at single nucleotide sites, and in part by recombination during meiosis,
which creates a chimeric genome in an individual from the genomes of the indi-
vidual’s two parents. Sites where two alleles (states) occur in a population with
a frequency above some threshold are called Single Nucleotide Polymorphism
(SNP) sites. Much recent attention has focused on problems of inferring the
historical derivation of SNP sequences in populations when both mutations and
recombinations have occurred. In the algorithms literature, most of that work has
been directed to single-crossover recombination. (Previous methods for single-
crossover recombination appear in [1, 9, 10, 11, 12, 13, 14, 20, 24, 25, 26].) However,
gene-conversion is a form of two-crossover recombination that has large biolog-
ical significance, and there has been much less algorithmic work devoted to the
study of models that incorporate gene-conversion as well as mutation and single-
crossover recombination. Some exceptions are the papers [6, 9, 19], and statistical
methods have also been developed [5, 23, 27, 30] to address gene-conversion.

Tools to study gene-conversion are important because gene-conversion is a
fundamental biological process [18] that is not fully understood (partly because
fine-scale data is needed which is only now becoming available, and partly be-
cause of the lack of algorithmic tools); because gene-conversion is a cause of
genomic sequence variation in populations [8, 21]; and because gene-conversion
has the potential to cause problems in association-mapping [15, 29]. Association
mapping depends on understanding the structure of linkage disequilibrium (LD)
in population data: “Standard population genetics models of recombination gen-
erally ignore gene conversion, even though crossovers and gene conversions have
different effects on the structure of LD” [29].

In this paper, we extend recently developed tools for the study of historical
(single-crossover) recombination and mutation, to explicitly incorporate gene-
conversion events. We validate the biological significance of these methods by
showing that the methods can be effectively used to distinguish sequences that
were generated without gene-conversion from sequences that were generated with
gene-conversions, and we apply these methods to identify regions in Arabidopsis
thaliana sequences where gene-conversions may have played a significant role, in
comparison to single-crossover recombination, in the derivation of the sequences.

In contrast to our methods, existing statistical methods (for example [23]),
do not provide information on the necessary amount of recombination in the
history of the sequences, or produce an explicit derivation of those sequences
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using mutation and recombination. Those methods also do not assess the rela-
tive importance of single-crossover recombination compared to gene-conversion.
Those methods are based on patterns in the sequences rather than on how well
a full history can be obtained to explain the derivation of the sequences, or on
how much recombination is needed.

2 Recombination: Crossing-Over and Gene-Conversion

There are two major forms of recombination that occur during meiosis: single-
crossover recombination (called “crossing-over” in the genetics literature), and
gene-conversion. We will use “crossing-over” and “single-crossover recombina-
tion” interchangeably, and use “recombination” to refer to either crossing-over
or gene-conversion.

Meiotic Crossing-Over: The best studied form of recombination is crossing-over,
where during meiosis two equal length sequences produce a third sequence of the
same length consisting of some prefix of one of the sequences, followed (at the
“breakpoint”) by a suffix of the other sequence.

Gene-Conversion: The other major form of meiotic recombination, called “gene-
conversion”, involves two crossovers at two breakpoints. In gene-conversion, a
new sequence is formed from a prefix of one sequence, followed by an internal
segment of a second sequence, followed by a suffix of the first sequence. All
three sequences are of the same length. The endpoints of the internal segment
are the “breakpoints” of the gene-conversion. Gene-Conversion is a small-scale
meiotic event; the internal segment (called a “conversion-tract”, or “tract” ) is
short, around 50 to 2000 base pairs. Gene-conversion has been hard to study in
populations because of the lack of analytical tools and the lack of fine-scale data.
For example, little is known about the distribution of tract lengths. However,
genomic data produced over the next several years should allow quantification
of the fundamental parameters of gene conversion, and the contribution of gene
conversion to the overall patterns of sequence variations in a population.

3 Minimizing the Total Number of Recombination Events

Given a set M of binary (SNP) sequences, we would like to determine the true
history of mutations, crossing-over events and gene-conversions that derived the
sequences from some ancestral sequence. This is of course impossible and instead
previous research has focused on computing or estimating the minimum number,
denoted Rmin(M), of crossing-over events needed to derive the sequences from
some known or unknown ancestral sequence, when only one mutation is allowed
per site in the entire history of the sequences. Although the true history of the
sequences may have involved more than Rmin(M) recombinations, Rmin(M) and
particular lower-bounds on Rmin(M), have proven to be useful reflections of the
true historical number, for example allowing or contributing to the identification
of recombination hotspots in genomic sequences [2, 7, 28].
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In this paper we move from a focus on Rmin(M), to incorporate gene-
conversions. We define Tmin(M) as the minimum total number of recombina-
tion events needed to derive M from an ancestral sequence (either known or
unknown in different versions of the problem) where a recombination event is
either a crossing-over or a gene-conversion event. Because gene-conversion tract
length is typically small, we will often bound its permitted length, and define
Tmin(M, t) as the minimum number of recombination events needed to derive M ,
where each gene-conversion has tract length at most t (nucleotides). In the next
section we discuss a practical method to compute lower bounds on Tmin(M, t),
and in Section 5 we discuss a practical method to compute an actual sequence of
events that derives M . Since Tmin(M) = Tmin(M, t) when t is sufficiently large
(for example, the physical distance between the first and the last sites in M),
these methods can be used to compute bounds on Tmin(M).

4 Lower Bounds on Crossing-Over and Gene-Conversion

Since the effect of one gene-conversion can be obtained by two crossing-over
events, LBCO(M)/2 is a valid lower-bound on Tmin(M, t), where LBCO(M) is
any lower bound Rmin(M). Several such lower bounds on Rmin(M) have been
developed and extensively studied [1, 12, 17, 20]. We will prove that when t is
unconstrained, the most natural extensions of these methods to include gene-
conversions, yield only weak lower bounds. However, we introduce additional
ideas to increase these lower bounds, and show how to obtain higher lower bounds
when t is bounded.

Our methods to compute lower bounds on Tmin(M, t) are based on an a gen-
eral approach developed by Myers and Griffiths [20] to compute lower bounds
on Rmin(M). Their approach has two essential parts: methods to compute lo-
cal lower bounds for intervals of sites, and a simple, polynomial-time method
to combine those local bounds into a composite global lower bound. All of the
known methods (HK [17], Haplotype and History [20], and Connected Compo-
nent [1, 12]) to compute local lower bounds on crossing-over extend immediately
to the case that gene-conversions are allowed, but the issue of how to combine
those local bounds into a composite global bound on Tmin(M, t) is more complex.

The Haplotype Local Bound: Due to its centrality, we discuss the local Haplotype
bound of Myers and Griffiths [20] in detail. Consider the set of sequences M
arrayed in a matrix, and an interval I of sites. Let M(I) be the sequences M
restricted to the sites of I. Then h(M(I)) is defined as the number of distinct
rows of M , minus the number of distinct columns of M , minus one. h(M(I)) is
a valid lower bound on Rmin(M(I)), and in fact a lower bound on the number
of breakpoints that must be located inside interval I. To see this, assume first
that all the columns of M are distinct, since removal of (duplicate) columns
cannot increase the number of crossing-over events needed, so any lower-bound
computed for the reduced matrix will be a lower-bound for the original M .
Next, consider the derivation of M(I) using Rmin(I) crossing-over events and one
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mutation per site in I, and consider an actual specification of the relative order
that the events and mutations occur (this is called a “history”). Any mutation
of a site in I can only occur once in the history, and it can result in only one new
sequence (not yet derived in the history). Similarly, each crossing-over event with
breakpoint in I can only create one new sequence. A crossing-over event with
breakpoint outside of I, or a mutation outside of I cannot create a new sequence
in the set M(I). The history must create all the distinct sequences in M(I)
starting from some ancestral sequence which might itself be in M(I). It follows
that there must be at least h(M(I)) crossing-over events whose breakpoint is
(strictly) in I, so h(M(I)) ≤ Rmin(M(I)). Clearly, h(M(I)) is also a lower bound
on Tmin(M(I), t) for any t, because a single gene-conversion can also create at
most one new sequence in M(I).

In [20], local haplotype lower bounds for an interval I were raised by consid-
ering subsets of sites in the interval. That approach was further explored in [2]
and optimized in [26]. In our software, we use the latter approach to obtain the
highest possible local haplotype bounds for each interval I.

The Composite Global Lower Bound: We are interested in a lower bound on
Tmin(M, t), not just a bound on Tmin(M(I), t) for a single interval I. Of course,
h(M) (the haplotype bound applied to the interval consisting of all the sites) is a
lower bound on Tmin(M, t), but in the computations we have done, it is a very poor
lower bound, often a negative number. The same is true of Rmin(M), but a much
better composite global lower bound on Rmin(M) can be obtained from the local
lower bounds. We say a point p “covers” an interval I if p is contained in I with
at least one SNP site on each side of p. Then we obtain a composite global bound
on Rmin(M) by solving the Crossover Coverage Problem: Find the smallest
set of points B so that each interval I is covered by at least h(M(I)) points of B.
|B| is a valid lower bound on Rmin(M), and B can be found using a simple
polynomial-time algorithm[20]. However, |B| is not necessarily a lower bound on
Tmin(M, t). To use the local bounds to obtain a composite bound on Tmin(M, t),
we next formulate a natural generalization of the Crossover Coverage Problem.

We say a line-segment “covers” an interval I if at least one end p of the line-
segment covers I. Note that a line-segment that strictly contains I does not cover
it, and that a line-segment covers I only once even if both of its endpoints are
in I. The intuitive meaning is that a line-segment represents a gene-conversion,
and a line-segment covers an interval I only if the action of the gene-conversion
it represents could create a new sequence in M(I). Then we obtain a composite
bound on Tmin(M, t) by solving the Gene-Conversion Coverage Problem:
Find the smallest set consisting of points P , and line segments S with length
at most t, so that each interval I is covered by at least h(M(I)) elements of
P ∪ S. Each point in P represents a crossing-over and each line-segment in S
represents a gene-conversion. Clearly, a derivation of M using exactly Tmin(M, t)
recombinations, where the conversion tract of any gene-conversion is of length
at most t, defines a set of points and line-segments that cover each interval I
at least h(M(I)) times. Therefore, a solution to the Gene-Conversion Coverage
Problem is a valid lower bound on Tmin(M, t).
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4.1 A Special Case of the Gene-Conversion Coverage Problem

We first show that when t is unbounded, the Gene-Conversion Coverage Problem
has a simple, yet disappointing solution. For the following discussion, let B be a
minimum-sized set of breakpoints that solves the Crossover Coverage Problem,
and let |B| = n. Number the breakpoints in B left to right choosing an arbitrary
ordering of breakpoints that lie on the same point. For any k ≤ �n

2 �, let P (B, k)
be a pairing of the leftmost k breakpoints to the rightmost k breakpoints of B
under the mapping i → n − k + i, and create a line-segment between the two
endpoints of each pair in P (B, k). Let S be the set of these k line-segments,
and let P be the set n− 2k unpaired points in B. We will show that there is a
solution of the Gene-Conversion Coverage Problem that has this form for some
k, and show that the best k can be easily obtained.

Note that in P (B, k), if i < j ≤ k, then i maps to a breakpoint to the left of
the breakpoint that j maps to, a property that we call “monotonicity”. Define
L(I) as the number of breakpoints in B to the left of I, and R(I) as the number
of breakpoints in B to the right of I. We say a line-segment is “contained in” I
if both of its ends are contained in I. Define the “coverage” of interval I as the
number of elements of P ∪ S that cover I.

Lemma 1. Let I be any interval where some line-segment in S is contained in I.
Then exactly k − (L(I) +R(I)) line-segments in S are contained in I.

Proof. First, if a line-segment (a, b) in S is contained in I, then k ≥ L(I) + 1 so
breakpoint L(I) + 1 (the leftmost breakpoint in I) must be the left end of some
line-segment in S. Moreover, by monotonicity, the right endpoint of that segment
(which is at breakpoint n−k+L(I)+1) must be at or to the left of b, and hence
in I. Since the pairing P (B, k) involves the rightmost k breakpoints in B, all the
breakpoints in I to the right of n−k+L(I)+1 must be right endpoints of some
line-segment in S, and again by monotonicity, their paired left endpoints must be
to the right of L(I)+1, and hence must be in I. The rightmost breakpoint in I is
n−R(I), so there are exactly n−R(I)− [n−k+L(I)+1]+1 = k−(L(I)+R(I))
line-segments in S that are contained in I.  !
Lemma 2. For k ≤ n − maxI(h(M(I))), the coverage of any interval I is at
least h(M(I))).

Proof. Let B(I) be the number of breakpoints in B that are contained in I. The
coverage of I is exactly B(I) minus the number of line-segments in S contained
in I. Since, B(I) ≥ h(M(I))) for all I, we only need to examine intervals where
some line-segment in S is contained in the interval. Let I be such an interval.
By assumption, k ≤ n−maxI h(M(I))) ≤ n− h(M((I))), so

k − (L(I) +R(I)) ≤ n− h(M((I)))− (L(I) +R(I)) = B(I)− h(M((I))).

Therefore h(M((I))) ≤ B(I) − [k − (L(I) + R(I))], and by the Lemma 1, the
coverage of I is at least h(M(I))).  !



Algorithms to Distinguish the Role of Gene-Conversion 237

Corollary 1. If k = min(�n
2 �, n−maxI h(M(I))), then the coverage of I is at

least h(M(I)), for each interval I.

Theorem 1. If B is a minimum sized set of breakpoints (of size n) solving the
Crossover Coverage Problem, then the optimal solution to the Gene-Conversion
Coverage Problem has size exactly max(#n

2 $,maxI h(M(I))).

Proof. By the Corollary, if we set k to min(�n
2 �, n−maxI h(M(I))), then every

interval I has coverage at least h(M(I)), and |S∪P | is exactly n−k = max(#n
2 $,

maxI h(M(I))). But both of those terms are trivial lower bounds on the number
of needed line-segments and single breakpoints in any solution to the Gene-
Conversion Coverage Problem, and hence that choice of k gives the optimal
solution.  !
So when t is unbounded, we have a simple, efficient algorithm for the Gene-
Conversion Coverage Problem: solve the Crossover Coverage Problem, yielding
set B, and then apply Theorem 1. Note that Theorem 1 holds regardless of which
(optimal) solution B is used, and provides a lower bound on Tmin(M, t) for any
t, as well as for Tmin(M). It can also be shown that Theorem 1 holds even if
we use HK or history or connected component local lower bounds, instead of
Haplotype local lower bounds.

4.2 Improving the Bounds

Theorem 1 establishes trivial lower bounds on Tmin(M, t) and Tmin(M). It’s
importance is that it proves that the natural extension of the way that good
lower bounds on Rmin(M) were obtained, will not yield non-trivial lower bounds
when gene-conversion is included. To get higher bounds we have to use additional
constraints. The first such constraint is to bound the permitted tract length to
t in any solution to the Gene-Conversion Coverage Problem. We do not have a
polynomial-time algorithm for this version of the problem, but next show how
to effectively solve it using integer linear programming.

An ILP Formulation for Bounded t: We define φ(i) as the physical position in
the chromosome of site i. Given an input matrix M with m sites, and a bound
t, we define an integer-valued variable Ki,j for each pair of integers i, j where
0 < i ≤ m − 1, 0 < j ≤ m − 1, i ≤ j, and either i = j or φ(j) − φ(i + 1) < t.
The value that variable Ki,j takes on in the ILP solution specifies the number
of line-segments [i, j] (whose two endpoints are between sites i, i + 1 and sites
j, j+1) that will be used in the solution. For an interval I = [a, b], we define the
set A(I) = {Ki,j : a ≤ i < b or a ≤ j < b}. Set A(I) is the set of the variables
that can specify a line-segment that covers I. We allow i = j to indicate a single
point. Then the following ILP solves the Gene-Conversion Coverage Problem
when t is bounded:

Minimize
∑

(i,j) Ki,j

Subject to∑
Ki,j∈A(I)Ki,j ≥ h(M(I)), for each interval I.
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Further Improvements: We can often increase the composite global lower bound
on Tmin(M, t) with the following observation. We say sites p, q are incompatible
when all four binary combinations 00, 01, 10, 11 appear at those two sites. If p, q
are incompatible, then there must be at least one breakpoint in the interval [p, q],
and this can introduce additional constraints on possible gene conversions. For
example, consider the following four sequences: 000, 011, 110, 101. All three sites
are pairwise incompatible. Let a, b, c denote the first, second, and third sites,
respectively. Intervals [a, b], [b, c], [a, c] all have a local bound of 1. We can cover
those intervals using a single line-segment with one endpoint between a and b,
and the other endpoint between b and c. That single segment covers all three of
the intervals. However, it is easy to see that a gene conversion corresponding to
that single segment cannot make sites a and c incompatible. Thus, there must
be at least two gene-conversion or crossing-over events for this example. Those
additional constraints can increase the resulting global lower bound, and can be
incorporated into the ILP with the following constraints:∑

p≤a<q,b≥q Ka,b +
∑

a<p,p≤b<q Ka,b +
∑

p≤a<q Ka,a ≥ 1, for each pair of

incompatible sites p, q.

Note that Ka,a defines a crossing-over event rather than gene-conversion.
The above ILP formulation can be solved reasonably fast for data of the size

of current biological interest. Some timing details will be presented in Section 6.
This approach has been implemented in the program HapBound-GC. A demon-
stration version of HapBound-GC uses the free GNU GLPK package to solve
the ILP.

Another way to raise the composite lower bound involves the interaction of
local bounds and global bounds that use those local bounds. Consider a subset
of sites K that span an interval I, and let M(K) be the sequences M restricted
to the sites in K. The action of a gene-conversion can create a sequence in M(K)
differing from both of the parent sequences only if there are sites in K to the
left and right of one of the two breakpoints of the gene-conversion. Moreover,
if the two ends of a gene-conversion are in the interval spanned by K, then the
gene-conversion can create a new sequence in M(K) only if there is a site in
K between those two breakpoints. Those observations constrain where we must
place points and line-segments in a solution to the Gene-Conversion Coverage
Problem. In fact, such constraints are used in the ILP for the subsets described in
Section 4 that yield the highest local haplotype bounds. However, we can further
raise the composite global bound by enumerating each subset of sites K up to a
certain size, and computing the haplotype lower bound on the sequences M(K).
Then, we generate constraints for the ILP requiring that the number of points
and line-segments covering K must be at least the computed haplotype bound
for M(K), and requiring that the selection of covering points and line-segments
be constrained as described above. These additional ideas result in larger lower-
bounds at the cost of increasing the size of the ILP and the time needed to solve
it. Our experience shows that when CPLEX is used, the ILP formulation can
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still be solved reasonably fast when enumerating all size-3 (or even 4) subsets of
sites. Unfortunately, the free GNU GLPK runs much slower than CPLEX when
all size-3 subsets are used for data containing more than 30 sites.

5 Computing Upper Bounds on Tmin(M, t): A Practical
Algorithm to Derive M Explicitly

In this section we describe our algorithm that produces an explicit sequence of
recombination and mutation events to generate an input set of sequences M .
This of course gives an upper bound on Tmin(M, t).

The overall framework of our upper bound on Tmin(M, t) is similar to that
of the upper bound described in [26] where only mutations and crossing-over
events are allowed. The main distinction lies in that we here use the following
more general derivation cost: Given a row r in a binary matrix A and a specified
maximum tract length t, c(r|A − r, t) is defined as the minimum total number
of crossing-over events and gene-conversions with tract length at most t that are
needed to derive row r from some other rows in A. In [26], only single-crossovers
were allowed in defining the derivation cost, denoted w(r|A − r).

The following procedure, called Procedure History, is the key component
of our method to compute an upper bound on Tmin(M, t).

Step 0. Set A = M .
Step 1. Set W=0.
Step 2. Repeat Steps 2a and 2b until neither operation is possible.

Step 2a. Collapse two identical rows of A into one row.
Step 2b. Remove any column k of A containing less than two 0s or less

than two 1s.
Step 3. If A is empty, then stop. Otherwise, remove a row from A, say row

r, set W ←W + c(r|A − r, t), and go to step 2.

The final upper bound τ(M, t) on Tmin(M, t) is defined as the minimum final
value of W over all possible executions of Procedure History. (Two inequivalent
executions have different sequences of row removals in Step 3.)

Of course, if we explicitly explore all possible executions, then the method
would only be practical for very small problem instances. Instead, we use branch
and bound ideas to find τ(M, t) without explicitly exploring all possible execu-
tions of Procedure History. The details of the branch and bound method are
similar to those in [26], and their use results in dramatic speedups allowing
practical computation of τ(M, t) for moderate size data. Some timing details
are presented in Section 6. We implemented this method into a program called
SHRUB-GC which is available on the web (www.cs.ucdavis.edu/∼gusfield).

The fact that τ(M, t) is an upper bound on Tmin(M, t) follows from the obser-
vation that every execution of Procedure History, with final cost denoted W ∗,
specifies backwards in time a series of W ∗ recombination events (along with
one mutation per site) that derive M . These events can be represented in an
directed acyclic graph (DAG), and our program can produce this DAG. More
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specifically, an execution of Step 2a creates a new node with two directed edges
out of it (this is a “coalescent” event); an execution of Step 2b creates a directed
edge on which site k mutates; and removing the row r in Step 3 corresponds to
creating c(r|A − r, t) crossing-over and gene-conversion events, along with the
needed coalescent nodes, to derive row r from the sequences in A− r.

The generalized derivation cost c(r|A − r, t) can be computed by an O(nmt2)
time algorithm recently presented in [19], where n and m are the number of se-
quences and the length of each sequence in M . There may exist several distinct
combinations of c(r|A−r, t) crossing-overand gene-conversionevents that produce
r from A− r. We modified the algorithm in [19] to generate r using the minimum
number of gene-conversions possible over all histories that use exactly c(r|A−r, t)
crossing-over and gene-conversion events to generate r fromA−r. That derivation
of r can be used in the construction of the larger DAG that derives M .

6 Application: Distinguishing Gene-Conversion from
Crossing-Over

One of the key motivations for the development of our lower and upper bound
methods is to use them to estimate the relative extent that gene-conversion,
compared to crossing-over, was involved in the true historical generation of a
set of sequences. Further, the successful use of our methods to distinguish the
average behavior of sets of sequences whose true generation involved moderate
to high levels of gene-conversion, from that of sets that used a low level, is also
a validation of the biological relevancy of the objective function Tmin(M, t) and
bounds on it. In this section we highlight some key empirical results.

Define Δτ(M, t) := τ(M, 0)−τ(M, t), where both τ(M, 0) and τ(M, t) denote
either our lower or upper bounds on Tmin(M, t) (context will determine which
one). Note that Δτ(M, t) ≥ 0 for all M and t, since τ(M, 0) corresponds to the
case when no gene-conversion is allowed.

There may exist several distinct combinations of single-crossovers and gene-
conversions that produce τ(M, t). We use γ(M, t) to denote the minimum number
of gene-conversions over all such combinations of single-crossovers and gene-
conversions. As mentioned above, we modified the algorithm in [19] so that
γ(M, t) can be computed for the upper bound. Computing it in the lower bound
can be done by an easy modification of the ILP presented in Section 4.

The general idea of the simulations reported in this section is to generate
sets of sequence data with varying amounts of gene-conversion. We expect that
γ(M, t) and Δτ(M, t) will increase as t increases, but will do so faster and will be
larger for data actually generated with gene-conversions than for data without
gene-conversions. That is, as we allow our methods to try to use more gene-
conversions, they will be able to do so more effectively on sequences that were
actually generated using gene-conversions. Another reflection of the same intu-
ition is that the proportion of total recombinations that are gene-conversions
should grow at t grows, but in a more pronounced way for data that was gener-
ated using gene-conversions.
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6.1 Simulation Study

Our main empirical result is that the expected behavior of both γ(M, t) and
τ(M, t) as t increases, does depend critically on the extent that gene-conversions
were used to generate M . We examined α(t) := E[γ(M, t)/τ(M, t) | τ(M, 0) �= 0]
and β(t) := E[Δτ(M, t)/τ(M, 0) | τ(M, 0) �= 0] in our study. The first expectation
reflects the fraction of all events that are gene-conversions, in solutions that
minimize the total number of events. The second expectation summarizes the
reduction in the number of total recombination events for a given t, compared to
the number when no gene-conversion is allowed. If our methods truly reflect the
extent of gene-conversion used to generate the sequences, and properly reflect
the tract lengths used, then both of these summary statistics should increase
with increasing f (defined below) and t.

We used Hudson’s program MS [16] to generate simulated data. MS uses a
finite-sites uniform recombination model, and the user specifies the number k of
sites to be considered in the model. We used k = 5000 in our study. In humans,
the genome-wide average of the scaled recombination rate ρ is about 0.4 per kb,
which translates to ρ ≈ 2 for a region of 5000 bps long. Instead of specifying the
mutation rate, we specified the number s of polymorphic sites to be generated.
With g being the probability per generation per sequence that gene conversion
initiates between a pair of adjacent sites and r the probability per generation per
sequence that crossing-over occurs between a pair of adjacent sites, f is defined
as g/r, for r �= 0. That is, f specifies the relative rate of gene-conversions used
by MS, compared to crossing-over, in the generation of sequences M . Larger f
specifies a higher rate of gene-conversions. It is believed that in humans, f is in
the range 2 to 10 [15]. Program MS assumes that the conversion tract length is
geometrically distributed with mean conversion tract length λ, provided by the
user. We analyzed 500 simulated datasets for each set of parameters.
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Fig. 1. Upper bound expectations α(t) := E[γ(M, t)/τ (M, t) | τ (M, 0) �= 0] and β(t) :=
E[Δτ (M, t)/τ (M, 0) | τ (M, 0) �= 0], for n = 20, s = 30, k = 5000 and λ = 500. We
carried out computations for t = 1, 500, 1000, 1500, 2000 and joined the corresponding
consecutive points by a straight line to generate these plots.
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Figure 1 illustrates our upper bound results on datasets generated with n =
20, s = 30, k = 5000, λ = 500 and ρ = 2 or 5. An important thing to note is that,
for f = 0 (i.e., when no gene-conversions were used in the generation of M), both
α(t) and β(t) remain close to zero as t changes. That is, when the data were
generated without gene-conversions, the allowance of gene-conversions in the
bounding methods does not reduce the bounds very much. In effect, the methods
cannot “make up” gene-conversions that did not actually occur in the generation
of the sequences. Similarly, for fixed f , both α(t) and β(t) first increase rapidly
as t increases from zero, but increasing t beyond 1500 does not seem to influence
them very much. This behavior is consistent with the fact that, for λ = 500, the
probability of the tract length being less than or equal to 1500 is about 95%.
These characteristics are a very strong validation of the biological relevancy of
our methods.

As f increases, both α(t) and β(t) grow, and this growth is more pronounced
for larger t. In general α(t) is more sensitive to changes in f and t than is β(t).
For fixed f and t, both α(t) and β(t) tend to increase as the recombination rate ρ
increases, with α(t) more so than β(t). The general behavior of our lower bound
is quite similar to that of our upper bound.

In general, as t, f or ρ increases, the running times of our programs increase.
The average running time per dataset of SHRUB-GC ranged from a fraction of
a second to a bit over a minute on a 2 GHz pentium PC. HapBound-GC is faster
than SHRUB-GC, with the average running time per dataset being less than a
second.

6.2 Gene-Conversion Presence (GCP) Test

Based on the simulation results of our methods, one can devise various tests for
determining whether gene-conversion was used to generate a given dataset. We
here suggest a simple test involving γ(M, t): For a given maximum tract length t,
we say that γ(M, t) > 0 indicates the presence of gene-conversion. Percentages
of simulated datasets with γ(M, t) > 0 are summarized in Table 1, for mean
tract length λ = 500. Percentages for f = 0 can be regarded as false positive
rates, whereas percentages for f > 0 can be regarded as sensitivity. Results for
three different methods are shown in the table: (U) requiring γ(M, t) > 0 in the
upper bound method only, (L) requiring γ(M, t) > 0 in the lower bound method
only, and (U&L) requiring γ(M, t) > 0 in both upper and lower bound methods.

The outcome of these tests depends on the value of t used, but our results
indicate that increasing t beyond a certain point does not change the percentages
by a considerable amount; that is, in our simulations using λ = 500, the difference
between t = 1 and t = 1000 is much more significant than that between t = 1000
and t = 2000. In practice, the user is advised to decide on an appropriate t based
on what is believed to be the mean tract length for the species being studied.

Results in Table 1 suggest that for small ρ (say, ρ ≤ 2), false positive rates
are low and method U seems to work better than method L or method U&L.
For ρ = 5, however, both methods U and L lead to somewhat high false positive
rates. Since using the combined method U&L reduces the false positive rate, a
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Table 1. Percentage of datasets with γ(M, t) > 0 for n = 20, s = 30, k = 5000 and
λ = 500. “U” denotes having γ(M, t) > 0 in the upper bound method, “L” having
γ(M, t) > 0 in the lower bound method, and “U&L” having γ(M, t) > 0 in both upper
and lower bound methods.

t = 1 t = 500 t = 1000 t = 1500 t = 2000
ρ f U L U&L U L U&L U L U&L U L U&L U L U&L
2 0.0 0.8 0.6 0.6 0.8 1.0 0.8 1.2 1.6 1.2 1.6 3.0 1.6 1.8 3.0 1.8

2.5 20.6 15.0 12.4 32.6 30.2 25.2 36.6 35.6 29.8 37.4 38.4 31.0 38.6 40.4 32.6
5.0 38.6 31.4 24.8 56.8 55.0 46.8 61.2 61.2 53.4 63.8 63.0 56.0 64.6 65.2 58.0
7.5 46.8 37.0 29.8 62.6 61.0 52.0 65.8 67.0 57.2 68.2 70.4 60.6 69.6 72.0 62.2

10.0 57.0 45.4 36.0 74.4 72.6 64.4 78.8 78.2 71.0 79.8 80.4 73.0 81.8 81.2 74.8
5 0.0 4.6 4.6 2.8 8.4 9.4 6.0 10.2 12.6 7.4 11.8 16.2 8.8 12.6 18.4 9.6

2.5 40.6 37.2 25.0 63.6 64.6 54.4 68.0 71.8 61.2 69.6 72.6 62.8 71.8 73.8 64.6
5.0 64.4 50.6 42.2 81.4 82.6 74.2 87.4 88.6 81.6 89.8 90.4 85.2 91.0 90.6 86.2
7.5 72.6 63.2 51.4 92.8 92.4 88.0 96.0 94.4 92.2 96.8 95.4 93.8 97.0 95.4 94.0

10.0 81.6 69.4 61.8 95.8 93.6 91.4 97.2 96.8 94.8 97.4 97.0 95.2 98.0 97.0 95.8

conservative strategy would be to use that method if ρ > 2 or if ρ is unknown. All
three methods perform significantly better with increasing f (i.e., high sensitivity
can be achieved for f ≥ 5). Further, we remark that, although not shown here,
our GCP test performs better with increasing number of segregating sites, given
that all other parameters remain fixed.

6.3 GCP Test on Arabidopsis thaliana Data

We applied the above GCP Test to the Arabidopsis thaliana data of Plagnol et
al.[22] To be conservative, we used method U&L. The data consist of 96 samples
broken up into 1338 short fragments, each of length between 500 and 600 bps.

Most fragments contain a significant fraction of missing data, which were
handled in [22] as follows. Given a fragment, they first found the set of all pairs
of columns containing 00, 01, 10 and 11. Then, if there were less than or equal
to ten missing data restricted to that set, they tried all possible assignments of
values to those missing data and declared that the fragment contains a clear gene-
conversion event if their test produced an affirmative answer for any assignment.
In our approach, instead of assigning values to missing data, we removed certain
columns and rows so that the remaining dataset was free of missing data.

Typically ρ < 1 for each fragment, as estimated in [22], so the above simulation
results imply that our GCP test should have a low false positive rate, provided
that the actual evolution of Arabidopsis thaliana has been consistent with the
model used for simulation. Since we ignored homoplasy events (recurrent or back
mutations) in our simulations, we decided to account for their possibility as fol-
lows. First, we ran our GCP test using t = 1, thus allowing for at most one SNP
in the conversion tract. Note that a gene-conversion event in such a case has sim-
ilar effects as does a homoplasy event. Second, when we performed GCP tests for
t > 1, we ignored those datasets that had affirmative GCP test results for t = 1.
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Plagnol et al. [22] identified four fragments as containing clear signals for
gene-conversion, with potential tracts being 55, 190, 200 and 400 bps long. In
contrast, 22 fragments passed our test when the maximum tract length was
set to 200. (Increasing t beyond 200 did not change our results.) Of these 22
fragments, three coincided with those found in [22]. We believe that the fact
that we handled missing data differently is responsible for our not detecting any
signal for gene-conversion in the remaining one fragment (whose potential tract
length is 400 bps) identified in [22]. All in all, our detection methods are more
general than the method used in [22], and we believe that that led us to identify
many more fragments than they did. Effectively, the method of Plagnol et al. [22]
can only detect fragments with τ(M, t) = 1 and γ(M, t) = 1. All 19 additional
fragments we identified had τ(M, t) > 1 and γ(M, t) ≥ 1.
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Abstract. The history of human migratory events can be inferred from
observed variations in DNA sequences. Such studies on non-recombinant
mtDNA and Y-chromosome show that present day humans outside Africa
originated from one or more migrations of small groups of individuals be-
tween 30K-70K YBP. Coalescence theory reveals that, any collection of
non-recombinant DNA sequences can be traced back to a common an-
cestor. Mutations fixed by genetic drift act as markers on the timeline
from the common ancestor to the present and can be used to infer migra-
tion and founder events that occurred in ancestral populations. However,
most mutations seen in the data today are relatively recent and do not
carry useful information about deep ancestry. The only ones that can
be used reliably are those that can be shown to robustly distinguish
large clusters of individuals and thus qualify as true representatives of
population events in the past.

In this talk, we present results from the analysis of 1737 complete
mtDNA sequences from public databases to infer such a robust set of
mutations that reveal the haplogroup phylogeny. Using principal com-
ponent analysis we identify the samples in L, M and N clades and with
unsupervised consensus ensemble clustering we infer the substructure in
these clades. Traditional methods are inadequate to handle data of this
size and complexity.

The substructure is inferred using a new algorithm that mitigates
the usual problems of sample size bias within haplogroups as well as
the sampling bias across haplogroups. First, we cluster the data in each
of the M, N, L clades separately into k = 2, 3, 4, . . . kmax groups using
an agreement matrix derived from multiple clustering techniques and
bootstrap sampling. Repeated training/test splits of the samples identify
robust clusters and patterns of SNPs which can assign haplogroup labels
with a reliability greater than 90%. Even though the clustering at each
k is done independently, the clusters split in a way that suggests that
the data is revealing population events; a cluster at level k has k − 2
clusters which are identical with those at level k − 1 plus two more that
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obtain from a split of one of the clusters at level k − 1. The clustering
is repeated with equal number of samples from the first level clusters.
The sequence in which the clusters now split defines a binary network
which reveals population events unbiased by sample size. We root the
network using an out-group and, assuming a molecular clock, identify
an internal node in the bifurcation process which is equidistant from the
leaves. This rooting removes the bias across haplogroups which would
otherwise influence the order in which the clusters emerge.

Our analysis shows that the African clades L0/L1, L2 and L3 have
the greatest heterogeneity of SNPs, in agreement with their ancient an-
cestry. It also suggests that the M, N clades originated from a common
ancestor of L3 in two separate migrations. The first migration gave rise
to the M haplogroup, whose descendents currently populate South-East
Asia and Australia. The second migration resulted in the N haplogroup,
accounting for the current populations in China, Japan, Europe, Central
Asia and North and South America. We reveal and robustly label many
branches of the mtDNA tree, improving current results significantly. We
find that for our choice of robust SNPs, the genetic distances between the
NA and NRB haplogroups is smaller compared to that between B and
J/T/H/V/U. The detailed N migratory sub-tree is rooted so that the T,
J and U haplogroups are on one side of the root and the F, V/H, I, X, R5,
B, N9, A and W are on the other. We also find a detailed structure for the
M tree consistent with prior literature and we infer additional branches
for the MD haplogroup. Finally we provide detailed SNP patterns for
each haplogroup identified by our clustering. Our patterns can be used
to infer a haplogroup assignment with reliability greater than 90%.



Efficient Enumeration of Phylogenetically
Informative Substrings

Stanislav Angelov1, Boulos Harb1, Sampath Kannan1,
Sanjeev Khanna1, and Junhyong Kim2

1 Department of Computer and Information Sciences, University of Pennsylvania
{angelov, boulos, kannan, sanjeev}@cis.upenn.edu

2 Department of Biology, University of Pennsylvania
junhyong@sas.upenn.edu

Abstract. We study the problem of enumerating substrings that are
common amongst genomes that share evolutionary descent. For exam-
ple, one might want to enumerate all identical (therefore conserved)
substrings that are shared between all mammals and not found in non-
mammals. Such collection of substrings may be used to identify conserved
subsequences or to construct sets of identifying substrings for branches
of a phylogenetic tree. For two disjoint sets of genomes on a phylogenetic
tree, a substring is called a discriminating substring or a tag if it is found
in all of the genomes of one set and none of the genomes of the other set.
Given a phylogeny for a set of m species, each with a genome of length
at most n, we develop a suffix-tree based algorithm to find all tags in
O(nm log2 m) time. We also develop a sublinear space algorithm (at the
expense of running time) that is more suited for very large data sets. We
next consider a stochastic model of evolution to understand how tags
arise. We show that in this setting, a simple process of tag generation
essentially captures all possible ways of generating tags. We use this in-
sight to develop a faster tag discovery algorithm with a small chance of
error. However, tags are not guaranteed to exist in a given data set. We
thus generalize the notion of a tag from a single substring to a set of
substrings whereby each species in one set contains a large fraction of
the substrings while each species in the other set contains only a small
fraction of the substrings. We study the complexity of this problem and
give a simple linear programming based approach for finding approxi-
mate generalized tag sets. Finally, we use our tag enumeration algorithm
to analyze a phylogeny containing 57 whole microbial genomes. We find
tags for all nodes in the phylogeny except the root for which we find
generalized tag sets.

1 Introduction

Genomes are related to each other by evolutionary descent. Thus, two genomes
share sequence identities in regions that have not experienced mutational
changes; i.e., the genomes share common subsequences. While common sub-
sequences can also arise by chance, sufficiently long common sequences are ho-
mologous (identity by descent) with high probability. The pattern of common
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subsequences in a set of genomes can be informative for reconstructing the evolu-
tionary history of the genomes. Furthermore, since stabilizing selection for impor-
tant functions can suppress fixed mutational differences between genomes, long
common subsequences can be indicative of important biological function. This
hypothesis has been extensively used in comparative genomics to scan genomes
for novel putatively functional sequences [1, 2, 3].

Typical approaches for obtaining such subsequences involve extensive pairwise
comparison of sequences using BLAST-like approaches along with additional
modifications. Alternatively, one can use a dictionary-based approach, scanning
the genomes for presence of common k-mers (which is also the base approach for
BLAST heuristics). The presence and absence of such k-mers can be also used
to identify unlabeled genomes or reconstruct the evolutionary history. Detection
of particular k-mers can be experimentally implemented using oligonucleotide
microarrays leading to a laboratory genome identification device.

For detecting functionally important common subsequences or for identifying
unlabeled genomes, it is important that k is sufficiently large to ensure ho-
mologous presence with high probability. However, the required address space
increases exponentially with k. Furthermore, not all patterns of k-mer presence
are informative for detecting common subsequences. If the phylogenetic rela-
tionship of the genomes is known, then the phylogeny can become a guide to
delineating the most informative common subsequences. For any given branch
of the tree, there will be substrings common to all genomes on one side of the
branch and not present on the other side. For example, there will be a collection
of common substrings unique to the mammalian lineage of the Vertebrates. Such
substrings will be parts of larger subsequences that are conserved in the mam-
malian genomes; and, such substrings will be indicators of mammalian genomes.
If we had an enumeration of all such informative common substrings, we can
apply the information to efficiently detect conserved subsequences or to an ex-
perimental detection protocol to identify unlabeled genomes. In this paper, we
describe a procedure to efficiently enumerate all such informative common sub-
strings (which we call “sequence tags”) with respect to a guide phylogeny. In
particular, here we explore the application to the construction of an identifica-
tion oligonucleotide detection array, which can be applied to high-throughput
genome identification and reconstructing the tree of life.

More specifically, given complete genomes for a set of organisms S and the bi-
nary phylogenetic tree that describes their evolution, we would like to be able to
detect all discriminating oligo tags. We will say that a substring t is discriminat-
ing at some node u of the phylogeny if all genomes under one branch of u contain
t while none of the genomes under any other branch of u contain t. Thus, a set
of discriminating tags, or simply tags, for all the nodes of a phylogeny allows us
to place a genome that is not necessarily sequenced in the phylogeny by a series
of binary decisions starting from the root. This procedure can be implemented
experimentally as a microarray hybridization assay, enabling a rapid determina-
tion of the position of an unidentified organism in a predetermined phylogeny
or classification. It is noteworthy that heuristic construction of short sequence
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tags has been used before for identification and classification (reviewed in [4]),
but no algorithm has been presented for data driven tag design.

Our Results

– We first present an efficient algorithm for enumerating substrings common to
the extant sequences under every node of a given phylogeny. The algorithm
runs in linear time and space.

– We use our common-substrings algorithm to develop a near-linear time al-
gorithm for generating the discriminating substrings for every node of the
phylogeny. Specifically, if S is the set of given genomes, the discriminating-
substrings algorithm runs in time O(n|S| log2 |S|) where n is the length of
each genome. This improves an earlier bound of O(n|S|2) given in [5].

– Even though all the above algorithms require linear space, due to physical
memory limitations they may be impractical for analyzing very large genomic
data sets. We therefore give a sublinear space algorithm for finding all dis-
criminating substrings (or all common substrings). The space complexity of
the algorithm is O(n/k) and its running time is O(kn|S|2). The tradeoff
between the time and space complexities is controlled by the parameter k.

– We demonstrate the existence of tags in the prokaryotes data set of [6].
The genomes represented in the data set span one of the three recognized
domains of life. We find that either left or right tags exist for all nodes of
the phylogeny except the root.

– Motivated by our results on the microbial genomes, we study the potential
application to arbitrary scale phylogenetic problems using a stochastic model
of molecular evolution. We assume that the given species set S is generated
according to this model. We first analyze the case where the phylogeny is a
balanced binary tree with a uniform probability of change on all its edges.
We show that in this setting, if t is a tag that discriminates a set S′ of
species from set S̄′, then w.h.p. that increases with the number of species—
probability ≥ 1/(1+O(ln(n)/|S|)), t is present in the common ancestor of S′

(occurs early in the evolution) and is absent from the common ancestor of S̄′
(is absent from the beginning). Our study of the stochastic model allows us
to design faster algorithms for tag generation with small error. Even when
we allow arbitrary binary trees, we show that this probability is ≥ 1/2.

– As observed in our experiments and subsequent analysis, tags are not guar-
anteed to exist in a given data set. We consider a relaxed notion of tags to
deal with such a scenario. Given a partition (S′, S̄′) of species, we say that a
set T of tags is an (α, β)-generalized tag set for some α > β, if every species
in S′ contains at least an α fraction of the strings in T and every species
in S̄′ contains at most a β fraction of them. Clearly, such a tag set can still
be used to decide whether a genome belongs to S′ or to S̄′. We show that
the problem of computing generalized tag sets may be viewed as a set cover
problem with certain “coverage” constraints. We also show that this gener-
alization of tags is both NP-hard and LOGSNP–hard when (α, β) = (2

3 ,
1
3 ).

However, if |T | = Ω(logm), a simple linear programming based approach
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can be used to compute approximate generalized tag sets. As an example,
we find (2

3 ,
1
3 )-generalized tag sets for the root of the prokaryotes phylogeny

(where we did not find tags).

Due to lack of space, proofs are omitted from this version of the paper.

2 Preliminaries

Formally, the problems we consider are the following:

Hierarchical Common Substring Problem (HCS)
Input: A set of strings S = {s1, · · · , sm} drawn from a bounded-size alphabet
with |si| ≤ n for all i; and an m-leaf binary tree P whose leaves are labeled
s1, · · · , sm sequentially from left to right.

Goal: For all u ∈ P , find the set of right-maximal substrings common to the
strings in Su, where Su is the set of all the input strings in the subtree rooted
at u. A substring t common to a set of strings is right-maximal if for any non-
empty string α, tα is no longer a common substring. (Right-maximal substrings
efficiently encode all common substrings.)

Discriminating Substring. A substring t is said to be a discriminating sub-
string or a tag for a node u in a phylogeny if all strings under one branch of u
contain t while none of the strings under the other branch contain t. The input
to the discriminating substring problem is the same as that for the first problem:

Discriminating Substring Problem
Input: A set of strings S and a binary tree P .
Goal: Find sets Du for all nodes u ∈ P , such that Du contains all discriminating
substrings for u.

Suffix trees, introduced in [7], play a central role in our algorithms. A suffix
tree T of a string s is a trie-like data structure that represents all suffixes of
s. We adopt the following definitions from [8]. The path-label of a node v in T
is the string formed by following the path from the root to v. The path-labels
of the |s| leaves of T spell out the suffixes of s, and the path-labels of internal
nodes spell out substrings of s. Furthermore, the suffix tree ensures that there
is a unique path from the root, not necessarily ending at an internal node, that
represents each substring of s. We also say that the path-label of node v is the
string corresponding to v in the tree.

The algorithms we present are based on generalized suffix trees [8, p. 116]. A
generalized suffix tree extends the idea of a suffix tree for a string to a suffix
tree for a set of strings. Conceptually, it can be built by appending a unique
terminating marker to each string, then concatenating all the strings and build-
ing a suffix tree for the resultant string. The tree is post-processed so that each
path-label of a leaf in the tree spells a suffix of one of the strings in the set and,
hence, is terminated with that string’s unique marker.

We will also need the notion of a generalized tag set.
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(α, β)-Generalized Tag Set. Given a partition (S′, S̄′) of species, we say that
a set T of tags is an (α, β)-generalized tag set for some α > β, if every species
in S′ contains at least an α fraction of the strings in T and every species in S̄′
contains at most a β fraction of them.

3 The Hierarchical Common Substring Problem

Long common substrings among genomes can be indicative of important biolog-
ical functions. In this section we give a linear time/linear space algorithm that
enumerates substrings common to all sequences under every node of a given
binary phylogeny. This is a significant improvement over naively running the
linear time common substrings algorithm of [9] for every node of the phylogeny.
By carefully merging sets of common substrings along the nodes of the phy-
logeny and eliminating redundancies we are able to achieve the desired running
time. Note that for a given node, there may be O(n2) substrings common to
its child sequences. The algorithm will therefore list all right-maximal common
substrings. Such substrings efficiently encode all common substrings. The formal
problem description is given in Section 2. We start with two definitions.

Definition 1. Let C be a collection of nodes of a suffix tree. A node p ∈ C is
said to be redundant if its path-label is empty or it is the prefix of some other
node in C.

Definition 2. For a tree T , let o(v) be the postorder index of node v ∈ T .

Algorithm. We preprocess the input as follows: (a) Build a generalized suffix
tree T for the strings in S by using two copies of every si ∈ S, each with a unique
terminating marker: s1#1a

s1#1b
. . . sm#ma

sm#mb
; (b) Process T so that lowest

common ancestor (lca) queries can be answered in constant time; and, (c) Label
the nodes of T with their postorder index.

1. For each node u ∈ P , build a list Cu of nodes in T with the properties:
(P0) A substring t is common to the strings in Su iff t is a prefix of the

path-label of a node in Cu.
(P1) |Cu| ≤ n.
(P2) The elements of Cu are sorted based on their postorder index.
(P3) � ∃p ∈ Cu : p is redundant.
The lists are built bottom-up starting with the leaves of P :
(a) For a leaf u ∈ P , since |Su| = 1, compute Cu by removing the redundant

suffixes of s ∈ Su.
(b) For each internal node u ∈ P , let l(u) and r(u) be the left and right

children of u respectively. We compute Cu = Cl(u) Cr(u), where A B =
{p = lca(a, b) : a ∈ A, b ∈ B, p not redundant}.

2. For each u ∈ P , output Cu.

Analysis. The time and space complexities of the preprocessing phase is O(nm)
[10, 11, 12, 13]. We now analyze Step 1. The lists Cu for the leaves of P are first
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simultaneously built in Step 1(a) by performing a postorder walk on T . Assuming
Su = {si}, node p �= root(T ) is appended to list Cu if it has an outgoing edge
labeled “#ia

”. Suffix tree properties guarantee that Cu will consist of all suffixes
of si. Since an input string may only have n suffixes, the lists constructed in this
fashion will posses P1 and P2. Property P3 is obtained by scanning each list from
left to right and removing redundant nodes. Observe that if p is an ancestor of
q, then p is an ancestor of all q′ satisfying o(q) ≤ o(q′) ≤ o(p). Hence, we can
remove redundancies from each Cu in time linear in |Cu| = O(n) by examining
only adjacent entries in the list.

Lemma 1. Cu possesses properties P0, P1, P2 and P3 for each leaf u ∈ P .

Proof. Let Su = {si} where u is a leaf of P . Since every substring of si is a prefix
of some suffix of si, and we removed only redundant suffixes, Cu possesses P0.

We now show how to compute the lists Cu for the internal nodes of P . We first
show that the operation  as defined in Step 1(b) preserves P0.

Lemma 2. Let u ∈ P be the parent of l(u) and r(u). If Cl(u) and Cr(u) possess
P0, then Cu = Cl(u)  Cr(u) also possesses P0.

Proof. The string t is a common substring to the strings in Su iff t is common
to the strings in Sl(u) and Sr(u). This is equivalent to the existence of p ∈ Cl(u)
and q ∈ Cr(u) such that t is a prefix of the path-labels of both p and q. That is,
t is a prefix of the path-label of lca(p, q) as required.

For each internal node u ∈ P , we construct a merged list Yu containing all the
elements of Cl(u) and Cr(u) with repetitions. Let src(a) be the source list of node
a ∈ Yu. When computing Cl(u)  Cr(u), the following lemma allows us to only
consider the lca of consecutive nodes in Yu whose sources are different.

Lemma 3. If a, a′, b, b′ ∈ T satisfy o(a′) ≤ o(a) ≤ o(b) ≤ o(b′), then lca(a′, b′)
is an ancestor of lca(a, b).

Proof. By postorder properties, lca(a′, b′) is an ancestor of both a and b so it is
an ancestor of lca(a, b).

Let a, a′, b, b′ ∈ Yu, where o(a′) ≤ o(a) ≤ o(b) ≤ o(b′). If src(a) �= src(b) and
src(a′) �= src(b′), then, since lca(a′, b′) is an ancestor of lca(a, b), the former is
redundant. This suggests the following procedure for computing Cu’s. Suppose
at step i, a = Yu[i] and b = Yu[i + 1]: If src(a) = src(b), proceed to next step;
else, let p′ = lca(a, b). If p′ = root(T ) then we discard it and proceed to the
next step. In order to avoid redundancies before adding p′ to Cu, we compute
lca(p, p′) where p is the last node appended to Cu. If lca(p, p′) = p′ we discard
p′, and if lca(p, p′) = p we replace p with p′.

Each step of the above procedure requires constant time. Hence, since |Yu| ≤
2n, the procedure runs in O(n) time. The next lemma shows the correctness of
the procedure, and Theorem 1 follows.
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Lemma 4. For an internal node u ∈ P , the above procedure correctly computes
Cu = Cl(u)  Cr(u). Furthermore, the list Cu is sorted and |Cu| ≤ n.

Theorem 1. The Hierarchical Common Substring Problem can be solved in
O(nm) time and O(nm) space.

4 The Discriminating Substring Problem

In this section we will use the phylogeny for extracting the most informative sub-
strings common to the child sequences of every node in the phylogeny. Suppose
we know that a sequence belongs to a certain subtree of the phylogeny that is
rooted at u. We wish to know whether the sequence belongs to the left or right
branch of u. If we knew the substrings common to the left subtree of u but not
present in the right subtree (or vice versa), then we would know to which of the
two subtrees the sequence belongs. Hence for a given node, the substrings that
are common to its children but not present in the children of its sibling are more
informative than only the common ones. Below we show two methods with cer-
tain tradeoffs for finding such discriminating substrings or tags, for every node
in the phylogeny. It is easy to see that the set of tags obtained by selecting a
tag from each node on a root-leaf path uniquely distinguishes the sequence at the
leaf from all other sequences in the phylogeny.

4.1 A Near-Linear Time Algorithm

The HCS algorithm finds all the common substrings for each node in P . The
common substrings are encoded as the prefixes of the path-labels of the nodes in
Cu for each u ∈ P . However, these substrings may not be discriminating. That
is, the prefix of the path-label of a node p ∈ Cl(u) (symmetrically Cr(u)) may also
be a substring of one of the strings in Sr(u) (Sl(u)). The following algorithm finds
for each node in Cl(u) its longest path-label prefix that is not discriminating.

Algorithm. Let Cu for all u ∈ P be the output of the HCS algorithm and let
T be the computed suffix tree.

1. For each u ∈ P , build a list Au of nodes in T with the following properties:
(P4) A string t is a substring of a string in Su iff t is a prefix of the path-label

of some node in Au.
(P5) The elements of Au are sorted based on their postorder index.

(a) For the leaves of P , Au = Cu.
(b) For each internal node u ∈ P , compute, Au = Al(u) ∪ Ar(u) in a

bottom up fashion.
2. For each internal node u ∈ P , compute the set of discriminating substrings

encoded with Du, where,

Du = {(p, w) : p ∈ Cl(u), o(p) < o(w), w = lca(p, arg min
q∈Ar(u)

[o(lca(p, q))]) }.
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In the above expression for Du, w is the node in the suffix tree whose path-label
is the longest proper prefix of the path-label of p that is present in some string
in the right subtree of u. For all q ∈ Ar(u), arg minq∈Ar(u)

[o(lca(p, q))] finds the q
that has the deepest lowest common ancestor with p, i.e. the q whose path-label
shares the longest prefix with that of p. The condition o(p) < o(w) guarantees
that the least common ancestor found is a proper ancestor to p.

Analysis. We first show how each Du encodes the discriminating substrings for
u ∈ P .

Lemma 5. A string t is discriminating for an internal node u ∈ P iff ∃(p, w) ∈
Du such that the path-label of w is a proper prefix of t and t is a prefix of the
path-label of p.

Proof. (if) Let (p, w) ∈ Du, and suppose t is a string s.t. the path-label of w is
a proper prefix of t and t is a prefix of the path-label of p. By P0, t is a common
substring of the strings in Sl(u). Assume for contradiction that t is a substring of
some string in Sr(u). Then, by P4, ∃q ∈ Ar(u) s.t. t is a prefix of the path-label
of q. But then, since w is a proper prefix of t, it is a proper prefix of the path-
labels of both p and q. Hence, o(w) > o(lca(p, q)); a contradiction.

(only-if) Suppose t is a discriminating string for u. Then, ∃p ∈ Cl(u) s.t. t is
a prefix of the path-label of p, and, by P4, �q ∈ Ar(u) s.t. t is a prefix of the
path-label of q. Hence, the path-label of w = lca(p, arg minq∈Ar(u)

[o(lca(p, q))])
is a proper prefix of t.

The following corollary will allow us to efficiently compute w as defined in Du

for a given p ∈ Cl(u).

Corollary 1. Given p ∈ Cl(u). Let q′, q′′ ∈ Ar(u) be such that

q′ = arg max
q∈Ar(u):o(q)≤o(p)

[o(q)] , q′′ = arg min
q∈Ar(u):o(q)>o(p)

[o(q)].

If q′ and q′′ exist and lca(q′, p) �= p, then w = arg min
q∈{lca(q′,p),lca(q′′,p)}

[o(q)].

It remains to show how to compute the lists Du for the internal nodes of P . The
computation is bounded by the union operations needed to construct the Au lists
in Step 2(b). Note that for a leaf u ∈ P , since |Su| = 1 and Cu is sorted, Au = Cu

trivially possesses both P4 and P5. Furthermore, for an internal node u ∈ P ,
the union operation maintains P4. Now merging two sorted lists of sizes N and
M , with M ≤ N , requires at least #log

(
N+M

N

)$ = Θ(M log N
M ) comparisons to

distinguish among the
(
N+M

N

)
possible placements of the elements of the larger

list in the output. We can use the results of [14], for example, to match this
lower bound. The analysis assumes that the Au lists are represented as linked-
level 2-3 trees [14]. Conversion of these lists for the leaves is direct since they are
sorted.
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Lemma 6. The lists Au, for all u ∈ P , can be computed in O(nm log2m) time.

Now, we can compute Du for an internal node u ∈ P by finding the position of
each p ∈ Cl(u) in the sorted Ar(u), determining its immediate neighbors q′ and q′′,
and computing w as in Corollary 1. If we consider the elements of Cl(u) in their
sorted order, then by [14], and since |Ar(u)| ≤ nm, finding the positions of all
the elements of Cl(u) in Ar(u) takes O(|Cl(u)| log(nm/|Cl(u)|)) time. Moreover,
finding the neighbors of each one of these elements takes constant time. This
leads to the following lemma.

Lemma 7. The lists Du, for all internal nodes u ∈ P , can be computed in
O(nm logm) time.

Note that we can simultaneously compute the lists Cu, Au, and Du, for each
internal node u ∈ P , in a bottom-up fashion discarding Al(u) and Ar(u) at the
end of the computation for each u. Hence, the total size of the Au lists we store
at any point is no more than

∑
leaf v Av = O(nm). Finally, since, by definition,

|Du| ≤ |Cu|, the space required to store Cu and Du for all u ∈ P is O(nm).

Theorem 2. The Discriminating Substring Problem can be solved in
O(nm log2m) time and O(nm) space.

4.2 A Sublinear Space Algorithm

The above algorithms are optimal or near optimal in terms of their running times
and they require only linear space. For very large genomes, even linear space
might not fit in primary memory. It is important to further reduce the algorithms’
space requirements for such situations to avoid expensive access to secondary
storage. Intuitively, it seems that we should be able to run the algorithms on
chunks of the data at a time in order to reduce the space complexity. Below we
describe such a sublinear space algorithm, with a time-space tradeoff, for finding
all discriminating substrings (or all common substrings). The precise tradeoff is
stated in Theorem 3.

For a node u ∈ P , we can find the set of discriminating substrings Du by
using the matching statistics algorithm introduced in [15]. Given strings s and
s′, the algorithm computes the length m(s, j, s′) of the longest substring of s
starting at position j in s and matching some substring of s′. This is done by
first constructing the suffix tree for s′, and then walking the tree using s. The
algorithm requires O(|s′|) time and space for the construction of the suffix tree,
and O(|s|) additional time and space to compute and store m(s, j, s′) for all j.

Let Su be the union of two disjoint sets Lu and Ru = Su\Lu where Lu and
Ru are the sets of strings under the two branches of u ∈ P . A substring starting
at position j of s ∈ Lu is discriminating for u iff

min
si∈Lu

m(s, j, si)− max
si∈Ru

m(s, j, si) > 0 . (1)

That is, there exists a substring of s starting at j that is common to all strings
in Lu and is sufficiently long so that it does not occur in any string in Ru. If a
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position j satisfies (1), then a substring t starting at j such that maxsi∈Ru

m(s, j, si) < |t| ≤ minsi∈Lu
m(s, j, si) is discriminating. Clearly, all tags are

substrings of s and thus the outlined procedure computes Du. The running time
of the algorithm is

∑
si∈Su

O(|s|+|si|) = O(nm) and requires O(maxsi∈Su
|si|) =

O(n) space. Computing the set of tags for all nodes of P with height h requires
O(nmh) time and O(n) space matching the running time of [5]. By limiting the
maximum allowed length of a tag, we can obtain a tradeoff between the running
time and memory required by the algorithm as stated in the following theorem.

Theorem 3. The Discriminating Substring Problem for tags of length O(n/k),
for some threshold k ≤ n, can be solved in time O(knmh) and O(n/k) space,
where h is the height of P .

5 Experimental Results

The existence of tags in small (relative to the full genomes) homologous data
sets was demonstrated on the CFTR data set [16] and the RDP-II data set [17]
in [5]. However, we are interested in finding tags in whole genomes. Further,
the existence of tags in subsequences of a given set of strings does not neces-
sarily imply the existence of tags in the strings. Here the existence of tags in
data sets containing whole genomes is confirmed on the prokaryotes phylogeny
obtained from [6]1. The genomes represented in the data set span a broad evo-
lutionary distance, at the level of one of the three recognized domains of life.
But these genomes are also some of the smallest (1000-fold smaller than the
human genome), allowing less sampling space for tags. Thus, they represent
cases on the hard extremes of potential applications. We find left and right
tags for all nodes of the phylogeny except for the root and the lowest common
ancestor of Cac (Clostridium acetobutylicum) and jHp (Helicobacter pylori),
where for the latter node only left tags are found. Relaxing the definition of a
tag set as in Section 2, we show two ( 2

3 ,
1
3 )-generalized tag sets for the root as

examples.
The prokaryotes phylogeny consists of 57 genomes where the average genome

length is roughly 2.75 Mbp and the total length is about 157 Mbp. There are
11 sequences in the root’s left subtree (Archaea) and 43 sequences in its right
subtree (Bacteria). We implemented the sublinear space algorithm described in
Section 4.2 to find all tags for every node in the tree if they exist. Figure 1(a)
shows both left and right tags for the lowest common ancestor of Ape (Aeropy-
rum pernix) and Pho (Pyrococcus horikoshii), and Fig. 1(b) shows the tags
for lowest common ancestor of Nos (Nostoc sp. PCC 7120) and Cac (Clostrid-
ium acetobutylicum). As mentioned earlier, we did not find tags for the root of
the phylogeny. Hence we generated two ( 2

3 ,
1
3 )-generalized tag sets for the root.

Table 1 displays those two sets. We also enumerated the common substrings for
this phylogeny as shown in Fig. 1. As expected, longer common substrings are

1 Our experimental results can be found at http://www.cis.upenn.edu/∼angelov/
phylogeny
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(a) Tags and common substrings for the lowest common ancestor of Ape
(Aeropyrum pernix) and Pho (Pyrococcus horikoshii).
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(b) Tags and common substrings for the lowest common ancestor of Nos
(Nostoc sp. PCC 7120) and Cac (Clostridium acetobutylicum).

Fig. 1. Length (log-scale) distribution of tags and common substrings for two nodes
of the prokaryotes phylogeny of [6]. The left (right) panel displays discriminating tags
present in the left (right) subtree of the corresponding node.

Table 1. Left and Right ( 2
3 , 1

3 )-generalized tag sets for the root of the prokaryotes tree
shown in [6]. Tags in the left (resp. right) tag set have length 14 (resp. 12). Left Tag
Set: Nine genomes in the left clade contain all 3 left tags and 2 genomes contain 2 tags,
while 3 genomes in the right clade contain 1 tag from the set and the remaining 43
contain no left tags. Right Tag Set: 21 genomes in the right clade contain all right tags
and 25 genomes contain 2 of the tags, while 5 genomes in the left clade contain 1 tag
and the remaining 6 genomes contain no tags.

Left Tag Set Right Tag Set
CCGGGATTTGAACC CCAACTGAGCTA
GTTCAAATCCCGGC GTACGAGAGGAC
GGGATTTGAACCCG TGCTTCTAAGCC

also discriminating tags; i.e., the longer the shared substrings, the more likely
they are shared by evolutionary descent (what we call type–I tags in the analysis
below). The experimental data suggests that, at least for this range of diversity,
our approach will be successful at recovering informative substrings.
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6 Discriminating Tags Under a Stochastic Model of
Evolution

Motivated by our results on the microbial genomes, we next study the potential
application to arbitrary scale phylogenetic problems using a simplified assump-
tion of molecular evolution. We analyze statistical properties of tags under this
model and we make the first steps toward generalizing the capability of tags to
placing new sequences in the given phylogeny. We show that there is a primary
mechanism for generating tags which suggests that tags are indicative of shared
evolutionary history.

We use the Jukes-Cantor model [18, pp. 21-132] for our analysis. In this
model each position in the genome evolves independently according to an iden-
tical stochastic process where the probability of a mutation occurring per unit
time is given by a parameter λ. Further, it is assumed that the probability λ
of change is distributed equally between the 3 possible changes at a site. Thus
if a site currently has the nucleotide A, then it has probability λ/3 of chang-
ing to C, for example, in unit time. When branching occurs at a node in a
phylogeny, then the two branches start with identical sequences but evolve in-
dependently according to the stochastic process. Finally, we assume that the
sequence at the root of the phylogeny is a random sequence of length n. Since
we only allow substitutions all genomes will have the same length. Given the ac-
tual time durations between evolutionary events, it is possible to represent the
Jukes-Cantor model by specifying the probabilities of change along each edge
in the phylogeny where these probabilities depend on the time duration repre-
sented by the edge (e.g. if an edge is infinitely long, the probability of change
is 3/4).

Even with this simple model, obtaining a closed-form representation of tag
length distribution as a function of the probabilities of change along each edge
is a complex task. We therefore start with a simplifying assumption—the phy-
logeny is a complete binary tree and the probability of change along each edge
is p. We let h be the height of our tree and label the sequences at its leaves with
s1 · · · s2h . We label the sequence at the root with r. We will focus on tags present
in the left subtree of the root, which we call left tags. Similar analysis holds for
right tags and for other nodes in the tree. In Section 6.3, we generalize the anal-
ysis to arbitrary binary tree topologies and probabilities of change along the
edges.

6.1 The Primary Mechanism for Generating Tags

Given the stochastic model of evolution we show that there is a dominant process
by which tags are generated. We first prove that if the probability of change p
along an edge is more than ln(n)/(2h−2k), we do not expect tags to be generated.
Using this bound on p, we show in Theorem 4 that the primary mechanism by
which a tag t that discriminates a set S′ of species from set S̄′ arises is one
where t is present in the common ancestor of the species in S′ and is absent
from the common ancestor of those in S̄′. In particular, if we let T denote the
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set of all tags and T ′ the set of tags generated by the primary mechanism, then
we show that |T | ≤ |T ′|(1 + O( ln n

|S′∪S̄′| )). Thus the error term decays inversely
in the number of species. We start with the following two lemmas bounding the
minimum tag length and the maximum probability of change p.

Lemma 8. Tags have length greater than (1− ε) log4 n w.h.p. where 0 < ε < 1.

Lemma 9. If p > 3 ln n
k(2h−2) , the expected number of tags of length k is < 1.

Henceforth, we will assume that p ≤ 3 ln(n)/(k(2h − 2)). Let Ai for 1 ≤ i ≤
n− k+ 1 be the event that position i in the root sequence, r, is good. Position i
is said to be good if the k-mer starting at i in the left child of r differs from that
in the right child. Therefore, P (Ai = 1) = 1− (p2/3 + (1− p)2)k. If the event Ai

results in a tag being generated, we will say that this tag is a type–I tag. The
following theorem shows that type–I tags are dominant.

Theorem 4. Let t be a sequence that either does not occur at the left child of
the root or occurs at the right child of the root. Then the probability that any
such t is a left tag is negligible compared to the probability of type–I tags.

Expected number of length k tags. Define Bi for 1 ≤ i ≤ n − k + 1 to be
the event that the ith k-mer at each leaf of the left subtree agrees with that at
the root of the left subtree. A lower bound on P (Bi = 1) is obtained when there
are no changes in the left subtree. That is,

P (Bi = 1) ≥ (1− p)#{edges in the left subtree of r}·k = (1− p)(2
h−2)k

One way a type–I tag is generated is if Ai occurs, the k-mer does not change any-
where in the left subtree and a position that changed due to the occurrence of Ai

remained unchanged in the right subtree. Let the random variable Xi indicate if
a type–I tag of length k occurs at position i. Then, E[Xi] ≥ P (Ai = 1)P (Bi =
1)(1− p)(2

h−2). Finally, let the random variable X equal the number of tags of
length k. Then, X ≥ ∑n−k+1

i=1 Xi, implying that E[X] ≥ (n− k + 1)E[Xi].

6.2 A Sampling Based Approach

Consider the phylogeny described above, and suppose event Bi occurred. That
is, suppose that the k-mer starting at position i is common to all the sequences
in the left branch of the root. Call this k-mer ti. Let R = {s2h−1+1, · · · , s2h}
be the set of sequences at the leaves of the right subtree of r. For ti to be
discriminating, it should not occur in any of the sequences in R. Instead of
testing the occurrence of ti in every one of those sequences, we will only test a
sample of those sequences. Let M be the sample we pick. We will consider ti to
be a tag if it does not occur in any of the sequences in M. If ti is a tag, then
our test will succeed. However, we need to bound the probability that we err.
Specifically, we bound the ratio of the expected number of false positive tags to
the expected number of tags our algorithm produces.
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Algorithm. We use the sampling idea to speed up our tag detection algorithm:

1. Run the HCS algorithm to compute Cu for all u in our phylogeny P .
2. For each u ∈ P ,

– Pick a set Mu of sequences from the right subtree of u.
– For each s ∈Mu, trim Cl(u) as in Step 2 of the algorithm in Section 4.1.

Assuming M is the sample of maximum size, then the running time of the above
algorithm is O(nm|M|).

Sampling Error. How well does the sampling based approach work? Even with
a sample of constant size, the probability that we err decreases with the tag size
k. Theorem 4 shows that if t occurs at the right child of the root, then t is not
a left tag w.h.p. Hence, assuming that the k-mer t is a left tag at position i, we
need only consider the case when the right child of the root contains a k-mer
t′ �= t at position i. We do not err when a differentiating bit in t′ is preserved in
the right subtree which is at most (1− p)2

h−2 implying the following theorem.

Theorem 5. The sampling algorithm errs with probability <1/2 for k=Ω(lnn).

6.3 General Tree Topologies

We generalize our stochastic analysis to arbitrary binary topologies and proba-
bilities of change along edges of the phylogeny. Given a phylogeny P with root
r, let L (resp. R) be the total length of the edges in the left (resp. right) subtree
of r, and let E be the total length of the two edges incident on r. Recall that at
a given site a nucleotide changes to one of the three remaining nucleotides with
a rate of λ per year. Hence, the position i will experience x number of mutations
on a branch of length � with probability e−λ�(λ�)x/x!. Again, we will focus on
left tags occurring at homologous sites. The following is the analog of Lemma 9.

Lemma 10. Let k > ζ log4 n where ζ < 2 is a constant. If λL > ζ log4 n
k , the

expected number of left tags of length k is less than 1.

Assuming that both left and right tags occur in the given phylogeny, we show
that type–I tags constitute the majority of tags if λE = Ω(1/k).

Theorem 6. The probability that a tag t is of type–I is > 1/2 if λE = Ω(1/k).

7 Generalized Tag Sets

The stochastic analysis in Section 6 shows that tags may not always exist even
in data sets generated by stochastic evolutionary processes. When tags are not
present, we can relax the definition of discriminating substrings and still be able
to distinguish if a genome comes from a node’s left or right subtree. Recall that
given a partition (S′, S̄′) of species, we say that a set T of tags is an (α, β)-
generalized tag set for some α > β, if every species in S′ contains at least an α
fraction of the strings in T and every species in S̄′ contains at most a β fraction
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of them. Clearly, such a tag set can still be used to decide whether a species
belongs to S′ or to S̄′. The problem of computing generalized tag sets may be
viewed as a set cover problem with certain “coverage” constraints as we next
show. W.l.o.g. assume we are computing generalized tag sets at the root.

(α, β)–Set Cover. Given a universe U = U ′∪U ′′ ofm elements, and a collection
of subsets of U , S = {S1, . . . , SN}, find a minimum size subcollection C of S such
that each element of U ′ is contained in at least α|C| sets in C, and each element
of U ′′ is contained in at most β|C| sets in C.

The set U corresponds to the m input strings each of length n with U ′ and U ′′

being the strings in the left and right subtrees of the root of the given phylogeny.
Each Si ∈ S represents the set of strings that share a substring ti drawn from
a suitable collection of substrings with cardinality N = O(n2m). In [5] it was
shown how to efficiently compute and represent the corresponding sets of all
substrings in O(nm2) time and space with the help of a generalized suffix tree. A
biologically motivated pruning sub-step may be applied to reduce their number
[19]. We note that the Discriminating Substring Problem corresponds to the
(1, 0)–Set Cover problem when the objective is to maximize the size of C since
we find all tags. The subcollection C is a tag set when α > β.

The next theorem follows via a reduction from Set Cover. In the main reduc-
tion, the size of all feasible subcollections C is the same and therefore the results
hold even for the existence version of the problem.

Theorem 7. (2
3 ,

1
3 )-Set Cover is NP-hard. Furthermore, (2

3 ,
1
3 )-Set Cover is

LOGSNP-hard.

The reduction relies on the construction of a collection Q of subsets of U ′′ such
that for each proper subcollection of Q, there is an element that appears in more
than β/α-fraction of the sets while each element occurs in exactly β/α-fraction
of the sets in Q. By suitably padding Q with elements of U ′ we are able to bound
the solution size. We can therefore extend the analysis for rational α and β s.t.
α = 1− β and β = 1/c for a fixed integer c > 2.

The (α, β)–Set Cover problem can be formulated as an ILP in a straight-
forward manner. When there exists an optimal solution of size value Ω(logm),
standard randomized rounding of the fractional solution can be used to derive
from it an (α′, β′)-cover where α′ ≥ (1− ε)α and β′ ≤ (1 + ε)β for some small ε.

8 Conclusion

The data-driven approach to choosing discriminating oligonucleotide sequences
appears to be novel. In this paper we have described how such sequences can
be chosen given a “complete” data set consisting of a phylogeny where all the
input sequences are present at the leaves. In this situation when our algorithms
produce tags we can use them for high-throughput identification of an unlabeled
sequence which is known to be one of the sequences in the input. Each tag found
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(at any node in the phylogeny) identifies an exactly conserved sequence shared by
a clade. Such conserved segments can be used as seeds (in a BLAST-like fashion)
to identify longer segments with high-similarity multiple alignments. When our
algorithm fails to find tags, or even sufficiently long, shared sequences this is also
informative. We learn that there is no strong conservation of segments within
the clade. A natural extension of the problem considered here is to the situation
where our knowledge is less complete. For example, how can one generalize to
the case when the phylogeny is not fully known? If we attempt to place a new
sequence in the phylogeny using the tags to guide us, how good is the placement
as a function of the position of the new sequence in the phylogeny vis a vis the
sequences from which the tag set was built? These are some of the directions
that we plan to explore.
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Abstract. Micro-indels are small insertion or deletion events (indels)
that occur during genome evolution. The study of micro-indels is impor-
tant, both in order to better understand the underlying biological mech-
anisms, and also for improving the evolutionary models used in sequence
alignment and phylogenetic analysis. The inference of micro-indels from
multiple sequence alignments of related genomes poses a difficult com-
putational problem, and is far more complicated than the related task of
inferring the history of point mutations. We introduce a tree alignment
based approach that is suitable for working with multiple genomes and
that emphasizes the concept of indel history. By working with an appro-
priately restricted alignment model, we are able to propose an algorithm
for inferring the optimal indel history of homologous sequences that is
efficient for practical problems. Using data from the ENCODE project as
well as related sequences from multiple primates, we are able to compare
and contrast indel events in both coding and non-coding regions. The
ability to work with multiple sequences allows us to refute a previous
claim that indel rates are approximately fixed even when the mutation
rate changes, and allows us to show that indel events are not neutral. In
particular, we identify indel hotspots in the human genome.

1 Introduction

Sequence insertion and deletion events (indels) play a major role in shaping
the evolution of genomes. Such events range in scale from transposable element
replication within genomes, to single nucleotide events. Despite the importance of
indels in modifying the function of genes and genomes [5, 24, 26], the underlying
biological mechanisms are not well understood [12]. This is particularly true
of small indels, also called micro-indels [25]. Analysis of micro-indels has also
been limited by the availability of tractable models of indel evolution. Examples
of statistical models of micro-indels include the TKF model [27], and others
[17, 18, 19], however, in contrast to the large literature on evolutionary models
of point mutations [11], there has been far less work on micro-indels.

The difficulty in inferring the history of insertions and deletions from a mul-
tiple sequence alignment is illustrated by a simple example. Consider a tree on
three taxa (Figure 1, where the top leaf is human, the middle leaf mouse and the
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bottom rat) and four events: two speciation events and two micro-indel events,
but no point substitution event. Suppose that the primates-rodent ancestor con-
sists of three bases. Upon the primates-rodents speciation, both ancestors keep
the same three bases. Next comes the rat-mouse speciation which is followed by
two parallel events: a deletion of all the three bases in the rat and a deletion of
the middle base in the mouse. There is no indel event along the branch leading
to the human. The true alignment of this section in the three species human,
rat and mouse consists of the three human bases aligned with three gaps in the
rat and a base-gap-base sequence at the mouse. In order to trace the optimal
history, one may consider a site-by-site approach, however the resulting optimal
sequence at the ancestral rodent is base-gap-base, yielding a history of three
indel events: two deletions at sites 1 and 3 along the rat lineage and one dele-
tion along the rodents ancestor lineage (or alternatively an insertion along the
human lineage) at site 2. Obviously, this is not the true history, nor the most
parsimonious one.

AAA
0/0

AAA
0/0

A-A
1/0 A-A

0/0

---
2/0

AAA
0/0

AAA
0/0

AAA
0/0 A-A

1/0

---
1/0

Fig. 1. An example of an alignment and two histories

The parsimony model for indel analysis has been avoided in large scale anal-
yses, in part because the naive algorithm for reconstructing an indel history
requires time that is exponential in the length of the alignment. One of our main
contributions is implementing an algorithm whose running time is exponential
in the number of sequences, but not in their length. This observation has already
been utilized in the simplest cases. For example, as part of a broad analysis of
micro-evolutionary features across the genomes of the human, mouse and rat,
micro-indels and their variability was studied in [4]. It was found that there is
a constant ratio between the rates of indel events and point substitutions along
the mouse and rat lineages. One of the issues in such a study is the relevance of
alignment quality to the results of the indel analysis, an issue which is discussed
at length in [16] and which we return to when discussing indels among primates.
The paper [25] restricts analysis to human and rodent coding sequences, in par-
ticular to 8148 orthologous genes among the three genomes. Only codon indel
events were examined. Among the main findings was that slippage like indel
events [13] are substantially more frequent than expected.

Micro-indels have also been considered in the context of reconstructing large
portions of the ancestral mammalian genome [1]. Although the main goal was not
the study of indels, this work was the first to deal with a non-trivial set of species
and large datasets. For their purpose, a heuristic was devised in order to infer a
plausible indel history and subsequently reconstruct the ancestral sequences at
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gap-less positions. Although this heuristic is accurate in general, it can fail to
reconstruct the true history.

In this paper we introduce the notion of an indel history. We assert that such
a history can explain the sequence of events that occurred during the evolution
of a set of species, via inference from a multiple alignment of the respective
genome sequences. Our model of evolution is a restricted tree alignment model,
where gap extensions receive no penalty. We argue that this specialization is bi-
ologically interesting, and computationally appealing. In particular, we develop,
via a series of simplifications, an algorithm for inferring an indel history that is
linear in the number of events. We also discuss the possibilities and limitations
of approximation algorithms for our problem.

We applied the algorithm to coding data from the ENCODE project as well
as non-coding sequences from multiple alignment of primates. Working with
primates is important, as it improves the reliability of alignments [2] which are
crucial for obtaining meaningful results in analysis of indels. Our findings extend
the results of [4, 25] and we compare and contrast indel events in both coding
and non-coding regions. The ability to work with multiple sequences allows us
to refute an assumption made in [22] that indel rates are approximately fixed
even when the mutation rate changes (also observed by [1]), and allows us to
show that indel events are not neutral.

2 Notations and Definitions

Let us denote by ΣS = {A,C,G, T} and ΣA = {∗,−}. A multiple alignment
a = a1, . . . , am consists of a set of m sequences with ai ∈ (ΣA)n. We use the
notation ai

j to denote the j-th element of ai and [a]j , the j-th column, to denote
the set ai

j 1 ≤ i ≤ m . We say that a has size m and length n. A multiple
alignment a describes homology between a set of sequences s = s1, . . . , sm,
si ∈ (ΣS)|{j:ai

j=∗}|, where each sequence element is associated with a ∗ in a.
ai

j = ai′
j = ∗ means that two elements, from sequences i and i′ respectively, are

’matched’ in the multiple alignment. Let X = {1, . . . ,m} be our set of taxa and
T a phylogenetic tree with leaves X . Let a be a multiple alignment of size m and
length n An insertion-deletion history h (or indel history) consists of a labeling
of vertices of T with sequences, such that each internal vertex v is labeled by
a sequence av ∈ (ΣA)n and each leaf i is labeled by ai. We consider T to be a
directed graph with edges directed away from the root.

Indel histories are therefore records of insertion and deletion events. Every
time a ∗ switches to a − there has been a deletion, and similarly every switch
of a − to a ∗ corresponds to an insertion. An insertion event corresponds to a
sequence of consecutive (along one sequence) changes from − to ∗, whereas a
deletion event corresponds to consecutive (along one sequence) changes from ∗
to −. A history explanation, to be defined formally in the sequel, associates indel
events to the given history. Let Pn denote the path of length n. Observe that we
can view a history h as a function from the graph product T × Pn to ΣA where
for v ∈ V (T ) and 1 ≤ j ≤ n, h((v, j)) = av

j . Let G = T ×Pn and slicej,G (or just
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slicej for short) be the graph induced by the set {(v, j) ∈ V (G)}. We extend the
notion of parenthood of trees to G as follows: we say that x = (v, j) ∈ G is the
parent of x′ = (v′, j′) ∈ G, or x = p(x′), if j = j′ and (v → v′) ∈ E(T ) (or, by
the definition of E(G), (x→ x′) ∈ E(G)). In the sequel, we will interchangeably
refer to a node either as a node in the graph, or as a combination of a tree node
and an index in the path.

A leaf in G is defined analogously as in trees: a node with out-degree zero.
Let I(G) (L(G)) be the internal (leaf) nodes of G. Observe that for j ∈ Pn,
x = (v, j) is an internal (leaf) node in G if and only if x is an internal (leaf)
node in T . Let r be the root of T and set R = {(r, j) ∈ V (G) : 1 ≤ j ≤ n} to
be the roots in G.

A convex coloring C of a graph G is a mapping of vertices of G to colors, i.e.,
C : V (G) → {1, . . . , k} such that for each color c, the subgraph of G induced by
the vertices {v : C(v) = c} is connected [6]. We will use the notation |C| = k for
the number of colors in the coloring.

Given a history h, an explanation to h assigns different colors to indel events
under the following rules: Two neighboring nodes inG, x = (v, j) and x′ = (v′, j′)
can have the same color if either v = v′ = the root r ∈ V (T ), or x = p(x′) and
h(x) = h(x′), or v = v′, j′ = j − 1, h(x) = h(x′) and h(p(x′)) �= h(x′). In
addition, we require the coloring induced by the explanation to be convex on
G. It is easy to see that even the naive explanation where every vertex has a
different color is legal. However, we are interested in the explanation(s) with
minimal number of colors. The following algorithm produces a coloring from a
given history h:

1. Begin by coloring the path r × Pn monochromatically, i.e., let C((r, j)) = 1
for all j ∈ Pn.

2. Given a vertex v1 ∈ T for which all the vertices (v1, j), j ∈ Pn have been
colored, and a child v2 of v1, we color the vertices (v2, j′), j′ ∈ Pn as follows:
First partition Pn into three sets S1 = {j′ : h(v1, j′) = h(v2, j′)}, S2 = {j′ :
h(v1, j′) = ∗ ∧ h(v2, j′) = −} , S3 = {j′ : h(v1, j′) = − ∧ h(v2, j′) = ∗}. Now
set C(v2, j′) ← C(v1, j′) if j′ ∈ S1. Then color each connected component
of v2 × S2 or v2 × S3 with a unique new color (so that components get
different colors from each other and from previously assigned colors). Thus,
the number of new colors in C after assigning colors to v2 × Pn is equal to
the number of connected components in S2 plus the number of connected
components in S3.

Observation 1. The coloring obtained by the above algorithm is optimal and
unique (up to the choice of colors). The number of colors corresponds to the
number of indels required to explain the given history.

By the observation above, we identify every history h with its optimal coloring,
Ch. Our problem is to find the indel history hopt and associated indel coloring
Chopt for which |Chopt | is minimized.
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3 Algorithm

In this section we first describe an algorithm that runs in time exponential
in the number of species in the alignment and linear in the alignment length.
Specifically, for m the number of species and n the length of the alignment,
our algorithm runs in time O(22m−2n). We then explain an improvement of the
algorithm that reduces the linear factor significantly.

Let h be a history. For the purpose of the algorithm, h can be viewed as
an assignment of {0, 1} to the nodes of G where 0 corresponds to a gap and 1
corresponds to an existing character state. Therefore, from now on we identify
a history with its corresponding assignment. We denote by U ⊆ V (G), h|U the
restriction of h to the vertices of U . Recall that we index the species (the tree
leaves/alignment sequences) with i and the columns of the alignment/history
with j. We call hj = h|slice(j) a history slice. We say that history slice s is valid
for j if for every i ∈ L(T ), s(i) = 1 if ai

j = ∗ and s(i) = 0 otherwise (that is, the
slice s is consistent with the alignment at the leaves). A history h is valid if for
every j, the history slice hj is valid for j. Henceforth, we will restrict ourselves
to valid histories and slices only. We denote by pref(G, j) (or pref(j) for short),
the subgraph of G induced by slices 1 . . . j.

Definition 1. For 1 ≤ j ≤ n, and a history slice s which is valid for j, let:

opt(G, j, s) = min
h′ :h′

j=s
|Ch′|pref(j)

|.

That is, opt(G, j, s) is the value of an optimal history (with the least number of
colors) over pref(j) among all histories h′ such that the j-th slice equals to s.
In the sequel, we will remove G from the notation as it is clear by the context.
Let opt(j) be the optimal history for pref(j). Since opt(j) = min

s′
opt(j, s′), the

answer to the optimal indel history problem |Chopt |, is opt(n). For a vertex
x ∈ V (G) \ R and a history h, the sign of x under h, sign(h, x), is defined
by h(x) − h(p(x)). In the context of slices, sign is defined for vertices of T (by
omitting the index of the path).

For two history slices s and s′, we have

Definition 2. dist(s, s′) =
∑

v∈(T )\r |sign(s′, v)|δsign(s,v),sign(s′ ,v).

where δx1,x2 is the complement of the Kronecker delta (i.e. δx1,x2 is one if x1 �= x2
and zero otherwise). The distance between two assigned slices dist(s, s′) is just
the sum over all vertices v ∈ V (T ), where a vertex contributes to the distance
if (1) it has a different assignment than its father under s′ (i.e. sign(s′, v) �= 0)
and (2) it has a different sign under s′ than under s (see Figure 2(b)) . Note
that this distance function is not symmetric and therefore is not a metric. This
leads us to the following observation:

Observation 2. For 1 ≤ j ≤ n, and a valid history slice for j and s, opt(j, s)=
mins′(opt(j − 1, s′) + dist(s′, s)) where opt(0, s)=

∑
v∈V (T )\{r} |sign(s, v)|.
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Fig. 2. (a) The graph product of a cherry and P3. (b) The distance between s and s′

is computed by summing over all vertices except the root in s. If a vertex has sign �= 0
and it has a different sign than its left brother, it contributes to the distance. (c) In
order for i not to attain a new color under sv′

, it needs to have the same sign under
sv′

as under sw′
. This implies that i attains a new color on the edge from u′ to w′.

We now define a new graph G′ over the set of binary characters over T . Let
G′ = (V ′, E′, w) be a complete weighted directed graph where V ′ is the set of all
binary characters (i.e. slices) over T . For an edge e′ = (u′ → v′) ∈ E′ such that
u′ = s and v′ = s′, w(e′) = dist(s, s′). Practically, we can restrict ourselves to
the sub graph of G′ induced by vertices corresponding to valid slices, i.e., vertices
v′ ∈ V ′ such that v′ is valid for some j. Our problem can now be formulated
slightly differently:

Problem 1. Given a tree T and an alignment a = [a]1 . . . [a]n, find a minimum
weight path P ′ = vj1 , . . . , vjn in G′(T ) such that for every vjk

= s ∈ P ′, s|L(T ) =
[a]k.

Lemma 1. w satisfies the triangle inequality.

Proof. Consider u′, v′, w′ ∈ V ′ with corresponding history slices su′
, sv′

and
sw′

. Recall, by the definition of dist, w(u′ → v′) = dist(su′
, sv′

) which is the
number of vertices attaining new colors by moving from su′

to sv′
. Now, a vertex

v ∈ V (T ) attains a new color upon moving from a slice s to s′ when it has
sign(v) �= 0 under s′ (i.e. different assignment than its father p(v)) and sign(v)
under s is not equal to sign(v) under s′ (see Figure 2(b)). Consider now the path
(u′, w′, v′) in G′ (see Figure 2(c)). Let i ∈ V (T ) be a vertex such that i changes
its color by moving from u′ to v′. Observe that i has a different assignment than
p(i) (i.e. sign(i) �= 0) under sv′

. In order for i to use an existing color upon
moving from w′ to v′ on the path (u′, w′, v′), there must be that sign(i) under
sw′

is equal to sign(i) under sv′
. This implies that sign(i) under sw′

is not equal
to sign(i) under su′

and also sign(i) �= 0 under sw′
, implying i obtains a new

color upon moving from u′ to w′.

Let a = ([a]1, . . . , [a]n) be an alignment. Then a′ is a subalignment if it contains
a subset of the columns {[a]1 . . . , [a]n} in the same order as in a. The following
corollary follows from the lemma above:

Corollary 1. Let X be a set of species, and a and T are an alignment and a
phylogenetic tree (resp.) over X with a′ a subalignment of a. Then, opt(a, T ) ≥
opt(a′, T ).
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Claim. Let a∗ be a subalignment of a obtained by removing every column [a]i
such that [a]i = [a]i−1. Then opt(a, T ) = opt(a′, T ).

Proof. ≥: By Corollary 1.
≤: Let H∗ be the history attaining the minimal cost on a′. It can be noted that,
for every removed column, assigning the same history slice as the remaining
column in a′ under H∗ (note that of every block of identical columns, exactly
one remains in a′), achieves the same cost.

Observation 2 and Claim 3 give rise to a straightforward dynamic programming
algorithm which runs in time O(22m−2n∗).

IndelHistory(a,T=(V,E))

1. remove identical adjacent columns and let n∗ be the new length.
2. for every slice s valid for column 0, opt(0, s) ←∑

v∈V (T )\{r} |sign(s, v)|.
3. for i from 1 to n∗, opt(i, s) ← mins′(opt(i− 1, s′) + dist(s′, s)).
4. return mins(opt(n∗, s).

A more careful analysis allows us to give a better asymptotic bound.

Claim. Let (a, T ) be an input to the problem and let a∗ be its subalignment as
in Claim 3 and with length n∗. Then opt(a, T ) ≥ n∗

2 .

Proof. Let h∗ be an optimal history for (a∗, T ). The proof is based on the obser-
vation that at every column (site) in h∗, at least one event is either starting or
ending. We exclude the case of a whole gapped column as that does not occur
in an alignment. We look at sites j and j + 1. We divide into two cases:

1. One sequence does not change:
Let ai be a sequence s.t. ai

j �= ai
j+1 and let ai′

be a sequence s.t. ai′
j = ai′

j+1.
Again we look at the cherry TC induced by leaves i and i′. Then any history
for the graph GC = TC × P2 with the above sequences at the leaves, must
have one event.

2. The case when all sequences change is proved similarly.

Since it takesO(nm) to process the alignment and by the above claim opt(a, T ) ≥
n∗
2 , we can bound the linear component in the running time by the size of

the optimal solution. This implies that the time complexity of the IndelHistory
algorithm is O(mn+ 22m−2|Chopt |).

4 Implementation

Although our algorithm has running time linear in the length of the alignment
and the number of events, a major drawback is the exponential factor in the
number of species. Our model is a special case of tree alignment (see, e.g., [23])
which has been extensively studied, and was shown to be NP-hard [28] (including
a recent generalization by [9]). More recently, it has been show that there is a
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generic 2-approximation and a PTAS for ancestral labeling on a tree for a set of
objects whose distances satisfy the triangle inequality [29] . A more sophisticated
algorithm [30] improved this result in the restricted setting of k-ary degree trees.
The 2-approximation in both these works returns a lifted alignment in which the
ancestral sequence at any node is obtained directly from the sequences at the
leaves. The following observation establishes the applicability of the above result
to our case:

Observation 3. Let a1 and a2 be two sequences forming a cherry on an evolu-
tionary tree. Then the ancestral sequence at the root of the cherry that minimizes
the number of events along the cherry edges is either a1 or a2.

In the context of alignment, the computationally expensive component of the
tree alignment approximation algorithms is the pairwise alignment of all

(
m
2

)
sequences. We achieve an immediate n-fold speedup of this step.

As was shown above, the ratio 2 approximation algorithm is obtained from
a naive history. By this we mean the lifted history where ancestral sequences
are identical to extant sequences. In order to obtain more realistic histories,
we pursued two directions: an exact algorithm that uses fast operations and is
suitable for up to 15 taxa, and a speedup which includes heuristics.

columns 0 to 39
0---------1---------2---------3---------

human ATGCAGAGACCGGAGCCACGGACGCCCCG---ATGGA--C
cow ACGCGGAA---------ACCGTCGGCTTGTCCGCGGAGCC
dog ACGCGACGGTGGGTGCCGC-ACGGCCCCGG--GCGGA--T

columns 0 to 39
0---------1---------2---------3---------

internal 1 (root) *************************************--*
internal 0 ( → 1) *************************************--*
human ( → 1) *****************************---*****--*
cow ( → 0) *********gtgggtgcc*******************GC*
dog ( → 0) ********************c*********cc*****--*

Fig. 3. A toy example of input (top) and output (bottom) for the software. ∗ and -
represent presence or absence of a base at a position respectively. Lowercase (uppercase)
letters at a position indicate a deletion (insertion) of that base at that position, along
the edge leading to that node.

The input and output to both algorithms is the same: an alignment file and a
tree. The output is a complete history with numbers assigned to positions (ver-
tices in G) indicating for each position, to which event it corresponds. Figure 3
shows an example output from the software. The upper part of the figure shows
an alignment of length 40 and size 3. The lower part shows the output produced
by the software. In this example there are five events.



Phylogenetic Profiling of Insertions and Deletions in Vertebrate Genomes 273

Table 1. Comparative summary of findings in coding versus non-coding regions

Summary of Findings

total
#sites

total #bases
(non-gapped sites)

total
#events

sum of events
lengths

ratio of
indels/

substitution
Coding Regions
(from ENCODE)

156,607 931,938 661 2,343 0.013

Non-Coding
Regions (CFTR)

209,381 1,438,546 2,851 8,160 0.13

In order to cope with large alignment sizes, we developed a heuristic that
is linear in the number of taxa. The heuristic uses the Fitch algorithm [10] to
infer the most parsimonious ancestral assignment of binary characters at each
site. At nodes where the optimal assignment is not unique, the value at the
same node at the previous site is assigned. The asymptotic running time of the
heuristic is O(nm). The algorithm was compared to the exact algorithm on two
representative data sets: The vertebrates’ coding regions and the primates’ non-
coding regions (see Section 5). We were interested only in the task of finding
the best assignment (versus the complete task that includes reconstructing the
solution and inferring all the events). The coding regions dataset contained six
species and 156,607 sites which reduced to 1251 non-identical adjacent columns.
The exponential-exact C code ran for 0.31 seconds and 661 events were inferred.
The heuristic ran for 0.25 seconds and 776 events were inferred, which is 17%
more than with the exact computation. Our primates non-coding dataset con-
tained five species and 51,843 sites which reduced to 3435 non-identical adjacent
columns. The exact algorithm inferred 1774 events in 0.21 seconds. The heuris-
tic inferred 2057 events (16% more) in 0.5 seconds. In general, as the number
of taxa increases, we expect the exponential factor to dominate the linear factor
(reading/writing the alignment) which will be reflected in better times in favor
of the heuristic computation. Notably, we were able to apply the exact algorithm
to all instances analyzed in this paper.

An open question still to be addressed is whether there exists an algorithm
that is polynomial in the number of species and the length of the alignment. Al-
though the more general alignment problem is NP-hard, there is hope that such
an algorithm exists since our problem is more restricted and is more structured.

5 Biological Findings

The data used was extracted from two sources: Alignments of coding regions of a
set of vertebrates from the ENCODE project [7, 8] and alignments of non-coding
regions of primates produced from sequence downloaded from the Program in
Genomic Applications (PGA) database at Lawrence Berkeley National Labora-
tories [21]. Both datasets were aligned with MAVID [3], although in the case
of coding region alignments, the results were re-aligned to ensure consistency of
codon alignments. The latter was done by shifting every gap of size divisible by
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3 to align with the human reading frame. We believe this in general resulted in
a more accurate alignment.

5.1 Comparisons with Previous Studies

The excess of deletion over insertion has already been highlighted in previous
studies of both coding [25] and non coding regions [26] . Our results are consistent
with those studies but also reveal differences between the two types of regions.
Since Taylor et al. considered only codon insertion and deletion events (i.e.,
indels of length divisible by 3), we filtered out all events of other lengths. We
ran our software on these alignments and obtained the number of events along
all branches not emanating from the root. The distribution of events obtained
along the tree branches is shown in Figure 4 (right tree).

The first value we examined is the ratio between insertions and deletions
along each branch of the tree. The del/ins ratio at the mouse lineage is 1.05
(versus 1.1 obtained by Taylor et. al.) and 1.50 at the rat (versus 1.7 obtained
by Taylor et. al.). The second value we measured is the frequency of events along
a sequence. This measure should not be confused with the rate of events along
a branch in the tree. The latter indeed measures the number of events with
respect to the edge length, while the frequency of events ignores this factor. In
our data, there were 108,000 codons (twice the alignments length, 156,000 for
both rat and mouse divided by 3) for the rat and mouse sequences and total of 73
events (sum of events for rat and mouse), yielding a frequency of one event per
1,479 codons (versus 1,736 obtained by Taylor et. al.). The agreement is striking
considering that our trees contain more than twice the number of species and
four-fold more branches (eight vs. two, not counting branches emanating from
the root), and events could have been attributed to other branches of the tree.
We now elaborate on the above argument. While in Taylor et. al. a gap in the
mouse and human is automatically inferred as an insertion in the rat, in our
method, based on the whole set of sequences, this scenario can be interpreted as
a multi event site (see exact definition in the sequel) in which both mouse and
human exhibit two different deletion events at that site.

Cooper et. al [4] found a constant ratio between the rate of indel events (in-
sertions and deletions) measured as the number of events per site, to the rate
of point substitutions per site (expressed as the length of the tree branch). This
ratio, calculated only in the two mouse and rat branches and along the whole
genome, was found to be 0.05. Since our non-coding data was comprised of closer
species, we cannot make an exact comparison. However, the value we obtained
at the rodents in coding regions was 0.0073 (obtained by summing the number of
events for rat and mouse, normalized by the alignment length and divide by the
length of the rat-mouse path. See values at Figure 4). Considering a ratio of 10
between coding to non-coding regions (see values at Table 1), we obtain approx-
imately a ratio of 0.07 for non-coding regions. Taking into account the distance
between human and the rodents which may lead to alignment inaccuracies, we
believe the agreement is satisfactory.
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5.2 Events in Coding Regions

Table 2 illustrates our finding regarding events in both non-coding and coding
regions. Information regarding coding regions is the left number at every column.
Both insertions and deletions decay exponentially in length. An exception to
this exponential decay in the length is events of 7 codons (21 bases) that stand
out in both insertions and deletions (not shown in table). We do not have an
explanation for this. It can also be seen that deletions are slightly longer on
average than insertions.

We also wanted to measure if, and how, the rate of indels changes along the
branches of the tree. We normalized the number of events on each tree edge, by
the length of the edge. This measurement enables us to estimate the correlation
between the length of an edge (the expected number of substitutions on the edge)
and the number of indel events accumulated on it. Another question we examined
is whether the indel process is homogeneous over time, or changes along different
lineages of the tree. Our coding data is composed of many genes and different

Table 2. Length distribution of indel events in coding/non-coding regions

Events in Coding/Non-Coding Regions
total events distribution insertions distribution deletions distribution

event length #events total length #events total length #events total length
1 -/1895 -/1895 -/174 -/174 -/1721 -/1721
2 -/606 -/1212 -/33 -/66 -/573 -/1146
3 578/388 1734/1164 132/35 396/105 446/353 1338/1059
4 -/379 -/1516 -/20 -/80 -/359 -/1436
5 -/175 -/875 -/12 -/60 -/163 -/815
6 177/123 1062/738 48/11 288/66 129/112 774/672

7-8 -/211 -/1584 -/18 -/138 -/193 -/1446
9 55/66 495/594 11/3 99/27 44/63 396/567

10-11 -/151 -/1577 -/12 -/126 -/139 -/1451
12 56/72 672/864 7/1 84/12 49/71 588/852

13-18 34/224 543/3403 3/20 45/302 31/204 498/3101
19-30 42/175 945/4112 13/23 297/541 29/152 648/3571
total 942/4465 5451/19534 214/362 1209/1697 728/4103 4242/17837

average event length 5.786/4.37 5.649/4.68 5.826/4.34

0.01282

0.03952 human
0.00273

chimp
0.00585

galago
0.05356

0.08756 mouse
0.03124

rat
0.03368

7/4

20/12 human
3/1

chimp
9/6

galago
69/18

125/32 mouse
22/21

rat
18/12

Fig. 4. Point mutation (left) and indel (right) statistics along tree edges for coding
regions. The indels were computed over 156,000 sites.
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sets of species. In order to obtain enough information we concatenated many
genes over a common set of species. Figure 4 at the right shows the number of
del/ins along each edge of the tree. We used the same data in order to obtain
the edge lengths corresponding to the tree (by ML estimate according to the
HKY [14] model). As the dog served as an outgroup to the rest of the species it
was excluded from the figure. The tree on the left of the figure shows the edge
lengths inferred for the tree (measured by the expected number of substitutions
along an edge). The correlation between the edge length and the total number
of events (insertions plus deletions) is notable. Specifically, for every edge e, we
computed the ratio ide

le
where ide is the expected number of indel events (total

number of events divided by sequence length) per site along e and le is the length
of e (the expected number of substitution per site along it). We found that ide

le
is centered around mean 0.009 (std. dev. 0.0038) with a ratio of 3.2 between the
lowest value (0.005 for the ancestor of human chimp) and the highest (0.0165
for the pendant edge of the chimp). This should be contrasted to a ratio of 40
between the number of events along the pendant edge of the human (4) and 157
along the edge leading to the rodent ancestral vertex.

In [22] it was postulated that the indel process obeys the rule of molecular
clock. This means that if we measure the length of the path along the tree, from
any internal vertex to any of its descendants, this length will be the same. It is
well known [31] that with respect to point substitutions, this hypothesis does

Table 3. Amino acid indel events

Indel Events for Amino Acids

AA #ins. #del.
percent in
insertions

percent in
deletions

percent in
population

relative
insertion

relative
deletion

A 45 133 10.56 9.38 7.41 1.41 1.26
C 10 14 2.34 0.98 1.73 1.34 0.56
D 10 48 2.34 3.38 4.59 0.5 0.73
E 28 117 6.57 8.25 7.16 0.91 1.15
F 5 20 1.17 1.41 3.52 0.33 0.4
G 49 129 11.50 9.1 6.56 1.73 1.38
H 15 41 3.52 2.89 2.47 1.41 1.16
I 5 23 1.17 1.62 4.05 0.28 0.39
K 19 47 4.46 3.31 5.37 0.82 0.61
L 30 143 7.04 10.09 9.89 0.7 1.02
M 5 23 1.17 1.62 2.47 0.47 0.65
N 16 55 3.75 3.88 3.24 1.14 1.19
P 39 116 9.15 8.18 6.78 1.33 1.2
Q 24 108 5.63 7.62 4.82 1.15 1.58
R 15 52 3.52 3.66 5.91 0.59 0.62
S 49 166 11.50 11.71 8.48 1.34 1.38
T 24 79 5.63 5.57 5.4 1.03 1.03
V 33 73 7.74 5.15 6.28 1.22 0.81
W 3 10 0.70 0.7 1.13 0.61 0.62
Y 2 20 0.46 1.41 2.46 0.18 0.57
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not apply to the set of species we investigated here. There was acceleration in
the rate of mutations in the rodents’ lineage after the speciation event from the
primates. This causes a substitution rate twice as much bigger in the rodents,
than as in primates. Our findings refute this hypothesis. It can easily be seen
that the number of events on the path from the root to the mouse is exactly
200 while to the human it is only 47. We comment here that although there are
deviations in the ide

le
ratio that might explain small differences, the difference

here in the number of events is statistically significant.
At the amino acid level, we examined whether there was a preference for cer-

tain kinds of insertions or deletions. The composition of amino acids in insertion
and deletion events is depicted in Tables 3. We inferred amino acid insertion
and deletion events in both extant species (i.e. in the aligned sequences) and
the ancestral nodes. An event is determined to be an insertion/deletion by the
optimal explanation. It is notable that some amino acids maintain the same ra-
tio in both processes (e.g. Arginine, Serine, Threonine) although this deviates
from a neutral rate of relative value of one (e.g Arginine, Serine, Phenylalanine).
Another characteristic is that most of the amino acids are either overrepresented
or underrepresented in both insertions and deletions. Exceptions include Cys-
teine, Valine, and Glutamic acid that are over represented in one process but
underrepresented in the other.

5.3 Events in Non-coding Regions

Our non-coding data was taken from homologous sequences of primates sur-
rounding various genes (see [21]). Here the emphasis was to examine the deleted
and inserted sequences and their properties. Values are shown in Table 2 (right
number of every column). There are 4465 events with total length of 19534 bases,
which yields an average event length of 4.37 bases per event. Events of a single
base comprise 42.4 percent of the total number of events and of length two, 13.5
percent. Of the total number of events, there are 362 insertion events with total
length of 1697, yielding an average insertion size of 4.68 bases. In turn, there
are 4103 deletion events with total size of 17837, yielding average deletion size
of 4.34 bases.

Table 4 shows the base composition of indels in non-coding regions. We used
the same method here for the inference of the content of the indel events as we did
for coding regions, except for the fact that we considered indels of all length. We
found that the percentage of Gs and Cs in indel events was even lower than the
population GC content. In insertion events C is substantially underrepresented
(0.81 of its background frequency) while T is similarly overrepresented (1.13).
In deletion events, both A and T are similarly overrepresented (around 1.05 of
their ground frequency) while C and G are similarly underrepresented (0.92). C
and T exhibit the largest variation between insertion and deletions.

Similarly to coding regions, we wanted to measure the correlation between
rate of indel events to the rate of point substitutions along the tree branches.
Figure 5 depicts our findings in the CFTR region (ENCODE region number 1).
The right tree depicts the distribution along the edges. The edge lengths of
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Table 4. Distribution of bases in insertions and deletion events in non-coding regions

Bases Distribution in Non-Coding Regions

base
% in

population
% in

insertions

% in ins
relative to %
in population

% in
deletions

% in ins del
relative to %
in population

A 28.3 30.6 1.08 30.3 1.06
T 29.5 33.3 1.13 30.8 1.04
C 20.8 17.0 0.81 19.1 0.92
G 21.2 18.9 0.89 19.6 0.92

0.021
vervet

0.010

0.003 macaque
0.0055

baboon
0.0062

0.0181
orangutan

0.014

0.0072 gorilla
0.0071

0.0013 chimp
0.0051

human
0.0055

276/275 vervet
228/37

95/25 macaque
161/18

baboon
133/13

218/207 orangutan
303/48

170/32 gorilla
184/20

73/15 chimp
143/22

human
132/19

Fig. 5. Point mutation (left) and indel (right) statistics along tree edges for the CFTR
region. The indels were computed over 209,000 sites.

the tree in the left correspond to the point substitution probabilities. Here the
value ide

le
(see definition in the coding region section) is centered around a mean

of 0.146 (std. dev. 0.061) with a single big exception for the ancestral edge of
human and chimp which is double that value.

5.4 Indel Hotspots

Multi event sites (MES) are sites where an indel event has occurred on more
than one branch of the tree. Indel events at MES sites are called parallel events.

Our findings show that in both datasets, the frequency of parallel events was
more than two fold above its expected value. Specifically, for coding regions,
the number of sites containing a single event was 9,553 yielding an expected
value of 0.0295 (recall the total number of sites was 323,673) and a probability
of 0.000871 of finding a parallel event at a site. The actual number of parallel
events was 1093, yielding a frequency of 0.00337 parallel events per site, 3.876
times its expected value. For non-coding regions, we found 30,616 sites containing
an event, yielding a frequency of 0.0714 sites containing events, and a probability
of 0.0051 for a parallel event at a site. The actual frequency of parallel events
was 0.0111, which is 2.178 times its expected value.

These findings are consistent with the findings in [25] about the effect of
slippage at indel events. [25] found that the frequency of indel events is about
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50% higher than expected in proximity to small regions where the same amino
acids is duplicated multiple times. As we have shown, such indel “hotspots”, are
also evident in non-coding sites. Although some indel hotspots may be due to
alignment artifacts as suggested in [16], we believe that our results confirm that
indel hotspots exist.
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Abstract. We present a fast converging method for distance-based phy-
logenetic inference, which is novel in two respects. First, it is the only
method (to our knowledge) to guarantee accuracy when knowledge about
the model tree, i.e bounds on the edge lengths, is not assumed. Second,
our algorithm guarantees that, with high probability, no false assertions
are made. The algorithm produces a maximal forest of the model tree,
in time O n3 in the typical case. Empirical testing has been promising,
comparing favorably to Neighbor Joining, with the advantage of making
few or no false assertions about the topology of the model tree; guar-
antees against false positives can be controlled as a parameter by the
user.

1 Introduction

The shortcomings of “naive” distance methods in phylogenetic reconstruction,
such as Neighbor Joining (NJ) [12], are well-known, and reconstructing trees
from small subtrees is evidently both desirable and increasingly popular. All
quartet-based methods are examples of this paradigm. However, this divide-
and-conquer approach presents at least two serious difficulties: (1) identifying
those subsets of taxa on which a tree topology can be accurately inferred; and
(2) retaining accuracy when some subtree topologies cannot be correctly deter-
mined. In particular, quartet methods, such as the Dyadic Closure Method of [4]
and the series of Disk-Covering Methods (DCM) [8, 13] are confined to consid-
ering only quartets of small diameter, so-called short quartets, in the hope that
these provide enough information for a complete reconstruction. These methods,
moreover, are compelled to reconstruct the entire tree; consequently, errors are
incurred when attempting to combine subtrees when the given distance matrix
simply does not justify the attempt.

The first DCM method, DCM1, is a good illustration of these difficulties.
That method iterates over thresholds D̂(i, j) where D̂ is the given distance
matrix–estimated from sequences, for example. At threshold w, a graph Gw

is constructed, where the vertices of Gw are the taxa, with an edge between
i, j whenever D̂(i, j) ≤ w. Trees are built on maximal cliques of a triangulation
G∗

w of Gw using a base method such as NJ and merged according to a perfect
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elimination order of G∗
w. In some cases, there may be no accuracy guarantees

for the trees built on maximal cliques of G∗
w, and the merging procedure–using

strict consensus merger–is provable only when D̂ is nearly additive (so that Gw

itself is chordal).
Much recent work in the study of distance-based methods has focused on

the notion of fast convergence. Indeed, the work of [4, 5] can be considered a
breakthrough in this vein; there, the authors delineate an algorithm which ac-
curately infers almost all trees on n leaves when provided sequences of length
O(poly(log(n)), and all trees with O(poly(n)) length sequences. By way of com-
parison, the venerable NJ requires exponentially long sequences. A notable
drawback of the Dyadic Closure method of [4], however, is the dearth of use-
ful performance guarantees when sequence lengths are small. In this paper, we
will present an algorithm which achieves fast convergence, to the same extent
and with similar time complexity as in [5], and further, is guaranteed to return
accurate subtrees even when sequences are too short to infer the whole tree
correctly.

To this end, we adapt the work of [9], a method which reconstructs a collec-
tion of subtrees of the model tree from which only a constant fraction of edges
is omitted, when given O(log n) characters. We have improved on the frame-
work of [9], for we do away with the need for parameters f and g, the lower
and upper bounds on the lengths of edges of the model tree. Specifically, we
prove a local quartet reliability criterion, which is blissfully ignorant of f and g.
This permits our algorithm to produce an accurate subforest which is as large
as possible from the data provided–it builds everything that can be built. Sub-
sequently, such a forest can be used to boost other reconstruction methods by,
for example, inferring sequences at ancestral nodes.

In the following subsection, we will present a number of definitions towards
formulating the optimization problem for which our algorithm is a solution,
namely, the Maximal Forest (MF) problem. In Section 2 we delineate the sub-
tree reconstruction and forest construction algorithms and analyze their perfor-
mance. This section also constitutes a significant simplification of the arguments
in [9], and the efficiency of our methods is such that we have been able to im-
plement them. Experimental results are examined in Section 4. In Section 3,
we prove that our method reconstructs almost all n-leaf trees accurately given
sequences of length O(poly(log(n))); our method achieves this guarantee with
marked improvements in efficiency.

1.1 Definitions and Notation

Let T be an edge-weighted, unrooted binary tree. (In the sequel, all trees are
assumed to be unrooted.) Then, we define L(T ) to be the set of leaves of T . For
any subset X of L(T ), T |X denotes the restriction of T to X . We assume that
T is leaf-labelled by a set of taxa, S, of size n and that S is equipped with a
distance matrix D̂. For each taxon v ∈ S, let L(v) denote a subset of S such that
if D̂(v, y) < D̂(v, x) and x ∈ L(v), then y ∈ L(v). For x, y ∈ S, let P (x, y) denote
the set of edges of the path from x to y in T . We say that L(u) and L(v) are
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edge-sharing if there exist x, y ∈ L(u) and x′, y′ ∈ L(v) such that P (x, y) ∩
P (x′, y′) is nonempty; otherwise, L(u) and L(v) are edge-disjoint. For U ⊆ S,
E(U) is the graph with vertex set {L(x)|x ∈ U} and edges determined by the
edge-sharing relation. Naturally, E(U) is called an edge-sharing graph on U .
For convenience, we will freely identify a node L(x) of E(S) with x itself. Let
N(v) denote the set of neighbors of v in E(S). Then, we define SL(v) = L(v) ∪⋃

u∈N(v) L(u).
We will make use of the strict consensus merger [3] method for constructing

supertrees. The strict consensus merger of two unrooted leaf-labelled trees is
defined as follows. Let t and t′ be trees. Let L = L(t)∩L(t′)and let z = t|L and
z′ = t′|L; let Z be the maximally resolved tree that is a contraction of both z
and z′. We call Z the backbone of t and t′. Finally, reattach the remaining pieces
of t and t′ to Z appropriately (ambiguities and conflicts induce nodes of degree
higher than three). Note that the strict consensus merger of two trees is unique.

Generally, each taxon s ∈ S is identified with a sequence over some alphabet
Σ–for example, Σ = {A,C,G, T}. S is equipped with a distance matrix D̂, which
is, by definition, symmetric, zero along the diagonal, and positive off the diago-
nal. The following several definitions and Theorem 1 motivate the algorithms of
this paper.

Definition 1. Let T be an edge-weighted binary tree, leaf-labelled by S, and let
D be the associated additive matrix. Suppose 0 < ε < M . We say that D̂ :
S × S → R+ is a local (ε,M) distortion for S′ ⊆ S if

1. D̂ is a distance matrix.
2. D̂(x, y) = ∞ implies D(x, y) > M , for all x, y ∈ S′

3. D̂(x, y) < M implies |D̂(x, y)−D(x, y)| < ε, for all x, y ∈ S′

Definition 2. Let T be an edge-weighted binary tree, leaf-labelled by S, and let
D be the associated additive matrix. Suppose S = C1!...!Cα such that T |Ci and
T |Cj are edge-disjoint for each 1 ≤ i < j ≤ α. For each i ≤ α, let 0 < εi < Mi

be given. Suppose D̂ : S×S → R+. We say that C = {(Ci, εi,Mi) : 0 ≤ i ≤ α} is
a local distortion decomposition of D̂ if D̂ is a local (εi,Mi) distortion for Ci,
for each i = 1, ..., α.

Furthermore, let fi be the weight of the smallest edge in T |Ci, and let εi < fi

2 ;
and let ri ≤ Mi−7εi

6 , and assume Mi > 7εi. For each v ∈ Ci, let L(v) be the ball
of radius ri about v. If E(Ci) are the connected components of E(S), then we say
that C is constructive.

The component reconstruction procedure presented below justifies the use of the
word “constructive”; in the case described, we can accurately reconstruct T |Ci

in polynomial time.

Theorem 1 ([9]). Let T be an edge-weighted binary tree, leaf-labelled by S, and
let D be the associated additive matrix. Suppose D̂ is an (ε,M) distortion for S
with ε < f/2 and M > 7ε, where f is the weight of the smallest edge in T . Let
g be the weight of the largest edge in T . Let E(S) be the edge-sharing graph of
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r-balls around leaves where r = M−7ε
6 , and let C1, ..., Cα be the components of

E(S). Then C = {(Ci, ε,M)} is a constructive local distortion decomposition, and
α ≤ 1+ 60√

2
2−(M−ε)/2g ·n. Moreover, the corresponding forest can be constructed

in polynomial time.

In principle, a binary search on r might be expected to find the decomposition
of Theorem 1. Observe, however that Theorem 1 takes the length of the shortest
edge f as a global criterion for accurate reconstruction of subtrees. But if edge-
disjointness can be maintained, the length fi of the shortest edge in T |Ci has no
bearing on the reconstruction of T |Cj, when i �= j. One should prefer to consider
ball radii as large as possible, thereby increasing the sizes of the components
of E(S), without incurring false resolutions. Thus, relaxing the edge-disjointness
requirement, our work can be considered a solution of the following optimization
problem:

Definition 3 (Maximal Forest Problem). Given a distance matrix D̂ for a
binary tree T , find a constructive local distortion decomposition of D̂ such that
the number of components α is minimized.

2 Our Algorithm

We start off by giving a high level picture of the algorithm–Algorithm 1–with
the details of the various pieces to be described in later sections. Intuitively,
in order to maximize the radii ri of Definition 2, when minimal edge weights
are unknown, it is reasonable to grow radii incrementally. Thus, we sort the
set of pairs {x, y}, x, y ∈ S, under D̂. We would like to continue throwing in
pairs {x, y} just as long as we are confident of the accuracy of every T |SL(v).
Accuracy will be guaranteed by virtue of Algorithm 2 for quartet reliability.

2.1 A Local Quartet Reliability Criterion

We describe a test which, given sequences at 4 leaves, returns the correct quartet
split with high probability or fails if the sequences at the leaves are too noisy. For
succinctness of description, we will present the test in the context of the Cavender-
Farris-Neyman 2-state model, but as will become clear, it can be easily generalized
to the general Markov model by virtue of the analysis in section 7 of [5].

We begin with a high level description of the CFN model and introduce some
notation. Suppose T is a rooted tree and p : E(T ) → (0, 1/2) is a function asso-
ciating to each edge a transition probability. Under the CFN model, a character
is chosen at the root of the tree uniformly at random from Σ = {−1, 1}, and this
value is propagated towards the leaves, mutating along each edge with proba-
bility p(e). An equivalent description of the corresponding Markov model is the
following: along every edge of the tree with probability θ(e) = 1 − 2p(e), the
child copies its value from the father, and with probability 1− θ(e), it random-
izes uniformly in {−1, 1}. It follows easily from the above definitions that the
probability p(u, v) that the endpoints u, v of a path P (u, v) of topological length
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Algorithm 1. (Forest Reconstruction Algorithm)
For every v ∈ L(v) set rv := 0; /*rv is the local radius around v*/
Sort the set of pairs E of vertices in ascending order under D;
Let Forest be the set of subtrees of T ; initially each subtree consists of a single leaf;
while E �= ∅ do

(x, y) := pop(E);
if (D(x, y) > rx and D(x, y) > ry) then

L(x) := L(x) ∪ {y} and L(y) := L(y) ∪ {x};
Compute E(S) and SL(·) trees (Algorithm 3)
if Algorithm 3 failed, i.e. a quartet induced by the new edge (x, y) is unreliable
then

E := E \ {(x, y)}; undo L(·) augmentations;
rx := ∞; ry := ∞; /* freeze nodes x and y */

else
If E(S) changed, update Forest (Algorithm 4)
rx := D(x, y); ry := D(x, y); /* update local radii of nodes x, y */

end if
end if

end while

k are in different states is related to the mutation probabilities pe1 , pe2 , . . . , pek

of the edges of P (u, v) by the formula p(u, v) = 1
2 (1− θ(u, v)) where

θ(u, v) =
k∏

i=1

θ(ei)

This formula justifies the definition of d(u, v) = − 1
2 log θ(u, v) as a path metric

on the tree.
Now, given k samples of the process at the leaves of the tree, {σt

L(T )}k
t=1, we

can empirically estimate θ(u, v) for all u, v ∈ L(T ), using the following empirical
measure:

c(u, v) =
1
k

k∑
t=1

σt
uσ

t
v

The local test for finding quartet splits reliably is described briefly in Algorithm
2 and its correctness is proved in Theorem 2.

Theorem 2. If Algorithm 2 outputs a quartet split, then this split is correct
with probability at least 1− δ1.

Proof. By the Azuma-Hoeffding inequality, it is not hard to see that for all
i, j ∈ {1, 2, 3, 4},

P [|θ(i, j)− c(i, j)| ≥ α(k, δ1)] ≤ 2 · exp
{
−α(k, δ1)2k

2

}
From the choice of α(k, δ1) it follows that, with probability at least 1 − δ1, we
have |θ(i, j)−c(i, j)| ≤ α(k, δ1) for all i, j ∈ {1, 2, 3, 4}Without loss of generality,
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Algorithm 2. (Quartet Reliability Criterion)
INPUT: k samples of the CFN model on four leaves {1, 2, 3, 4} and a parameter
δ1 > 0
OUTPUT: a quartet split of {1, 2, 3, 4} or “fail” if not enough data; if a quartet
split is returned, it is correct with probability at least 1 − δ1

Take α(k, δ1) := 2
k

ln 12
δ1

and 1
ε

:= minu,v∈{1,2,3,4}
c(u,v)

α(k,δ1)

if ε ≥ 1 then
return “fail” /* the estimation error is too large */

end if
for i, j ∈ {1, 2, 3, 4}, i �= j do

if c(i,k)c(j,l)
c(i,j)c(k,l) < 1−ε

1+ε
for all k, l ∈ {1, 2, 3, 4} − {i, j}, k �= l then

return ij|kl
end if

end for
return “fail”

suppose that the correct quartet on the leaves {1, 2, 3, 4} is 12|34. Suppose that
the middle “edge” of the quartet split corresponds to a path p in T with and
endpoints a and b and θ(p) =

∏
e∈p θ(e). Assume that leaves 1 and 2 lie in the

same subtree when b is removed from T , and 3 and 4 lie in the same subtree
when a is removed from T . It follows that, for example,

θ(1, 3)θ(2, 4)
θ(1, 2)θ(3, 4)

=
θ(1, a)θ(p)θ(b, 3)θ(2, a)θ(p)θ(b, 4)

θ(1, 2)θ(3, 4)
=

= θ(p)2 · θ(1, 2)θ(3, 4)
θ(1, 2)θ(3, 4)

Since the algorithm does not return “fail,” we may assume that ε < 1. Moreover,
by a simple union-bound and some straightforward calculations, we can show
that for every four distinct i, j, k, l

√
c(i, j)c(k, l)
c(i, k)c(j, l)

⎧⎨⎩ > 1
θ(p) ·

(
1−ε
1+ε

)
, if {i, j} = {1, 2} and {k, l} = {3, 4}

< θ(p) ·
(

1+ε
1−ε

)
, otherwise

(1)

if and only if 12|34 is the correct split, with probability at least 1 − δ1. Subse-
quently, (1) surely holds if√

c(1, 3)c(2, 4)
c(1, 2)c(3, 4)

<

(
1− ε

1 + ε

)
and √

c(1, 4)c(2, 3)
c(1, 2)c(3, 4)

<

(
1− ε

1 + ε

)
Thus, Algorithm 2 returns 12|34, which is correct with probability at least 1−δ1.
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2.2 Local Tree Reconstruction

In this section we will prove that Algorithms 3 and 4 correctly reconstruct a
forest corresponding to a set of L(·)’s as long as the sequence length permits
correct estimation of the quartet splits. If this is not the case, the algorithms
will fail without returning an incorrect tree. All the above claims are with high
probability for k > c(T, f, g) logn.

Theorem 3. If algorithm 3 does not fail, then the tree output by algorithm 4 is
correct with probability at least 1− n4δ1.

Proof. Suppose that algorithm 3 does not “fail”. It follows that every quartet it
considers passes the test of Algorithm 2. Now, since there are at most

(
n
4

)
of them

and each is estimated correctly with probability at least 1− δ1, the probability
that they are all estimated correctly is at least 1−n4δ1. It only remains to argue
that if all quartets are estimated correctly, the tree output by algorithm 4 is
correct. Note that the T |SL(v)’s that are computed by algorithm 3 are correct
so that the input to algorithm 4 is correct. So we have to show that 4 finds the
supertree of these trees correctly. The proof of the later is given by lemmas 1, 2
and 3 which, also, provide a streamlined proof of the correctness of [9].

Lemma 1. [7] Let G be a graph. Then the following are equivalent: (1) G is a
subtree intersection graph; (2) G is chordal; (3) G admits a perfect elimination
ordering.

Lemma 2. Suppose E(S) is correct and T |SL(v) is accurate for each v ∈ C.
Then, for each i ≤ n, Ti = T |{vi, ..., vr}. Moreover, T1 = T |C.

Proof. The argument is similar to that in [8]. We include it for the sake of
completeness. We proceed by induction on i. The claim is obvious for i = r.
Assume Ti+1 = T |{vi+1, ..., vr}. Observe that L(ti)∩L(Ti+1) = Xi, so Xi is the
leaf set of the backbone Z of the merger of ti and Ti+1. As ti and Ti+1 are both
correct, we know that there is no edge contraction in the merger, so we need
only show that there are no collisions.

The only possible collision is the following. Suppose e is an edge of Z, and
both vi and a subtree τ of Ti+1 are attached at e. Clearly, L(τ) ⊆ {vi+1, ..., vr}−
Xi. We will derive a contradiction to this fact. In the true tree T , e corresponds to
a path P with endpoints, say, a and b. Let T0 denote the subtree of T consisting
of the internal nodes and edges of P along with the subtrees attached at those
nodes. Now, observe that (1) vi ∈ L(T0) and L(τ) ⊂ L(T0). Furthermore, (2) we
know L(T0) ∩ Xi = ∅, just because Z, ti and Ti+1 are correct. Finally, we will
prove below that (3) E(L(T0)) is path connected.

By (3), let π be a simple path in E(L(T0)) from vi to a node in L(τ), and let
x be the first node of π which lies in L(τ); that is, we may assume that

π = (vj1 = vi, vj2 , ..., vjk
= x)

with vjl
/∈ L(τ) whenever l < k. By (2), we know that each vjl

is in {v1, ..., vi}.
We claim now that there must be an edge (vi, x) in E(C). For suppose that
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Algorithm 3. (Construction of Edge Sharing Graph and SL(·) trees)
INPUT: {L(v)}v∈L(T )

OUTPUT: Edge Sharing Graph and T |SL(v)’s or “fail”

/* Determine edge-sharing between leaf-balls */
for each pair of leaf balls L(u), L(v) do

EdgeSharing = FALSE; UnreliableQuartetFound = FALSE;
for any choice of xu, yu ∈ L(u), xv, yv ∈ L(v) do

find quartet for leaves {xu, yu, xv, yv} using algorithm 2
if not enough information to find split then

UnreliableQuartetFound = TRUE;
else if xuxv|yuyv is reliable according to algorithm 2 then

L(u), L(v) are edge-sharing; EdgeSharing = TRUE;
end if

end for
if (¬ EdgeSharing and UnreliableQuartetFound) then

return “fail”; /*Not enough information to be certain about the edge sharing
graph.*/

end if
end for

/* Build subtrees */
for v ∈ L(T ) do

if every quartet on SL(v) is reliable then
Build T |SL(v) using some base method (e.g. NJ)

else
return “fail”

end if
end for

Algorithm 4. (Component reconstruction)
INPUT: SL(·) trees of a connected component C of E(S)
OUTPUT: T |C

Let v1, ..., vr be a perfect elimination order of the leaves of a component C of E(S)
(by lemma 1 C is triangulated).
for 1 ≤ i ≤ r do

Let Xi = SL(vi) ∩ {vi, ..., vr}
Get ti = T |(Xi ∪ {vi}) by restricting T |SL(vi)

end for
Set Tr = tr

for i = r − 1 to 1 do
Ti := strict consensus merger of ti and Ti+1

end for
return T1
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j1 > ... > jp and jp+1 > jp. Then there must be an edge (vjp−1 , vjp+1) in E(C)
because v1, ..., vr is a perfect elimination ordering. Hence, vjp can be removed
from π without breaking the path. By induction on k, then, there must be an
edge (vi, x) in E(C), as claimed. It follows that x ∈ Xi, which is a contradiction.
Thus, there are no collisions, and the claim is proven.

Lemma 3. E(L(T0)) is path-connected.

Proof. Let Ta denote the subtree of T rooted at a containing no internal nodes
of P . Define Tb similarly. Let v ∈ L(T0). Since E(C) is path connected, let π be
a simple path from v to a leaf of Ta, and let x be the last node of E(L(T0)) along
this path, so that L(x) and L(z) are edge-sharing for some z /∈ L(Ta). Thus, if
we take (a, c) to be a terminal edge of P , we can see that L(x) must contain a
node x′ which does not lie in L(Ta) and such that P (x, x′) contains (a, c). Let
y, y′ and (b, d) be the corresponding construction for Tb.

Suppose u, v ∈ L(T0). Since E(C) is connected, there is a simple path (u =
w1, w2, ..., wq = v) in E(C). Supposew1, ..., wj , wj+s+1 ∈ L(T0) andwj+1, ..., wj+s

∈ L(Ta). ThenL(wj) andL(wj+s+1) must be edge-sharing at (a, c). We may, then,
remove the excursion inL(Ta), obtaining the path (w1, ..., wj , wj+s+1, ..., wq).Con-
tinuing in this manner, we remove from the path all excursions out of L(T0). It
follows that E(L(T0)) is path connected.

A similar argument demonstrates the following fact, which will be used in
section 4:

Lemma 4. For each edge e of T |C, e appears in T |SL(v) for some v ∈ C.

2.3 Time Complexity

Suppose that r is the largest radius of a leaf set L(u) in a run of Algorithm 1,
and let f be the length of the shortest edge in the tree T . Then for every taxon v,

|SL(v)| ≤ 2
6r
f −1 = κ(r, f)

Thus, the base method for tree reconstruction is only deployed against SL(v)’s
whose size is bounded by κ(r, f). By the fast convergence analysis of our algo-
rithm (section 3) it follows that for every tree our algorithm will reconstruct the
whole topology for r = O(g logn). On the other hand, for a typical tree (one
drawn, for example, uniformly at random from the set of leaf-labelled trees) the
algorithm will get the correct tree for r = O(g log logn), so the base method will
be typically applied on trees of size O(2g/f logn).

Now suppose we are joining two taxa from separate connected components.
Updating E(S) requires no more than O(nκ4) time by modifying intelligently
algorithm 3 so that only the necessary checks are performed. A perfect elimina-
tion order of a chordal graph on n vertices can be computed in O(n2) time, and
computing the strict consensus merger of two trees takes O(n) time. So every
call of Algorithm 3 and 4 takes time O(nκ4) and O(n2) respectively.
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Since there are at most n2 iterations in Algorithm 1 there are at most n2 exe-
cutions of Algorithm 3. Therefore, the total time spent in executions of Algorithm
3 is O(n3κ4), typically Õ(n3). On the other hand, each time Algorithm 4 is called
the number of trees in the forest decreases by one. And since we start off with n
trees, Algorithm 4 is called at most n times, hence O(n3) time is spent in execu-
tions of this algorithm overall. Thus, the total running time is typically Õ(n3).

Finally, we note that, for clarity of exposition, the described algorithms are
not optimized. Using hash tables to store the results of Algorithm 2 and the
partial T |SL(v) trees, each quartet is evaluated once along the course of the
algorithm, and T |SL(v) trees are built at each step on top of partially recon-
structed topologies.

3 Log-Length Sequences

In this section, we will prove that our method reconstructs almost all n-leaf trees
provided that the sequence length k is O(poly(log(n))) under the Cavender-
Farris-Neyman 2-state model of evolution [2, 6, 11]. More specifically, we argue
that our method achieves the same performance guarantees as does the Dyadic
Closure Method of [4]. A key notion in the analysis is the depth of a tree T ,
defined as follows: for an edge e of T , let T1 and T2 be the rooted subtrees
obtained by deleting e, and let di(e) denote the topological distance from the
root of Ti to its nearest leaf in Ti; subsequently, we define

depth(T ) = max
e
{max(d1(e), d2(e))}

letting e range over the set of internal edges of T . A quartet {i, j, k, l} is called
short if T |{i, j, k, l} consists of a single edge connected to four disjoint paths of
topological length no more than depth(T )+1. Let Qshort denote the set of short
quartets of T . Given a set of quartets Q, we let Q∗ denote the set of quartet
topologies induced by T .

Given sequences x, y of length k, let hxy = H(x, y)/k where H(x, y) is the
Hamming distance of the sequences. Let Exy = E[hxy].

Let Qw denote the set of quartet topologies q such that hij ≤ w for all
i, j ∈ q. In [4], it is proved that if Q∗

short ⊆ Qw and Qw is consistent, then
cl(Qw) = Q(T ) where cl(Q) is the dyadic closure of a set of quartet topologies.
But observe that by lemma 4 if Q∗

short ⊆ Qw ⊆ Q6w ⊆ Q(T ) for some w,
then Algorithm 1 correctly reconstructs T . Let E denote this event, and further,
define the following events: A for Q∗

short ⊆ Qw; B for Q6w ⊆ Q(T ); and C for
“Qw contains all quartets containing pairs i, j such that Eij < b, and Q6w does
not contain any pairs i, j such that Eij > 13b.” If i, j lie in a short quartet, then
Eij ≤ 1−e−2g(2depth(T )+3)

2 = b. We take w = 2b.
It’s easy to see that

P[E] = P[A ∩B] ≥ P[A ∩B ∩ C] =

= P[C] · P[A|C] · P[B|A,C] = P[C] · P[B|C]
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We will bound probability P[B|C] first. Suppose q = {u, v, w, z} ∈ (
n
4

)
s.t.

∀i, j ∈ q : Eij ≤ 13b. Then, the quartet split of q is found with probability at
least 1− δ1 if:

(I) (1− 26b)
(
1 + 2ε

1−ε

)
<
(
1− 2ε

1−ε

)
⇔ ε < 13b

2−13b

(II) 1
ε = mini,j∈{u,v,w,z}

{
c(i,j)

α(k,δ1)

}
> 1

If k >
8 ln 12

δ1
(2−13b)2

(1−26b)2(13b)2 , by the Azuma-Hoeffding inequality it follows that the

probability that event I ∩ II does not hold is at most 6 exp {− (1−26b)2k
8 } so

P[I ∩ II] ≥ 1 − exp {− (1−26b)2k
8 }. Now, we can lower bound the probability of

estimating quartet q correctly as follows:

P[q is estimated correctly] ≥ 1− δ1 − P[II ∩ I] ≥ 1− δ1 − exp
{
− (1− 26b)2k

8

}
Since the quartets are at most

(
n
4

)
we can bound the probability of P[B|C]

roughly as follows:

P[B|C] ≥ 1−
(
n

4

)
δ1 −

(
n

4

)
exp

{
− (1− 26b)2k

8

}
It remains to bound P[C]. Define Sr = {{i, j} |hij <

1
2 − r}. Then, if i, j are

such that Eij ≥ 1
2 − 13b, then

P[{i, j} ∈ S12b] = P[hij <
1
2
− 12b] ≤

≤ P[hij − Eij <
1
2
− 12b− Eij ] ≤ P[hij − Eij ≤ −b] ≤ e−b2k/2

by the Azuma-Hoeffding inequality. A similar analysis shows that if Eij <
1
2−3b,

then P[{i, j} /∈ S2b] ≤ e−b2k/2. Thus, P[C] ≥ 1− (n2)e−b2k/2, and P[E] is not less
than

1−
(
n

4

)
δ1 −

(
n

4

)
exp

(
− (1− 26b)2

8
k

)
−
(
n

2

)
e−b2k/2

We have, therefore, proved

Lemma 5. Suppose k sites evolve on binary tree T according to the Cavender-
Farris-Neyman model, such that f ≤ D(e) ≤ g for each edge e of T . Then
Algorithm 1 reconstructs T with probability 1− o(1) whenever

k >
c · ln δ1

(1 − 26b)2b2
=

c′ · logn
(1 − 26b)2b2

and δ1 is chosen δ1 < n−5

where b = 1−e−2g(2depth(T )+3)

2 .
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In [4], it is also proven that a random n-leaf binary tree T has

depth(T ) ≤ (2 + o(1)) log log 2n

with probability 1− o(1). Thus,

Theorem 4. Under the Cavender-Farris-Neyman model, Algorithm 2 correctly
reconstructs almost all trees on n leaves with sequences of length k = O(poly
(logn)).

4 Experiments

In all of our experiments, we used the CFN 2-state model of evolution. Empirical
distances were computed as described in Section 2. Random trees were obtained
via the r8s package, with mutation probabilities scaled into the range [0.1, 0.3]
by affine transformation.

If M is a forest reconstruction method and D is a distance matrix, then
M [D] denotes the set of trees returned by M applied to D. If T is a binary edge-
weighed tree and k is a positive integer, then Dk

T is a distance matrix on the
leaves of T obtained by generating binary sequences of length k to the leaves of
T according to the CFN model of evolution and computing empirical distances
as discussed previously.

4.1 Experiment 1: Comparisons of Variations on the Theme

In this experiment, we examine the practicality of the quartet reliability crite-
rion. The Global Radius (GR) method is a strict implementation of [9], recover-
ing a global accuracy threshold as in that result via binary search on the list of
pairwise distances between leaves. The Local Radii (LR) method is implemen-
tation of our algorithm without the quartet reliability criterion–that is, of some
heuristics underlying the algorithm. In LR, the accuracy threshold is not read
from the model tree a priori; rather, balls around leaves are grown dynamically
during the run of the algorithm. Finally, LR+Qδ denotes the method described
in previous sections of this paper, wherein balls around leaves grow dynamically
and only statistically reliable quartets (with error tolerance δ, see theorems 2
and 3) are permitted in construction.

Method: For each method, we examined both the number of subtrees of a model
tree the method returned and the aggregated accuracy of the subtrees.

Our measure of accuracy is as follows. For a pair of trees T and T ′ with a
common leaf set S, RF (T, T ′) denotes the Robinson-Foulds distance between
them. In our case, it is impossible to compare a forest F and a tree using the
Robinson-Foulds distance directly, so we will apply the distance measure only to
subtrees of the model tree induced by the leaf sets of trees in F . Let T be a model
tree, and suppose F = {t1, ..., tk} is the forest returned by one the reconstruc-
tion methods from a distance matrix generated on T . Then we may assess the
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accuracy of the forest F with respect to T by A(F , T ) =
∑k

i=1RF (T |L(ti), ti).
We refer to this measure as IRF (Induced Robinson-Foulds) distance.

We compared the three methods–GR, LR, and LR +Qδ–on randomly gen-
erated n-leaf model trees, for n = 16, 32, 64, and 128, and on each model tree we
generated sequences of length k2, k3, k4, k5, k6, and k7 and k = 4. That is to say,
for each n, we generated s trees, say T1, ..., Ts, and for i = 1, ..., s, we generated
binary sequences of length kt, for t = 2, ..., 7. For M = GR,LR, we recorded
IRF (n, kt), the mean IRF distance of M on n-leaf trees with sequences of length
kt, and DisM (n, kt), the average number of disjoint subtrees. For M = LR+Qδ,
we need to consider the error tolerance submitted to the quartet test (i.e. δ in
Algorithm 2); therefore, we recorded IRFM,δ(n, kt) and DisM,δ(n, kt) for several
values of δ.

As expected the IRF distance of GR and LR is similar while LR pro-
duces forests with fewer subtrees than does GR. As δ increases, we expect that
DisM,δ(n, kt) will decrease while IRFM,δ(n, kt) increases.

4.2 Experiment 2: Local Accuracy Comparison with Existing
Methods

We compare LR+Q to an industry-standard implementation of the Neighbor-
Joining (NJ) method, examining the latter for local accuracy in two different
ways. That is, we wish to compare the accuracy of NJ on the disjoint leaf sets
induced by our method. Suppose LR+Q returns a forest F = {t1, ..., tα} when
given a distance matrix D generated on a model tree T . Define

preNJ(F , T ) =
α∑

i=1

RF (T |L(ti), NJ [D|L(ti)])

measuring the accuracy of NJ when applied to subsets of L(T ) independently,
and

postNJ(F , T ) =
α∑

i=1

RF (T |L(ti), NJ [D]|L(ti))

measuring the accuracy of NJ applied to D and subsequently restricted to dis-
joint subsets of L(T ). Then, following Experiment 1, we define preNJ (n, kt) to
be the mean over preNJ ’s and postNJ(n, kt), the mean over postNJ ’s. It is then
reasonable to compare preNJ and postNJ with IRFLR+Qδ

. We expect LR+Q
to outperform NJ under both of these measures.

4.3 Results and Discussion

Detailed results are available on the web at the following URL:

http://www.cs.berkeley.edu/~satishr/recomb2006

Herein, we present a brief summary. As anticipated, LR outperforms GR sig-
nificantly in terms of the number of subtrees, producing smaller forests for each
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Fig. 1. Comparison of Neighbor-Joining, Global-Radius and Local-Radii methods on
128 taxa for various sequence lengths

sequence length. For example, for 64 taxa, GR returns 38, 29, 13, 9, and 5 trees
with sequences of length 64, 256, 1024, 4096, and 16384, respectively, and by
comparison, LR returns 13, 7, 5, 2, and 1 trees, respectively. Simultaneously, LR
turns out to be more accurate for long sequences, attaining Induced Robinson-
Foulds distance of 13.5, 5.5, 3, 1 and 0.5 at the corresponding sequence lengths;
GR obtained IRF distance 3.5, 6.0, 5.5, 4.5, and 2.5. Moreover, the advantages
of our method seems to be amplified for larger sets of taxa. This advantage also
holds in comparison to NJ applied to the distance matrix naively. For exam-
ple, for 128 taxa with sequences of length 4096, LR returns 6 trees with IRF
3, whereas GR returns 40 trees with IRF 11 and NJ achieves RF distance 93
(while returning one tree). A graphical illustration can be found at figure 1.

We did not measure running-times carefully; however, they appear compa-
rable to popular algorithms.

Due to optimization issues and the delicacy of the probabilistic bounds, we
must still look forward to detailed testing of LR+Q, and detailed analyses will
also appear at the URL above. Results of experiment 2 are also to be found
there, and are similarly promising.
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Abstract. We present a model for predicting HLA class I restricted
CTL epitopes. In contrast to almost all other work in this area, we train
a single model on epitopes from all HLA alleles and supertypes, yet re-
tain the ability to make epitope predictions for specific HLA alleles. We
are therefore able to leverage data across all HLA alleles and/or their
supertypes, automatically learning what information should be shared
and also how to combine allele-specific, supertype-specific, and global
information in a principled way. We show that this leveraging can im-
prove prediction of epitopes having HLA alleles with known supertypes,
and dramatically increases our ability to predict epitopes having alleles
which do not fall into any of the known supertypes. Our model, which
is based on logistic regression, is simple to implement and understand,
is solved by finding a single global maximum, and is more accurate (to
our knowledge) than any other model.

1 Introduction

The human adaptive immune response is composed of two core elements:
antibody-mediated response (sometimes called humoral response), and T-cell-
mediated response (sometimes called cellular response). To date, essentially all
successful human vaccines have been made by exploiting the underlying mecha-
nisms of the antibody-mediated response, for example with diseases such as polio
and measles. However, for these diseases, it was known that people could recover
upon acquisition of humoral immunity. In contrast, for certain viruses—for ex-
ample, HIV—there are no known documented cases of a person recovering from
the infection, and it is highly unlikely that the same principles of vaccine design
could be successfully applied in these cases. In particular, it is thought that vac-
cines for diseases such as HIV must prime the cellular immune response rather
than or in addition to the humoral response in order to be successful [15, 12].

At the core of cellular response is the ability of certain antigen-presenting cells
to ingest and digest viral proteins into smaller peptides, and then to present these
peptides, known as epitopes, at the surface of the cell. This process is mediated
by HLA (Human Leukocyte Antigen) molecules which form a complex with the
epitope before it is presented. The epitope/HLA complexes can then be recog-
nized by a T-cell, thereby activating the T-cell to subsequently recognize and
kill virally infected cells. Several types of T-cells exist, each playing its own role.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 296–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In ongoing HIV vaccine research, the elicitation of a CD8+ T-cell response has
shown promise. Since CD8+ T-cells recognize only HLA class I bound epitopes
(which range in length from eight to eleven amino acids), our application fo-
cuses on such epitopes. Furthermore, we concentrate on the prediction of 9mer
epitopes, as this length is the most common.

Due to specificity in a number of sequential mechanisms, only certain epi-
topes are both presented at the surface of antigen-presenting cells and then
subsequently recognized by T-cells. This specificity is determined in part by the
sequence and properties of the presented epitope and by the genetic background
(i.e. allelelic diversity) of the host (humans have up to six HLA class I alleles
arising from the A,B and C loci). A crucial task in vaccine development is the
identification of epitopes and the alleles that present them, since it is thought
that a good vaccine will include a robust set of epitopes (robust in the sense of
broad coverage and of covering regions that are essential for viral fitness in a
given population characterized by a particular distribution of HLA alleles). Be-
cause experiments required to prove that a peptide is an epitope for a particular
HLA allele [e.g., Goulder et al., 2001] are time-consuming and expensive, epitope
prediction can be of tremendous help in identifying new potential epitopes whose
identity can then be confirmed experimentally. Beyond vaccine design, epitope
prediction may have important applications such as predicting infectious disease
susceptibility and transplantation success.

In this work, we present a logistic regression (LR) model for epitope predic-
tion which is more accurate than the most accurate model that we can find
in the literature—DistBoost [Yanover and Hertz, 2005], and also has several
practical advantages: (1) it is a well known model with many readily-available
implementations, (2) its output is easy to interpret, (3) training requires O(N)
memory whereas DistBoost requires O(N2) memory, where N is the sample size
of the data, (4) the parameters of LR given data have a single, globally optimal
value that is easily learned (in contrast to DistBoost and artificial-neural-network
based predictors such as NetMHC [4] which have many hidden units), and (5)
it produces probabilities that tend to be well calibrated [e.g., Platt, 1999] and
hence useful for making decisions about (e.g.) whether to confirm a prediction
in the lab.

Another important contribution of this paper is that we show how to leverage
information across multiple HLA alleles to improve predictive accuracy for a
specific allele. An epitope is defined with respect to one or more HLA alleles.
That is, a peptide which is an epitope for HLA-allele X may not also be an
epitope for HLA-allele Y . Thus, epitope prediction takes as input both a peptide
and an HLA allele, and returns the probability (or some score) reflecting how
likely that pair is to be an epitope. Note that HLA alleles are encoded in a
hierarchy, where extra digits are used to refer to more specific forms of the
allele. For example, moving up the hierarchy from more specific to less specific,
we have, A*020101, A*0201, and A02. In addition, many 4-digit alleles belong
to a “supertype”—for example, A*0201 belongs to the A2 supertype.
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Typically, a single classifier is trained and tested for each HLA allele (where
the allele is defined with respect to one specific level of the hierarchy) [e.g.,
Buus et al.,2003] or for each HLA supertype [e.g., Larsen et al., 2005]. These
approaches have several shortcomings. One can build classifiers only for alleles
with a large number of known epitopes or for alleles which fall in to one of
the currently defined supertypes—a fairly strong restriction. Also, if one builds
allele-specific or supertype-specific classifiers, then any information which could
have been shared across somewhat similarly behaving alleles or supertypes is
lost. Because sample sizes are usually extremely small, this shortcoming could be
huge in some cases. With supertype classifiers, one is dependent upon the current
definitions of supertypes, which has not been rigorously tested in a quantitative
way. It may also be the case that some information contained in epitopes is very
general, not specific to either alleles or supertypes. Thus, it would be desirable
to simultaneously leverage epitope information from a number of sources when
making epitope predictions:

1. within specific HLA alleles (as available and appropriate),
2. within specific HLA supertypes (as available and appropriate),
3. across all epitopes, regardless of supertype or allele (as appropriate).

That is, in predicting whether a peptide is an epitope for a given HLA allele,
we would like to use all information available to us, not just information about
epitopes for this allele, but from information about epitopes for other alleles
within this allele’s supertype (if it has one), and from information about other
epitopes of any HLA type. Also, we would like to learn automatically when each
type of information is appropriate, and to what degree, allowing us to combine
them in a principled way for prediction.

The essence of how we achieve this goal is in the features we use, and is also
related to the fact that we train on all HLA alleles and supertypes simultane-
ously with these features even though our model makes predictions on whether
a peptide is an epitope for a specific HLA allele. In the simplest application to
epitope prediction, a separate model would either be built for each HLA-allele,
or for each supertype, and the features (inputs to the model) would be the amino
acid sequence of the peptide, or some encoding of these, such as those discussed
for example in [14]. Standard elaborations to this simple approach, in any do-
main, include using higher order moments of the data (e.g., pairwise statistics of
neighboring amino acids) as features in addition to the features of single amino
acids. While such higher-order statistics may improve epitope prediction, such
experimentation is not the focus of our work. Instead, as mentioned above, we
seek to leverage information across HLA alleles and supertypes, and do so by
learning a single model for all HLA alleles using features of the form (1) position
i has a particular amino acid or chemical property and the epitope’s HLA al-
lele is Y , which when used alone would be roughly equivalent to simultaneously
building separate models for each HLA allele, as well as (2) position i has a par-
ticular amino acid or chemical property and the epitope’s HLA has supertype
Y , which helps leverage information across HLA alleles for a given supertype,
and (3) position i has a particular amino acid or position i has an amino acid
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with a particular chemical property, which helps leverage information across all
HLA alleles and supertypes (see Table 2). This leveraging approach can be ap-
plied to various classification models including logistic regression, support vector
machines, and artificial neural networks. In our experiments, we show that our
leveraging approach applied to logistic regression yields more accurate predic-
tions than those generated from models learned on each supertype individually.

2 Related Work

The general idea of leveraging has been described previously under the names
“multitask learning” and “transfer learning” (e.g., [5]). To our knowledge, the
only published epitope prediction algorithm that might leverage information
across alleles or supertypes is DistBoost [19], which could do so indirectly by
learning a distance function across the entire space of epitopes (i.e., for all alleles
or supertypes). However, they did not explicitly seek to leverage information in
the way we have described, and therefore did not explicitly show that their
algorithm does in fact leverage this type of information.

Other approaches to the problem of epitope prediction (or the slightly dif-
ferent problem of binding affinity prediction) include the use of weight matrices
(sometimes called PSSMs—position-specific scoring matrices), whereby a prob-
ability distribution or score over amino acids at each position is used to make a
prediction [18, 1, 6], artificial-neural-network approaches which are said to model
amino acid position correlations in a fruitful way [1, 4, 13, 20], support vector ma-
chine (SVM) approaches [1, 2, 20, 7] and decision trees [20]. In addition, there is
the mostly hand-crafted SYFPEITHI classifier [17]. The approach of Nielsen et
al. also uses a Hidden Markov Model (HMM) whose output is used as feature
for their neural network [14]. In the recent approach of Larsen et al. in [11], they
demonstrate that their binding affinity neural network approach combined with
TAP transport efficiency predictors and proteasomal cleavage predictors does
better than a non-integrated approach where the latter two pieces of informa-
tion are not used.

Among the aforementioned papers, [18, 4, 2, 6, 20, 7] build classifiers for in-
dividual HLA alleles (or just a single HLA allele) using only data from each
respective HLA class for training. [11] build classifiers for individual supertypes
using only data from each respective supertype for training, while [14] use some
combination of the two, but never train on data outside of a the respective
allele or supertype. Furthermore, perhaps with the exception of PSSM-based
approaches, our method is simpler to understand and to implement, yet out-
performs PSSM-based methods, and also achieves better results than the most
sophisticated methods.

3 Logistic Regression

Let y denote the binary variable (or class label) to be predicted and x =
x1, . . . , xk denote the binary (0/1) or continuous features to be used for
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prediction. In our case, y corresponds to whether or not a peptide–HLA pair
is an epitope and the features correspond to 0/1 encodings of properties of the
peptide–HLA pair. In this notation, the logistic regression model is

log
p(y|x)

1− p(y|x)
= w0 +

k∑
i=1

wi · xi (1)

where w = (w0, . . . , wk) are the model parameters or weights. Given a data set
of cases (y1,x1), . . . , (yn,xm) that are independent and identically distributed
given the model parameters, we learn the weights by assuming that they are
mutually independent, each having a Gaussian prior p(wi|σ2) = N(0, σ2), and
determining the weights that have the maximum a posteriori (MAP) probability.
That is, we find the weights that maximize the quantity

n∑
j=1

log p(yi|xi,w) +
k∑

i=0

log p(wi|σ2) (2)

This optimization problem has a global maximum which can be found by a
variety of techniques including gradient descent. We use the method (and code)
of Goodman [2002], which he calls sequential conditional generalized iterative
scaling. We tune σ2 using ten-fold cross validation on the training data.

4 Data and Methods

We used two data sets to evaluate our approach. The first, called MHCBN,
contains selected 9mer–HLA and 9mer–supertype pairs from the MHCBN data
repository. In this repository, both epitopes and non-epitopes are experimentally
confirmed. See [19] for details.

The second, called SYFPEITHI+LANL, includes all unique 9mer–HLA epi-
topes from the SYFPEITHI database (www.syfpeithi.de) in March 2004 and
the Los Alamos HIV Database (www.hiv.lanl.gov) in December 2004. Exam-
ples not classified as human MHC class I (HLA-A, HLA-B, or HLA-C) were
excluded, yielding 1287 and 339 positive examples of epitopes from SYFPEITHI
and LANL, respectively. Neither SYFPEITHI nor LANL contains experimen-
tally confirmed negatives, so we generated examples of non-epitope HLA–9mer
pairs by randomly drawing from the distributions of HLAs and amino acids in
the positive examples. The amino acid at each position in a 9mer was generated
independently.1 For each positive example, we generated 100 negative examples.

1 In preliminary experiments, we found that, in contrast to the findings of [19] on
MHCBN, the use of real negatives from a proprietary data source and the use of
randomly generated negatives produced essentially the same results. Here, we report
results for the randomly generated negatives, so that we may publish the data on
which these results are based.
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Table 1. Mapping from HLA to supertype (available at www.hiv.lanl.gov/content/
immunology/motif scan/supertype.html)

Supertype HLAs
A1 A01, A25, A26, A32, A36, A43, A80
A2 A02, A6802, A69
A3 A03, A11, A31, A33, A6801
A24 A23, A24, A30
B7 B07, B1508, B35, B51, B53, B54, B55, B56, B67, B78
B27 B14, B1503, B1509, B1510, B1518, B27, B38, B39, B48, B73
B44 B18, B37, B40, B41, B44, B45, B49, B50
B58 B1516, B1517, B57, B58
B62 B13, B13, B1501, B1502, B1506, B1512, B1513, B1514, B1519, B1521, B46, B52

As the research in our lab focuses primarily on the prediction of HIV epi-
topes, we trained our models on both SYFPEITHI and LANL data, but then
tested only on LANL data with appropriate cross validation. In particular, we
used ten-fold cross validation where the training data of a given fold consisted
of all SYFPEITHI data and nine-tenths of the LANL data, and the test data
consisted of one-tenth of the LANL data. If an epitope appeared in both SYF-
PEITHI and LANL, we treated it as if it were in LANL only. As mentioned,
HLA alleles are encoded in a hierarchy. Because many examples in the SYF-
PEITHI and LANL databases have HLA alleles encoded only to two digits,
we encoded all our examples with two-digit HLA alleles, except for the allele
classes B15xx and A68xx, which have elements that belong to different super-
types. There are several supertype classifications; we used the one available from
LANL shown in Table 1. The train–test splits of each fold are available at
ftp://ftp.research.microsoft.com/users/heckerma/recomb06.

As discussed, we introduced a variety of feature types in an effort to leverage
information across HLA alleles and supertypes. The types of features that we
used are described in Table 2. In addition to features representing the presence or
absence of amino acids at positions along the epitope, we included features rep-
resenting the chemical properties of the amino acids in our LR models. We used
the chemical properties available (e.g.) at www.geneinfinity.org/rastop/manual/
aatable.htm: cyclic, aliphatic, aromatic, hydrophobic, buried, large, medium,

Table 2. Feature types used for prediction. Examples are shown for the peptide
SLYNTVATL which is an epitope for HLA allele A*0201, which in turn belongs to
the A2 supertype.

Feature type Description
HLA The HLA allele with 2 or 4 digit encoding; HLA=A02
Supertype (S) The supertype of the HLA allele; S=A2

HLA ∧ amino acid (AA) Conjunction of HLA and AA; HLA=A02 and AA1=Ser
HLA ∧ chemical property (CP) Conjunction of HLA and CP; HLA=A02 and polar(AA1)

S ∧ AA Conjunction of S and AA; S=A2 and AA1=Ser
S ∧ CP Conjunction of S and CP; S=A2 and polar(AA1=Ser)

AA Amino acid at a given position in the peptide; AA1=Ser
CP Chemical property of amino acid at given position; polar(AA1)
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small, negative, positive, charged, and polar. We note, however, that in a sep-
arate comparison using LR, the addition of the chemical-property features did
not improve predictive accuracy.

Using a large number of features in LR can lead to poor prediction unless
some method for feature selection is used [e.g., Kohavi, 1995]. In our experi-
ments, we set the Z weights with the smallest magnitudes to zero, where Z was
determined by optimizing the average log probability of prediction on a ten-
fold cross validation of the training set. (We used these same cross-validation
runs to tune σ2.) In our largest model, which used all feature types and was
trained on all of the data, this feature selection method chose 3,180 out of 23,852
features.2

Finally, to evaluate prediction accuracy, we used ROC curves—in particular,
plots of the false-positive rate (% non-epitopes identified as epitopes) versus the
false-negative rate (% epitopes missed). We summarized the prediction accu-
racy for a given method using the area under the curve (AUC) of the ROC.
To determine whether two methods are significantly different, for each distinct
false-negative value, we determined corresponding false-positive values for the
two methods, and applied the resulting pairs to a two-sided Wilcoxon matched-
pairs signed-ranks test. We deemed a difference to be significant if it’s p-value
(corrected for multiple tests when appropriate) was less than 0.05.

5 Results

First, we examined whether LR with our features can leverage information about
epitopes associated with a variety of supertypes and/or HLA alleles to help pre-
dict epitopes associated with different supertypes and/or alleles. To do so, for
each supertype (including “none”), we compared the predictive accuracy of a
leveraged model that was learned from all training examples with a non-leveraged
or individual model that was trained only on epitopes (and non-epitopes) as-
sociated with that supertype. Our comparison used ten-fold cross validation,
stratified by class label. We pooled the results across the ten folds before gen-
erating the ROC curves. In this case, pooling was justified because LR models
produce calibrated probabilities. Figure 1 shows ROC curves for leveraged and
individual models for each supertype. Leveraging helps significantly for two of
the supertypes (A24 and B7)3, and helps dramatically when predicting epitopes
whose HLA alleles have no supertype. In two cases (B27 and B62), the AUC for
predictions of the leveraged model is greater than that for non-leveraged model,
but the differences are not significant.

Second, we compared the predictions of our (leveraged) LR model with those
of DistBoost. In their paper, Yanover and Hertz [19] compared their approach to

2 Many more than 23,852 features were possible, but only this many were warranted
based on the training data (e.g., if amino acid Arg was never found in position 3,
then no corresponding feature was created).

3 The p-value of 0.0267 for A2 is not significant after Bonferroni correction.
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Fig. 1. ROC curves, AUCs, and p-values (not Bonferroni corrected) for leveraged and
non-leveraged (individual) predictions of epitopes having alleles in each supertype (in-
cluding “none”, i.e., those not belonging to any supertype). ROC curves plot false-
positive rate versus false-negative rate.
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Fig. 2. ROC curves for LR and DistBoost applied to five-fold cross validation 9mer
data from MHCBN. The two-sided p-value from false-positive rates pooled across the
five folds is 1.8210e-08.
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Fig. 3. ROC curves for LR and DistBoost applied to five-fold cross validation of
the SYFPEITHI+LANL data. The two-sided p-value from false-positive rates pooled
across the five folds is 5.1581e-29.

RANKPEP (PSSM), NetMHC (artificial neural network), and SVMHC (support-
vector machine). Their comparison used a 70/30 train–test split of the MHCBN
data set, and evaluated performance on A2 supertype epitopes. Yanover and Hertz
found that DistBoost predicted significantly better than the other methods. Here,
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Table 3. A portion of a model learned from the full SYFPEITHI+LANL data set. The
forty features with the largest magnitude weights are shown. Positive weights increase
the probability of being an epitope. Feature names are described in Table 2.

weight feature
-3.87821 large(AA1)
-3.01895 S=A1
2.8267 S=B27 and AA2=Arg

-2.61487 polar(AA1)
-2.48691 large(AA2)
-2.09559 HLA=A01
-1.83075 polar(AA2)
1.73488 S=A1 and polar(AA1)
1.71218 S=A1 and charged(AA1)
1.66352 S=B27 and positive(AA2)
-1.62407 charged(AA1)
1.47669 S=A24 and AA2=Tyr
-1.4628 aliphatic(AA3)
1.45694 negative(AA2)
1.44531 S=A1 and large(AA1)
-1.39833 AA1=Pro
1.35753 S=B44 and large(AA2)
-1.32388 buried(AA4)
1.31555 HLA=B27 and large(AA2)
1.29462 AA4=Trp
1.28076 HLA=B27 and AA2=Arg
1.27827 S=B44 and AA2=Glu
1.26313 HLA=A02 and AA2=Leu
-1.26253 medium(AA1)
1.24698 S=A1 and hydrophobic(AA3)
1.24487 S=B62 and AA2=Gln
1.22292 S=A24 and charged(AA1)
1.19599 S=A24 and positive(AA1)
1.18911 S=A1 and aliphatic(AA3)
-1.17646 charged(AA2)
1.16866 S=A3 and positive(AA1)
1.09196 S=B27 and large(AA2)
1.08261 HLA=A02 and large(AA1)
1.07628 S=B7 and AA2=Pro
-1.07365 S=B44 and hydrophobic(AA2)
1.04742 AA4=Pro
1.04397 S=none and large(AA1)
-1.0417 S=B27 and hydrophobic(AA2)
1.03173 AA9=Leu
1.02222 HLA=A02 and polar(AA1)
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we compared DistBoost with LR on this same data and on the SYFPEITHI+
LANL data4, in both cases using five-fold cross validation stratified by class label
and HLA. We ran DistBoost for 30 boosting iterations on the MHCBN data set,
and for 50 iterations on the larger SYFPEITHI+LANL data set. (We also tried
100 boosting iterations for each data set, with no substantial change in results.)
The results, illustrated in Figures 2 and 3, indicate that the predictive accuracy
of LR is better than that of DistBoost. Two-sided p-values computed from false-
positive rates pooled across the five folds of the MHCBN and SYFPEITHI+LANL
data are 1.8210e-08 and 5.1581e-29, respectively.

Finally, it is interesting to look at the learned features and their weights to
see where leveraging is taking place. Table 3 contains a portion of a model
trained on the full SYFPEITHI+LANL data set. The forty features with the
largest magnitude weights are shown. Many of these strong features are general
(e.g., large(AA1) and polar(AA1)) or contain conjunctions with supertypes (e.g.,
Supertype=A1 and polar(AA1)) and thereby facilitate leveraging.

6 Discussion

We have presented a model for predicting HLA class I restricted CTL epitopes.
Our model, which is based on logistic regression, is simple to implement and
understand, is solved by finding a single global maximum, and is more accurate
(to our knowledge) than the best published results. In addition, we have shown
how to leverage information about epitopes having one allele or supertype to
predict epitopes having different alleles or supertypes. We have shown that this
leveraging can improve prediction of epitopes having HLA alleles with known
supertypes, and dramatically increases our ability to predict epitopes having
alleles which do not fall into any of the known supertypes.

Our next steps will be to build and evaluate LR predictors for HLA class
I epitopes of lengths eight, ten, and eleven amino acids. In addition, rather
than use a predefined set of supertypes, we plan to learn a set of (overlapping)
supertypes that lead to accurate prediction. In particular, we plan to extend
the LR model to include hidden variables that represent these new supertypes.
Finally, we are looking at whether the inclusion of additional features such as
distances between amino acids in the epitope and in the HLA molecule when
the epitope and HLA molecule are in their minimum-energy configuration can
improve prediction accuracy.

4 After the publication of [19], the entry AYAKAAAAF–A02 was deleted from the
MHCBN repository. We similarly deleted this entry from the MHCBN data set.
The SYFPEITHI+LANL data set contained nine entries with unique HLA types.
We deleted these entries as they could not be processed by DistBoost. In addi-
tion, we used only one negative example for every positive example to accom-
modate DistBoost’s computational requirements, and used the feature encoding
of [19] when training and testing with DistBoost. The train–test splits of each
fold for both comparisons are available at ftp://ftp.research.microsoft.com/users/
heckerma/recomb06.
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Abstract. We describe and empirically evaluate machine learning
methods for the prediction of zinc binding sites from protein sequences.
We start by observing that a data set consisting of single residues as ex-
amples is affected by autocorrelation and we propose an ad-hoc remedy
in which sequentially close pairs of candidate residues are classified as
being jointly involved in the coordination of a zinc ion. We develop a
kernel for this particular type of data that can handle variable length
gaps between candidate coordinating residues. Our empirical evaluation
on a data set of non redundant protein chains shows that explicit mod-
eling the correlation between residues close in sequence allows us to gain
a significant improvement in the prediction performance.

1 Introduction

Automatic discovery of structural and functional sites from protein sequences
can help towards understanding of protein folding and completing functional an-
notations of genomes. Machine learning approaches have been applied to several
prediction tasks of this kind including the prediction of phosphorylation sites
[1], signal peptides [2, 3], bonding state of cysteines [4, 5] and disulfide bridges
[6, 7]. Here we are interested in the prediction of metal binding sites from se-
quence information alone, a problem that has received relatively little attention
so far. Proteins that must bind metal ions for their function (metalloproteins)
constitute a significant share of the proteome of any organism. A metal ion (or
metal-containing cofactor) may be needed because it is involved in the catalytic
mechanism and/or because it stabilizes/determines the protein tertiary or qua-
ternary structure. The genomic scale study of metalloproteins could significantly
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benefit from machine learning methods applied to prediction of metal binding
sites. In fact, the problem of whether a protein needs a metal ion for its function
is a major challenge, even from the experimental point of view. Expression and
purification of a protein may not solve this problem as a metalloprotein can be
prepared in the demetallated form and a non-metalloprotein can be prepared as
associated to a spurious metal ion. In this paper, we focus on an important class
of structural and functional sites that involves the binding with zinc ions. Zinc is
essential for Life and is the second most abundant transition metal ion in living
organisms after iron. In contrast to other transition metal ions, such as copper
and iron, zinc(II) does not undergo redox reactions thanks to its filled D-shell.
In Nature, it has essentially two possible roles: catalytic or structural, but can
also participate in signalling events in quite specific cellular processes. A major
role of zinc in humans is in the stabilization of the structure of a huge number of
transcription factors, with a profound impact on the regulation of gene expres-
sion. Zinc ions can be coordinated by a subset of amino acids (see Table 2) and
binding sites are locally constrained by the side chain geometry. For this reason,
several sites can be identified with high precision just mining regular expression
patterns along the protein sequence. The method presented in [8] mines patterns
from metalloproteins having known structure to search gene banks for new met-
alloproteins. Regular expression patterns are often very specific but may give a
low coverage (many false negatives). In addition, the amino acid conservation
near the site is a potentially useful source of information that is difficult to take
into account by using simple pattern matching approaches. Results in [9] cor-
roborate these observations showing that a support vector machine (SVM) pre-
dictor based on multiple alignments significantly outperforms a predictor based
on PROSITE patterns in discriminating between cysteines bound to prosthetic
groups and cysteines involved in disulfide bridges. The method used in [9] is
conceptually very similar to the traditional 1D prediction approach originally
developed for secondary structure prediction [10], where each example consists
of a window of multiple alignment profiles centered around the target residue.

Although effective, the above approaches are less than perfect and their pre-
dictive performance can be further improved. In this paper we identify a specific
problem in their formulation and propose an ad-hoc solution. Most supervised
learning algorithms (including SVM) build upon the assumption that examples
are sampled independently. Unfortunately, this assumption can be badly violated
when formulating prediction of metal binding sites as a traditional 1D prediction
problem. The autocorrelation between the metal bonding state is strong in this
domain because of the linkage between residues that coordinate the same ion.
The linkage relation is not observed on future data but we show in Section 2.3
that a strong autocorrelation is also induced by simply modeling the close-in-
sequence relation. This is not surprising since most binding sites contain at
least two coordinating residues with short sequence separation. Autocorrelation
problems have been recently identified in the context of relational learning [11]
and collective classification solutions have been proposed based on probabilis-
tic learners [12, 13]. Similar solutions do not yet exist for extending in the same
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direction other statistical learning algorithms such as SVM. Our solution is based
on a reformulation of the learning problem where examples formed by pairs of
sequentially close residues are considered. We test our method on a represen-
tative non redundant set of zinc proteins in order to assess the generalization
power of the method on new chains. Our results show a significant improvement
over the traditional 1D prediction approach.

2 Data Set Description and Statistics

2.1 Data Preparation

We generated a data set of high quality annotated sequences extracted from the
Protein Data Bank (PDB). A set of 305 unique zinc binding proteins was selected
among all the structures deposited in the PDB at June 2005 and containing at
least one zinc ion in the coordinate file. Metal bindings were detected using a
threshold of 3Å and excluding carbon atoms and atoms in the backbone. In
order to provide negative examples of non zinc binding proteins, an additional
set was generated by running UniqueProt [14] with zero HSSP distance on PDB
entries that are not metalloproteins. We thus obtained a second data set of 2,369
chains. Zinc binding proteins whose structure was solved in the apo (i.e. without
metal) form, were removed from the ensemble of non-metalloproteins.

2.2 A Taxonomy of Zinc Binding Sites and Sequences

Zinc binding sites of zinc metalloenzymes are traditionally divided into two main
groups [15]: catalytic (if the ions bind a molecule directly involved in a reaction)
and structural (stabilizing the folding of the protein but not involved in any
reaction). In addition, zinc may influence quaternary structure; we consider these
cases as belonging to a third site type (interface site), which also lacks a catalytic
role. Site types can be heuristically correlated to the number of coordinating
residues in the same chain. The distribution of site types obtained in this way is
reported in Table 1.

Table 2 reports the observed binding frequencies grouped by amino acid type
and site type. As expected, cysteines, histidines, aspartic acid and glutamic acid
are the only residues that bind zinc with a high enough frequency. It is interesting
to note that such residues show different binding attitudes with respect to the
site type. While cysteines are mainly involved in structural sites and histidines
participate to both Zn4 and Zn3 sites with similar frequency, aspartic and glu-
tamic acids are much more common in catalytic sites than in any other site type.

2.3 Bonding State Autocorrelation

Jensen & Neville [11] define relational autocorrelation as a measure of linkage
between examples in a data set due to the presence of binary relations that link
examples to other objects in the domain (e.g. in a domain where movies are the
examples, linkage might be due to the fact that two movies were made by the
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Table 1. Top: Distribution of site types (according to the number of coordinating
residues in the same chain) in the 305 zinc-protein data set. The second column is the
number of sites for each site type; the third column is the number of chains having at
least one site of the type specified in the row. Bottom: Number of chains containing
multiple site types. The second row gives the number of chains that contain at least
one site for each of the types belonging to the set specified in the first row.

Number of Coordinating Residues Site Number Chain Number
1 (Zn1) 37 20
2 (interface - Zn2) 65 53
3 (catalytic - Zn3) 123 106
4 (structural - Zn4) 239 175
Any 464 305

Site types {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
# Chains 14 9 3 21 4 8 7 1 0 2 0

Table 2. Statistics over the 305 zinc proteins (464 binding sites) divided by amino acid
and site type. Na is the amino acid occurrence number in corresponding site type; fa

is the observed percentage of each amino acid in a given site type; fs is the observed
percentage of each site type for a given amino acid. All is the total number of times a
given amino acid binds zinc in general.

Site type Zn4 Zn3 Zn2 Zn1 All
Amino acid Na fa fs Na fa fs Na fa fs Na fa fs Na

C 663 69.3 91.8 45 12.2 6.2 10 7.7 1.4 4 10.8 0.6 722
H 220 23.0 45.7 194 52.6 40.3 59 45.4 12.3 8 21.6 1.7 481
D 48 5.0 27.6 83 22.5 47.7 30 23.1 17.2 13 35.1 7.5 174
E 18 1.9 17.5 46 12.5 44.7 28 21.5 27.2 11 29.7 10.7 103
N 5 0.5 83.3 0 0.0 0.0 1 0.8 16.7 0 0.0 0.0 6
Q 2 0.2 33.3 1 0.3 16.7 2 1.5 33.3 1 2.7 16.7 6

Total 956 100 - 369 100 - 130 100 - 37 100 - 1492

same studio). Here we expect the bonding state of candidate residues be affected
by autocorrelation because of the presence of at least two relations causing link-
age: coordinates(r,z), linking a residue r to a zinc ion z, and member(r,c),
linking a residue r to a protein chain c. Unfortunately the first kind of linkage
cannot be directly exploited by a classifier as the relation coordinates is hidden
on new data. However, we may hope to capture some information about this re-
lation by looking at the sequence separation between two candidate residues. In
particular, there should be some positive correlation between the bonding state
of pairs of residues within the same chain, and it should also depend on the
sequence separation between them.

Correlation was empirically measured on the data set described in Section 2.
In Figure 1(a) the prior probability of zinc binding for a residue is compared to
the same probability conditioned on the presence of another zinc binding residue
within a certain separation, for different values of the separation threshold.
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Fig. 1. (a) Probabilities of zinc binding for a given residue: prior and conditioned on
the presence of another zinc binding residue within a certain separation. (b) Correlation
between the targets of pairs of residues within a given distance.

Table 3. Binding site patterns ordered by frequency of occurrence in the 464 sites.
Square brackets denote alternative binding residues, x(·) denotes a sequence of residues
of an arbitrary length, x(n−m) denotes a sequence of between n and m residues, x(> n)
denotes a sequence of more than n residues. The type column highlights some common
binding site patterns: S refers to x(0-7), L refers to x(> 7).

Binding Site Patterns N Type
[CHDE] x(·) [CHDE] x(·) [CHDE] x(·) [CHDE] 232
[CH] x(·) [CH] x(·) [CH] x(·) [CH] 196
[CHDE] x(0-7) [CHDE] x(·) [CHDE] x(0-7) [CHDE] 161
[CHDE] x(0-7) [CHDE] x(> 7) [CHDE] x(0-7) [CHDE] 141 SLS
[CHDE] x(·) [CHDE] x(·) [CHDE] 122
[C] x(·) [C] x(·) [C] x(·) [C] 85
[CHDE] x(·) [CHDE] 62
[CHDE] x(0-7) [CHDE] x(> 7) [CHDE] 55 SL
[CH] x(·) [CH] x(·) [CH] 37
[CHDE] x(> 7) [CHDE] x(0-7) [CHDE] 24 LS
[CH] x(·) [CH] 21
[CHDE] x(0-7) [CHDE] x(> 7) [CHDE] x(> 7) [CHDE] 17 SLL
[CHDE] x(> 7) [CHDE] x(0-7) [CHDE] x(0-7) [CHDE] 16 LSS
[DE] x(·) [DE] 15
[DE] x(·) [DE] x(·) [DE] 10
[CHDE] x(> 7) [CHDE] x(> 7) [CHDE] x(0-7) [CHDE] 10 LLS
[CHDE] x(0-7) [CHDE] x(0-7) [CHDE] x(> 7) [CHDE] 8 SSL
[DE] x(·) [DE] x(·) [DE] x(·) [DE] 1

Figure 1(b) reports the correlation coefficient between the bonding state of pairs
of residues, again varying the separation threshold between them. Both curves
show a very similar behavior, with the highest peak for a distance of less then
three residues, and a small one for a distance of around twenty residues. It can be
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Table 4. Site and chain coverage for the [CHDE] x(0-7) [CHDE] semi-pattern. N is
absolute, while f is the percentage over the total number of chains/sites of that type.

Chain Coverage Site Coverage
Site Type N f N f

All 261 85.5 338 72.8
Zn4 168 96.0 227 94.9
Zn3 85 80.1 86 69.9
Zn2 35 66.0 25 38.4
Zn1 13 65.0 0 0.0

noted that correlation tends to a non zero residual asymptotic value as distance
grows. This effect is due to the relation member, by which two residues are linked
by the fact of belonging to the same chain.

Patterns of Binding Sites. Metal binding sites can be described by patterns
characterized by the type of residues coordinating the same ion and their se-
quence separation. Table 3 reports the most commonly occurring zinc binding
patterns together to their frequencies within our data set. Many of these sites,
especially the structural ones, contain pairs of coordinating residues whose se-
quence separation is less than seven residues. In the following, a pattern formed
by a single pair of nearby coordinating residues is called a semi-pattern. Most
structural sites consist of two semi-patterns whose distance ranges between 8 and
29. Catalytic sites typically contain a semi-pattern and a single residue. Finally,
interface sites are observed as a single semi-pattern in each chain. Table 4 shows
the fraction of sites and zinc proteins containing at least once the semi-pattern
[CHDE] x(0-7) [CHDE]. These observations suggest a partial solution to the re-
lational auto-correlation problem based on binary classification of semi-patterns
to predict binding sites.

3 Methods

3.1 Standard Window Based Local Predictor

Many applications of machine learning to 1D prediction tasks use a simple vec-
tor representation obtained by forming a window of flanking residues centered
around the site of interest. Following the seminal work of Rost & Sander [10],
evolutionary information is incorporated in these representations by computing
multiple alignment profiles. In this approach, each example is represented as a
vector of size d = (2k + 1)p, where k is the size of the window and p the size of
the position specific descriptor.

We enriched multiple alignment profiles by two indicators of profile quality,
namely the entropy and the relative weight of gapless real matches to pseudo-
counts. An additional flag was included to mark positions ranging out of the se-
quence limits, resulting in an all-zero profile. We thus obtained a position specific
descriptor of size p = 23. A baseline classifier was constructed using this represen-
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tation in conjunction with an SVM classifier trained to predict the zinc bonding
state of individual residues (cysteine, histidine, aspartic acid and glutamic acid).

Support Vector Machines. Support vector machines [16] are a well estab-
lished machine learning algorithm capable of effectively handling extremely large
and sparse feature spaces. Given a training set Dm = {(xi, yi)}m

i=1, where yi ∈
{−1, 1} is the class label of example xi, a new instance x is classified as

f(x) =
m∑

i=1

αiyiK(x, xi) (1)

where the sign of f(x) gives the predicted class, and the actual value is a measure
of the confidence of such prediction.K is a real valued positive semidefinite kernel
function measuring the similarity between pairs of examples, and the weights
αi are learned by a convex optimization function trading off between training
errors and complexity of the learned hypothesis. Details on kernel machines can
be found in several textbooks [17, 18]. We employed the dot product between
example vectors as a baseline linear kernel, to be combined with more complex
kernels as described in the experimental section.

3.2 Semi–pattern Based Predictor

A standard window based local predictor such as the one described in the pre-
vious section does not explicitly model the correlation analyzed in Section 2.3,
missing a strong potential source of information. Thus, we developed an ad-
hoc semi-pattern predictor for pairs of residues in nearby positions within the
sequence. A candidate semi-pattern is a pair of residues (cysteine, histidine, as-
partic acid or glutamic acid) separated by a gap of δ residues, with δ ranging
from zero to seven. The task is to predict whether the semi-pattern is part of a
zinc binding site. Each example is represented by a window of local descriptors
(based on multiple alignment profiles) centered around the semi-pattern, includ-
ing the gap between the candidate residues. A semi-pattern containing a gap of
length δ is thus encoded into a vector of size d = (2k + 2 + δ)p , where k is the
window size and p is the size of the position specific descriptor as described in
Section 3.1. In order to address this task, the predictor must be able to compare
pairs of semi-patterns having gaps of different lengths. We thus developed an
ad-hoc semi-pattern kernel in the following way. Given two vectors x and z, of
size dx and dz , representing semi-patterns with gap length δx and δz respectively,

Ksemi−pattern(x, z) = 〈x[1 : w], z[1 : w]〉
+ 〈x[dx − w : dx], y[dz − w : dz ]〉
+ Kgap(x[w + 1 : δxp+ w], z[w + 1 : δzp+ w]) (2)

where v[i : j] is the sub-vector of v that extends from i to j, and w = (k + 1)p.
The first two contributions compute the dot products between the left and right
windows around the semi-patterns, included the two candidate residues, whose
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sizes do not vary regardless of the gap lengths. Kgap is the kernel between the
gaps separating the candidate residues, and is computed as:

Kgap(u, v) =
{
Kμgap(u, v) + 〈u, v〉 if |u| = |v|
Kμgap(u, v) otherwise

with

Kμgap(u, v) =

〈 |u|∑
i=1

u[(i− 1)p+ 1 : ip] ,
|v|∑
i=1

v[(i− 1)p+ 1 : ip]

〉
Kμgap computes the dot product between the position specific descriptors within
each gap, and if the two gaps have same length, the full dot product between
the descriptors in the gaps is added.

3.3 Gating Network

The coverage of the [CHDE] x(0-7) [CHDE] semi-pattern (see Table 4) makes
it a good indicator of zinc binding, but a number of binding sites remain un-
covered. Moreover, the semi-pattern can match a subsequence which, while not
being part of a binding site as a whole, still binds zinc with just one of the
two candidate residues. Semi-patterns having a single coordinating residue are
considered to be negative examples. This implies that one of the two residues
would by construction receive an incorrect label. However, in these cases we can
still rely on the local predictor (see Section 3.1) to predict its bonding state. For
any given residue we combine the single output from the local predictor, and the
(possibly empty) set of outputs from the semi-pattern based predictor, as we get
one prediction for each subsequence matching the semi-pattern and containing
the residue as one of the two binding candidates. The functional margin calcu-
lated by a single SVM (see Eq. (1)) cannot be directly interpreted as a degree
of confidence of the predictor, as its magnitude depends on artifacts such as
the number of support vectors and the dimension of the feature space. For this
reason, in order to combine two predictors, it is preferable to first convert their
margins into conditional probabilities using e.g. the sigmoid function approach
suggested in [19]:

P (Y = 1|x) =
1

1 + exp (−Af(x)−B)

where f(x) is the SVM output for example x, and sigmoid slope (A) and offset
(B) are parameters to be learned from data. The probability P (Yb = 1|x) that a
single residue binds zinc can now be computed by the following gating network :

P (Yb = 1|x) = P (Ys = 1|x) + (1− P (Ys = 1|x))P (Yl = 1|x) (3)

where P (Yl = 1|x) is the probability of zinc binding from the local predic-
tor, while P (Ys = 1|x) is the probability of x being involved in a positive
semi-pattern, approximated as the maximum between the probabilities for each
semi-pattern x is actually involved in.
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4 Experimental Results

We run a series of experiments aimed at comparing the predictive power of
the local predictor alone to that of the full gating network. While aspartic and
glutamic acids coordinate zinc ions less frequently than cysteines and histidines
(see Table 2), they are far more abundant in protein chains. This yields a highly
unbalanced data set (the ratios of positive to negative examples were found to
be 1:59 and 1:145 for the local and the semi-pattern predictor, respectively). We
thus initially focused on cysteines and histidines, bringing the unbalancing down
to 1:16 and 1:11 at the residue and semi-pattern level respectively. Moreover, we
labelled a [CH] x(0-7) [CH] semi-pattern as positive if both candidate residues
bound a zinc ion, even if they were not actually binding the same ion. Preliminary
experiments showed this to be a better choice than considering such a case as
a negative example, allowing to recover a few positive examples, especially for
semi-pattern matches with longer gaps.

Multiple alignment profiles were computed using PSI-Blast [20] on the non-
redundant (nr) NCBI protein database. In order to reduce noise in the training
data we discarded examples whose profile had a relative weight less than 0.015,
indicating that too few sequences had aligned at that position. This also allowed
to discard poly-histidine tags which are attached at either the N- or C-terminus
of some chains in the PDB, as a result of protein engineering aimed at making
protein purification easier. We employed a Gaussian kernel on top of both the
linear kernel of the local predictor and the semi-pattern kernel (Eq. (2)). A
stratified 4-fold cross validation procedure was used to tune Gaussian width,
C regularization parameter, window size and parameters of the sigmoids of the
gating network. Due to the strong unbalancing of the data set, accuracy is not
a reliable measure of performance. We used the area under the recall-precision
curve (AURPC) for both model selection and final evaluation, as it is especially
suitable for extremely unbalanced data sets. We also computed the area under
the ROC curve (AUC) to further assess the significance of the results.

The best models for the local predictor and the gating network were tested
on an additional stratified 5-fold cross validation procedure, and obtained an
AURPC equal to 0.554 and 0.611 respectively. Figure 2 reports full recall preci-
sion curves, showing that the gating network consistently outperforms the local
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Fig. 2. Residue level recall-precision curves for the best [CH] local and gated predictors.
(a) cysteines and histidines together, (b) cysteines only, (c) histidines only.
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Fig. 3. Protein level recall-precision curves for the best [CH] gated predictor. (a) all
proteins together, (b) proteins divided by zinc site type, (c) proteins with Zn3 sites,
comparison with the best [CHDE] gated predictor.

predictor. While cysteines are far better predicted with respect to histidines,
both predictions are improved by the use of the gating network. AUC values
were 0.889± 0.006 and 0.911± 0.006 for local predictor and gating network re-
spectively, where the method for obtaining the confidence intervals is only avail-
able for the AUC computing the standard error of the Wilcoxon-Mann-Whitney
statistic, confirming that the gating network attains a significant improvement
over the local predictor.

Protein level predictions were obtained by choosing the maximum prediction
between those of the residues contained in the chain. Figure 3(a) reports the
recall precision curve obtained at a protein level for the best gated predictor,
while Figure 3(b) shows the results separately for proteins containing different
binding site types. As expected, Zn4 sites were the easiest to predict, being the
ones showing the strongest regularities and most commonly containing the [CH]
x(0-7) [CH] semi-pattern.

Finally, we investigated the viability of training a predictor for all the four
amino acids involved in zinc binding, trying to overcome the disproportion issue.
On the rationale that binding residues should be well conserved because of their
important functional role, we put a threshold on the residue conservation in
the multiple alignment profile in order to consider it as a candidate target. By
requiring that Pr(D) + Pr(E) ≥ 0.8, we reduced the unbalancing in the data
set for the local predictor to 1:24. At the level of semi-patterns, we realized that
such a threshold produced a reasonable unbalancing only for gap lengths between
one and three, and thus decided to ignore semi-patterns containing aspartic or
glutamic acid with gaps of different lengths. While global performances were
almost unchanged, aspartic acid and glutamic acid alone obtained a value of
the AURPC of 0.203 and 0.130 respectively. Due to the still high unbalancing,
AURPC values for a random predictor are as low as 0.007 for aspartic acid and
0.015 for glutamic acid. AUC values of 0.78± 0.03 and 0.70± 0.04, respectively
(with respect to the 0.5 baseline) confirm that results are significantly better
than random. However, results on these two residues are still preliminary and
further work has to be done in order to provide a prediction quality comparable
to that obtained for cysteines and histidines. It is interesting to note that at
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the level of protein classification, the only difference that can be noted by using
[CHDE] instead of [CH] is a slight improvement in the performances for the
Zn3 binding sites, as shown in Figure 3(a). This is perhaps not surprising given
that half of [DE] residues binding zinc are contained in Zn3 sites, as reported
in Table 2.

5 Conclusions

We have enlightened the autocorrelation problem in the prediction of metal
binding sites from sequence information, and presented an improved approach
based on semi-pattern classification as a simple linkage modeling strategy. Our
results, focused on the prediction of zinc binding proteins, appear to be very
promising, especially if we consider that they have been obtained on a non
redundant set of chains. Sites mainly coordinated by cysteines and histidines
are easier to predict thanks to the availability of a larger number of examples.
Linkage modeling allows us to gain a significant improvement in the prediction
of the bonding state of these residues. Sites coordinated by aspartic acid and
glutamic acid are more difficult to predict because of data sparsity, but our
results are significantly better than chance.

The method has been also evaluated on the task of predicting whether a
given protein is a zinc protein. Good results were obtained in the case of chains
where zinc plays a structural role (Zn4). In the case of chains with catalytic sites
(Zn3) the inclusion of D and E targets does allow us to obtain slightly improved
predictions. In future work, we plan to test the effectiveness of this method at
the level of entire genomes.
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Abstract. We demonstrate an important connection between network
motifs in certain biological networks and validity of evolutionary trees
constructed using parsimony methods. Parsimony methods assume that
taxa are described by a set of characters and infer phylogenetic trees
by minimizing number of character changes required to explain observed
character states. From the perspective of applicability of parsimony
methods, it is important to assess whether the characters used to infer
phylogeny are likely to provide a correct tree. We introduce a graph the-
oretical characterization that helps to select correct characters. Given
a set of characters and a set of taxa, we construct a network called
character overlap graph. We show that the character overlap graph for
characters that are appropriate to use in parsimony methods is char-
acterized by significant under-representation of subnetworks known as
holes, and provide a mathematical validation for this observation. This
characterization explains success in constructing evolutionary trees using
parsimony method for some characters (e.g. protein domains) and lack of
such success for other characters (e.g. introns). In the latter case, the un-
derstanding of mathematical obstacles to applying parsimony methods in
a direct way has lead us to a new approach for dealing with inconsistent
and/or noisy data. Namely, we introduce the concept of persistent char-
acters which is similar but less restrictive than the well known concept of
pairwise compatible characters. Application of this approach to introns
produces the evolutionary tree consistent with the Coelomata hypoth-
esis. In contrast, the direct application of a parsimony method, using
introns as characters, produces a tree which is inconsistent with any of
the two competing evolutionary hypotheses. Similarly, replacing persis-
tence with pairwise compatibility does not lead to a correct tree. This
indicates that the concept of persistence provides an important addition
to the parsimony metohds.

1 Introduction

The term biological network is used in connection to any network where nodes
correspond to biological entities (like proteins, genes, metabolites, etc.) and edges
are defined by a particular relation between these biological units. Can such bi-
ological networks help us to understand evolutionary processes? A number of
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studies have focused on the scale free property – a characteristic power-law like
distribution of node degrees observed in various biological networks [4]. How-
ever, it has been demonstrated [26, 21] that different evolutionary mechanisms
can lead to non-distinguishable scale free-like characteristics. Thus, analysis of
degree distribution alone does not bring sufficient insight into the evolution of a
network. Recently, small size subgraphs, termed network motifs, attracted sig-
nificant attention [23,34,22,24]. The idea is to consider, exhaustively, all possible
subnetworks up to a certain size and identify network motifs which are present
more frequently than expected by chance.

In this work, we introduce the concept of a character overlap graph and re-
late the frequency of occurrences of certain network motifs in these graphs to
the evolution of the corresponding character traits. Consider a set of taxa, where
each taxon is described by a vector of attributes, the so called characters. As-
sume that each character can assume binary values: one – if the taxon has the
property described by the character (we will simply say that the taxon con-
tains the character) and zero – otherwise. We further assume that during the
evolution characters are gained and/or lost. This acquisition and loss of charac-
ter traits is the basis for inferring evolutionary trees using parsimony methods.
Maximum parsimony methods search for the evolutionary tree with the topology
that can explain the observed characters with the minimum number of character
changes (here insertions and deletions). The problem of finding most parsimo-
nious tree, under most parsimony models, is NP-complete [9] and thus the cor-
responding algorithms are computationally intense. However, a more significant
drawback comes from the observation that evolutionary trees constructed with
these methods are sometimes incorrect. In this work, we focus on the second
problem.

The correctness of the evolutionary tree obtained using a parsimony method
depends strongly on the characters used to infer the tree. Intuitively, characters
that are easy to gain and easy to lose are not appropriate to use with maximum
parsimony methods. Extensive independent acquisition and/or loss of characters
in several lineages can make it difficult, if not impossible, to recover the correct
evolutionary relationships. At the same time, any realistic approach has to toler-
ate some events of this type. Therefore, it is important to be able to distinguish
characters that provide a consistent evolutionary signal from those which do not.
We propose a graph theoretical approach to address this problem.

As mentioned above, we use a particular type of network - a character over-
lap graph. The vertices of a character overlap graph are characters, and there
is an edge between two such characters if and only if there exists a taxon that
contains both characters. First, we focus on characters that we call persistent.
A character is persistent if it is gained exactly once and lost at most once.
Thus, the assumption of persistence is weaker than what is required in per-
fect parsimony (where a character can change state only once) but stronger
than in Dollo parsimony (where there is no restriction on the number deletions
of any given character). We show that a character overlap graph for persistent
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characters cannot contain network motifs known as holes. The simplest hole
is a cycle of four nodes with no diagonal edges (chords) and is also referred
to as a square. In general, a hole is a chordless cycle of length at least four
(Figure 2).

The requirement that all characters be persistent, although weaker than the
assumption of perfect parsimony, is still very restrictive. However, the criterion
for recognizing persistent characters suggests a heuristic for evaluating whether
a given set of characters is hard-to-gain and hard-to-lose in a less restrictive
sense. Our simple measure relies on counting squares in the character overlap
graph constructed for a given set of characters, and comparing the count to the
number of squares expected by chance. (This approach can easily be extended to
counting also larger holes, e.g. of size 5, but identifying all holes in a large graph
is computationally infeasible.) Furthermore, nodes involved in a large number
of squares can be used to identify characters whose removal is likely to improve
the results of a parsimony method.

We applied our technique to two types of characters: protein domains and
introns. In eukaryotic organisms, most of the proteins are made up of several
domains. Domains are conserved evolutionary units that are assumed to fold
independently, and are observed in different proteins with different neighboring
domains. Introns are non-coding DNA sequences that interrupt the flow of a
gene coding sequence in eukaryotic genes. It has been widely accepted that the
probability of gaining an intron independently at the same position in two dif-
ferent organisms is relatively low [11]. In terms of introns persisting through the
evolution, the picture is mixed. They are remarkably conserved between some
lineages (e.g. between Arabidopsis and Human), but they are lost at a significant
rate in other organisms (e.g. worm) [27].

We tested a large set of domain overlap graphs and found that squares are
significantly under-represented as compared to what is expected by chance. This
is in line with the results of Deeds et al. [10] and Winstanley et al. [29]. They re-
port a successful reconstruction of evolutionary trees using the Dollo parsimony
where (structural) domains are taken as characters. In contrast, the intron over-
lap graph has nearly as many squares as is expected by chance, indicating a very
noisy signal. This explains the observation that the tree constructed from intron
data using Dollo parsimony method is incorrect [27].

Examining the distribution of squares in each network provides additional in-
sight into the properties of corresponding characters. For both character types,
we find that the distribution of squares is non-uniform. For example, in the do-
main overlap graph, a small number of domains is involved in a large number
of holes (see Figure 2). Removal of about 3% of the domains leaves the domain
overlap graph square-free. Characteristically, the group of removed domains con-
tains known promiscuous domains (domains known to appear in a large number
of diverse proteins). It is indeed appropriate not to include them on equal footing
with other characters in parsimony methods.

As mentioned before, the number of squares in the intron overlap graph is
very large and it was not clear if removal of the inconsistencies represented by
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these squares would lead to a meaningful result. We devised a heuristic algorithm
to remove squares from the intron overlap graph. Interestingly, we obtained the
evolutionary tree consistent with the Coelomata hypothesis [1,2,5,30]. One can
think of squares removal as a process that selects a set of characters that are
likely to yield a correct tree. This is very much like choosing pairwise compatible
characters and building the tree based on these characters alone. However, it is
important to point out that, since the concept of persistence is less stringent than
pairwise compatibility, this method can be successful when the compatibility
method fails. In particular, as shown later in the paper, replacing persistence by
pairwise compatibility in the context of intron data does not lead to a correct
tree.

2 Characters, Character Overlap Graphs and Parsimony
Methods

Characters and parsimony methods. Assume that we are given a set of
taxa such that each taxon is characterized by a vector of characters. Intuitively,
a character can be anything that describes the properties of a taxa, e.g. exter-
nal characteristics (like wings, legs, etc.) or a molecular information (like genes,
protein domains, etc.). In this work, we assume binary characters, that is, char-
acters that take either value one or value zero (interpreted respectively as the
presence/absence of the given characteristics in the taxon). Assume that, during
the evolution, characters can be gained and/or lost. Under this assumption, the
evolution of a given set of taxa is often reconstructed using parsimony methods.
The underlying assumption of parsimony methods is that the characters evolve
in a way that minimizes character changes. The maximum parsimony tree is
a tree whose leaves are labeled with the character vectors associated with the
input taxa, and internal nodes are labeled with the inferred character vectors of
ancestral taxa such that the total number of character changes along the tree
branches is minimized. Additional restrictions on the type, number, and direc-
tion of changes lead to a variety of specific parsimony models [11]. For example,
in Dollo parsimony, a character may be inserted (change state from zero to one)
only once, but it can be lost multiple times [15]. In Camin-Sokal parsimony, no
reversal of character changes is allowed [8]. The problem of computing the max-
imum parsimony tree is NP-complete for most of parsimony models, including
Dollo parsimony and Camin-Sokal parsimony mentioned above [9].

A major problem with parsimony methods is (in addition to their computa-
tional cost) that they sometimes produce an obviously incorrect tree. This eluci-
dates the importance of being able to decide if a given character set is likely to be
misleading when used in conjunction with a parsimony method. Intuitively, we
are interested in characters that are not very easy to gain (thus the number of in-
dependent insertions of the same character is limited) and which persist through
evolution, i.e. they are not too easy to lose. We propose a graph-theoretical mea-
sure that can be used to test whether a given selection of characters is likely to
produce the correct evolutionary tree.
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Sc      0    0    0    1    0    0
Dr      1    0    0    0    0    0
Ar 0    0    1    0    0    1
Ce 1    0    1    0    0    0
Hs      1    0    1    0    1    0
Sp      0    1    0    0    0    0
Ag      1    0    0    0    0    0
Pf      0    0    1    0    0    0

Fig. 1. The intron overlap graph for KOG0009 [28]. The introns are identified by the
position in the multiple alignment of the corresponding genes. In the matrix on the
right side, of the figure rows correspond to the species included in the KOG Arabidopsis
thaliana (At), Homo sapiens (Hs), C.elegans (Ce), Drosophila melanogaster (Dm),
Anopheles gambaie (Ag), Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe
(Sp), and Plasmodium falciparum (Pf), and colums correspond to introns identified by
Rogozin et al. [27] where 1 correspond to the presence and 0 to the absence of the
intron at a given position in the multiple alignment.

Character overlap graph. To answer the question whether a given set of char-
acters is hard-to-gain and hard-to-lose, we introduce the concept of a character
overlap graph. A character overlap graph is a graph G = (V,E), where V is a
set of characters, and (u, v) ∈ E if there exists a taxon T in the set such that
both u and v are present T .

In this paper, we consider two examples of character overlap graphs: a domain
overlap graphs and intron overlap graphs. The first family of graphs, also known
as domain co-occurrence graphs or domain graphs, has been studied before
[31,3,25,32]. A set of taxa used to construct a domain overlap is a family of mul-
tidomain proteins. The vertices of the domain overlap graph correspond to pro-
tein domains and two domains are connected by an edge if and only if there is a
protein that contains both domains. In turn, a set of taxa used in the construction
of an intron overlap is a set of completely sequenced genomes. The nodes of an
intron overlap graph correspond to the introns and there is an edge between two
introns if and only if there is a genome that contains both introns (see Figure 2).
No construction equivalent to intron overlap graph has been considered before.

a) b)

Fig. 2. a) An example of a chordal graph. b) A graph that is not chordal. The red
(dotted) circle forms a hole of size four – a square.



326 T.M. Przytycka

Holes and chordal graphs. Chordal graphs constitute a well studied family
of graphs [14]. A chord in a graph is an edge that connects two non-consecutive
vertices of a cycle. A chordal graph is a graph which does not have chordless
cycles of length greater than three. Chordless cycles of length more than three
are called holes. Figure 2 (a) shows an example of a chordal graph and Figure 2
(b) a graph which contains a hole of size four – a square.

There is a powerful connection between chordal graphs and trees [12,7,19,18,
25], which has been exploited before in the context of phylogenetic trees. We do
not use this connection in the paper explicitly, but it is a key result in chordal
graph theory and our approach is motivated by this relation.

3 Holes and Parsimony Methods

Graph chordality and persistent characters. We start with an extreme
case in which we assume that each character can be gained exactly once and lost
at most once. We call such characters persistent. Thus a persistent character can
undergo at most two changes and these changes are required to respect the order:
0 → 1 → 0. Note that the persistence property is independent of the way a tree
is rooted. We show the following simple theorem about persistent characters.

Theorem [characterization of persistent characters]. If all characters are
persistent then the corresponding character overlap graph is chordal.

Proof. By induction on the size k of the hole.1 For k = 4, assume that there ex-
ists a square spanning nodes (characters) A,B,C, and D. This implies that there
are four taxa containing respectively pairs of characters AB,BC,CD, and DA,
but there does not exist a taxon containing diagonal pairs AC or BD. In fact, no
taxon can contain three or more of A,B,C,D simultaneously. Ignoring all other
characters, there are, (up to symmetry), two possible binary topologies for the
parsimony tree for the four taxa (Figure 3). Since there can be only one inser-
tion per character, all taxa (ancestral or not) containing a specific character must
form a connected subtree in the parsimony tree. For example, all nodes on the
path from the taxon with characters AB to the taxon with characters BC must
contain character B (see Figure 3). Repeating this argument for all pairs of taxa,
we infer that the labeling of the two internal nodes in Figure 3 a must contain,
respectively, characters A,B,D and B,C,D. By examining all the possibilities
it can be seen that this labeling cannot be achieved without deleting at least one
character twice. The argument for the case represented in Figure 3 (b) is similar.

Assume now that the graph has a hole A0, A1, . . . Ak−1 of size k, where k > 4.
Then for any i there exists a taxon containing the pair of characters AiAi+1 (in-
dex additions/subtractions are mod k) but not containing any other Aj where
j �= i, i+ 1. Assume that there exists a parsimony tree T that allows for at most

1 A shorter proof can be made based on the relation between chordal graphs and
trees mentioned in the previous section, but in the interest of keeping the paper
self-contained we present here a direct argument.
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ABCD ABCD
B

Fig. 3. The two possible (up to symmetry) topologies for an evolutionary tree for four
taxa containing respectively characters: AB,BC, CD and DA. Under the assumption
that only one insertion per character is allowed, in each case there must exist a character
which is deleted twice.

one insertion and one deletion of each character. Consider the subtree of T span-
ning the taxa involved in the cycle. Let X be an internal node of this tree which
is adjacent to two leaves (such node must exist). First, we argue that the two
leaves must correspond to two consecutive taxa on the circle. Assume otherwise
and let the two leaves be described by character pairs AiAi+1 and AjAj+1 where
j �= i+ 1 and i �= j + 1. Then X must contain characters AiAi+1AjAj+1. (This
observation follows from the fact that each of the four characters also belongs to
a taxon other than the two taxa corresponding to the leaves AiAi+1 and AjAj+1
and that no double insertions are allowed.) Consider now the subtree spanned
by the leaves AiAi+1, AjAj+1, the internal node X , and the leaves containing
characters Ai, Ai+1, Aj , Aj+1 other than the leaves corresponding to the pairs
AiAi+1 and AjAj+1. By a case analysis similar to the one for the base case if
find that the topology of this tree contradicts the assumption of single inser-
tion/deletion. Thus the two leaves must correspond to two consecutive taxa in
the circle, that is without loss of generality, Ai+1 = Aj . Now we are ready to
use the inductive hypothesis. Replace the pair of taxa with characters AiAi+1
and Ai+1Ai+2 with one taxon with characters AiAi+1Ai+2 and consider the tree
T ′ obtained from the tree T by removing leaves corresponding to AiAi+1 and
Ai+1Ai+2. If T is a tree that does not require more than one insertion and more
than one deletion per character so is T ′ with respect to the modified set of taxa.
By the inductive hypothesis, this is impossible since the character overlap graph
for the reduced set of taxa contains a cycle of size k − 1. QED.

Persistence versus Compatibility. The persistence criterion provided above
is similar to the well known compatibility criterion [11] at the basic level. Namely,
they both seek to identify characters that are in some sense inconsistent. Then,
one can look for a set of characters whose removal leaves a set of consistent
characters and construct the tree based on these consistent characters. There are,
however, important differences. In the case of persistent characters, a character
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A0   A1   A2   A3   A4  A5
T1  1    1    0    0    0    0 
T2  0    1    1    0    0    0 
T3  0    0    1    1    0    1  
T4  0    0    0    1    1    0  
T5  0    0    0    0    1    1  
T6  1    0    0    0    0    1  

A1

A0

A5 A4

A3

A2A1

A0

A5 A4

A3

A2

T1

T2 T3 T4 T5

T6

a)

b)

c)

Fig. 4. a) An artificial example of 6 taxa and 6 characters; (b) corresponding character
overlap graph; c)the most parsimonious tree after removing character A0. Note that
in this case half of the characters would have to be removed to obtain a pairwise
compatible set.

can change the state at most twice (one insertion and at most one deletion)
while for pairwise compatible characters each character changes state at most
once. Thus the assumption of persistence is a weaker assumption than that of
compatibility. In particular it is easy to see that every edge in a hole identifies
a pair of non-compatible characters. Consider for example a set of n taxa each
described by two characters A0A1, A1A2, . . . AnA0. Then characters AiAi+1 are
incompatible. Removing just one character will ensure persistence (and later in
this paper we propose a method to decide which one) while one has to remove
half of the characters to obtain pairwise compatible set (see figure 4). This weaker
consistency requirement is particularly useful when one cannot assume that there
exist a sufficiently large set of characters which once inserted are never lost. An
example of such situation occurs in the case of intron evolution.

Finally, we shall point out that, unlike the compatibility criterion, the the-
orem shown provides a necessary but not sufficient condition for persistence of
characters.

Graph motifs and persistent characters. The requirement that each char-
acter must be persistent is very restrictive. For example, the fact that bats and
birds gained wings independently (that is the character wings is gained twice)
does not lead to an incorrect evolutionary tree as long as other characters are
used to complement this information. So, even if characters are occasionally
gained/lost more than once, we may still be able to apply parsimony methods
successfully. However, if characters are gained and/or lost independently on mas-
sive scale, then there is not much hope of recovering the correct tree. How can
one distinguish between these two cases?

One solution would be to measure how far the corresponding character overlap
graph is from being a chordal graph. This can be measured, for example, by
counting the minimal number of edges whose addition makes the graph chordal.
Unfortunately, the problem of finding such a minimal set is NP-complete [17].
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We propose a simple heuristic based on the network motifs approach. Rather
than considering all holes, we consider only holes of size four (squares). All
squares can be easily enumerated. The number of squares in an attribute overlap
graph can then be compared to the number of squares in a null model, where
the characters are gained/lost randomly. The ratio of these two counts can be
used to measure how easily the characters are gained/lost.

Our null model assumes the same number of taxa as the real data and the same
set of characters. Furthermore, there is a one-to-one correspondence between the
real taxa and the taxa in the null model. In the null model, the characters of
each taxon are selected randomly in a way that for each taxon the expected
number of characters equals the number of characters of the corresponding real
taxon.

In general, each square in a character overlap graph indicates existence of a
non-persistent character. While a small number of squares is clearly an indication
of a persistent nature of most of the characters, the large number of squares does
not necessarily indicate that the number of non-persistent characters is equally
large. Squares can overlap and a small number of non-persistent characters can
result in a relatively large number of squares. Thus, characters involved in a
large number of squares introduce significant noise to the data. One can address
this problem by assigning a smaller weight to these characters, or simply by
removing them from the data.

4 Applications and Experimental Results

Construction of intron overlap graph and domain overlap graphs. To
construct intron overlap graph, we used the data from a study by Rogozin et
al. [27]. This data contains information about introns found in conserved (and
orthologous) genes of eight fully sequenced organisms: Arabidopsis thaliana (At),
Homo sapiens (Hs), C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles
gambaie (Ag), Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp),
and Plasmodium falciparum (Pf). Introns are identified by their starting position
with respect to the coding sequence. The data contains information about 7236
introns, however most of these introns are observed in one organism only. After
eliminating these single-organism entries, we were left with 1790 introns.

To construct domain overlap graphs, we used the data from a study by Przy-
tycka et al. [25] containing 479 multi-domain superfamilies. This data was built
using the non-redundant multidomain proteins in Swiss-prot [6], where the do-
mains were recognized using CDART [13]. Proteins in this set are grouped into
overlapping superfamilies. Each superfamily is defined to be the maximal set
of proteins that have a specific domain in common. For example, all proteins
containing the kinase domain form one superfamily, proteins containing the SH2
domain form another superfamily and these two superfamilies intersect. Each
such superfamily is considered to have its own evolutionary history, therefore,
each superfamily is treated separately. For each such superfamily there is a sep-
arate domain overlap graph. Domain overlap graphs with less than four nodes



330 T.M. Przytycka

a) b)

Sc

At

Ce

Pf Sp

Sc

Dm

Ag

Hs
Hs

Dm

Ag

SpPf

CeAt

Hs

Dm

Ag

SpPf

Ce

At

Sc
c)

Fig. 5. Three tree topologies for organisms: Arabidopsis thaliana (At), Homo sapiens
(Hs), C.elegans (Ce), Drosophila melanogaster (Dm), Anopheles gambaie (Ag), Saccha-
romyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), and Plasmodium falciparum
(Pf) a) The incorrect Dollo parsimony tree computed from intron data b) The tree con-
sistent with Coelomata hypothesis. This is also exactly the tree obtained after applying
our squares removal procedure. c) The tree consistent with Ecdysozoa hypothesis.

Table 1. The frequencies of occurrences of squares in intron overlap graph and domain
overlap graph relative to the corresponding null random model. Observe significant
under-representation of squares in the domain overlap graph.

Character type # squares in character overlap graph (s) # squares expected by chance
Introns 954 667 368 1 389 751 510
Domains 251 3 822

were ignored. Similarly, networks in which the number of edges was smaller than
the number of nodes were disregarded.

Counting squares. The relative numbers of squares for both types of overlap
graphs are summarized in Table 1. In the domain overlap graphs, the total
number of squares is relatively small. This indicates that domains tend to be
persistent and thus provide a good set of characters to be used by parsimony
methods. In contrast, the intron overlap graph contains nearly as many squares
as it is expected by chance. This suggests that applying parsimony methods to
this data is likely to give an incorrect result. Indeed, Rogozin et al. constructed
such tree (using Dollo parsimony) and found that it is completely wrong. Figure 5
shows the result of this construction, Figure 5 (b) the tree consistent with the
Coelomata hypothesis, and Figure 5 (c) the tree consistent with the Ecdysozoa
hypothesis. Interestingly, the incorrect Dollo tree is supported by high bootstrap
values [27] suggesting that the incorrectness of the tree is due to a systematic
bias rather than a random noise.

Eliminating squares in domain overlap graphs. Figure 6 shows the dis-
tribution of number squares summed up over all domain overlap graphs. We
observe that a few domains are involved in a large number of squares. Since the
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Fig. 6. The distribution of squares. The domains (x axis) are sorted in the increasing
order of the number of squares they belong to.

problem of removing the smallest number of nodes to obtain a hole-free graph
is NP-complete ( [33]), we iteratively removed the node involved in the highest
number of squares (re-computing the number of squares each time). The first
two domains removed by our greedy approach are two functionally uncharac-
terized domains (smart00267 and smart00052 [16]). Subsequently, the algorithm
identifies for removal two known promiscuous domains (domains that are known
to appear in many diverse multidomain proteins): SH2, ABC-ATPase. Removal
of these four domains reduces the already small number of squares by nearly
80%. After this step, there are still a few domains involved in squares including:
PDZ, PH, SH3, EGF, IG-like. However, none of these domains are involved in
more than 11 squares.

Eliminating squares in the intron overlap graph. In the case of intron
overlap graph, the number of squares is not much smaller than what is expected
by chance. The most frequently occurring squares are of type: (At, Hs, Ce, X),
where X is Dm or Ag. Note that each intron is represented by a binary pattern
of length eight (the number of genomes in the data) where one corresponds to
the intron being present in the given genome and zero to its absence. Introns
with the same pattern are indistinguishable from the perspective of parsimony
methods and are involved in the same number of squares. Note further that with
eight species there are 28−9 intron patterns (the subtraction corresponds to the
assumption that each intron must be in at least two species) out of which 90
patterns were populated. Thus, some patterns are represented multiple times.
The patterns that appear significantly more often than it is expected by chance
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are considered to be more informative (more significant). Let ni be the number
of times pattern i is observed in the intron data, and ri expected number of
occurrences of the pattern in the null model. Define pi = ni

ri
to be the signifi-

cance the intron pattern i. (Using pi = max(log ni

ri
, ε), where ε is a real number

closed to zero (here = 10−10) gave the same results.) Let Si be the number of
squares in which an intron with pattern i is involved. Our greedy square removal
algorithm removes iteratively intron patterns that maximize the value Si

pi
. This

provides a trade off between maximizing the number of removed squares and
minimizing the significance of the removed intron patterns. After all squares are
removed, we apply the Dollo parsimony to the remaining introns. The procedure
removed intron 52 (57 % ) patterns. We also introduce a modification to the
Dollo parsimony with enforces that the contribution of each intron is weighted
with the significance of the corresponding intron pattern. The resulting tree is
presented on Figure 5 (b). Thus we obtained a tree which is consistent with the
Coelomata hypothesis.

We also applied the same greedy approach with the persistence criterion re-
placed with the compatibility criterion. The procedure removed 86 (95 %) of
intron patterns and produced 15 incorrect trees.

5 Discussion, Conclusions, and Further Work

We demonstrated that the character overlap graph for persistent characters is
chordal. This suggests that the character overlap graph for characters that are
hard-to-gain and hard-to-lose is expected to contain relatively few holes as com-
pared to a null model. In particular, the number of holes of size four (squares)
is also expected to be relatively small. The last property is easily testable, and
provides a fast method for checking whether a set of characters can be used to
produce a correct evolutionary tree. In practical applications, we found that the
number of squares in the domain overlap graph is very small, supporting the
findings that domains can be used as characters in a parsimony approach. In
contrast, the number of squares in the intron overlap graph is not much smaller
than it is expected by chance. This explains why the Dollo tree built based on
intron data is incorrect.

A large number of squares does not necessarily indicate that all characters are
non-persistent. For example, we demonstrated that in the domain overlap graph,
the majority of squares come from the existence of a handful of promiscuous
domains. Consequently, removing a small number of domains from this character
set leaves the domain overlap graph square free.

A similar approach applied to the intron overlap graph also produced an
interesting result. While it is known that introns can be remarkably conserved in
some lineages, they are not so conserved in others. This leads to a large number
of squares. However, we found that the distribution of these squares is non-
uniform. Thinking of squares as inconsistencies in the data, we applied a greedy
algorithm to remove introns that are involved in square formation, choosing
introns of low significance and high involvement in square motifs. We used this
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truncated intron data to construct a weighted Dollo parsimony tree. That is,
we weighted the contribution of each intron according to the significance of the
corresponding intron pattern. With these two changes, we obtained a parsimony
tree which is consistent with the tree constructed using other methods [30]. This
is in contrast to the previous applications of parsimony methods, which have
been unable to recover a tree consistent with any of the proposed evolutionary
hypotheses.

The results of this work strongly suggest that removal of non-persistent char-
acters involved in a large number of squares may significantly improve the ap-
plicability of parsimony methods.
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Abstract. Comparison of the human genome with the genomes of the
mouse, rat, dog, cow, and other mammals reveals that at least 5% of
the human genome is under negative selection. Negative selection oc-
curs in important functional segments of the genome where random
(mostly deleterious) mutations are rejected by natural selection, leaving
the orthologous segments in different species more similar than would
be expected under a neutral substitution model. Protein coding regions
account for at most 1/3 of the segments that are under negative selec-
tion. In fact, the most conserved segments of the human genome do not
appear to code for protein. These “ultraconserved” elements, of length
from 200-800bp, are totally unchanged between human mouse and rat,
and are on average 96% identical in chicken. The function of most is cur-
rently unknown, but we have evidence that many may be distal enhancers
controlling the expression of genes involved in embryonic development.
Other ultraconserved elements appear to be involved in the regulation of
alternative splicing. Evolutionary analysis indicates that many of these
elements date from a period very early in the evolution of vertebrates,
as they have no orthologous counterparts in sea squirts, flies or worms.
At least one group, involving a conserved enhancer of one gene and an
ultraconserved altspliced exon of another, evolved from a novel retro-
transposon family that was active in lobe-finned fishes, and is still active
today in the “living fossil” coelacanth, the ancient link between marine
and land vertebrates.

In contrast with the slowly changing ultraconserved regions, in other
areas of the genome recent genetic innovations that are specific to pri-
mates or specific to humans have caused relatively rapid bursts of lo-
calized changes, possibly through positive selection. Via simulation, we
estimate that most of the DNA sequence of the common ancestor of
all placental mammals, which lived in the last part Cretaceous period
about 80-100 million years ago, can be predicted with 98% accuracy. We
recently reconstructed and entire chromosome arm from the genome of
this ancient species, and are currently working on a full genome recon-
struction. Given this as a basis, and enough well-placed primate genomes
to reconstruct intermediate states, we should eventually be able to doc-
ument most of the genomic changes that occurred in the evolution of
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the human lineage from the placental ancestor over the last 100 million
years, including innovations that arose by positive selection.
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Abstract. Permutation of class labels is a common approach to build
null distributions for significance analyis of microarray data. It is as-
sumed to produce random score distributions, which are not affected by
biological differences between samples. We argue that this assumption is
questionable and show that basic requirements for null distributions are
not met.

We propose a novel approach to the significance analysis of microarray
data, called permutation filtering. We show that it leads to a more accu-
rate screening, and to more precise estimates of false discovery rates. The
method is implemented in the Bioconductor package twilight available on
http://www.bioconductor.org.

1 Introduction

Screening thousands of candidate genes using some scoring function is a widely
applied strategy in the analysis of microarrays. A typical scenario is the search for
differentially expressed genes, where the sores can be fold changes or t-statistics.
Screening inherently leads to a multiple testing problem, which requires the def-
inition of a null distribution of scores. It is common practice to use simulated
distributions obtained from randomizations of the original data [1]. With a set
of samples (arrays) and corresponding class labels for the samples, one calcu-
lates scores for the original class labels, and compares them to the distribution
of scores obtained from random shuffling of the class labels. Permutation ap-
proaches are popular because the correlation structure of gene expression levels
is unknown, which makes the definition of a theoretical joint null distribution
difficult. By randomly assigning the class labels to the samples and recomput-
ing scores one circumvents this difficulty and generates a set of random scores,
which serves as a null distribution for statistical inference. One transforms the
scores obtained from the original class labels to empirical p-values by using the
distribution of simulated scores from the permutation null model. Under the as-
sumption that not a single gene is differentially expressed, one expects that this
set of p-values is uniformly distributed. Several methods for estimating global or
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local false discovery rates rely on the assumption that the p-value distribution
for a set of non-differentially expressed genes is uniform [2, 3, 4, 5, 6, 7].

To borrow information across genes, empirical p-values are computed using a
pooled set of scores from all genes on the array [8]. The combined use of class
label permutations and score pooling leads to a conceptual problem. In real ap-
plications, one typically has both differentially and non-differentially expressed
genes. While permutations produce a justifiable null distribution of scores for
the non-differentially expressed genes, one expects that they produce wider score
distributions for the differentially expressed genes. Wide score distributions are
not only expected for genes that are differentially expressed between the class
distinction of interest, but also for genes that are differentially expressed re-
garding some hidden non-random structure in the data, such as the gender of
patients or experimental artefacts. As a consequence, the pooled set of scores is
contaminated by signals resulting from differentially expressed genes and does
not yield a pure null distribution.

In the next section we recall the notation for permutation approaches to
multiple testing in microarray studies. In Section 3 we use a clinical data set
to show that random permutations produce distributions, which do not meet
basic requirements for a null distribution. As a way out of this dilemma, we
describe in Section 4 the details of a novel approach to permutation tests termed
permutation filtering. In Section 5 we show that permutation filtering produces
valid null distributions, increases the accuracy of the screening, and leads to
more precise estimates of false discovery rates.

2 Notation

Let matrix X be an m×n gene-expression matrix with genes in rows and samples
in columns. Entry xij is the value of the ith gene observed for the jth sample
with genes i = 1, . . . ,m and samples j = 1, . . . , n. In addition, we have a vector
c0 = (c1, . . . , cn) with cj being the class label of the jth sample. For simplicity of
presentation we only consider binary class labels here. As a real world example,
we shall later discuss a breast-cancer data set, where the class label is either one
of two clinically defined risk groups.

Let s0 denote the vector of scores with entries (si0)i=1,...,m. Let c be a random
permutation of the entries of vector c0. Note that we shuffle only the class labels
to preserve the correlation structure between the genes. We recompute the score
of each gene based on c and derive a set of scores s. Say, we do B permutations
c1, . . . , cB in total. This yields B random score vectors s1, . . . , sB. We join the
original and the random scores into the m× (B + 1) score matrix S defined as:

S := (s0 s1 . . . sB) = (sij) with i = 1, . . . ,m and j = 0, . . . , B.

To compute the empirical p-value for score si0, we count how often a random
score exceeds the observed score of the gene of interest:

pi0 =
1

m(B + 1)

m∑
k=1

B∑
l=0

I{|skl| ≥ |si0|} (1)
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with I{x} being an indicator function that returns 1 if x is true and 0 otherwise.
For simplicity of notation, we summarize the whole process in function UC , which
maps a fixed vector of class labels c0 to the vector p0 = (pi0)i=1,...,m of associate
p-values

UC(c0) = p0 (2)

where C = {c0, c1, . . . , cB} is the set of permutations on which we assess the
significance of scores.

3 Random Permutations Can Produce Invalid Null
Distributions

In this section we show that random permutations can produce score distri-
butions, which do not meet basic requirements of a null distribution. We use
a clinical microarray study comprising a total of 89 samples from breast-cancer
patients measured on Affymetrix GeneChip R© HGU95Av2 arrays, which code for
m = 12625 transcripts/genes [9]. We applied the following preprocessing steps.
The background was calculated similar as in the Affymetrix R© software Microar-
ray Suite 5.0 [10]. The only difference was that we did not use a correction
to avoid negative values. After background correction, we normalized on probe
level using a variance-stabilizing procedure [11]. Perfect match probes within a
probe set were summarized by the median-polish method [12]. For each probe
set, an additive model with probe set, chip and overall effect was fitted using a
robust median-polish procedure. Mismatch probes were not taken into account
at all.

We compare two risk groups, that is 18 patients with high risk of relapse to 19
low-risk patients (n = 37). Again, c0 is a binary vector of length n of class labels
where “1” corresponds to the high-risk and “0” to the low-risk class. We score
each gene i by computing absolute z-scores as described in [13]. The z-scores
are defined as regularized t-statistics with a positive fugde factor added to their
denominators. The fudge factor prevents genes with small variances from having
high scores. We set the fudge factor to the median value of the pooled standard
deviations across genes.

We draw B = 1000 random permutations of the original labeling c0, compute
the matrix S of z-scores and empirical p-values p0 = UC(c0). Each permutation
is assumed to destroy all biological signals in the data, such that the resulting
set of scores consists of random scores, which are not driven by biological signals
at all. Deviations in the scores obtained from the original (not permuted) class
labels give evidence for differentially expressed genes.

Next we introduce a key requirement for a valid null distribution. We let each
permutation of class labels cb in turn play the role of the original class labels and
calculate pb := UC(cb). Hence, we use the function UC not only for assigning a
vector of p-values to the original class labels, but also to each permuted vector of
class labels. If the permutation process truly has destroyed all biological signal
one would expect to observe uniform distributions of p-values. In panel A of
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B: Filtered permutations
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Fig. 1. A: Random permutation does not always produce valid null distri-
butions. The multi-dimensional scaling plot on the left-hand side shows distributional
distances between 1000 sets of p-values resulting from random permutations. Euclidean
distances between the CDFs of the p-value sets were used. The four numbered examples
show that permutations on the right side in the MDS plot have increasing densities,
permutations on the left side have decreasing densities, and only permutations close
to the origin produce uniform densities. No. 3 represents the original class labels c0.
The scatterplot on the right-hand side shows a second MDS mapping of the permu-
tations, now based directly on the Hamming distances of permuted class labels. The
permutations do not cluster but scatter randomly around the origin. B: Filtering
of permutations leaves uniform p-value distributions. The filtering algorithm
returns 1000 permutations that produce uniform p-value distributions, which cluster
around the origin in the MDS plot on the left-hand side. Again, no. 3 represents the
original labeling c0 while the other three permutations were chosen from the extremes
of the filtered set to show that these are still admissible. The MDS plot based on Ham-
ming distances between permutations is similar to the one in A. Filtered permutations
still spread evenly in the permutation space. Note that both pairs of MDS plots were
derived from joint sets of filtered and unfiltered permutations.

Fig. 1 one can see that this is not the case. The top left plot shows a multi-
dimensional scaling (MDS) representation of the p-value distributions obtained
by fixing single permutations. We derived the mapping into two dimensions from
the Euclidean distances between the empirical cumulative distribution functions
(CDFs) of the associated sets of p-values. Close points represent permutations
cb, which produce similarly distributed p-values UC(cb).
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We annotated four exemplary permutations by numbers including the origi-
nal labels, whose p-value distributions are shown in the top middle plot. Only
permutations close to the MDS origin produce uniform p-value distributions.
The majority of permutations, however, deviates substantially from uniformity,
and often produces distributions, which deviate stronger from uniformity than
that of the original class labels.

These results show that random permutations do not produce valid null dis-
tributions. Many permutations produce more differential gene expression than
the original labels. The scores are not random and the randomization process
has not destroyed all biological signal in the data.

4 Permutation Filtering

We now present the permutation filtering procedure. The key idea is to apply the
function UC not only to the original class labels, but also to the permuted ones,
as was already done in the previous section. We argue that a valid permutation-
based null distribution has to be derived from a set C of permutations, satisfying
the requirement that UC(c) is uniformly distributed for all c ∈ C.

Assume we have identified a set of permutations C0, which consists only of
permutations that represent valid null hypotheses across all genes. We expect
that UC0(c) is uniform for all c ∈ C0. If however, we observe strong deviations
from uniformity, either c0 or large parts of the remaining permutations in C0
correlate with some non-random structure in the data.

We propose the following filtering procedure to derive a set of permutations
C0, which consistently produces uniform p-value distributions when calculating
p-values for a fixed permutation using the remaining permutations in C0:

1. Let C = {c1, . . . , cB} be a set of unique random permutations of the original
class labels c0. Apply function UC to all cb ∈ C, which yields the p-value
vectors p1, . . . ,pB. Choose a stepsize k and set v = 1.

2. Let Fb be the empirical CDF of the p-values in pb. Test each permutation
for uniformity of its p-value CDF by computing the Kolmogoroff-Smirnoff
statistic

KSb = max
i=1,...,m

|Fb(pib)− pib|.

Keep the v · k permutations with the smallest KS statistic in the set C0.
Increase v = v + 1.

3. Generate a new set of unique random permutations C, join it with C0 and
apply UC0∪C to all cb ∈ C0 ∪ C.

4. Iterate steps 2 and 3 until |C0| reaches a predefined number of permutations.
5. Compute the final vector of empirical p-values p0 = UC0∪c0(c0) for the orig-

inal class labels.

We chose an iterative design to reduce computational time and save memory.
Only a subset of unique random permutations is drawn and tested for uniformity
in each step. We keep the admissible permutations in C0. We do not have to
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recompute the corresponding scores for the kept permutations. Only when we
join C0 with a new set of permutations, we need to recompute the p-values since
we then use an altered set of permutations.

The proposed algorithm is flexible and adaptable to various types of screening
studies. We provide an implemention of the procedure in the statistical software
language R. We included the algorithm in the Bioconductor package twilight for
estimating global and local false discovery rates [7, 14, 15, 16, 17].

5 Results

We apply permutation filtering to the breast-cancer data set described in
Section 3. Again we use the z-scores for testing. As default parameters in the
filtering process we set the stepsize to k = 50, the number of permutations per
iteration to 1000 and the stopping criterion to |C0| ≥ 1000.

5.1 Permutation Filtering Produces Valid Null Distributions

The effect of permutation filtering is shown in panel B of Fig. 1. Both pairs of
plots were derived from joint sets of filtered and unfiltered permutations. Hence
the axes of the MDS plots equal those in panel A. As expected, the filtered
permutations lie closer to the origin, and even permutations from the margins
of the cloud produce acceptable uniform p-value distributions (middle plot).

We removed identical permutations within the iterative filtering. One might
suspect that filtering introduces a selection bias in that the filtered permutations
cluster strongly and do not spread over the entire permutation space. To show
that this is not the case, we display a two-dimensional MDS mapping of the
permutations that we derived from the Hamming distances between the binary

Rate of high−risk group

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

2/18 4/18 6/18 8/18 10/18 12/18 14/18 16/18

Fig. 2. Permutation filtering does not introduce biased permutations. Dis-
tribution of the percentage of the 18 high-risk patients re-assigned to the high-risk
group based on random (grey bars) and filtered permutations (black bars). The two
distributions do not differ substantially indicating that the filtering does not introduce
biased permutations.
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vectors of permuted class labels before (panel A) and after (panel B) filtering.
Filtered permutations do not form clusters but spread evenly over the permu-
tation space in the MDS representation. There is no visible difference to the
corresponding plot for random permutations. We further examine the distribu-
tion of the number of samples being randomly re-assigned to their original group.
To this end, we count the occurrences of the 18 high-risk patients in the high-risk
group for both random and filtered permutations. The result is shown in Fig. 2.
We do not observe substantial difference between the two distributions and hence
conclude that filtering does not lead to a biased selection of permutations.

5.2 Permutation Filtering Leads to More Significant Genes

A widely used approach to account for multiplicity in microarray studies is to
estimate the false discovery rate (FDR) of a list of genes with scores above some
prespecified cutoff [18, 19]. The FDR is the expected rate of false positives in
this list of genes. Filtering has the effect that one identifies more genes on the
same FDR level than without filtering. Hence it increases the sensitivity of the
screening for differentially expressed genes.

To show this, we compute p-values of the original labeling c0 based on the
random as well as on the filtered set of permutations. For both sets, we estimate
false discovery rates as defined in [8]. In Fig. 3, we display FDRs versus the corre-
sponding number of significant genes. As an example, we marked the FDR cutoff
of 0.2 with the dashed line. With filtering, this leads to a list of 103 significant
genes, which more than doubles the size of a list without filtering (45 genes).

The increase of significant genes is due to the removal of permutations with
p-value distributions similar to that of the original labeling, that is with more
small p-values than expected. These distributions correspond to score distribu-
tions with heavy tails. The removal of these distributions increases the empirical
p-values of genes with high scores.
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Fig. 3. Permutation filtering leads to more significant genes. FDR cutoffs are
plotted versus corresponding numbers of significant genes. The same FDR cutoff leads
to more significant findings with filtering (black line) than without (grey line).
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5.3 Permutation Filtering Leads to a Higher Accuracy of the
Screening

On real data, we can only show an increase of sensitivity since we do not know a
priori whether a significant gene is truly induced or not. If the higher sensitivity
came for the price of a reduced specificity nothing would be won. To show that
this is not the case we use a simulation experiment where the true positives genes
are known by design of the simulation.

To this end, we generate random data for 2500 genes and 10 samples per
condition. We draw a vector of 2500 random values from a lognormal distribution
with location parameter 2 and scale parameter 0.3, and, taking these as mean
values, generate 20 random samples from a normal distribution with variance 1.
To induce the first 500 genes, we add a value of 2 to the samples of one condition.
By adding a value of 4 to five samples of each condition, we introduce hidden
non-random structure affecting the following 1000 genes. Note that only the first
500 genes are differentially expressed between populations.

We proceed with the analysis as before and compute p-values based on 1000
filtered and 1000 unfiltered permutations. We rank the genes by p-values and
for every rank we estimate the FDR as in [8]. We repeat the data generating
procedure 100 times, each time calculating the number of truly induced genes
within the list of genes with estimated FDR ≤ 5%. Filtering increases the num-
ber of correctly identified genes. Without filtering, the list of significant genes
includes an average of 457 true positive findings out of 500. Filtering improves
the accuracy to 482 correctly identified genes on average. This difference is highly
significant in a t-test (p < 0.0001).

Hence the filtering increases the sensivity, that is the number of true positives
among 500 induced genes, from 0.9134 to 0.9639 on average. The specificity,
that is the number of true negatives among 2000 non-induced genes, decreased
slightly from 0.9957 to 0.9892. We argue that this loss is negligible regarding the
improved sensitivity.

5.4 Permutation Filtering Produces More Precise Estimates of the
False Discovery Rate

We use the simulation data from the previous section. The thick black line in
Fig. 4 shows the true fraction of induced genes among the top ranking genes.
To calculate this line, one has to know a priori which genes are differentially
expressed between populations. Hence we can only calculate it in a simulation.
The false discovery rate estimates this quantity without knowing the truly dif-
ferentially expressed genes. Again, one can use both random permutations and
filtered permutations to estimate the FDR. The two thin lines in Fig. 4 are
the estimated FDR based on filtered (black line) and unfiltered permutations
(grey line). While random permutations yield conservative estimates of the false
discovery rate, they substantially overestimate it. In contrast, filtered permuta-
tion based estimates match the gold standard well. Hence, permutation filtering
improves the accuracy of estimated false discovery rates.
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Fig. 4. Permutation filtering leads to more precise FDR estimates. Ranks of
high-scoring genes versus the true and estimated FDRs. The FDRs based on filtered
permutations (thin black line) estimate the true FDR (thick black line) with high
accuracy for the first 500 ranks. FDRs computed without filtering (grey line) lead to
conservative but inaccurate estimates.

6 Conclusion

We propose a filtering algorithm that searches for a set of class label permuta-
tions where each permutation produces a uniform distribution of p-values. The
filtered permutations are then used for calculating empirical p-values and for
estimating false discovery rates. The benefits of filtering are valid null distribu-
tions, increased numbers of significant genes, a higher accuracy of the screening
and more precise estimates of false discovery rates.

We have implemented permutation filtering in the Bioconductor package twi-
light where it is used for calculating both local and global false discovery rates.
Permutation filtering is a general concept applicable in many screening studies.
It is a novel approach for building valid null distributions. We expect that it will
improve the accuracy of high-throughput screenings in various applications in
bioinformatics.
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Abstract. Transcriptional interactions in a cell are modulated by a va-
riety of mechanisms that prevent their representation as pure pairwise
interactions between a transcription factor and its target(s). These in-
clude, among others, transcription factor activation by phosphorylation
and acetylation, formation of active complexes with one or more co-
factors, and mRNA/protein degradation and stabilization processes.

This paper presents a first step towards the systematic, genome-wide
computational inference of genes that modulate the interactions of spe-
cific transcription factors at the post-transcriptional level. The method
uses a statistical test based on changes in the mutual information be-
tween a transcription factor and each of its candidate targets, conditional
on the expression of a third gene. The approach was first validated on a
synthetic network model, and then tested in the context of a mammalian
cellular system. By analyzing 254 microarray expression profiles of nor-
mal and tumor related human B lymphocytes, we investigated the post
transcriptional modulators of the MYC proto-oncogene, an important
transcription factor involved in tumorigenesis. Our method discovered
a set of 100 putative modulator genes, responsible for modulating 205
regulatory relationships between MYC and its targets. The set is signifi-
cantly enriched in molecules with function consistent with their activities
as modulators of cellular interactions, recapitulates established MYC reg-
ulation pathways, and provides a notable repertoire of novel regulators
of MYC function. The approach has broad applicability and can be used
to discover modulators of any other transcription factor, provided that
adequate expression profile data are available.

1 Introduction

The reverse engineering of cellular networks in prokaryotes and lower eukary-
otes [1, 2], as well as in more complex organisms, including mammals [3, 4, 5], is
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unraveling the remarkable complexity of cellular interaction networks. In par-
ticular, the analysis of targets of specific transcription factors (TF) reveals that
target regulation can change substantially as a function of key modulator genes,
including transcription co-factors and molecules capable of post-transcriptional
modifications, such as phosphorylation, acetylation, and degradation. The yeast
transcription factor STE12 is an obvious example, as it binds to distinct tar-
get genes depending on the co-binding of a second transcription factor, TEC1,
as well as on the differential regulation by MAP kinases FUS3 and KSS1 [6].
Although the conditional, dynamic nature of cellular interactions was recently
studied in yeast [7, 8, 9, 10], methods to identify a genome-wide repertoire of the
modulators of a specific transcription factor are still lacking.

In this paper, we explore a particular type of “transistor like” logic, shown
in Fig. 1a, where the ability of a transcription factor gTF (emitter) to regulate
a target gene gt (collector) is modulated by a third gene gm (base), which we
shall call a modulator. Pairwise analysis of mRNA expression profiles will gen-
erally fail to reveal this complex picture because gm and gTF (e.g., a kinase and
a transcription factor it activates) are generally statistically independent and
because the correlation between the expression of gTF and gt is averaged over an

(a) (b)

TF Interaction I I−
Ki I+

Ki ΔIKi I−
CF I+

CF ΔICF

Ki – – – – 0.007 0.016 0.009
CF – 0.001 0.018 0.008 – – –
G1 0.732 0.542 0.579 0.037 0.552 0.548 0.004
G2 0.064 0.079 0.093 0.014 0.007 0.378 0.371
G3 0.097 0.007 0.351 0.344 0.071 0.042 0.029

(c)

Fig. 1. Synthetic network model of transistor-like regulatory logic. (a) Transistor
model. (b) Schematic representation of the synthetic network. (c) Unconditional MI,
conditional MI and conditional MI difference for the TF interactions conditioning on
the expression level of the Ki and the CF; entries colored in red are determined to be
statistically significant.
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entire range of values of gm and thus significantly reduced. However, we show
that by conditioning on the expression of the modulator gene (e.g., an activating
kinase), a statistically significant change in the gTF ↔ gt correlation can be mea-
sured, thus directly identifying key post-transcriptional regulation mechanisms,
including modifications by signaling molecules, co-factor binding, chromatin ac-
cessibility, modulation of protein degradation, etc. An important element of this
analysis is that, while signaling proteins are conventionally viewed as consti-
tutively expressed, rather than transcriptionally modulated, in practice their
abundance within a cell population is subject to fluctuations (either functional
or stochastic). Depending on the number of available microarray expression pro-
files and on the range of fluctuation, this may be sufficient to establish a gTF ↔ gt

statistical dependency, conditional on the availability of one or more signaling
molecules.

We validated the approach on a simple synthetic network and then applied
it to the identification of key modulators of MYC, an important TF involved
in tumorigenesis of a variety of lymphomas. We identify a set of 100 putative
modulators, which is significantly enriched in genes that play an obvious post-
transcriptional or post-translational modulation role, including kinases, acyl-
transferases, transcription factors, ubiquitination and mRNA editing enzymes,
etc. Overall, this paper introduces the first genome-wide computational approach
to identify genes that modulate the interaction between a TF and its targets. We
find that the method recapitulates a variety of known mechanisms of modulation
of the selected TF and identifies new interesting targets for further biochemical
validation.

2 Method

As discussed in [11, 12], the probability distribution of the expression state of
an interaction network can be written as a product of functions of the indi-
vidual genes, their pairs, and higher order combinations. Most reverse engi-
neering techniques are either based on pairwise statistics [5, 11, 13], thus failing
to reveal third and higher order interactions, or attempt to address the full
dependency model [14], making the problem computationally untractable and
under-sampled. Given these limitations, in this paper we address a much more
modest task of identifying the “transistor-like” modulation of specific regulatory
interaction, a specific type of third order interactions that is biologically impor-
tant and computationally tractable in a mammalian context. Furthermore, given
the relatively high availability of microarray expression profile data, we restrict
our analysis to only genes that modulate transcriptional interactions, i.e., a TF
regulating the expression of its target gene(s).

In our model, just like in an analog transistor where the voltage on the base
modulates the current between the other terminals, the expression state of the
modulator, gm, controls the statistical dependence between gTF and gt, which
may range from statistically independent to strongly correlated. If one chooses
mutual information (MI) to measure the interaction strength (see [11] for the
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rationale), then the monotonic dependence of I(gTF, gt|gm) on gm, or lack thereof,
can reveal respectively the presence or the absence of such a transistor-like
interaction.

Analysis along the lines of [11] indicates that currently available expression
profile sets are too small to reliably estimate I(gTF, gt|gm) as a function of gm. To
reduce the data requirements, one can discretize gm into well sampled ranges gi

m.
Then, |I(gTF, gt|gi1

m) − I(gTF, gt|gi2
m)| > 0 (at the desired statistical significance

level) for any range pair (i1, i2) is a sufficient condition for the existence of the
transistor logic, either direct (i.e., gm is causally associated with the modulation
of the TF targets) or indirect (i.e., gm is co expressed with a true modulator
gene). Below we present details of an algorithm that, given a TF, explores all
other gene pairs (gm, gt) in the expression profile to identify the presence of the
transistor logic between the three genes.

2.1 Selection of Candidate Modulator Genes

Given a expression profile dataset with N genes and an a-priori selected TF gene
gTF, an initial pool of candidate modulators gm, {m} ∈ 1, 2, . . . ,M , is selected
from the N genes according to two criteria: (a) each gm must have sufficient
expression range to determine statistical dependencies, (b) genes that are not
statistically independent of gTF (based on MI analysis) are excluded. The latter
avoids reducing the dynamic range of gTF due to conditioning on gm, which
would unnecessarily complicate the analysis of significance of the conditional MI
change. It also removes genes that transcriptionally interact with gTF, which can
be easily detected by pair-wise co-expression analysis, and thus are not the focus
of this work. We don’t expect this condition to substantially increase the false
negative rate. In fact, it is reasonable to expect that the expression of a post-
transcriptional modulator of a TF function should be statistically independent
of the TF’s expression. For instance, this holds true for many known modulators
of MYC function (including MAX, JNK, GSK, and NFκB).

Each candidate modulator gm is then used to partition the expression pro-
files into two equal-sized, non-overlapping subsets, L+

m and L−
m, in which gm is

respectively expressed at its highest (g+
m) and lowest (g−m) levels. The conditional

MI, I± = I(gTF, gt|g±m), is then measured as I(gTF, gt) on the subset L±. Note
that this partition is not intended to identify the over or under expression of the
modulator, but rather to estimate gi

m. Then, |I(gTF, gt|g+
m) − I(gTF, gt|g−m)| > 0

for target genes using the two tails of the modulator’s expression range. The size
of L±

m is constrained by the minimal number of samples required to accurately
measure MI, as is discussed in [11]. Mutual information is estimated using an
efficient Gaussian kernel method on rank-transformed data, and the accuracy of
the measurement is known [11].

2.2 Conditional Mutual Information Statistics

Given a triplet (gm, gTF, gt), we define the conditional MI difference as:

ΔI(gTF, gt|gm) = |I+ − I−| = |I(gTF, gt|g+
m)− I(gTF, gt|g−m)| (1)
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For simplicity, hereafter we use I for the unconditional MI (i.e., the MI
across all samples) and ΔI for conditional MI difference. To assess the statisti-
cal significance of a ΔI value, we generate a null hypothesis by measuring its
distribution across 104 distinct (gTF, gt) pairs with random conditions. That is,
for each gene pair, the non-overlapping subsets L±

m used to measure I± and
ΔI are generated at random rather than based on the expression of a candi-
date modulator gene (1000 ΔI from random sub-samples are generated for each
gene pair). Since the statistics of ΔI should depend on I, we binned I into 100
equiprobable bins, resulting in 100 gene pairs and 105ΔI measurements per bin.
Within each bin, we model the distribution of ΔI as an extended exponential,
p(ΔI) = exp(−αΔIn + β), which allows us to extrapolate the probability of a
given ΔI under this null hypothesis model. As shown in Fig.2, both the mean
and the standard deviation of ΔI increase monotonically with I (as expected)
and the extended exponentials produce an excellent fit for all bins. Specifically,
for small I, the exponent of the fitted exponential distribution is n ≈ 1. This is

(a) (b)

(c) (d)

Fig. 2. Null distribution for the ΔI statistics. (a) Mean (μ) and standard deviation
(σ) of the ΔI statistics in each bin as a function of I . (b) - (d), distribution of the ΔI
statistics (blue curves) and the extended exponential function, p(ΔI) = exp(−αΔIn +
β) (red curves), obtained by least square fitting in bin 25, 50 and 75; a goodness-of-fit
measure, R2, and the value of n are also shown for each bin.
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because in this case both I+ and I− are close to zero and ΔI is dominated by the
estimation error, which falls off exponentially [11]. For large I, the estimation
error becomes smaller than the true mutual information difference between the
two random sub-samples,hence n ≈ 2 from the central limit theorem.

2.3 Interaction-Specific Modulator Discovery

Given a TF, gTF, and a set of candidate modulators gm selected as previously
discussed, we compute I(gTF, gt) and ΔI(gTF, gt|gm) for all genes gt in the ex-
pression profile such that gt �= gm and gt �= gTF. Significance of each ΔI is then
evaluated as a function of I, using the extended exponentials from our null hy-
pothesis model. Gene pairs with a statistically significant p-value (p < 0.05),
after Bonferroni correction for multiple hypothesis testing, are retained for fur-
ther analysis.

Significant pairs are further pruned if the interaction between gTF and gt is
inferred as an indirect one in both conditions g±m, based on the ARACNE [5, 11]
analysis on the two subsets L±

m. This is accomplished by using the Data Process-
ing Inequality (DPI), a well-know property of MI introduced in [5, 11], which
states that the interaction between gTF and gt is likely indirect (i.e. mediated

(a) (b)

(c)

Fig. 3. Schematic diagram of the effect of DPI on eliminating indirect regulatory
relationships. (a) Correct modulation model where the modulator (M) significantly
changes the regulatory relationship between the TF (Hub) and its direct targets (G1

and G2). (b) Removal of indirect connections to the hub eliminates the detection of a
significant ΔI on indirect targets. (c) Modulators that affect the downstream target
of the TF hub, thus causing significant ΔI between the TF and its indirect neighbors,
will be removed by applying DPI.
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through a third gene gx), if I(gTF, gt) < min[I(gTF, gx), I(gt, gx)]. This step elim-
inates some specific cases, illustrated in Fig. 3, where gm can produce a signifi-
cant ΔI even though it does not directly affect the gTF ↔ gt interaction. Briefly,
two cases will be addressed by the use of the DPI: (a) gm affects the gTF ↔ gx

interaction instead of gTF ↔ gt (Fig. 3b); and (b) gm modulates gx, therefore
affecting the gx ↔ gt interaction instead of the gTF ↔ gt. Thus gm is not a mod-
ulator of the gTF gene and should be removed (Fig. 3c). As discussed in [5, 11],
the DPI was applied with a 15% tolerance to minimize the impact of potential
MI estimation errors.

3 Results

3.1 Synthetic Model

We first tested our approach on a simple synthetic network (Fig. 1b) that explic-
itly models two post-translational modifications (activation by phosphorylation
and by co-factor binding) that modulate the ability of a TF to affect its targets.
The synthetic network includes a TF, a protein kinase (Ki) that phosphorylates
the TF, a co-factor (CF) that can bind to TF forming a transcriptionally active
complex, and three downstream targets of the TF’s isoforms. The transcription
activation/inhibition was modeled using Hill kinetics with exponential decay
of mRNA molecules. Phosphorylation and cofactor binding were modeled us-
ing Michaelis Menten and mass-action kinetics respectively (see Supplementary
Table 1 for kinetic equations).

A set of 250 synthetic expression profiles was generated from this model us-
ing Gepasi (ver 3.30) [15] by (a) randomly sampling the independent variables
(concentration of mRNA for the TF, Ki, and CF) from a uniform distribution,
so that they were statistical independent (b) simulating network dynamics until
a steady state was reached, and (c) measuring the concentration of all mRNA
species that were explicitly represented in the network (using a Gaussian ex-
perimental noise model with mean 0 and standard deviation equal to 10% of
the mean concentration for each variable). Note that only the mRNA concen-
trations were used as inputs to our algorithm, even though all molecular species
(including all proteins isoforms) were explicitly represented in the model. By
conditioning on the expression of the Ki and CF, using the 40% of expression
profiles with their most and least expressed values, our approach correctly iden-
tified the two and only two significant ΔI, associated with the pairs (CF, g2)
and (Ki, g3), as shown in Fig. 1c.

3.2 Analysis of Human B Lymphocyte Data

We then used our method to identify a genome-wide repertoire of post-tran-
scriptional modulators of the MYC proto-oncogene – a TF which represents
a major hub in the B cell transcriptional network [5]. The analysis was per-
formed on a collection of 254 gene expression profiles, representing 27 distinct
cellular phenotypes derived from populations of normal and neoplastic human B
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lymphocytes. The gene expression profiles were collected using the Affymetrix
HG-U95A GeneChip R©System (approximately 12,600 probes). Probes with ab-
solute expression mean μ < 50 and standard deviation σ < 0.3μ, were considered
non-informative and were excluded a-priori from the analysis, leaving 7907 genes.

We further selected 1117 candidate modulators with sufficient expression
range (μ > 200 and σ > 0.5μ) that were statistically independent of MYC based
on MI (significance was established as in [11]). The top 40% and bottom 40%
of the expression profiles in which a candidate modulator gm is expressed at its
highest and lowest levels, respectively, were used to define the two conditional
subsets L±

m. The choice of the 40% threshold was specific to this dataset. It
ensured that ≥ 100 samples were available within each conditional subset for
estimating MI with a reasonable accuracy [11], while keeping the modulators’
expression range within the two subsets as separated as possible.

The analysis inferred a repertoire of 100 genes, at a 5% statistical significance
level (Bonferroni corrected), which are responsible for modulating 205 regulatory
relationships between MYC and its 130 inferred targets in an interaction-specific
fashion. See Supplementary Fig. 1 for a map of the modulators and the affected
interactions. A complete list is available in the Supplementary Table 2.

3.3 Gene Ontology Enrichment Analysis

To analyze the biological significance of these putative modulator genes, we
studied the enrichment of the Gene Ontology [16] Molecular Function categories
among the 100 modulators compared to the initial list of 1117 candidate modula-
tors. As shown in Table 1, the top enriched categories represent functions consis-
tent with their activities as modulators of cellular interactions. In particular, pu-
tative modulators were enriched in kinases (PKN2, MAP4K4, BRD2, CSNK1D,
HCK, LCK, TRIB2, BRD2 and MARCKS), acyltransferase (GGT1, SAT and
TGM2) and transcriptional regulators (CUTL1, SSBP2, MEF2B, ID3, AF4,
BHLHB2, CREM, E2F5, MAX, NR4A1, CBFA2T3, REL, FOS and NFKB2).
This is in agreement with the established evidence that MYC is modulated

Table 1. Most enriched Gene Ontology Molecular Function categories for the inferred
MYC modulators. False discovery rate (FDR) are calculated from Fisher’s exact test
and adjusted for multiple hypothesis testing. Only categories with at least 5 genes from
the initial 1117 candidate modulators were used.

Gene Ontology Molecular Function Categories Enrichment FDR
DNA binding 0.007
Transferase activity 0.010
Acyltransferase activity 0.010
Antioxidant activity 0.018
Phosphoric monoester hydrolase activity 0.026
Adenyl nucleotide binding 0.028
Transcription regulator activity 0.052
Protein serine/threonine kinase activity 0.066



356 K. Wang et al.

through phosphorylation and acetylation events, affecting its protein stabil-
ity [17, 18], and that MYC requires broadly distributed effector proteins to influ-
ence its genomic targets [19]. We also found that 4 of the 6 modulators with the
largest number of affected targets (e.g. UBE2G1, HCK, USP6 and IFNGR1),
are associated with non-target-specific functions (e.g. protein degradation, up-
stream signaling pathway components and receptor signaling molecules, etc).
On the other hand, the 14 modulators that are transcription factors (and may
thus be MYC co-factors) tend to be highly interaction-specific, affecting only
1-4 target genes (see Supplementary Fig. 1).

3.4 Literature Validation of Known MYC Modulators

Closer scrutiny, through literature review reveals that a number of the inferred
modulators play a role in the post-transcriptional and post-translational mod-
ulation of MYC, either by direct physical interaction, or by modulating well-
characterized pathways that are known to affect MYC function.

Among the list of putative modulators, we found two well known co-factors
of MYC: MAX and MIZ-1. Numerous studies, [20] among many others, have
shown that transcriptional activation by MYC occurs via dimerization with its
partner MAX. Similarly, MIZ-1 has been shown to specifically interact with
MYC through binding to its helix-loop-helix domain, which may be involved in
gene repression by MYC [21]. Several protein kinases identified by our method
are also notable: CSNK1D, a member of the Casein Kinase I gene family, is a
reasonable MYC modulator since one of its related family member, Casein Ki-
nase II, has been demonstrated to phosphorylate MYC and MAX, thus affecting
the DNA-binding kinetics of their heterodimer [22, 23]. MYC is also know to be
phosphorylated by JNK [24] and GSK [25], which affect the stability of its pro-
tein. Although both kinases were excluded from our initial candidate modulator
set due to their insufficient expression range, our approach was able to identify
some of their upstream signaling molecules, such as MAP4K4 and HCK. Both
MAP4K4 and HCK are members of the BCR singling pathway that is known to
control MYC activation and degradation [26]. In particular, MAP4K4 has been
previously reported to specifically activate JNK [27].

MYC stability is also known to be regulated through ubiquitin-mediated
proteolysis [28]. Two enzymes in this process, USP6 and UBE2G1, were iden-
tified as putative modulators of MYC. Although there is no biochemical ev-
idence implicating these two proteins specifically, they serve as a reasonable
starting point for biochemical validation. We also identified putative modula-
tors that could potentially influence the MYC mRNA stability. One of them,
APOBEC3B, is closely related to APOBEC1, which has been well characterized
as a RNA-editing enzyme capable of binding MYC mRNA in the 3’ untrans-
lated region, thus increasing its stability [29]. While APOBEC1 was excluded
from our analysis due to its insufficient expression range, the identification of
its closely related family member, APOBEC3B, may suggest a similar mecha-
nism. Another protein from this category, HNRPDL, encodes a heterogeneous
nuclear ribonucleoprotein which interacts with mRNA and may have a role in
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mRNA nuclear export. MYC stimulates gene expression in part at the level of
chromatin, through its association with co-factors that affect the histone acety-
lation and DNA methylation. DNMT1, which encodes a DNA methyltransferase,
was found in our putative modulator list. Current literature suggests that MYC
may repress transcription through the recruitment of DNA methyltransferase as
corepressor, which may in turn lead to hypoacetylated histones that are often
associated with transcriptional silencing [30, 31].

Many other genes in our list of putative modulators of MYC also present
relevant biological functionality, such as transcription factors FOS, CREM, REL
and NFKB2, anti-apoptosis regulator BCL-2, to name but a few. Those for which
functional relevance can not be established from the current literature likely
belong to two groups: (a) novel bona fide MYC modulators requiring further
biochemical validation and (b) genes that are co-expressed with a bona fide
modulator, such as gene from the same biological pathway. A likely example of
the latter case is NFKB2 and its inhibitor NFKBIA, which are both identified
as modulators of MYC, while having substantially correlated expression profiles
(Pearson correlation 0.55).

Table 2. Promoter analysis of the MYC target genes affected by TF-modulators.
Binding signatures of 8 of the 14 TFs in the putative modulator list were obtained
through TRANSFAC. Promoter sequences of the target genes (2Kb upstream and
2Kb downstream of the transcription initiation site) were retrieved from the UCSC
Golden Path database [33] and masked for repetitive elements. Statistical significance
is assessed by considering a null score distribution computed from random sequences
using an order-2 Markov model learned from the actual promoter sequences, where PBS

is calculated as the probability of finding at least one binding site per 1Kb sequence
under the null hypothesis. We used a significance threshold of 0.05; findings below this
threshold are shown in red.

Modulator Binding Signature MYC targets PBS

CUTL1 NP 0.032

CREM PRKDC 0.041

BHLHB2
TLE4 0.030
MLL 0.039
IL4R 0.140

MEF2B
KLF12 0.391
CR2 0.326

CYBB 0.045

FOS ZNF259 0.049

REL KEL 0.125

E2F5 IL4R 0.870

NFKB2 FOXK2 0.041
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3.5 Transcription Factors Co-binding Analysis

For the putative modulators annotated as TF, one potential mechanism of mod-
ulation is as MYC co-factors. We thus searched for the binding signatures of both
MYC and the modulator-TF within the promoter region of the genes whose in-
teraction with MYC appeared to be modulated by the TF. Of the 14 TFs in our
putative modulator list, 8 have credibly identified DNA binding signatures from
TRANSFAC [32] (represented as position-specific scoring matrix). These TFs
affect 12 MYC interactions with 11 target genes. Additionally, 4 of the 5 target
genes whose expressions are positively correlated with MYC present at least one
E-Box in their promoter region (p < 4.03 × 10−4)1 . As is shown in Table 2,
of the 12 instances of statistically significant modulator target pairs, 7 target
genes harbor at least one high specificity TF binding signature (PBS < 0.05) in
their promoter region. The overall p-value associated with this set of events is
p < 0.0025 (from the binomial background model). This strongly supports the
hypothesis that these TFs are target specific co-factors of MYC.

4 Conclusion and Discussion

Cellular interactions can be neither represented as a static relationship nor mod-
eled as pure pairwise processes. The two issues are deeply interlinked as higher
order interactions are responsible for the rewiring of the cellular network in a
context dependent fashion. For transcriptional interactions, one can imagine a
transistor-like model, in which the ability of a TF to activate or repress the
expression of its target genes is modulated, possibly in a target-specific way,
by one or more signaling proteins or co-factors. Such post-transcriptional and
post-translational conditional interactions are necessary to create complex rather
than purely reactive cellular behavior and should be abundant in biological sys-
tems. Unfortunately, most post-translational interactions (e.g. phosphorylation
or complex formation) do not affect the mRNA concentration of the associated
proteins. As a result, they are invisible to näıve co-expression analysis meth-
ods. However, proteins that are involved in post-translational regulation may
be themselves transcriptionally regulated. At steady state, the concentration of
such post-translationally modified proteins and complexes can then be expressed
as a function of some mRNA expressions, albeit in a non-obvious, conditional
fashion. With this in mind, we show that conditional analysis of pairwise sta-
tistical dependencies between mRNAs can effectively reveal a variety of tran-
sient interactions, as well as their post-transcriptional and post-translational
regulations.

In this paper, we restrict our search to genes that affect the ability of a given
TF to transcriptionally activate or repress its target(s). While the identification
of the targets of a transcription factor is a rather transited area, the identification

1 MYC is known to transcriptional activate its targets through binding to E-box ele-
ments. Repression by MYC occurs via a distinct mechanism, not involving E-boxes,
which is not yet well characterized.
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of upstream modulators is essentially unaddressed at the computational level,
especially in a TF-target interaction specific way. Experimentally, it constitutes
an extremely complex endeavor that is not yet amenable to high-throughput
approaches. For instance, while hundreds of MYC targets are known, only a
handful of genes have been identified that are capable of modifying MYC’s ability
to activate or repress its targets. Even fewer of these are target specific.

We show that such modulator genes can be accurately and efficiently iden-
tified from a set of candidates using a conditional MI difference metric. One
novelty of our approach is that it requires no a-priori selection of the modulator
genes based on certain functional criteria: the candidate modulators include all
genes on the microarray that have sufficient dynamic range and no significant MI
with the TF gene. The first requirement can be actually lifted without affecting
the method other than making it more computationally intensive and requiring
more stringent statistical tests (as the number of tested hypotheses would obvi-
ously increases). This is because conditioning on a gene with an expression range
comparable to the noise is equivalent to random sub-sampling of the expression
profiles, an event that will be filtered out by our statistical test.

Another critical element of our method is the phenotypic heterogeneity of the
expression profiles. This ensures that no sufficiently large subset of the expres-
sion profiles can be obtained without sampling from a large number of distinct
phenotypes, including both normal and malignant cells. In fact, the average
number of distinct cellular phenotypes in any subset of gene expression profiles
used in the analysis is about 20, with no subset containing fewer than 13. Thus,
the modulators identified in this paper are not associated with a specific cellular
phenotype.

To derive a null model for estimating the significance of individual condi-
tional mutual information differences, ΔI, we investigated the statistics of ΔI
as a function of the unconditional mutual information I. Other models, such as
dependence of ΔI on I+ or I−, were also investigated, but they proved to be
less informative. It is possible that a more accurate null model may be learned
by studying the variation of ΔI as a function of both I and either I+ or I−.
For example, this may answer questions such as: given measured values of I and
I−, what is the probability of seeing a specific difference in ΔI? While this may
provide finer-grained estimates of the statistical significance, this also would dra-
matically increases the number of Monte Carlo samples necessary for achieving
a reasonable numerical precision, which would prohibit the actual deployment
of the strategy.

Method limitations follow broadly into three categories: (a) The computa-
tional deconvolution of molecular interaction is still manifestly inaccurate. This
has obvious effects on the discovery of interaction-specific modulators, i.e. we
may identify modulators of “functional” rather than physical interactions. (b)
The method cannot dissect modulators that are constitutively expressed (house-
keeping genes) and activated only at the post-translational level (e.g., the p53
tumor suppressor gene), nor modulators that are expressed at very low concen-
trations. However, in both cases a gene upstream of the most direct modulator
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may be identified in its place. For instance, JNK is a known modulator of MYC
activity, which is weakly expressed in human B cells and, therefore it is not even
included in the initial candidate modulator list. However, MAP4K4, which is
upstream of JNK in the signaling cascade, is identified as a MYC modulator
in its place. (c) The method cannot disambiguate true modulators from those
co-expressed with them.

Techniques to deal with all these drawbacks are currently being investigated.
However, we believe that, even in its current state, our approach presents a
substantial advancement in the field of reverse engineering of complex cellular
networks.

5 Supplementary Material

Supplementary Materials are available at:
http://www.dbmi.columbia.edu/~kaw7002/recomb06/supplement.html.
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Abstract. Advances in tandem mass-spectrometry (MS/MS) steadily increase
the rate of generation of MS/MS spectra and make it more computationally chal-
lenging to analyze such huge datasets. As a result, the existing approaches that
compare spectra against databases are already facing a bottleneck, particularly
when interpreting spectra of post-translationally modified peptides. In this paper
we introduce a new idea that allows one to perform MS/MS database search . . .
without ever comparing a spectrum against a database. The idea has two compo-
nents: experimental and computational. Our experimental idea is counter-
intuitive: we propose to intentionally introduce chemical damage to the sample.
Although it does not appear to make any sense from the experimental perspec-
tive, it creates a large number of “spectral pairs” that, as we show below, open
up computational avenues that were never explored before. Having a spectrum of
a modified peptide paired with a spectrum of an unmodified peptide, allows one
to separate the prefix and suffix ladders, to greatly reduce the number of noise
peaks, and to generate a small number of peptide reconstructions that are very
likely to contain the correct one. The MS/MS database search is thus reduced to
extremely fast pattern matching (rather than time-consuming matching of spectra
against databases). In addition to speed, our approach provides a new paradigm
for identifying post-translational modifications.

1 Introduction

Most protein identifications today are performed by matching spectra against databases
using programs like SEQUEST [1] or MASCOT [2]. While these tools are invaluable,
they are already too slow for matching large MS/MS datasets against large protein
databases. Moreover, the recent progress in mass spectrometry instrumentation (a sin-
gle LTQ-FT mass-spectrometer can generate 100,000 spectra per day) may soon make
them obsolete. Since SEQUEST compares every spectrum against every database pep-
tide, it will take a cluster of about 60 processors to analyze the spectra produced by a
single such instrument in real time (if searching through the Swiss-Prot database). If one
attempts to perform a time-consuming search for post-translational modificatoions, the
running time may further increase by orders of magnitude. We argue that new solutions
are needed to deal with the stream of data produced by shotgun proteomics projects.
Beavis et al, 2004 [3] and Tanner et al., 2005 [4] recently developed X!Tandem and In-
sPecT algorithms that prune (X!Tandem) and filter (InsPecT) databases to speed-up the
search. However, these tools still have to compare every spectrum against a (smaller)
database.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 363–378, 2006.
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In this paper we explore a new idea that allows one to perform MS/MS database
search without ever comparing a spectrum against a database. The idea has two compo-
nents: experimental and computational. Our experimental idea, while counter-intuitive,
is trivial to implement. We propose to slightly change the experimental protocol by
intentionally introducing chemical damage to the sample and generating many modi-
fied peptides. The current protocols try to achieve the opposite goal of minimizing the
chemical damage since (i) modified peptides are difficult to interpret and (ii) chemical
adducts do not provide any useful information. Nevertheless, the existing experimental
protocols unintentionally generate many chemical modifications (sodium, potassium,
Fe(III), etc.)1 and below we show that existing MS/MS datasets often contain modified
versions for many peptides. In addition, even in a sample without chemical damage,
exopeptidases routinely create a variety of peptides that differ from each other by a
deletion of terminal amino acids.

From the experimental perspective, subjecting a sample to chemical damage does
not make any sense.2 However, from the computational perspective, it creates a large
number of “spectral pairs” that, as we show below, open up computational avenues that
were never explored before. Having a pair of spectra (one of a modified and another
of an unmodified peptide) allows one to separate the prefix and suffix mass ladders, to
greatly reduce the number of noise peaks, and to generate a small number of peptide
reconstructions that are very likely to contain the correct one. In difference from our
recent approach to generating covering sets of short 3–4 amino acid tags (Frank et
al., 2005 [7], Tanner et al., 2005 [4]), this approach generates a small covering set of
peptides 7–9 amino acids long. This set typically has a single perfect hit in the database
that can be instantly found by hashing and thus eliminates the need to ever compare the
spectrum against the database.3

Let S(P ) and S(P ∗) be spectra of an unmodified peptide P and its modified ver-
sion P ∗ (spectral pair). The crux of our computational idea is a simple observation
that a “database” consisting of a single peptide P is everything one needs to interpret
the spectrum S(P ∗). If one knows P then there is no need to scan S(P ∗) against the
database of all proteins! Of course, in reality one does not know P since only S(P ) is
available. Below we show that the spectrum S(P ) is nearly as good as the peptide P
for interpreting S(P ∗) thus eliminating the need for database search. This observation
opens the possibility of substituting MS/MS database search with finding spectral pairs
and further interpreting the peptides that produced them. Below we show that these

1 Hunyadi-Goulyas and Medzihradszky, 2004 [5] give a table of over 30 common chemical
adducts that are currently viewed as annoyances.

2 Probably the easiest way to chemically damage the sample is to warm it up in urea solution or
to simply bring it into mildly acidic pH and add a hefty concentration of hydrogen peroxide.
See Levine et al., 1996 [6] for an example of a slightly more involved protocol that generates
samples with desired extent of oxidation in a controlled fashion. Also, to create a mixture of
modified and unmodified peptides, one can split the sample in half, chemically damage one
half, and combine both halves together again.

3 We remark that the Peptide Sequence Tag approach reduces the number of considered peptides
but does not eliminates the need to match spectra against the filtered database. For example,
Tanner et al., 2005 [4] describe a dynamic programming approach for matching spectra against
a filtered database.
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problems can be solved using a variation of the spectral alignment approach [8]. We
further show how to transform the spectral pair (S1, S2) into virtual spectra S1,2 and
S2,1 of extremely high quality; with nearly perfect b and y ion separation and the num-
ber of noisy peaks reduced twelvefold, these spectra (albeit virtual) are arguably the
highest quality spectra mass-spectrometrists ever saw.

2 Dataset

We describe our algorithm and illustrate the results using a sample of MS/MS spectra
from IKKb protein. The IKKb dataset consists of 45,500 spectra acquired from a di-
gestion of the inhibitor of nuclear factor kappa B kinase beta subunit (IKKb protein)
by multiple proteases, thereby producing overlapping peptides (spectra were acquired
on a Thermo Finigan LTQ mass spectrometer). The activation of the inhibitor kappaB
kinase (IKK) complex and its relationships to insulin resistance were the subject of re-
cent intensive studies. The IKK complex represents an ideal test case for algorithms
that search for post-translationally modified (PTM) peptides. Until recently, phospho-
rylations were the only known PTMs in IKK, which does not explain mechanisms of
signaling and activation/inactivation of IKK by over 200 different stimuli, including
cytokines, chemicals, ionization and UV radiation, oxidative stress, etc. It is likely that
different stimuli use different mechanisms of signaling involving different PTM sites.
Revealing the combinatorial code responsible for PTM-controlled signalling in IKK
remains an open problem.

The IKKb dataset was extensively studied in Tanner et al., 2005 [4] and Tsur et
al., 2005 [9] resulting in 11760 identified spectra and 1154 annotated peptides (p-value
≤0.05). This IKKb sample presents an excellent test case for our protocol since 77%
of all peptides in this sample have spectral pairs even without intentionally subjecting
the sample to chemical damage. 639 out of 1154 annotated peptides are modified. 448
out of 639 modified peptides have an unmodified variant. 208 out of 515 unmodified
peptides have a modified version, and 413 out of 515 unmodified peptides have either
a modified version or a prefix/suffix peptide in the sample. The sample contains 571
peptides with 3 or more spectra (345 unmodified and 226 modified), 191 peptides with
2 spectra (71 unmodified and 120 modified) and 392 peptides with a single spectrum
(99 unmodified and 293 modified). The dataset has not been manually validated and the
unusually high proportion of modified peptides with a single spectrum as compared to
peptides annotated by multiple spectra may be an indication that some annotations of
peptides explained by a single spectrum may be incorrect.

3 Detecting Spectral Pairs

3.1 Clustering Spectra

Clustering multiple spectra of the same peptide achieves a twofold goal: (i) the consen-
sus spectrum of a cluster contains much fewer noise peaks than the individual spectra,
and (ii) clustering speeds up and simplifies the search for spectral pairs. The clustering
step capitalizes on the fact that true peaks consistently occur in multiple spectra from the



366 N. Bandeira et al.

Table 1. Statistics of single spectra, consensus spectra, spectral pairs, and star spectra. Satellite
peaks include fragment ions correlated with b and y peaks (b−H2O, b−NH3, a, b2, etc.). Signal-
to-noise ratio (SNR) is defined as #b−ions

#unexplained peaks
. Spectral pairs separate prefix and suffix

ladders and make interpretations of resulting spectra Sb
i,j straightforward. Spectral stars further

increase the number of b and y peaks in the resulting spectra. Note that b peaks are responsible
for about 90% of the score in both paired and star spectra. The results are given only for the Sb

i,j

spectra since the Sy
i,j spectra have the same statistics.

Type of spectra #Explained #Unexplained #Total SNR
b y Satellite

Single spectra # peaks: 9.48 9.26 20.07 35.25 74.05 0.27
(11760 spectra) % peaks: 13% 13% 26% 48%

% score: 28% 28% 19% 25%

Consensus spectra # peaks: 9.47 9.39 10.42 13.74 43.06 0.69
(567 spectra) % peaks: 22% 22% 24% 32%

% score: 37% 36% 13% 14%

Spectral pairs Sb
i,j # peaks: 6.47 0.2 0.38 1.69 8.64 3.83

(1569 pairs) % peaks: 75% 2% 4% 19%
% score: 87% 2% 4% 7%

Star spectra # peaks: 8.38 0.52 0.92 2.90 12.72 2.89
(745 stars) % peaks: 66% 4% 7% 23%

% score: 88% 3% 2% 7%

same peptide, while noise peaks do not. Our clustering approach follows Bandeira et al.,
2004 [10] with some improvements outlined below. We first transform every spectrum
into its scored version that substitutes peak intensities with log likelihood scores. Any
scoring used in de novo peptide sequencing algorithms can be used for such transforma-
tion (we have chosen to use scoring from Frank and Pevzner [11]). We also transform
every spectrum into a PRM spectrum (see [10]).

Bandeira et al. [10] use a spectral similarity measure to decide whether two spectra
come from the same peptide. While spectral similarity largely succeeds in identify-
ing related spectra, it may in some cases pair non-related spectra. Although such false
pairings are rare, they may cause problems if they connect two unrelated clusters. To
remove false pairs we use a heuristic approach from Ben-Dor et al. [12]. This clustering
procedure resulted in 567 clusters representing 98% of all unmodified and 96% of all
modified peptides with three or more spectra in the original sample.

Each cluster of spectra is then collapsed into a single consensus spectrum that con-
tains peaks present in at least k spectra in the cluster. The parameter k is chosen in
such a way that the probability of seeing a peak in k spectra by chance is below 0.01.4

We further sum up the scores of matching peaks to score the peaks in the consensus
spectrum. As shown in Table 1, the resulting consensus spectra have unusually high

4 We model the noise peak generation as a Bernoulli trial and the occurrence of k matching
peaks in a cluster of n spectra as random variable with a Binomial distribution.
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signal-to-noise ratio (the number of unexplained peaks in the consensus spectra is re-
duced by a factor of 2.5). We also observed some consistently co-occurring unexplained
peaks possibly due to co-eluting peptides or unexplained fragment ions (e.g., internal
ions). After clustring we end up with 567 consensus spectra (that cover 93% of all
individual spectra) and 862 unclustered spectra.

3.2 Spectral Pairs

Peptides P1 and P2 form a peptide pair if either (i) P1 differs from P2 by a single
modification/mutation, or (ii) P1 is either a prefix or suffix of P2

5. Two spectra form a
spectral pair if their corresponding peptides are paired. Although the peptides that give
rise to a spectral pair are not known in advance, we show below that spectral pairs can
be detected with high confidence using uninterpreted spectra.

Fig. 1. Spectral product for the spectra of the peptides TEVMA and TEVMAFR. Figure (a) shows
the spectral product for the theoretical spectra of these peptides (all points at the intersections
between the vertical and horizontal lines). The blue (resp., red) circles correspond to matching
b ions (resp., y ions) in the two spectra. The blue and red circles are located on the blue and
red diagonals. Figure (b) shows the spectral product for uninterpreted spectra of the peptides
TEVMA and TEVMAFR. The two diagonals in the spectral product matrix still reveal the points
where peaks from the spectrum at the top match peaks from the spectrum on the left. Figure (c)
illustrates how the blue and red diagonals define the spectra Sb

1,2 and Sy
1,2.

For two spectra S1 and S2, the spectral product [8] of S1 and S2 is the set of points
(x, y) ∈ R2 for every x ∈ S1 and y ∈ S2 (S1 and S2 are represented as sets of masses).
Figure 1a shows the spectral product for the theoretical spectra of two peptides. The

5 Condition (ii) can be viewed as a variation of (i) if one considers a pair of peptides differing
by a few prefix/suffix residues as a single mutation (such variations are common in MS/MS
samples). More generally, peptides P1 and P2 form a peptide pair if either (i) P1 is a modi-
fied/mutated version of P2, or (ii) P1 and P2 overlap. While our techniques also work for this
generalization, we decided to limit our analysis to simple peptide pairs described above. We
found that such simple pairs alone allow one to interpret most spectra. Adding pairs of spectra
with more subtle similarities further increases the number of spectral pairs but slows down the
algorithm.
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Fig. 2. Spectral product matrix for uninterpreted spectra with internal modification: The first spec-
trum corresponds to an unmodified peptide, and the second spectrum corresponds to a modified
peptide. In these cases it is not appropriate to construct Sb

i,j /Sy
i,j by simply selecting peaks on the

diagonals - section 3.4 describes a more adequate algorithm for this purpose.

similarity between the two spectra is revealed by two diagonals (blue and red) in the
spectral product.

Figures 1b and 2 show pairs of uninterpreted spectra, denoted S1 and S2, and their
spectral product. Although the “colors” of peaks are not known in this case, we take the
liberty to name one diagonal blue and the other red. One can use circles (matching peak
masses) on the blue diagonal to transform the original spectrum S1 into a new spectrum
Sb

1,2 (Figure 1c) with a much smaller number of peaks (a peak in S1 is retained in Sb
1,2

only if it generates a circle on the blue diagonal). Similarly, one can transform S1 into
a spectrum Sy

1,2 using circles on the red diagonal. The peak scores in both spectra Sb
1,2

and Sy
1,2 are inherited from spectrum S1. Similarly, the spectrum S2 is transformed into

spectra Sb
2,1 and Sy

2,1.6

Intuitively, if two spectra are unrelated, blue and red diagonals represent random
matches and the number of circles appearing on these diagonals is small. Paired spec-
tra, on the contrary, are expected to have many circles on these diagonals. Although
this simple criterion (number of circles on two diagonals) would already allow one to
roughly distinguish paired spectra from unrelated spectra, we describe below a more
accurate test for finding spectral pairs.

3.3 Spectral Pairs Graph

The correlation score of spectra S1 and S2 is defined as the total score of all peaks in
spectra Sb

1,2 and Sy
1,2: score(S1, S2) = score(Sb

1,2) + score(Sy
1,2). In a similar way,

score(S2, S1) = score(Sb
2,1)+score(Sy

2,1). We accept S1 and S2 as a putative spectral

pair if both the ratio score(S1,S2)
score(S1)

and score(S2,S1)
score(S1)

exceed a predefined threshold (0.4 in
examples below).

6 We remark that the assignments of upper indexes to spectra Sb
1,i and Sy

1,i are arbitrary and it
is not known in advance which of these spectra represents b ions and which represents y ions.
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1 KQGGTLDD LEE QAREL
2 KQGGTLDD LEE QARE
3 KQGGTLDD LEE QAR
4 KQGGTLDD LEE QA
5 KQGGTLDD LEE-18QAR
6 KQGGTLDD LEE-18Q
7 QGGTLDD LEE QAR
8 QGGTLDD+53LEE QAR

1

2

3

4 5 7

86

Fig. 3. A connected component of the spectral pairs graph (as projected to peptides)

In addition to the correlation score test described above, we also use a test that takes
into account the size of the MS/MS sample. The larger the set of spectra under consider-
ation the larger the chance that a certain correlation score can be achieved by chance. To
account for this phenomenon we assume that the correlation scores between unrelated
spectra approximately follow a Gaussian distribution. Thus, a correlation score is only
considered significant if the probability of this score appearing by chance is below 0.01.

The spectral pairs that satisfy both tests form the spectral pairs graph on the set of
all spectra (Figure 3). The spectral pairs graph for the IKKb dataset has 43 connected
components with 1021 vertices and 1569 edges. The small number of connected com-
ponents is not surprising since overlapping peptides in this dataset can be assembled
into a small number of contigs (an effect previously explored in the context of shotgun
protein sequencing [10]). The combined filtering efficiency of these criteria allowed us
to retain 78.4% of all correct spectral pairs at a precision level of 95% and find sev-
eral different variants of most unmodified peptides. Table 1 describes the statistics of
spectra Si,j and shows the dramatic increase in signal-to-noise ratio as compared to
consensus spectra (let alone individual spectra). Moreover, the spectral pairs provide
nearly perfect separation between prefix and suffix ladders thus making follow up in-
terpretation straightforward. When compared to EigenMS’s [13] average performance
on single LTQ MS/MS spectra, spectral pairs reduce the contamination of suffix peaks
in prefix ladders (and vice-versa) from their reported level of 11% to only 2%.

3.4 Analyzing Spectral Pairs with Anti-symmetric Spectral Alignment

Figure 1b illustrates case (ii) in the definition of spectral pairs. The situation becomes
less transparent in case (i), namely when modification/mutation occurs in the middle
of peptide (Figure 2). In this case both detecting spectral pairs (Si, Sj) and further
processing them into spectra Sb

i,j and Sy
i,j is more complicated. Below we describe a

general algorithm for deriving virtual spectra Si,j from spectral pairs that covers the
case of internal modifications/mutations.

Let S1 and S2 be two spectra, and assume w.l.o.g. that M(S1) < M(S2), where
M(S) denotes the parent mass of S. Let Δ = M(S2) −M(S1). For simplicity, we
shall assume in the following that the masses in S1 and S2 are integers. Furthermore,
we assume that Si (i = 1, 2) contains the masses 0 and M(Si).

Denote by M(S1, S2) the spectral product matrix of S1 and S2. We define a path
in M(S1, S2) to be a set of points in R2 that is composed of two diagonal segments
{(x, x) : a ≤ x < b} and {(x, x + Δ) : b < x ≤ c} for some a ≤ b ≤ c. Note that
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the first segment is on the blue diagonal and the second segment is on the red diagonal
(one of the segments is empty when a = b or b = c). We say that the endpoints of the
path are the leftmost and rightmost points on the path.

The spectral alignment algorithm [8] finds the path from (0, 0) to (M(S1),M(S1)+
Δ) that contains the maximum number of points fromM(S1, S2). For the optimal path
P , the projection of P onto Si (i.e. the set {x1 : (xi, xi−1) ∈ P}) gives a subset of Si

which usually contains many b-ion peaks. However, this set can also contain many peaks
corresponding to y and neutral loss ion peaks. In order to obtain better b/y separation,
we change the spectral alignment problem by selecting only a subset of the points in
P : (1) Since the minimum mass of an amino acid is 57 Da, we will choose peaks with
distance at least 57 between every two peaks, and (2) We will not select two points that
are generated by a peak and its complement peak in S1 or S2.

Formally, we say that two peaks x and x′ in a spectrum S are complements if x+x′ =
M(S) + 18. A subset A of a spectrum S is called anti-symmetric if it does not contain
a complement pair. A set A is called sparse if |x− x′| ≥ 57 for every x, x′ ∈ A. Given
a path P , a set A ⊆ P is called sparse if the projection of A onto S1 is sparse, and it is
called anti-symmetric if the projections of A onto S1 and S2 are anti-symmetric (w.r.t.
S1 and S2, respectively). Our goal is to find the largest sparse anti-symmetric subset of
M(S1, S2) that is contained in some path from (0, 0) to (M(S1),M(S1) + Δ), and
contains the points (0, 0) and (M(S1),M(S1) +Δ).

Our algorithm for solving the problem above is similar to the algorithm of Chen
et al. [14] for de-novo peptide sequencing. But unlike de-novo peptide sequencing, our
problem is two-dimensional, and this adds additional complication to the algorithm. We
use dynamic programing to compute optimal sets of points that are contained in two
paths, one path starting at (0, 0) and the other path starting at (M(S1),M(S1) + Δ).
By keeping two paths, we make sure that for each set of points we build, its projection
on S1 is anti-symmetric. In order to keep the projection on S2 anti-symmetric, we need
additional information which is kept in a third dimension of the dynamic programming
table. The full details of the algorithm are given in the appendix.

3.5 Spectral Stars

A set of spectra incident to a spectrum S1 in the spectral pairs graph is called a spectral
star. For example, the spectral star for the spectrum derived from peptide 3 in Figure 3
consists of multiple spectra from 5 different peptides. Even for a single spectral pair
(S1, S2), the spectra Sb

1,2 and Sy
1,2 already have high signal-to-noise ratio and rich pre-

fix and suffix ladders. Below we show that spectral stars allow one to further enrich
the prefix and suffix ladders (see Table 1). A spectral star consisting of spectral pairs
(S1, S2), (S1, S3), . . . , (S1, Sn) allows one to increase the signal-to-noise ratio by con-
sidering 2(n−1) spectra Sb

1,i and Sy
1,i for 2 ≤ i ≤ n. We combine all these spectra into

a star spectrum S∗
1 using our clustering approach. This needs to be done with caution

since spectra Sb
1,i and Sy

1,i represent separate prefix and suffix ladders. Therefore, one
of these ladders needs to be reversed to avoid mixing prefix and suffix ladders in the
star spectrum. The difficulty is that the assignments of upper indexes to spectra Sb

1,i and
Sy

1,i are arbitrary and it is not known in advance which of these spectra represents b ions
and which represents y ions (i.e., it may be that Sb

1,i represents the suffix ladder while
Sy

1,i represents the prefix ladder).
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A similar problem of reversing DNA maps arises in optical mapping (Karp and
Shamir, 2000 [15], Lee et al., 1998 [16]). It was formalized as Binary Flip-Cut (BFC)
Problem [17] where the input is a set of n 0-1 strings (each string represents a snap-
shot of a DNA molecule with 1s corresponding to restriction sites). The problem is to
assign a flip or no-flip state to each string so that the number of consensus sites is max-
imized. We found that for the case of spectral stars, a simple greedy approach to the
BFC problem works well. In this approach, we arbitrarily select one of the spectra Sb

1,i

and Sy
1,i and denote it S1,i. We select S1,2 as an initial consensus spectrum. For every

other spectrum S1,i (2 ≤ i ≤ n), we find whether S1,i or its reversed copy Srev
1,i better

fits the consensus spectrum. In the former case we add S1,i to the growing consensus,
in the latter case we do it with Srev

1,i .
After the greedy solution of the BFC problem we know the orientations of all spectra

in the spectral star. The final step in constructing star spectrum S∗ from the resulting
collection of S1,i spectra using the consensus spectrum approach from Section 3.1. Ta-
ble 1 illustrates the power of spectral stars in further enriching the prefix/suffix ladders.

4 Interpretation of Spectral Pairs/Stars

The high quality of the spectra derived from spectral pairs (Si,j) and spectral stars (S∗
i )

makes de novo interpretation of these spectra straightforward (Figure 4). Since these
spectra feature excellent separation of prefix and suffix ladders and a small number
of noise peaks, de novo reconstructions of these spectra produce reliable (gapped) se-
quences that usually contain long correct tags.7 On average, de novo reconstructions of
our consensus spectra correctly identify 72% of all possible “cuts” in a peptide (i.e., on
average, 0.72 · (n − 1) b-ions (y-ions) in a peptide of length n are explained). This is
a very high number since the first (e.g., b1) and the last (e.g., bn−1) b-ions are rarely
present in the MS/MS spectra thus making it nearly impossible to explain more than
80% of “cuts” in the IKKb sample. Moreover, on average, the explained b-peaks ac-
count for 95% of the total score of the de novo reconstruction implying that unexplained
peaks usually have very low scores.8 In addition to the optimal de novo reconstruction,
we also generate suboptimal reconstructions and long peptide tags.

Benchmarking in mass-spectrometry is inherently difficult due to shortage of manu-
ally validated large MS/MS samples that represent “golden standards”. While the ISB
dataset [18] represents such a golden standard for unmodified peptides, large validated
samples of spectra from modified peptides are not currently available. As a compro-
mise, we benchmarked our algorithm using a set of 11760 spectra from the IKKb dataset

7 We use the standard longest path algorithm to find the highest scoring path (and a set of sub-
optimal paths) in the spectrum graph of spectra Si,j and S∗

i . In difference from the standard
de novo algorithms we do not insist on reconstructing the entire peptide and often shorten the
found path by removing its prefix/suffix if it does not explain any peaks. As a result, the found
path does not necessarily start/end at the beginning/end of the peptide. We also do not invoke
the antisymmetric path restriction [14] since the spectra Si,j and S∗

i already separate prefix
and suffix ladders.

8 We realize that our terminology may be confusing since, in reality, it is not known whether
a spectrum Sb

i,j describes b- or y-ions. Therefore, in reality we average between prefix and
suffix ladders while referring to b-ions.
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Fig. 4. Improvements in signal-to-noise. The scored MS/MS spectrum for peptide SEELVAEAH
has both prefix and suffix peaks along with several noise peaks (A). Using the spectral product of
a pair of spectra, many of the noise and suffix peaks that do not reside on the selected diagonal are
eliminated. Though paired spectra provide very good separation of prefix/suffix ladders they may
sometimes be too selective (e.g. causing the loss of the b1, b2, b6, b8 peaks) (B). By incorporating
more paired spectra to form a spectral star, all noise peaks are removed and all missing prefix
peaks are adequately recovered (C).

that were annotated by InsPecT (with p-values≤0.05) and extensively studied in recent
publications [4, 9] (including comparisons with Sequest, Mascot and X!Tandem). The
entire analysis (starting from clustering and ending with interpretations) of the IKKb
dataset took 32 minutes on a regular desktop machine, well below the expected running
time of searching the same dataset against even a medium sized database. Below we
give results for both spectral pairs and spectral stars.

InsPecT identified 515 unmodified peptides9 in the IKKb sample, 413 of which have
some other prefix/suffix or modified variant in the sample and are thus amenable to pair-
ing. We were able to find spectral pairs for 386 out of these 413 peptides. Moreover, 339
out of these 386 peptides had spectral pairs coming from two (or more) different pep-
tides, i.e., pairs (S1, S2) and (S1, S3) such that spectra S2 and S3 come from different
peptides.

The average number of (gapped) de novo reconstruction (explaining at least 85%
of optimal score) for spectral stars was 10.4. While the spectral stars generate a small
number of gapped reconstructions, these gapped sequences are not well suited for fast
membership queries in the database. We therefore transform every gapped de-novo re-
construction into an ungapped reconstruction by substituting every gap with all possible
combinations of amino acids.10 On average, it results in 165 sequences of length 9.5 per
spectrum. It turned out that for 86% of peptides, one of these tags is correct.

9 We remark that 99 of them are represented by a single spectrum and thus are more likely to be
interpretation artifacts.

10 In rare cases the number of continuous sequences becomes too large. In such cases we limit
the number of reconstructions to 500.
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While checking the membership queries for 165 sequences11 can be done very
quickly with database indexing (at most one of these sequences is expected to be present
in the database), there is no particular advantages in using such super-long tags (9.5
amino acids on average) for standard database search: a tag of length 6-7 will also typ-
ically have an unique hit in the database. However, the long 9-10 amino acid tags have
distinct advantages in difficult non-standard database searches, e.g., discovery of new
alternatively spliced variants or fusion genes via MS/MS analysis. Moreover, for stan-
dard search one can generate the smaller set of shorter (6-7 amino acids) tags based on
the original gapped reconstruction and use them for membership queries. We used the
obtained gapped reconstruction to generate such short 6 aa tags (each such tag was al-
lowed to have at most one missing peak) and enumerated all possible continuous l-mers
by substituting every gap with all possible combinations of amino acids.12 On average,
each consensus spectrum generates about 50 6-mer tags. It turned out that 82% of spec-
tra derived from spectral stars contain at least one correct 6-mer tag.

5 Using Spectral Pairs to Identify Post-translational Modifications

Our approach, for the first time, allows one to detect modifications without any ref-
erence to a database. The difference in parent masses within a spectral pair either

Fig. 5. Histogram of absolute parent mass differences for all detected spectral pairs; the y-axis
represents the number of spectral pairs with a given difference in parent mass. For clarity, we only
show mass range 1–100. The peaks at masses 71, 87, and 99 correspond to amino acid masses,
and the peaks at masses 14, 16, 18, 22, 28, 32, and 53 correspond to known modifications which
were also found by Tsur et al. [9]. The peak at mass 34 corresponds to a modification that remains
unexplained to date.

11 The actual number of queries is twice as large since we have to check every “reversed” se-
quence as well. However, this doubling in the number of database queries can be avoided by
accounting for reverse variants during the database indexing step.

12 In rare cases the number of continuous sequences becomes too large. In such cases we limit
the number of reconstructions to 100.
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correspond to a modification offset (case (i) above) or to a sum of amino acid masses
(case (ii)). Therefore, the modification offsets present in the sample can be revealed by
the parent mass differences within spectral pairs while their positions and specificities
can be determined from de-novo reconstructions. While not every difference in parent
mass corresponds to a PTM offset (some spectral pairs may be artifacts), the histogram
of parent mass differences (Fig. 5) reveals the PTMs present in the IKKb sample. In-
deed, 7 out of 8 most frequent parent mass differences in Fig. 5 are listed among 8
most common PTMs in IKKb sample in Tsur et al., 2005 [9]. We emphasize that Fig. 5
was obtained without any reference to database while Tsur et al., 2005 [9] found these
PTMs via database search. The only modification from [9] not represented in Fig. 5 is
deamidation with (small) offset 1 that is difficult to distinguish from parent mass errors
and isotopic peaks artifacts. Interestingly enough, our approach reveals an offset +34
(present in thousands of spectral pairs) that was missed in [9].

6 Conclusions

We have demonstrated the utility of using spectral pairs and stars for protein identifica-
tion. The key idea of our approach is that correlations between MS/MS spectra of mod-
ified and unmodified peptides allow one to greatly reduce noise in individual MS/MS
spectra and, for the first time, make de novo interpretations so reliable that they can
substitute the time-consuming matching of spectra against databases.

Tandem mass-spectra are inherently noisy and mass-spectrometrists have long been
trying to reduce the noise by advancing both instrumentation and experimental proto-
cols. In particular, Zubarev and colleagues [19, 20] recently demonstrated the power
of using both CAD and ECD spectra. We emphasize that, in difference from our ap-
proach, this technique requires highly accurate Fourier transform mass-spectrometry.
Another approach to reduce the complexity of spectra involves stable isotope label-
ing [21]. However, the impact of this approach (for peptide interpretation) has been
restricted, in part by the cost of the isotope and the high mass resolution required. Al-
ternative end-labeling chemical modification approaches have disadvantages such as
low yield, complicated reaction conditions, and unpredictable changes in ionization and
fragmentation. As a result, the impact of these important techniques is mainly in protein
quantification rather than interpretation [21]. The key difference between our approach
and labeling techniques is that, instead of trying to introduce a specific modification in
a controlled fashion, we take advantage of multiple modifications naturally present in
the sample. Our clustering and spectral alignment approaches allow one to decode these
multiple modifications (without knowing in advance what they are) and thus provide a
computational (rather than instrumentation-based or experiment-based) solution to the
problem of increasing signal-to-noise ratio in MS/MS spectra.
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A The Anti-symmetric Spectral Alignment Algorithm

In this section we describe the algorithm for solving the maximum sparse anti-sym-
metric subset problem that was presented in Section 3.4. We use the notations and
definitions from that section. For simplicity of the presentation, we will first give a
simple algorithm, and then describe several enhancements to the algorithm.

Recall that the input to the problem are two PRM spectra S1 and S2 and the goal
is to find the largest sparse anti-symmetric subset of M(S1, S2) that is contained in
some path from (0, 0) to (M(S1),M(S1) + Δ), and contains the points (0, 0) and
(M(S1),M(S1) +Δ).

In a preprocessing stage, we remove every element x of S1 if x /∈ S2 and x+Δ /∈ S2.
Denote S1 = {x1, . . . , xn} and S2 = {y1, . . . , ym}, where x1 < x2 < · · · < xn and
y1 < y2 < · · · < ym. Let N be the largest index such that xN ≤ (M(S) + 18)/2.

A peak xi in S1 will be called left-critical (resp., right-critical) if xi + Δ ∈ S1
(resp., xi −Δ ∈ S1). Denote by SL

1 and SR
1 the left-critical and right-critical peaks in

S1, respectively.
For i ≤ n, let Left(i) be the set of all sparse anti-symmetric subsets of SL

1 ∩ [xi −
Δ,xi − 57], and let Right(i) be the set of all sparse anti-symmetric subsets of SR

1 ∩
[xi + 57, xi + Δ]. Note that if Δ < 57 then Left(i) = Right(i) = φ for all i, which
simplifies the algorithm. In the following, we shall assume that Δ ≥ 57.

For i ≤ N and j > N , define D1(i, j) to be the maximum size of a sparse anti-
symmetric set A ⊆M(S1, S2) such that

1. A is contained in the union of a path from (0, 0) to (xi, xi) and a path from (xj , xj+
Δ) to (M(S1),M(S1) +Δ).

2. A contains the points (0, 0), (M(S1),M(S1) +Δ), (xi, xi), and (xj , xj +Δ).

If there is no set that satisfies the requirements above, D1(i, j) = 0.
We define tables D2 and D3 in a similar way: For i ≤ N<j and S ∈ Left(i), D2

(i, j, S) is the maximum size of a sparse anti-symmetric set A⊆M(S1, S2) such that

1. A is contained in the union of a path from (0, 0) to (xi, xi + Δ) and a path from
(xj , xj +Δ) to (M(S1),M(S1) +Δ).

2. A contains the points (0, 0), (M(S1),M(S1) + Δ), and (xj , xj + Δ). Moreover,
if i > 1 then A contains the point (xi, xi +Δ).

3. {x ∈ SL
1 : xi −Δ ≤ x ≤ xi − 57 and (x, x+Δ) ∈ A} = S.
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For i ≤ N < j and S ∈ Right(j), D3(i, j, S) is the maximum size of a sparse anti-
symmetric set A ⊆M(S1, S2) such that

1. A is contained in the union of a path from (0, 0) to (xi, xi) and a path from (xj , xj)
to (M(S1),M(S1) +Δ).

2. A contains the points (0, 0), (M(S1),M(S1) +Δ), and (xi, xi). If j < n then A
also contains the point (xj , xj).

3. {x ∈ SR
1 : xj + 57 ≤ x ≤ xj +Δ and (x, x) ∈ A} = S.

We also need the following definitions: For i ≤ n, prev(i) = i′, where i′ is the maxi-
mum index such that xi′ ≤ xi−57. If no such index exists then prev(i) = 1. Similarly,
next(i) = i′, where i′ is the minimum index such that xi′ ≥ xi + 57. If no such index
exists then next(i) = n. Define

ML
1 (i, j) = max

i′≤i
D1(i′, j)

MR
1 (i, j) = max

j′≥j
D1(i, j′)

MR
2 (i, j, S) = max

j′≥j
D2(i, j′, S)

and

ML
3 (i, j, S) = max

i′≤i
D3(i′, j, S).

We also define
ML

2 (i, j, S) = max
i′≤i

max
S′

D2(i′, j, S′),

where the second maximum is taken over all sets S′ ∈ Left(i′) that are consistent with
S, namely S′ ∩ [xi −Δ,xi − 57] = S. Similarly,

ML
3 (i, j, S) = max

j′≥j
max

S′
D3(i, j′, S′),

where the second maximum is taken over all sets S′ ∈ Right(j′) such that S′ ∩ [xj +
57, xj + Δ] = S. We now show how to efficiently compute D1(i, j), D2(i, j, S), and
D3(i, j, S) for all i, j, and S.

Computing D1(i, j). If either xi /∈ S2 or xj +Δ /∈ S2, then by definition,D1(i, j) =
0. We also have D1(i, j) = 0 when xi and xj are complements or when xj − xi < 57.
Furthermore, if i = 1 and j = n then D1(i, j) = 2. Now, suppose that none of the
cases above occurs. Then,

D1(i, j) =

{
ML

1 (prev(i), j) + 1 if xi > M(S1) + 18− xj

MR
1 (i,next(j)) + 1 otherwise

.

Computing D2(i, j, S). Suppose that xi +Δ,xj +Δ ∈ S2, xi and xj are not com-
plements, and xj − xi ≥ 57. If xi′ +Δ is complement of xj′ +Δ (w.r.t. S2) for some
i′ ∈ {i, j} and j′ ∈ S ∪ {j}, then D2(i, j, S) = 0. Otherwise,

D2(i, j, S) =

{
ML

2 (prev(i), j, S) + 1 if xi > M(S1) + 18− xj

MR
2 (i,next(j), S) + 1 otherwise

.
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Computing D3(i, j, S). Suppose that xi, xj ∈ S2, xi and xj are not complements,
and xj − xi ≥ 57. If xi′ is complement of xj′ (w.r.t. S2) for some i′ ∈ {i, j} and
j′ ∈ S ∪ {j}, then D3(i, j, S) = 0. Otherwise,

D3(i, j, S) =

{
ML

3 (prev(i), j, S) + 1 if xi > M(S1) + 18− xj

MR
3 (i,next(j), S) + 1 otherwise

.

Computing ML
1 (i, j). The recurrence formula for ML

1 is straightforward: For i = 1,
ML

1 (i, j) = D1(i, j), and for i > 1,

ML
1 (i, j) = max

{
D1(i, j),ML

1 (i− 1, j)
}
.

The recurrence formulae of MR
1 , MR

2 , and ML
3 are similar.

Computing ML
2 (i, j, S). For i > 1,

ML
2 (i, j, S) = max

{
D2(i, j, S),max

S′
ML

2 (i− 1, j, S′)
}
,

where the second maximum is taken over all sets S′ ∈ Left(i − 1) that are consistent
with S. The computation of MR

3 (i, j, S) is similar.

Finding the Optimal Solution. After filling the tables D1, D2, and D3, we can find
the size of the optimal set of points by taking the maximum value in these tables. The
corresponding optimal set can be found by traversing the dynamic programming tables
starting from the cell containing the maximum value.

Time Complexity. Using additional data structures, each cell of D1, D2, and D3 can
be computed in constant time (we omit the details). Thus, the time complexity of the
algorithm is O(kn2), where

k = max{|Left(1)|, . . . , |Left(N)|, |Right(N + 1)|, . . . , |Right(n)|}.

Although k can be exponential in n, in practice, k has small values.
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Abstract. Elastic network models (ENMs), and in particular the Gaus-
sian Network Model (GNM), have been widely used in recent years to
gain insights into the machinery of proteins. The extension of ENMs
to supramolecular assemblies/complexes presents computational chal-
lenges, however, due to the difficulty of retaining atomic details in mode
decomposition of large systems dynamics. Here, we present a novel ap-
proach to address this problem. Based on a Markovian description of
communication/interaction stochastics, we map the full-atom GNM rep-
resentation into a hierarchy of lower resolution networks, perform the
analysis in the reduced space(s) and reconstruct the detailed models dy-
namics with minimal loss of data. The approach (hGNM) applied to
chaperonin GroEL-GroES demonstrates that the shape and frequency
dispersion of the dominant 25 modes of motion predicted by a full-residue
(8015 nodes) GNM analysis are almost identically reproduced by reduc-
ing the complex into a network of 35 soft nodes.

1 Introduction

With advances in sequence and structure genomics, an emerging view is that
to understand and control the mechanisms of biomolecular function, knowledge
of sequence and structure is insufficient. Additional knowledge in the form of
dynamics is needed. In fact, proteins do not function as static entities or in
isolation; they are engaged in functional motions, and interactions, both within
and between molecules. The resulting motions can range from single amino acid
side chain reorientations (local) to concerted domain-domain motions (global).
The motions on a local scale can be explored to a good approximation by con-
ventional molecular dynamics (MD) simulations, but the motions at a global
scale are usually beyond the range of such simulations. Elastic network mod-
els (ENM), based on polymer mechanics, succeed in providing access to global
motions [1, 2, 3].

A prime example of an EN is the Gaussian Network Model (GNM) [4, 5]. In
graph-theoretic terms, each protein is modeled by an undirected graph G, given
by G = (V , E), with residues V = {vi|i = 1, . . . , n} defining the nodes of the
network, and edges E = {eij} representing interactions between residues vi and
vj . The set of all pairwise interactions is described by a non-negative, symmetric

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 379–393, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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affinity matrix A = {aij}, with elements aij = aji. GNM chooses a simple
interaction model, which is to set the affinity aij = aji = 1, for a pair of residues
vi and vj whose Cα atoms are within a cut-off distance of rc. The interactions
represent both bonded and non-bonded contacts in the native configuration of
the protein. The cutoff distance represents the radius of the first coordination
shell around residues observed in Protein Data Bank (PDB) [6] structures and
is set to be 7 Å [7, 8].

The motions accessible under native state conditions are obtained from the
Kirchhoff matrix Γ , defined in terms of the affinity and degree matrices as
Γ = D − A. Here D is a diagonal matrix: D = diag(d1, . . . , dn) and dj rep-
resents the degree of a vertex vj : dj =

∑n
i=1 aij =

∑n
j=1 aji. Γ is referred to

as the combinatorial Laplacian in graph theory [9]. The Kirchhoff matrix multi-
plied by a force constant γ that is uniform over all springs defines the stiffness
matrix of an equivalent mass-spring system. The eigenvalue decomposition of Γ
yields the shape and frequency dispersion of equilibrium fluctuations. In most
applications it is of interest to extract the contribution of the most cooperative
modes, i.e. the low frequency modes that have been shown in several systems
to be involved in functional mechanisms [1, 2]. Also, of interest is the inverse
of Γ , which specifies the covariance matrix for the Boltzmann distribution over
equilibrium fluctuations.

GNM is a linear model, and as such it cannot describe the transition between
configurations separated by an energy barrier (or any other non-linear effect),
so it only applies to fluctuations in the neighborhood of a single energy mini-
mum. The energy well is approximated by a harmonic potential, which limits
the magnitude of the predicted motion. The topology of inter-residue contacts
in the equilibrium structure is captured by the Kirchhoff matrix Γ . Also, there
is no information on the ’directions’ of motions in different vibrational modes,
but on their sizes only. The fluctuations are assumed to be isotropic and Gaus-
sian, but for anisotropic extension of GNM called ANM see [10, 11] or equivalent
EN-based normal mode analyses (NMA) [12, 13]. Despite this simplicity, many
studies now demonstrate the utility of GNM and other EN models in deducing
the machinery and conformational dynamics of large structures and assemblies
(for a recent review see [2]).

The application and extension of residue-based ENMs to more complex pro-
cesses, or larger systems, is computationally expensive, both in terms of memory
and time, as the eigen decomposition scales on the order of O(n3), where n is the
number of nodes in the graph. Given that the Kirchhoff matrix is sparse, there are
a plethora of efficient sparse eigensolvers that one can use [14, 15, 16, 17], including
eigensolvers designed specifically for decomposing graph Laplacians [18].

Another way to reduce complexity is to adopt coarser-grained models. For
example, in the hierarchical coarse-graining (HCG) approach, sequences of m
consecutive amino acids are condensed into unified nodes - which reduces the
computing time and memory by factors of m3 and m2, respectively [19]; or a
mixed coarse-graining has been proposed in which the substructures of interest
are modeled at single-residue-per-node level and the surrounding structural units
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at a lower resolution ofm-residues-per node [20]; another common representation
of the structure is to adopt rigidly translating and rotating blocks (RTB) [21, 22],
or the so-called block normal mode analysis (BNM) [23].

While these methods have been useful in tackling larger systems, the choice
and implementation of optimal model parameters to retain physically significant
interactions at the residue-, or even atomic level, has been a challenge. The level
of HCG has been arbitrarily chosen in the former group of studies, requiring
ad-hoc readjustments to spring constants or cutoff distances of interaction. In
the case of RTB or BNM approaches, all atomic, or residue level information is
lost, and substructures that may contain internal degrees of freedom – some of
which being functional – are assumed to move as a rigid block. Overall, infor-
mation is lost on local interactions as structures are coarse-grained. Clearly, the
challenge is to map a high resolution model to a low resolution, with a minimal
loss of information. In this paper, we present a novel approach to address this
problem.

Our approach is to model structures as networks of interacting residues and
study the Markov propagation of “information” across the network. We rely on
the premise that, the components (residues) of a protein machinery (network)
communicate with each other and operate in a coordinated manner to perform
their function successfully. Using the Markov chain perspective, we map the full
atom network representation into a hierarchy of intermediate ENMs, while re-
taining the Markovian stochastic charactersitcs, i.e. transition probabilities and
stationary distribution, of the original network. The communication properties
at different levels of the hierarchy are intrinsically defined by the network topol-
ogy. This new representation has several features, including: soft clustering of
the protein structure into stochastically coherent regions thus providing a useful
assessment of elements serving as hubs and/or transmitters in propagating infor-
mation/interaction; automatic computation of the contact matrices for ENMs
at each level of the hierarchy to facilitate computation of both Gaussian and
anisotropic fluctuation dynamics; and a fast eigensolver for NMA. We illustrate
the utility of the hierarchical decomposition by presenting its application to the
bacterial chaperonin GroEL–GroES.

2 A Markov Model for Network Communication

We model each protein as a weighted, undirected graph G given by G = (V , E),
with residues V = {vi|i = 1, . . . , n} defining the nodes of the network, and edges
E = {eij} representing interactions between residues vi and vj . The set of all
pairwise interactions is described by a non-negative, symmetric affinity matrix
A = {aij}, with elements aij = aji and where aij is the total number of atom–
atom contacts made within a cutoff distance of rc = 4.5 Å between residues vi

and vj . The self-contact aii is similarly defined, but all bonded pairs are excluded.
This representation takes into account the difference in the size of amino acids,
and captures to a first approximation the strong (weak) interactions expected
to arise between residue pairs with large (small) number of atom-atom contacts.
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The degree of a vertex vj is defined as dj =
∑n

i=1 aij =
∑n

j=1 aji, which are
organized in a diagonal matrix of the form D = diag(d1, . . . , dn).

A discrete-time, discrete-state Markov process of network communication is
defined by setting the communication (or signalling) probabilitymij from residue
vj to residue vi in one time-step to be proportional to the affinity between nodes,
ai,j . In matrix notation, this conditional probability matrix M = {mij}, also
called the Markov transition matrix, given by

M = AD−1. (1)

defines the stochastics of a random walk on the protein graph G. Note, mij =
d−1

j aij where dj gives a measure of local packing density near residue vj and
serves as a normalizing factor to ensure

∑n
i=1 mij = 1. Alternatively, mij can

be viewed as the conditional probability of interacting with residue vi, that is
transmitting information to residue vi, given that the signal (or perturbation) is
initially positioned, or originates from, vj . Suppose this initial probability is p0

j .
Then, the probability of reaching residue vi using link eij is mijp

0
j . In matrix no-

tation, the probability of ending up on any of the residues v = [v1, v2, · · · , vn] af-
ter one time step is given by the distribution p1 = Mp0, where pk =

[
pk
1 , . . . , p

k
n

]
.

Clearly this process can be iterated, so that after β steps we have

pβ = Mβp0. (2)

Assume the graph is connected, i.e. there is a path connecting every pair of
residues in the graph. Then, as β →∞ the Markov chain pβ approaches a unique
stationary distribution π, the elements of which are given by: πi = di/

∑n
k=1 dk.

While the evolution of the random walk is a function of the starting distribution,

Fig. 1. Hierarchical Network Decomposition Overview: step (i) map the structure (a)
to its optimal reduced level representation (illustrated here for retinol-binding protein
mapped from full atomic scale to intermediate-chain representation). This step may
involve several intermediate levels of resolution (b) (e.g. see Fig. 2); step (ii) perform
structural analysis (e.g. GNM) at a coarse-grained scale (c); and step (iii) reconstruct
the detailed structure-dynamics (d). The communication/coupling of residues at a
given level are assumed to obey a Markov process controlled by atom-atom contact
topology. The steps (i) and (iii) are achieved by two operators, R for model reduction,
and K for model reconstruction. R and K ensure that similar stochastic characteristics
(transition probabilities and stationary distributions) are retained between successive
levels of the hierarchy.
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the stationary distribution is invariant to the precise details of how the random
walk is initiated.

The main goal in undertaking random walks is to reveal the communication
patterns inherent to the network because of its architecture. However, a naive
random walk on a large protein, as will be presented below for the GroEL-
GroES complex, is computationally challenging. We address this problem by
building a hierarchy of intermediate resolution network models, performing the
analysis in the reduced space and mapping the results back to the high resolution
representation as illustrated in Fig. 1.

3 Network Hierarchy to Reduce Communication
Complexity

The objective in designing a network hierarchy is to map the Markov process
operating at the highest resolution onto successively lower resolution network
models, while maintaining its stochastic characteristics [24]. In particular, using
the stationary distribution π and the Markov transition matrix M , we build
a coarse-scale Markov propagation matrix M̃ (size: m × m, where m � n)
and its stationary distribution δ. The random walk initiated on the coarse-
scale network G̃(m), and reaching distribution δ, is equivalent to the random
walk on the full resolution network G(n) with stationary distribution π. To
build a hierarchy of intermediate resolution networks we devise two sets of new
operators at each level of the hierarchy: R for model reduction, and K for model
expansion/reconstruction.

3.1 Deriving Stationary Distribution in the Reduced Model

We begin by expressing the stationary distribution π = [π1, π2, · · · , πn] as a
probabilistic mixture of latent distributions,

π = Kδ, (3)

where δ = [δ1, δ2, · · · , δm] is an unknown stationary distribution in a reduced
(m−dimensional) representation of the structure; K = {Kij} is an n×m non-
negative kernel matrix with elements Kij and columns Kj being latent proba-
bility distributions that each sum to 1, and m � n. The kernel matrix acts as
an expansion operator, mapping the low-dimensional distribution δ to a high-
dimensional distribution π.

We derive a maximum likelihood approximation for δ using an expectation-
maximization (EM) type algorithm [25]. To this aim we minimize the Kullback-
Liebler distance measure [26, 27] between the two probability distributions π and
Kδ, subject to the constraint that

∑m
j=1 δj = 1 and ensured by the Lagrange

multiplier λ in the equation below:

E = −∑n
i=1 πi ln

∑m
j=1 Kijδj + λ

(∑m
j=1 δj − 1

)
. (4)
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Setting the derivative of E with respect to δj to be zero we obtain
n∑

i=1

πiKijδj∑m
k=1 Kikδk

= λδj . (5)

The contribution made by kernel j to a node i (or its stationary probability πi)
is given by Kij (or the product Kijδj), and hence we can define an ownership
of node i in the high resolution representation by a node j in the low resolution
representation as

Rij = Kijδj∑
m
k=1 Kikδk

. (6)

Rij is also referred to as the responsibility of node j in the low resolution rep-
resentation, for node i in the high resolution. We note that the mapping be-
tween the two resolutions is not deterministic, but probabilistic in the sense that∑m

j=1Rij = 1.
Using this relation, and the equalities

∑m
j=1 δj = 1 and

∑n
i=1 πi = 1, summing

over j in Eq. 5 gives λ = 1. This further leads to the stationary distribution δ
at the coarse scale

δj =
∑n

i=1 πiRij . (7)

The matrix R therefore maps the high dimensional distribution π to its low-
dimensional counterpart δ and hence the name reduction operator. Following
Bayes theorem, Kij can be related to the updated δ values as

Kij = Rijπi

δj
. (8)

In summary, the operators K and R and stationary distribution δ are com-
puted using the following EM type procedure: (1) select an initial estimate for
K and δ (see § 3.2); (2) E-step: compute ownership maps R using Eq. 6; (3)
M-step: estimate δ and update K using Eqs. 7 and 8 respectively; and finally,
(4) repeat E- and M- steps until convergence.

3.2 Kernel Selection Details

As an initial estimate for δ, a uniform distribution is adopted. The kernel matrix
K is conveniently constructed by diffusing M to a small number of iterations β
to give Mβ and selecting a small number of columns. In picking the columns of
Mβ , a greedy decision is made. In particular, column i in Mβ corresponds to in-
formation diffusion from residue vi. The first kernelKi that is picked corresponds
to the residue vi with the highest stationary probability πi. Following the selec-
tion of Ki, all other residues j (and the corresponding columns Kj in Mβ) that
fall within the half-height of the peak value of the probability distribution in Ki

are eliminated from further consideration. This approach generates kernels that
are spatially disjoint. The selection of kernels continues until every residue in the
protein is within a half-height of the peak value of at least one kernel. While other
kernel selection procedures are conceivable, we chose the greedy method for com-
putational speed. In practice, we observed the EM algorithm generates results
of biological interest that are insensitive to the initial estimates of K and δ.
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3.3 Transition and Affinity Matrices in the Reduced Model

The Markov chain propagation at the reduced representation obeys the equation
qk+1 = M̃qk, where qk is the coarse scale m-dimensional probability distribu-
tion after k steps of the random walk. We expand qk into the fine scale using
pk = Kqk, and reduce pk back to the coarse scale by using the ownership value
Ri,j as in q k+1

j =
∑n

i=1 p
k
i Ri,j . Substituting Eq. 6 for ownerships, followed by

the expression for pk, in the equation for q k+1
j , we obtain

M̃ = diag( δ )KT diag (Kδ )−1
K. (9)

Using the definition of M̃ , and the corresponding stationary distribution δ, we
generate a symmetric affinity matrix Ã that describes the node-node interaction
strength in the low resolution network

Ã = M̃diag(δ). (10)

To summarize, we use the stationary distribution π and Markov transition ma-
trix M at the fine-scale to derive the operator K and associated reduced sta-
tionary distribution δ, using the EM algorithm described in the previous section.
K and δ are then used in Eq. 9 and 10 to derive the respective transition M̃
and affinity Ã matrices in the coarse-grained representation. Clearly, this proce-
dure can be repeated recursively to build a hierarchy of lower resolution network
models.

4 Hierarchical Decomposition of the Chaperonin
GroEL-GroES

We examine the structure and dynamics of the bacterial chaperonin complex
GroEL-GroES-(ADP)7 [28], from the perspective of a Markov propagation of
information/interactions. GroEL is a cylindrical structure, 150 Å long and 140 Å
wide, consisting of 14 identical chains organized in two back-to-back stacked
rings (cis and trans) of seven subunits each. The GroES co-chaperonin, also
heptameric, binds to the apical domain of GroEL and closes off one end of the
cylinder. During the allosteric cycle that mediates protein folding, the cis and
trans rings alternate between open (upon binding of ATP and GroES) and closed
(unliganded) forms, providing access to, or release from, the central cylindrical
cavity, where the folding of an encapsulated (partially folded or misfolded) pro-
tein/peptide is assisted.

First, the inter-residue affinity matrix A based on all atom-atom contacts is
constructed (Fig. 2a), from which the fine-scale Markov transition matrix M
is derived using Eq. 1. The kernel selection algorithm applied to Mβ (β = 4)
yields 1316 (reduced level 1) kernels. Using these kernels as an initialization,
a recursive application of the EM procedure derives stationary distributions δ
(Eq. 7), updated expansion matrices K (Eq. 8), reduced level probability tran-
sition matrices M̃ (Eq. 9) and the corresponding residue interaction matrices Ã
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Fig. 2. Affinity matrix hierarchy for the protein GroEL/GroES (PDB: 1AON). The
respective sizes of the reduced models, and the associated affinity matrices, across the
hierarchy are n = 8015 (fine-scale, panel a) and m = 1316 (coarse-scale 1, panel b),
483 (coarse-scale 2), 133 (coarse-scale 3), 35 (coarse-scale 4, panel c) and 21 (coarse-
scale 5, panel d). The affinity matrices are real-valued but are shown here as dot plots
(panels a-b), to highlight the similarity in the matrix structure across the hierarchy.
The affinity matrices for the two lowest resolution models (panels c-d) are shown
as images, where the affinity value is inversely proportional to the brightness of a
pixel.

(Eq. 10). The respective dimensions of Ã turn out to be 483 (reduced level 2),
133 (reduced level 3), 35 (reduced level 4, Fig. 2c) and 21 (reduced level 5,
Fig. 2d). We note that the individual subunits of the GroEL/GroES are distin-
guished by their strong intra-subunit interactions, and a number of inter-subunit
contacts are maintained at all levels, which presumably establish the communi-
cation across the protein at all levels. The dimension m of the reduced model is
automatically defined during the kernel selection at each level of the hierarchy.
The method thus avoids the arbitrary choices of sampling density and interaction
cutoff distances at different hierarchical levels.

In contrast to the deterministic assignment of one-node-per-residue in the
original ENM, the Markov-chain-based representation adopts a stochastic de-
scription in the sense that each node probabilistically ’owns’, or ’is responsible
for’ a subset of residues. To see this, consider the ownership matrix R(l,l+1) =
{R(l,l+1)

ij } that relates information between two adjacent levels l and l+1 of the
hierarchy. Likewise, the matrix R(0,L) =

∏L−1
l=0 R(l,l+1) ensures the passage from

the original high resolution representation 0 to the top level L of the hierarchy.
In particular, the ijth element R

(0,L)
ij describes the probabilistic participation of

residue vi (at level 0) in the cluster j (at level L), and
∑

j R
(0,L)
ij = 1. Hence,

the nodes at level L perform a soft partitioning of the structure. This type of
soft distribution of residues among the m nodes, or their partial/probabilistic
participation in neighboring clusters, establishes the communication between the
clusters, and is one of the key outcomes of the present analysis. Of interest is
to examine the ownership of clusters at a reduced representation. We select the
coarse-scale 4, for example, which maps the structure into a graph of 35 clus-
ters (Fig. 2c). Fig. 3 demonstrates the ownership of the individual clusters at
this level. Essentially there are five sets of seven clusters each, centered near the
apical and equatorial domains of the cis and trans rings, and at the individual
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Fig. 3. Four different soft clusters located on GroEL

GroES chains. The intermediate domains are being shared between the clusters
at the apical and equatorial domains. As such, they play a key role in estab-
lishing intra-subunit communication. The color-coded ribbon diagrams in Fig. 3
display the loci of representative clusters from each of these four distinct types
(excluding the GroES clusters). The color code from red-to-blue refers to the
higher-to-lower involvement (or responsibility) of the individual residues in the
indicated clusters. Evidently, the regions colored red serve as hubs for broad-
casting the information within clusters, and those colored blue play the key role
of establishing the communication, or transferring information between clusters.
Detailed examination of the ownership of these clusters reveal several interesting
features, correlating with the experiments and summarized in §6.

Next, we benchmark the utility and robustness of the presently introduced
methodology in so far as the equilibrium dynamics of the examined structure is
concerned. Mainly, we compare the collective modes of motion predicted for the
GroEL-GroES complex using a full-residue (8015 nodes) ENM [29], with those
captured by the hierarchy of reduced models. The newly introduced represen-
tation hierarchy will be shown below to successfully map structure-dynamics
information between successive levels with minimal loss in accuracy1.

5 Hierarchical Gaussian Network Model (hGNM)

Here we present a methodology for generating GNM modes at different lev-
els of coarse-graining the information on contact topology inherent in G, and
reconstructing the detailed mode behavior by projecting the eigenvectors and
eigenvalues generated at low levels of resolution back to their fine scale counter-
parts using the Markov chain propagation formalism, a method shortly referred
to as hierarchical GNM (hGNM).

For hGNM, assume that the dimensions of the Kirchhoff matrices at the
coarse, intermediate and fine scales are e, m and n respectively, where e≤m�n.
1 The ownership matrix can also be used to propagate the location information of

the residues from one level of the hierarchy to another. This in turns help perform
anisotropic fluctuation modeling, but for lack of space this procedure will not be
elaborated any further.
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The affinity and Kirchhoff matrices at the coarsest level are not likely to be
sparse, however a full eigen decomposition of the coarsest Kirchhoff matrix (size:
e× e) will be computationally the least expensive step.

To reconstruct the eigen information at the fine-scale, assume we have access
to the leading eigenvectors Û (size: m × e) for Γ̂ (size: m ×m). Using this we
generate the leading eigenvectors Ũ (size: n × e), and the leading eigenvalues
Λ̃ = [λ1, λ2 · · ·λe] (size: e× 1) of the fine-scale Kirchhoff matrix Γ (size: n× n).
Let {U ,Λ} denote the eigenvectors and eigenvalues obtained from a direct de-
composition of Γ . There are several steps to the eigen reconstruction process.
(i) The coarse-scale eigenvectors Û can be transformed using the kernel matrix
K as Ũ = KÛ to generate Ũ as an approximation to U . (ii) This transfor-
mation alone is unlikely to set the directions of Ũ exactly aligned with U . So,
we update the directions in Ũ by repeated application of the following iteration
(called power iterations [30]): Ũ ⇐ Γg Ũ Note, here instead of using Γ we use
an adjusted matrix Γg given by Γ g = νI −Γ , where ν is a constant and I is an
identity matrix. The power iterations will direct the eigenvectors to directions
with large eigenvalues. But for fluctuation dynamics, we are interested in the
slow eigen modes with small eigenvalues, hence the adjustment Γ g is made. In
particular, because of Gerschgorin disk theorem [30] the eigenvalues of Γ are
bound to lie in a disk centered around the origin with a radius ν that is no
more than twice the largest element on the diagonal of Γ . (iii) Steps i and ii
need not preserve orthogonality of the eigenvectors in U . We fix this by a Gram-
Schmidt orthogonalization procedure [30]. Finally, the eigenvalues are obtained

from Λ̃ = diag(Ũ
T

Γ Ũ). In [24] we present more details of this coarse to fine
eigen mapping procedure, including a discussion on the number of power iter-
ations to use; setting the thresholds for convergence and a comparison of the
speed ups obtained over a standard sparse eigensolver for large matrices.

5.1 Collective Dynamics in the Reduced Space: Benchmarking
Against GNM

As discussed earlier, the eigenvalue decomposition of Γ yields the shape and
frequency dispersion of equilibrium fluctuations. The shape of mode k refers to
the normalized distribution of residue displacements along the principal axis k,
given by the elements u

(k)
i (1 ≤ i ≤ n) of the kth eigenvector u(k), and the

associated eigenvalue λk scales with the frequency of the kth mode. In most
applications, it is of interest to extract the contribution of the most cooperative
modes, i.e. the low frequency modes that have been shown in several systems
to be involved in functional mechanisms. To this end, we used the Markov-
chain based hierarchy to build reduced Kirchhoff matrices Γ̃ at increasingly
lower levels of resolution. We then performed their mode decompositions and
propagated the information back over successive levels of the hierarchy, so as to
generate the eigenvectors and eigenvalues for the fine-scale Kirchhoff matrix Γ .
We now show that hGNM maps the structure-dynamics information between
successive levels of the hierarchy with minimal loss in accuracy.



Markov Methods for Hierarchical Coarse-Graining 389

A B C D E F G H I J K L M N O − U

−0.01

0

0.01

0.02

a. Shape of the dominant mode ui over elements i

b. Displacement Polarity c. Mobility

Fig. 4. Dominant mode shape and mobility a. The labels on the abscissa indicate
the chain identities, A-G belong to the cis ring, H-N come from the trans ring and
O-U are from the GroES cap. The black curve gives the shape of the slowest eigen
mode. The ordinate value is the normalized distribution of residue displacements along
the dominant mode coordinate. b. Ribbon diagram illustrating the polarity of the
displacement, color coded to be red for positive and blue for negative, indicating the
anticorrelated motions of the two halves of the complex. c. Ribbon diagram color-coded
after residue mobilities in mode 1. The mobility of residue vi given by the squared

displacement:
(
u

(1)
i

)2
, with a color code that is red for high and blue for low.

First, our previous study identified ten slowest modes of interest, including the
counter-rotation of the two rings around the cylindrical axis (non-zero mode 1)
and other collective deformations proposed to be involved in chaperonin function
[29]. Results presented in Fig. 4 show the mechanism of the dominant mode,
mainly a global twisting of the structure where the cis and trans undergo counter
rotation about the cylindrical axis (mode 1). The most important point is that
these results corroborate previous findings [29, 1] and are reproduced here by
adopting a reduced representation down to m = 21 nodes and mapped back to
full-residue level.

Second, Figure 5a compares the frequencies obtained by the full-residue-level
representation, with those obtained by hGNM, upon propagation of the topology
information from reduced level 4 (Fig. 2c). An excellent agreement is observed
between the reconstructed eigenvalues λ̃ (red curve) and their original values λ
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a. λ̃k (red), λk b. cos(ũ(k), u(k)) c. Correlation Coefficient

Fig. 5. hGNM results (a) comparing eigenvalues λ (circles) from a direct decom-
position of the Γ with multi-scale eigensolver spectrum λ̃ (red line). For the direct
eigen decomposition, we use the Matlab program svds.m which invokes the compiled
ARPACKC routine [14], with a default convergence tolerance of 1e-10. (b) Mode shape

correlation: diag
(
|ŨT

U |
)
, between the matrix of eigenvectors Ũ derived by hGNM

and U from direct decomposition. (c) Correlation coefficient between the theoretical
B-factors (derived at each level of the hierarchy) vs experiment. The abscissa labels
indicate the size m of the network at successive levels of the hierarchy.

(open circles). In Fig. 5b, we display the correlation cosine between the eigen-
vectors u(k) and ũ(k) obtained by the full-residue representation and the recon-
struction from reduced level 4 respectively. Notably, the reduced representation
contains only 35 nodes. Yet, the correlation cosine with the detailed representa-
tion containing 8015 nodes is almost unity throughout all the leading 25 modes,
and above 0.8 for all modes, except the terminal four modes. The contribution
of the latter to the overall dynamics is negligibly small compared to the large
group of slow modes.

Finally, in order to assess the effect of coarse-graining on fluctuation dynamics,
we compared in Fig. 5c the mean-square fluctuations obtained from different
levels of the hierarchy with the experimental B-factor values. The theoretical
B-factor for each residue vi is computed using [31]

Bi =
8π2kBT

γ

n∑
k=2

λ−1
k

(
u

(k)
i

)2
, (11)

where the summation is performed over all n − 1 modes in the GNM, or over
all the m− 1 reduced eigenvectors and eigenvalues reconstructed from different
levels of the hierarchy in hGNM. Because experimental B-factors correspond to
each atom and our representation at the fine-scale is a summary of atom-atom
contact information for each residue, we average the experimental B-factors over
all atoms for each residue. As shown in Fig. 5c, a correlation coefficient value of
0.86 is achieved between the experimental and theoretical B-factors after map-
ping the structure of 8015 residues into a representative network of 21 nodes.
Thus, the fluctuation behavior of individual residues is accurately maintained
despite a drastic reduction in the complexity of the examined network. Interest-
ingly, a maximum in correlation coefficient is obtained at an intermediate level of
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resolution, m = 133, which may be attributed to an optimal elimination of
noise in line with the level of accuracy of experimental data at this level of
representation.

6 Conclusions

A new method is introduced in the present study, which permits us to use struc-
tural information at atomic level in building network representations of different
complexity, which lend themselves to efficient analysis of collective dynamics and
information propagation stochastics. The approach is particularly useful for an-
alyzing large structures and assemblies, or cooperative/allosteric processes that
are usually beyond the range of conventional molecular simulations.

We illustrated the utility of the methodology by way of application to the
chaperonin GroEL-GroES, a widely studied structure composed of n = 8015
residues. Notably, we start with the full-atomic representation of the complex,
which involves a total of ≈106 atom-atom contacts (based on an interaction
range of 4.5 Å). Interatomic contacts define the affinities of pairs of residues,
which are, in turn, used to define the weights of the connectors between residues
(nodes) in the graph/network representation of the structure. The affinities also
define the conditional probabilities of information transfer across residues follow-
ing a Markovian process. The original network of n nodes is mapped into lower
dimensional representations, down to m = 21 nodes, by an EM algorithm that
maintains two basic properties of the original stochastic process: its Markovian
conditional probabilities and stationary distribution (i.e. communication prob-
ability/potential) of individual residues. Two sets of operators, ensuring model
reduction and reconstruction at different hierarchical levels permit us to perform
the analysis at reduced scales.

Acknowledgments. Partial support by the NSF-ITR grant # EIA-0225636
and the NIH grant #1 R01 LM007994-01A1 is gratefully acknowledged.
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Abstract. Protein motions, ranging from molecular flexibility to large-
scale conformational change, play an essential role in many biochemi-
cal processes. Despite the explosion in our knowledge of structural and
functional data, our understanding of protein movement is still very lim-
ited. In previous work, we developed and validated a motion planning
based method for mapping protein folding pathways from unstructured
conformations to the native state. In this paper, we propose a novel
method based on rigidity theory to sample conformation space more
effectively, and we describe extensions of our framework to automate
the process and to map transitions between specified conformations.
Our results show that these additions both improve the accuracy of
our maps and enable us to study a broader range of motions for larger
proteins. For example, we show that rigidity-based sampling results in
maps that capture subtle folding differences between protein G and its
mutations, NuG1 and NuG2, and we illustrate how our technique can
be used to study large-scale conformational changes in calmodulin, a 148
residue signaling protein known to undergo conformational changes when
binding to Ca2+ . Finally, we announce our web-based protein folding
server which includes a publically available archive of protein motions:
http://parasol.tamu.edu/foldingserver/

1 Introduction

Protein motions, ranging from molecular flexibility to large-scale conformational
change, play an essential role in many biochemical processes. For example, con-
formational change often occurs in binding. While no consensus has been reached
regarding models for protein binding, the importance of protein flexibility in the
process is well established by the ample evidence that the same protein can exist
in multiple conformations and can bind to structurally different molecules.

Our understanding of molecular movement is still very limited and has not
kept pace with the explosion of knowledge regarding protein structure and func-
tion. There are several reasons for this. First, the structural data in repositories
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like the Protein Data Bank (PDB) [8] consists of the spatial coordinates of each
atom. Unfortunately, the experimental methods used to collect this data can-
not operate at the time scales necessary to record detailed large-scale protein
motions. Second, traditional simulation methods such as molecular dynamics
and Monte Carlo methods are computationally too expensive to simulate long
enough time periods for anything other than small peptide fragments.

There has been some attention focused on methods for modeling protein
flexibility and motion. One notable effort is the Database of Macromolecular
Movements [15, 14]. They generate and archive protein ‘morphs’ that interpo-
late between two different protein conformations. While the method used is more
chemically realistic than straight-line interpolation (as described in Section 2),
it was selected over other more accurate methods for computational efficiency
and is known to have problems for some kinds of large deformations.

In previous work [3, 2, 42, 41], we developed a new computational technique for
studying protein folding that builds an approximate map of a protein’s potential
energy landscape. This map contains thousands of feasible folding pathways to
the known native state enabling the study of global landscape properties. We
obtained promising results for several small proteins (60–100 amino acids) and
validated our pathways by comparing secondary structure formation order with
known experimental results [3].

Our Contribution. We augment our framework with three powerful new con-
cepts that enable us to study a broader range of motions for larger proteins:

– We propose a new method based on rigidity theory to sample conformations.
– We generalize our PRM framework to map specified transitions.
– We present a new framework to automate the map building process.

Our new rigidity-based sampling allows us to study larger proteins by more
efficiently characterizing the protein’s energy landscape with fewer, more re-
alistic conformations. We exploit rigidity information by focusing sampling on
(currently) flexible regions. This results in smaller, better maps. In one dramatic
case study, we show that rigidity-based sampling and analysis reveals the folding
differences between protein G and its mutants, NuG1 and NuG2, which is an
important ‘benchmark’ set that has been developed by the Baker Lab [36].

Extending our framework to focus on particular conformations enables us to
investigate questions related to the transition between particular conformations,
e.g., when studying folding intermediates, allostery, or misfolding. We provide
evidence that the transitions mapped by our approach are more realistic than
those provided by the computationally less expensive Morph Server [14], espe-
cially for transitions requiring large conformational changes.

The accuracy of our approach heavily depends on how densely we sample the
conformation space. Previously, this was user specified and fixed. Here, we use an
extension of our basic technique which incrementally samples the conformation
space at increasingly denser resolution until our map of the landscape stabilizes.

Finally, we announce our protein folding server which uses our technique
to generate protein transitions to the native state or between selected
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Table 1. Comparison of protein motion models

Approach Landscape # Paths Path Quality Computation Native Required
Molecular Dynamics No 1 Good Long No

Monte Carlo No 1 Good Long No
Statistical Model Yes 0 N/A Fast Yes

PRM-Based (Our Approach) Yes Many Approx Fast Yes
Lattice Model Not used on real proteins

conformations. We invite the community to help enrich our publicly available
database by submitting to our server: http://parasol.tamu.edu/foldingserver/

2 Related Work

Protein Motion Models. Several computational approaches have been used
to study protein motions and folding, see Table 1. These include lattice models
[10], energy minimization [30, 44], molecular dynamics [29, 16], and Monte Carlo
methods [13, 26]. Molecular dynamics and Monte Carlo methods provide a sin-
gle, high quality transition pathway, but each run is computationally intensive.
Statistical mechanical models [35, 1, 6], while computationally efficient, are lim-
ited to studying global averages of the energy landscape and kinetics and are
unable to produce individual pathways.

Computing Macromolecular Motions. Gerstein et al. have developed the
Database of Macromolecular Movements [15, 14] to classify protein motions.
Their server produces a ‘morph’ movie between two target conformations in
just a few minutes on a desktop PC. Their database currently includes more
than 240 distinct motions.

To ‘morph’ between two target conformations, they first perform an align-
ment. Then, an iterative ‘sieve-fit’ procedure produces a superposition of the
target conformations. The superimposed conformations are ‘morphed’ by in-
terpolating the Cα atom positions. Each intermediate conformation is energy
minimized. This interpolation method, called adiabatic mapping, was selected
because it has modest computational requirements yet produces chemically rea-
sonable ‘morphs.’ Adiabatic mapping, however, is not guaranteed to produce
accurate trajectories and in fact cannot model many large deformations.

Motion Planning and Molecular Motions. The motion planning problem is
to find a valid path for a movable object from a start to a goal. The probabilistic
roadmap method (PRM) [23] has been highly successful in solving high degree
of freedom (dof) problems.

PRMs first sample random points in the movable object’s conformation space
(C-space). C-space is the set of all possible positions and orientations of the mov-
able object, valid or not. Only those samples that meet feasibility requirements
(e.g., collision free or low potential energy) are retained. Neighboring samples
are connected to form a graph (or roadmap) using some simple local planner
(e.g., a straight line). This roadmap can then be used to find the motion be-
tween different start and goal pairs by connecting them to the roadmap and
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extracting a path, if one exists. PRMs are simple to apply, even for high dof
problems, only requiring the ability to generate random samples in C-space and
test them feasibility.

PRMs have been applied to model molecular motions by modeling the mole-
cule as an articulated linkage and replacing the typical collision detection valid-
ity check with some measure of physical viability (e.g., potential energy). Singh,
Latombe and Brutlag first applied PRMs to protein/ligand binding [40]. In subse-
quent work, our group used another PRM variant on this problem [7]. Our group
was the first to adapt PRMs to model protein folding pathways [3, 2, 42, 41].
Apaydin et. al. [5, 4] also applied PRMs to proteins, however their work differs
from ours in several aspects. First, they model the protein at a much coarser
level, considering all secondary structure elements in the native state to already
be formed and rigid. Second, while our focus is on studying the transition process,
their focus has been to compare the PRM approach with other computational
methods such as Monte Carlo simulation. Cortes and Simeon used a PRM-based
approach to model long loops in proteins [12]. Recently, we adapted the PRM
framework to study RNA folding kinetics [45].

Rigidity Theory and Protein Flexibility. Several computational approaches
study protein rigidity and flexibility. One approach infers rigidity and flexibil-
ity by comparing different known conformations [37, 9]. Molecular dynamics has
been used to extract flexibility information from simulated motion [32, 11, 24].
A third method studies rigidity/flexibility of a single conformation [21, 22, 33].
Here, we use a rigidity analysis technique belonging to the third class of ap-
proaches called the pebble game [19, 18] to better simulate motion. It is fast and
efficient; we can apply it to every conformation we sample.

The pebble game is a constraint counting algorithm which determines the
dof in a two-dimensional graph, along with its rigid/flexible regions. In 2D,
the pebble game assigns each vertex two pebbles, representing its two dof, see
Figure 1a. Each edge/constraint is examined to determine if it is independent
or redundant. If two free pebbles can be placed on both endpoints of the edge,
then it is marked independent and covered by a pebble from one of its incident
vertices. Once an edge is covered by a pebble, it remains covered, although which
vertex the pebble comes from may change. Pebbles may be rearranged as shown

move on move off

(a) (b) (c)

Fig. 1. (a) The result of the pebble game on a 2D graph. Pebbles may be free (white) or
covering (black). Constraints are marked as independent (solid) or redundant (dashed).
Pebbles may be rearranged as shown. Rigidity models for a sample molecule: (b) bar-
joint and (c) body-bar.
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in Figure 1a. If pebbles cannot be rearranged to get two free pebbles on both
of an edge’s endpoints, then the edge is marked redundant and indicates a rigid
region. In the end, the remaining free pebbles indicate the graph’s dof.

The 2D pebble does not generalize to 3D for arbitrary graphs, but it can
be applied to 3D bond-bending networks [18]. A bond-bending network is a
truss structure with constraints between nearest neighbors and next-nearest
neighbors. A protein, with fixed bond lengths and bond angles, can be mod-
eled as a bond-bending network where atoms are modeled as vertices with 3
dof and bonds are modeled as edges, called the bar-joint model, see Figure 1b.
It has been successfully used by several applications to study protein rigidity
and flexibility [20, 39, 17, 28]. An alternative model, the body-bar model, repre-
sents atoms as rigid bodies with 6 dof and the torsional bonds between them
as 5 bars/constraints [46], see Figure 1c. Both models are conjectured to be
equivalent [18].

3 Modeling Molecular Motions with PRMs

We have successfully applied the PRM framework to study protein folding path-
ways [3, 2, 42, 41]. We model the protein as an articulated linkage. Using a stan-
dard modeling assumption for proteins that bond angles and bond lengths are
fixed [43], the only dof in our model are the backbone’s phi and psi torsional
angles which are modeled as revolute joints with values [0, 2π).

The strategy follows the general PRM methodology sketched in Section 2.
First, different protein conformations are sampled. A sample q, with potential
energy E(q), is accepted with the probability:

P (accept q) =

⎧⎨⎩
1 if E(q) < Emin
Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

where Emin is the potential energy of the open chain and Emax is 2Emin. Next,
node connection is done in the same way as traditional PRMs except that each
connection is assigned a weight to reflect its energetic feasibility. The weight for
the edge (q1, q2) is a function of all the intermediate conformations along the
edge {q1 = c0, c1, . . . , cn−1, cn = q2}. For each pair of consecutive conformations
ci and ci+1, the probability Pi of transitioning from ci to ci+1 depends on the
difference in their potential energies ΔEi = E(ci+1)− E(ci):

Pi =
{
e

−ΔEi
kT if ΔEi > 0

1 if ΔEi ≤ 0

This keeps the detailed balance between two adjacent states, and enables the
weight of an edge to be computed by summing the logarithms of the probabilities
for consecutive pairs of conformations in the sequence. Edge weights are not
transition rates, but the logarithm of transition rates. This enables edge weights
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to follow the summation rule (instead of the multiplication rule for transition
rates) and facilitates the use of graph algorithms to extract shortest paths.

The samples and connections form a roadmap from which we can typically
extract thousands of transition pathways. With our original method, in just a
few hours on a desktop PC, we obtained promising results for many small pro-
teins (60–100 residues) and validated our pathways by comparing the secondary
structure formation order with known experimental results [3]. In one case study,
our technique was sensitive enough to identify folding differences for structurally
similar proteins G and L [42].

Potential Energy Calculations. As in our previous work, we use a coarse
potential function similar to [29]. We use a step function approximation of the
van der Waals component and model all side chains as equal radii spheres with
zero dof. If two spheres are too close (i.e., < 2.4Å during sampling and 1.0Å
during connection), a very high potential is returned. Otherwise the potential is:

Utot =
∑

restraints

Kd{[(di − d0)2 + d2
c ]

1/2 − dc}+ Ehp

where Kd is 100 kcal/mol and d0 = dc = 2 Å as in [29]. The first term represents
constraints favoring known secondary structure through main-chain hydrogen
bonds and disulphide bonds, and the second term is the hydrophobic effect. The
hydrophobic effect is computed as follows: if two hydrophobic residues are within
6Å of each other, then the potential is decreased by 100 kJ/mol.

3.1 Rigidity-Based Sampling

The roadmap produced by our technique is an approximation of the protein’s en-
ergy landscape. Roadmap quality is measured both by how realistic (as compared
to experimental data) its pathways are and by how many samples are required
to achieve the desired accuracy. The latter is important because it determines
what size molecules can be analyzed.

Hence, sampling is the key to producing a good approximation of the land-
scape. Note that only a relatively small portion of the conformation space ‘near’
the target conformation(s) is of interest in modeling motions. This implies that
we should use biased sampling to cover the regions of interest efficiently.

In previous work [3, 2, 42, 41], we obtained a denser distribution of samples
near the target conformation through an iterative sampling process where we
apply small Gaussian perturbations to existing conformations, beginning with
the target conformation. This approach still requires many samples (e.g., 10,000)
for relatively small proteins (e.g., 60–100 residues). To apply our method to larger
proteins, we need strategies to generate ‘better’ samples; they should be more
physically realistic and represent ‘stepping stones’ for conformational transitions.

In this work, we follow the same strategy as before, but use rigidity analysis
to restrict how to perturb a conformation. We first use rigidity analysis to de-
termine which bonds are independently flexible, dependently flexible, and rigid,
see Figure 2b. Independently flexible bonds can be perturbed without affecting
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(a)

2 DOF

1 DOF

1 DOF

(b)

Fig. 2. (a) Model of a 5 residue protein. Each residue has two rigid bodies. We model
peptide bonds and disulphide bonds with 5 bars, hydrogen bonds with 2 bars, and
hydrophobic interactions with 1 bar. Redundant constraints (dashed lines) identified
by the pebble game. (b) Pebble game results: a rigid cluster (dotted box), a 2 dof
dependent hinge set (dashed lines), and independently flexible bonds (arcs).

the rest of the bonds in the system. Dependently flexible bonds form a set of
bonds such that perturbing any one of these bonds results in a corresponding
perturbation in the rest of the set.

If the bond is independently flexible, we perturb with a high probability,
Pf lex. If the bond is rigid, we perturb with a low probability, Prigid. For each
dependently flexible set, we randomly select d bonds to perturb with probability
Pf lex and perturb the remaining bonds with probability Prigid, where d is the
internal dof in the set. Perturbing rigid dof ensures good coverage of the space.

Rigidity Model. We employ the body-bar model to analyze a conformation’s
rigidity. With the body-bar model, we can represent the protein at a residue
level, a closer match to our phi-psi model for sampling than the bar-joint model
with a more detailed all-atoms view.

We model the protein simply as a chain of rigid bodies, each representing one
torsional dof, see Figure 2a. We model each peptide bond and disulphide bond
with 5 bars, each hydrogen bond with 2 bars, and each hydrophobic contact with
1 bar. On all conformations tested, this yields the same rigid and flexible regions
as the equivalent bar-joint model on an all-atoms representation of the protein.

Rigidity Map. We can also use rigidity analysis to define a new residue mapping
and distance metric. A rigidity map, r, is similar to a contact map. Rigid body
pairs (i, j) from the rigidity model are marked if they have the same rigidity
relationship: 2 if they are in the same rigid cluster, 1 if they are in the same
dependent hinge set, and 0 otherwise. (Recall that there are two rigid bodies
for each residue representing the two torsional dof.) Figure 3a shows the rigidity
map of the native state for protein G with rigid clusters (black) and dependent
hinge sets (green/shaded). Rigidity maps provide a convenient way to define a
rigidity distance metric, rdist(q1, q2), between two conformations q1 and q2 where
n is the number of residues:

rdist(q1, q2) =
∑

0≤i<j≤2n

(rq1 (i, j) �= rq2 (i, j)).
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3.2 Automatic Roadmap Construction

Roadmap accuracy depends on the sampling density. Previously, this was user
specified and difficult to tune. Here, we automate roadmap construction by build-
ing the roadmap incrementally [47]. We first build a roadmap with a low sam-
pling density as described above. Then, we test the roadmap to see if it has
stabilized as specified by a set of evaluation criteria. We continue to augment
the roadmap with more samples and connections until it satisfies the evalua-
tion criteria. This provides two key advantages over our previous work: (1) the
roadmap is constructed automatically at the appropriate resolution, and (2) we
reuse all previous computation reducing runtime cost by several factors.

For protein folding, we build a roadmap until the secondary structure for-
mation order along its pathways stabilizes. A piece of secondary structure is
‘formed’ when the distance between its rigidity map (defined in Section 3.1) and
that piece’s rigidity map in the target state is within 0.8, normalized to the range
[0,1]. The pathway’s secondary structure formation order is then the order at
which pieces are ‘formed.’ We examine every pathway in the roadmap from an
unstructured conformation to the target state and group them by this ordering.
We consider the roadmap stable when the percentage of each group does not
vary from the previous roadmap by more than 10%.

3.3 Mapping Specified Transitions

We extend our PRM framework to study specific large-scale conformational
changes by iteratively sampling around each target conformation and connecting
samples together as described earlier in Section 3. Thus our roadmaps contain
the target conformations, as well as the transitions between them, and approxi-
mate the energy landscape encompassing the transition under study.

We can study problems such as transitions between known folding inter-
mediates, transitions between bound and unbound conformations to a ligand,
misfolded proteins, and allostery interactions. For example, several devastating
diseases such as scrapie in sheep and goats, bovine spongiform encephalopathy
(Mad Cow disease), and Creutzfeldt-Jakob disease in humans are caused by mis-
folded proteins called prions [38]. Insight into how these proteins misfold could
help develop better drugs.

To map specific large-scale transitions, we interleave sampling and connection
to incrementally build a roadmap as in Section 3.2. The only difference here is we
sample around each target conformation (as in Section 3.1) during each round
of roadmap construction. Then we connect samples together and compute edge
weights as before. We continue until the roadmap adequately represents the pro-
tein’s energy landscape near the target conformations and between them. From
this roadmap, we can extract multiple low energy transition pathways between
target conformations and characterize the energy barriers between them.

We build the roadmap until the maximum network flow between each target
conformation pair is above a threshold. For maximum network flow, edges are
assigned a capacity, and the goal is to determine how much flow can be achieved
between two points in the graph. Here, we define edge capacity as the inverse of



402 S. Thomas et al.

the edge weight. Thus, the maximum network flow between two conformations
approximates the transition rate between them [27].

4 Results and Discussion

We investigate the ability of our rigidity-based sampling strategy to efficiently
sample the protein’s conformation space. We also look at examples of large-scale
conformational change between specific target states for several small proteins
and compare our results with ‘morphs’ from the Database of Macromolecular
Movements [15, 14]. In all experiments, we set Pf lex to 0.8 and Prigid to 0.2. We
use a straight line local planner and attempt to connect each conformation with
its 50 nearest neighbors. We measure distance between two conformations as the
difference between their rigidity maps (see Section 3.1).

Improved Sampling. Rigidity analysis coupled with automatic roadmap con-
struction greatly improves the efficiency of our PRM framework by restricting the
sample space in a physically realistic way. We can build smaller roadmaps that
better reflect the landscape. We built roadmaps for several previously studied
proteins [2, 41]. For each protein, we compare our new automatic framework with
rigidity-based sampling to our previous sampling technique with fixed sampling
density. Table 2 shows the roadmap size and connectivity from both methods.
Both methods give the same secondary structure formation order distribution.
When available, these results also indicate the same dominant secondary struc-
ture formation order seen in experiment [31]. In all cases, the rigidity-based
roadmaps produce equivalent folding pathways as the previous method with
smaller, more efficient roadmaps and increases connectivity. Thus, we can study
much larger proteins than before.

Case study of proteins G, L NuG1, and NuG2. Proteins G, L, and mutants
of protein G, NuG1 and NuG2 [36], present a good test case for our technique
because they are known to fold differently despite having similar structure. All
proteins are composed of a central α-helix and a 4-stranded β-sheet: β strands
1 and 2 form the N-terminal hairpin (β1-2) and β strands 3 and 4 form the
C-terminal hairpin (β3-4). Native state out-exchange experiments and pulse la-
beling/competition experiments for proteins G and L indicate that β1-2 forms
first in protein L, and β3-4 forms first in protein G [31]. This is consistent with
Φ-value analysis on G [34] and L [25]. In [36], protein G is mutated in both hair-
pins to increase the stability of β1-2 and decrease the stability of β3-4. Φ-value
analysis indicates that the hairpin formation order for both NuG1 and NuG2 is
switched from the wild type.

Our previous sampling strategy [42] was able to capture the folding differences
between proteins G and L, but not between protein G and NuG1 or NuG2. Our
new rigidity-based sampling and analysis is able to also capture the correct
folding behavior of NuG1 and NuG2, see Table 3. In addition, our rigidity-based
technique can also help to explain the stability shift in NuG1 and NuG2. For
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Table 2. Comparison of rigidity-based sampling to previous work for several proteins.
In all cases, rigidity-based sampling significantly reduces the required roadmap size
(N+E) to produce equivalent pathways. It also increased roadmap connectivity (E/N).

PDB Gaussian Sampling Rigidity Sampling
Identifier Length Structure Nodes Edges N + E E/N Nodes Edges N + E E/N

1AB1 46 2α + 2β 24206 386974 411180 15.99 6000 158286 164286 26.38
1CCM 46 1α + 3β 43646 728964 772610 16.70 10000 456080 466080 45.61
1RDV 52 2α + 3β 33691 457392 491083 13.58 4000 166702 170702 41.68
1EGF 53 3β 27356 391146 418502 14.30 4000 164902 168902 41.23
1PRB 53 5α 44551 696708 741259 15.64 4000 126562 130562 31.64
1SMU 54 3α + 3β 35501 557416 592917 15.70 4000 158852 162852 39.71
1FCA 55 2α + 4β 38216 489840 528056 12.82 4000 162526 166526 40.63
1VGH 55 1α + 4β 38216 631936 670152 16.54 4000 157454 161454 39.36
1GB1 56 1α + 4β 34236 912908 947144 26.66 4000 160552 164552 40.14
1SHG 57 5β 24696 270232 294928 10.94 18000 654884 672884 36.38
1BPI 58 2α + 2β 28426 399418 427844 14.05 4000 112010 116010 28.00
4PTI 58 2α + 2β 39121 389468 428589 9.96 4000 160100 164100 40.03
1HCC 59 7β 33691 453628 487319 13.46 28000 1079904 1107904 38.57
1BDD 60 3α 58486 888298 946784 15.19 6000 195950 201950 32.66
1TCP 60 2α + 2β 32786 354262 387048 10.81 4000 163692 167692 40.92
2ADR 60 2α + 2β 42723 701942 744665 16.43 8000 339498 347498 42.44
2PTL 62 1α + 4β 23921 281334 305255 11.76 4000 159728 163728 39.93
1COA 64 1α + 5β 27746 403438 431184 14.54 4000 160838 164838 40.21
2CI2 65 2α + 5β 27746 389670 417416 14.04 8000 228706 236706 28.59
1NYF 67 5β 23921 262376 286297 10.97 6000 249450 255450 41.58
1MJC 69 7β 23481 226942 250423 9.66 4000 153140 157140 38.29
1HOE 74 7β 30626 184012 214638 6.01 4000 103668 107668 25.92
1UBQ 76 1α + 5β 25206 236216 261422 9.37 4000 154192 158192 38.55
1O6X 81 2α + 3β 40931 342138 383069 8.36 4000 133544 137544 33.39
1PBA 81 4α + 3β 26476 203974 230450 7.70 8000 282960 290960 35.37
2ABD 86 5α 27956 681796 709752 24.39 18000 953900 971900 52.99

Table 3. Comparison of secondary structure formation orders for proteins G, L, NuG1,
and NuG2 with known experimental results: 1hydrogen out-exchange experiments [31],
2pulsed labeling/competition experiments [31], and 3Φ-value analysis [36]. Brackets
indicate no clear order. In all cases, our technique predicted the secondary structure
formation order seen in experiment. Only formation orders greater than 1% are shown.

Protein Experimental Formation Order Rigidity Formation Order %
G [α,β1,β3,β4], β21 [α,β4], [β1,β2,β3]2 α, β3-4, β1-2 99.4
L [α,β1,β2,β4], β31 [α,β1], [β2,β3,β4]2 β1-2, α, β3-4 100.0
NuG1 β1-2, β3-43 α, β1-2, β3-4 97.6

β1-2, α, β3-4 1.6
NuG2 β1-2, β3-43 α, β1-2, β3-4 96.6

β1-2, α, β3-4 1.1
β3-4, β1-2, α 1.1

example, consider their native state rigidity maps shown in Figure 3. In all four
proteins, the central alpha helix remains completely rigid. We also see increased
rigidity in β1-2 from protein G to NuG1 and NuG2 as suggested in [36].

We can also use rigidity-based analysis to study dynamic changes along a
folding pathway, see Figure 4. We see a distinction between the profiles for
protein G where β3-4 forms first and the others where β1-2 forms first. For
protein G, the rigidity profile (a) shows a plateau halfway along the folding
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Fig. 3. Rigidity maps for the native states of proteins (a) G, (b) L, (c) NuG1, and (d)
NuG2. Rigid clusters are black and dependent hinge sets are shaded/green.
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Fig. 4. Folding pathway profiles for proteins G, L, NuG1, and NuG2: (a) rigidity dis-
tance to the target state, (b) relative rigidity distance to the target state, and (c)
contacts present. There is a distinction between the profiles for protein G where β3-4
forms first and the others where β1-2 forms first.

pathway, where the others do not. Protein G (b) also exhibits larger changes in
rigidity earlier in the pathway while the others exhibit larger changes later.

Large-Scale Conformational Change. Calmodulin is a 148-residue signaling
protein that binds to Ca2+ to regulate several processes in the cell. It is com-
posed of 4 EF-hands joined by a flexible central α helix. When binding to Ca2+,
it undergoes two large-scale conformational changes: (1) the central α helix un-
ravels to bring the protein from a dumbbell conformation to a more globular
conformation (Figure 5a–b) and (2) the α helices in each domain reorganize
(Figure 5c–d).

We built a roadmap biased towards both target states as outlined in Sec-
tion 3.3. Figure 6 compares pathway profiles of the most energetically feasi-
ble transition between the two states in our roadmap and ‘morphs’ of various

(a) (b) (c) (d)

Fig. 5. Conformational changes of calmodulin: (a) calcium-free state (1CFD) to (b)
bound state (1CLL) and of the N-terminal domain: (c) calcium-free to (d) bound
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Fig. 6. Pathway profiles for the calmodulin N-terminal domain: (a) contacts present,
(b) coarse potential energy, (c,f) all-atoms potential energy, (d) dof computed by rigid-
ity analysis, and (e) RMSD to both target states. For RMSD, only the 30 frame ‘morph’
shown because all resolutions are nearly identical.

resolution obtained from the Morph server [15, 14]. We examined pathway pro-
files for energy, contacts present, dof computed by rigidity analysis, RMSD dis-
tance to the target states, and rigidity distance to the target states. Note that
since the Morph server alters the original target conformations, their profile
endpoints do not always align with our pathways. One striking observation is
the regularity of the concavities for the ‘morphs’ corresponding to the various
resolution levels across all the profiles except for the RMSD profiles in which
the RMSD to the target states seems to change monotonically with the path
step. These regularities in the ’morphs’ would not be expected in actual transi-
tion pathways, e.g., one would not expect a monotonic increase in RMSD from
1CFD to 1CLL. In contrast, our roadmap pathways profiles are more plausible
— they exhibit trends, but also have reasonable fluctuations. Indeed, this type of
behavior has also been observed by other researchers, e.g., in [48], Monte Carlo
simulations indicate a wide range of transition pathways and event durations.

Figure 6a,d shows the contacts present and dof computed by rigidity anal-
ysis along the pathway. Note that the protein does not completely unfold, but
maintains a large number of contacts and loses few dof. Generally, the actual
dof is inversely proportional to the number of contacts present. It is interesting
to note, however, that we see a slight break in this relationship on the second
half of the pathway where the peaks in dof do not match up with the peaks in
number of contacts. Regions of the protein become stressed when the number of
contacts increases without a corresponding decrease in dof.

We investigated several other protein transitions in a similar way, see Table 4.
We measure % dof gained as the difference between the maximum dof along
the pathway and the minimum dof of the starting/ending conformations, as a
percentage of the total dof possible (2*length). Most transitions do not involve
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Table 4. Pathway results for transitions studied. Most do not involve large unfolding.

Transition IDs Length % Dof Gained # Barriers
2VGH 1VGH 55 21.8 2
1PRV 1PRU 56 5.4 0
1BMR 1FH3 67 32.8 0
1CFD 1CLL 72 18.1 1
1CMF 1CMG 73 24.7 2
1FOX 2FOW 76 3.9 0
1PFH 1HDN 85 43.5 1

a complete unfolding of the protein. In fact, several have % dof gain less than
10%. We also captured different types of transitions including smooth transitions
without any significant energy barriers (i.e., 1PRV, 1BMR, and 1FOX) and those
with multiple energy barriers (i.e., 2VGH and 1CMF).

We also compared ‘morphs’ of various resolutions to our transition path-
ways when possible. (The Morph server was not able to produce some higher
resolution ‘morphs’ for transitions 1BMR–1FH3 and 1PRV–1PRU.) Across all
transitions, we observed the same concavity pattern phenomenon for the ‘morph’
transitions as seen in calmodulin (Figure 6) for energy, contacts, degrees of free-
dom, and rigidity distance to the targets. Here also, the RMSD to the tar-
get states essentially changed monotonically with the path step. Again, our
pathways did not exhibit these unrealistic regularities. Additional path pro-
files for all the transitions studied here can be found on our folding server:
http://parasol.tamu.edu/foldingserver/

5 Conclusion

In this paper, we describe how to augment our PRM-based approach to study a
broader range of motions for larger proteins. We proposed a method based on
rigidity theory to sample more efficiently and to generate transitions between
specified conformations. We also demonstrated that our approach yields more
physically realistic transitions than those produced by the computationally less
expensive Morph server. We invite the community to help enrich our publicly
available motion database at http://parasol.tamu.edu/foldingserver/
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Abstract. This paper presents a new method for studying protein folding kinet-
ics. It uses the recently introduced Stochastic Roadmap Simulation (SRS) method
to estimate the transition state ensemble (TSE) and predict the rates and Φ-values
for protein folding. The new method was tested on 16 proteins. Comparison with
experimental data shows that it estimates the TSE much more accurately than
an existing method based on dynamic programming. This leads to better folding-
rate predictions. The results on Φ-value predictions are mixed, possibly due to the
simple energy model used in the tests. This is the first time that results obtained
from SRS have been compared against a substantial amount of experimental data.
The success further validates the SRS method and indicates its potential as a gen-
eral tool for studying protein folding kinetics.

1 Introduction

Protein folding is a crucial biological process in nature. Starting out as a long, linear
chain of amino acids, a protein molecule remarkably configures itself, or folds, into
a unique three-dimensional structure, called the native state, in order to perform vital
biological functions. There are two separate, but related problems in protein folding:
structure prediction and folding kinetics. In the former problem, we are only interested
in predicting the final three-dimensional structure, i.e., the native state, attained in the
folding process. In the latter problem, we are interested in the folding process itself,
e.g., the kinetics and the mechanism of folding. We have at least two important reasons
for studying the folding process. First, better understanding of the folding process will
help explain why and how proteins misfold and find therapies for debilitating diseases
such as Alzheimer’s disease or Creutzfeldt-Jakob (“mad cow”) disease. Second, this
will aid in the development of better algorithms for structure prediction.

In this work, we apply computational methods to study the kinetics of protein fold-
ing, specifically, to predict the folding rates and the Φ-values. The folding rate measures
how fast a protein evolves from an unfolded state to the native state. The Φ-value mea-
sures the extent to which a residue of a protein attains its native conformation when the
protein is in the transition state of the folding process. Performing such computational
studies was once very difficult, due to a lack of good models of protein folding, a lack of
efficient computational methods to predict experimental quantities based on theoretical
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models, and a lack of detailed experimental results to validate the predictions. However,
important advances have been made in recent years. On the theoretical side, the energy
landscape theory [4, 7] offers a global view of protein folding in microscopic details
based on statistical physics. It hypothesizes that proteins fold in a multi-dimensional
energy funnel by following a myriad of pathways, all leading to the same native state.
On the experimental side, residue-specific measurements of the folding process (see,
e.g., [14]) provide detailed experimental data to validate theoretical predictions.

Our work takes advantage of these developments. To compute the folding rate and
Φ-values of a protein, we first estimate the transition state ensemble (TSE), which is
a set of high-energy protein conformations that limits the folding rate. We use the re-
cently introduced Stochastic Roadmap Simulation (SRS) method [3] on a folding en-
ergy landscape proposed in [12]. SRS samples the protein conformational space and
builds a directed graph, called the stochastic conformational roadmap. The nodes of
the roadmap represent sampled protein conformations, and the edges represent transi-
tions between the conformations. The roadmap compactly encodes a huge number of
folding pathways and captures the stochastic nature of the folding process. Using the
roadmap, we can efficiently compute the folding probability (Pfold) [8] for each sam-
pled conformation in the roadmap and decide which conformations belong to the TSE.
Finally, we estimate folding rates and Φ-values using the set of conformations in the
TSE.

We tested our method on 16 proteins with sizes ranging from 56 to 128 residues
and validated the results against experimental data. The results show that our method
predicts folding rates with accuracy better than an existing method based on dynamic
programming (DP) [12]. In the following, this existing method will be called the DP
method, for lack of a better name. More importantly, our method provides a much more
discriminating estimate of the TSE: our estimate of the TSE contains less than 10%
of all sampled conformations, while the estimate by the DP method contains 85–90%.
The more accurate estimate better reveals the composition of the TSE and makes our
method more suitable for studying the mechanisms of protein folding. For Φ-value
prediction, the accuracy of our method varies among the proteins tested. The results
are comparable to those obtained from the DP method, but both methods need to be
improved in accuracy to be useful in practice.

From a methodology point of view, this is the first time that results based on Pfold
values computed by SRS were compared against substantial amount of experimental
data. Earlier work on SRS compared it with Monte Carlo simulation and showed that
SRS is faster by several orders of magnitude [3]. The comparison with experimental
data serves as a test of the methodology, and the success further validates the SRS
method and indicates its potential as a general tool for studying protein folding kinetics.

2 Related Work

There are many approaches for studying protein folding kinetics, including all-atom
or lattice molecular dynamics simulation (see [9] for a survey), solving master equa-
tions [6, 21], and estimating the TSE [1, 12]. Recently, several related methods suc-
ceeded in predicting folding rates and Φ-values [1, 12, 15], using simplified energy
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functions that depend only on the topology of the native state of a protein. Our work
also uses such an energy function, but instead of searching for rate-limiting “barriers”
on the energy landscape as in [1, 12], we estimate the TSE by using SRS to compute
Pfold values and then estimate the folding rates and Φ-values based on the energy of
conformations in the TSE.

SRS is inspired by the probabilistic roadmap (PRM) methods for robot motion plan-
ning [5]. In motion planning, our goal is to find a path for a robot to move from an initial
configuration to a goal configuration without colliding with any obstacles. The main
idea of PRM methods is to sample at random the space of all robot configurations—
a space conceptually similar to a protein conformation space—and construct a graph
that captures the connectivity of this space. Methods derived from PRM have been ap-
plied to ligand-protein docking [17], protein folding [3, 2], and RNA folding [19]. In
our earlier work, we used SRS to study protein folding, but the results were compared
only with those obtained from Monte Carlo simulation. Here, we extend the work to
compute folding rates and Φ-values and validate the results directly against experimen-
tal data. SRS has also been combined with molecular dynamics simulation to study
protein folding rates and mechanisms [18].

3 Overview

The conformation of a protein is a set of parameters that specify uniquely the structure
of the protein, e.g., the backbone torsional angles φ and ψ. The conformational space
C contains all the conformations of a protein. If C is parametrized by d conformational
parameters, then a conformation can be regarded as a point in a d-dimensional space.

Each conformation q of a protein has an associated energy value E(q), determined
by the interactions between the atoms of the protein and between the protein and the
surrounding medium, e.g., the van der Waals and electrostatic forces. The energy E is
a function defined over C and is often called the energy landscape. According to the
energy landscape theory, proteins fold along many pathways over the energy landscape.
These pathways start from unfolded conformations and all lead to the same native state.

To understand protein folding kinetics, we need to analyze the folding pathways and
identify those conformations, called the transition state ensemble (TSE), that act as
barriers on the energy landscape and limit the folding rate. For convenience, we also
say that such conformations are in the transition state. In the simple case where there
is a dominant folding pathway with a single major energy peak along the pathway, the
TSE can be defined as the conformations with energy at or near the peak value. In
general, there may be many pathways, and along every pathway, there may be multiple
energy peaks. This makes the TSE more difficult to identify. To address this issue,
Du et al. introduced the notion of Pfold [8]. In a folding process, the Pfold value of a
conformation q is defined as the probability of a protein reaching the folded (native)
state before reaching an unfolded state, starting from conformation q. Pfold measures
the kinetic distance between q and the folded state. From any conformation q with Pfold
value greater than 0.5, the protein is more likely to fold first than to unfold first. Thus q
is kinetically closer to the folded state. The TSE is defined as the set of conformations
with Pfold equal to 0.5. Defining the TSE using Pfold has many advantages. In particular,
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Pfold is not determined by any specific pathway, but depends on all the pathways from
unfolded states to the folded state. It thus captures the ensemble behavior of folding.

We can compute Pfold value for a conformation q by performing many folding simu-
lation runs from q and count the number of times that they reach the folded state before
an unfolded one. However, a large number of simulation runs are needed to estimate the
Pfold value accurately, and doing so for many conformations incurs prohibitive compu-
tational cost. The SRS method approximates the Pfold values for many conformations
simultaneously in a much more efficient way. In the following, we first describe the
computation of the TSE using SRS (Sect. 4) and then the computation of folding rates
(Sect. 5) and Φ-values (Sect. 6) based on the energy of conformations in the TSE.

4 Estimating the TSE Using Stochastic Roadmap Simulation

SRS is an efficient method for exploring protein folding kinetics by examining many
folding pathways simultaneously. We use SRS to compute Pfold values and then deter-
mine the TSE based on the computed Pfold values.

4.1 A Simplified Folding Model

To study protein folding kinetics, we need an energy function that accurately models
the interactions within a protein and the interactions between a protein and the sur-
rounding medium at the atomic level. For this, we use the simple, but effective energy
model developed by Garbuzynskiy et al. [12]. This model is based on the topology of
a protein’s native state. An important concept here is that of native contact. Two atoms
are considered to be in contact if the distance between them is within a suitably chosen
threshold. A native contact between two atoms of a protein is a contact that exists in
the native state. Given a conformation q, we can obtain all the native contacts in q by
computing the pairwise distances between the atoms of the protein.

The energy model that we use divides a protein into contiguous segments of five
residues each. Each segment must be either folded or unfolded completely. In other
words, atoms within a folded segment must gain all their native contacts with other
atoms in the folded segments, while atoms within an unfolded segment are assumed
to form a disordered loop and lose all their native contacts. We thus represent the con-
formation of a protein by a binary vector, with 1 representing a folded segment and
0 representing an unfolded segment. In particular, the folded (native) conformation is
(1, 1, . . . , 1), and the unfolded conformation is (0, 0, . . . , 0).

Using this representation, a protein with N residues has 2�N/5� distinct conforma-
tions. To further reduce computation time, Garbuzynskiy et al. suggested a restriction
which accepts only conformations with at most two unfolded regions in the middle of
a protein plus two unfolded regions at the ends of the protein. With a maximum of
four unfolded regions, we can capture the folding and unfolding of proteins with up to
roughly 100 residues [11].

The free energy of a conformation q is calculated based on the number of native
contacts and the length of unfolded segments in q:

E(q) = ε · n(q)− T · (2.3R · μ(q) + S(q)) . (1)
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In the formula above, n(q) is the number of native contacts in the folded segments of q,
μ(q) is the number of residues in the unfolded segments of q, and S(q) is the entropy
for closing the disordered loops. For the rest, which are all constants, ε is the energy
of a single native contact, T is the absolute temperature, and R is the gas constant. A
similar energy function has been used in the work of Alm and Baker [1].

Our model uses all the atoms of a protein, including the hydrogen atoms, to calculate
the energy. For protein structures determined by X-ray crystallography, hydrogen atoms
are missing and we added them using the Insight II program at pH level 7.0.

4.2 Constructing the Stochastic Conformational Roadmap

A stochastic conformational roadmap G is a directed graph. Each node of G represents
a conformation of a protein. Each directed edge from a node qi to a node qj carries
a weight Pij , which represents the probability for a protein to transit from qi to qj . If
there is no edge from qi to qj , the probability Pij is 0; otherwise, Pij depends on the
energy difference between qi and qj , ΔEij = E(qj)− E(qi).

The transition probabilityPij is defined according to the Metropolis criterion, which
is also used in Monte Carlo simulation:

Pij =
{

(1/ni) exp(−ΔEij

kBT ) if ΔEij > 0
1/ni otherwise

,

where ni is the number of outgoing edges of qi, kB is the Boltzmann constant, and T is
the absolute temperature. The factor 1/ni normalizes the effect that different nodes may
have different numbers of outgoing edges. We also assign the self-transition probability:

Pii = 1−
∑
j �=i

Pij ,

which ensures that the transition probabilities from any node sums to 1.
SRS views protein folding as a random walk on the roadmap graph. If qF and qU are

the two roadmap nodes representing the folded and the unfolded conformation, respec-
tively, every path in the roadmap from qU to qF represents a potential folding pathway.
Thus, a roadmap compactly encodes an exponential number of folding pathways.

To construct the roadmap G using the folding model described in Sect. 4.1, we enu-
merate the set of all allowable conformations in the model (with the restriction of a
maximum of four unfolded regions) and use them as the nodes of G. There is an edge
between two nodes if the corresponding conformations differ by exactly one folded or
unfolded segment.

4.3 Computing Pfold

Pfold measures the kinetic distance between a conformation q and the native state qF.
The main advantage of using Pfold to measure the progress of protein folding is that it
takes into account all folding pathways sampled from the protein conformation space
and does not assume any particular pathway a priori.

Recall that the Pfold value τ of a conformation q is defined as the probability of a pro-
tein reaching the native state qF before reaching the unfolded state qU, starting from q.
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Instead of computing τ by brute force through many Monte Carlo simulation runs, we
construct a stochastic conformational roadmap and apply the first step analysis [20]. Let
us consider what happens after a single step of transition:

– We may reach a node in the folded state, which, by definition, has Pfold value 1.
– We may reach a node in the unfolded state, which has Pfold value 0.
– Finally, we may reach an intermediate node qj with Pfold value τ j .

The first step analysis conditions on the first transition and gives the following relation-
ship among the Pfold values:

τi =
∑

qj∈{qF}
Pij · 1 +

∑
qj∈{qU}

Pij · 0 +
∑

qj �∈{qF,qU}
Pij · τ j , (2)

where τi is the Pfold value for node qi. In our simple folding model, both the folded and
the unfolded state contains only a single conformation, but in general, they may contain
multiple conformations.

The relationship in (2) gives a linear equation for each unknown τ i. The resulting
linear system is sparse and can be solved efficiently using iterative methods [3].

The largest protein that we tested has 128 residues, resulting in a total of 314,000
allowable conformations. It took SRS only about a minute to compute Pfold values for
all the conformations on a PC workstation with a 1.5GHz Itanium2 processor and 8GB
of memory.

4.4 Estimating the TSE

After computing the Pfold value for each conformation, we identify the TSE by extract-
ing all conformations with Pfold value 0.5. However, due to the simplification and dis-
cretization used in our folding model, we need to broaden our selection criteria slightly
and identify the TSE as the set of conformations with Pfold values within a small range
centered around 0.5. We found that the range between 0.45 to 0.55 is usually adequate
to account for the model inaccuracy in our tests, and we used it in all the results reported
below.

4.5 An Example on a Synthetic Energy Landscape

Consider a tiny fictitious protein with only two residues. Its conformation is specified by
two backbone torsional angles φ and ψ. For the purpose of illustration, instead of using
the simplified energy function described in Sect. 4.1, this example uses a saddle-shaped
energy function over a two-dimensional conformation space (Fig. 1a) in which the two
torsional angles vary continuously over their respective ranges. On this energy land-
scape, almost all intermediate conformations have energy levels at least as high as the
unfolded conformation qU and the native conformation qF. This synthetic energy land-
scape is conceptually similar to more realistic energy models commonly used. Namely,
to go from qU to qF, a protein must pass through energy barriers.

The computed Pfold values for this energy landscape is shown in Fig. 1b. A com-
parison of the two plots in Fig. 1 shows that the conformations with Pfold value 0.5
correspond well with the energy barrier that separates qU and qF.
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Fig. 1. Pfold values for a synthetic energy landscape. (a) A synthetic energy landscape. (b) The
computed Pfold values.
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Fig. 2. Estimation of the TSE for the energy landscape shown in Fig. 1. The conformation-space
region corresponding to the TSE is shaded and overlaid on the contour plot of the energy land-
scape. (a) The DP method. (b) The SRS method.

5 Predicting Folding Rates

The folding rate is an experimentally measurable quantity that determines how fast the
protein proceeds from the unfolded state to the folded state. By observing how it varies
under different experimental conditions, we can gain an understanding of the important
factors that influence the folding process.

The speed at which a protein folds depends exponentially on the height of the en-
ergy barrier that must be overcome during the folding process. The higher the barrier,
the harder it is for the unfolded protein to reach the folded state and the slower the
process. Because of the exponential dependence, even a small difference in the height
of the energy barrier has significant effect on the folding rate. Therefore, accurately
identifying the TSE is crucial for predicting the folding rate.
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5.1 Methods

After identifying the TSE using the SRS method described in the previous section,
we compute the folding rate the same way as that in [12], for the purpose of easy
comparison. First, we calculate ETSE, the total energy of the TSE, according to the
following relationship [12]:

exp(−ETSE

RT
) =

∑
q∈TSE

exp(−E(q)
RT

), (3)

where the summation is taken over the set of all conformations in the TSE, R is the
gas constant and T is the absolute temperature. We then compute the rate constant kf
according to the following theoretical dependence [12]:

ln(kf) = ln(108)− (
ETSE

RT
− E(qU)

RT
), (4)

where E(qU) is the energy of the qU.

5.2 Results

Using data from the Protein Data Bank (PDB), we computed folding rates for 16 pro-
teins (see Appendix A for the list). The results are shown in Fig. 3. The horizontal axis
of the chart corresponds to the experimentally measured folding rates (see [12] for the
sources of data), and the vertical axis corresponds to the predicted values. The best-fit
lines of the data are also shown. For comparison, we also computed the folding rates
using the DP method [12] and show the results in the same chart. Note that since the
chart plots ln kf , it basically compares the height of the energy barrier.

Fig. 3 shows that both methods can predict the trend reasonably well. The best-fit
line of SRS is closer to the diagonal, indicating better predictions. This is confirmed by
comparing the average error in ln kf for the two methods.
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It is interesting to note that DP consistently predicts higher kf compared to SRS.
Since a higher kf corresponds to lower energy barrier along the folding pathway, the
TSE identified by DP must have lower energy. This is significant in terms of the accu-
racy of folding rate prediction and suggests that an important difference exists between
the TSE estimated by SRS and that estimated by DP.

5.3 Accuracy in Estimating the TSE

The difference between SRS and DP in estimating the TSE becomes more apparent
when we compare the percentage of sampled conformations that are present in the TSE.
Fig. 4 shows that the TSE estimated by SRS includes less than 10% of all allowable
conformations. In contrast, the TSE estimated by DP includes, surprisingly, 85-90%.
Closer inspection reveals that the TSE computed by SRS is mostly a subset of the TSE
computed by DP. Combining this observation with the better prediction accuracy of
SRS, we conclude that the additional 80% or so conformations identified by DP are not
only unnecessary, but also negatively affect folding rate prediction.

Although it is difficult to know the true percentage of conformations that should
belong to the TSE, careful examination of the DP method shows that it indeed may in-
clude in the TSE many conformations that are suspicious. This is best illustrated using
the example in Fig. 1a. According to the DP method, a conformation q belongs to the
TSE, if q has the highest energy along the folding pathway that has the lowest energy
barrier among all pathways that go through q. This definition tries to capture the intu-
ition that q is the location of minimum barrier on the energy landscape. For the energy
landscape shown in Fig. 1, the globally lowest energy barrier is clearly the conforma-
tion qs at the saddle point. So qs belongs to the TSE. For any other conformation q,
there are two possibilities. When E(q) < E(qs), any path through q must have a barrier
higher than or equal to E(qs), and q cannot possibly achieve the highest energy along
the path. Thus, q does not belong to the TSE. The problem arises when E(q) ≥ E(qs).
In this case, to place q in the TSE, all it takes is to find a path that goes through q
and does not pass through any other conformation with energy higher than E(q). This
can be easily accomplished on the saddle-shaped energy landscape for most conforma-
tions with E(q) ≥ E(qs), e.g., the conformation qi indicated in Fig. 1. Including such
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conformations in the TSE seems counter-intuitive, as they do not constitute a barrier on
the energy landscape.

As we have seen in Sect. 4.5, the SRS method includes in the TSE only those con-
formations near the barrier of the energy landscape , but the DP method includes many
additional conformations, some of which are far below the energy of the barrier (see
Fig. 2 for an illustration). Therefore, the TSE estimated by DP tend to have lower en-
ergy than the TSE estimated by SRS, resulting in over-estimated folding rates.

6 Predicting Φ-Values

Φ-value analysis is the only experimental method for determining the transition-state
structure of a protein at the resolution of individual residues [10]. Its main idea is to
mutate carefully selected residues of a protein, measure the resulting energy changes,
and infer from them the structure of the protein in the transition state. Here, we would
like to predict Φ-values computationally.

6.1 Methods

The Φ-value indicates the extent to which a residue has attained the native conformation
when the protein is in the transition state of the folding process. More precisely, the
Φ-value of a residue r is defined as:

Φr =
Δr[ETSE − E(qU)]
Δr[E(qF)− E(qU)]

, (5)

where Δr[ETSE − E(qU)] is the change in the energy difference between the TSE and
the unfolded state qU as a result of mutating r. Similarly, Δr[E(qF) − E(qU)] is the
mutation-induced change in the energy difference between the native state qF and the
unfolded state qU. See Fig. 5 for an illustration. A Φ-value of 1 indicates that the mu-
tation of residue r affects the energy of the transition state as much as the energy of
the native state, relative to the energy of the unfolded state. So, in the transition state,
r must have fully attained the native conformation, according to energy considerations.

Δr[ETSE − E(qU)]

Δr[E(qF)− E(qU)]

E
TSE

qU

qF

before mutation

after mutation

Fig. 5. Φ-value
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Similarly, a Φ-value of 0 indicates that in the transition state, the residue remains un-
folded. A fractional Φ-value value between 0 and 1 indicates that the residue has only
partially attained its native conformation. By analyzing the Φ-value of each residue of
a protein, we can elucidate the structure of the TSE.

Using (1) and (3), we can simplify (5) and obtain the following expression for the
Φ-value of residue r:

Φr =

∑
q∈TSE P (q) ·Δrn(q)

Δrn(qF)
, (6)

where P (q) is the Boltzmann probability for conformation q and Δrn(q) is the change
in the number of native contacts for conformation q as a result of mutating r.

6.2 Results on Φ-Value Prediction

The Φ-value is more difficult to predict than the folding rate, because it is a detailed
experimental quantity and requires an accurate energy model for prediction. We com-
puted Φ-values for 16 proteins listed in Appendix A, but got mixed results. Fig. 6
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Table 1. Performance of SRS and DP in Φ-value prediction. For each protein, the average error
of computed Φ-values is calculated. The table reports the mean, the minimum, and the maximum
of average errors over the 16 proteins tested.

Method Mean Min Max
SRS 0.21 0.11 0.32
DP 0.24 0.13 0.35

shows a comparison of the Φ-values computed by SRS and DP and the Φ-values mea-
sured experimentally. The sources of the experimental data are available in [12]. In
general, our Φ-value predictions based on X-ray crystallography structures are better
than those based on NMR structures. When compared with DP, SRS is much better
for some proteins, such as CheY and the RNA binding domain of U1A, both of which
have X-ray crystallography structures. For the other proteins, the results are mixed.
In some cases (e.g., barnase), our results are slightly better, and in others (e.g., TI
I27 domain of titin), slightly worse. Table 1 shows the performance of SRS and DP
over the 16 proteins tested. Since Φ-values range between 0 and 1, the errors are fairly
large for both SRS and DP. To be useful in practice, more research is needed for both
methods.

6.3 Results on the Order of Native Structure Formation

An important advantage of using Pfold as a measure of the progress of folding is that
Pfold takes into account all sampled folding pathways and is not biased towards any
specific one. We have seen how to use Pfold to estimate Φ-values, which give an indi-
cation of the progress of folding in the transition state only. We can extend this method
to observe the details of the folding process, in particular, the order of native structure
formation, by plotting the progression of each residue with respect to Pfold.

Each plot in Fig. 7 shows the frequency with which a residue achieves its native
conformation in a Boltzmann weighted ensemble of conformations with approximately
same Pfold values. For CheY, residues 1 to 40 gain their native conformation very early
in the folding process. The coherent interactions between neighboring residues is con-
sistent with the mainly helical secondary structure of these residues. Residues 50 to
80 are subsequently involved in the folding nucleus as folding progresses. The folding
of barnase is more cooperative and involves many regions of the protein simultane-
ously. Residues 50 to 109 dominate the folding process early on, and the simultaneous
progress of different regions corresponds to the formation of the β sheet. The heli-
cal residues 1 to 50 gain native conformation very late in the folding. The order of
native structure formation that we observed is consistent with that obtained by Alm
et al. [1].

The accuracy of Φ-value prediction gives an indication of the reliability of such plots.
We made similar plots for the other proteins. Although we were able to see interesting
trends for some of the other proteins, the plots are not shown here, because of the low
correlation of their Φ-value predictions to experimental values. Verifying the accuracy
of such plots directly is difficult, due to the limited observability of the protein folding
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CheY Barnase

Fig. 7. Sequence of secondary structure formation. The colored bar on the left of each plot indi-
cates secondary structures, red for helices and green for strands.

process and the limited experimental data available. The reliance on other simulation
results for verification is almost inevitable.

7 Conclusion

This paper presents a new method for studying protein folding kinetics. It uses the
Stochastic Roadmap Simulation method to compute the Pfold values for a set of sam-
pled conformations of a protein and then estimate the TSE. The TSE is of great impor-
tance for understanding protein folding, because it gives insight into the main factors
that influence folding rates and mechanisms. Knowledge of the structure of the TSE
may be used to re-engineer folding in a principled way [16]. One main advantage of
SRS is that it efficiently examines a huge number of folding pathways and captures the
ensemble behavior of protein folding. Our method was tested on 16 proteins. The re-
sults show that our estimate of the TSE is much more discriminating than that of the DP
method. This allows us to obtain better folding-rate predictions. We have mixed results
in predicting Φ-values. One likely reason is that Φ-value prediction requires a more de-
tailed model than the one that we used. The success of SRS on these difficult prediction
problems further validates the SRS method and indicates its potential as a general tool
for studying protein folding kinetics.

The 16 proteins that we studied fold via a relatively simple two-state transition mech-
anism. It would be interesting to further test our method on more complex proteins,
such as those that fold via an intermediate. We also plan to improve Φ-value prediction
by using a better energy model and to predict other experimental quantities, such as
hydrogen-exchange protection factors [13].
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A The List of Proteins Used for Testing

For each protein used in our test, the table below lists its name, PDB code, the number
of residues, and the experimental method for structure determination.

Protein PDB code No. Res. Exp. Meth.
B1 IgG-binding domain of protein G 1PGB 56 X-ray
Src SH3 domain 1SRM 56 NMR
Src-homology 3 (SH3) domain 1SHG 57 X-ray
Sso7d 1BF4 63 X-ray
CI-2 2CI2 65 X-ray
B1 IgG-binding domain of protein L 2PTL 78 NMR
Barstar 1BTB 89 NMR
Fibronectin type III domain from tenascin 1TEN 89 X-ray
TI I27 domain of titin 1TIU 89 NMR
Tenth type III module of fibronectin 1TTF 94 NMR
RNA binding domain of U1A 1URN 96 X-ray
S6 1RIS 97 X-ray
FKBP-12 1FKB 107 X-ray
Barnase 1RNB 109 X-ray
Villin 14T 2VIL 126 NMR
CheY 3CHY 128 X-ray
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Abstract. Genomics has transformed biology, including our under-
standing of evolution. Comparisons of the human genome to those of
chimpanzees, rats, and other species have generated tremendous insights
into the deep history of many evolutionary processes including gene du-
plication, neutral evolution, chromosome rearrangement, and changes in
gene expression. These insights not only enrich our understanding of the
history of life, but may also help guide research in medicine and conser-
vation biology.

Yet genomics has not obliterated the deep tension between molecu-
lar and organismal biology that has existed for decades. In the 1960s,
this tension was dramatically illustrated in the struggle between James
Watson and E.O. Wilson over the direction of biological research at Har-
vard. Watson championed the reductionist methods of molecular biology,
declaring, “There is only one science: physics. Everything else is social
work.” Wilson represented the social workers of biologyscientists who
studied organisms. Their fight led to the biology department splitting
in two.

Forty years later, this tension remains strong in the postgenomic era.
Based solely on the analysis of genomes, scientists today frequently make
sweeping claims about various aspects of evolution, such as the origins
of complexity and patterns of biogeography. Rarely do these scientists
consult a paleontologist about what the fossil record has to say on these
matters. If they did, they would discover a far more intricate reality
than reflected in their genome-based generalizations. In my talk, I will
discuss some case studies in the perils of genomic myopia. I will also
discuss examples of how computational biologists can work fruitfully with
paleontologists and other organismal biologists to draw more reliable
conclusions about evolution.
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Abstract. It is well known that the base composition along eukaryotic
genomes is long-range correlated. Here, we investigate the effect of such
long-range correlations on alignment score statistics. We model the cor-
related score-landscape by means of a Gaussian approximation. In this
framework, we can calculate the corrections to the scale parameter λ of
the extreme value distribution of alignment scores. To evaluate our ap-
proximate analytic results, we perform a detailed numerical study based
on a simple algorithm to efficiently generate long-range correlated ran-
dom sequences. We find that the mean and the exponential tail of the
score distribution are in fact influenced by the correlations along the
sequences. Therefore, the significance of measured alignment scores in
biological sequences will change upon incorporation of the correlations
in the null model.

1 Introduction

Recent years have witnessed an impressive advance of bioinformatics sequence
analysis tools, aiming at deeper insight to the functional organization and evo-
lutionary dynamics of genomic DNA sequences. Popular examples include algo-
rithms for genome annotation, homology detection between genomic regions of
different organisms, or the prediction of transcription factor binding sites [1, 2].

Bioinformatics methods frequently yield probabilistic statements. Usually the
statistical significance of a computational prediction is characterized by a
p-value, specifying the likelihood that this prediction could have arisen by
chance. The calculation of p-values requires an appropriate null model of DNA,
which reflects our assumptions about the “background” statistical features of
the sequence under consideration. The challenging task is to decide on the set of
statistical features a suitable null model should obey. Ideally, one incorporates
those features into the null model which describe the background “noise” of the
DNA sequence, but still allow to discern the specific signal the computational
analysis tries to detect.

The simplest DNA background model is an iid model, given by a random
sequence with letters drawn independently from an identical distribution [2].
The iid model can incorporate the length and the average composition of the
sequences under consideration, but it lacks any specific structure concerning the
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arrangement of the nucleotides along the DNA. In particular, it is not capable of
incorporating correlations in base composition along the sequences. Up to a cer-
tain degree, this additional complexity can be taken into account by an nth order
Markov model, specifying the transition probabilities P (ai+1|ai−n+1, · · · , ai) in a
genomic sequence a = a1, . . . , aN [2]. Assuming the sequences to be generated by
Markov processes already allows to incorporate a multitude of spatial statistical
features into the model, like e.g. the preferential occurrence of DNA motifs, local
peculiarities in genomic composition, or specific dinucleotide frequencies. In con-
trast to iid sequences, where all letters are uncorrelated, Markov processes lead
to, so called, short-range correlations in the nucleotide composition [3]. They are
characterized by an exponential decay of the correlations between two different
bases with increasing distance along the sequence.

A statistical measure of the correlations in genomic base composition is the
autocorrelation function C(r). It quantifies the deviations in the joint probability
of finding equal bases at a distance of r basepairs along the DNA backbone
compared to that in a random sequence of independent letters with the same
nucleotide frequencies pa∈{A,C,T,G},

C(r) ≡
∑

a

[
P (ai = ai+r = a)− p2

a

]
. (1)

We have C(r) = 0 (r > 0) for iid sequences, while C(r) ∝ exp (−βr) for short-
range correlated sequences, e.g. those generated by Markov processes.

With the rapidly growing availability of whole-genome sequence data the cor-
relations along genomic DNA can nowadays be studied systematically over a
wide range of scales and organisms. A striking observation in this field was the
finding of long-range correlations in the base composition of genomes more than
a decade ago [4, 3, 5]. They are characterized by a power-law decay of the corre-
lation function for large r,

C(r) ∝ r−α, (2)

and therefore decay much slower compared to short-range correlations. By now
it is well established that long-range correlations in base composition appear
in the genomes of most eukaryotic species [6, 7, 8] with two examples shown in
Fig. 1. Little is known about the origin of genomic long-range correlations, so
far. However, their ubiquity among eukaryotic genomes points towards a uni-
versal mechanism. A likely dynamical scenario is that they are generated by
the stochastic processes of molecular sequence evolution, as has been discussed
in [9, 10, 11].

The widespread presence of long-range correlations in genomes raises the ques-
tion if they need to be incorporated into an accurate null model of eukaryotic
DNA and how that would change the p-value calculations. In this article, we ad-
dress this question in the context of sequence alignment, which constitutes the
most commonly used computational tool of molecular biology today [12, 13]. We
tackle the problem of calculating sequence alignment significance values for null
models with long-range sequence composition correlations with both, analyti-
cal, as well as numerical methods. On the analytical side, we introduce a novel
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Fig. 1. Long-range correlations in the base composition of two eukaryotic chromosomes.
In the double-logarithmic plots, power-law correlations C(r) ∝ r−α show up as straight
lines with slope α. They extend over distances of several orders of magnitude. In (b) we
demonstrate our capability of simulating long-range correlated sequences with similar
amplitude and correlation exponent α ≈ 0.232, as measured in Human chr. 22.

approach, the Gaussian approximation, which allows us to calculate the correc-
tions to the scale parameter λ of the alignment score distribution for correlated
sequences. Long-range correlated sequences cannot be generated by an nth order
Markov process with finite n [3]. The numerical approach therefore only recently
has come within reach due to results derived in [10, 11], where we proposed a
biologically motivated algorithm capable of efficiently generating long-range cor-
related sequences with arbitrary correlation parameters. As the main result of
our analysis, it turns out that long-range correlations in the sequences lead to
considerable deviations in the score statistics of sequence alignment.

After presenting a short review of sequence alignment in section 2, we an-
alytically treat the alignment of long-range correlated sequences in section 3.
A numerical evaluation of the approximative analytic results is presented in
section 4. In section 5, we discuss the relevance of this effect for genomic se-
quence alignment by analyzing the magnitude of the corrections to the score sig-
nificance values using correlation parameters, measured in eukaryotic genomes.
The implications of our findings in a bioinformatics context are discussed at the
end of this article.

2 Sequence Alignment and Significance Assessment

The goal of DNA sequence alignment is to assign to a given pair of genomic
sequences a = a1, · · · , aN and b = b1, · · · , bM a measure of their similarity.
The simplest version of sequence alignment is gapless alignment. A local gapless
alignment A of the two sequences consists of a substring ai−l+1 · · ·ai of length
l of sequence a and a substring bj−l+1 · · · bj of sequence b of the same length.
Each such alignment is assigned a score SA =

∑l−1
k=0 s(ai−k, bj−k), where s(a, b)
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is some given scoring matrix measuring the mutual degree of similarity of the
different letters of the alphabet. For DNA sequence comparison, one often uses
the simple match-mismatch matrix [14]

s(a, b) =
{

1 : a = b
−μ : a �= b

. (3)

The computational task is to find the alignment A, which gives the highest total
score

S ≡ maxSA. (4)

For the purpose of detecting weak sequence homologies, alignment algorithms
can also take into account insertions and deletions in either one of the two
sequences during biological evolution [14]. For such gapped alignments, each gap
contributes a (negative) gap cost γ to the total score of the alignment. Using
affine gap costs, one additionally distinguishes between the gap initiation cost
γi and the gap extension cost γe.

Since an alignment score S is assigned to any pair of sequences, also to bio-
logically completely unrelated ones, it is helpful to know the distribution of S
in an appropriate null model. The knowledge of this distribution gives the pos-
sibility to assign p-values to alignment results; they specify the probability that
a high score could have arisen by chance in order to be able to distinguish true
evolutionary relationship from random similarities. As already mentioned in the
introduction, a frequently used null model for that purpose is the iid model. For
ungapped alignment of long sequences (M,N ) 1), the distribution of S for the
iid model has been worked out rigorously [15, 16, 17]; it is a Gumbel or extreme
value distribution, with its probability density function given by

pdf(S) = KMNλ exp (−λS −KMNe−λS). (5)

The distribution is characterized by the two parameters λ and K. In the iid case,
the scale parameter λ is the unique positive solution of the equation

〈exp (λs)〉 =
∑
a,b

papb exp [λs(a, b)] = 1. (6)

The other parameter K then determines the mean of the distribution.
For gapped alignment, no rigorous theory for the distribution of S exists, so

far. However, numerical evidence strongly suggests that the distribution is still of
Gumbel form [18, 19, 20, 21]. Using this empirical applicability, it has been shown
in [22, 23, 24] that λ for local gapped alignment in the iid model can be derived
solely from studying the much simpler global alignment, where one is interested
in the path with the highest score h ≡ maxhA, connecting the beginning (a1, b1)
to the end (aN , bN ) of a given pair of sequences a and b (we set M = N , from
now on). One defines a generating function

ZN(λ) ≡ 〈exp (λh)〉, (7)
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where the brackets 〈·〉 denote an average over all possible pairs of random se-
quences a and b of length N . The central conjecture in [22] then states that λ
is determined by the solution of the equation

lim
N→∞

1
N

logZN(λ) = 0. (8)

Following the results of [25, 26], this allows for a very efficient computation of λ
for gapped alignment in the iid model.

3 The Gaussian Approximation

In this section, we derive approximate analytical results for the parameter λ of
the score distribution one obtains for alignment of random sequences with long-
range correlations. We restrict ourselves to gapless alignment, since we expect
qualitatively similar results for the gapped case. This will also be confirmed by
the numerical data we present in section 5. For simplicity, we furthermore assume
a uniform distribution of the four nucleotides; a generalization to sequences with
biased composition is straightforward.

The approach employed in the following is based on the assumption that for
local gapless alignment of correlated sequences the distribution of the maximal
scores obeys Gumbel form, and λ is still determined by Eq. (8). The score of
the global alignment is given by the sum over all elementary scores si = s(ai, bi)
along the diagonal of the alignment-lattice. Defining s = (s1, . . . , sN), we have

h =
N∑

i=1

si = 1ts. (9)

The ensemble average of Eq. (7) over all realizations of the two sequences a and
b can therefore be expressed in terms of an average over all score vectors s. While
the probability of a score vector factorizes in the iid model, P (s) =

∏
i P (si), this

is no longer the case for correlated sequences. However, approximate values for
the probabilities P (s) in the correlated case can still be derived by a Gaussian
approximation. The idea of this approach is to replace the discrete variables
si by continuous Gaussian variables. More precisely, an individual discrete score
si = {1,−μ} at position i along the diagonal of the alignment-lattice will now be
allowed to take continuous values, distributed according to a normal distribution

pdf(si) =
1√

2πσ2
exp

−(si − 〈s〉)2
2σ2 . (10)

Mean and variance are chosen in accordance with the original discrete score
distribution, i.e., 〈s〉 = 1/4− 3μ/4, and σ2 = 3(1 + μ)2/16.

The probability P (s) of a score vector s is then determined by an N -dimen-
sional Gaussian distribution

P (s) = [(2π)N detσ]−1/2

exp [−1
2
(s− 〈s〉)tσ−1(s− 〈s〉)], (11)
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with 〈s〉 = (〈s〉, . . . , 〈s〉) and the covariance matrix σ, defined by

σij = 〈s(i)s(j)〉 − 〈s(i)〉〈s(j)〉. (12)

The diagonal elements of σ are given by the variance of an individual score,
σii = σ2. The non-diagonal elements σi�=j can be expressed in terms of the
correlation function C(r) of the sequences a and b,

σij =
1
3
(1 + μ)2C2(|i− j|). (13)

In this expression the correlation function C(r) is squared, since (13) describes
the correlations of the similarity scores which arise from a comparison of two
sequences. The non-diagonal elements vanish for iid sequences.

Using the distribution (11), the calculation of the generating function (7)
amounts to the evaluation of an N -dimensional Gaussian integral, which can be
solved explicitly,

ZN (λ) =
∫
ds P (s) exp (λ1ts)

= [(2π)N det σ]−1/2∫
ds e−

1
2 (s−〈s〉)tσ−1(s−〈s〉)+λ1ts

= exp (λ1t〈s〉+
1
2
λ21tσ1). (14)

The central conjecture (8) then implies

0 = lim
N→∞

1
N

(λ1t〈s〉+
1
2
λ21tσ1). (15)

Notice that this expression coincides with the result obtained by applying the
central conjecture to the Taylor series approximation of the generating func-
tion (7) up to second order. Using Eq. (13) yields

λ =
−2〈s〉

σ2 + 2
3 (1 + μ)2 limN→∞

∑N
i=1 C

2(i)
. (16)

The first term σ2 in the denominator of (16) is related to the individual fluctu-
ations of a single score element, irrespective of correlations along the sequences.
The second term, on the other hand, vanishes for iid sequences and determines
the corrections to λ due to correlations.

In case of long-range correlations, i.e., C(r) = cr−α, and assuming α > 1/2,
we obtain

λ =
−2〈s〉

σ2 + 2
3 (1 + μ)2c2ζ(2α)

, (17)

where ζ(x) is the Riemann zeta function. Consequently, the Gaussian approxima-
tion predicts deviations in λ for the alignment of long-range correlated sequences
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compared to iid sequences. A detailed numerical analysis of this analytic result
will be performed in section 4. Notice that for α ≤ 1/2 the sum

∑∞
i=1 C

2(i)
diverges, resulting in λ = 0. This might indicate a transition from local to global
alignment in the Gaussian approximation, which will be discussed in section 4.3.

As a first evaluation of the Gaussian approximation, we investigate its predic-
tions for sequences a=(a1, . . . , aN ) generated by a Markov process. We consider
a first order process with four different states Ai∈{A,C, T,G}. Starting with a
random nucleotide a1, the transition probabilities are defined by

P (ai+1|ai) =
{

p : ai+1 = ai
1
3 (1− p) : ai+1 �= ai

. (18)

This process generates short-range correlations in the sequences of the form
C(r) = c exp (−βr) with β = − log (4p/3− 1/3) and c = 3/4. For this case, the
Gaussian approximation (16) yields

λ =
−2〈s〉

σ2 + 2
3 (1 + μ)2c2/(exp (2β)− 1)

. (19)

This can be compared to an exact analytical result for λ obtained by equat-
ing the largest eigenvalue of a modified λ-dependent transition matrix of the
underlying Markov process to one [16]. As is shown in Fig. 2, the Gaussian ap-
proximation (19) fits well to the exact resuls; deviations for large β vanish for
decreasing β. Notice that the limit β → ∞ corresponds to p → 1/4, describing
the asymptotics of an uncorrelated iid sequence. The deviations of the Gaussian

0.0 1.0 2.0 3.0 4.0
β

0.0

0.5

1.0

1.5

λ

iid asymptotics
exact analytics
Gaussian approx.

Fig. 2. λ for sequences with short-range correlations generated by a Markov process.
The dashed line is the exact result [16] for the Markov process defined in (18), using
μ = 3. The solid line is the corresponding result of the Gaussian approximation, as
derived in Eq. (19). Solving Eq. (6) yields the iid asymptotics λ ≈ 1.374 (dotted line).
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approximation for this regime result from the fact that the third and all higher
cumulants of the distribution (10) vanish, which they do not for the discrete
distribution.

4 Numerical Results

4.1 Generation of Long-Range Correlated Random Sequences

Numerical evaluation of the results obtained in the previous section hinges on the
knowledge of the score distribution pdf(S) for local gapless alignment of pairs
of long-range correlated random sequences. However, the efficient generation of
such sequences is quite intricate. In [10], we have proposed a biologically moti-
vated model of sequence evolution which generates sequences with the desired
statistical features. Furthermore, it has recently been shown [11] that there exists
a much larger class of dynamical processes, so called, expansion-randomization
processes, which allow for the efficient generation of sequences with arbitrary
long-range correlations.

Based on [11], we use a single-site duplication-mutation algorithm to gener-
ate long-range correlated sequences. We start with a sequence of one random
nucleotide a1, and the dynamics of the model is defined by the following update
rules:

1. A random position j of the sequence is chosen.
2. The nucleotide aj is either mutated to a random but different nucleotide

with probability Pmut, or duplicated with probability Pdup = 1− Pmut. The
duplication process inserts a copy of aj at position j + 1, thereby increasing
the sequence length by one.

This process generates sequences of arbitrary length N in a time O[N log (N)]
with asymptotic long-range correlations in their nucleotide composition. The
correlation function of the generated sequences is given in terms of the Euler
beta function B(x, y) by [10]

C(r) =
3
4
αB(r + 1, α). (20)

In the large r limit, this yields C(r) ∝ r−α. By varying the mutation probability
0 < Pmut < 1, the decay exponent α of the long-range correlations can be tuned
to any desired positive value, as it is determined by

α =
8
3

Pmut

1− Pmut
. (21)

Using this model, we are now in the position to efficiently generate large en-
sembles of long-range correlated sequences needed for an accurate measurement
of the tail of the distribution pdf(S). For the alignment, we use the standard
Smith-Waterman dynamic programming algorithm [14] with scoring matrix (3)
and μ = 3.
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Fig. 3. Convergence of the distribution pdf(S) for long-range correlated sequences
with α = 2.0 to a Gumbel form. The solid line is a Gumbel distribution, as specified
in Eq. (5) with N = M = 104 and fitted parameters λ = 0.9614 and K = 0.119. λ
was obtained by fitting a linear function to log[pdf(S)] for 21 < S < 31, K has then
been estimated by fitting the data to (5) in the same interval. In order to be able to
compare the shape of pdf(S) for different N , the distributions have to be rescaled by
a transformation pdf(S) → pdf(S + 2 ln [N/N0]) with reference length N0 = 104.

4.2 The Gumbel Distribution of Alignment Scores

The Gaussian model is based on the assumption that the score distribution
pdf(S) is of Gumbel form for long-range correlated sequences. Consequently,
our first numerical analysis aims at a verification of this conjecture. In Fig. 3,
we show the measured pdf(S) for long-range correlated sequences with α = 2.0,
estimated from ensembles of 107 pairs of random sequence realizations generated
by the above specified algorithm. For large N , the distribution asymptotically
approaches a Gumbel form. As is the case for the iid model, finite-size corrections
come into play for short sequence lengths [20, 27, 28]. These deviations primarily
show up in the small S regime, while the more relevant large S regime converges
fast for increasing N .

Now, that we have verified the shape of the score distribution to be of Gumbel
form, we can test the accuracy of the analytic predictions for λ derived by
the Gaussian approximation. Here we restrict ourselves to the discussion of the
regime α > 1/2, where the Gaussian approximation predicts finite values of λ;
the regime α ≤ 1/2 will be investigated below.

We compare our numerical data to Eq.(16), using correlations of the form (20).
Results are shown in Fig. 4. The Gaussian approximation captures the qualita-
tive behavior of the numerical data. Again, the right side of the plot reveals
the deviations of the Gaussian approximation concerning its iid asymptotics
given by α → ∞. With increasing correlation strength, i.e., smaller values of
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Fig. 4. λ for a null model with long-range correlated sequences in dependence of the
correlation exponent α. The solid line is the analytic result of the Gaussian approxi-
mation, one obtains by estimating Eq. (16) using the correlations (20) of our simulated
sequences. Numerically measured values of λ for different correlation parameters α are
denoted by symbols. For our simulation, we use sequences of length N = 103 and
average over ensembles of 108 pairs of sequences.

α, λ decreases, confirming that long-range correlations systematically raise the
probability of measuring high alignment scores.

So far, our investigations of the alignment score distribution for long-range
correlated sequences have focused on the exponential tail of pdf(S). We now
turn to the second parameter K. For that purpose, we recall that the mean of a
Gumbel distribution (5) is determined by

〈S〉 =
Γ + log (KN2)

λ
, (22)

Table 1. Dependence of 〈S〉 and K on the exponent α. We use simulated sequences of
length N = 103 and average over ensembles of 108 pairs of sequences for each value of
α to obtain numerical values of λ and 〈S〉. The values of K have been calculated using
Eq. (22).

α λ 〈S〉 K

(iid) 1.374 9.71 3.50 × 10−1

4.0 1.240 10.61 2.90 × 10−1

2.0 0.967 12.65 1.15 × 10−1

1.0 0.556 18.07 1.30 × 10−2
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where Γ ≈ 0.5772 is the Euler-Mascheroni constant. Thus, knowing λ, the pa-
rameter K can easily be calculated by measuring the mean 〈S〉 of the score
distribution. As shown in Table 1, K is significantly affected by the presence of
long-range correlations in the sequences to be aligned; it decreases with increas-
ing correlation-strength. However, the mean of the distribution is, as expected,
shifted to larger values of S for decreasing values of α, since K contributes
only logarithmically in Eq. (22) and the change in 〈S〉 is dominated by the
decrease of λ.

4.3 The Score Distribution for α ≤ 1/2

In the regime α > 1/2, the score distribution is of Gumbel form and the Gaussian
approximation suitably fits the numerical values of λ. For values of α ≤ 1/2, the
Gaussian approximation yields λ = 0, which might indicate a transition from
local to global alignment. For simulated sequences of finite length, on the other
hand, one still measures finite values of λ (Fig. 4). The numerical investigation
of this regime is complicated by a distinct finite size effect: according to the
results derived in [11], an individual alignment of two finite sequences will have
a systematic bias of 〈s〉 towards either 〈s〉 = 1, or 〈s〉 = −μ, depending on
whether by chance the two initial random letters a1 and b1 of our sequence
generation algorithm were equal for the two sequences to be aligned, or not.
This effect causes strong deviations of pdf(S) from a Gumbel form for small S.
However, the tail of the distribution is still exponential for finite sequences, and
therefore allows for a measurement of λ. It is dominated by those realizations of
the ensemble, where both sequences started with the same letter since they lead
to systematically higher values of 〈s〉 and therefore also higher scores S.

As can be seen in Fig. 4, λ approaches zero for finite sequences not until the
“infinite” correlation strength limit α→ 0. Further analysis is needed to decide
on whether there actually is a transition to global alignment for a particular
α > 0 in the limit N →∞, or not. If this is the case, then the rate of convergence
for λ→ 0 is at most logarithmically.

However, for practical applications this transition is irrelevant. Finite se-
quences always have a positive λ, also in the regime α ≤ 1/2. For these particular
choices of parameters, λ needs to be measured numerically.

5 Consequences for Alignments of Genomic Sequences

It has been shown that long-range correlations in base composition increase the
probability of measuring high scores for pairwise sequence alignment. In a bi-
ological context, this raises the question whether the effect causes a significant
change of the p-values for DNA alignment? In order to address this issue, we
investigate the deviations of the score distribution for correlation parameters of
genomic magnitude compared to iid sequences. As an example, we consider the
measured correlation function of Human chromosome 22, shown in Fig. 1(b).
Using the simulation algorithm introduced in section 4.1 we can generate long-
range correlated random sequences with the corresponding exponent α ≈ 0.232.
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By randomly mutating 85% of the sites after sequence build up, the correla-
tion amplitude is reduced to the genomic value, while the exponent remains
unchanged [11]. As can be seen in Fig. 1(b), this procedure allows us to generate
random sequences featuring comparable correlations as Human chr. 22.

We perform ungapped, as well as gapped alignment with affine gap costs for
107 pairs of random sequences with length N = 103 from the above specified
ensemble. Alignment parameters are chosen in accordance with the NCBI default
values μ = 3, gap initiation cost γi = 5, and gap extension cost γe = 2 [29].
In Fig. 5 we show the measured score distributions for the simulated chr. 22
sequences compared to iid sequences. The resulting parameters λ and 〈S〉 are
presented in Table 2. It turns out that the difference in the score distributions
between ungapped and gapped alignment is negligible for the parameters used.
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Fig. 5. The score distribution for ungapped and gapped alignment of simulated se-
quences with correlations comparable to those of Human chromosome 22. The straight
lines are the fits to the exponential tails of the score distributions, obtained by fitting
a linear function to log[pdf(S)] in the depicted intervals.

Table 2. Fitted parameters λ and 〈S〉 for the iid ensemble and simulated Human chr.
22 sequences of length N = 103. In the last column, exemplary p-values of a score
S′ = 18 are shown.

ensemble λ 〈S〉 P (S ≥ 18)

iid (ungapped) 1.374 9.714 3.3 × 10−6

sim. chr. 22 (ungapped) 1.191 10.164 2.8 × 10−5

iid (gapped) 1.373 9.714 3.2 × 10−6

sim. chr. 22 (gapped) 1.215 10.163 2.7 × 10−5
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The deviations in λ between the iid ensemble and the simulated Human chr.
22 sequences are approximately 15% in both cases, and the mean of the score
distributions for the correlated sequences is significantly higher. In combination,
both effects substantially change the p-values of high scores compared to the iid
model, as can be seen in Table 2. The p-value of a specific score S′ is thereby
defined by the integral P (S ≥ S′) =

∫∞
S′ pdf(S)dS. For an exemplary score

S′ = 18, this p-value will be increased by almost one order of magnitude if one
incorporates the genomic correlations into the null model.

6 Discussion

Long-range correlations are a widespread statistical feature of eukaryotic DNA.
In this article, it has been shown that incorporation of this feature into the null
model substantially influences the score statistics of sequence alignment. While
the p-values of the scores are systematically increased, the ranking of hits will not
be significantly changed. The effect is therefore relevant whenever one is actually
interested in p-values, e.g., when specifying a cutoff in order to distinguish true
evolutionary relationship from random similarities.

One has to keep in mind that genomic DNA is a highly heterogeneous envi-
ronment: it consists of genes, noncoding regions, repetitive elements etc., and all
of these substructures may imprint their signature on the amount of correlations
found in a particular genomic region. Long-range correlations are by definition
a feature on larger scales. Our findings are therefore naturally applicable to the
alignment of larger genomic regions. This includes the identification of dupli-
cated regions, or conserved syntenic segments between chromosomes of different
species, which often extend over many kilobases up to several megabases. How-
ever, long-range correlations will also influence the statistics of search algorithms
for short DNA motifs if the query sequences are large enough for long-range cor-
relations to be measured.

Moreover, it will be interesting to analyze possible effects of long-range cor-
relations on the statistics of other widely used sequence analysis tools, e.g., the
prediction of transcription factor binding sites. Further investigation is needed
to assess the relevance of long-range correlations for other statistical predictions.
Finally, more accurate null models of DNA sequences utilizing quantitative cor-
relation features will help to reduce the often encountered high false-positive
rate of bioinformatics analysis tools.
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Abstract. For as long as biologists have been computing alignments of
sequences, the question of what values to use for scoring substitutions
and gaps has persisted. While some choices for substitution scores are
now common, largely due to convention, there is no standard for choosing
gap penalties. An objective way to resolve this question is to learn the
appropriate values by solving the Inverse String Alignment Problem:
given examples of correct alignments, find parameter values that make
the examples be optimal-scoring alignments of their strings.

We present a new polynomial-time algorithm for Inverse String Align-
ment that is simple to implement, fast in practice, and for the first time
can learn hundreds of parameters simultaneously. The approach is also
flexible: minor modifications allow us to solve inverse unique alignment
(find parameter values that make the examples be the unique optimal
alignments of their strings), and inverse near-optimal alignment (find pa-
rameter values that make the example alignments be as close to optimal
as possible). Computational results with an implementation for global
alignment show that, for the first time, we can find best-possible values
for all 212 parameters of the standard protein-sequence scoring-model
from hundreds of alignments in a few minutes of computation.

Keywords: Sequence analysis, parametric sequence alignment, substi-
tution score matrices, affine gap penalties, supervised learning, linear
programming, cutting plane algorithms.

1 Introduction

Perhaps the most studied problem in computational biology is the alignment of
biological sequences with substitutions, insertions, and deletions. The standard
formulations of string alignment optimize a sum of scores for each type of op-
eration, often giving a penalty for a run of insertions or deletions, called a gap,
that is linear in the length of the gap. When performing sequence alignment in
practice, the question of what weights and penalties to use inevitably arises. An
interesting attack on this question is parametric sequence alignment, where for a
given pair of strings, the alignment problem is solved for effectively all possible
choices of the scoring parameters, thereby eliminating the need to specify any
weights and penalties. The problem with this approach is that it in effect defers
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the question, since eventually a user must choose one of the solutions, and on
what basis should this be done? Essentially one needs an example of a correct
alignment to discriminate among the welter of parametric solutions. When one
does solve the parametric problem and knows a biologically correct alignment
of the sequences, this alignment is used to decide what region of the parameter
space makes the correct alignment have optimal score.

This optimal parameter choice could be found much more directly, however, by
solving inverse parametric alignment. In this problem, the input is an alignment
of a pair of strings, and the output is a choice of parameters that makes the input
alignment be an optimal-scoring alignment of its strings. We present a simple and
fast algorithm for inverse parametric alignment that for the first time is capable
of determining all substitution weights and gap penalties simultaneously. Such
an algorithm, applied to a collection of benchmark protein-sequence alignments
that are constructed by aligning their three-dimensional structures, could provide
the first rigorous way of determining substitution scores and gap penalties for
characterized classes of proteins.

Related Work. The first algorithms for parametric alignment of two sequences
were discovered in the early 1990’s by Waterman, Eggert and Lander [16] and
Gusfield, Balasubramanian and Naor [7]. These algorithms handled two pa-
rameters, usually the gap open and extension penalties with fixed substitu-
tion scores. Zimmer and Lengauer [17] addressed numerical stability. Gusfield
et al. [7] also bounded the number of regions in the decomposition of the pa-
rameter space, and constructed the decomposition with one optimal alignment
computation per region. Fernández-Baca, Seppäläinen and Slutzki [4] showed
these bounds are asymptotically tight, and initiated the study of parametric
multiple-sequence alignment. Gusfield and Stelling [8] released a software im-
plementation called XPARAL, and were the first to consider inverse parametric
alignment, for which they gave a heuristic that attempted to avoid computing a
decomposition of the entire parameter space. Pachter and Sturmfels [13] explored
the relation of algebraic statistics to parametric sequence alignment.

Recently, Sun, Fernández-Baca and Yu [15] gave the first direct algorithm
for inverse parametric alignment. While they consider three parameters, their
solution effectively fixes one parameter value at zero. For two strings of length n,
their algorithm runs in O(n2 logn) time. Their approach is involved, and does
not appear to have been implemented.

In contrast to prior work, our algorithm for inverse parametric alignment is
simple to implement, does not compute a decomposition of the entire parameter
space, solves both the near-optimal and unique-optimal inverse alignment prob-
lems, handles a set of input alignments, and for the first time can quickly solve
problems with hundreds of free parameters.

Overview. In the next section we give a precise statement of the inverse para-
metric alignment problem and two variations: inverse near-optimal and unique-
optimal alignment. Section 3 reduces all three variations to linear programming.
Section 4 explains how the resulting linear programs, even though they have an
exponential number of inequalities, can be solved in polynomial time. Section 5
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then discusses a version of this approach, called a cutting-plane algorithm, that
is highly effective in practice. Finally Section 6 presents experimental results
with an implementation for inverse optimal and near-optimal global alignment.

2 Inverse Alignment and Its Variations

The standard string alignment problem is: given a pair of strings A and B and a
function f that scores alignments, where f usually has several parameters that
weight substitutions, insertions, deletions, and identities, find an alignment A
of A and B that has optimal score under f . The inverse alignment problem
turns this around: given an alignment A, find values for the parameters of f
that make A be an optimal alignment. (From the view of machine learning, this
learns the parameters for optimal alignment from training examples of correct
alignments.) Of course to find reliable values when f has many parameters may
require several alignments. Formally, we define inverse alignment as follows.

Definition 1 (Inverse Optimal Alignment). The Inverse String Alignment
Problem is the following. The input is a collection of alignments A1, . . . ,Ak of
strings, and an alignment scoring function fw with parameters w = (w1, . . . , wp).
The output is values x = (x1, . . . , xp) for the parameters such that each Ai is
an optimal alignment of its strings under fx.  !
For example, the Ai might be structural global alignments of pairs of protein se-
quences, and f might score alignments using substitution scores σab for all pairs
of amino acids a, b together with a gap-open penalty γ and a gap-extension
penalty λ. In this case, scoring function f has 212 parameters. For another ex-
ample, the Ai might be local alignments of pairs of strings, also scored using
substitutions and gap penalties, or the Ai might even be alignments of align-
ments [11] scored using the weighted sum-of-pairs measure.

Note that Inverse Optimal Alignment may have no solution: it may be that
no choice x for the parameter values makes the Ai all be optimal alignments.
An algorithm for inverse alignment must detect this situation, and report that
no solution exists.

Given that it may be impossible to find parameters that make the alignments
in a collection all be optimal, we might instead seek the next-best thing: pa-
rameters that make the alignments all be near-optimal. When the objective is
to minimize scoring function f , we say an alignment A of a set of strings S is
ε-optimal for some ε ≥ 0 if

f(A) ≤ (1+ε) f(A∗), (1)

where A∗ is an optimal alignment of S under f . Note that when ε = 0, an
ε-optimal alignment is optimal.

Definition 2 (Inverse Near-Optimal Alignment). The Inverse Near-
Optimal Alignment Problem is: given a collection of alignments Ai, scoring
function f , and a real number ε ≥ 0, find parameter values x such that each
alignment Ai is ε-optimal under fx.  !
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For large enough ε, Inverse Near-Optimal Alignment always has a solution. In
practice though we might not know an appropriate value of ε in advance. Nev-
ertheless an algorithm for Inverse Near-Optimal Alignment can be used to ef-
ficiently find the smallest value ε∗ for which there is a solution, to any desired
accuracy ξ > 0. First, by repeated doubling, find an upper bound b on ε∗ by iter-
atively solving Inverse Near-Optimal Alignment with ε = 2i ξ for an i of 1, 2, . . .
until a solution is found. Then, given upper bound b and lower bound a = b/2
on ε∗, perform binary search on the real values in interval [a, b] that are spaced
distance ξ apart. This finds the best possible ε to within accuracy ξ using
O(log(ε/ξ)) calls to an algorithm for Inverse Near-Optimal Alignment. As we
show in Section 6, such an approach is very fast in practice.

Finally, in some applications of inverse alignment we may need to find pa-
rameter values that make a given alignment be the unique optimal alignment
of its strings. (For example, suppose we have alignment software that attempts
to optimize a scoring function; when testing how well the software performs at
recovering a benchmark alignment, the best parameter values to use would be
those that make the benchmark be the unique optimal alignment.) To be the
unique optimal alignment, every other alignment must score worse. We quantify
how much worse as follows. When the objective is to minimize scoring function f ,
we say an alignment A of a set of strings S is δ-unique for some δ > 0 if

f(B) ≥ f(A) + δ,

for every alignment B of S other than A.

Definition 3 (Inverse Unique-Optimal Alignment). The Inverse Unique-
Optimal Alignment Problem is: given a collection of alignments Ai, scoring
function f , and a real number δ > 0, find parameter values x such that each
alignment Ai is a δ-unique alignment of its strings under fx.  !
Note that using the same doubling and binary-search idea described above
to find the smallest ε for Inverse Near-Optimal Alignment, we can find the
largest δ > 0 for which the Ai are all δ-unique, to within accuracy ξ > 0,
using O(log(δ/ξ)) calls to an algorithm for Inverse Unique-Optimal Alignment.

When the alignment scoring function f is linear in its parameters—as is the
case for most forms of alignment used in practice (including the standard formu-
lations of global and local alignment)—all three variations of inverse alignment
can be solved using linear programming, as we show next.

3 Reduction to Linear Programming

For most standard forms of alignment, the alignment scoring function f is a
linear function of its parameters. We make this precise as follows. In general
suppose that f scores an alignment A by measuring p+1 features of A through
functions f0, f1, . . . , fp, and combines these measures into one score through a
weighted sum involving p parameters w1, . . . , wp, by

f(A) := f0(A) + f1(A)w1 + · · · + fp(A)wp. (2)
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Then we say f is linear in parameters w1, . . . wp. (Note that f0 is not weighted
by a parameter.) When we want to indicate the dependence of function f on all
its parameters w = (w1, . . . , wp), we write fw.

For a concrete example, consider standard global alignment of two protein
sequences with linear gap penalties, where a substitution of letter a by b has
similarity value σab, and a gap of length � incurs a penalty of γ + λ�. (A gap in
an alignment is a maximal run of either insertions or deletions; the length of the
gap is the number of letters in the run. Here γ is the gap-open penalty and λ is
the gap-extension penalty.) Suppose we have fixed all the similarity values σab

by choosing one of the standard substitution-score matrices (such as a PAM [2] or
BLOSUM [9] matrix). If the only parameter values we want to find through inverse
alignment are the gap open and extension penalties, we have p = 2 parameters:
γ and λ. For an alignment A, let

• g(A) be the number of gaps in A,
• �(A) be the total length of all gaps in A, and
• s(A) be the total score of all substitutions (including identities) in A.

Then the similarity score of alignment A is

f(A) := s(A) − g(A) γ − �(A)λ. (3)

Here (f0, f1, f2) = (s, g, �) and (w1, w2) = (−γ,−λ) in the notation of (2).
On the other hand, if no parameters are fixed and we want to find values for

all the substitution scores σab and gap penalties simultaneously, then the scoring
function becomes

f(A) :=
(∑

a,b

hab(A)σab

)
− g(A) γ − �(A)λ, (4)

where a and b range over all letters in the alphabet, and the functions hab(A)
count the number of substitutions in A that replace a by b. For the protein
alphabet of 20 amino acids, there are 210 substitution parameters σab. These
plus the two gap parameters gives p = 212 total parameters. Here f0(A) = 0 in
the notation of equation (2).

When the scoring function f is linear in its parameters, we can solve Inverse
Optimal, Near-Optimal, and Unique-Optimal Alignment using linear program-
ming. Recall that the Linear Programming Problem is: given a collection of
variables x = (x1, . . . , xn), a system of linear inequalities in the variables x, and
a linear objective function in the variables x, find an assignment x∗ of real val-
ues to the variables that satisfies all the inequalities and minimizes the objective
function. In matrix notation, given a system of m inequalities in the n variables
whose left-hand sides are specified by an m× n coefficient matrix A and whose
right-hand sides are specified by an m-vector b, together with an n-vector c of
coefficients for the objective function, Linear Programming finds

x∗ := argmin
x≥0

{
cx : Ax ≥ b

}
.

Here x∗ is an optimal solution to the linear program, and any x ≥ 0 that satis-
fies Ax ≥ b is a feasible solution. In general a linear program may be infeasible
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(has no feasible solution), bounded (has an optimal feasible solution), or un-
bounded (has feasible solutions that are arbitrarily good under the objective).

Inverse Optimal Alignment. We can solve Inverse Optimal Alignment for a
linear scoring function in a very natural way by linear programming. The vari-
ables x = (x1, . . . , xp) in the linear program correspond to the scoring-function
parameters w = (w1, . . . , wp). Note that the condition x ≥ 0 for linear programs
is not a restriction. We can scale any linear scoring function by a positive amount
(without changing the relative rank of alignments) so its parameters lie in the
interval [−1, 1]. Then replacing every occurrence of parameter wi by xi−1 yields
variables satisfying x ≥ 0.

We use the following system of inequalities. Let Si be the set of strings that Ai

aligns. For each Ai and every alignment B of Si, we have an inequality

fx(B) ≥ fx(Ai). (5)

These inequalities simply express that Ai is a minimum-score alignment of
strings Si, and hence Ai under parameter values x is an optimal alignment.
(Note that if the objective is to maximize scoring function f , the direction of in-
equality (5) should be reversed. Then negating all the inequalities puts them into
the canonical formAx ≥ b for the linear program.) Written in terms of x1, . . . , xp,
inequality (5) is by equation (2) equivalent to the linear inequality∑

1≤j≤p

(
fj(B)− fj(Ai)

)
xj ≥ (

f0(Ai)− f0(B)
)
. (6)

Note that for any given alignments Ai and B, the quantities fj(B) − fj(Ai) in
inequality (6) are constants that serve as the coefficients of the variables x.

Of course this yields a linear program with a huge number of inequalities.
Suppose Ai aligns two strings of length n. The number of alignments of this pair
of strings [5] is Θ((3+

√
2)n/n1/2) = Ω(4n), which is the number of alignments B.

Every such B generates an inequality in the linear program. So an inverse align-
ment problem with p parameters and k input alignments, each of which aligns
two or more strings of length n or greater, generates a linear program with
Ω(k 4n) inequalities in p variables.

Surprisingly, for many forms of sequence alignment this linear program can
be solved in polynomial time—even though it has an exponential number of
inequalities—due to a deep result that we call the Separation Theorem. In
Section 4 we discuss how this theorem guarantees that we can efficiently solve
this linear programming formulation.

One advantage of this linear programming-based approach is that we may also
specify any linear objective function that we wish for the linear program. While
every feasible solution x ≥ 0 that satisfies the above inequalities Ax ≥ b yields
a choice of parameters that makes the Ai optimal, some choices may be more
biologically desirable. For instance with linear gap penalities, biologists generally
prefer a large gap-open penalty γ and a small gap-extension penalty λ, since real
alignments typically consist of a few long gaps. We are free to use any objective
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function that is linear in x to pick out a feasible solution that is more desirable.
Section 5 discusses some objective functions that are appropriate for standard
global alignment.

Near-Optimal Alignment. To extend this to Inverse Near-Optimal Align-
ment simply involves modifying the inequalities (5). Given ε ≥ 0, we use the
system

(1 + ε) fx(B) ≥ fx(Ai), (7)

which for each Ai again has an inequality for every alignment B of strings Si.
This is a linear inequality as well in the variables x1, . . . , xp. Note that if in-
equality (7) holds for every B, then in particular it holds for B = A∗ where A∗ is
an optimal alignment of Si under fx—and vice versa. So by the definition given
in inequality (1), the system ensures each Ai is ε-optimal.

Unique-Optimal Alignment. To solve Inverse Unique-Optimal Alignment
for a given δ > 0, the system simply has an inequality

fx(B) ≥ fx(Ai) + δ, (8)

for each Ai and every alignment B of Si with B �= Ai, which is again a linear
inequality in x.

We next explain how this linear programming formulation can be solved in
polynomial time for most forms of sequence alignment.

4 Solving the Linear Program

One of the truly far-reaching results in linear programming is what we call
the Separation Theorem. This result was discovered in the early 1980’s by
Grötschel, Lovász and Schrijver [6], Padberg and Rao [14], and Karp and Pa-
padimitriou [10]. To explain it requires a few concepts. Linear programming
optimizes a linear function of real variables over a domain given by linear in-
equalities. Geometrically this domain, which is an intersection of half-spaces, is a
convex body called a polyhedron. If the inequalities have rational coefficients, the
polyhedron is rational. A polyhedron that contains no infinite rays is bounded.

The optimization problem for a rational polyhedron P ⊆ Rd is: Given ratio-
nal coefficients c that specify the objective function, find a point x ∈ P that
minimizes cx, or determine that P is empty. The separation problem for P is:
Given a point y ∈ Rd, either (1) find rational coefficients w and b that specify
an inequality such that wx ≤ b for all x ∈ P , but wy > b; or (2) determine
that y ∈ P . In other words, a separation algorithm that solves the separation
problem for polyhedron P determines whether point y lies inside P , and if it
lies outside, finds an inequality that is satisfied by all points in P but is violated
by y. Such a violated inequality gives a hyperplane that separates y from P .

The Separation Theorem says that, remarkably, optimization and separation
are equivalent: an efficient separation algorithm for a linear program yields an
efficient algorithm for solving that linear program, and vice versa.
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Theorem 1 (Equivalence of Separation and Optimization [6, 14, 10]).
The optimization problem on a bounded rational polyhedron can be solved in
polynomial time if and only if the separation problem can be solved in polyno-
mial time.  !

The precise definition of polynomial time in the above is rather technical, but
essentially means polynomial in the number n of variables in the system of
inequalities describing the polyhedron (really, polynomial in its dimension and
the number of digits in the rational coefficients). The import is that a linear
program that is implicitly described by a list L of 2Ω(n) inequalities can be
solved in nO(1) time if, for any candidate solution y, one can in nO(1) time
determine that y satisfies all the inequalities in L, or if it does not, report an
inequality in L that y violates. Of course a separation algorithm that simply
scans list L and tests each inequality will not achieve this time bound.

The proof of Theorem 1 exploits properties of the ellipsoid algorithm for linear
programming. As a consequence, the polynomials bounding the running times
have high degree, so the theorem does not directly yield algorithms for quickly
solving exponentially-large linear programs in practice. Its main use is in proving
that a polynomial-time algorithm exists.

To solve a linear program in practice using a separation algorithm, the fol-
lowing iterative approach is usually taken.

(1) Start with a small subset S of the inequalities in L.
(2) Compute an optimal solution x to the linear program given by subset S.
(3) Call the separation algorithm for L on x. If the algorithm reports that x

satisfies L, output x and halt: x is an optimal solution for L.
(4) Otherwise, add the violated inequality returned by the separation algo-

rithm to S, and loop back to Step (2).

This kind of approach is known as a cutting-plane algorithm. Such algo-
rithms often find optimal solutions very quickly in practice, even if they are not
guaranteed to run in polynomial time. In Section 6 we show that the result-
ing cutting-plane algorithm for global alignment is indeed fast, solving instances
with hundreds of parameters and alignments in a few minutes of computation.

In the remainder of this section we show that a polynomial-time alignment
algorithm (in other words, an algorithm that computes an optimal alignment
given fixed values for the parameters) yields a polynomial-time separation
algorithm for our linear programming formulations of inverse alignment.
Combined with Theorem 1, this proves our main result.

Theorem 2 (Complexity of Inverse Alignment). Inverse Optimal and
Near-Optimal Alignment can be solved in polynomial time for any form of
alignment in which: (1) the alignment scoring-function is linear in its param-
eters, (2) the parameters values can be bounded, and (3) for any fixed parameter
choice, an optimal alignment can be found in polynomial time. Inverse Unique-
Optimal Alignment can be solved in polynomial time if in addition, for any fixed
parameter choice, a next-best alignment can be found in polynomial time.  !
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Optimal and Near-Optimal Alignment. We now give separation algo-
rithms for each variation of inverse alignment. Recall that given an assignment
of values x for the scoring-function parameters, a separation algorithm decides
whether x satisfies all the inequalities in the linear program, and if it does not,
identifies a violated inequality.

For inverse optimal alignment, the linear program consists of inequalities (5)
for each input alignment Ai. Conceptually we have a different separation algo-
rithm for the inequalities associated with each Ai. To separate all inequalities,
run the separation algorithms for A1, . . . ,Ak consecutively. As soon as one al-
gorithm finds a violated inequality, we halt and return the inequality. If no
algorithm finds a violated inequality, we report x satisfies the linear program.

To separate the system of inequalities associated with a particular Ai, simply
compute an optimal alignment B∗ under scoring function fx over the strings Si

that Ai aligns. If fx(B∗) ≥ fx(Ai), then by transitivity inequality (5) holds for
all B, so x satisfies this system. On the other hand if fx(B∗) < fx(Ai), this gives
a violated inequality to report.

For inverse near-optimal alignment, we use an identical approach on inequal-
ities (7). Note that this runs in O(kt) time, where t is the time to compute an
optimal alignment and k is the number of input alignments. So if t is polynomial,
this separation algorithm runs in polynomial time.

Unique-Optimal Alignment. For inverse unique-optimal alignment, to sep-
arate the system of inequalities (8) associated with Ai, we again compute an
optimal alignment B∗ of Si under fx. If B∗ �= Ai, then fx(B∗) ≥ fx(Ai) + δ
is a violated inequality. If B∗ = Ai, compute a next-best alignment C∗ of Si. If
fx(C∗) ≥ fx(Ai) + δ, then by transitivity x satisfies the system; otherwise, this
gives a violated inequality. Note that this runs in polynomial time if a next-best
alignment can be computed in polynomial time (which is the case for standard
string alignment [3]).

In the next section we use Theorem 2 to show that for global alignment, all
variations of inverse alignment can be solved in polynomial time. The key point
is showing how to bound the values of alignment parameters.

5 Application to Global Alignment

To obtain a cutting-plane algorithm for a particular form of alignment, such as
global or local alignment of two strings, several details must be worked out to
apply the general approach of Section 4. These include how to find an initial
subset of the inequalities that yields a bounded linear program, and how to
choose an appropriate objective function. Here we discuss these in the context
of global alignment, but similar ideas apply to local alignment as well.

We use the definition of standard global alignment given at the beginning
of Section 3, in which matches between pairs of letters are weighted by arbi-
trary substitution scores, and gaps are penalized using gap open and extension
penalties. For inverse global alignment we separately consider two forms of the
scoring function: when substitution scores are varying as given by equation (4),
and when they are fixed as given by equation (3).
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Initializing the Cutting-Plane Algorithm. Typically cutting-plane algo-
rithms take as their initial set of inequalities just the trivial inequalities x ≥ 0
of the linear program. For objective functions of biological interest, however, this
trivial linear program is unbounded in the direction of the objective function. Con-
sequently with this choice the first iteration of the cutting-plane algorithm would
fail, as the first call to the linear programming solver to find an initial candidate
solution x would report that the problem is unbounded, and return no solution.

When the substitution costs and gap penalties are all varying, we can set
absolute upper and lower limits on the values of the parameters, and solve the
linear program within the resulting bounding box as follows. By scaling the linear
scoring-function by a positive factor (which does not change the relative rank
of alignments), we can always make the largest parameter value hit 1. Then all
parameters lie in the bounding box 0 ≤ x ≤ 1, which we take as the initial set
of inequalities for the cutting-plane algorithm.

When substitution costs are fixed, however, the bounding-box approach does
not work (as the linear program may be unbounded). Instead we take the fol-
lowing approach. The linear programming problem is now a two-dimensional
problem in the (γ, λ)-plane, where we associate γ with the vertical axis and λ
with the horizontal axis. We say inequality I is a bounding inequality if the lin-
ear program consisting of I and the trivial inequalities (γ, λ) ≥ 0 is bounded. In
general, the linear program is bounded if and only if there exists (1) a bounding
inequality, or (2) two inequalities where one is a downward halfspace, the other
is an upward halfspace, and the slope of the downward inequality is less than
the slope of the upward inequality. Furthermore, if they exist, these inequalities
together with the trivial inequalities yield an initial set for the cutting-plane
algorithm of at most four inequalities that give a bounded linear program.

We can find this set if it exists by identifying a downward inequality D of
minimum slope and an upward inequality U of maximum slope. If D or U is a
bounding inequality, or D’s slope is less than U ’s, the linear program is bounded,
and if not it is unbounded. For near-optimal inverse alignment, the general form
of an inequality is γ Δg + λΔ� ≤ −Δs, where Δg := g(A)− (1+ε) g(B) for
input alignment A, and similarly for Δ� and Δs. This inequality is downward
if Δg > 0, upward if Δg < 0, and its slope is −Δ�

Δg . Thus for fixed A and ε,
the direction and slope of an inequality is strictly a function of g(B) and �(B).
For the two strings A aligns, functions g and � range over a linear number
of integer values, so the problem of finding a downward or upward inequality
of optimal slope is certainly solvable. With further analysis, one can find the
optimal inequalities in O(1) time. Due to page limits we omit the details.

Choosing an Objective Function. As mentioned in Section 3, we are free
to use any objective function we wish for the linear program, and we can exploit
this freedom to pick a feasible solution that is biologically more desirable.

With fixed substitution scores, the parameters are γ and λ. Biologists gen-
erally prefer large γ and small λ, as in this regime optimal alignments tend to
consist of a few long gaps, which is observed in biologically correct alignments.
So one possibility for an objective is the linear combination max{γ − λ}.
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With varying substitution scores, the parameters are γ, λ, and all σab. When
the alignment problem seeks to minimize the alignment scoring function, so
the σab are treated as costs, we might want to maximize the separation between
true substitution costs σab (where a �= b) and identity costs σaa. Then one
possibility for the objective is to maximize the difference between the minimum
true substitution cost and the maximum identity cost (so they are as far apart as
possible). We can express this in our linear programming formulation by adding
two new variables: s, which will equal the minimum true substitution cost, and i,
which will equal the maximum identity cost. Using the objective max{s−i}, and
adding the inequalities s ≤ σab for all a �= b, and i ≥ σaa for all a, will achieve
this goal. (Another possibility is to maximize the difference between the average
true substitution cost and the average identity cost, which is also an objective
that is linear in the parameters.) This objective on substitution scores can be
combined with our objective on gap penalties by max{s− i+ γ − λ}.

Finally, note that for every objective, we can select two extreme solutions:
xlarge, which is the optimal solution under the objective, and xsmall, which is the
optimal solution in the direction opposite to the objective. Since the domain of
feasible solutions for a linear program is convex, any convex combination of these
two extremes, xα := (1−α)xlarge + αxsmall, where 0 ≤ α ≤ 1, is also a feasible
solution. For example, x1/2 may tend to be a more central parameter choice that
generalizes to alignments outside the training set of input alignments Ai (which
is borne out by our experiments of the next section).

6 Computational Results

We now present results from computational experiments on biological data with
an implementation of our algorithms for inverse optimal and near-optimal global
alignment. The implementation solves the problem both with fixed substitution
scores (where p = 2 gap-penalty parameters are found), and with varying substi-
tution scores (where for protein sequences all p = 212 parameters of the scoring
function are simultaneously found). To solve linear programs we use the GNU
Linear Programming Kit. For the linear programs we use the objective func-
tion max{s − i + γ − λ}, where s and i are the minimum substitution and
maximum identity costs, as described in Section 5. To find violated inequalities
quickly, we maintain a queue Q of alignments Ai that generated a violated in-
equality the last time their separation algorithm was called. To find the next
violated inequality, we remove an Ai from the front of Q, call its separation
algorithm, and add it to the rear of Q if it generates another violated inequality.
Figure 1 illustrates solving an instance with this implementation.

We ran several types of experiments on biological data. For the experiments,
we chose six multiple sequence alignments from the PALI database [1] of struc-
tural protein alignments. (For each protein family in the SCOP protein clas-
sification database [12], PALI contains a multiple sequence alignment of the
family based on aligning protein structures.) Table 1 describes the PALI fam-
ilies we chose, which are: T-boxes (box), NADH oxidoreductases (nad), Kunitz
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Fig. 1. Finding gap penalties by the cutting-plane algorithm. Labeled points are suc-
cessive solutions for inverse near-optimal global alignment using PAM250 substitution
scores on the pec dataset at the best possible ε = 0.06 (see Tables 1 and 2). Solutions
found when maximizing the linear program objective γ−λ are large points; those found
when minimizing this objective are small points. The optimal solutions for maximiza-
tion and minimization are the two final points. Successive violated inequalities are also
plotted, along with their half-space direction of up or down. Numbers labeling points
give the order in which solutions were computed. The solid line-segment between the
final large and small points is the blend line between these extremes.

inhibitors (kun), Sir2 transcription regulators (sir), apolipoproteins (apo), and
pectin methylesterases (pec). Each family was reduced to 20 members by remov-
ing outlier sequences. For the training and testing experiments described next,
these 20 members were partitioned into two groups of 10 members each, called
the training set and the test set.

To investigate whether it is possible to learn scoring parameters from a train-
ing set of pairwise alignments that will apply to other alignments, we ran the
following experiment. For each dataset with varying substitution scores, we found
the smallest ε for the training set such that each induced pairwise alignment on
the training set is ε-optimal; we call this smallest value εtrain. We also computed
the same quantity for the test set, called εtest. Then for each training set, we
computed two extreme choices of parameters at εtrain, xlarge and xsmall, which
are the parameter choices that respectively maximized and minimized the linear
programming objective. We then searched for the convex combination between
these two extremes that yielded a parameter choice for the test set with the small-
est ε. For a given 0 ≤ α ≤ 1, the convex combination is αxlarge + (1−α)xsmall.
The α that gave the smallest ε for the test set is called αblend, and its corre-
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sponding ε is called εblend. These values are shown for the six datasets in Table 1.
The table also gives the value of ε for the convex combinations α ∈ {0, 1

2 , 1}.
Notice that ε1/2 is surprisingly close to εblend, which is within roughly one per-
cent of εtest. This indicates that the best blend from the training set was nearly
a best possible parameter choice for the test set. Notice also on this data the
central parameter α = 1/2 always yields a smaller ε than the extremes α = 0, 1,
indicating that central parameters generalize better.

To get a feel for how much closer to optimal we could make the induced
pairwise alignments in a dataset by varying the substitution scores versus using
a standard substitution matrix, we performed the following experiment. For all
20 members of each of the PALI datasets, we computed the minimum ε for the
set of all 190 induced pairwise alignments, with varying substitution scores and
the fixed PAM [2] and BLOSUM [9] substitution scores shown in Table 2. As might

Table 1. Generalizing from training to test sets. For each multiple sequence align-
ment dataset listed below, best possible parameters computed on a training subset are
applied to a disjoint test subset. For each dataset the table lists the PALI accession
number, the average sequence length, and the average percent-identity over all induced
pairwise alignments. The meaning of the closeness entries is given in the text; values
for ε are reported as percentages. All substitution scores and gap penalties are free
parameters in these experiments.

Dataset PALI Sequence Percent Closeness ε
number length identity εtrain εtest εblend αblend ε0 ε1/2 ε1

box 333 183 14.3 1.7 1.2 1.5 0.47 1.7 1.5 2.6
nad 419 151 16.1 2.8 2.8 3.1 0.37 3.7 3.1 4.7
kun 409 172 15.0 3.9 3.7 4.2 0.49 4.4 4.2 4.8
sir 633 197 16.8 3.1 2.2 3.0 0.55 4.3 3.0 4.4
apo 99 143 17.8 1.9 1.7 3.2 0.22 3.6 3.4 4.6
pec 483 299 17.0 1.2 2.0 3.1 0.65 4.4 3.1 4.4

Table 2. Closeness to optimality for fixed and varying substitution scores. For each
PALI dataset and for fixed or varying substitution scores, the smallest ε such that all
induced pairwise alignments are ε-optimal is reported as a percentage.

Dataset Closeness ε
varying fixed

PAM250 PAM120 BLO45 BLO80

box 2 5 9 8 9
nad 4 9 15 12 18
kun 5 8 11 9 12
sir 4 11 16 12 16
apo 3 21 45 34 58
pec 3 6 9 8 11
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be expected, the minimum ε when substitution scores are free parameters is
smaller than the minimum ε for a fixed substitution matrix. Notice that on these
datasets PAM250 gave the smallest ε of the four matrices considered. On the other
hand, the optimal substitution matrix found when substitution scores were free
parameters has roughly at most half the ε for PAM250, and is sometimes much
better. Notice also that with varying substitution scores, one can consistently
come very close to optimal on every dataset.

Finally, Table 3 gives running times and number of violated inequalities
for the cutting-plane algorithm on the experiments of Table 2. Running times
are wall-clock times in seconds to solve Inverse Near-Optimal Alignment for a
given ε during the binary search for the smallest ε. Each binary search con-
cluded in at most 8 iterations. Every iteration, while considering an input of
190 alignments, finished in roughly under a minute for fixed substitution scores,
and under roughly 4 minutes for varying substitution scores while finding val-
ues for 212 parameters. Experiments were on a 3 GHz Pentium 4 with 1 GB
of RAM.

Table 3. Running time and number of violated inequalities. For each PALI dataset,
times and number of inequalities are reported for computing the ε of Table 2. Columns
report the median and extreme values across the binary search iterations.

Dataset Time (sec) Violated inequalities
fixed varying fixed varying

med max med max min med max min med max

box 24 25 5 123 4 11 23 5 32 972
nad 17 18 7 46 3 12 21 5 118 590
kun 23 30 11 83 2 13 22 7 176 681
sir 29 31 13 96 2 11 20 5 196 832
apo 16 16 14 264 6 17 22 13 236 1398
pec 63 65 23 226 2 10 20 3 238 1087

7 Conclusion

We have presented a new approach to inverse parametric sequence alignment.
The approach is actually quite general, and solves inverse parametric opti-
mization in polynomial time for any optimization problem (not just sequence
alignment) whose objective function is linear in its parameters, whose param-
eters can be bounded, and that can be solved in polynomial time when all
parameters are fixed. Experiments on structural alignments from a protein fam-
ily database show we can find all 212 parameters of the standard protein-
sequence scoring-model from hundreds of pairwise alignments in a few minutes of
computation.

Many lines of investigation remain open. Can parameter values be learned
from both positive and negative examples? Can our algorithm aid the eval-
uation of alignment software by testing programs at parameter settings that
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make benchmark alignments score as close to optimal as possible? Can cut-
ting planes be efficiently found for inverse alignment that are facet-defining
inequalities?
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Abstract. The complexity of higher biological organisms is astounding,
but the source of this complexity is far from obvious. With the emer-
gence of epigenetics, the assumed main source of complexity has been
shifted from the genome to pre- and post-translational modifications in
proteins. There are estimated 100,000 different protein sequences in the
human organism, and perhaps 10-100 times as many different protein
forms. Analysis of the human proteome is a much more challenging task
than that of the human genome. The challenge is to provide sufficient
amount of information in experimental datasets to match the underlying
complexity.

Mass spectrometry (MS) is one of the most informative techniques,
widely used today for protein characterization. MS is the fastest growing
spectroscopy area, which in 2005 has overtaken NMR as the prime re-
search field. After a major revolution in the late 1980s (awarded by the
Nobel prize in Chemistry in 2002), MS has continued to develop rapidly,
showing amazing ability for innovation. Today, several different types of
mass analyzers are competing with each other for the future. This diver-
sity means that the field of MS, although a century old, is still in the
fast evolving phase and is far from saturation.

Despite the rapid progress, today’s MS tools are still largely insuffi-
cient. Mathematical models of the MS-based proteomics analysis as well
as experimental assessments showed large disproportions between the
information content of the experimental MS datasets and the underly-
ing sample complexity. One of the most desired improvements would be
the higher quality of ion fragmentation in tandem mass spectrometry
(MS/MS). The latter parameter boils down to the ability to specifi-
cally fragment each of the chemical bonds (C-C, C-N and N-C) linking
amino acid residues in a polypeptide sequence. This formidable physico-
chemical challenge is met by recently emerged techniques involving ion-
electron reactions.

Characterization of primary polypeptide sequences of unmodified
amino acids is a basic task in proteomics. Recent large-scale evaluation
has shown that de novo sequencing by conventional MS/MS is insuf-
ficiently reliable. Fortunately, novel fragmentation techniques improved
the situation and allowed the first proteomics-grade de novo sequencing
routine to be developed.

Another group of challenges relates to the ability to extract maxi-
mum information from MS/MS data. The database search technologies
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developed in the late 1990s are still the backbone of routine proteomics
analyses, but they are rapidly becoming insufficient. Typically, only 5 to
15% of all MS/MS data produce “hits” in the database, with the bulk of
the data being discarded. Research in that issue has led to the emergence
of a quality factor for MS/MS data (S-score). S-score analysis has shown
that only half of the data are discarded for a good reason, while another
half could be utilized by improved algorithms. Such algorithms specially
designed to deal with any mutation or modification have recently uncov-
ered hundreds of new types of modifications in the human proteome. High
mass accuracy reveals the elemental compositions of these modifications,
and MS/MS determines their positions. The potential of such algorithms
for unearthing the vast and previously invisible world of modifications
and thus tackling proteome’s enormous complexity will be discussed.
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Abstract. In phylogenetic foot-printing, putative regulatory elements
are found in upstream regions of orthologous genes by searching for
common motifs. Motifs in different upstream sequences are subject to
mutations along the edges of the corresponding phylogenetic tree, con-
sequently taking advantage of the tree in the motif search is an ap-
pealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs
sampler based on a general tree that uses unaligned sequences. Previous
tree-based Gibbs samplers have assumed a star-shaped tree or partially
aligned upstream regions. We give a probabilistic model describing up-
stream sequences with regulatory elements and build a Gibbs sampler
with respect to this model. We apply the collapsing technique to elim-
inate the need to sample nuisance parameters, and give a derivation of
the predictive update formula. The use of the tree achieves a substantial
increase in nucleotide level correlation coefficient both for synthetic data
and 37 bacterial lexA genes.

An important part of the regulation of genes in the cell is played by transcription
factors, that selectively bind DNA and affect the expression of a specific subset
of genes. The binding sites are typically situated upstream of the regulated gene
and are often degenerated, which makes identifying them difficult.

Phylogenetic foot-printing is one of the main approaches to in silico detec-
tion of regulatory elements in DNA. It uses orthologous genes of a gene family.
The homology, i.e., the common origin, makes it likely that regulatory elements
belonging to the upstream region of the common ancestor of the gene family
can also be found in the upstream regions of the extant orthologs. In princi-
ple, whereas the regulatory elements (REs) are functional and should be con-
served during evolution, the parts of an upstream region not containing REs
are non-functional and should be less conserved; the difference in conservation
being dependent on the time and rate of evolution. It is important to notice
that conserved means having been affected by fewer mutations, i.e., nucleotides
substitutions. In phylogenetic foot-printing, evaluation of motif candidates is an
attempt to test the hypothesis that the candidate is a real motif that has evolved
from an ancestral RE, by measuring the number of mutations that have occurred
under this hypothesis.
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There are a number of methods for finding motifs in DNA-sequences
[1,2,3,4,5,6,7,8,9,10,11], deterministic as well as probabilistic. One commonly
used and successful probabilistic method is the Gibbs Motif sampler (GMS)
[1,2]. In the design of several phylogenetic footprinting methods, attempts have
been made to take advantage of the phylogenetic tree for the gene family
[7,8,9,10,11]. Using the tree S for the gene family, it is far easier to accurately
measure the number of mutations that have occurred during the evolution of the
genes. Consider the following example; exactly half the nucleotides of a column
c of a motif are A and exactly half are T . If there is an edge of S that separates
the genes associated with motifs having A in column c and those associated with
motifs having T in column c, then the discrepancy can be explained with a single
mutation.

Motivated by the realization that conservation is best measured given the
phylogenetic tree for the orthologs, Blanchette and coworkers pioneered the area
with a deterministic phylogenetic foot-printing algorithm based on the phyloge-
netic parsimony score [7,8]. Their algorithm is rather time inefficient and can
only be used for short motifs with low parsimony score. It also seems fairly com-
mon that some positions in a motif are relatively unconstrained or that some
are constrained but to any of two specific nucleotides (say purines), toggling
between the two, [12]. In both these cases, the parsimony score is high. The
GMS, however, can model a few columns by fairly uniform distributions on all
four nucleotides or some columns with a fairly uniform distribution on just two
specific nucleotides, thereby managing these two problems.

There are also probabilistic algorithms designed to take advantage of the tree
[9,10,11]. Some algorithms [9,11], use standard models for sequence evolution.
This requires that the upstream regions can be at least partially aligned, which
is realistic only for organisms that are very closely related. The model in [11]
also uses the same substitution matrices and rate of evolution for all positions
in the motifs and background, except for a fixed multiplicative factor used to
decrease the motif rate. This deviates from reality since the rate of evolution in
motifs shows position-specific variation [13]. It is also commonly believed that
the substitution matrices varies between motif positions.

We have designed a tree-based Gibbs sampler that, given upstream regions
of orthologous genes and their phylogenetic tree, i.e., the corresponding species
tree, finds regulatory motifs in those upstream regions. Each upstream region
is associated with a leaf of the phylogenetic tree. The Motif Yggdrasil sampler
(MY sampler) can handle any tree, as long as it is the true tree for the family,
and does not require edge (a.k.a. branch) lengths or rates of evolution, both of
which are often uncertain. Since the GMS represents well tested and functional
technology, a key aspect in the design of the MY sampler was to make it as similar
as possible to the GMS, e.g. to allow toggling, but to obtain higher sensitivity
and specificity by utilizing the phylogenetic tree. Since our model is tree-based
and share similarities with mixture models, we call it a tree mixture model.

A Gibbs sampler is based on a probabilistic model. The better the model
describes the reality, the more likely the sampler is to generate the correct output.
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Fig. 1. (a) To the left upstream sequences with embedded motif instances (red) and
to the right the motif alignment. (b) A tree and a motif alignment generated from it.

A good intuitive way of thinking of the models relevant to motif finding is as
follows. First are a k×w motif alignment matrix M and k background sequences
b1, . . . , bk generated. Thereafter, for each 1 ≤ i ≤ k, the i:th row of M is inserted
in bi giving rise to the i:th upstream region si. A partition of any sequence into a
background and a motif part is then possible. The motif parts can be extracted to
form a motif alignment, as is illustrated in Fig. 1a. The problem of motif finding is
to, given s1, . . . , sk, recover the partition into a motif alignment and background.
Motif loss and multiple motifs can be handled similar to BioProspector [14].

In the model underlying the GMS, each column of the motif is generated by
a single distribution, where all positions of the column are treated in the same
way. In our probabilistic model, each column of the motif is generated from a
mutation on a single edge e of the phylogenetic tree S of the gene family (on
each side of the edge, i.e., in each of the subtrees of S \ e, the positions, of the
motif column, associated with the leaves are generated by a single distribution,
the very same type of distribution used to generate the entire column in the
model underlying the GMS). The mutation in the motif can, for instance, model
a mutation in the associated transcription factor, that changed the preferential
binding in this motif position, or model a change in affinity, hence altering the
expression profile of the gene, with no changes in the transcription factor.

The choice of mutation edge for one column is independent of that of any
other column, i.e., the mutation edge is likely to vary across the columns of the
motif alignment. Also, among the possible choices of an edge is the empty edge,
which corresponds to using one distribution for the entire column, equivalent to
the model underlying the GMS.

Among the data, the start positions of the motifs and the edges used to
generate the motifs are considered hidden data. We look for the motifs but
not the edges. The edges are nuisance parameters and we use the collapsing
technique [15] to avoid sampling them. The MY sampler proceeds by stepwise
sampling a new motif start position in a randomly chosen upstream sequence.

We have chosen to compare our tree-based sampler to the GMS, as opposed to
other motif finding methods, for mainly three reasons. Firstly, comparing motif
finding algorithms is difficult. Actually, how such comparisons are done best is
an interesting problem which is actively researched [16,17,18]. In our case the
comparison is simplified by the similarity of the compared methods. Secondly,
our main interest is the probabilistic model, and whether the incorporation of
the phylogenetic tree improves the discriminatory power of the motif search.
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Thirdly, the GMS is a commonly used and well-respected motif finding method,
resting on a solid statistical foundation.

1 Method

The Motif Yggdrasil Sampler. MCMC is a technique that facilitates esti-
mation of the stationary distribution of a Markov chain. It provides a uniform
framework to design transition probabilities of a Markov chain so that a sought
stationary probability distribution is obtained, which in Bayesian inference appli-
cations is the posterior distribution, (for details we refer to [19,20]). A random
walk is performed in the Markov chain according to the transition probabili-
ties. As in the GMS, we seek, as opposed to the posterior distribution, merely
the state with maximum posterior probability. This state also has maximum
likelihood. Notice that the probabilistic models, w.r.t. which these probabilities
are defined, differs for the MY sampler and the GMS. In a Gibbs sampler, a
state in the Markov chain is a vector and in a state transition only one com-
ponent of the vector is changed. In a state vector (m1, . . . ,mk), the component
mi is a start position of a candidate motif instance in the i:th input string,
which given the motif width uniquely determines the motif candidate. In each
iteration of the MY sampler, a new state is chosen by altering one uniformly
selected component, based on the so called predictive update formula. Below
we derive an efficient algorithm for computing the predictive update formula
for the MY model. Notice that the Gibbs sampling framework together with
the capacity to compute the predictive update formula gives our MY sampling
algorithm.

The Motif Yggdrasil Model. Below the generative probabilistic Motif Yg-
gdrasil model (MY model) used in the Motif Yggdrasil sampler is introduced
formally. The intuition behind the model has been described in the introduc-
tion. We begin with an example. Fig. 1b shows an example of a motif alignment
that could have been obtained from the tree shown in the figure. In the figure,
each distribution used, has probability 1 to generate one nucleotide and zero
to generate the other nucleotides, which is not true in general. The edges used
to generate the positions are e, f, g, h, and i, in order. The edge i represents
the empty edge. The edges adjacent to the root, h, is counted only once in our
model.

Definitions. Let N = {A,C,G, T}, denote the alphabet of nucleotides. By
Bernoulli-DNA with parameters θ = (θA, θC , θG, θT ), where

∑
n∈N θn = 1, we

mean a string or vector where a position is assigned the nucleotide n ∈ N with
probability θn. The Dirichlet distribution is a conjugate prior for Bernoulli-DNA
distributions. A tree S has vertex set V (S), edge set E(S), and leaf set L(S).
We extend the edge set of each tree S so that it includes a new edge, called
the empty edge, denoted ε, such that S \ ε contains one connected component
only. Each tree considered will have leaves [k], for some integer k. For a tree S
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and an edge e �= ε of S, the forest S \ e consists of two trees; the one contain-
ing the leaf 1 is called the first component and denoted C1(S \ e), analogously,
the other tree is called the second component and denoted C2(S \ e), (e.g., in
Fig. 1b the two bottom leaves belong to the same component when edge h is
removed).

For given k, n1, . . . , nk, w, and a given tree S with L(S) = [k], the MY
model generates: k sequences s1, . . . , sk where si ∈ Nni , w edges e1, . . . , ew of
E(S) ∪ {ε}, k start positions m1, . . . ,mk where 1 ≤ mi ≤ ni −w + 1. The start
position mi is chosen uniformly from 1 ≤ mi ≤ ni−w+1. The edge ei is chosen
uniformly from E(S) ∪ {ε}, where ε is the empty edge. For a sequence si, the
positions mi, . . . ,mi + w − 1 are referred to as a motif instance. The positions
m1 + l − 1, . . . ,mk + l − 1 are referred to as the lth column of the motif. The
positions that do not belong to the motif are referred to as background.

For each i ∈ [k], the background of si is multinomial-DNA distributed with
nucleotide probabilities drawn from a Dirichlet distribution with parameters
βi

A, . . . , β
i
T , for more information on Dirichlet distributions see, for instance, [21].

It is, however, possible to use a simplified variation where the entire back-
ground is described by a single multinomial-DNA distribution. The motif po-
sitions are drawn from 2w different Bernoulli-DNA distributions; the positions
of the l:th motif column that belong to the same component of S \ el constitute
one Bernoulli-DNA. That is, if i1, . . . , ir ∈ [k] are the positions that belong to
the first component of S \ el, then si1

mi+l−1, . . . , s
ir

mi+l−1 is one Bernoulli-DNA
with nucleotide probabilities θl,1

A , . . . , θl,1
T , drawn from a Dirichlet distribution

with parameters αl,1
A , . . . , αl,1

T . Analogously, if ir+1, . . . , ik ∈ [k] are the positions
that belong to the second component of S \ el, then s

ir+1
mi+l−1, . . . , s

ik

mi+l−1 is one
Bernoulli-DNA with nucleotide probabilities θl,2

A , . . . , θl,2
T drawn from a Dirichlet

distribution with parameters αl,2
A , . . . , αl,2

T . The hyper-parameters of our model
are, for each l ∈ [w], βi

A, . . . , β
i
T and, for each l ∈ [w] and j ∈ [2], αl,j

A , . . . , αl,j
T .

The MY model uses Bernoulli-DNA for each motif column because, compared
to a multinomial-DNA, this promotes conserved motif columns. This is also
what the GMS does. We use multinomial-DNA for the background, since there
is no reason to promote conserved background. The reason why we do not use a
distribution defined relative to the tree also for the background, is that we want
the algorithm to be applicable to distantly related gene sequences.

The Predictive Update Formula. Below we describe the predictive update
formula, for details see the Appendix. We will use mi for the entire motif part of
si and bi for its background part, and not as previously merely the start position.
The order is the natural one, although, this is not important, since nucleotide
counts give a sufficient statistic. For notational convenience, we describe the
predictive update formula for mk, rather than for a general mi. The following
expression for the predictive update formula follows from the independence of
background and motif

Pr[mk, bk|m−k, b−k] = Pr[mk|m−k]Pr[bk] (1)
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where m−k = {mi : i �= k} and b−k = {bj : j �= k}. The expression (1) can be
efficiently computed by breaking it down into efficiently computable parts. The
motif part of (1) is, (for a complete derivation see the Appendix),

Pr[mk|m−k] =
∏

l∈[w]

∑
e∈E′(S)

∏
j∈[2]

∏
i∈(Cj(S\e)∩[k])

∫
θ

Pr[mi
l|θ]Pr[θ|αl,j ] dθ . (2)

The integral in (2) equals

Γ
(∑

t∈N αt

)∏
t∈N Γ

(
αk

t + ct
)∏

t∈N Γ (αt)Γ
(∑

t∈N αk
t + ct

) (3)

where ct is the count of nucleotide t in subtree Cj(S \ e) ∩ [k] and αt is the
pseudocount for nucleotide t from parameter vector αl,j . For the background
part, a similar expression can be derived. These formulas can be calculated fast
using an approximation [15] or by using a pre-computed look-up table.

Implementation. The MY sampler iteratively chooses a state in (m1, . . . ,mk),
where mi is the start position of the motif candidate in the i:th string, using the
predictive update formula. For a window the size of the motif, slided along the
i:th string, a score, up to a constant equal to the predictive update probability,
is assigned to each valid position. A position is picked as the new mi with a
probability proportional to its score. To simplify the computation of the score,
we use a slight modification of the MY model by modeling also the background
by Bernoulli-DNA. This is also done in the GMS. The modification allows the
scoring function to be represented by a positional weight matrix. In a modified
version of the MY sampler, that takes a parameter u, any term in the predictive
update formula is disregarded if it corresponds to an edge e such that a connected
component of S \ e has ≤ u leaves.

2 Results

To test the MY model and the the MY sampler, synthetic data were generated.
The background, of length 200, was generated with a uniform distribution over
the nucleotides and in each background sequence one motif was implanted at
a randomly selected position. For Dataset A, we generated a random tree with
10 taxa, using a birth-death process and added exponential noise to the edge
lengths. A motif alignment, 15 bp wide, was generated from the tree using the
program Seq-Gen [22]. The Seq-Gen software evolved the motif according to the
tree using the default F84 model of sequence evolution (for details see [22]).

The difficulty of finding the implanted motifs in a particular set of sequences
is proportional to how much the motifs differ from each other. We therefore
measure the difficulty of a dataset by the sum of Hamming distances, i.e., number
of mismatches, of motif instances to their consensus motif sequence. Seq-Gen
takes as an argument a branch length factor, which is multiplied to all branch
lengths and hence effectively changes the size of the tree. This enabled us to
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Fig. 2. (a) Probabilities of each motif model for Dataset A. The black bars indicate
datasets where the GMS model assigns a higher probability than does the MY model.
(b) Phylogenetic tree and binding site of LexA. Note that dashes are merely to enhance
readability and do not indicate indels. Adapted from [23].

simulate datasets where the leaves have different evolutionary distances from
each other although still related by a phylogenetic tree with the same topology.
A total of 1162 individual datasets of differing Hamming distances to consensus,
were made. We consider the MY model to describe the biological reality better
than the model used to generate this first dataset. This dataset was chosen to
test how well our model and sampler performs under circumstances deviating
from the assumptions underlying our model.

We first evaluated the motif model of the GMS against our MY model, by
calculating the probability of the true, i.e., planted, motif according to each
model. This gives an indication of how well each model describes the actual motif.
As is evident from Fig. 2a, for simple motifs that are relatively well conserved,
the GMS model assigns the true motif a higher probability than does the MY
model. This is expected since the MY model is developed specifically with more
distant relatives in mind. If one edge alone is sufficient to explain the variation
in a motif column, the weighted average that the MY model uses, will be lower
than that edge’s contribution. As stated previously, the GMS model corresponds
to using the same probability distribution for the whole tree. This is a good
approximation for well-conserved motifs. More distantly related, difficult motifs,
are better described by the MY model.

We used both the MY sampler and our implementation of the GMS to be
able to compare their performances. The results on Dataset A is summarized in
Fig. 3, where the number of separate datasets is plotted against the sum of the
Hamming distances from consensus for each motif instance in the dataset. For
data with sum of distances < 20 both samplers found the correct motif and for
datasets with sum of distances > 65 neither sampler found the correct motif.
Note that these uninteresting extremes have been excluded in some figures.
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Fig. 3. (a) Performance of the MY sampler, (left bars), and the GMS, (right bars),
on Dataset A, evaluated by probabilities. See text for details. (b) Performance of the
GMS and the MY sampler on Dataset A, evaluated by average nCC in each bin.

In Fig. 3, the black bars indicate that the correct motif was found, i.e., the
probability of the found motif was identical to the probability of the inserted
motif. If the correct motif was not found, we evaluated the found motif and the
true motif by the probability that it is a real motif according to the model, as
calculated by the respective samplers. If the found motif had a higher probability
than the correct motif, the sampler failed, white bars in Fig. 3. This reflects an
imperfection in the probabilistic model, since a random motif was given a higher
probability than the correct motif. If the found motif had a lower probability than
the correct motif, indicated by grey bars in the figure, the run was inconclusive.
It is well known [19,20], that given enough time a Gibbs sampler will converge to
its stationary (invariant) distribution, as long as the Markov chain is irreducible,
aperiodic and has an invariant distribution. As can be seen in Fig. 3, the MY
sampler consistently outperforms the GMS. For example, in bin 40 the MY
sampler finds the correct motif in 37 datasets, while the GMS only find it in 14,
i.e., the MY sampler outperforms the GMS by more than 250%.

A recent study [18] suggests using the nucleotide level correlation coefficient
(nCC) for evaluating the performance of motif finding algorithms. An nCC of
1 corresponds to finding all correct nucleotides while not finding any false. A
random assignment of nucleotides is expected to get an nCC of 0. The results,
according to this criterion, of the GMS and the MY sampler can be seen in
Fig. 3b. Notice that for datasets with a sum of Hamming distance to consensus
in the range of 40 to 55, we have an average increase in performance of 10% to
25%, as compared to the GMS.

The MY model takes a sum of the probabilities over all edges in the tree. A
natural variation is to consider only the edge with the highest probability, i.e.,
for each motif column, we choose the single edge that best explains that column
given the observed nucleotides. This alternative model has also been evaluated
and is called bestEdge in Fig. 3b. Another modified version picks one of the GMS
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and the MY model, based on their scores, and uses it for a user-defined number
of iterations before making a new choice. This alternative model has also been
evaluated and is called Toggle in Fig. 3b. For results on other synthetic data,
see Fig. 4 and Fig. 5 in the Appendix.

The performance of each sampler was also tested on biological data from the
lexA genes of several bacterial species. The autoregulatory lexA gene was chosen
since a recent article [23] describes the evolution of its binding site. A PWM from
Transfac [24] was used to scan E. coli for genes potentially regulated by the lexA
transcription factor. The data was selected using the upstream sequences, ≤ 250
bp, of orthologs of the E. coli genes. The corresponding upstream sequences
were scanned using the published consensus motif sequences [23,25], and any
hit was considered a true motif instance. The dataset consists of 37 upstream
sequences with gapped motifs (motif width 12-16 bp), of several types. The pro-
tein sequences corresponding to upstream sequences with motif hits, were then
used to construct a phylogenetic tree, based on 100 bootstrapped trees, using
the PHYML software [26] with the JTT model for protein sequence evolution.
The tree, with bootstrap support, is depicted in Fig. 6 in the Appendix.

The upstream sequences and a motif width of 12 bp, representing a core
region shared by all species, were given as input to the GMS and to the MY
sampler, which was also given the tree. The best found motif alignment according
to the GMS model has nCC = 0.4968 (corrected for width and number of motifs)
and probability 1.4× 10−136, which is higher than the true motif alignment that
has probability 1.11 × 10−162. The GMS sampler prefers a frameshifted motif
alignment to the correct one. Under the same conditions the best motif alignment
the MY sampler found, see Fig. 6, has a probability of 2.4×10−110, lower than the
true motif alignment, which the MY sampler gives a probability 1.39 × 10−104.
While this corresponds to an inconclusive run, its nCC of 0.8838 (corrected), is
still in the order of two times that of the best GMS result.

3 Discussion

It is clear that there is useful information in the phylogeny of the regulated genes
that may be advantageous in motif detection. From Dataset A it is obvious that
the MY model does a better job modelling more evolutionary distant motifs.
The observation that well-conserved motifs are well described by the GMS motif
model is the basis for the bestEdge alteration of the MY model. In this version,
the edge with highest probability, is greedily chosen instead of summing over all
edges. In the case where the empty edge is the edge best explaining the data, the
new model is the same as the Gibbs Motif sampler model. Results on Dataset
A show that its performance is about the same as the original MY sampler.
These are very interesting results and further investigation as to how this holds
for biological data is warranted. The observation that binding sites often can be
divided into subclasses, motivated [27] to develop a model that partitions the
sequences and uses one PWM for each partition. Their approach, however, does
not take the phylogenetic tree into account when partitioning the sequences.
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Mazon et al. have shown how the consensus sequence of the lexA binding
sites in Gram negative bacteria, Alpha proteobacteria, Delta proteobacteria,
Gamma proteobacteria and Cyanobacteria, all can be derived from the consen-
sus sequence of the Gram positive bacteria. This is shown in Fig. 2b, with the
mutational events and sequences depicted in relation to the phylogenetic tree.
Both the tree and all red sequences in the leaves are adapted from [23] and the
blue sequences in the internal nodes are inferred, possible, ancestral sequences
that could explain the observations.

The fact that the similarities of the lexA binding sites, found in as diverse
species as all proteobacteria, Cyanobacteria, Gram positive bacteria and Gram
negative bacteria, is consistent with the species tree, and that in vitro experi-
ments [23] indicate that constraints on the transcription factor also follows the
tree, give further support to both the MY sampling algorithm and the MY model.

The ideas presented can be generalized in many ways. By using gene trees,
as with the lexA data, coregulated genes in the same species can be included
in the analysis. This still includes evolutionary history, such as gene duplication
events, which may help in finding the regulatory motif. The MY model can be
generalized to use an arbitrary number of edges. Such a modification is likely to
better describe a complex evolution with multiple mutational events per motif
column. It would be very interesting to study whether this would give increased
performance. The MY model can be extended to use several trees. This is par-
ticularly useful if the correct phylogeny of the genes of interest is unknown. One
could then use many plausible trees at the same time, since any edge removal
still corresponds to a partitioning of the leaves into two sets, each of which could
be modelled by a Bernoulli-DNA model. In fact, any partitioning of the genes
could be used, for instance splits trees or neighbour nets [28,29]. In the MY
model described in this paper, the prior Pr[E] is uniform, but it is quite pos-
sible to use other priors, e.g., an edge, e could be selected with a probability
proportional to the length of edge e. This may be intuitive since the probability
of a mutational event increases with the length of the edge, all other factors
equal.

Another issue for future investigation is how to improve the convergence rate.
The convergence rate for a Gibbs sampler is highly affected by the collinearity
of the components in the state vector. It may, therefore, be possible to speed
up the program by, e.g., grouping of the leaves and updating a group simulta-
neously. Since binding sites can have a constraint on distance from the gene,
and therefore share similar start positions, this also makes sense in a biological
setting.
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Appendix

The Predictive Update Formula. We will now derive the predictive update
formula, using collapsing [15]. We use the same notations as in the article. We
will show that the predictive update formula (4), can be efficiently computed by
breaking it down into efficiently computable parts as follows. We will first, in (5)-
(6), derive an expression for Pr[mk|mk−1, ...,m1]. This expression, (6), is a sum
of products which is trivial to compute given a procedure to compute the integral
in (7). This is a common integral in applications with Dirichlet distributions. In
(8), we give a standard expression for it, which for our application is efficiently
computable, e.g., by using the approximation described in [15]. It is also possible
to construct a table for all the values of ct and αt, for t ∈ N , involved in our
application, and then compute (8) in constant time by a table lookup. Finally
in (9), we give an expression for Pr[bk] which also is standard and its derivation
is very similar to that of (8).

The following expression for the predictive update formula follows from the
independence of background and motif and the independence between the back-
ground distributions

Pr[mk, bk|mk−1, ...,m1, bk−1, . . . , b1] = Pr[mk|mk−1, ...,m1]Pr[bk] . (4)
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This can be efficiently computed by breaking it down into efficiently com-
putable parts. The motif part of the predictive update formula is

Pr[mk|mk−1, ...,m1] =
∫

Θ

∑
E∈E′(S)w

Pr[mk, Θ,E|mk−1, ...,m1] dΘ

=
∫

Θ

∑
E∈E′(S)w

Pr[mk, ...,m1, Θ,E]
Pr[mk−1, ...,m1]

dΘ

∝
∫

Θ

∑
E∈E′(S)w

Pr[mn, ...,m1|Θ,E]Pr[θ,E] dΘ

=
∫

Θ

∑
E∈E′(S)w

k∏
i=1

Pr[mi|Θ,E]Pr[Θ]Pr[E] dΘ (5)

where Θ = {θ1,1, θ1,2, ..., θw,1θw,2} and E′(S) = E(S) ∪ {ε}. In the MY model,
the prior Pr[E] is uniform, i.e., each component e of E is selected uniformly from
E(S) ∪ {ε}. Disregarding the constant factor and expressing the probabilities
Pr[mi|Θ,E] columnwise, we obtain∫

Θ

∏
l∈[w]

∑
e∈E′(S)

∏
j∈[2]

∏
i∈(Cj(S\e)∩[k])

Pr[mi
l|θl,j , e]Pr[θl,j ] dΘ =

∏
l∈[w]

∑
e∈E′(S)

∏
j∈[2]

∏
i∈(Cj(S\e)∩[k])

∫
θ

Pr[mi
l|θ]Pr[θ|αl,j ] dθ . (6)

We will below drop the superscripts for parameters to the Dirichlet distri-
bution to increase readability. Considering that mi

l is Bernoulli-DNA with pa-
rameters θ such that Pr[θ|αl,j ] ∈ Dirichlet(αl,j) and αl,j = {αl,j

A , ..., αl,j
T }, we

obtain the following equality∏
i∈(Cj(S\e)∩[k])

∫
θ

Pr[mi
l|θ]Pr[θ|α] dθ =

Γ (
∑

t∈N (αt))∏
t∈N Γ (αt)

∫
θ

∏
t∈N

θct+αt−1 dθ (7)

where, for each t ∈ N , ct = |{i ∈ (Cj(S \ e)∩ [k]) : mi
l = t}|. The integral equals

one over the normalizing constant for a Dirichlet distribution with parameters
c+ α giving

Γ
(∑

t∈N (αt)
)∏

t∈N Γ (αt)

∏
t∈N Γ (ct + αt)

Γ
(∑

t∈N (ct + αt)
) (8)

which thus describes the probability for one subtree, one column and one edge.
Similarly, the following expression can be obtained for Pr[bk]

Pr[bk] ∝ Γ
(∑

t∈N βk
t

)∏
t∈N Γ

(
βk

t + ct
)∏

t∈N Γ
(
βk

t

)
Γ
(∑

t∈N βk
t + ct

) (9)

where ct is the number of occurrences of t in bk. This way we can calculate (6)
efficiently.
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Fig. 4. Dataset B have the exact same motif instances as Dataset A, but with a shorter
background, making the total length of each sequence 50 nucleotides. (a) Performance
of the MY sampler, (left bars), and the GMS, (right bars). (b) Performance of the MY
sampler on Dataset B, evaluated by average nCC in each bin. Performance on Dataset
A has been included for comparison. The MY sampler still outperforms the GMS by
approximately the same ratio.
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Fig. 5. Performance according to nCC of the GMS and the MY sampler on Dataset C.
For each of three random trees, with 5, 10 and 20 leaves, 50 datasets were generated as
follows. For each motif column an edge was randomly picked, and for subtree 1 of that
edge, one nucleotide was uniformly selected, but with a 70% chance two nucleotides
were picked, and randomly assigned to the leaves of the subtree. For subtree 2, a nu-
cleotide was randomly selected among the ones not used in subtree 1. The motif length
was 8 and background length was 42 nucleotides. Since half the edges are adjacent to a
leaf, which would result in only one nucleotide generated from a different distribution,
we required the smallest subtree to be bigger than a constant. For the trees with 10
and 20 leaves we used a constant of 2 and 4, respectively. A dataset with 20 leaves
could still, have as many as 16 nucleotides in a motif column completely conserved.
Both sampler will therefore benefit from larger trees.
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Fig. 6. Topology of the phylogenetic tree, with bootstrap support, of orthologs to E.
coli LexA along with a motif alignment found by the MY sampler (MY model gives
it probability 2.4×10−110). Lower-case letters indicate true motif instances and upper-
case letters indicate background. Notice that the almost perfect palindromic sequences
it finds in two Listeria species, both are consistent with the two core parts, i.e., the
first 4 and last 4 nucleotides, except for one C to T mutation. The probability of the
true motif alignment is 1.11×10−162 for the GMS model and 1.39×10−104 for the MY
model.
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Abstract. mRNA molecules are folded in the cells and therefore many of their
substrings may actually be inaccessible to protein and microRNA binding. The
need to apply an accessability criterion to the task of genome-wide mRNA motif
discovery raises the challenge of overcoming the core O(n3) factor imposed by
the time complexity of the currently best known algorithms for RNA secondary
structure prediction [24, 25, 43].

We speed up the dynamic programming algorithms that are standard for RNA
folding prediction. Our new approach significantly reduces the computations
without sacrificing the optimality of the results, yielding an expected time com-
plexity of O(n2ψ(n)), where ψ(n) is shown to be constant on average under
standard polymer folding models. Benchmark analysis confirms that in practice
the runtime ratio between the previous approach and the new algorithm indeed
grows linearly with increasing sequence size.

The fast new RNA folding algorithm is utilized for genome-wide discovery
of accessible cis-regulatory motifs in data sets of ribosomal densities and decay
rates of S. cerevisiae genes and to the mining of exposed binding sites of tissue-
specific microRNAs in A. Thaliana.

Further details, including additional figures and proofs to all lemmas,
can be found at: http://www.cs.tau.ac.il/∼michaluz/
QuadraticRNAFold.pdf

1 Introduction

The brief “lives” of messenger RNAs (mRNAs) begin with transcription and ultimately
end in degradation. During their “lives”, mRNAs are translated into proteins. This
whole process is regulated in a highly organized fashion to ensure that specific genes are
expressed at the appropriate times and levels in response to various genetic and environ-
mental stimuli [11, 35]. It is well-known that mRNA decay and translation are affected
by cis-regulatory motifs within mRNAs. These motifs serve as binding sites for trans-
regulatory proteins and microRNAs1. Several cis-regulatory RNA motifs were previ-
ously discovered experimentally, such as AREs (AU-Rich Elements) [28, 40], which

� These authors contributed equally to the paper.
�� To whom correspondence should be addressed.

1 microRNAs are single-stranded RNA molecules, typically 20-25 nucleotides long, that bind to
a target mRNA and induce quick mRNA degradation or inhibit protein translation [21, 31].

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 473–487, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



474 Y. Wexler, C. Zilberstein, and M. Ziv-Ukelson

are mRNA destabilizing elements involved in mRNA decay, and TOPs [13, 36], which
control the translation of ribosomal proteins and elongation factors.

Recently, new and interesting data has become available which measures, on a
genome-wide scale, the ribosomal densities of mRNAs which reflect translation rates
[3], and additional data that measures mRNA decay rates [37]. The results of these mea-
surements, if incorporated with genome-wide mRNA sequences, may reveal a wealth
of novel cis-regulatory elements underlying both processes. However, since RNA el-
ements are characterized by both primary sequence and higher order structural con-
straints, the identification of RNA elements is more complicated than identification of
DNA elements. During the last decade, many computational efforts have been made to
develop tools for the identification of RNA elements that are common to a group of
functionally or evolutionarily related genes. Some of these methods rely on a first step
that involves multiple alignment [2] and require that the sequences be highly similar
to begin with, while other methods can detect locally conserved RNA sequence and
structure elements in a subset of unaligned sequences [16, 26]. However, the complex-
ity of these methods makes their application impractical for handling the large number
of sequences involved in eukaryotic genome-wide analysis. Nevertheless, it turns out
that most of the RNA regulatory motifs discovered so far are simple stem and loop
structures with a consensus motif residing in the loop area (e.g. IRES) [13, 36].

Further note that the focus on local 2D structural conservation ignores the global
consideration of whether or not the primary sequence sites are indeed accessible to
protein binding. In order to allow the binding between the target cis-regulatory motif
and the trans-regulatory proteins or microRNAs, the base pairs in the motif must be free
of any other chemical bond. This is due to the fact that the chemical recognition is based
on an interaction between amino acids residing in the protein and the corresponding
nucleotides in the cis-regulatory motif residing in the mRNA [6], or on base pairing
between the microRNA sequence and the motif nucleotides.

The above requirement for chemical availability of motifs to protein binding calls
for the formalization of an accessability criterion:

Definition 1 (“accessible” substring). Let S be a sequence and s a region i.e. sub-
string in S. We say that s is accessible iff the following two conditions apply:

1. There exists a 2D structure of S with predicted free energy G1 in which none of the
nucleotides of s is engaged in base pairing.

2. G1−G0 ≤ δ, where δ is a user defined threshold parameter, and G0 is the optimal
folding free energy of the full string S.

In this paper we suggest a novel approach to the genome-wide discovery of RNA cis-
regulatory motifs. In our framework, motifs are scored according to their statistical
significance when applying the above accessibility criterion. In order to accommodate
this, the input mRNA sequences are first filtered according to Definition 1. This is done
in order to reduce the noise created by motifs which are not exposed to trans-regulatory
binding (see Figure 1).

“Accessible site” criteria have been previously employed both in the context of mi-
croRNA target prediction [27] and in antisense oligonucleotide hybridization
predictions [4, 15, 23, 30]. Neverthless, in the antisense prediction application only a
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Fig. 1. Applying the accessibility criterion to
genome-wide motif discovery in mRNA ri-
bosomal density data. The motif X may be
predicted to differentiate between the set of
mRNAs with high density (left) and the set
with low density (right) since its occurrences
in mRNAs 1,4,5 and 6 are inaccessible.

j+1i jkk+1 j’

V(i,j)

V(i,k) W(k+1,j) W(j+1,j’)

Fig. 2. The competition between candidate
V (i, k) and candidate V (i, j) for the minimal
W (i, j′). Candidate V (i, k) has an advantage
over candidate V (i, j) in the additional poten-
tial cost for segment sj+1 . . . sj′ since it has
a wider left-scope for combining this segment
in a structure with W (k + 1, j). Therefore, if
V (i, k) + W (k + 1, j) ≤ V (i, j) then by tri-
angle inequality V (i, k) + W (k + 1, j′) ≤
V (i, j) + W (j + 1, j′).

single target, the mRNA corresponding to the gene which is targeted for “knock out”,
needs to be scanned for accessible sites. For this task, the current RNA folding pre-
diction tools are sufficient. However, such tools could not be practically scaled up to
serve whole genome motif discovery, where thousands of mRNAs need to be mined
for accessible sites, without raising severe efficiency problems: the complexity of RNA
structure prediction allowing multiple loops but no pseudoknots is O(n3) to begin with,
where n is the size of an RNA sequence (typically ∼ 2000). This complexity is further
increased to O(n3 · m) by the need to exhaustively run a sliding window across the
input sequences, where m = O(n) is the number of different starting positions of ac-
cessible regions that need to be considered in each gene. Note that the sliding window
computational challenge is not addressed by Robins et al. [27], where the computation
is simplified by the fact that only a single optimal folding is computed per gene. Thus,
the task of mining accessible sites for genome-wide motif discovery creates a heavy
O(n3 · g ·m) bottleneck in terms of computational complexity, where g is the number
of genes in the genome under study (typically in the thousands).

The practical considerations raised by such a complexity are exemplified as follows:
suppose the genome under study contains 6000 mRNA sequences, of size ∼ 2000 nu-
cleotides each, in which we need to consider all potential sites obtained by sliding a
window of size k << 2000. Given that the folding prediction computation for each
sequence takes about twenty seconds2: the total time needed for the computation of all
relevant accessible sites in this case would be 6000 · 2000 · 20 seconds ≈ 7.61 years!
Further note that even if we confine our search to ∼ 300 windows in the UTR regions,
the time needed still sums up to more than a year. This example demonstrates the need
for efficient folding algorithms, especially when dealing with whole-genome scale data.

2 The average folding time for this estimation was measured using the RNAFOLD program in
Vienna package 1.4 on a 2G Hrz PC with 1G RAM and the average was taken over 100
random sequences of size 2000nt each.
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Could the classical O(n3) algorithms for RNA secondary structure prediction [25, 43],
which have been heavily used by the bioinformatics community in the last two decades,
still be substantially sped up? Furthermore, could such a speed up be implemented via
a practical, low-constant algorithm?

These important challenges are addressed in the rest of this paper, where we describe
a new dynamic programming algorithm that exploits the combination of two properties
to speed up RNA secondary structure prediction: one is the observed triangle inequality
property of the matrices commonly used in RNA secondary structure prediction (Sec-
tion 2.2), and the other is the polymer-zeta behavior of RNA folding with respect to
increased sequence size (Section 2.4). These observations are utilized here via a simple
candidate list algorithm, called Algorithm CANDIDATEFOLD (Section 2.3), which sig-
nificantly reduces the computations without sacrificing the optimality of the results (no
heuristics are used). The expected time complexity of Algorithm CANDIDATEFOLD is
O(n2ψ(n)) instead of the previously known O(n3), where ψ(n) is shown to converge
to a constant under models previously described for RNA folding and re-validated by
our simulations (see Section 2.5). Furthermore, due to the simplicity of Algorithm CAN-
DIDATEFOLD, it is indeed much faster than the classical algorithm in practice, as sup-
ported by experimental performance results in Section 3. Clearly, this new algorithm for
speeding up RNA folding prediction is applicable to a wide range of additional biolog-
ical applications, especially to those that require a substantial amount of RNA folding
computations.

Based on the efficient new RNA folding algorithm CANDIDATEFOLD, we conducted
a study which examines the contribution of the “accessible site” criterion to the discov-
ery of RNA motifs that would otherwise be obscured by noise. The new approach was
applied to quantitative data sets of ribosomal densities and decay rates of almost all
(i.e. ∼ 6000) S. cerevisiae genes. By applying our approach, some biologically inter-
esting and statistically significant motifs were discovered (Section 5). For example, the
p-value of the motifAGCKTTA in the decay rates data was 5 ·10−7. This p-value was
due to the fact that the average half-life (i.e. log(2)/decay rate) of 24 genes that were
found to contain this motif in an accessible substring was 26 days, while the half-life
of the background population was 15 days. Relaxing the accessibility criterion lowered
the significance of the motif by raising its p-value to 0.008.

We also employed the “accessible target” criterion to analyze microRNAs regulating
tissue specific processes in A. Thaliana. Interesting tissue specific microRNAs were
discovered (see Fig. 4).

2 The Accessible Site Prediction Engine

2.1 Preliminaries of RNA Folding Prediction Via Minimum Energy

RNA is typically produced as a single stranded molecule which then folds intra-
molecularly to form a number of short base-paired stems. This base-paired structure is
called the secondary structure of the RNA. Base pairs almost always occur in a nested
fashion in RNA secondary structure. Informally, this means that if we draw arcs over
an RNA sequence connecting base pairs, none of the arcs cross each other. When non-
nested base pairs occur, they are called psuedoknots. Most of the dynamic programming
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algorithms which are standard for RNA structure prediction do not deal with pseudo-
knots. This is done mostly in order to simplify the problem and is justified by the fact
that short pseudoknots do not contribute much to the overall energy and long pseudo-
knots are kinetically difficult to form [20]. Therefore, in this paper we assume that no
two arcs cross, however multiple loops are indeed allowed.

Under the above assumptions, a model was proposed in Tinoco et al. [32] to cal-
culate the stability (in terms of free energy) of a folded RNA molecule by adding in-
dependent contributions from base pair stacking and loop-destabilizing terms from the
secondary structure. This model has proven to be a good approximation of the forces
governing RNA structure formation, thus allowing fair predictions of real structures by
determining the most stable structures in the model of a given sequence. Based on this
model, algorithms for computing the most stable structures have been proposed (Nussi-
nov and Jacobson, 1980 [25]; Zuker and Steigler, 1981 [43]), and various tools for
RNA secondary structure prediction were developed. The tools commonly used today
are MFOLD [42], Vienna Package [14] and FOLDRNA [41].

The thermodynamic parameters used by our accessible site prediction engine are
experimentally derived and are identical to those used by the RNA folding tools listed
above, where the following four recursions are combined to model RNA secondary
structure folding. Note that the recursions depend on the nature of the energy rules
for loops, where eh(i, j) is the energy of the hairpin loop closed by the base pair i, j,
es(i, j) is the energy of the stacked pair i, j and i + 1, j − 1 and ebi(i, j, i′, j′) is
the energy of a bulge or an interior loop closed by i, j with i′, j′ accessible from i, j.
Also note the boundary conditions W (i, j) = V (i, j) = +∞ if j − i < 4. More
detailed recursions, based on the ones given here, take into consideration exterior base
stacking [43]. These are not elaborated here for the sake of simplicity of presentation,
however the same reasoning applies to this extension as well. The recursion equations
are explicated below:

W (i, j) = min{V (i, j),W (i+1, j),W (i, j−1), min
i≤k<j

{W (i, k)+W (k+1, j)} (1)

Eq. 1 computes the optimal folding of substring si, . . . , sj , which is the value of the
entry in row i and column j of the main, upper-triangular DP table W . The computa-
tion of this table involves the matrix V whose entries are computed via the following
equations.

V (i, j) = min{eh(i, j), es(i, j) + V (i+ 1, j − 1), V BI(i, j), V M(i, j)} (2)

Eq. 2 computes the optimal folding energy of a substring si . . . sj in which si base pairs
with sj .

V BI(i, j) = min
i<i′<j′<j

{ebi(i, j, i′, j′) + V (i, j)} (3)

Eq. 3 computes the score of an optimal folding of substring si, . . . , sj given that there
is an internal loop formed at indices (i, i′, j′, j).

VM(i, j) = min
i≤k<j−1

{W (i+ 1, k) +W (k + 1, j − 1)}+ a (4)

where a is a constant multi-branch penalty.
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Time Analysis of the Classical RNA Folding Prediction Engine. The above recur-
sions are implemented by maintaining four tables of size O(n2) each. Eq. 1 is clearly
O(n3). Given the values computed for Eq. 1, the values for Eq. 4 can be computed in
O(n2) time and space via direct look-up of the minima values previously computed for
Eq. 1. Eq. 2 is also O(n2).

Eq. 3 for the computation of internal loop size energies is naively O(n4). Practi-
cally, it is standard to assume that RNA interior loop size is bounded by a constant (15
nt in room temperature and up to 30 nt in extreme heat). The program RNAFOLD in
Vienna package [14] as well as the MFOLD program [42] use constant gap size in both
directions to reduce the complexity of Eq. 3 to O(n2). Lygnso et. al. [22] show how
to reduce the complexity of this equation to O(n3) without binding the gap size. On
the theoretical front, Waterman and Smith showed how to compute internal loops in
O(n3), assuming that the loop penalty is a function of its size [34]. Eppstein, Galil and
Giancarlo [7, 9] considered loop destabilizing functions satisfying certain convexity or
concavity conditions, and developed an O(n2 log2 n) algorithm for this case. This was
later improved to O(n2 log n) [1], and finally to O(n2α(n)) (where α is the inverse of
Ackerman’s function) for logarithmically growing destabilizing functions [19].

Conclusion 1. The O(n3) bottleneck to RNA Folding Prediction complexity is based on
the computation of the minimization term mini≤k<j{W (i, k)+W (k+1, j)} in Eq. 1.

Note that the O(n3) bound applies to both the worst case and the expected case time
complexities of the classical RNA folding algorithm, since Eq. 1 is called O(n2) times
and each call involves the computation of the minimum overO(n) elements on average.

2.2 Triangle Inequality in the Context of Dynamic Programming

In this section we formalize the triangle inequality property in the context of dynamic
programming tables and show that the main matrix W , which is the final output of the
RNA folding recursions given in the previous section, obeys this property. Let M be a
n×nmatrix in which each entry M(i, j) (i ≤ j) is computed by the following formula:

M(i, j) = min
i<k≤j

{M(i, k) +M(k + 1, j)}

The well-known inverse quadrangle inequality property [10] is defined as follows.

Definition 2. A matrix M obeys the inverse quadrangle inequality condition iff

∀ i < i′ < j < j′ M(i, j′) ≤M(i, j) +M(i′, j′)−M(j′, j)

Both the quadrangle and the inverse quadrangle inequalities have previously been used
to speed up dynamic programming [5, 10]. However, both the quadrangle inequality and
the inverse quadrangle inequality are strong constraints on the input behavior, and do not
apply to the matrix computed for RNA folding (see Eqs. 1- 4 above). However, a special
weaker case of the inverse quadrangle inequality, the triangle inequality property, which
is much more common in practice in various applications, will be used in this paper to
speed up RNA folding prediction.
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Definition 3. A matrix M obeys the triangle inequality property iff

∀ i < j < j′ M(i, j′) ≤M(i, j) +M(j + 1, j′).

2.3 A Simple 1D Candidate List Approach to the Construction of W

Let S = s1 . . . sn denote a given RNA sequence. The next two definitions describe
specific folding concepts that will be used in the description of the new algorithm.

Definition 4 (Structure). A structure over a sequence si . . . sj is a folding in which
si base pairs with sj .

Definition 5 (Partition Point). A partition point in a given folding of S = s1 . . . sn is
an index k, such that there is no structure over si . . . sj in this folding, where 1 ≤ i ≤ k
and k < j ≤ n.

In this section we describe an alternative approach to the computation of W , which
prunes Eq. 1. Similarly to the standard algorithm, the new algorithm computes the val-
ues of W row by row, in bottom-up order (decreasing row index). For each row i of W ,
the entry W (i, j) is computed in left-to-right order (increasing column index). How-
ever, the suggested new algorithm, called CANDIDATEFOLD, differs from the original
one in the application of Eq. 1 to the computation of W (i, j). In a given row i, instead
of considering O(n) possible partition points for each column j in Eq. 1, the new al-
gorithm only considers a list of candidate partition points, which are maintained in the
form of a simple candidate list. In the following sections we show that the expected
maximal size of this candidate list for an n-sized sequence, denoted ψ(n), is constant.

In order to clearly define the properties that make a potential partition point a quali-
fied candidate, we first need to simplify Eq. 1. Note that, if the main diagonal W (r, r)
was set to zero, then the two terms W (i + 1, j) and W (i, j − 1) in Eq. 1 could be
embedded into the minimization term as special cases. W (i + 1, j) would then be ob-
tained as a special case k = i to yield the sum W (i, i) +W (i+ 1, j) which is exactly
W (i + 1, j); similarly, W (i, j − 1) would be obtained as the special case k = j − 1
to yield the sum W (i, j − 1) + W (j, j) which is exactly W (i, j − 1). However, the
problem is that setting W (r, r) = 0 would contradict the boundary conditions set by
Zuker and Stiegler [43], which assume that W (r, r) = ∞.

Therefore, we add two auxiliary matrices, denoted W ′ and V ′, computed via the
recursions as given below, where Eq. 7 replaces the previous Eq. 1. Note that the matrix
W ′ is added in order to get around the above boundary condition problem, while matrix
V ′ serves to simplify the presentation of the algorithm which is described in the next
section.

W (i, j) = W ′(i, j) ∀j ≥ i+ 4 (5)

V ′(i, j) = V (i, j) ∀j ≥ i+ 4 (6)

W ′(i, j) = min{V ′(i, j), min
i≤k<j

{W ′(i, k) +W ′(k + 1, j)}} (7)

The matrices W ′ and V ′ are initialized as follows. W ′(i, j) = V ′(i, j) = +∞ if
0 < j − i < 4, and W ′(i, i) = V ′(i, i) = 0. In this formulation, the matrix W ′

preserves the minimum energy values of W everywhere except in the main diagonal
entries. The correctness of this re-formulation is asserted via the following claim.
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Claim. The values of W (i, j) and V (i, j), as computed via Eqs. 2-7, are identical to
those obtained when using Eqs. 1-4.

The next claim is immediate from Definition 2 and Eq. 7.

Claim. The matrix W ′, as computed by Eq. 7, obeys the triangle inequality.

The above claim is used in the next lemma to show that any sum which yields the
minimum of Eq. 7 can be reformulated as a corresponding, equal-scoring sum, in which
the left term is a structure (see Definition 4).

Lemma 1. Consider Eq. 7. For every entryW ′(i, j), if there exists an index k, i≤k<j,
such thatW ′(i, j) = W ′(i, k)+W ′(k+1, j), thenW ′(i, k′) = V ′(i, k′) for some index
k′ ≤ k.

According to Lemma 1, Eq. 7 can be reformulated as follows.

W ′(i, j) = min{V ′(i, j), min
i≤k<j

{V ′(i, k) +W ′(k + 1, j)}} (8)

Naively, after the transformation to Eq. 8, there are still n candidate partition points
which compete for the optimal score in the minimization term. However, the next theo-
rem exposes a dominance relationship between these candidates (see Figure 2).

Theorem 1. If V ′(i, j) ≥ V ′(i, k) +W ′(k + 1, j) for some i < k < j. Then,

∀ j′ > j V ′(i, j) +W ′(j + 1, j′) ≥ V ′(i, k) +W ′(k + 1, j′).

Theorem 1 exposes redundancies in the O(n) computation of Eq. 8, which could be
avoided by maintaining a list of only those candidates that are not dominated by others.

Definition 6 (candidate). A column index j is a candidate in a row i ≤ j iff V ′(i, j)
<W ′(i, k) +W ′(k + 1, j) ∀ i ≤ k < j.

The above definition can be applied to speed up the computation of W ′(i, j), as fol-
lows: rather than considering all possible n partition point indices for the computation
of Eq. 7, one could query the list that contains only partition points that satisfy the can-
didacy criterion according to Definition 6. This is formalized in the following equation,

W ′(i, j) = min{V ′(i, j), min
∀k∈candidate list

{V ′(i, k) +W ′(k + 1, j)} (9)

Eq. 9 is implemented via a candidate list that is empty at the start of each row and
is extended throughout the left-to-right computation of row i by appending only those
partition points which are candidates by Definition 6. Each partition point is consid-
ered for candidacy once per row, when its column is reached. The psuedo-code for the
algorithm for computing Eq. 7, denoted Algorithm CANDIDATEFOLD, is given below.

Algorithm CANDIDATEFOLD:
0 for each row i := n to 1 do
1 candidate list← NULL
2 for each column j := i to n do
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3 W ′(i, j) ← min∀k∈candidate list{V ′(i, k) +W ′(k + 1, j) }
4 if (V ′(i, j) < W ′(i, j)) then
5 W ′(i, j) ← V ′(i, j)
6 Append j to the candidate list

Expected Case Time Analysis of the Improved RNA Folding Prediction Engine.
Let ψ(n) denote the expected maximal size of the candidate list in a sequence of size n.
Algorithm CANDIDATEFOLD computes each entry in the n2-sized energy-matrix W ′.
Each such calculation requires the computation of Eq. 9, where the major work is that
of computing the minimum among O(ψ(n)) candidates. All other recursions remain
unchanged. Therefore, the overall average time complexity is O(n2 · ψ(n)) if the stan-
dard bound on interior loop size is followed, or otherwise O(n2 · max{ψ(n), α(n)}),
where α(n) is the inverse ackerman function.

In the next sections we analyze the expected growth of the candidate list size with
respect to increasing sequence size and assert the surprising fact that ψ(n) converges
to a constant. This leads to the conclusion that Algorithm CANDIDATEFOLD improves
the standard O(n3) classical algorithm (analyzed in section 2.1) by a linear factor on
average.

2.4 The Polymer-Zeta Property of RNA Folding

The polymer-zeta property is defined as follows.

Definition 7. Let P (i, j) denote the probability of a structure over the substring
si . . . sj under a given set Λ of folding rules, where j − i = m. We say that Λ fol-
lows the polymer-zeta property if P (i, j) = b/mc for some constants b, c > 0.

Previous work shows that RNA, which folds like other polymers, obeys the polymer-
zeta property, namely, the probability that a structure is formed over the subsequence
between two positions distant m monomers apart is P (m) = b/mc where b = 1 and
c > 1 [17, 18]. This fact is explained by modeling the 2D folding of a polymer chain
as a self-avoiding random walk (SAW) in a 2D lattice [33]. In this model the spacial
position of every nucleotide in the original polymer corresponds to a random step in
the lattice, where edges of the lattice represent possible transition directions. Since this
model of polymer folding also ignores pseudoknots, the walk is called “self avoiding”,
i.e. an assumption is followed that the walk does not intersect the prefix of the chain. The
query of interest here is the probability that the mth step in the self avoiding random
walk occupies the same vertex in the lattice as the origin. The theoretical exponent
for the two dimensional SAW model is known to be c = 1.5 [8]. This is supported in
practice by simulations for collapsing polymers of sequence size up to 3200, as reported
in [17]. These simulations exhibited an exponent of 1.375 at low temperatures and 1.571
in higher temperatures.

Our dynamic programming algorithm follows the thermodynamic rules defined by
Mathews et al. [24], which were derived experimentally to model RNA folding. We
ran our own simulations in order to assert that this model indeed follows the previously
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analyzed single structure formation probabilities in polymer folding, which were found
to obey the polymer-zeta property. We used 50, 000 mRNA sequences with an average
length of 1992 nucleotides from the NCBI databases and found that the probability that
the optimal folding forms a structure over si . . . sj , where m = j − i, is estimated to
be 2.11 · m−1.47. The degree exponent c was estimated in our study to be ∼ 1.47 by
applying standard statistical procedures (approximating the MLE parameter followed
by running “Kolmogorov-Smirnov” and “chi-square” goodness-of-fit tests, using the R
statistical analysis package, http://www.r-project.org).

2.5 Bounds on ψ(n)

We next analyze ψ(n) based on our findings. The following observation is immediate
from Lemma 1.

Observation 1. A new candidate j is added to the candidate list, in step 6 of Algorithm
CANDIDATEFOLD, iff the optimal predicted folding of substring si . . . sj forms a sin-
gle structure from index i to index j. The only exception to this case is the boundary
condition candidate i, which is always added as a “virtual” structure to the list.

Given that the probability for a new candidate situated m bases away from the start of
the sequence is b · m−c, the expected number of candidates in a sequence of length n
is ψ(n) = b

∑n
i=1 i

−c. This summation could assume one of three values, according to
the estimated c:

1. For values c ≥ 1 this series is a partial sum of the Riemann Zeta function defined
as
∑∞

i=1 i
−c.

(a) If c > 1, this series is known to converge and thus, ψ(n) = O(1).
(b) if c = 1, we get a partial sum of the first n elements of the Harmonic series,

which is known to be less or equal to 1 + ln(n) and thus ψ(n) = O(log n).
2. if c < 1, we use the power means inequality to obtain the bound ψ(n) = O(n1−c

(logn)c).

Theorem 2. Applying Algorithm CANDIDATEFOLD to the folding of a polymer chain
of size n that obeys the polymer-zeta property with c > 1, requires an average ofO(n2)
operations.

Recall that our simulations estimate c to be 1.47, which implies that ψ(n) ∼ 2.11 ·
2.74 ≈ 5.7, which is a constant. Therefore, applying Algorithm CANDIDATEFOLD to
the folding of an RNA sequence of size n takes O(n2) time on average.

3 The Performance of the New RNA Folding Engine

To demonstrate the power of algorithm CANDIDATEFOLD in practice we ran it against
a naive version of our folding program, which predicts the minimum free energy struc-
ture using the classical algorithm of Zuker and Stiegler [43]. The data set included
150,000 sequences: 300 sequences for every possible size in the range 500-1000.
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(a) Random mRNA subsequences (b) Simulated RNA sequences

Fig. 3. The average measured run-time ratio of naive/CANDIDATEFOLD as a function of increas-
ing sequence size

Figure 3 demonstrates that the average run time ratio (computed by dividing the run
times of the classical algorithm with ours) is linear in the sequence length n, re-
confirming our time complexity analysis. In Figure 3(a), the analysis was done for 100
sequences for each possible size in the range 500-1000, which were extracted as ran-
domly chosen subsequences from 50,000 complete mRNA sequences taken from NCBI
databases. The analysis shown in Figure 3(b) was done for 100 sequences of each size
in the same range, which were generated using a Markov-model imitating software.
This sequence-simulation program takes a set of sequences to imitate and a Markovian
order as input, and generates an output of random sequences according to a Markov-
model of the desired order. The input consisted of 50,000 complete mRNA sequences
downloaded from the NCBI database and the Markovian order parameter was set to 6.
The same results emerged when using the remaining 50,000 mRNA sequences as input
for a zero order Markovian model simulator.

4 Methods for Mining Accessible Cis and Trans Regulatory Motifs

Our method for discovering novel cis-regulatory motifs incorporates large scale decay
rate and ribosomal density measurements, combined with the information from mRNA
sequences of the genome under study. It can be formulated as follows. Given a set of
mRNAs G = S1 . . . Sg, a parameter k denoting motif window size (could be slightly
longer than the motif residing in the window), and a pre-defined energy threshold δ, we
apply the following simple two-stage approach:

Stage 1: Process the sequence set G to extract all “accessible” windows by running a
sliding window of size k across the mRNA sequence and testing each window for com-
pliance with Definition 1. For each shifted window this testing is conducted by masking
the nucleotides inside the window in order to prevent their engagement in base pairing.
Then, the minimal energy for folding the whole sequence with the masked window is
computed and compared to the minimal folding energy of the original, unmasked se-
quence. The folding energies were computed via algorithm CANDIDATEFOLD.
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Stage 2: This stage takes as input the accessible substrings, extracted in the first stage,
and seeks regulatory motifs residing in the data. Two statistical techniques are applied
here, depending on whether the sought motif is cis or trans regulatory:

Cis-regulatory motifs: Enumerate all motifs up to a given size k over the IUPAC al-
phabet [38]. For each motif use the new data created in stage 1 instead of the original
genomic sequences, to compute a t-score [12] reflecting the functionality of that motif.
If the p-value associated with the computed t-score is small enough, report the motif.
This stage can be efficiently executed by using a variation of the algorithm of Sagot
et al. [29] combined with the statistical computation of the t-score [38] and adapted to
handle the new “accessible window” data.

Trans-Regulatory Signals (microRNAs). The search for microRNAs is similar to that of
motif discovery, except for the following difference: instead of considering accessible
mRNA motifs, we considered accessible sites that were predicted to hybridize well with
the subject microRNAs, as described in [39].

5 A Biological Study of Accessible Regulatory RNA Elements

We conducted a study in order to test our novel approach, which applies the “acces-
sibility” criterion to RNA motif discovery. Using various data sets, significant motifs
were discovered, including some cis-regulatory degradation and translation motifs and
tissue-specific microRNAs.

In each of the conducted experiments, two data sets were studied: a set containing
only “accessible” substrings, according to Definition 1, and a “control” set which in-
cluded the original complete mRNA sequences. A comparison of the results obtained
for each of the two sets repeatedly confirms the contribution of the “accessibility” cri-
terion as a powerful filter for masking out noise associated with inaccessible motifs and
raising the significance score of otherwise invisible motifs.

Translation Related Motifs. Arava et al. [3] measured the ribosomal densities of al-
most all the mRNAs of the yeast S. cerevisiae under normal cell conditions, using the
following method. First, mRNAs are extracted from the cells and separated by veloc-
ity sedimentation. Then, each fraction across the gradient is analyzed by microarray
techniques for its mRNA content. Based on this, a fraction is assigned to each mRNA:
the lower this fraction is, the higher the mRNA’s ribosomal density is. We applied our
approach to this data in order to detect translation cis-regulatory elements within 5’
untranslated region (5’UTR)3. A few novel potential cis-regulatory elements were dis-
covered that may affect translational efficiency (see Table 1). In particular, the average
ribosomal density of the set of mRNAs containing the motif AGSNNK in accessible
substrings was low in comparison to the background. Thus, AGSNNK seems to be a
translation repressor.

Degradation Related Motifs. We applied our approach to the whole-genome
mRNA decay rate data measured by Yang et al [37] in order to seek mRNA

3 We used as 5’UTRs the regions spanning 150bp upstream to the translation start codons.



A Study of Accessible Motifs and RNA Folding Complexity 485

Table 1. Motifs potentially regulating mRNA translations. The accessible substring criterion was
applied with window size 10 and δ = 2Kcal. The average ribosomal density without the motif
was computed based on ∼ 5000 different genes.

Motif Number Average density Average density p-value confined to p-value in any Hypothesized

of occurrences with the motif without the motif accessible substrings substring function

ACASACT 14 1.7 0.7 10−18 10−4 Translation enhancer
AGSNNK 1292 0.6 0.7 10−11 10−3 Translation repressor

Table 2. Motifs potentially regulating mRNA degradations. The first 3 columns refer to the case
of accessible substring with window size 10 and δ = 2Kcal. The average half life without the
motif was computed based on ∼ 5000 different genes.

Motif Number Average half-life Average half-life p-value confined to p-value in any Hypothesized
of occurrences with the motif without the motif accessible substrings substring function

AGCKTTA 24 26.54 15.46 4.83 · 10−7 0.0083 Stabilizer
GGGCY TR 5 57.75 15.5 2.76 · 10−9 0.0081 Stabilizer
ACMGCGT 4 42.75 15.49 4.84 · 10−7 0.01198 Stabilizer

root leaf stem silique flower
−5

−4

−3

−2

−1

0

1

lo
g

(p
−v

al
u

e)

Confined to accessible substring

root leaf stem silique flower
−5

−4

−3

−2

−1

0

1

In any substring

lo
g

(p
−v

al
u

e)

Fig. 4. miR-161 and it’s p-values in different plant tissues. The accessible substring criterion was
applied with window size 25 and δ = 6Kcal.

stability-regulating elements within 3’ UTRs4. We successfully identified some novel
potential cis-regulatory motifs that may affect mRNA stability (see Table 2). For ex-
ample, the average half-lives (i.e. log(2)/Decay rate) of the set of mRNAs containing
the IUPAC motif AGCKTTA in accessible substrings was high in comparison to the
background. Thus, AGCKTTA seems to be a strong mRNA stabilizer. Table 2 also
demonstrates that, when relieving the accessibility criterion, the significance of the p-
values substantially dropped.

Tissue Specific microRNAs. In order discover microRNAs, which are potential trans-
factors influencing mRNA stabilities, we collected the genome-wide expression
(measured using a microarray technique) profiles of 5 A. Thaliana tissues, includ-
ing flowers, stems, siliques, leaf, and root. MicroRNAs with potential tissue-specific

4 We used as 3’UTRs the regions spanning 150bp downstream to the stop codons of genes.
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activity were discovered5. These microRNAs showed a significant p-value for binding
in one of the tissues and non-significant p-values in the rest of the tissues. For example,
the microRNA miR-161, represented in Figure 4, is specific to silique tissue. Interest-
ingly, the figure demonstrates that in most of the tissues the p− values corresponding
to the first (accessible substring) and second (control) input sets are almost similar.
However, in the silique tissue, where the microRNA miR-161 seems to be active, the
difference between the two input sets becomes conspicuous.
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Abstract. This paper proposes a parameterized algorithm for aligning two pro-
tein structures, in the case where one protein structure is represented by a contact
map graph and the other by a contact map graph or a distance matrix. If the se-
quential order of alignment is not required, the time complexity is polynomial
in the protein size and exponential with respect to two parameters Du

Dl
and Dc

Dl
,

which usually can be treated as constants. In particular, Du is the distance thresh-
old determining if two residues are in contact or not, Dc is the maximally allowed
distance between two matched residues after two proteins are superimposed, and
Dl is the minimum inter-residue distance in a typical protein. This result indicates
that if both Du

Dl
and Dc

Dl
are small enough, then there is a polynomial-time ap-

proximation scheme for the non-sequential protein structure alignment problem.
Empirically, both Du

Dl
and Dc

Dl
are very small and can be treated as constants. This

result clearly demonstrates that the hardness of the contact-map based protein
structure alignment problem is related not to protein size but to several parame-
ters, which depend on how the protein structure alignment problem is modeled.
The result is achieved by decomposing the protein structure using tree decompo-
sition and discretizing the rigid-body transformation space. We have implemented
our algorithm and preliminary experimental results indicate that on a Linux PC,
it takes from ten minutes to one hour to align two proteins with approximately
100 residues.

1 Introduction

The structure of a protein plays an instrumental role in determining its functions. Two
proteins with similar three-dimensional structure are more likely to have the same
function than two without similar structure. Pairwise protein structure alignment tools
routinely have been used to study the relationship between proteins. Many algorithms
have been developed to solve this problem based on various alignment models
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Please refer to Lancia & Istrail’s [10] and Lemmen &
Lengauer’s [11] papers for a survey on this problem. Though empirically many

� Corresponding authors.

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 488–499, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Parameterized Algorithm for Protein Structure Alignment 489

heuristic-based algorithms can generate a good alignment, there are few theoretical
studies of the problem [12, 13].

In this paper, we consider only protein backbone alignment. There are two major
methods to measure the similarity between two proteins: the coordinate distance-based
method and inter-residue contact-based method. The first type of measure uses the Eu-
clidean distance between two matched residues or atoms in the two proteins compared.
Many programs such as STRUCTAL [4], 3dSearch [5], and VAST [6] belong to this
category. To use this method, the optimal rigid-body transformation between two pro-
teins must be determined. The other type of measure employs a contact map graph to
describe the structure of a protein and compares the contact map graphs of two pro-
teins under consideration [8, 9]. A contact in a protein is a pair of residues that are
spatially close to each other. A contact map graph consists of all the residues (i.e, ver-
tices) and their contacts (i.e., edges) and is inferred from crystal structures. Using this
method, the protein structure alignment problem is often formulated as a maximum
common subgraph problem. It is unnecessary to find the optimal rigid-body transfor-
mation before obtaining the best match between two proteins. Usually the rigid-body
transformation is calculated after the best match is determined. A variant of a contact
map representation of a protein structure is a distance matrix in which an element is the
spatial distance between two residues. Two distance matrices are compared to render the
best common submatrix. Several widely used protein structure alignment tools such as
DALI [2], CE [14] and SARF [3] employ the distance matrix representation of a protein
structure.

Previous studies show that contact map-based protein structure alignment is NP-
hard and also hard to approximate [13, 15, 16], regardless of whether the alignment is
sequential or non-sequential. A non-sequential alignment refers to one in which the se-
quential order of residues in a protein is ignored, and only the spatial proximity between
two residues is taken into consideration. Many structure alignment tools support both
sequential or non-sequential structure alignment [2, 17, 18, 19].

Many protein structure comparison programs such as DALI [2] use heuristic
algorithms to find a good, but not the best, alignment. The advantage of these al-
gorithms is that they are computationally efficient. While these algorithms have no
performance guarantee, empirically they generate good alignment accuracy. There are
also some globally optimal algorithms for this problem. For example, Lancia et al.
[8] used a branch-and-cut method to find the optimal alignment between two proteins
when a protein is modeled by a contact map. Later, Caprara & Lancia also developed
a Lagrangian relaxation algorithm [9], which runs fast and sometimes can generate
a globally optimal solution. The disadvantage of these algorithms is that they do not
have good theoretical time complexity. Recently, Kolodny & Linial [12] proposed an
interesting polynomial-time approximation scheme for this problem when a
STRUCTAL-type objective function [4] (i.e., Gerstein & Levitt’s coordinate distance
based measurement) is used to measure the similarity between two proteins. However,
there is still no good approximation algorithm in the case where the two proteins un-
der consideration are modeled by a contact map. Instead, Goldman, Papadimitriou &
Istrail have shown that, based on the maximum common subgraph formulation, the
contact map-based protein structure alignment problem is hard to approximate [13]. The
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hardness of the protein structure alignment problem partially comes from the fact that
when two contact maps are aligned, the geometric information in the protein structure
is not taken into consideration.

Surprisingly, we show that this problem can be approximated within (1 + ε) times
optimal in the case where the parameters the algorithm depends on are constant, which
usually is the case. The major contribution of this paper is a parameterized algorithm
for the protein structure alignment problem when one protein structure is modeled by a
contact map graph and the other by a contact map or a distance matrix. Let OPT (Dc)
denote the optimal alignment score between two proteins where Dc is the maximally
allowed distance between two matched residues after two proteins are superimposed.
Our parameterized algorithm can generate a non-sequential alignment and its corre-
sponding rigid-body transformation such that: i) the alignment score is at least (1 −
1
k )OPT (Dc); ii) the distance between two matched residues is no more than (1+ ε)Dc

after two proteins are superimposed by the generated rigid-body transformation, where
ε is a small positive number; and iii) the running time is O(k2poly(n)2tw lg Δ/(εDc)6),
where poly(n) is a polynomial in the protein size n, tw = O(k2 max{2Dc,Du}3

D3
l

), Δ =

(1 + 2Dc

Dl
)3, Du is the distance threshold determining if two residues are in contact or

not, andDl is the minimum inter-residue distance in a protein. The same algorithm also
works for the sequential protein structure alignment problem, although its theoretical
time complexity is not as good as that of nonsequential alignment. We achieved this re-
sult by applying the following techniques: 1) instead of finding the best alignment first
and then the rigid-body transformation, we simultaneously search for the best rigid-
body transformation and the best alignment; 2) the whole rigid-body transformation
space is discretized into a polynomial number of discrete transformations; 3) one pro-
tein structure is decomposed into small blocks and each block is aligned to another
structure separately, using a tree-decomposition based method.

2 Preliminaries

Fixed-Parameter (Parameterized) Algorithm. Fixed-parameter algorithms are an ap-
proach to solving NP-hard problems. The time complexity of a fixed-parameter algo-
rithm is polynomial in the problem size but exponential with respect to some
parameters. If all these parameters are constants, then the fixed-parameter algorithm
can terminate within polynomial time.

Polynomial Time Approximation Scheme. A polynomial-time approximation scheme
(PTAS) is a type of approximation algorithm for optimization problems. For any given
ε > 0, this type of algorithm produces a solution of the optimization problem that
is within an ε factor of the optimal. The running time of the algorithm is polynomial
with respect to the problem size if ε is fixed. Usually, the smaller ε is, the greater the
running time.

Protein Structure Alignment Problem. We use a contact map graph G = (V,E) to
model a protein structure in *3. Each residue is represented by a vertex in V and
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associated with the 3D coordinates of its residue center. For each residue, we use its
Cα atom as the residue center. There is a contact edge (i, j) ∈ E between two residues
i and j if and only if their spatial distance is within a given distance cutoff Du. In a
typical protein, two residues cannot be arbitrarily close, which is one of the underlying
reasons why lattice models can be used to approximate protein folding. According to
simple statistics on the PDB database [20], 99% of inter-residue distances are more
than 3.5Ȧ. Let the constant Dl (Dl > 0) denote the minimum inter-residue distance in
a protein. Therefore, it can be easily verified that any residue can be adjacent to at most
(1 + 2Du

Dl
)3 residues.

Given a protein chain A, let G[A] denote its contact map graph. For a substructure
P of A, let G[P ] denote the contact map subgraph induced by substructure P . Given
two protein chains A and B, an alignment between A and B is a pair of substructures
P and Q satisfying the following conditions:

– P is a substructure of A and Q of B;
– There is a one-to-one mapping between the residues in P and Q. One residue p in
A is equivalent to residue q inB if and only if p is mapped to q. One contact edge in
G[P ] is equivalent to one in G[Q] if and only if their two end points are equivalent.

The optimal alignment between A and B is the alignment such that the number of
equivalent contact edges is maximized. If we know the equivalent residues between
A and B, then the rigid-body transformation between A and B can be calculated by
the method described in Arun et al.’s paper [21]. After A and B are superimposed,
the deviation between two equivalent residues cannot be too large. We use the distance
parameter Dc to denote the maximum Euclidean distance between any two equivalent
residues after superimposing these two proteins.

In doing protein structure alignment, we can choose to enforce the sequential order or
not. If the sequential order is enforced, then for any two residues pi and pj in P and their
equivalent residues qi and qj in Q, if pi occurs before pj along the primary sequence
of A, then qi also occurs before qj along that of B. Some protein structure alignment
tools can only generate sequential alignment [2], while some tools can generate non-
sequential alignment [3, 17].

In this paper, we study the following problem.

Problem 1. Given two proteins A and B, each is represented by a contact map graph.
There is a contact between two residues if their distance is no more than Du. The
optimal alignment betweenA and B is an alignment such that the number of equivalent
contact edges is maximized and after the two proteins are superimposed, the Euclidean
distance between two equivalent residues is no more than a threshold Dc.

Let E[A] andE[B] denote the set of contacts in proteinsA andB, respectively. For any
residue u in A, let M(u) denote its equivalent residue in B. If there is no equivalent
residue for u, then M(u) = φ. The protein structure alignment problem is to maximize
the following objective function:∑

u,v∈V [A],u<v

f(u, v,M(u),M(v)) (1)
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where

f(u, v,M(u),M(v)) =

⎧⎨⎩−∞ M(u) = M(v) �= φ
1 (u, v) ∈ E[A], (M(u),M(v)) ∈ E[B].
0 otherwise

(2)

Note that f(u, v,M(u),M(v)) = −∞ is used to avoid two different residues u and v
being aligned to the same residue in B.

We can further generalize the above problem to the case where protein A is repre-
sented as a contact graph and protein B as a distance matrix. That is, f(u, v,M(u),
M(v)) = h(|u − v|, |M(u) −M(v)|) when (u, v) ∈ E[A] where h(x, y) takes two
contact distances and outputs a positive value. The closer these two contact distances,
the higher the output.

The algorithm described in this paper can solve the protein structure alignment prob-
lem with Eq. 2 as the objective function. To enforce sequential order in the alignment,
we can set f(u, v,M(u),M(v)) to be −∞ if u < v while M(u) > M(v).

3 Structure Alignment with a Specific Transformation

In this section, we assume that the spatial positions of the two proteins are fixed and
find the best mapping between them by maximizing Eq. 1.

3.1 An Exact Protein Structure Alignment Algorithm

Here we describe a tree-decomposition based algorithm for the optimal protein structure
alignment problem, assuming that the positions of both proteins are fixed. This algo-
rithm has an exponential time complexity and will be used as a subroutine of the final
algorithm described in the following section. Please refer to Robertson and Seymour
[22] for the definition of a tree decomposition.

In Eq. 2, in order to detect if two residues in A align to the same residue in B, we
have to enumerate all the residue pairs in A. To be able to easily detect if two residues
in protein A are aligned to the same residue in B or not, we extend the contact graph
G[A] to G′[A] = (V [A], E′[A]) by adding more edges to G[A]. Besides all the edges
in G[A], we add one extra edge (u, v) to G′[A] if the distance between u and v is less
than 2Dc but more than Du. Therefore, for any two residues u and v in A, if there is
no edge between them in G′[A], then they cannot align to the same residue in B since
the distance between two equivalent residues is no more than Dc. Using the extended
graph, we can revise the objective function in Eq. 1 as follows:∑

(u,v)∈E′[A]

f(u, v,M(u),M(v)) (3)

where

f(u, v,M(u),M(v)) =

⎧⎨⎩−∞ M(u) = M(v) �= φ
1 (u, v) ∈ E[A], (M(u),M(v)) ∈ E[B]
0 otherwise
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Since now we only need to enumerate all the edges inG′[A] to calculate the objective
function in Eq. 3, we can perform a tree-decomposition on graph G′[A] and then use
the same tree-decomposition based algorithm as described in the side chain packing
paper [23] to maximize the objective function. Any two residues in A which might
align to the same residue in B appear simultaneously in at least one tree decomposition
component. So when doing calculations on this tree decomposition component, we can
detect if these two residues are aligned to the same residue or not. Using the same proof
technique as in paper [23], we can prove that the treewidth of G′[A] is no more than
O(max{2Dc,Du}

Dl
n2/3 lg n). Since the distance between two matched residues is no more

than Dc, each residue in A can be aligned to at most O
(
(1 + 2Dc

Dl
)3
)

residues in B.

So we have the following theorem.

Theorem 1. Let A and B be two protein structures in *3. Assume that the spatial
positions of A and B are fixed and the distance between two equivalent residues is
no more than Dc. There is an algorithm with time complexity O(n2tw lg Δ) generating
the optimal non-sequential alignment between A and B, where n is the protein size,

Δ = O
(
(1 + 2Dc

Dl
)3
)

, and tw = O(max{2Dc,Du}
Dl

n2/3 lgn).

Assume that protein A is inscribed in a minimal axis-parallel 3D rectangle and the
widths along each dimension are Wx, Wy , and Wz respectively. The following lemma
gives another upper bound on the running time of the tree-decomposition based algo-
rithm. Please see the supplemental material at our website1 for its proof.

Lemma 1. Let A and B be two protein structures in *3. Assume that the spatial po-
sitions of A and B are fixed and the distance between two equivalent residues is no
more than Dc. There is an algorithm with time complexity O(n2tw lg Δ) generating
the optimal non-sequential alignment between A and B, where n is the protein size,

Δ = O
(
(1 + 2Dc

Dl
)3
)

, and tw = O(max{2Dc,Du}
D3

l
min{WxWy,WxWz ,WyWz}).

3.2 A PTAS for Protein Structure Alignment

In this subsection, we describe a polynomial-time approximation scheme (PTAS) for
the protein structure alignment problem. The basic idea is to partition protein A into
small blocks, align each block to B separately and then finally combine the alignment
results. Assume that protein A is inscribed in a minimal axis-parallel 3D rectangle and
the widths along each dimension are Wx, Wy , and Wz , respectively. We also use D to
denote max{2Dc, Du}.

Theorem 2. Let A and B be two protein structures in *3. Assume that the spatial
positions of A and B are fixed and the distance between two residues is no more
than Dc. Then there is an algorithm with time complexity O(nk2tw lg Δ) generating a
non-sequential alignment between A and B with an alignment score at least
(1 − 4

k ) times the best possible, where n is the protein size, k is a positive integer,

Δ = O
(
(1 + 2Dc

Dl
)3
)

, and tw = O(kmax{2Dc,Du}2

D3
l

min{Wx,Wy,Wz}).
1 http://ttic.uchicago.edu/˜jinbo/StructureAlignment.htm
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Proof. Without loss of generality, assume Wx = min{Wx,Wy,Wz}. The intuition is
to cut the protein structure A into non-overlapping blocks using k different partitioning
schemes. Each block can be tree-decomposed into components containing no more than

O(kmax{2Dc,Du}2

D3
l

Wx) residues. Therefore, the structure alignment between each block

and B can be done within time proportional to O(Δ
O(k max{2Dc,Du}2

D3
l

Wx)
) where recall

that Δ is the maximum number of residues in B that a residue in A can align to. We
then prove that among k different partitioning schemes, at least one can give us a good
structure alignment. Please see the supplemental material for an example of k(= 3)
different partition schemes.

Using a group of hyperplanes y = yj = jD (j = 0, 1, ..., Wy

D ), we can partition

the protein A into Wy

D basic blocks along the y-axis, each of which has dimension

Wx × D ×Wz . Let Tj (j = 1, 2..., Wy

D ) denote the set of residues contained in the
basic block {(x, y, z)|0 ≤ x ≤ Wx, yj−1 ≤ y < yj , 0 ≤ z ≤ Wz}. Let Rj denote
the union of Tj+1, Tj+2,...,Tj+k−1

2. Let G(Rj) denote the subgraph induced by Rj .
Similarly, let G(Tj) denote the subgraph induced by Tj plus the contact edges be-
tween Tj and its two adjacent blocks. We optimize the structure alignment using k
different partition schemes and prove that at least one of them will give a good align-
ment. For a given partition scheme s (0 ≤ s < k), let RSs =

⋃
j:j%k=s G(Rj) 3

and TSs =
⋃

j:j%k=s G(Tj). RSs refers to the shadowed areas and TSs refers to
the non-shadowed areas plus the edges connecting shadowed and non-shadowed ar-
eas. Each residue in protein A can only be aligned to residues in B which is no more
than Dc away. Therefore, any two residues in different Rj will not be aligned to the
same residue in B. We align the structure in RSs to protein B first and then align the
remaining residues to B, using our tree-decomposition based algorithm. Let E(RSs)
and E(TSs) denote the optimal alignment score of RSs and TSs, respectively, and
Es = E(RSs) + E(TSs). The union of RSs and TSs contains all the residues and
inter-residue contact edges in the protein A. So the alignment score Es is greater than
or equal to the globally optimized alignment score Eopt.

Es = E(RSs) + E(TSs) ≥ Eopt (4)

Summing over all values of s in Eq. 4, we have the following:∑
0≤s<k

Es ≥ kEopt (5)

Now we will prove that
∑k−1

s=0 E(TSs) is no more than 4Eopt. Then, the sum of all
the E(RSs) is at least (k − 4)Eopt and there is at least one s∗ such that E(RSs∗) ≥
(1− 4

k )Eopt. Therefore, there is a structure alignment with score at least (1 − 4
k )Eopt.

The union of all the TSs is equal to
⋃

j G(Tj), which can be divided into four dis-
joint subsets

⋃
j G(Tl+4j) (0 ≤ l < 4) such that for a given l,G(Tl+4j1) andG(Tl+4j2)

2 If the subscript of B is greater than Wy

D
, then we replace the subscript with its modulus over

Wy

D
.

3 In this paper, j%k represents j module k.
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are disjoint if j1 �= j2. So the whole alignment score between
⋃

j G(Tl+4j) and B is

no more than Eopt no matter how we do the alignment. Therefore,
∑k−1

s=0 E(TSs) is no
more than 4Eopt.

For each partition scheme s, the algorithm aligns the partial structure in RSs to B.
Based on Lemma 1, the structure alignment between the partial structure in Rj and
B can be optimized by an algorithm with time complexity O(|Rj |2tw lg Δ). Once the
structure alignment between RSs and B is fixed, the algorithm aligns the remaining
structure to protein B. So the time complexity of structure alignment for each partition
scheme is O(n2tw lg Δ) and the time complexity of this algorithm is O(kn2tw lg Δ).

In the proof of the above theorem, we partition a protein into small blocks along
one dimension. Actually, we can further cut a protein into smaller blocks along two
dimensions. Based on Theorem 2, we arrive at the following theorem, which is proved
in the supplemental material.

Theorem 3. Let A and B be two protein structures in *3. Assume that the spatial po-
sitions of A and B are fixed and the distance between two equivalent residues is no
more than Dc. Then there is an algorithm with time complexity (nk22tw lg Δ) gener-
ating a non-sequential alignment between A and B with an alignment score at least
(1 − 8

k ) times the best possible, where n is the protein size, k is a positive integer

Δ = O
(
(1 + 2Dc

Dl
)3
)

, and tw = O(k2 max{2Dc,Du}3

D3
l

).

4 Structure Alignment with All the Transformations

In this section, we assume that we can move protein A in any way and the position
of protein B is fixed. We are going to find the best transformation of A such that the
objective function in Eq. 1 is maximized. Kolodny and Linial [12] achieved a PTAS al-
gorithm for the coordinate based structure alignment problem by discretizing the rigid-
body transformation space into a polynomial number of discrete transformations. We
will present a similar but more involved discretization technique for our problem.

A rigid-body transformation consists of two steps: rotation and translation. Math-
ematically, it can be represented by a triple (w, θ, t), where w is a normalized vector
in *3, θ the rotation angle and t the translation. The vector w and the angle θ form a
quaternion, which is the classic representation for rotation. The normalized vector w is
the unit axis around which an object is rotated by θ. Assume v̂ to be the resultant vector
for rotating a vector v by an angle of θ around a unit axis w. Then v̂ can be calculated
using the following formula:

v̂ = w(v · w) + (v − w(v · w))cos(θ) + (v × w)sin(θ) (6)

where · is the dot product of two vectors and×, the cross product. According to Eq. 6, if
the unit axisw is changed by a small degree δw, then |v̂|will be changed byO(|v||δw|).
If the rotation angle θ is changed by δθ, then |v̂| will be changed byO(|v||δθ|). Without
loss of generality, we can assume that the unit axis w originates at the center point of
a protein structure. Then |v| ≤ R where R is the radius of a protein structure. A small
change in the unit axis w by ε/R or the rotation angle θ by ε/R will change |v̂| by at
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most ε. All the unit axes form the surface of a sphere with radius 1, and the rotation
angle ranges from 0 to 2π.

For any given vector v, a translation twill lead to a new vector v̂ = v+t. Therefore, a
small change in the translation t by (ε, ε, ε) will change |v̂| by at mostO(ε). Assume that
a protein structure A is enclosed in a rectangle with dimensions Wx(A), Wy(A) and
Wz(A). Then all the possible translations between proteins A and B are in a rectangle
with dimensions Wx(A) +Wx(B), Wy(A) +Wy(B), and Wz(A) +Wz(B).

Since a small change in the transformation will not greatly change the spatial posi-
tion of protein A, we can discretize the whole transformation space into a polynomial
number of possible transformations. By working on these possible discrete transfor-
mations, we can find an alignment between two proteins with an alignment score very
close to the optimal. In fact, we can find all the possible transformations that lead to a
near-optimal alignment.

Theorem 4. Let OPT (Dc) denote the optimal alignment score between two proteins
A and B when the distance between two equivalent residues is no more than Dc af-
ter two proteins are superimposed. There is an algorithm to generate a non-sequential
alignment between two proteins such that i) the time complexity of this algorithm is
O(k2n3Δtw/(εDc)6) or O(k2n5Δtw/(εDc)6) where Δ = O((1 + ε)3D3

c/D
3
l ) and

tw = O(k2 max{2Dc, Du}3/D3
l ); ii) the alignment score is no less than (1 − Θ( 1

k ))
OPT (Dc); and iii) the distance between two equivalent residues is no more than
(1 + ε)Dc.

Proof. Given two possible rigid transformations (w1, θ1, t1) and (w2, θ2, t2), assume
they satisfy the following conditions:

|w1 − w2| ≤ εDc/3R, (7)

|θ1 − θ2| ≤ εDc/3R, (8)

|t1 − t2| ≤ εDc/3. (9)

Let Âi denote the transformation of A by (wi, θi, ti) (i = 1, 2). For any residue r in Âi,
let r̂i denote the image of r in Âi. It can be verified that |r̂1 − r̂2| ≤ εDc. Let Ni(r, d)
denote the set of residues in B such that the distance between r̂i and any residue in
Ni(r, d) is no more than d. We can easily verify that N1(r,Dc) ⊆ N2(r,Dc(1 + ε))
and N2(r,Dc) ⊆ N1(r,Dc(1 + ε)). Let OPT (d, w, θ, t) denote the optimal align-
ment score (i.e., the objective function in Eq. 1) between A and B when A is trans-
formed by (w, θ, t) and the deviation between two equivalent residues is no more than d.
Then we have OPT (Dc, w1, θ1, t1) ≤ OPT (Dc(1 + ε), w2, θ2, t2) since N1(r,Dc) ⊆
N2(r,Dc(1 + ε)).

Given a small positive constant ε, we can discretize the unit axis with step size
εDc/3R× εDc/3R, the rotation angle with step size εDc/3R and the translation with
step size εDc/3. The whole transformation space is discretized into a set of
O
(
R3V/(ε6D6

c)
)

points where V = (Wx (A) +Wx (B)) (Wy (A) +Wy (B))
(Wz (A) +Wz (B)). Let

∑
denote this set of discrete transformations. For any possi-

ble transformation (w1, θ1, t1), there is a discrete transformation (w2, θ2, t2) ∈
∑

such
that conditions (7)-(9) are satisfied. That is, OPT (Dc, w1, θ1, t1) ≤ OPT (Dc(1 +
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ε), w2, θ2, t2). So OPT (Dc) ≤ max(w,θ,t)∈ OPT (Dc(1 + ε), w, θ, t). For each dis-
crete transformation, according to Theorem 3, there is an algorithm with time complex-
ity O(k2nΔtw) to calculate OPT (Dc(1 + ε), w2, θ2, t2). This algorithm will generate
an alignment with score at least

(
1−Θ( 1

k )
)
OPT (Dc(1+ε), w2, θ2, t2) . Enumerating

all the discrete transformations in
∑

, we can generate an alignment with score at least(
1−Θ( 1

k )
)
OPT (Dc) and the deviation between two equivalent residues is no more

than (1 + ε)Dc. The running time of the above procedure is O(k2nΔtwR3V/(εDc)6).
According to paper [24], V is proportional to the protein size. For a globular protein,

R = O( 3
√
n), so the time complexity of the above algorithm is O(k2n3Δtw/(εDc)6).

For other proteins, R = O(n), so the time complexity is O(k2n5Δtw/(εDc)6).

This result indicates that as long as the ratio between max{2Dc, Du} and Dl is small
compared to the protein size, there is a polynomial-time approximation scheme for the
non-sequential protein structure alignment problem. If max{2Dc, Du}/Dl, l, k, and
ε are constants, then the time complexity is polynomial. Therefore, we can claim that
there is fixed-parameter polynomial-time algorithm for the contact map-based protein
structure alignment problem if the sequential order is not enforced.

Combining the exact algorithm described in Subsection 3.1 and the discretization
technique in this section, we have the following theorem for the structure alignment
problem.

Theorem 5. There is an algorithm to generate a non-sequential alignment with a score
at least OPT (Dc) such that i) the time complexity of this algorithm is O(n3Δtw/
(εDc)6) for globular proteins or O(n5Δtw/(εDc)6) for others, where Δ = O((1 +
ε)3D3

c/D
3
l ) and tw = O(max{2Dc,Du}

Dl
n2/3 lgn) and ii) the distance between two

equivalent residues is no more than (1 + ε)Dc.

5 Experimental Results

We have implemented the exact tree-decomposition algorithm described in
Subsection 3.1 and the discretization algorithm described in Section 4. The algorithm is
implemented on a cluster of Linux PCs with 2.5 GHz CPU. In total, we used 15 proteins
from two different folds in the test set described in [25] to test our algorithm. We set the
contact distance cutoff Du to 6.75 Ȧ and the maximum distance between two matched
residues Dc to 3.0 Ȧ.

In doing structure alignment, we always fix protein B and transform protein A. The
space of unit rotation axis is discretized into a 36 × 18 longitude-latitude grid. The
rotation angle is evenly discretized into 36 possible angles. The translation space is dis-
cretized into 35×35×35 discrete points. That is, if we fix the center of protein B to the
origin, then the possible center positions of protein A form a set {(x/2, y/2, z/2)| −
17 ≤ x ≤ 17,−17 ≤ y ≤ 17,−17 ≤ z ≤ 17}. We start from (0, 0, 0) and gradually
increase the distance between two protein centers to search for the best translation po-
sition. In total, the rigid-body transformation space is discretized into 1, 000, 188, 000
discrete transformations.

Currently, only the non-sequential alignment result is tested. Please see the supple-
mental material for the detailed alignment results. The running time of aligning one
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protein pair ranges from ten minutes to one hour. According to Caprara et. al. [25],
for the contact distance threshold 6.75 Ȧ, we can cluster two proteins into the same
fold if the number of aligned contacts is at least 0.559 times min{cA, cB} where cA
and cB are the numbers of contacts of both proteins, respectively. Our experimental
results comply with this criterion very well. However, to achieve the maximum number
of aligned contacts, Dc = 3.0Ȧ may not be big enough for some protein pairs. For ex-
ample, we need a bigger Dc to obtain more aligned contacts between 1b00a and 1dbwa
although Dc = 3.0Ȧ gives a very good alignment between 2pcy and 2plt. We plan to
investigate the cutoff value of Dc further. While the sequential order in the alignment is
not required, there are almost no sequential disorders in the generated alignment if two
proteins are in the same class.

6 Conclusion

This paper presents a parametrized algorithm for the contact map-based protein struc-
ture alignment problem, which has been proven to be NP-hard. The time complexity
is polynomial in the protein size and exponential with respect to several parameters,
which usually can be treated as constants. However, the method proposed in this paper
might not be useful for everyday structure alignment since while theoretically signifi-
cant, the computational time complexity is still expensive. A tool based on this method
can be used as a benchmark to evaluate the performance of other heuristic-based struc-
ture alignment algorithms.
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Abstract. Determining the function of all proteins is a recurring theme
in modern biology and medicine, but the sheer number of proteins makes
experimental approaches impractical. For this reason, current efforts
have considered in silico function prediction in order to guide and ac-
celerate the function determination process. One approach to predicting
protein function is to search functionally uncharacterized protein struc-
tures (targets), for substructures with geometric and chemical similarity
(matches), to known active sites (motifs). Finding a match can imply
that the target has an active site similar to the motif, suggesting func-
tional homology.

An effective function predictor requires effective motifs - motifs whose
geometric and chemical characteristics are detected by comparison algo-
rithms within functionally homologous targets (sensitive motifs), which
also are not detected within functionally unrelated targets (specific mo-
tifs). Designing effective motifs is a difficult open problem. Current
approaches select and combine structural, physical, and evolutionary prop-
erties to design motifs that mirror functional characteristics of active sites.

We present a new approach, Geometric Sieving (GS), which refines
candidate motifs into optimized motifs with maximal geometric and chem-
ical dissimilarity from all known protein structures. The paper discusses
both the usefulness and the efficiency of GS. We show that candidate
motifs from six well-studied proteins, including α-Chymotrypsin, Dihy-
drofolate Reductase, and Lysozyme, can be optimized with GS to motifs
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late evolutionarily important motifs with motifs that exhibit maximal
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Our current observations show that GS is a powerful tool that can com-
plement existing work on motif design and protein function prediction.

1 Introduction

The determination of protein function is an important goal in biology, but ex-
perimental techniques for determining function are expensive and time con-
suming. One way to accelerate this process is to use computational techniques
to search the structure of functionally uncharacterized proteins (targets), for
matches of geometric and chemical similarity to known functional sites (motifs).
To achieve this, algorithms like Geometric Hashing [1], JESS [2], and Match
Augmentation [3] identify a subset of a target with the greatest geometric and
chemical similarity to the motif. Typically, geometric similarity is measured by
least root mean squared distance (LRMSD1) and chemical similarity is ensured
by examining the chemical compatibility of corresponding matches. The iden-
tification of a match with statistically significant LRMSD can suggest that the
target and motif have similar function [2, 3, 4].

Designing effective motifs is a two-sided open problem: The geometric config-
uration and chemical makeup of effective motifs must be similar to functionally
related proteins (sensitive), as well as dissimilar to functionally unrelated pro-
teins (specific). For this reason, it is difficult to select motif points, the points
in space with chemical labels which comprise motifs, so that sensitivity and
specificity are simultaneously maximized. Many methods for designing motifs
exist, and we are only able to include a partial list here. Motifs have been de-
signed using evolutionary significance and proximity to binding sites [5]. Motifs
have also been designed using literature search and PSI-BLAST alignments of
literature-defined motifs from the Catalytic Site Atlas [6, 7]. Still other motifs are
designed using surface exposure, and algorithms for detecting conserved binding
patterns [8]. The work presented in this paper complements these methods with
a novel criteria for motif design and an algorithm that can be used to further
improve existing motifs.

Contributions and Outline. We begin by describing the design and imple-
mentation of Geometric Sieving (GS), an algorithm for refining candidate motifs
into optimized motifs. As input, GS accepts a selection of candidate motif points,
chosen perhaps by another motif design algorithm, called the input set, and the
number k of motif points desired in the optimized motif. GS outputs an opti-
mized motif: a motif of k candidate motif points with the greatest geometric and
chemical dissimilarity to all known protein structures. We refer this property as
Geometric Uniqueness.

The motivation and inspiration for defining Geometric Uniqueness stems from
several observations in our earlier work [3, 5] and the work of other researchers
[2, 4], where it has been observed that motifs which are highly representative

1 LRMSD is the root mean square distance (RMSD) between two sets of points in 3D,
aligned with smallest RMSD.
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of protein function do not occur in a large fraction of the known proteins. One
question that we posed is whether geometric and chemical dissimilarity of a mo-
tif to all other known proteins (a.k.a. Geometric Uniqueness) can be computed
in a reasonable amount of time and whether Geometric Uniqueness can be used
to identify sensitive and specific motifs. After we obtained a positive answer to
the above question for a limited but well-designed set of experiments, we pro-
ceeded to investigate a second question which is whether Geometric Uniqueness
correlates with other characteristics of active sites. For example, evolutionarily
significant amino acids, those most associated with important evolutionary di-
vergences, as defined in [9, 10], are often related to active sites [5]. We observed,
on our limited set of examples, a correlation between Geometric Uniqueness and
evolutionary significance.

Measuring and optimizing Geometric Uniqueness is a nontrivial computa-
tional problem because numerous structural comparisons must be made between
many motifs and many protein structures. In Section 2, we present recent ad-
vances in the field of motif comparison algorithms that enabled the development
of GS. In Section 3, we detail the GS algorithm, a distributed algorithm coupled
with on-line statistical optimization, which measures Geometric Uniqueness to
optimize motifs. Our experimental results are shown in Section 4. Targeting our
first question, we optimized input sets derived from six well-studied proteins. On
these examples, optimized motifs computed by GS had among the highest sensi-
tivity and specificity of every subset motif definable from the input sets. Using in-
formation from the Evolutionary Trace (ET) [5, 9] we observed, on our examples,
that evolutionarily significant motifs exhibited higher Geometric Uniqueness.

This paper does not advocate that Geometric Uniqueness should be the sole
criterion for defining effective motifs. It argues, rather, that Geometric Unique-
ness is an interesting property that seems to be useful for refining existing motifs.
It also argues that GS is a novel methodology which can be used to optimize
motifs designed by human intuition, or by other motif design methods, such as
the milestone algorithm MultiBind [8]. It finally argues that Geometric Unique-
ness can be compared with other known criteria for selecting motifs in an effort
to better understand and finally attack the difficult problem of protein function
prediction.

2 Related Work

Motif Types. The many approaches to designing effective motifs have created
different types of motifs: motifs have been composed of points on the Connolly
surface [11] representing electrostatic potentials [12], of hinge-bending sets of
points in space [13], of sets of “pseudo-centers” representing protein-ligand in-
teractions [8], or of points taken from atom coordinates with evolutionary data
[3, 9], to name a few. Depending on how motif points are defined, they have dif-
ferent labels associated with them and these labels need to be taken into account
when comparing motifs. GS is orthogonal to the choice of motif type and could
be applied with any of the motif types above.
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In this work, a motif S is a set of m points {s1, . . . , sm} in three dimensions,
whose coordinates are taken from backbone and side-chain atoms. Each motif
point si in the motif has an associated rank p(si), a measure of the functional
significance of the motif point. Each si also has a set of alternate amino acid labels
l(si) ⊂ {GLY,ALA, ...}, which represent residues this amino acid has mutated
to during evolution. Labels permit our motifs to simultaneously represent many
homologous active sites with slight mutations, not just a single active site. In
this paper, we obtain labels and ranks using ET [9, 10].

Motif Comparison Algorithms. GS requires a geometric and chemical com-
parison algorithm to compare motifs to targets. Many such algorithms exist, but
differ fundamentally in that they are optimized for comparing different types of
motifs. There are algorithms for comparing graph-based motifs [14], algorithms
for finding catalytic sites [2], and the seminal Geometric Hashing framework [1]
which can search for many types of motifs, including motifs based on atom posi-
tion [15], points on Connolly face centers [16], catalytic triads [17], and flexible
protein models [13]. The comparison algorithm we use in this work is Match
Augmentation (MA) [3], because of its availability and compatibility with our
selected motif type. GS is independent of MA, and adapting another comparison
algorithm to use our motifs could be equally successful.

MA compares a motif S to a target T , a protein structure encoded as n target
points : T = {t1, . . . tn}, where each ti is taken from atom coordinates, and labeled
l(ti) for the amino acid ti belongs to. A matchM , is a bijection correlating all mo-
tif points in S to a subset of T of the formM = {(sa1 , tb1), (sa2 , tb2) . . . (sam , tbm)}.
Referring to Euclidean distance between points a and b as ||a−b||, an acceptable
match requires:

Criterion 1. ∀i, sai and tbi are biologically compatible: l(tbi) ∈ l(sai).
Criterion 2. LRMSD alignment, via rigid transformation A of S, causes

∀i, ||A(sai)− tbi || < ε, our threshold for geometric similarity.

MA takes as input a motif S and a target T . MA outputs the match with smallest
LRMSD among all matches that fulfill the criteria. Partial matches correlating
subsets of S to T are rejected. By establishing a threshold for acceptable geomet-
ric similarity, the second criterion causes MA to return match LRMSDs bounded
by ε, even if the smallest LRMSD is not very low. This allows us to generate a
spectrum of matches ranging from high to low geometric and chemical similarity,
which we refer to as a motif profile.

Obtaining Motif Profiles. The basic object of comparison used by GS is the
motif profile, a set of matches SΩ between a single motif S and a very large set of
targets, Ω. We compute these matches with MA. Motif profiles are best visual-
ized as frequency distributions (see Figure 1(a)), which are essentially histograms
that plot frequency (the number of matches with a particular LRMSD) versus
LRMSD. We apply kernel density estimation procedures [18] to estimate popula-
tion density from the motif profile, using Gaussian Kernel smoothing to interpo-
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(a) (b) (c)

Fig. 1. (a) Typical frequency distribution of matches between a motif and the
PDB [21]. (b) Comparison of PDB, sequentially nonredundant PDB, and CATH
representatives. (c) Confidence band demonstrating the accuracy of samples of the
PDB. This data computed using the motif C42, H57, C58, D102, D194, S195, S214
from α-Chymotrypsin (1acb).

late between data points, as in previous work [3]. Optimal bin-widths determined
by Sheather-Jones method [19, 20] were used to avoid under- and over-smoothing.

The purpose of Ω is to represent the set of all known protein structures. We
have found, however, that different representations of Ω tend not to have sig-
nificant effect on the actual shape of motif profiles generated. For the 6 motifs
optimized for this work, as well as 12 motifs used in previous work [3], we ob-
served strong similarity between motif profiles calculated with the PDB (Ω0),
and Ωnr25 and Ωnr90, two sets of sequentially nonredundant PDB structures
having no more than 25% (resp. 90%) sequence identity. A similar comparison
was true when using the CATH [22] database, a multi-level nested categorization
of increasingly specific protein sequence and structure classifications. We selected
a representative of every category at the three most specific levels: Topologies
(ΩT ), Homologous Superfamiles (ΩH), and Sequence Families ΩS . In our ex-
perience, motif profiles on these representatives also resemble Ω0, in increasing
degrees of similarity corresponding to increasingly specific levels of CATH. The
similarity between the Ω0 (black), Ωnr25 (light grey) and ΩS (dark grey) is plot-
ted in Figure 1(b). Ωnr90, ΩT , and ΩH were excluded for clarity, but are closely
related.

We have also observed that motif profiles on Ω0 are exceptionally robust to
random sampling. Ω5 is the random 5% sample of PDB structures in Ω0, and
motif profiles with this set are called SΩ5 . In our experience, for any S, SΩ5

resembles SΩ0 with high accuracy. This can be seen in Figure 1(c), where we
overlayed 5000 distinct SΩ5 samples with a single SΩ0 , the center line in Figure
1(c). 95% of the 5000 SΩ5 fell within the upper and lower lines, demonstrating
that motif profiles based on Ω5 retain high similarity to motif profiles based on
Ω0. This is a result of sampling a largely unimodal distribution.

GS is not dependent on the selection of Ω, but because our observations sug-
gest that motif profiles based on many logical representations of Ω, including
ΩS , ΩH , ΩT , Ωnr25, and Ωnr90, differ little from motif profiles based on Ω5, this
paper proceeds by using Ω5. 5% sampling greatly reduces the number of matches
necessary to compute a motif profile, while its simple definition promotes the
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reproducibility of this work. Other investigations could use alternate selections
of Ω.

Motif profiles are especially useful for determining the statistical significance
of matches with a given motif S. In previous work, we showed that nonparamet-
ric density estimation of motif profiles generated with S can be used to calcu-
late p-values, which measure the statistical significance of any match of S [3].
Matches with low p-values, which correspond to high statistical significance,
seem to correlate with functional similarity [3]. This result corroborates earlier
work which applied parametric approaches [2, 4] to generate other measures of
statistical significance which also correlate with functional homology.

3 Geometric Sieving

GS accepts an input set, a collection of candidate motif points which could be
selected by another motif design method, or provided by a user seeking to im-
prove a motif. GS also requires k, the number of candidate motif points expected
in the output, and, as discussed in the previous section, a geometric comparison
algorithm compatible with the motif type used. The output of GS is the subset
motif with k points that has highest Geometric Uniqueness.

GS is a refinement process, not a motif discovery algorithm. If no subset
motif of size k has geometric and chemical similarity to functionally homologous
active sites, then GS cannot select one which does. For this reason, the input set
is assumed to contain a subset motif of size k, which has basic geometric and
chemical similarity to functional homologs of the input set. By this assumption,
matches to functional homologs remain in the low-LRMSD tail of the motif
profile for many subset motifs, while functionally unrelated proteins, the vast
majority of matches in a motif profile, gravitate around the large mode near
the median LRMSD. The difference in LRMSD between this low-LRMSD tail
and the major mode of the distribution causes matches to functional homologs
to be statistically significant relative to the distribution overall [3]. With many
different combinations of motif points to choose from, in the form of varying
subset motifs, we can select the motif profile which maximizes the LRMSD
difference between the low-LRMSD tail and the major mode. As a result, matches
to functional homologs will be maximally statistically significant for the input set
considered. Geometric Sieving implements this task by analyzing motif profiles.

In this work, between two motif profiles, the motif profile with higher median
LRMSD has higher Geometric Uniqueness. Medians are computed on kernel den-
sity smoothed motif profiles. While other statistics for quantitative comparison
exist, such as the mode, our experimentation shows that comparing the medi-
ans of motif profiles is an elegant and effective approach for determining which
motif is more Geometrically Unique. In addition, medians are not affected by
extreme values at the tails of the distribution. Estimating the true median of the
population from a sample is less prone to sampling errors and errors due to incor-
rect choice of smoothing parameters than mode estimation. Confidence bounds
about the median, an integral part of our approach, are better studied than con-
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fidence bounds about the mode. Finally, in our results, we show the connection
between medians and the actual distribution, demonstrating that motif profiles
with higher medians are motif profiles with more and/or higher match LRMSDs.

The motif size, the number of motif points in a motif, is partially related to
Geometric Uniqueness. Larger motifs specify more geometric constraints, and so
tend to have higher LRMSD matches than smaller motifs [3]. Thus, we avoid
comparing motif profiles from subset motifs of different sizes, ensuring that only
the true geometric and chemical differences drive the motif profile comparison.
This is why k, the size of the optimized motif, is an input. The operation and
success of GS is not affected by k, and our results hold over varying k, as we will
demonstrate later. Selecting an ideal k a priori remains an open problem, and
the subject of continuing research.

3.1 The Geometric Sieving Algorithm

GS has two phases: GATHERING and ANALYSIS, which are described in
Algorithms A1 and A2. Ignoring the ELIMINATION step (� in Algorithm A1)
for now, the GATHERING phase uses MA to iteratively compute motif profiles
(outer loop of Algorithm A1) for every subset motif of size k (inner loop of Algo-
rithm A1). These motif profiles are passed to the ANALYSIS phase, which cal-
culates the medians of each motif profile, and identifies the subset motif with the
highest median LRMSD. This subset motif is returned as the optimized motif.

A1 GATHERING A2 ANALYSIS A3 ELIMINATION

Input: Input Motif S

Input: Desired size k

for each Ti in Ω5 do
for all subset motifs S

′ of
size k do

Run MA with S
′ and Ti

MA returns match M

Store M in profile S
′

Ω

end for
ELIMINATION�

end for

Input: all motif profiles S
′

Ω

from GATHERING phase

Calculate m(S′

Ω) for all S
′

Ω

Find the motif profile S
′

Ω

with highest m(S′

Ω)

Output: S
′, the optimized

motif.

Input: all motif
profiles SΩ from
GATHERING phase

∀ S
′

Ω, compute r(SΩ)

∀ r(SΩ), find l

eliminate all r(S′

Ω)
with u < l

The GATHERING phase is embarrassingly parallel. Given a set of c pro-
cessors, we can obtain a (c − 1)-times linear speedup by offloading the task of
calculating each match between the current subset motif S′, target Ti pair to
another processor. This produces a client/server architecture where the server
implements GATHERING, and offloads MA problems to the clients.

Further modifications to GS can increase performance. In particular, let us
now consider the optimization procedure ELIMINATION (Algorithm A3) which
is called from GATHERING. Note that when we call ELIMINATION during
GATHERING, all motif profiles are only partially computed. Eventually ANAL-
YSIS will identify the optimized motif by selecting the motif profile that has the
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highest median. A closer look at the computations happening during GATH-
ERING revealed that some motif profiles have medians significantly lower than
others. Since we are only interested in the motif profile with the highest me-
dian, we can stop computing matches for motif profiles that have significantly
lower medians, saving computation time. For this reason, in Algorithm A1, we
apply ELIMINATION (see outer loop of Algorithm A1), which determines for
which motif profiles we can stop computing matches. These motif profiles will
be eliminated in the next loop through GATHERING. ELIMINATION need not
be applied at every iteration of the outer loop of GATHERING, as it will have
a limited effect. Instead, we define a parameter called the step size and we call
ELIMINATION after step size iterations of the outer loop of GATHERING.

As we pointed out above, when we call ELIMINATION during GATHER-
ING (see Algorithm A3), all motif profiles are only partially computed. At this
point in the algorithm, comparing the medians of these partial motif profiles
can be affected by sampling error. For this reason, ELIMINATION computes a
95% Confidence Interval r(S′′

Ω) (see method of Efron and Tibshirani [23, 24, 25]),
which has 95% probability of containing the median m(S′

Ω) of S′
Ω. Therefore,

for two partially computed motif profiles S′
Ω, S′′

Ω, if r(S′
Ω) > r(S′′

Ω) do not
overlap, there is low probability that m(S′

Ω) < m(S′′
Ω). Since we are inter-

ested only in the motif profile with highest median LRMSD, it is thus unnec-
essary to finish computing S′′

Ω because S′′ is not the optimized motif with high
probability.

We apply this fact during ELIMINATION by finding l, the highest lower
bound of all confidence intervals, and eliminate all subset motifs having confi-
dence intervals with upper bound u < l. In the next loop through GATHERING,
we do not calculate matches for eliminated subset motifs. If only one subset mo-
tif remains, or if GATHERING completes, we proceed to the ANALYSIS phase,
which identifies the motif profile, that has not been eliminated, with the highest
median. This is returned as the output of GS.

4 Experimental Results

We begin our experimentation by demonstrating that GS is a practical and ef-
ficient tool for motif optimization. Using input sets derived from 6 well-studied
proteins, we show that different subset motifs derived from the same input set
produce motif profiles which measurably vary in the median. We also demon-
strate that estimating medians with a 95% confidence bound and eliminating
subset motifs via ELIMINATE reduces the number of calculations necessary to
correctly determine the motif profile with highest median. On our small data set,
we made two key observations: First, sensitive and specific optimized motifs can
be identified by Geometric Uniqueness. Second, evolutionary significant subset
motifs tend to be more Geometrically Unique than evolutionarily insignificant
amino acids. Full details can be found at:

http://www.cs.rice.edu/~brianyc/papers/RECOMB2006/.
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Diagram tag AA # Rank
A1 FI 41 47.9
A2 CE 42 3.97
A3 HD 57 7.22
A4 CE 58 3.97
A5 GI 59 38.3
A6 SI 96 73.4
A7 DD 102 1.90
A8 MI 192 29.9
A9 DE 194 3.10
A10 SD 195 1.93
A11 SE 214 2.03
B1 LI 4 66.0
B2 AE 7 16.0
B3 VI 13 63.0
B4 IE 14 1.00
B5 GD 15 1.00
B6 PE 21 27.0
B7 WD 22 1.00
B8 AI 29 63.0
B9 FD 31 34.0
B10 TE 46 34.0
B11 RE 57 1.00
B12 YE 100 36.0
B13 DE 122 3.00
C1 CE 6 42.0
C2 EE 35 23.0
C3 SE 36 1.00
C4 FE 38 55.0
C5 NE 39 55.0
C6 AE 42 31.0
C7 DE 52 10.0
C8 YE 53 15.0
C9 NE 59 44.0
C10 WE 123 42.0

Diagram tag AA # Rank
D1 YI 52 17.2
D2 KD 53 2.4
D3 KI 55 11.9
D4 SI 58 9.2
D5 YI 88 17.1
D6 FE 89 1.0
D7 GE 91 1.0
D8 KD 110 1.9
D9 RD 182 1.9
D10 GD 233 1.1

E1 TI 30 15.3
E2 QI 31 14.9
E3 TI 32 13.6
E4 YD 33 2.20
E5 GD 72 1.00
E6 GD 74 1.00
E7 GE 76 1.00
E8 AI 77 16.7
E9 QD 99 2.70
E10 FE 200 1.00

F1 YD 70 1.00
F2 WD 72 1.00
F3 VI 73 10.1
F4 AI 78 10.0
F5 EE 79 1.00
F6 YD 81 2.21
F7 TI 112 16.6
F8 DI 113 11.9
F9 QD 129 1.00
F10 GD 170 1.79

Fig. 2. Input sets used. “AA”: amino acid type; “#”: PDB residue number; “Rank”:
ET rank.

4.1 Primary Data

Input Sets. Earlier work has produced examples of motifs designed with evolu-
tionarily significant amino acids [3] and amino acids with documented
function [6], which were sensitive and specific. Inspired by these approaches,
we selected evolutionarily significant (E , Figure 3) and functionally documented
(D, Figure 3) amino acids for each of our six input sets, except Lysozyme (3lzt).
We also included evolutionarily insignificant amino acids (I , Figure 3), chosen
from the same region of the protein.
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PDB Code Amino Acids and Citations EC class size k

1acb S195 H57 D102 [26] 3.4.21.1 11 7
1rx7 W22 [27], G15, D27, F31, H45, I50, G96 [28] 1.5.1.3 13 10
3lzt Control 3.2.1.17 10 8
1juk Lys53, Lys110, Arg182, Gly233 [29] 4.1.1.48 10 6
1kpg G72, G74, Q99, Y33 [30] 2.1.1.79 10 6
1ukr Y70, W72, E79, Y81, Q129, E170 [31] 3.2.1.8 10 6

Fig. 3. Functionally documented amino acids used in our input sets (cited), with
protein EC class, input set size (“size”), and subset motif size (k)

Having chosen evolutionarily significant and functionally documented amino
acids as part of each input set, we postulated that these “motif-worthy” amino
acids, and not the evolutionarily insignificant amino acids, would create the most
sensitive and specific motifs. For this reason, k was chosen in each case as the
total number of evolutionarily significant and functionally documented amino
acids in each input set. This guarantees that one subset motif from each input set
would contain only evolutionarily significant and functionally documented amino
acids, while the other subset motifs must contain evolutionarily insignificant
amino acids. As a control, the Lysozyme input set (3lzt) was composed entirely
of evolutionarily significant amino acids.

Functional Homologs. Measuring sensitivity and specificity requires a bench-
mark set of functional homologs. We use the functional classification of the En-
zyme Commission [32] (EC), which identifies families of functional homologs for
each input set (see Figure 3). Structure fragments and mutants were removed.

The Protein Data Bank. In this paper, we use Ω5, as mentioned in Section 2,
which is sampled from the set of crystallographic protein structures in the Pro-
tein Data Bank on Sept 1, 2005. PDB entries with multiple chains were divided
into separate structures, producing 79322 structures. While this could prevent the
identification of matches to active sites that span multiple chains, it is not clear
from the PDB file format how to determine which chains are intended to be in
complex. Incorrectly combining chains can lead to searches within physically im-
possible colliding molecules. Since none of the active sites used in this study span
multiple chains, separation was the most reproducible and well defined policy.

Implementation Specifics. GS uses the Message Passing Interface [33] (MPI)
protocol for interprocess communication, and was tested on a 16-node Athlon
1900MP cluster. The Rice TeraCluster, a cluster of 272 800Mhz Intel Itanium2s,
and Ada, a Cray XD1 with 672 2.2Ghz AMD Opteron cores, computed final
data. ε (see Section 2) was set to 7Å.

4.2 Median LRMSD Differentiates Motif Profiles

As mentioned in Section 4.1, our input sets were defined on both evolutionarily
significant and insignificant amino acids, as well amino acids with documented
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1acb 1rx7 3lzt

Fig. 4. Motif profiles generated using GS

function. Since GS calculates motif profiles for every possible subset motif, we
hypothesized that the diversity of these input sets would present a spectrum
of motif profile medians, and that medians within this spectrum would vary
sufficiently to justify motif profile comparison by measuring median LRMSD.

Experiment. Each of our six input sets has between 10 and 13 motif points,
and a specific k for each input set. GS computed motif profiles for every com-
bination of k motif points in each input set. For example, α-Chymotrypsin and
DHFR each contained, respectively, 7 and 10 amino acids which were either evo-
lutionarily significant or functionally documented, out of the 11 and 13 amino
acids total. Running GS with k = 7 and k = 10, respectively, GS exhaustively
analyzed all combinations of 7 and 10 amino acids as the subset motifs con-
sidered. We expected the Lysozyme input set, a control composed entirely of
evolutionarily significant amino acids, to have a narrower spectrum of median
LRMSDs, relative to the other sets of motif profiles.

Observations. The medians of the motif profiles generated (vertical hashes on
the x-axes in Figure 4), occurred in ranges of approximately 1 Å LRMSD. Motif
profiles corresponding to the highest medians clearly had more matches at higher
LRMSDs than motif profiles at the lowest medians, and thus higher Geometric
Uniqueness. This is demonstrated by darkened hashes and darkened curves in
Figure 4, where the biggest differences in medians (darkened hashes) correlated
to obvious differences in motif profiles (darkened curves). Lysozyme, which did
not contain a spectrum of evolutionarily insignificant and significant amino acids,
had a smaller range of medians. Higher median LRMSD in this application is
clearly directly associated with more and higher match LRMSDs, showing on
these examples that medians can be used to measure Geometric Uniqueness.

4.3 Median Estimation Cuts Runtime, Minor Accuracy Loss

Our implementation of GS uses online estimation of motif profile medians, re-
ducing the number of matches which need to be calculated before the opti-
mized motif is identified. Using input sets from Section 4.2, we first generated
matches without using the ELIMINATION optimization, mentioned in Section 3.
Next, we repeated this calculation with the ELIMINATION optimization, with
step sizes of 100 and 500, to stop sampling on motif profiles which clearly did
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Input Set Time-Full Matches-Full Time-500 Matches-500 Time-100 Matches-100
1acb� 12545:33:20 1,322,230 2683:07:40 186,883 1424:13:20 97,836
1rx7� 10826:50:00 1,211,266 915:20:40 203,356 554:56:40 107,657
3lzt� 1204:52:00 184,395 227:56:00 97,593 942:00:00 92,099
1juk 1059:06:40 1,100,452 100:33:20 183,086 22:13:20 87,098
1kpg 1224:53:20 1,092,748 80:26:40 179,721 22:46:40 78,014
1ukr 2030:26:40 1,063,797 150:13:20 110,043 35:40:00 74,613

Fig. 5. Speedups from Median Estimation: Execution time and number of matches
computed, using step sizes of 100, 500, and exhaustive sampling. � = Run on the Rice
TeraCluster. Remaining runs were done on Ada.

not have the highest median LRMSD, thereby reducing the number of matches
necessary.

Observations. Median estimation substantially reduces running time necessary
to determine the optimized motif. Operating at step sizes of 100, GS can identify
the optimized motif an average of 10 times faster than GS without median
estimation. This speedup follows directly from the early elimination of motifs
which, with high probability, do not have the highest median. At step sizes of
100, GS can identify the optimized motif with an average of 10 times less matches
than GS without median estimation. Figure 5 describes the precise number of
matches and time consumed.

Median estimation is very accurate. In every case described in Figure 5, me-
dian estimation identified the same optimized motif as GS using full sampling.
However, at step size 100, GS also identifies an alternative subset motif for 3lzt.
GS was unable to eliminate the alternative subset motif because overlapping
confidence intervals (see Section 3.1) did not separate by the time sampling was
complete. The same was true at a step size of 500 for 3lzt, and 1ukr. This sug-
gests that for some motifs, achieving certainty of the optimized motif beyond
95% confidence can require sampling more than 5% of the PDB. Median estima-
tion strongly accelerates the determination of the optimized motif with minor
sacrifices in accuracy.

4.4 Geometric Uniqueness Identifies Effective Motifs

GS was designed for the purpose of improving the sensitivity and specificity of
motifs by identifying the subset motif with highest median LRMSD, our mea-
sure of Geometric Uniqueness. We demonstrate that optimized motifs, on our
six input sets, are among the most sensitive and specific of all possible motifs
definable from the input sets.

Experiment. For each input set, we computed a match between every possible
subset motif and every functional homolog in the corresponding EC class, ex-
cept for the identical structure. Then, for each match, we accessed the p-value,
a measure of statistical significance determined using a method from previous
work [3]. Using α = .02, our standard of statistical significance, we determined
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1acb 1rx7 1ukr
1acb 1rx7 3lzt 1juk 1kpg 1ukr

Max Sens. 100.0% 98.7% 96.7% 100.0% 100.0% 58.4%
Avg Sens. 94.2% 90.4% 93.4% 93.9% 93.4% 29.2%
GS Sens. 100.0% 93.3% 96.3% 100.0% 100.0% 27.0%

Fig. 6. Sensitivity of 1acb, 1rx7, 1ukr vs median LRMSD (above), and sensitivity per
input set: the most sensitive subset motif, the average sensitivity, and the sensitivity
of the optimized motif from GS (table)

the number of matches with p-values below α - the true positives. The propor-
tion of true positives relative to the total number of functional homologs is the
sensitivity of the motif. With α at .02, specificity was always slightly above 98%.

Observations. In exhaustive comparison to all possible motifs definable from
the input sets at their respective k values, GS identified optimized motifs which
were quite sensitive, at a high level of specificity. From the 6 input motifs, GS
produced 5 optimized motifs with greater sensitivity than the average subset
motif from the same input set (see Figure 6). The exception, 1ukr, displayed no
subset motifs with high sensitivity, even though it was created with the same
criteria as the other input sets. Overall, Geometric Sieving performed well, iden-
tifying optimized motifs among the most sensitive of 5 out of 6 input sets, except
where no effective motif could be found.

4.5 Geometric Uniqueness Correlates with Evolutionary
Significance

Using the motif profiles calculated over Ω5, we have the median LRMSD of every
subset motif. Since we also have the evolutionary significance of every amino acid

1acb 1r7 3lzt

Fig. 7. Geometric Uniqueness vs. Evolutionary Significance
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in our input sets, we can evaluate the evolutionary significance of every subset
motif relative to its Geometric Uniqueness. In this experiment, we represented
the total evolutionary significance of a subset motif as the sum of the ET ranks
of its elements. Increasing sums relate to decreasing evolutionary significance,
displayed on the vertical axis in Figure 7. Median LRMSD was plotted on the
horizontal axis.

Observations. Motif profiles with high medians corresponded to subset motifs
with evolutionarily significant amino acids (grey circles in Figure 7). In all cases
but Lysozyme (3lzt), the input sets used demonstrate how evolutionary signifi-
cance increases proportionately with increasing median LRMSD. In Lysozyme,
a control set where every candidate motif point was evolutionarily significant,
no apparent trend is visible. The existence of this apparent trend suggests that
Geometric Uniqueness may be tied to evolutionary conservation.

5 Conclusions

We have presented GS, a novel distributed algorithm for exhaustively refining
input sets of candidate motif points into optimized motifs. We have implemented
GS with techniques and optimizations suitable for large scale distributed sys-
tems, and tested it on a cluster with more than 600 CPUs. By demonstrating
refinement on 6 well-studied input sets, we show that, at a very high level of speci-
ficity, the optimized motifs from these examples were among the most sensitive
of all motifs definable from these input sets. Using GS in conjunction with the
Evolutionary Trace permitted us to demonstrate examples where amino acids
that are evolutionarily significant are also Geometrically Unique. Our current
observations show that GS is a powerful motif refinement algorithm which can
be used in conjunction with other motif design techniques in an effort to create
sensitive and specific motifs. In the future, we hope to accomplish larger-scale
investigations to help clarify the problem of selecting the appropriate motif size,
which remains an open problem, and also to understand how Geometric Unique-
ness can be combined with other motif design principles to produce more effective
motifs.
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Abstract. A fundamental problem in molecular biology is the compari-
son of 3-dimensional protein folds in order to develop similarity measures
and exploit them for protein clustering, database searches, and drug de-
sign. Contact map overlap (CMO) is one of the most reliable and robust
measures of protein structure similarity. Fold comparison can be done by
aligning the amino acid residues of two proteins in a way that maximizes
the number of common residue contacts. CMO maximization is gain-
ing increasing attention because it results in protein clusterings in good
agreement with classification by experts. However, CMO maximization
is an NP-hard problem and few exact algorithms exist for solving this
problem to global optimality.

In this paper, we propose a branch-and-reduce exact algorithm for the
CMO problem. Contrary to previous approaches, we do not transform
CMO to other combinatorial optimization problems for solution. Instead,
we address the problem directly in its natural form. By exploiting the
problem’s mathematical structure, we develop bounding and reduction
procedures that lead to a very efficient algorithm. We present extensive
computational results for over 36000 test problems from the literature.
These results demonstrate that our algorithm is significantly faster and
solves many more challenging test sets than the best previous algorithms
for CMO. Furthermore, the algorithm results in protein clusters that are
in excellent agreement with the SCOP database.

1 Introduction

Understanding the function of genes and proteins is a challenging problem in
molecular biology and is gaining increasing attention as is suggested by the re-
cent Protein Structure Initiative [1]. The task is now possible thanks to the
large number of structures that have been deposited in databases [2, 3]. To fa-
cilitate high throughput gene function prediction, it is important to be able to
automatically find sequences that have similar structures to a given sequence.
This automatic similarity detection requires efficient algorithms for aligning the
structures of different proteins in a way that highlights their similarities.
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Sequence alignment methods, together with numerous scoring matrices and
gap penalty schemes, have been extensively studied and used in the molecular
biology literature. Recent work in profile-based sequence alignment improves the
sensitivity of finding remote homologs. However, evidence suggests that structure
alignment methods are usually more accurate than sequence alignment [4]. As
a result, interest in structure alignment methods has grown because of their
“standards of truth” certificates [5, 6].

As many established databases are devoted to protein structure and function,
various algorithms have been proposed to solve the structural alignment problem
according to different criteria [7]. Among various approaches that have been
studied over the years, the contact map overlap maximization problem [8, 9] has
received special attention because it provides protein clusters that agree well with
classification by experts. To compare proteins A and B using CMO, contact maps
are first extracted from each structure separately by identifying geometrically
close residues. Depending on how such spatial closeness is measured, several
definitions of contact exist in the literature [10, 11, 12]. Then, the contact maps
of proteins A and B are superimposed so as to maximize the common contacts
between the aligned residues. Optimal mapping of two contact maps usually
provides interesting insight into the structural similarity of the original protein
structures.

CMO is known to be NP-hard [13] and exact algorithms for CMO are ex-
ponential in the worst case. Carr et al. [14] and Lancia et al. [15] proposed to
solve the CMO maximization problem as a mixed-integer linear program. Their
method is the first approach that guarantees global optimality. They also pro-
posed a number of strong cuts by showing that instances of CMO can be reduced
to instances of the maximum independence set problem. Later, Caprara and Lan-
cia [16] and Caprara et al. [12] proposed a Lagrangian relaxation procedure to
yield an upper bound for CMO. Combined with several clever lower bounding
methods, Caprara et al. managed to solve a large number of practically interest-
ing CMO instances. Strickland et al. [17] observed that CMO instances can be
reduced to instances of the maximum clique problem. In addition to this obser-
vation, they studied a number of reduction techniques, and showed that these
methods dramatically reduce problem size. Their method guarantees a globally
optimal alignment via branch-and-bound on a reduced maximum clique problem
instance.

In this paper, we take a different approach to solve the CMO problem to
global optimality. Instead of reducing CMO to other problems, we solve this
problem directly. We feel it is easier to exploit the mathematical structure of
the problem in its original setting, and use dynamic programming as our major
tool to design an efficient branch-and-bound algorithm. Due to the extensive
application of reduction techniques in this algorithm, we refer to this algorithm
as a branch-and-reduce algorithm.

The remainder of this paper is organized as follows. In section 2, we introduce
notation necessary to define CMO in mathematical terms. Then, we provide the
description of our algorithm in Section 3. Due to space limitations, we omit
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all the proofs and include them in a forthcoming paper [18]. Several test sets
are used in Section 4 to demonstrate the power of our algorithm. Finally, in
Section 5, we discuss our experience of solving hard CMO instances and suggest
some directions for future work.

2 Problem Statement

Consider proteins A and B with m and n residues, respectively. Let x, x′, and
x′′ take values from {1, 2, . . . ,m} denoting residues on protein A. Similarly, y,
y′, and y′′ take values from {1, 2, . . . , n} and denote residues on protein B. The
contact map of each protein is described via the contact map matrices EA and
EB, of dimension m × m and n × n, respectively. In particular, element EA

xx′

(resp. EB
yy′) has a value of 1 if and only if residues x and x′ (resp. y and y′) are

in contact, and 0 otherwise. “In contact” here means that the two corresponding
residues are within a prespecified distance. A contact map matrix can be thought
of as the node-incidence matrix of an undirect contact map graph, where nodes
correspond to amino acid residues and an edge between any two nodes exists if
and only if the corresponding residues are in contact.

The contact map problem is to find the largest common substructure for any
two given protein contact map graphs. For this, we must develop a correspon-
dence (alignment) between the node sets (residues) of the two contact graphs
and identify the number of common contacts (edges) for all corresponding node
pairs. If, in this process, residue x aligns to residue y, we say that (x, y) forms a
pair. If a common contact results by aligning residue x to residue y and residue x′

to residue y′, we say that pairs (x, y) and (x′, y′) lead to an overlap. If pairs (x, y)
and (x′, y′) form an overlap, we will set h(x, y, x′, y′) to 1; otherwise, h(x, y, x′, y′)
will be set to zero.

A prerequisite for two pairs to form an overlap is that the order of residues in
the original proteins be preserved. In other words, either the pair of inequalities
x < x′ and y < y′ or the pair of inequalities x > x′ and y > y′ must hold for
pairs (x, y) and (x′, y′) to be considered for an overlap. This requirement is the
non-crossing property in the CMO literature. Two non-crossing pairs are also
called parallel pairs.

We use the interval product [x, x′]× [y, y′] to denote the set of pairs {(x′′, y′′) :
x ≤ x′′ ≤ x′, y ≤ y′′ ≤ y′}. For any given set of residue pairs S, the set Q(S)
is defined as the set of subsets of S that contain only parallel pairs. The CMO
problem is then to find a one-to-one mapping from a subset of residues in one
protein to a subset of residues in another protein so that the resultant number
of overlaps is maximized. In mathematical terms, the CMO problem for proteins
A and B defined above is:

max
Q′∈Q([1,m]×[1,n])

1
2

∑
(x,y)∈Q′

∑
(x′,y′)∈Q′

h(x, y, x′, y′)

Figure 1 provides an example of a protein with seven residues and a protein
with nine residues, together with their contact map graphs (solid edges). Optimal
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B

A

Fig. 1. Example of CMO problem

alignments of four overlaps are indicated by connecting corresponding residues
with dashed lines, and contacts that result in overlaps are highlighted.

3 Branch-and-Reduce Algorithm

Our algorithm is based on the principles of branch-and-bound. We start by
creating a root node that permits all possible residue pairs to be considered in
the final solution. We estimate lower and upper bounds on the maximal overlap
for this node. These bounds are bounds on the objective of the original CMO
instance. If these lower and upper bounds coincide we terminate with an optimal
solution. Otherwise, we choose a pair from all admissible pairs and construct
two children nodes by enforcing this pair in one of the two children nodes while
disallowing it in the second node. Lower and upper bounds for the optimal
objective are calculated for each of the two children nodes and the process is
repeated for each descendant while nodes are deleted whenever they are found
to be inferior to mappings identified in the process. Application of this procedure
in a tree search guarantees that the algorithm will identify a globally optimal
solution in a finite number of steps.

In each node V of the branch-and-bound tree, we are dealing with a CMO
instance with three different types of pairs:

1. All pairs (x, y) ∈ C(V ) must be included in the solution. Here, C(V ) denotes
the set of chosen pairs for node V .

2. None of the pairs (x, y) ∈ D(V ) can be included in the solution. Here, D(V )
denotes the set of disallowed pairs for node V .

3. The remaining pairs have the freedom to enter or not enter the final solutions
and form the set of free pairs, F(V ), for node V .
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Clearly, an instance of this restricted CMO problem reduces to an instance of
CMO when F(V ) = [1,m]× [1, n] and C(V ) = D(V ) = ∅. We use RCMO(V ) to
denote the restricted CMO on node V .

An outline of our algorithm is shown in Algorithm 1. This algorithm empha-
sizes the use of reduction techniques. It also relies on a number of observations
to simplify the problem. In the subsequent subsections, we discuss the details of
these tools.

Algorithm 1. Branch-and-Reduce Algorithm
1: Create a root node V0 with C(V0) = D(V0) = ∅, and F(V0) = [1, m]× [1, n]. Set the

upper bound UB(V0) = ∞ and the lower bound LB(V0) = −∞. Initialize the list
of open nodes L = {V0} and the value of the incumbent to LB = −∞.

2: while |L| > 0 do
3: Choose a node V ∈ L with the highest UB(V ) and let L = L\{V }.
4: Apply Simple Reduction I (Proposition 4).
5: Eliminate all (x, y) ∈ C(V ) as described in Proposition 1.
6: Apply Simple Reduction II (Proposition 5), Reduction via Dominance (Proposi-

tion 6), and Reduction via Objective (Proposition 7).
7: Compute an upper bound for V . If UB(V ) ≤ LB, delete V and finish this

iteration.
8: Compute a lower bound for V . If LB(V ) > LB, update LB and the best solution

found.
9: Choose a pair (x, y) ∈ F(V ) to branch. Create two children nodes V1 and V2

and let UB(V1) = UB(V ), C(V1) = C(V ) ∪ {(x, y)}, F(V1) = F(V )\{(x, y)},
D(V1) = D(V ), UB(V2) = UB(V ), C(V2) = C(V ), F(V2) = F(V )\{(x, y)}, and
D(V2) = F(V ) ∪ {(x, y)}. Update L = L ∪ {V1, V2}\{V }.

10: end while
11: Return LB and the best solution found.

3.1 Pair Elimination

Recall that an instance of RCMO in node V is defined over a set of chosen pairs
C(V ), a set of disallowed pairs D(V ), and a set of free pairs F(V ). The following
observation suggests C(V ) can be removed from consideration.

Proposition 1. Problem RCMO(V ) is equivalent to the optimization problem

max
Q′∈Q(F(V ))

∑
(x′,y′)∈Q′

g(x′, y′) +
1
2

∑
(x′,y′)∈Q′

∑
(x′′,y′′)∈Q′

h(x′, y′, x′′, y′′). (1)

where
g(x′, y′) :=

∑
(x′′,y′′)∈C(V )

h(x′, y′, x′′, y′′), ∀(x′, y′) ∈ F(V )

In particular:

1. An optimal solution of (1) is also an optimal solution for RCMO(V ) (ex-
cluding the pairs in C(V )).
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2. The optimal objective function value of (1) is obtained from the optimal
objective function value of RCMO(V ) by subtracting the quantity:

σ(V ) :=
1
2

∑
(x′,y′)∈C(V )

∑
(x′′,y′′)∈C(V )

h(x′, y′, x′′, y′′).

For convenience of the discussion to follow, we define (1) as the Generalized Con-
tact Map Overlap problem (GCMO), and use GCMO(V ) to denote the GCMO
instance on node V .

3.2 Interval Contribution for Residue Pair

We define Q̄(x, y, S) to be the set of all subsets of pairs in S that are mutually
parallel and parallel to pair (x, y), and define array p(x, y, S) to be the number
of maximal overlaps with pair (x, y) for a subset of parallel pairs from a given
set S, i.e.

p(x, y, S) := max
Q′∈Q̄(x,y,S)

∑
(x′,y′)∈Q′

h(x, y, x′, y′).

We will use p−(x, y, x′, y′) to denote p(x, y, S) when S is in the form of [1, x′]×
[1, y′]∩F(V ), and p+(x, y, x′, y′) when S is in the form of [x′,m]× [y′, n]∩F(V ).
In addition, we define

h̄(x, y, x′, y′) :=
{
h(x, y, x′, y′), if (x′, y′) ∈ F(v),
0, otherwise.

Proposition 2 and 3 suggest an efficient algorithm to compute p+(x, y, x′, y′)
and p−(x, y, x′, y′).

Proposition 2. Computing all p+(x, y, x′, y′) and p−(x, y, x′, y′) for a given
(x, y) ∈ F(V ) requires O(mn) time complexity and O(mn) space complexity.
Retrieval of p+(x, y, x′, y′) and p−(x, y, x′, y′) requires O(1).

Proposition 3. The time and space complexities for computing p+(x, y, x′, y′)
and p−(x, y, x′, y′) in Proposition 2 can be improved to O(NANB) with prepro-
cessing time complexity O(m + n), where NA (resp. NB) is the maximal node
degree of the contact graph of protein A (resp. protein B). Retrieval of a single
p+(x, y, x′, y′) or p−(x, y, x′, y′) still requires O(1) time.

3.3 Reduction

The purpose of reduction is to develop techniques to eliminate inferior pairs early
in the search process so as to reduce the computational effort in subsequent
nodes. In this section, we discuss four types of reduction techniques that we
have developed, namely, Simple Reduction I (Proposition 4), Simple Reduction
II (Proposition 5), Reduction via Domination (Proposition 6), and Reduction
via Objective (Proposition 7).

The simple reduction principles are observations that allow fast identification
of some free pairs as disallowed via the next two propositions:
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Proposition 4. A pair (x, y) ∈ F(V ) that crosses some (x′, y′) ∈ C(V ) can be
immediately eliminated by setting (x, y) ∈ D(V ).

Proposition 5. If pair (x, y) ∈ F(V ) satisfies g(x, y) = 0 and h̄(x, y, x′, y′) =
0 for any (x′, y′) ∈ F(V ), then there must exist an optimal solution Q† for
GCMO(V ) that does not contain (x, y). Therefore, pair (x, y) can be eliminated.

The general principle for reduction via domination is that an pair may be disal-
lowed if we can show that, for any solution that contains this pair, substituting
this pair with another one leads to a solution that is not worse. Direct application
of this principle to RCMO(V ) or the associated GCMO(V ) is not straightfor-
ward, mainly due to the fact that the substituting pair may cross pairs parallel to
the substituted pair. However, some special pairs permit this type of reduction
as follows:

Proposition 6. Define the upper-left corner to be the minimal residue xL from
amongst those x with some (x, y) ∈ F(V ). For any two pairs (xL, y1) ∈ F(V )
and (xL, y2) ∈ F(V ) with y1 < y2, substituting (xL, y1) for (xL, y2) in any feasi-
ble solution for RCMO(V ) always results in another feasible solution. Further,
(xL, y1) dominates (xL, y2) if

g(xL, y1)− g(xL, y2) +
∑

y∈{y2+1,...,n}
min{0, EB

y1y − EB
y2y} ≥ 0.

Similar claims hold for the lower-left corner, the upper-right corner, and the
lower-right corner, which are defined in a similar manner as the upper-left corner.

Finally, we can eliminate a pair (x, y) ∈ F(V ) if we can show that any solution
containing it has no better objective than LB. Although direct application of
this criterion is practically impossible because it is equivalent to solving a CMO
instance of smaller size, we can over-estimate the objective in order to apply this
rule as follows:

Proposition 7. There must exist an optimal solution for RCMO(V ) that does
not contain pair (x, y) ∈ F(V ) if the following holds:

g(x, y) + maxQ′∈Q̄(x,y,F(V )) (x′,y′)∈Q′ g(x′, y′) + h(x′, y′, x, y) + 1
2s(x′, y′, x, y)

≤ LB − σ(V )

where

s(x′, y′, x, y) := p−(x′, y′, x− 1, y − 1) + p+(x′, y′, x+ 1, y + 1).

3.4 Upper and Lower Bounding

Bounding RCMO(V ) from below usually involves finding a good feasible so-
lution, while bounding it from above requires constructing a relaxation that
over-estimates the objective. In this subsection, we develop such bounds.
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Proposition 8. Define

t(x, y) :=

⎧⎨⎩ g(x, y), if (x, y) ∈ F(V ); x = 1 or y = 1,
max {g(x, y), g(x, y) + w(x, y)} , if (x, y) ∈ F(V ); x > 1 and y > 1,
−∞, otherwise,

(2)
where

w(x, y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∞,

if [1, x− 1]× [1, y − 1] ∩ F(V ) = ∅
max(x′,y′)∈[1,x−1]×[1,y−1]∩F(V )

{
t(x′, y′) + h̄(x′, y′, x, y)

+ 1
2u(x′, y′, x, y)

}
,

otherwise.

and

u(x′, y′, x, y) := p+(x′, y′, x+ 1, y + 1) + p−(x, y, x′ − 1, y′ − 1).

Then
�σ(V ) + max

(x,y)∈F(V )
t(x, y)� (3)

is an upper bound for RCMO(V ).

While computing the above upper bound, we can keep track of the pair (x′, y′)
that achieves the maximum in (2) for each (x, y). In particular, we define previous
pairs as pr(x, y) to be equal to (0, 0) if t(x, y) = g(x, y). Otherwise, we set:

pr(x, y) = argmax(x′,y′)∈[1,x−1]×[1,y−1]∩F(V )
{
t(x′, y′) + h̄(x′, y′, x, y)

+ 1
2u(x′, y′, x, y)

}
.

Once we have determined the pair (x∗, y∗) that achieves the maximum in (3), we
can backtrack and add recursively these previous pairs to set Q§ (see
Algorithm 2).

Algorithm 2. Backtrack Q§

1: Q§ = ∅; (x, y) = (x∗, y∗)
2: while (x, y) �= (0, 0) do
3: Q§ = Q§ ∪ {(x, y)}; (x, y) = pr(x, y)
4: end while
5: return Q§.

Proposition 9. The pairs in set Q§ := {(x§i , y§i )} provide a feasible solution for
GCMO(V ).

Therefore, we simply take

σ(V ) +
∑

i

⎛⎝g(x§i , y§i ) +
1
2

∑
j

h(x§i , y
§
i , x

§
j , y

§
j )

⎞⎠
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as a lower bound for RCMO(V ). In fact, computational experience indicates
that this lower bound is likely to yield good solutions very quickly during the
branch-and-reduce search.

3.5 Branching

As is shown in Algorithm 1, we need to choose a pair (x, y) ∈ F(V ) to branch
on if the current node V cannot be pruned. Although many alternatives exist,
we choose the branching pair (xbr, ybr) as follows:

(xbr, ybr) ∈ argmax(x§
i ,y§

i )∈Q§

{
g(x§i , y

§
i ) +p−(x§i , y

§
i , x

§
i − 1, y§i − 1)

+p+(x§i , y
§
i , x

§
i + 1, y§i + 1)

}
. (4)

The philosophy behind such a choice is to induce a balanced branch-and-bound
tree, which usually suggests an overall small tree size. The child node V2 with the
(xbr, ybr) set to D has more degrees of freedom than its brother node V1 and is,
therefore, more likely to result in a higher upper bound. By choosing a pair that
maximizes (4), we hope that the upper bound for V2 achieves maximal decrement
compared to its parent and is, therefore, close to the upper bound of V1.

4 Computational Studies

In this section, we use three sets of test problems to study the performance of
the proposed algorithm.

The first test set is taken from [17] and contains 11 alignment instances of
medium size proteins. Results for this test set are provided in Table 1. The
first column of this table shows the pairs of proteins to be aligned. The second
column shows the maximal contact overlaps. The remaining three columns of
the table present CPU times for three algorithms. For the first two algorithms,
we report the results earlier reported in [14] and [17]. Although the contact
maps of the three algorithms depend on the thresholds used and may not be
identical, they are likely to be very similar. Even when the different computing
platform’s LINPACK scores are taken into account, we can see that the proposed
algorithm is faster than that of [14] by one to two orders of magnitude and at
least as fast as that of [17] for all instances except one. More importantly, for
the top five instances, which are difficult, the proposed algorithm is 3 to 9 times
faster than [17].

Next, we test the branch-and-reduce algorithm on a set of 36046 pairwise
alignment instances of 269 medium size proteins. This set was initially introduced
by Lancia et al. [15]. We ran the proposed algorithm for ten days on three
workstations with 3.0 GHz CPU and 1.0 G RAM each. Over this time, the
algorithm managed to solve 2309 instances to global optimality. Only 1680 of
these instances were solved to global optimality in the past [12].
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Table 1. Results for the Sokol test set

Pair Obj.
CPU sec

Carr et al. [14] a Strickland et al. [17] b Branch-and-Bound c

3ebx-1era 31 487 236 0.72
1bpi-2knt 29 423 182 0.46
1knt-1bpi 30 331 110 0.38
6ebx-1era 20 427 101 0.73
2knt-5pti 28 760 95 0.32
1bpi-1knt 31 331 19 0.24
1bpi-5pti 42 320 30 0.29
1knt-2knt 39 52 0 0.15
1knt-5pti 28 934 46 0.57
1vii-1cph 6 12 0 0.00
3ebx-6ebx 28 388 6 0.12
aComputing hardware is similar to Strickland et al. [17].
bSGI workstation with 200 MHz CPU and LINPACK score of 32 [19].
cDell workstation with a 3.0 GHz P4 processor and LINPACK score of 1414 [19].

The third test set involves 780 pairwise alignment instances. Initially sug-
gested by Skolnick and described in [15], this set contains 40 large protein do-
mains: 1b00A (1), 1dbwA (2), 1nat (3), 1ntr (4), 1qmpA (5), 1qmpB (6), 1qmpC
(7), 1qmpD (8), 1rn1A (9), 1rn1B (10), 1rn1C (11), 3chy(12), 4tmyA (13), 4tmyB
(14), 1bawA (15), 1byoA (16), 1byoB (17), 1kdi (18), 1nin (19), 1pla (20), 2b3iA
(21), 2pcy (22), 2plt (23), 1amk (24), 1aw2A (25), 1b9bA (26), 1btmA (27),
1htiA (28), 1tmhA (29), 1treA (30), 1tri (31), 3ypiA (32), 8timA (33), 1ydvA
(34), 1b71A (35), 1bcfA (36), 1dpsA (37), 1fha (38), 1ier (39) and 1rcd (40).
Each domain entry contains a name and its assigned index in parentheses. The
domain name is the PDB code for the protein containing it. The chain index is
appended to the PDB code whenever the protein has multiple chains. As shown
in Table 2, these 40 protein domains are divided into four categories.

Table 2. Protein domains in the Skolnick test set

Categories Residues Sequence similarity Domain indices
1 124 15–30% 1–14
2 99 35–90% 15–23
3 250 30–90% 24–34
4 170 7–70% 35–40

In order to generate contact maps, we consider two residues to be in contact
if their Cα’s are within 7Å, as suggested by [10]. Routines in the BALL pack-
age [20] were used to compute the distances between residues and generate the
contact maps. The results are depicted in Fig. 2, where a • indicates instances
solved by both [12] and the proposed algorithm, while a × indicates problems
that were solved only by the proposed algorithm. It can be seen in this figure
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Fig. 2. Instances of the Skolnick test set solved by [12] and the proposed algo-
rithm (•=solved by [12] and the proposed algorithm, ×=solved only by the proposed
algorithm)

that the proposed algorithm solves 7 more instances in addition to the 150 in-
stances solved earlier by [12]. However, neither [12] nor the proposed algorithm
are able to solve a single instance that aligns two protein domains from different
categories. This is due to the fact that such instances are much harder than
instances within the same category, as is argued by [12].

In order to measure the structural similarity of two domains z1 and z2, we
use the similarity index

θ(z1, z2) :=
2LB(z1, z2)
E(z1) + E(z2)

,

where LB(z1, z2) is the best objective found by aligning domain z1 with z2.
We also introduce E(z1) and E(z2) to denote the total number of contacts for
domains z1 and z2, respectively. As a result of this definition, the more similar
two domains are, the closer the similarity index is to one.

In the left side of Fig. 3, we plot θ(z1, z2) against z1 and z2. It is easy to see
that five clusters result from pairwise alignments by permuting 12 (3chy), 13
(4tmyA), and 14 (4tmyB), with 9 (1rn1A), 10 (1rn1B), and 11 (1rn1C), which
is shown in the right side of Fig. 3. This result is in excellent agreement with
the SCOP database (version 1.69) [21, 22], as is shown in Table 3.
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Fig. 3. Cluster analysis on the Skolnick test set

Table 3. Clusters of proteins in the Skolnick test set

Cluster Domains SCOP
Fold Superfamily Family

1 1–8,12–14 Flavodoxin-like Che Y-like Che Y-related
2 9–11 Microbial Microbial Fungi

ribonucleases ribonucleases ribonucleases
3 15–23 Cuperdoxin-like Cuperdoxins Plastocyanin/azurin-like
4 24–34 TIM-beta/alpha-barrel Triosephosphate Triosephosphate

isomerase (TIM) isomerase (TIM)
5 35–40 Ferritin-like Ferritin-like Ferritin

5 Conclusions

The main contribution of this work is the development of a branch-and-reduce
algorithm for the CMO problem. It is quite interesting to note that the rela-
tively weaker bound of (3) results in a more efficient algorithm than a stronger
bound from a branch-and-cut method [14]. This is likely due to the fact that a
strong bound may take too much time to compute to justify its merit. Perhaps
more important in the context of hard CMO problems is the role of reduction.
For large and difficult instances, even the relatively cheap upper bound (3) be-
comes expensive, as we observed by looking at the computational times at the
root node and its immediate children. However, subsequent nodes turn out to
be much easier because branch-and-bound manages to remove a large number
of inferior pairs. Therefore, it is of particular interest to consider the devel-
opment of even more powerful reduction techniques that can be computed ef-
ficiently. Since we have not thoroughly tested alternative branching schemes,
another interesting future research direction would be to study whether better
branching schemes can lead to significant improvement of the branch-and-reduce
algorithm.

Aligning proteins with different structures still seems much harder than those
with similar structures. Although we managed to solve several instances with
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medium size proteins (e.g., around 60 residues) in two hours of CPU time on
a standard workstation, attempts on certain larger instances failed. However,
alignments are usually performed on pairs with medium to significant level of
similarity, where global optimization algorithms can solve fairly large instances
and provide critical insights to molecular biologists.
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Abstract. Novel molecular function can be achieved by redesigning an
enzyme’s active site so that it will perform its chemical reaction on a novel sub-
strate. One of the main challenges for protein redesign is the efficient evaluation
of a combinatorial number of candidate structures. The modeling of protein flex-
ibility, typically by using a rotamer library of commonly-observed low-energy
side-chain conformations, further increases the complexity of the redesign prob-
lem. A dominant algorithm for protein redesign is Dead-End Elimination (DEE),
which prunes the majority of candidate conformations by eliminating rigid ro-
tamers that provably are not part of the Global Minimum Energy Conformation
(GMEC). The identified GMEC consists of rigid rotamers that have not been
energy-minimized and is referred to as the rigid-GMEC. As a post-processing
step, the conformations that survive DEE may be energy-minimized. When en-
ergy minimization is performed after pruning with DEE, the combined protein
design process becomes heuristic, and is no longer provably accurate: That is,
the rigid-GMEC and the conformation with the lowest energy among all energy-
minimized conformations (the minimized-GMEC, or minGMEC) are likely to be
different. While the traditional DEE algorithm succeeds in not pruning rotamers
that are part of the rigid-GMEC, it makes no guarantees regarding the identifi-
cation of the minGMEC. In this paper we derive a novel, provable, and efficient
DEE-like algorithm, called minimized-DEE (MinDEE), that guarantees that ro-
tamers belonging to the minGMEC will not be pruned, while still pruning a com-
binatorial number of conformations. We show that MinDEE is useful not only
in identifying the minGMEC, but also as a filter in an ensemble-based scoring
and search algorithm for protein redesign that exploits energy-minimized confor-
mations. We compare our results both to our previous computational predictions
of protein designs and to biological activity assays of predicted protein mutants.
Our provable and efficient minimized-DEE algorithm is applicable in protein re-
design, protein-ligand binding prediction, and computer-aided drug design.
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1 Introduction

Computational Protein Design. The ability to engineer proteins has many biomedical
applications. Novel molecular function can be achieved by redesigning an enzyme’s
active site so that it will perform its chemical reaction on a novel substrate. A num-
ber of computational approaches to the protein redesign problem have been reported.
To improve the accuracy of the redesign, protein flexibility has been incorporated into
most previous structure-based algorithms for protein redesign [30, 14, 13, 12, 1, 18, 15].
A study of bound and unbound structures found that most structural changes involve
only a small number of residues and that these changes are primarily side-chains, and
not backbone [22]. Hence, many protein redesign algorithms use a rigid backbone and
model side-chain flexibility with a rotamer library, containing a discrete set of low-
energy commonly-observed side-chain conformations [19, 25]. The major challenge for
redesign algorithms is the efficient evaluation of the exponential number of candidate
conformations, resulting not only from mutating residues along the peptide chain, but
also by employing rotamer libraries. The development of pruning conditions capable of
eliminating the majority of mutation sequences and conformations in the early, and less
costly, redesign stages has been crucial.

Non-ensemble-based algorithms for protein redesign are based on the assumption
that protein folding and binding can be accurately predicted by examining the GMEC.
Since identifying the GMEC using a model with a rigid backbone, a rotamer library,
and a pairwise energy function is known to be NP-hard [24], different heuristic ap-
proaches (random sampling, neural network, and genetic algorithm) have been pro-
posed [30, 14, 13, 12, 20]. A provable and efficient deterministic algorithm, which has
become the dominant choice for non-ensemble-based protein design, is Dead-End
Elimination (DEE) [6]. DEE reduces the size of the conformational search space by
eliminating rigid rotamers that provably are not part of the GMEC. Most important,
since no protein conformation containing a dead-ending rotamer is generated, DEE
provides a combinatorial factor reduction in computational complexity.

When energy minimization is performed after pruning with DEE, the process be-
comes heuristic, and is no longer provably accurate: a conformation that is pruned
using rigid-rotamer energies may subsequently minimize to a structure with lower en-
ergy than the rigid-GMEC. Therefore, the traditional DEE conditions are not valid for
pruning rotamers when searching for the lowest-energy conformation among all energy-
minimized rotameric conformations (the minimized-GMEC, or minGMEC).

NRPS Redesign and K∗. Traditional ribosomal peptide synthesis is complemented by
non-ribosomal peptide synthetase (NRPS) enzymes in some bacteria and fungi. NRPS
enzymes consist of several domains, each of which has a separate function. Substrate
specificity is generally determined by the adenylation (A) domain [28, 3, 27]. Among
the products of NRPS enzymes are natural antibiotics (penicillin, vancomycin), anti-
fungals, antivirals, immunosuppressants, and antineoplastics. The redesign of NRPS
enzymes can lead to the synthesis of novel NRPS products, such as new libraries of
antibiotics [2]. The main techniques for NRPS enzyme redesign are domain-swapping
[29, 26, 7, 21], signature sequences [28, 8, 3], and active site manipulation from a
structure-based mutation search utilizing ensemble docking (the K∗ method [17]).
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The K∗ algorithm [17] has been demonstrated for NRPS redesign, but is a general
algorithm that is, in principle, capable of redesigning any protein. K∗ is an ensemble-
based scoring technique that uses a Boltzmann distribution to compute partition
functions for the bound and unbound states of a protein. The ratio of the bound to the
unbound partition function is used to compute a provably-good approximation (K∗) to
the binding constant for a given sequence. A volume and a steric filter are applied in the
initial stages of a redesign search to prune the majority of the conformations from more
expensive evaluation. The number of evaluated conformations is further reduced by a
provable ε-approximation algorithm. Protein flexibility is modeled for both the protein
and the ligand using energy-minimization and rotamers [17].

Contributions of the Paper. Boltzmann probability implies that low-energy conforma-
tions are more likely to be assumed than high-energy conformations. The motivation be-
hind energy minimization is therefore well-established and algorithms that incorporate
energy minimization often lead to more accurate results. However, if energy minimiza-
tion is performed after pruning with DEE, then the combined protein design process is
heuristic, and not provable. We show that a conformation pruned using rigid-rotamer
energies may subsequently minimize to surpass the putative rigid-GMEC.

We derive a novel, provable, and efficient DEE-like algorithm, called minimized-
DEE (MinDEE), that guarantees that no rotamers belonging to the minGMEC will be
pruned. We show that our method is useful not only in (a) identifying the minGMEC
(a non-ensemble-based method), but also (b) as a filter in an ensemble-based scoring
and search algorithm for protein redesign that exploits energy-minimized conforma-
tions. We achieve (a) by implementing a MinDEE/A∗ algorithm in a search to switch
the binding affinity of the Phe-specific adenylation domain of the NRPS Gramicidin
Synthetase A (GrsA-PheA) towards Leu. The latter goal (b) is achieved by implement-
ing MinDEE as a combinatorial filter in a hybrid algorithm,1 combining A∗ search and
our previous work on K∗ [17]. The experimental results, based on a 2-point mutation
search on the 9-residue active site of the GrsA-PheA enzyme, confirm that the new Hy-
brid MinDEE-K∗ algorithm has a much higher pruning efficiency than the original K∗

algorithm. Moreover, it takes only 30 seconds for MinDEE to determine which rotamers
can be provably pruned. We make the following contributions in this paper:

1. Derivation of MinDEE, a novel, provable, and efficient DEE-like algorithm that
incorporates energy minimization, with applications in both non-ensemble- and
ensemble-based protein design.

2. Introduction of a MinDEE/A∗ algorithm that identifies the minGMEC and returns
a set of low-energy conformations;

3. Introduction of a hybrid MinDEE-K∗ ensemble-based scoring and search algo-
rithm, improving on our previous work on K∗ [17] by replacing a constant-factor
with a combinatorial-factor provable pruning condition; and

4. The use of our novel algorithms in a redesign mutation search for switching the
substrate specificity of the NRPS enzyme GrsA-PheA; we compare our results to
previous computational predictions of protein designs and to biological activity
assays of predicted protein mutants.

1 For brevity, we will henceforth refer to this algorithm as the Hybrid MinDEE-K∗ algorithm.
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2 Derivation of the Minimized-DEE Criterion

2.1 The Original DEE Criterion

In this section we briefly review the traditional-DEE theorem [6, 23, 11]. Traditional-
DEE refers to the original DEE, which is not provably correct when used in a search for
the minGMEC. The total energy, ET , of a given rotameric-based conformation can be
written as E

T
= Et′ +

∑
iE(ir) +

∑
i

∑
j>i E(ir, js), where Et′ is the template self-

energy (i.e., backbone energies or energies of rigid regions of the protein not subject to
rotamer-based modeling), ir denotes rotamer r at position i, E(ir) is the self energy of
rotamer ir (the intra-residue and residue-to-template energies), andE(ir, js) is the non-
bonded pairwise interaction energy between rotamers ir and js. The rotamers assumed
in the rigid-GMEC are written with a subscript g. Therefore ig is the rotamer assumed
in the rigid-GMEC at position i. The following two bounds are then noted: for all i, j
(i �= j), max

s∈Rj

E(it, js) ≥ E(it, jg) and min
s∈Rj

E(ig, js) ≤ E(ig, jg), where Rj is the set

of allowed rotamers for residue j. For clarity, we will not include Rj in the limits of the
max and min terms, since it will be clear from the notation from which set s must be
drawn. The DEE criterion for rotamer ir is defined as:

E(ir) +
∑
j �=i

min
s
E(ir, js) > E(it) +

∑
j �=i

max
s

E(it, js). (1)

Any rotamer ir satisfying the DEE criterion (Eq. 1) is provably not part of the
rigid-GMEC (ir �= ig), and is considered ‘dead-ending.’ Extensions to this initial DEE
criterion allow for additional pruning while maintaining correctness with respect to
identifying the rigid-GMEC [6, 10, 11, 23].

2.2 DEE with Energy Minimization: MinDEE

We now derive generalized DEE pruning conditions which can be used when searching
for the minGMEC. The fundamental difference between traditional-DEE and MinDEE

Fig. 1. Energy-Minimized DEE. Without energy minimization the swapping of rotamer ir for it
(A to B) leaves unchanged the conformations and self and pairwise energies of residues j and k.
When energy minimization is allowed, the swapping of rotamer ir for rotamer it (C to D) may
cause the conformations of residues j and k to minimize (i.e., move) to form more energetically
favorable interactions (from the faded to the solid conformations in C and D).
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is that the former enjoys significant independence among multiple energy terms dur-
ing a rotamer swap (Fig. 1). Therefore, to be provably correct, MinDEE must account
for a range of possible energies. The conformation of a residue may change during en-
ergy minimization, however we constrain this movement to a region of conformation
space called a voxel to keep one rotamer from minimizing into another. In this frame-
work, the voxel V(ir) for rotamer ir is simply all conformations of residue i within a
±θ range around each rotamer dihedral when starting from the rotamer2 ir. We sim-
ilarly define the voxel V(ir, js) for the pair of rotamers ir and js to be the region
of conformation space V(ir) × V(js). Next, we can define the maximum, minimum,
and range of voxel energies: E⊕(ir) = max

z∈V(ir)
E(z); E�(ir) = min

z∈V(ir)
E(z); and

E�(ir) = E⊕(ir)−E�(ir). Analogous definitions exist for pairwise terms (Fig. 4 in [9,
p. 25]). For a given protein, we define a rotamer vector A = (A1, A2, · · · , An) to spec-
ify the rotamer at each of the n residue positions;Ai = r when rotamer r is assumed by
residue i. We then define the conformation vectorA• = (A•

1, A
•
2, · · · , A•

n) such thatA•
i

is the conformation of residue i in the voxel-constrained minimized conformation, i.e.,
A•

i ∈ V(Ai) and A• = (A•
1, A

•
2, · · · , A•

n) = argmin
B=(B1,B2,···,Bn)∈ n

i=1 V(Ai)
E(B), where

E(B) is the energy of the system specified by conformation vector B. For the energy-
minimized conformation starting from rotamer vector A, we define the self-energy of
rotamer ir as E�(ir|A) = E(A•

i ) and the pairwise interaction energy of the rotamer
pair ir, js as E�(ir, js|A) = E(A•

i , A
•
j ) where E(A•

i ) is the self-energy of residue i
in conformation A•

i and E(A•
i , A

•
j ) is the pairwise energy between residues i and j in

conformationsA•
i and A•

j . We can then express the minimized energy of A, E
T
(A) as:

E
T
(A) = Et′ +

∑
iE�(ir|A) +

∑
i

∑
j>i E�(ir, js|A). Let G represent the rotamer

vector that minimizes into the minGMEC and ET (G) be the energy of the minGMEC.
Let Gig→it be the rotamer vector G where rotamer ig is replaced with it. We know that
E

T
(Gig→it) ≥ E

T
(G), so we can pull residue i out of the two summations, obtaining:

Et′ + E�(it|Gig→it) +
∑
j �=i

E�(it, jg|Gig→it) +
∑
j �=i

E�(jg|Gig→it)

+
∑
j �=i

∑
k �=i,k>j

E�(jg, kg|Gig→it) ≥ Et′ + E�(ig|G)

+
∑
j �=i

E�(ig, jg|G) +
∑
j �=i

E�(jg |G) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg|G). (2)

The Et′ terms (Sec. 2.1) are independent of rotamer choice, are equal, and can be
canceled. We make the following trivial upper and lower-bound observations:

E�(it|A) ≤ E⊕(it); E�(it, jg|A) ≤ max
s∈Rj

E⊕(it, js); (3)

E�(jg|A) ≤ E⊕(jg); E�(jg, kg|A) ≤ E⊕(jg, kg); (4)

E�(ig) ≤ E�(ig|A); min
s∈Rj

E�(ig, js) ≤ E�(ig, jg|A); (5)

E�(jg) ≤ E�(jg|A); E�(jg, kg) ≤ E�(jg, kg|A). (6)

2 The voxel for each rotamer can be multi-dimensional, depending on the number of dihedrals.
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Substituting Eqs. (3-6) into Eq. (2), we obtain:

E⊕(it) +
∑
j �=i

max
s

E⊕(it, js) +
∑
j �=i

E⊕(jg) +
∑
j �=i

∑
k �=i,k>j

E⊕(jg, kg) ≥

E�(ig) +
∑
j �=i

min
s
E�(ig, js) +

∑
j �=i

E�(jg) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg). (7)

We now define the MinDEE criterion for rotamer ir to be:

E�(ir) +
∑
j �=i

min
s
E�(ir, js)−

∑
j �=i

max
s

E�(js)−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku) >

E⊕(it) +
∑
j �=i

max
s

E⊕(it, js). (8)

Proposition 1. When Eq. (8) holds, rotamer ir is provably not part of the minGMEC.

Proof. When Eq. (8) holds, we can substitute the left-hand side of Eq. (8) for the first
two terms of Eq. (7), and simplify the resulting equation to:

E�(ir) +
∑
j �=i

min
s
E�(ir, js)−

∑
j �=i

max
s

E�(js)−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku)

+
∑
j �=i

E�(jg) +
∑
j �=i

∑
k �=i,k>j

E�(jg, kg) > E�(ig) +
∑
j �=i

min
s
E�(ig, js). (9)

We then substitute the following two bounds
∑

j �=i max
s

E�(js) ≥
∑

j �=i E�(jg) and∑
j �=i

∑
k �=i,k>j max

s,u
E�(js, ku) ≥ ∑

j �=i

∑
k �=i,k>j E�(jg, kg) into Eq. (9) and re-

duce: E�(ir) +
∑

j �=i min
s
E�(ir, js) > E�(ig) +

∑
j �=i min

s
E�(ig, js). Thus, when

the MinDEE pruning condition Eq. (8) holds, ir �= ig and we can provably eliminate
rotamer ir as not being part of the minGMEC.  !
MinDEE (unlike traditional-DEE) accounts for energy changes during minimization
(addends 3-4 in Eq. 8). Using precomputed energy bounds, the MinDEE condition
(Eq. 8) can be computed as efficiently as the traditional-DEE condition (Eq. 1). Here
we presented a generalization of traditional-DEE, to obtain an initial MinDEE pruning
criterion. Analogously to the traditional-DEE extensions [6, 10, 11, 23], we also derived
extensions to MinDEE to improve its pruning efficiency (see Appendix A in [9]).

3 Minimized-DEE/A∗ Search Algorithm (Non-ensemble-Based
Redesign)

3.1 Traditional-DEE with A∗

In [16], an A∗ branch and bound algorithm was developed to compute a number of
low-energy conformations for a single mutation sequence (i.e., a single protein). In this
algorithm, traditional-DEE was first used to reduce the number of side-chain
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conformations, and then surviving conformations were enumerated in order of confor-
mation energy by expanding sorted nodes of a conformation tree.3 The following deriva-
tion of the DEE/A∗ combined search closely follows [16]. The A∗ algorithm scores
each node in a conformation tree using a scoring function f = g+h, where g is the cost
of the path from the root to that node (the energy of all self and pairwise terms assigned
through depth d) and h is an estimate (lower bound) of the path cost to a leaf node (a
lower bound on the sum of energy terms involving unassigned residues). The value of
g (at depth d) can be expressed as g =

∑d
i=1(E(ir) +

∑d
j=i+1 E(ir, js)). The lower

bound h can be written as h =
∑n

j=d+1 Ej , where n is the total number of flexible

residues andEj = min
s

(E(js)+
∑d

i=1E(ir, js)+
∑n

k>j min
u

E(js, ku)). TheA∗ algo-

rithm maintains a list of nodes (sorted by f ) and in each iteration replaces the node with
the smallest f value by an expansion of the children of that node, until the node with the
smallest f value is a leaf node, corresponding to a fully-assigned conformation. To re-
duce the branching factor of the conformation tree, the DEE algorithm is used to prepro-
cess the set of allowed rotamers. If low-energy conformations within Ew of the GMEC
are to be returned by the DEE/A* search, then the DEE criterion (Eq.1) must be mod-
ified to only eliminate rotamers that are provably not part of any conformation within
Ew of the GMEC: E(ir)−E(it) +

∑
j �=i min

s
E(ir, js)−

∑
j �=i max

s
E(it, js) > Ew.

3.2 MinDEE with A∗

The traditional-DEE/A∗ algorithm [16] can be extended to include energy minimization
by substituting MinDEE for traditional-DEE. So that no conformations within Ew of
the minGMEC are pruned, the MinDEE equation (Eq. 8) becomes:

E�(ir) +
∑
j �=i

min
s
E�(ir, js)−

∑
j �=i

max
s

E�(js)−
∑
j �=i

∑
k �=i,k>j

max
s,u

E�(js, ku)

−E⊕(it)−
∑
j �=i

max
s

E⊕(it, js) > Ew . (10)

We modify the definition of the A∗ functions g and h to use the minimum energy
terms E�(·): g =

∑d
i=1(E�(ir) +

∑d
j=i+1 E�(ir, js)), and h =

∑n
j=d+1Ej , where

Ej = min
s

(
E�(js) +

∑d
i=1 E�(ir, js) +

∑n
k>j min

u
E�(js, ku)

)
. A lower bound on

the minimized energy of the partially-assigned conformation is given by g, while a
lower bound on the minimized energy for the unassigned portion of the conformation is
given by h. Thus, the MinDEE/A∗ search generates conformations in order of increas-
ing lower bounds on the conformation’s minimized energy.

We combine our modified MinDEE criterion (Eq. 10) with the modifiedA∗ functions
g and h above in a provable search algorithm for identifying the minGMEC and obtain-
ing a set of low-energy conformations. First, MinDEE prunes the majority of the con-
formations by eliminating rotamers that are provably not within Ew of the minGMEC.
The remaining conformations are then generated in order of increasing lower bounds

3 In a conformation tree, the rotamers of flexible residue i are represented by the branches at
depth i. Internal nodes of a conformation tree represent partially-assigned conformations and
each leaf node represents a fully-assigned conformation (see Fig. 3 in [17, p. 745]).
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on their minimized energies. The generated conformations are energy-minimized and
ranked in terms of increasing actual minimized energies.

MinDEE/A∗ must guarantee that upon completion all conformations within Ew of
the minGMEC are returned. However, the minGMEC may not be among the top A∗

conformations if the lower bound on its energy does not rank high. We therefore derive
the following condition for halting the MinDEE/A∗ search. Let B(s) be a lower bound
on the energy of conformation s (see Appendix B in [9], which describes how lower en-
ergy bounds are precomputed for all rotamer pairs) and let Em be the current minimum
energy among the minimized conformations returned so far in the A∗ search.

Proposition 2. The MinDEE/A∗ search can be halted once the lower bound B(c) on
the energy of the next conformation c returned by A∗, satisfies B(c) > Em + Ew.
The set of returned conformations is guaranteed to contain every conformation whose
energy is within Ew of the energy of the minGMEC. Moreover, at that point in the
search, the conformation with energy Em is the minGMEC.

The proof of Proposition 2 can be found in [9, Sec. 3.2]. Using both MinDEE and A∗,
our algorithm obtains a combinatorial pruning factor by eliminating the majority of the
conformations, which makes the search for the minGMEC computationally feasible.
MinDEE/A∗ incorporates energy minimization with provable guarantees, and is thus
more capable of returning conformations with lower energy states than traditional-DEE.

4 Hybrid MinDEE-K∗ Algorithm (Ensemble-Based Redesign)

We now present an extension and improvement to the original K∗ algorithm [17] by
using a version of the MinDEE criterion plus A∗ branch-and-bound search. The K∗

ensemble-based scoring function approximates the protein-ligand binding constant with
the following quotient: K∗ = q

PL

q
P

q
L

, where q
PL

, q
P

, and q
L

are the partition functions

for the protein-ligand complex, the free (unbound) protein, and the free ligand, respec-
tively. A partition function q over a set (ensemble) of conformations S is defined as
q =

∑
s∈S exp(−Es/RT ), where Es is the energy of conformation s, T is the tem-

perature in Kelvin, and R is the gas constant. In a naive K∗ implementation, each
partition function would be computed by a computationally-expensive energy mini-
mization of all rotamer-based conformations. However, because the contribution to the
partition function of each conformation is exponential in its energy, only a subset of
the conformations contribute significantly. By identifying and energy-minimizing only
the significantly-contributing conformations, a provably-accurate ε-approximation al-
gorithm substantially improved the algorithm’s efficiency [17]. The MinDEE criterion
must be used in this algorithm because the K∗ scoring function is based on energy-
minimized conformations. Since pruned conformations never have to be examined, the
Hybrid MinDEE-K∗ algorithm provides a combinatorial improvement in runtime over
the previously described constant-factor ε-approximation algorithm [17].

MinDEE (Eq. 8) can prune rotamers across mutation sequences.4 By pruning across
mutations with MinDEE, we risk pruning conformations that could otherwise contribute

4 A mutation sequence specifies an assignment of amino-acid type to each residue in a protein.
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substantially to the partition functions, thus violating our provably-good partition func-
tion approximation (Sec. 4.1). Hence, we derive a modified version of MinDEE, called
Single-Sequence MinDEE (SSMinDEE), that is capable of pruning rotamers only within
a single mutation sequence; the MinDEE criterion (Eq. 8) is valid for SSMinDEE.

4.1 Efficient Partition Function Computation Using A∗ Search

UsingA∗ with SSMinDEE, we can generate the conformations of a rotamerically-based
ensemble in order of increasing lower bounds on the conformation’s minimized energy.
As each conformation c is generated from the conformation tree, we compare a lower
bound5 B(c) on its conformational energy to a moving stop-threshold and stop the
A∗ search once B(c) becomes greater than the threshold, since all remaining confor-
mations are guaranteed to have minimized energies above the stop-threshold. We now
prove that a partial partition function q∗ computed using only those conformations with
energies below (i.e., better than) the stop-threshold will lie within a factor of ε of the
true partition function q. Thus, q∗ is an ε-approximation to q, i.e., q∗ ≥ (1− ε)q.

During the application of the MinDEE criterion (Eq. 8), we can easily piggyback
the computation of a lower bound Bir on the energy of all conformations that contain a
pruned rotamer ir: Bir = Et′ + E�(ir) +

∑
j �=i min

s
E�(js) +

∑
j �=i min

s
E�(ir, js)

+
∑

j �=i

∑
k �=i,k>j min

s,u
E�(js, ku). Now, let E0 be the minimum lower energy bound

among all conformations containing at least one pruned rotamer, E0 = minir∈S Bir ,
where S is the set of pruned rotamers. E0 can be precomputed during the MinDEE
stage and prior to the A∗ search. Let p∗ be the partition function computed over the set
P of pruned conformations, so that p∗ ≤ k exp(−E0/RT ), where |P | = k. Also, let X
be the set of conformations not pruned by MinDEE and let q∗ be the partition function
for the top m conformations already returned by A∗; let q′ be the partition function for
the n conformations that have not yet been generated, all of which have energies above
Et, so that q′ ≤ n exp(−Et/RT ); note that |X | = m + n. Finally, let ρ = ε

1−ε . We
can then guarantee an ε-approximation to the full partition function q using:

Proposition 3. If the lower bound B(c) on the minimized energy of the (m+ 1)st con-
formation returned by A∗ satisfies B(c) ≥ −RT (ln(q∗ρ− k exp(−E0/RT ))− lnn),
then the partition function computation can be halted, with q∗ guaranteed to be an
ε-approximation to the true partition function q, that is, q∗ ≥ (1− ε)q.

Proof. The full partition function q is computed using all conformations in both P and
X : q = q∗ + q′ + p∗. Thus, q ≤ q∗ + n exp(−Et/RT ) + k exp(−E0/RT ). Hence,
q∗ ≥ (1 − ε)q holds if q∗ ≥ (1 − ε)(q∗ + n exp(−Et/RT ) + k exp(−E0/RT )).
Solving for Et, we obtain the desired stop-threshold:

−RT (ln(q∗ρ− k exp(−E0/RT ))− lnn) ≤ Et. (11)

We can halt the search once a conformation’s energy lower bound becomes greater than
the stop-threshold (Eq. 11), since then q∗ is already an ε-approximation to q.  !

5 Efficiently computed as a sum of precomputed pairwise minimum energy terms (see
Appendix B in [9]).
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Initialize: n ← Number of Rotameric Conformations; q∗ ← 0
while (n > 0)

c ← GetNextAStarConf()
if B(c) ≤ −RT (ln(q∗ρ − k exp(−E0/RT )) − ln n)

q∗ ← q∗ + exp (−ComputeMinEnergy(c)/RT )
n ← n − 1

else Return q∗

if q∗ρ < k exp(−E0/RT )
RepeatSearch(q∗, ρ, k, E0)

else Return q∗

Fig. 2. Intra-Mutation Filter for Computing a Partition Function with Energy Minimization
Using the A* Search. q∗ is the running approximation to the partition function. The function
B(·) computes the energy lower bound for the given conformation (see Appendix B in [9]). The
function ComputeMinEnergy(·) returns a conformation’s energy after energy minimization. The
function GetNextAStarConf() returns the next conformation from the A* search. The function
RepeatSearch(·) sets up and repeats the mutation search if an ε-approximation is not achieved
after the generation of all A∗ conformations; the search is repeated at most once. Upon comple-
tion, q∗ represents an ε-approximation to the true partition function q, such that q∗ ≥ (1 − ε)q.

If at some point in the search, the stop-threshold condition has not been reached and
there are no remaining conformations for A∗ to extract (n = 0), then q′ = 0 by def-
inition, and q = q∗ + p∗. Hence, if q∗ρ ≥ k exp(−E0/RT ), then q∗ ≥ (1 − ε)q is
already an ε-approximation to q; otherwise, the set of pruned rotamers must be reduced
to guarantee the desired approximation accuracy (see Fig. 2 and [9, p. 13] for details).

Proposition 3 represents an intra-mutation energy filter for pruning within a sin-
gle mutation sequence (Fig. 2). For an analogous provable partition-function approx-
imation for pruning across mutation sequences (so that conformations for a given
sequence can be pruned based on the K∗ scores computed for other sequences), see [9,
Sec. 4.2].

Table 1. Conformational Pruning with Hybrid MinDEE-K∗. The initial number of confor-
mations for the GrsA-PheA 2-residue Leu mutation search is shown with the number of confor-
mations remaining after the application of volume, single-sequence minimized-DEE, steric, and
energy (with A∗) pruning. The A∗ energy filter is based on the ε-approximation algorithm in
Sec. 4.1. The pruning factor represents the ratio of the number of conformations present before
and after the given pruning stage. The pruning-% (in parentheses) represents the percentage of
remaining conformations eliminated by the given pruning stage.

Conf. Remaining Pruning Factor (%)
Initial 6.8 × 108 -

Volume Filter 2.04 × 108 3.33 (70.0)
SSMinDEE Filter 8.83 × 106 23.12 (95.7)

Steric Filter 5.76 × 106 1.53 (34.7)
A∗ Energy Filter 2.78 × 105 20.7 (95.2)
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We now have all the necessary tools for our ensemble-based Hybrid MinDEE-K∗

algorithm. The volume filter (Sec. 5) in the original K∗ is applied first to eliminate
under- and over-packed mutation sequences; this is followed by the combinatorial SS-
MinDEE filter and the A∗ energy filter using the ε-approximation algorithm above (see
Table 1). A steric filter (Sec. 5), similar to the one in [17], prevents some high-energy
conformations (corresponding to steric clashes) with good lower bounds from being
returned by A∗, gaining an additional combinatorial speedup. Only the conformations
that pass all of these filters are energy-minimized and used in the computation of the
partition function for the conformational ensemble. Finally, the K∗ score for a given
mutation is computed as the ratio of the bound and unbound partition functions. Hybrid
MinDEE-K∗ efficiently prunes the majority of the mutation sequences and conforma-
tions from more expensive full energy-minimization (see Appendix B in [9]), while still
giving provable guarantees on the accuracy of its score predictions.

5 Methods

Structural Model. Our structural model is the same as the one used in the original
K∗ [17]. In our experiments, the structural model consists of the 9 active site residues
(D235, A236, W239, T278, I299, A301, A322, I330, C331) of GrsA-PheA (PDB id:
1AMU) [4], the steric shell (the 30 residues with at least one atom within 8 Å of a
residue in the active site), the amino acid substrate, and the AMP cofactor. Flexible
residues are represented by rotamers from the Lovell et al. rotamer library [19]. Each
rotameric-based conformation is minimized using steepest-descent minimization and
the AMBER energy function (electrostatic, vdW, and dihedral energy terms) [31, 5]. For
full details of our structural model, see [9, Sec. 5].

Energy Precomputation for Lower Bounds, B(·). The MinDEE criterion (Eq. 8) uses
both min and max precomputed energy terms to determine which rotamers are not part
of the minGMEC. There is no need to re-compute the min and max energies every time
Eq. (8) is evaluated. See Appendix B in [9] for a detailed discussion.

Approximation Accuracy. We use ε = 0.03, thus guaranteeing that the computed par-
tial partition functions will be at least 97% of the corresponding full partition functions.

Filters. Volume filter: Mutation sequences that are over- or under-packed by more
than 30Å3 compared to the wildtype PheA are pruned; Steric filter: Conformations in
which a pair of atoms’ vdW radii overlap by more than 1.5Å prior to minimization are
pruned; Sequence-space filter: The active site residues are allowed to mutate to the set
(GAVLIFYWM) of hydrophobic amino acids; MinDEE: We use an implementation of
the MinDEE analog to the simple coupled Goldstein criterion ([10] and Fig. 4d in [9]).

6 Results and Discussion

In this section, we compare the results of GMEC-based protein redesign without (tradi-
tional-DEE/A∗) and with (MinDEE/A∗) energy minimization. We also compare the
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redesign results when energy minimization is used without (MinDEE/A∗) and with
(Hybrid MinDEE-K∗) conformational ensembles. We further compare our ensemble-
based redesign results both to our previous computational predictions of protein designs
and to biological activity assays of predicted protein mutants.

Comparison to Biological Activity Assays. Similarly to [17], we simulated the bio-
logical activity assays of L-Phe and L-Leu against the wildtype PheA enzyme and the
double mutant T278M/A301G [28]. In [28], T278M/A301G was shown to have the de-
sired switch of specificity from Phe to Leu by performing activity assays. The activity
for both the wildtype and the mutant protein sequences was normalized, so that the
substrate with the larger activity was assigned a specificity of 100%, while the other
substrate was assigned specificity relative to the first one. The wildtype PheA had a
specificity of 100% for Phe and approximately 7% for Leu; the double mutant had a
specificity of 100% for Leu and approximately 40% for Phe. The computed Hybrid
MinDEE-K∗ normalized scores qualitatively agreed with these results, showing the de-
sired switch of specificity for T278M/A301G. The wildtype sequence had a normalized
K∗ score of 100% for Phe and 0.01% for Leu; the double mutant had a normalized
score of 100% for Leu and 20% for Phe.

Comparison to Traditional-DEE. For comparison, the simple coupled Goldstein tradi-
tional-DEE criterion [10] was used in a redesign search for changing the specificity of
the wildtype PheA enzyme from Phe to Leu, using the experimental setup in Sec. 5.
A comparison to the rotamers in the minGMEC A236M/A322M (see MinDEE/A∗ re-
sults below), revealed that 2 of these 9 rotamers were in fact pruned by traditional-
DEE. As an example, the minGMEC was energy-minimized from a conformation that
included rotamer 5 [19] of Met at residue 236. This particular rotamer (χ angles
−177◦, 180◦, and 75◦) was pruned by traditional-DEE. We then energy-minimized
A236M/A301G, the rigid-GMEC obtained by traditional-DEE/A∗, and determined that
its energy was higher (by appx. 5 kcal/mol) than the energy for the minGMEC obtained
by MinDEE/A∗. Moreover, a total of 104 different conformations minimized to a lower
energy than the rigid-GMEC. These results confirm our claim that traditional-DEE is
not provably-accurate with energy-minimization; they also show that conformations
pruned by traditional-DEE may minimize to a lower energy state than the rigid-GMEC.

Hybrid MinDEE-K∗. The experimental setup for Leu redesign with Hybrid MinDEE-
K∗ is as described in Sec 5. The 2-point mutation search took approximately 10 hours
on a cluster of 24 processors. Only 30% of the mutation sequences passed the volume
filter, while MinDEE pruned over 95% of the remaining conformations. The use of
the ε-approximation algorithms reduced the number of conformations that had to be
subsequently generated and energy-minimized by an additional factor of twenty (see
Table 1). A brute-force version of Hybrid MinDEE-K∗ that did not utilize any of the
filters, would take approximately 2,450 times longer (appx. 1,023 days).

The two top-scoring sequences are A301G/I330W and A301G/I330F for both Hy-
brid MinDEE-K∗ and the original K∗ [17]. These novel mutation sequences were
tested in the wetlab and were shown to have the desired switch of specificity from
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Phe to Leu [17]. Moreover, the other known successful redesign T278M/A301G [28]
is ranked 4th. Furthermore, all of the top 17 Hybrid MinDEE-K∗ sequences con-
tain the mutation A301G, which is found in all known native Leu adenylation do-
mains [3]. These results show that our algorithm can give reasonable predictions for
redesign.

To compare the efficiency of Hybrid MinDEE-K∗ and the original K∗, we mea-
sured the number of fully-evaluated conformations. The original K∗ (using the better
minimizer of Hybrid MinDEE-K∗, see Appendix B in [9]) fully-evaluated approx. 30%
more conformations than the 2.78 × 105 evaluated by Hybrid MinDEE-K∗

(Table 1). Thus, Hybrid MinDEE-K∗ is much more efficient at obtaining the desired
results.

MinDEE/A∗. We now discuss results from our non-ensemble-based experiments us-
ing MinDEE/A∗. To redesign the wildtype PheA enzyme so that its substrate speci-
ficity is switched towards Leu, we used the experimental setup described in Sec. 5. The
MinDEE filter on the bound protein:ligand complex pruned 206 out of the 421 possible
rotamers for the active site residues, reducing the number of conformations that were
subsequently supplied to A∗ by a factor of 2,330. We then extracted and minimized all
conformations over the 2-point mutation sequences usingA∗ until the halting condition
defined in Proposition 2 was reached, for Ew = 8.5 kcal/mol. A total of 813 confor-
mations, representing 45 unique mutation sequences, had actual minimized energies
within 8.5 kcal/mol of the minGMEC energy. The top-ranked MinDEE/A∗ sequence
is A236M/A322M; the minGMEC is obtained from this sequence. The entire redesign
process took approximately 14 days on a single processor, with more than 120, 000
extracted conformations before the search could be provably halted. Thus, the provable
accuracy of the results comes at the cost of this computational overhead. Note, however,
that a redesign effort without a MinDEE filter and a provable halting condition would
be computationally infeasible.

Like A301G/I330W and A301G/I330F, the top 5 MinDEE/A∗ sequences are un-
known in nature. To assess the switch of specificity from Phe to Leu, we extracted the
minimum-energy conformation for these top 5 Leu-binding sequences. Each of these
5 conformations was then energy-minimized when bound to Phe. Whereas the Leu-
bound energies were negative and low, the corresponding Phe-bound energies were
positive and high. Thus, the top sequences are predicted to bind more stably to Leu, as
desired.

Only 9 of the 45 MinDEE/A∗ sequences passed the Hybrid MinDEE-K∗ volume
filter. Moreover, only 5 of the MinDEE/A∗ sequences were found in the top 40 Hybrid
MinDEE-K∗ sequences, indicating that ensemble-scoring yields substantially different
predictions from single-structure scoring using the minGMEC, where only the mini-
mized bound state of a single conformation is considered (see Fig. 3 in [9, p. 20]). We
can conclude that, currently, MinDEE appears useful as a filter in the Hybrid MinDEE-
K∗ algorithm; however, the incorporation of additional information, such as a
comparison to negative design (the energies to bind the wild-type substrate), may pro-
mote MinDEE as a valuable stand-alone non-ensemble-based algorithm for protein
redesign.
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7 Conclusions

When energy-minimization is required, the traditional-DEE criterion makes no guaran-
tees about pruning rotamers belonging to the minGMEC. In contrast, a rotamer is only
pruned by MinDEE if it is provably not part of the minGMEC. We showed experimen-
tally that the minGMEC can minimize to lower energy states than the rigid-GMEC,
confirming the feasibility and significance of our novel MinDEE criterion. When used
as a filter in ensemble-based redesign, MinDEE efficiently reduced the conformational
and sequence search spaces, leading both to predictions consistent with previous re-
design efforts and novel sequences that are unknown in nature. Our Hybrid MinDEE-
K∗ algorithm showed a significant improvement in pruning efficiency, as compared to
the originalK∗ algorithm. Redesign searches for two other substrates, Val and Tyr, have
also been performed, confirming the generality of our algorithms.

Protein design using traditional-DEE uses neither ensembles nor rotamer minimiza-
tion. In our experiments, we reported the relative benefits of incorporating ensembles
and energy-minimization into a provable redesign algorithm. A major challenge for pro-
tein redesign algorithms is the balance between the efficiency and accuracy with which
redesign is performed. While the ability to prune the majority of mutation/conformation
search space is extremely important, increasing the accuracy of the model is a prerequi-
site for successful redesign. It would be interesting to implement finer rotamer sampling
and more accurate (and hence more expensive) energy functions, remove bias in the ro-
tamer library by factoring the Jacobian into the partition function over torsion-angle
space, and incorporate backbone flexibility. An accurate and efficient algorithm for re-
designing natural products should prove useful as a technique for drug design.
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The tenth year of the annual International Conference on Research in Computational 
Biology (RECOMB) provides an opportunity to reflect on its history. RECOMB has 
been held across the world, including 6 different countries spanning 3 continents 
(Table 1). Over its 10 year history, RECOMB has published 373 papers and 170 
individuals have served on its various committees.  While there are many new faces in 
RECOMB each year, a significant number of researchers have participated over many 
years forming the core of the RECOMB community.    

Over the past ten years, members of the RECOMB community were key players in 
many of the advances in Computational Biology during this period.  These include the 
sequencing and assembly of the human genome, advances in sequence comparison, 
comparative genomics, genome rearrangements and the HapMap project among others. 

Table 1. The locations and dates of each year of RECOMB. The program and conference chair 
are listed for each conference in the final two columns. 

 
 Location Dates Program Chair Conference Chair 

1997 Santa Fe, USA January 20-23 Michael 
Waterman 

Sorin Istrail 

1998 New York, USA March 22-25 Pavel Pevzner Gary Benson 

1999 Lyon, France April 11-14 Sorin Istrail Mireille Régnier 

2000 Tokyo, Japan April 8-11 Ron Shamir Satoru Miyano 

2001 Montreal, Canada April 22-25 Thomas 
Lengauer 

David Sankoff 

2002 Washington, USA April 18-21 Eugene Myers Sridhar Hannenhalli 

2003 Berlin, Germany April 10-13 Webb Miller Martin Vingron 

2004 San Diego, USA March 27-31 Dan Gusfield Philip Bourne 

2005 Boston, USA May 14-18 Satoru Miyano Jill Mesirov, Simon 
Kasif 

2006 Venice, Italy April 2-5 Alberto 
Apostolico Concettina Guerra 

10 Years of RECOMB Papers 

Over RECOMB’s 10 year history, 731 authors have published a total of 373 papers in 
the conference proceedings. These papers span the diversity of research areas in 
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Computational Biology and present many new computational techniques for the 
analysis of biological data.  

It should be noted that some authors have variances in how names appear 
throughout the years, including differing first names, initials, and middle names. 
While every effort was made to normalize the names, any such error could lead to the 
skewing of data and there may be small errors in the reporting of individual 
participation throughout the paper. 

As a preliminary analysis, we consider the number of papers for each researcher 
that has appeared throughout the 10 years of RECOMB in the proceedings. In such a 
measure, Richard Karp who has authored 12 different papers in RECOMB throughout 
the 10 years would be the top participant.  

Using the graph in Figure 1, we can identify the most collaborative members of the 
RECOMB community (hubs in a protein network).  The most collaborative authors 
are the individuals that have the most number of co-authors.  Ron Shamir is the most 
collaborative RECOMB author with 22 co-authors (Table 3).   

 

Fig. 1. Graphical view of interactions between RECOMB authors represented as a “protein 
interaction network” (giant component). Vertices of the graph represent authors while edges 
connect vertices corresponding to co-authors. Authors whose names are displayed are authors 
who have at least 16 coauthors.  
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Table 2. RECOMB's most prolific authors. The table identifies authors who have published at 
least 4 papers in RECOMB. 

Author Number of Papers Author Number of Papers 

Richard Karp 12 Serafim Batzoglou 6 

Ron Shamir 11 Dan Gusfield  6 

Pavel Pevzner 11 Webb Miller  5 

Bonnie Berger 10 Fengzhu Sun  5 

Amir Ben-Dor 10 Ralf Bundschuh  5 

Nir Friedman 9 Jeremy Buhler  5 

Eugene Myers 9 Jens Lagergren  5 

Zohar Yakhini 9 Roded Sharan  4 

Tao Jiang 9 Benno Schwikowski  4 

Benny Chor  8 Nancy Amato 4 

Michael Waterman 8 Eran Halperin  4 

David Sankoff  8 Zheng Zhang  4 

Martin Vingron  7 Martin Farach-Colton  4 

Ting Chen  7 Sorin Istrail  4 

Steven Skiena  7 Vlado Dancík  4 

Eric Lander 7 Golan Yona  4 

Hans-Peter Lenhof  6 Dannie Durand  4 

John Kececioglu 6 Mathieu Blanchette  4 

Vineet Bafna  6 Adam Siepel 4 

Bruce Donald 6 Tatsuya Akutsu  4 

David Haussler  6 Eran Segal  4 

Lior Pachter  6 Thomas Lengauer  4 

Table 3. RECOMB contributors with more than 10 co-authors. For each author the number of 
individuals with whom they have coauthored papers is listed. 

Author Name Num ofCoauthors Author Name Num of Coauthors 

Ron Shamir 22 Hans-Peter Lenhof 16 
Serafim Batzoglou 20 Vlado Dancik 14 
Bonnie Berger 20 Steven Skiena 14 

Pavel Pevzner 20 Benny Chor 14 

Michael Waterman 19 Lydia Kavraki 13 

Zohar Yakhini 19 Bruce Donald 13 

Tao Jiang 18 Martin Farach-Colton 12 

Richard Karp 18 Sorin Istrail 12 

Eric Lander 18 Lior Pachter 12 

Nir Friedman 18 Eugene Myers 11 

Amir Ben-Dor 17 David Sankoff 11 
Martin Vingron 17 Vineet Bafna 11 
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Similarly, we can identify which groups of authors have had the most success 
working together (complexes in protein networks).  The team of Eric S. Lander, 
Bonnie Berger  and Serafim Batzoglou have published 3 papers together and are the 
only group of three authors which have published more than two papers. The most 
prolific pair of authors is Amir Ben-Dor and Zohar Yakhini who have published 7 
papers together.  21 pairs of authors have published at least 3 papers as shown in 
Table 4. 

Relationships between individual authors can be established in other ways as well. 
In Figure 2 we analyze the relationships between the most prolific authors (Table 2). 
By examining the relationships between individuals as advisors in both PhD and 
postdoctoral positions, the connections between the most prolific authors can be seen 
as a phylogeny. In addition, the individuals are shown on a timeline indicating the 
times at which they first began publishing in the field of Computational Biology. 

We manually classified each paper into one of 16 categories: Protein structure 
analysis, Molecular Evolution, Sequence Comparison, Motif Finding, Sequence 
analysis, Population genetics/SNP/Haplotyping, Physical and Genetic Mapping, Gene 
Expression, Systems Biology, RNA Analysis, Genome rearrangements, Computational 
 

Table 4. Coauthor Pairs. All pairs of authors who have written 3 or more papers accepted by 
RECOMB throughout the 10 year history of the conference are listed in the table. 

Author Names Number of Papers 

Amir Ben-Dor Zohar Yakhini 7 

Bonnie Berger Eric Lander 4 

Zheng Zhang Webb Miller 4 

Serafim Batzoglou Bonnie Berger 3 

Serafim Batzoglou Eric Lander 3 

Amir Ben-Dor Benny Chor 3 

Amir Ben-Dor Richard Karp 3 

Amir Ben-Dor Benno Schwikowski 3 

Benny Chor Tamir Tuller 3 

Tao Jiang Richard Karp 3 

Richard Karp Ron Shamir 3 

David Haussler Adam Siepel 3 

Eric Lander Jill Mesirov 3 

Fengzhu Sun Ting Chen 3 

Ralf Zimmer Thomas Lengauer 3 

Bruce Donald Christopher Langmead 3 

Bruce Donald Ryan Lilien 3 

Nir Friedman Yoseph Barash 3 

Michael Hallett Jens Lagergren 3 

Guang Song Nancy Amato 3 

Eran Segal Daphne Koller 3 
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Proteomics, Recognition of Genes, Microarray design, DNA computing and Other.  
Using these classifications, we can observe which authors have written the most about 
a single topic and which authors have written about the most topics.  Both Bonnie 
Berger and Benny Chor have contributed the most papers (6) on a single topic, 
Protein Structure Analysis and Molecular Evolution respectively.  Table 5 shows the 
top contributors in a single area. 

 

Fig. 2. Phylogeny of Authors. In this figure authors are organized across a timeline representing 
their earliest publications in the field of Computational Biology. Solid lines indicate PhD 
advisors, while dotted lines represent postdoctoral advisors. While we attempted to accurately 
link the timeline and RECOMB authors/genealogy, the figure represents only approximate time 
estimates and approximate topology of the RECOMB tree. 
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Table 5. Most consistent authors. For each author in the table, a subject is indicated for which 
he or she has written at least 3 papers. The number of papers in the 10 years of RECOMB by 
the author on the given subject is indicated. 

Author Name Author Name Num of papers  

Benny Chor Molecular Evolution  6 

Bonnie Berger Protein structure analysis 6 

David Sankoff Genome rearrangements 5 

Ralf Bundschuh Sequence Comparison 5 

Bruce Donald Protein structure analysis 5 

Nir Friedman Gene Expression 5 

Jens Lagergren Molecular Evolution  5 

Amir Ben-Dor Gene Expression 4 

Richard Karp Physical and Genetic Mapping 4 

Webb Miller Sequence Comparison 4 

David Haussler Molecular Evolution  4 

Zohar Yakhini Gene Expression 4 

Lior Pachter Recognition of Genes 4 

Dannie Durand Molecular Evolution  4 

Eugene Myers Sequence Comparison 3 

John Kececioglu Sequence Comparison 3 

Tao Jiang Physical and Genetic Mapping 3 

Ron Shamir Sequence analysis 3 

Michael Waterman Physical and Genetic Mapping 3 

Hans-Peter Lenhof Protein structure analysis 3 

Zheng Zhang Sequence Comparison 3 

Dan Gusfield Population 
genetics/SNP/Haplotyping 3 

Tandy Warnow Molecular Evolution  3 

Douglas Brutlag Protein structure analysis 3 

Jon Kleinberg Protein structure analysis 3 

Franco Preparata Sequence analysis 3 

Chris Bailey-Kellogg Protein structure analysis 3 

Michael Hallett Molecular Evolution  3 

Jonathan King Protein structure analysis 3 

Jeremy Buhler Sequence Comparison 3 

Kaizhong Zhang RNA Analysis 3 

Nancy Amato Protein structure analysis 3 

Eran Halperin Population 
genetics/SNP/Haplotyping 

3 

Ryan Lilien Protein structure analysis 3 

Tamir Tuller Molecular Evolution  3 
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Table 6. Most Diverse Authors. These are authors spanning the largest number of subjects. 
Authors are given who have papers in RECOMB in more than 4 subjects. 

# of Subjects Author Name # of Subjects Author Name 

8 Pavel A. Pevzner 5 Fengzhu Sun 

7 Steven S. Skiena 5 Ting Chen 

7 Richard M. Karp 4 Tatsuya Akutsu 

7 Ron Shamir 4 Bonnie Berger 

6 Amir Ben-Dor 4 Hans-Peter Lenhof 

6 Tao Jiang 4 Benno Schwikowski 

6 Martin Vingron 4 Dan Gusfield 

6 Eric S. Lander 4 Thomas Lengauer 

6 Zohar Yakhini 4 Vineet Bafna 

5 Serafim Batzoglou 4 Nir Friedman 

5 Eugene W. Myers 4 Eran Segal 

5 Michael S. Waterman 4 Roded Sharan 

On the opposite end of the spectrum are the authors who contributed papers on 
different topics (Table 6).  

For each author we create a topic profile which is a 16 dimensional vector 
containing the number of papers of each topic that an individual has published in 
RECOMB normalized by dividing by the total number of papers published. 
Intuitively, an author’s topic profile represents the areas of research in which the 
author works on. Not surprisingly, co-authors tend to work on the same topics. The 
average pairwise Euclidean distance between any two authors topic profile is 1.19 
while the average distance between co-authors is only 0.61.  Similarly, papers written 
by the same author tend to be on the same topic.  The chances that any two papers are 
on the same topic are 0.09 while the chance that two papers that share one author is 
on the same topic is 0.21. 

Trends in RECOMB Authors over Time 

The number of authors contributing to the conferences has fluctuated with the largest 
number in 2006 at 134. 1998 represents the year in which the fewest number of 
authors submitted multiple papers, that is, most authors had a single paper that was 
accepted to the conference (Table 7) 

2006 had the lowest proportion of single-authored papers with only one of the 40 
accepted papers showing a single author (Table 8 and Figure 3).  

It appears that over the years there is a trend in an increase in the number of 
authors per paper with a slight decrease in papers per author. This indicates that while 
there are more authors on any one single paper, authors are less likely to have 
multiple papers in any given year.  
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Table 7. “Authors per paper” and “papers per author” statistics 

Averages 
Year Papers Authors Author 

per Paper 
Paper 

per Author 

1997 42 101 2.8 1.2 
1998 38 96 2.6 1.0 
1999 35 106 3.3 1.0 

2000 36 122 3.8 1.1 
2001 35 92 2.8 1.1 
2002 35 87 2.7 1.1 

2003 35 88 2.8 1.1 
2004 38 111 3.1 1.1 

2005 39 121 3.4 1.1 
2006 40 134 3.4 1.1 

Table 8. Author Numbers in Papers. The table shows the percent of papers in each that had the 
given number of authors determined by counting the number of papers with the indicated 
number of authors and dividing it by the total number of papers in RECOMB in that year. 

Percent of papers with given number of authors 
Year 

1 2 3 4 5 6 7 8 9 10 11 

1997 19.0 42.9 14.3 9.5 9.5 0.0 0.0 2.4 0.0 0.0 2.4 
1998 18.4 31.6 28.9 15.8 5.3 0.0 0.0 0.0 0.0 0.0 0.0 
1999 8.6 37.1 22.9 8.6 11.4 5.7 5.7 0.0 0.0 0.0 0.0 
2000 2.8 30.6 19.4 22.2 13.9 5.6 0.0 0.0 0.0 0.0 5.6 

2001 17.1 31.4 28.6 8.6 8.6 2.9 2.9 0.0 0.0 0.0 0.0 
2002 14.3 34.3 25.7 17.1 8.6 0.0 0.0 0.0 0.0 0.0 0.0 

2003 8.6 42.9 25.7 5.7 17.1 0.0 0.0 0.0 0.0 0.0 0.0 
2004 7.9 39.5 21.1 13.2 10.5 2.6 2.6 2.6 0.0 0.0 0.0 

2005 2.6 28.2 28.2 25.6 7.7 2.6 2.6 2.6 0.0 0.0 0.0 
2006 2.5 30.0 32.5 12.5 12.5 5.0 2.5 0.0 2.5 0.0 0.0 

There are multiple ways to gauge the participation of individuals in the conference. 
One such measure might be to determine the span of years over which individuals 
have papers appearing in the proceedings. This was measured by determining the 
years of the first followed by the most recent papers of individual authors, and 
determining the span of years over which they had participated. Using such a 
measure, ten authors have papers published over a span of all ten years of the 
conference listed in the table. These authors are Benny Chor, Bonnie Berger, Sampath 
Kannan, John Kececioglu, Martin Vingron, David Haussler, Pavel Pevzner, Serafim 
Batzoglou, Dan Gusfield and Tao Jiang. 
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Fig. 3. Distribution of papers with given number of authors over the 10 years of RECOMB 

Table 9. Authors with RECOMB papers in most number of years 

Author Name 
Num of  
Years 

Author Name 
Num of 
Years 

Bonnie Berger 9 Tao Jiang  5 

Pavel Pevzner 9 Benno Schwikowski  4 

Ron Shamir 8 Nancy Amato  4 

Amir Ben-Dor  8 Eran Halperin  4 

Richard Karp  8 Vineet Bafna  4 

Benny Chor  7 Sorin Istrail  4 

Zohar Yakhini  7 Webb Miller  4 

David Sankoff  7 Vlado Dancík  4 

Eugene Myers  6 David Haussler  4 

Bruce Donald  6 Mathieu Blanchette  4 

Lior Pachter  6 Fengzhu Sun  4 

Hans-Peter Lenhof  5 Adam Siepel 4 

John Kececioglu  5 Serafim Batzoglou  4 

Nir Friedman  5 Dan Gusfield  4 

Martin Vingron  5 Jens Lagergren  4 

Ting Chen  5 Steven Skiena 4 

Ralf Bundschuh  5 Eric Lander 4 

Jeremy Buhler  5 Thomas Lengauer  4 

Michael Waterman  5 
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However, such a measure may not be completely representative of a researcher’s 
participation in the conference. Over the 10 years of RECOMB, no author has 
contributed to every year of the conference (Table 9). 

Trends in RECOMB Paper Topics 

As bioinformatics has grown and changed over the 10 years since RECOMB’s 
inception, so have the subjects which comprise the papers accepted at each conference 
(Table 10). Some subjects, such as Protein Structure Analysis has remained a 
stronghold in the papers throughout the 10 years of RECOMB. Not only is it the most 
represented subject over the course of time, at 72 total papers in this field, with a 
steady portion of the total papers in each year in this field, it entails nearly 30 percent 
of the accepted papers in 2006. 

Table 10. Distribution of topics of RECOMB papers. “Other” category includes more specific 
subjects such as drug design, DNA denaturization, etc. 

Subject Total 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Protein structure 
analysis  72 16.7 18.4 25.7 27.8 17.1 17.1 11.4 15.8 12.8 30.0 
Molecular 
Evolution  52 4.8 15.8 14.3 13.9 11.4 8.6 11.4 13.2 20.5 25.0 
Sequence 
Comparison  40 28.6 21.1 2.9 8.3 5.7 8.6 2.9 7.9 7.7 10.0 
Motif Finding  32 0.0 15.8 5.7 8.3 14.3 8.6 11.4 15.8 7.7 0.0 
Sequence 
analysis  22 0.0 0.0 5.7 5.6 22.9 11.4 8.6 5.3 0.0 2.5 
Population 
genetics/ SNP/ 
Haplotyping  21 2.4 2.6 0.0 0.0 0.0 11.4 20.0 7.9 7.7 5.0 
Physical and 
Genetic Mapping 20 23.8 7.9 8.6 5.6 0.0 0.0 2.9 0.0 2.6 0.0 
Gene Expression 20 0.0 0.0 8.6 11.1 8.6 17.1 5.7 2.6 2.6 0.0 
Systems Biology 20 0.0 0.0 5.7 2.8 2.9 2.9 11.4 5.3 12.8 10.0 
RNA Analysis  18 0.0 2.6 2.9 2.8 2.9 5.7 2.9 10.5 7.7 10.0 
Genome 
rearrangements  15 9.5 5.3 2.9 2.8 0.0 2.9 5.7 2.6 5.1 2.5 
Computational 
Proteomics  14 0.0 0.0 2.9 2.8 8.6 0.0 2.9 5.3 10.3 5.0 
Recognition of 
Genes  10 7.1 0.0 2.9 2.8 5.7 0.0 0.0 5.3 2.6 0.0 
Other 10 0.0 10.5 11.4 2.8 0.0 0.0 0.0 2.6 0.0 0.0 
Microarray design 5 2.4 0.0 0.0 2.8 0.0 5.7 2.9 0.0 0.0 0.0 
DNA computing  2 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

While protein structure remained a consistent part of the RECOMB content, other 
subjects have fluctuated, disappeared, or gained strength over time. Sequence 
comparison, which composed well over 25 percent of all papers in the first year of 
RECOMB, fell to 10 percent of the total content of the 2006 conference. Similarly, 
Physical and Genetic Mapping which exceeded protein structure analysis in 1997 has 
completely disappeared in 2006. RNA analysis and Systems Biology have also been 
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growing in popularity since the first papers were accepted in the subjects in 1998 and 
1999 respectively. 

Computational Proteomics and Population Genetics each represented five percent 
of the total number of accepted papers. While neither was very abundant in the first 
four years of the conference, they seem to be gaining momentum over time. Genome 
rearrangement has maintained a consistent presence throughout the 10 years of 
RECOMB. Most notably, however, is the area of molecular evolution which has 
evolved from a small presence of 4.8 percent of all accepted papers in 1997 to 25 
percent of the total accepted papers in 2006. 

Table 11. Paper Acceptance Rates. The table gives the paper acceptance rates based on the 
number of papers submitted and accepted over the 10 years of RECOMB. 

Year 
Number 
Submitted 

Number 
Accepted 

Rate 

1997 117 43 37% 

1998 123 38 31% 

1999 147 35 24% 

2000 110 36 33% 

2001 128 35 27% 

2002 118 35 30% 

2003 175 35 20% 

2004 215 38 18% 

2005 217 38 18% 

2006 215 40 19% 

Table 12. Proportion of USA/Non-USA RECOMB papers 

Year USA Non-USA 

1997 67% 33% 

1998 66% 34% 

1999 66% 34% 

2000 54% 46% 

2001 69% 31% 

2002 86% 14% 

2003 71% 29% 

2004 74% 26% 

2005 54% 46% 

2006 65% 35% 
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RECOMB has grown more competitive over time, with an increase in submissions 
to over 200 in the last three years (Table 11). The number of submissions in 2006 has 
nearly doubled over the first year of the conference.   

Origins of RECOMB Papers 

The first authors of the papers have spanned the globe, representing 25 countries. 
While US first authors regularly contributed over 60 percent of the papers accepted to 
the conference, in 2000 and 2005, held in Tokyo and Boston respectively, the split 
neared 50 percent (Table 12). Most strikingly, over 85 percent of the papers the 2002 
conference held in Washington, DC had first authors from US institutions.  

Israel, Germany and Canada had first authors contributing papers to nearly every 
conference (Figure 4). Israel became the second most represented country during 5 
years, including 2003 when the conference was held in Germany where 80 percent of 
non-US authors were from Israel. Canada, Germany and Italy represented the runner-
up position during 2 years each. Italy contributed the largest proportion of first 
authored papers during 2002 when 40% of non-USA first authors were from Italian 
institutions, which is the second largest percentage in any year. 
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Fig. 4. Distribution of countries of origin of non-US first authors1 

Throughout RECOMB’s history, over 90% of the first authors were involved in the 
public sector with the exception of a brief interruption in 2001 when just over 11% of 
first authors were from Industry. In 2002, the conference was hosted by Celera, 
during which nearly 9% of first authors were involved in the private sector, the 
second largest amount during the conference’s history. However, the contributions 
from industry have steadily declined since 2002. 

                                                           
1 Category Other includes Chile, Belgium, Australia, Spain, Netherlands, Finland, Switzerland, 

New Zealand, Austria, and Taiwan. 
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RECOMB’s Most Cited Papers 

Several of the papers published in RECOMB have had a significant influence on 
research in Computational Biology and have been widely cited. Table 13 contains a 
list of the most cited RECOMB papers as of January 2006 according to Google 
Scholar.  A difficulty in obtaining this list is that many of the RECOMB papers are 
later published in journals and the citations are split between the original RECOMB 
version and the journal version which may lead to some inaccuracies in calculating 
the number of citations. 

Table 13. RECOMB's most cited papers. The number of citations given in the final column is 
based on the journal in which they were published, and are accurate as of January 1, 2006 when 
the citations were last confirmed. 

Paper Title RECOMB 
Year Journal # 

Citations 

Nir Friedman, Michal Linial, Iftach 
Nachman, Dana Pe'er. “Using Bayesian 
networks to analyze expression data” 

2000 J Comp Biol 2000:7 506 

Manolis Kamvysselis, Nick Patterson, 
Bruce Birren, Bonnie Berger, Eric S. 
Lander. “Whole-genome comparative 
annotation and regulatory motif 
discovery in multiple yeast species” 

2003 Nature 2003: 423 385 

Amir Ben-Dor, Zohar Yakhini. 
“Clustering gene expression patterns”  1999 J Comp Biol 1999:6 355 

Harmen J. Bussemaker, Hao Li, Eric D. 
Siggia.“Regulatory element detection 
using correlation with expression 
(abstract only)” 

2001 Nat Genet 2001:27 265 

Amir Ben-Dor, Laurakay Bruhn, Nir 
Friedman, Iftach Nachman, Michèl 
Schummer, Zohar Yakhini. “Tissue 
classification with gene expression 
profiles” 

2000 J Comp Biol 2000:7 245 

Serafim Batzoglou, Lior Pachter, Jill P. 
Mesirov, Bonnie Berger, Eric S. Lander. 
“Human and mouse gene structure: 
comparative analysis and application to 
exon prediction” 

2000 Genome Res 2000:10 190 

Isidore Rigoutsos, Aris Floratos. “Motif 
discovery without alignment or 
enumeration” 

1998 Bioinformatics 2000:14 150 

Jeremy Buhler, Martin Tompa. “Finding 
motifs using random projections” 2001 J Comp Biol 2002:9 138 

Martin G. Reese, Frank H. Eeckman, 
David Kulp, David Haussler. “Improved 
splice site detection in Genie”  

1997 J Comp Biol 1997:4 131 

Haim Kaplan, Ron Shamir, Robert E. 
Tarjan. “Faster and simpler algorithm for 
sorting signed permutations by 
reversals” 

1997 SIAM J Comput 1999:29 127 
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Table 13. (Continue) 

Alberto Caprara. “Sorting by reversals is 
difficult” 1997 RECOMB 1997 111 

Vlado Dancík, Theresa A. Addona, Karl 
R. Clauser, James E. Vath, Pavel A. 
Pevzner. “De Novo Peptide Sequencing 
via Tandem Mass Spectrometry” 

1999 J Comp Biol 1999:6 109 

Pierluigi Crescenzi, Deborah Goldman, 
Christos Papadimitriou, Antonio 
Piccolboni,  
Mihalis Yannakakis. “On the complexity 
of protein folding” 

1998 J Comp Biol 1998:5 104 

Bonnie Berger, Tom Leighton. “Protein 
folding in the hydrophobic-hydrophilic 
(HP) is NP-complete” 

1998 J Comp Biol 1998:5 89 

Donna K. Slonim, Pablo Tamayo, Jill P. 
Mesirov, Todd R. Golub, Eric S. Lander. 
“Class prediction and discovery using 
gene expression data” 

2000 RECOMB 2000 87 

Mathieu Blanchette. “Algorithms for 
phylogenetic footprinting” 2001 J Comp Biol 2002:9 84 

David Sankoff, Mathieu Blanchette. 
“Multiple genome rearrangements” 1998 J Comp Biol 1998:5 84 

Donna K. Slonim, Leonid Kruglyak, 
Lincoln Stein, Eric S. Lander. “Building 
human genome maps with radiation 
hybrids” 

1997 J Comp Biol 1997:4 81 

Table 14. Invited speakers over the 10 years of RECOMB 

Year Speaker names  

1997 David Botstein, Sam Karlin, Martin Karplus, Eric Lander, Robert Lipshutz, 
Jonathan King, Rich Roberts, Temple Smith, Terry Speed 

1998 Ruben Abagyan, Charles Cantor, David Cox, Ron Davis, Klaus Guberna tor, 
Joshua Lederberg, Michael Levitt, David Schwartz, John Yates 

1999 Peer Bork, Cyrus Chothia, Gene Myers, John Moult, Pitor Slonimsky, Ed 
Southern, Peter Willett, John Wooley 

2000 Eric Davidson, Walter Gilbert, Takashi Gojobori, Leroy Hood, Minoru 
Kanehisa, Hans Lehrach, Yvonne Martin, Yusuke Nakamura, Svante Paabo 

2001 Mark Adams, Roger Brent, George Church, Franz Lang, Klaus Lindpaintner, 
Yvonne Martin, Mark Ptashne, Philip Sharp, Matthias Wilm 

2002 Ruben Abagyan, Ali Brivanlou, Evan Eichler, Harold Garner, David Ho, 
Gerry Rubin, Craig Venter, Marc Vidal 

2003 Edward Trifonov, Christiane Nüsslein-Volhard, Árpád Furka, Andrew Clark, 
David Haussler, Arthur Lesk, Dieter Oesterhelt, Terry Speed, Kari Stefansson 

2004 
Carlos Bustamante, Russell Doolittle, Andrew Fire, Richard Karp, William 
McGinnis, Deborah Nickerson, Martin Nowak, Christine Orengo, Elizabeth 
Winzeler 

2005 David Altshuler, Wolfgang Baumeister, James Collins, Charles DeLisi, 
Jonathan King, Eric Lander, Michael Levine, Susan Lindquist 

2006 Anne-Claude Gavin, David Haussler, Ajay Royyuru, David Sankoff, Michael 
Waterman, Carl Zimmer, Roman Zubarev 
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RECOMB Keynote Speaker Series 

The conference has been honored to have many excellent speakers throughout the 10 
years of the conference. Every year between 7 and 9 distinguished individuals were 
invited to deliver lectures at the conference in a variety of fields (Table 14). 

RECOMB includes a distinguished lecture series which consists of the Stanislaw 
Ulam Memorial Computational Biology lecture, the Distinguished Biology lecture, 
and New Technologies lectures delivered by a different set of individuals every year 
(Table 15) with the exception of 1999 and 2005. In 199 There was no Biology lecture, 
while in 2005 no distinguished lectures were delivered on new technologies. 2004 
included an additional address in which Richard Karp delivered the lecture awarded 
the Fred Howes Distinguished Service Award.  

Table 15. Distinguished lecture series in Computational Biology, Biology, and New 
Technologies 

Year 
Stanislaw Ulam Memorial 
Computational Biology 
Lecture 

Distinguished 
Biology Lecture 

Distinguished New 
Technologies 
Lecture 

1997 Eric Lander Rich Roberts Robert Lipshutz 

1998 Joshua Lederberg Ron Davis David Cox 

1999 Pitor Slonimsky  Ed Southern 

2000 Minoru Kanehisa Walter Gilbert Leroy Hood 

2001 George Church Philip Sharp Mark Adams 

2002 Craig Venter David Ho Harold Garner 

2003 Edward Trifonov 
Christiane Nüsslein-
Volhard 

Árpád Furka 

2004 Russell Doolittle Andrew Fire Carlos Bustamante 

2005 Charles DeLisi Jonathan King  

2006 Michael Waterman Anne-Claude Gavin Roman Zubarev 

The RECOMB Organizers 

Since its inception in 1997, many scientists have participated in the conference in 
many fashions. While the committees have enjoyed the membership of over 170 
different individuals between 1997 and 2006, many have participated over multiple 
years. The Steering Committee had consistent presence of 5 scientists between 1997 
and 2005, including Michael Waterman, Pavel Pevzner, Ron Shamir, Sorin Istrail and 
Thomas Lengauer. The steering committee included 6 members throughout the first 8 
years of the conference, with Richard Karp rounding out the group through 2003, and 
passing the position on to Terry Speed in 2004. In 2005 Michal Linial joined the 
Steering Committee to increase its size to 7. 
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Table 16. RECOMB Committee Membership. Each year shows the number of members in 
each committee. 

Number of Members   
Year Steering Organizing Program 

1997 6 5 23 

1998 6 4 21 

1999 6 6 29 

2000 6 8 27 

2001 6 9 23 

2002 6 11 28 

2003 6 5 31 

2004 6 9 42 

2005 7 17 43 

2006 7 9 38 

Table 17. RECOMB Program Committee Membership 

Name Years 

Michael Waterman   10 

Pavel Pevzner   10 

Ron Shamir   10 

Thomas Lengauer   10 

Sorin Istrail   10 

Martin Vingron   9 

Richard Karp   9 

Terry Speed   7 

David Sankoff   6 

Satoru Miyano   6 

Gene Myers   5 

Tandy Warnow   5 

Dan Gusfield   5 

Gordon Crippen   5 

Sridhar Hannenhalli   5 

The organizing committee has had a far more variable composition. Between 1997 
and 2006, a total of 81 individuals have comprised the committee. The program 
committee has grown in size throughout the years of the conference (Table 16). While 
the size of the organizing and program committees do not correlate perfectly, the trend 
toward an increasing number of members per year has been exhibited in both. 
Numerous individuals have served on program committees in multiple years (Table 17).  
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RECOMB Funding 

RECOMB has received support from a variety of sources. The US Department of 
Energy, US National Science Foundation and the SLOAN Foundation have been 3 
major sponsors over the 10 years. Many other sponsors have significantly contributed 
to the conference, including IBM, International Society for Computational Biology 
(ISCB), SmithKline Beecham, Apple, Applied Biosystems, Celera, Compaq, 
Compugen, CRC Press, Glaxo-SmithKline, Hewlett-Packard, The MIT Press and the 
Broad Institute, Accelerys. Affymetrix, Agilent Technologies, Aventis,  Berlin Center 
for Genome Based Bioinfornatics-BCB, Biogen, Boston University's Center for 
Advanced Genomic Technology, Centre de recherche en calcul applique (CERCA), 
CNRS, Conseil Regional Rhone-Alpes, Eurogentec-Seraing, Geneart GmbH, Genome 
Therapeutics, IMGT, INRA, LION Biosceince, LIPHA, Mairie de Lyon, Mathworks, 
Millennium Pharmaceuticals, Max Planck Institute for Molecular Genetics, Microsoft 
Research, NetApp, Novartis, Paracel, Partek Incorporated, Pfizer, Rosetta 
Biosoftware, Schering AG, Sun Microsystems, Technologiestiftung Berlin, The 
European Commission, High-level Scientific Conferences, The German Federal 
Ministry for Education and Research, The San Diego Supercomputer Center, The 
University of California-San Diego, Timelogic, Wyeth, Universitat degli Studi di 
Padova, Italy, DEI and AICA. 

Conclusion 

The approach of the 10th RECOMB conference held in Venice Italy provides us an 
opportunity to reflect on RECOMB's history. The landscape of computational biology 
has changed drastically since the first RECOMB Conference was held in Santa Fe, 
New Mexico.  Today's conference contains papers covering research topics that did 
not exist 10 years ago. Over this period, many individuals have made significant 
research contributions through published papers.  Many of the original founders of the 
RECOMB conference are still active, and many new faces are becoming active in the 
community each year. 
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Abstract. During evolution, genomes are subject to genome rearrange-
ments that alter the ordering and orientation of genes on the chromo-
somes. If a genome consists of a single chromosome (like mitochondrial,
chloroplast or bacterial genomes), the biologically relevant genome re-
arrangements are (1) inversions—also called reversals—where a section
of the genome is excised, reversed in orientation, and reinserted and (2)
transpositions, where a section of the genome is excised and reinserted
at a new position in the genome; if this also involves an inversion, one
speaks of an inverted transposition. To reconstruct ancient events in the
evolutionary history of organisms, one is interested in finding an opti-
mal sequence of genome rearrangements that transforms a given genome
into another genome. It is well known that this problem is equivalent
to the problem of “sorting” a signed permutation into the identity per-
mutation. The complexity of the problem is still unknown. The best
polynomial-time approximation algorithm, recently devised by Hartman
and Sharan, has a 1.5 performance ratio. However, it applies only to the
case in which reversals and transpositions are weighted equally. Because
in most organisms reversals occur more often than transpositions, it is
desirable to have the possibility of weighting reversals and transpositions
differently. In this paper, we provide a 1.5-approximation algorithm for
sorting by weighted reversals, transpositions and inverted transpositions
for biologically realistic weights.

1 Introduction

During evolution, genomes are subject to genome rearrangements that alter the
ordering and orientation (strandedness) of genes on the chromosomes. Because
these events are rare compared to point mutations, they can give us valuable
information about ancient events in the evolutionary history of organisms. For
this reason, one is interested in the most “plausible” genome rearrangement sce-
nario between two (or multiple) species. More precisely, given two genomes, one
wants to find an optimal (shortest) sequence of rearrangement operations that
transforms one into the other. Here we will focus on genomes that consists of a
single (circular) molecule of DNA such as mitochondrial, chloroplast or bacte-
rial genomes. As usual, the genomes are represented by a signed permutation,

A. Apostolico et al. (Eds.): RECOMB 2006, LNBI 3909, pp. 563–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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i.e., an ordering of signed genes where the sign indicates the orientation (the
strand). In this paper we do not consider unsigned permutations. In the single
chromosome case, the relevant genome rearrangements are inversions (where a
section of the genome is excised, reversed in orientation, and reinserted) and
transpositions (where a section of the genome is excised and reinserted at a new
position in the genome; if this also involves an inversion, one speaks of an in-
verted transposition). As is usually done in bioinformatics, we will use the terms
“reversal” and “transreversal” as synonyms for “inversion” and “inverted trans-
position.” It is well known that the problem of finding an optimal sequence of
rearrangement operations that transforms a permutation into another permuta-
tion is equivalent to the problem of “sorting” a permutation by the same set of
operations into the identity permutation. Let us briefly recall what is known for
various sets of operations. In a seminal paper, Hannenhalli and Pevzner showed
that the problem of sorting by reversals can be solved in polynomial time [13].
The Hannenhalli-Pevzner theory was simplified [5] and the running time of their
algorithm was improved several times. To date, a subquadratic time algorithm
[19] is available, and the reversal distance problem (which asks solely for the
minimum number of required reversals, but not for the sequence of reversals)
is solvable in linear time [1, 6]. It is also worth mentioning that the problem of
sorting an unsigned permutation by reversals is NP-hard [9] and the currently
best approximation algorithm has the performance ratio 1.375 [7].

If one restricts the set of operations to transpositions (T), to transpositions
and reversals (T + R), or to transpositions, reversals, and transreversals (T + R
+ TR), the complexity of the problem is still unknown. There exist polynomial-
time approximation algorithms, and the best of them are listed in the table
below.

operations T T + R T + R + TR
performance ratio 1.375 2 1.5
references [10] [20, 17] [15]

The biologically most relevant scenario is the T + R + TR case because in
reality genomes are reorganized by all three kinds of operations. A drawback of
Hartman and Sharan’s [15] 1.5-approximation algorithm is that it applies only
to the case in which reversals and transpositions are weighted equally (called the
unweighted case in this paper). Because a transposition can create two cycles in
the reality-desire diagram while a reversal can create at most one cycle (see be-
low), the algorithm generally favors transpositions. Consequently, the sequence
of rearrangement operations returned by that algorithm will often significantly
deviate from the “true” evolutionary history because in most organisms transpo-
sitions are observed much less frequently than reversals. Thus, it is desirable to
have the possibility of weighting reversals and transpositions differently. Given
such weights, the weighted genome rearrangement problem asks for a sorting
sequence of rearrangement operations such that the sum of the weights of the
operations in the sequence is minimal. That is, a shortest sequence is not nec-
essarily optimal. However, this problem is poorly studied. To our knowledge,
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there are only two algorithms that tackle it. The first is a (1+ε)-approximation
algorithm devised by Eriksen [11]. It uses a weight proportion 2:1 (transposi-
tion:reversal) and has the tendency to use as much reversals as possible. The
second algorithm is implemented in the software tool DERANGE II [8]. It is a
greedy algorithm that works on the breakpoint distance and can only guarantee
an approximation ratio of 3. In this paper, we will present a 1.5-approximation
algorithm for any weight proportion between 1:1 and 2:1. Hence, our result closes
the gap between the result of Hartman and Sharan [15] for the 1:1 proportion
and that of Eriksen [11] for the 2:1 proportion. As the previous state of the art
approximation algorithms for this problem, our algorithm proceeds by case anal-
ysis. In contrast to them, however, it is based on a (nontrivial) lower bound on
the weighted rearrangement distance that is based on the number of odd and the
number of even cycles. The running time of our algorithm is O(n2) in the naive
implementation, but the time complexity can be improved to O(n3/2 logn).

2 Preliminaries

A signed circular permutation π = (π1 . . . πn) is a permutation of (1 . . . n), in
which the indices are cyclic (i.e., n is followed by 1) and each element is la-
beled by plus or minus. We will use the term “permutation” as short hand for
signed circular permutation. The reflection of a permutation π is the permu-
tation (−πn · · · − π1). It is considered to be equivalent to π. Two consecutive
elements πi, πi+1 form an adjacency if πi = +x and πi+1 = +(x + 1), or if
πi = −x and πi+1 = −(x − 1). Otherwise, they form a breakpoint. A segment
πi . . . πj (with j ≥ i) of a permutation π is a consecutive sequence of elements in
π, with πi as first element and πj as last element. There are three possible rear-
rangement operations on a permutation π. A transposition t(i, j, k) (with i < j
and k < i or k > j) is an operation that cuts the segment πi . . . πj−1 out of π, and
reinserts it before the element πk. A reversal r(i, j) (with i < j) is an operation
that inverts the order of the elements of the segment πi . . . πj−1. Additionally,
the sign of every element in the segment is flipped. A transreversal tr(i, j, k)
(with i < j and k < i or k > j) is the composition t(i, j, k) ◦ r(i, j) of a reversal
and a transposition. In other words, the segment πi . . . πj−1 will be cut out of
π, inverted, and reinserted before πk. A sequence of operations op1, op2, . . . , opk

applied to a permutation π yields the permutation opk ◦ opk−1 ◦ · · · ◦ op1(π).
In the following, reversals have weight wr and transpositions as well as transre-
versals have weight wt. As reversals usually occur much more frequently than
transpositions and transreversals, we assume that wr ≤ wt. The weight of a se-
quence is the sum of the weights of the operations in it. The problem of sorting
by weighted reversals, transpositions, and inverted transpositions is defined as
follows: Given a permutation π, find a sequence (of these operations) of min-
imum weight that transforms π into the identity permutation. This minimum
weight will be denoted by w(π).

In practice, it is also of interest to sort linear permutations. It has been
proven by Hartman and Sharan [15] that sorting circular permutations is linearly
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equivalent to sorting linear permutations if yet another operation revrev is used
that inverts two consecutive segments of the permutation. As long as the weights
for transreversals and revrevs are the same, the proof also holds for sorting
with weighted operations. Hence, our algorithm for circular permutations can
be adapted to an algorithm for linear permutations that also uses revrevs.

2.1 The Reality-Desire Diagram

The reality-desire diagram [18] is a graph that helps us analysing the permuta-
tion; see Fig. 1. It is a variation of the breakpoint graph first described in [3]. The
reality-desire diagram of a permutation π = (π1 . . . πn) can be constructed as
follows. First, the elements of π are placed counterclockwise on a circle. Second,
each element x of π labeled by plus is replaced with the two nodes −x and +x,
while each element x labeled by minus is replaced with +x and −x. We call the
first of these nodes the left node of x and the other the right node of x. Third,
reality-edges are drawn from the right node of πi to the left node of πi+1 for each
index i (indices are cyclic). Fourth, desire-edges or chords are drawn from node
+x to node −(x + 1) for each element x of π. We can interpret reality-edges
as the actual neighborhood relations in the permutation, and desire-edges as
the desired neighborhood relations. As each node is assigned exactly one reality-
edge and one desire-edge, the reality-desire diagram decomposes into cycles. The
length of a cycle is the number of chords in it. A k-cycle is a cycle of length k.
If k is odd (even), we speak of an odd (even) cycle. The number of odd (even)
cycles in π is denoted by codd(π) (ceven(π)). It is easy to see that a 1-cycle cor-
responds to an adjacency and vice versa. A reversal cuts the permutation at two
positions, while a transposition (transreversal) cuts it at three positions. Hence
each of the operations cuts two or three reality-edges and moves the nodes. We
say that the operation acts on these edges. Desire-edges are never changed by
an operation.
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Fig. 1. Left: The reality-desire diagram of π = (+1+9+10+ 7− 5+8+4+6+3+2)
contains the cycles c, d, e, and f . Cycles d and e are intersecting, cycles c and d are
interleaving, and all other pairs of cycles do not intersect. Right: The configuration
that consists of the cycles d and e. Labels x, y, and z mark three positions in the
configuration and the arc a consists of these positions.
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2.2 Some Observations About Cycles

The following notions are illustrated in Fig. 1. A configuration is a subset of
the cycles of the reality-desire diagram of a permutation. Configurations help
us to focus on a few cycles in the reality-desire diagram instead of examining
the whole diagram. A position in a configuration is the position between two
consecutive reality-edges in the configuration. An arc a is a series of consecutive
positions of a configuration, bounded by two reality-edges r1 and r2. Two chords
d1 and d2 are intersecting if they intersect in the reality-desire diagram. More
precisely, the endpoints of the chords must alternate along the circle in the con-
figuration. Two cycles are intersecting if a pair of their chords is intersecting.
Two cycles are interleaving if their reality-edges alternate along the circle. A
rearrangement operation is called xy-move if it increases the number of cycles
by x and the operation is of type y (where r stands for a reversal, t for a trans-
position, and tr for a transreversal). For example, a transposition that splits one
cycle into three is a 2t-move. A reversal that merges two cycles is a −1r-move.
An m1m2 . . .mn-sequence is a sequence of n operations in which the first is an
m1-move, the second an m2-move and so on. A cycle c is called r-oriented if
there is a 1r-move that acts on two of the reality-edges of c. Otherwise, the
cycle is called r-unoriented. A cycle c is called t-oriented if there is a 2t-move
or a 2tr-move that acts on three of the reality-edges of c. Otherwise, the cycle
is called t-unoriented. A reality-edge is called twisted if its adjacent chords are
intersecting; see Fig. 2. A chord is called twisted if it is adjacent to a twisted
reality-edge; otherwise, it is called nontwisted. A cycle is called k-twisted if k of
its reality-edges are twisted. If k = 0, we also say that the cycle is nontwisted.

Lemma 1. A 2-cycle is r-oriented if and only if it is 2-twisted.

Proof. There are only two possible configurations for a 2-cycle. If the cycle is 2-
twisted, a reversal that acts on its reality-edges splits the cycle into two 1-cycles
(adjacencies). Otherwise, no such move is possible.

Lemma 2 (proven in [14]). A 3-cycle is t-oriented if and only if it is 2- or
3-twisted.

nontwisted
edge

nontwisted
edge

twisted edge

twisted chord twisted chord

nontwisted chord

Fig. 2. An example for twisted reality-edges and twisted chords
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Lemma 3 (proven in [12]). If a cycle c of length ≥ 2 has a nontwisted chord,
then there is another cycle d that intersects with this nontwisted chord of c.

3 The Algorithm

We begin by introducing a new scoring function that allows us to show a very
good lower bound for sorting by weighted reversals, transpositions, and inverted
transpositions. Then, we will use the fact that a permutation can be transformed
into an equivalent simple permutation without violating this lower bound. Be-
cause the sorting of the original permutation can be mimicked by the sorting of
the simple permutation, we merely have to take care of simple permutations.

3.1 A Lower Bound

It has been proven by Gu et al. [12] that every operation changes the number of
odd cycles by at most two. This fact leads to the following lower bound on d(π).

Theorem 4 (goes back to [4, 12, 15]). For any permutation π = (π1 . . . πn),
the inequality d(π) ≥ (n − codd(π))/2 holds, where d(π) denotes the minimum
number of reversals, transpositions, and inverted transpositions required to sort
π into the identity permutation.

For sorting by weighted reversals, transpositions, and inverted transpositions,
this bound is not good enough because it does not distinguish between the
weights of the operations. More precisely, adapting the bound to the weighted
case would lead to the bound w(π) ≥ (n − codd(π))wr/2 because wr ≤ wt.
However, the only way how a reversal can increase codd by two is to split an
even cycle into two odd cycles. We will now define a scoring function that treats
such a reversal and a transposition splitting one odd cycle into three odd cycles
equally.

Definition 5. The score σ(π) of a permutation π is defined by

σ(π) = codd(π) +
(

2− 2wr

wt

)
ceven(π)

Let opi be a rearrangement operation. The weight wi of opi is defined to be wr if
opi is a reversal and wt otherwise. Furthermore, we defineΔσi = σ(opi(π))−σ(π)
to be the gain in score after the application of opi to the permutation π (a
negative gain is possible). It is not difficult to verify that for each operation opi,
the inequality Δσi/wi ≤ 2/wt holds provided that wr ≤ wt ≤ 2wr. Moreover,
for the two operations discussed immediately before Definition 5, the inequality
becomes an equality.

Lemma 6. For any permutation π = (π1 . . . πn) and weights wr , wt with wr ≤
wt ≤ 2wr:
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– σ(π) = n if π is the identity permutation
– σ(π) ≤ n− 1 if π is not the identity permutation

Proof. If π is the identity permutation, the reality-desire diagram consists of n
1-cycles (adjacencies), so σ(π) = codd(π) = n. Otherwise, the diagram has at
least one cycle of length ≥ 2. Therefore, it has at most n − 1 cycles. An odd
cycle adds 1 to the score, while an even cycle adds 2 − 2wr

wt
. With wt ≤ 2wr it

follows that 2− 2wr

wt
≤ 1. Thus, σ(π) ≤ n− 1.

Theorem 7. For any permutation π and weights wr, wt with wr ≤ wt ≤ 2wr,
we have

w(π) ≥ lb(π) where lb(π) = ceven(π)wr +
(
n− codd(π)

2
− ceven(π)

)
wt

Proof. Let op1, op2, . . . , opk be an optimal sorting sequence of π, i.e., w(π) =∑k
i=1 wi. We have σ(π) +

∑k
i=1Δσi = n because π is transformed into the

identity permutation, which has score n. It follows from Δσi ≤ wi
2

wt
that n ≤

σ(π) +
∑k

i=1 wi
2

wt
= σ(π) + w(π) 2

wt
. Hence w(π) ≥ (n− σ(π))wt

2 = lb(π).

3.2 Transformation into Simple Permutations

The analysis of cycles of arbitrary length is rather complicated. For this reason,
a permutation will be transformed into a so-called simple permutation. A cycle
is called long if its length is greater than 3. A permutation is called simple
if it contains no long cycles. According to [13, 17, 14, 15], there is a padding
algorithm that transforms any permutation π into a simple permutation π̃. Each
transformation step increases n and codd by 1, and leaves ceven unchanged. Hence
lb(π̃) = lb(π). As the padding algorithm just adds elements to π, π can be
sorted by using a sorting sequence of π̃ in which the added elements are ignored.
Consequently, the resulting sorting sequence of π has the same or a smaller
weight than the sorting sequence of π̃. In the next subsection, we will present
an algorithm that takes a simple permutation π̃ as input and outputs a sorting
sequence op1, op2, . . . , opk of π̃ such that

∑k
i=1 wi ≤ 1.5 lb(π̃). Altogether, this

yields a 1.5-approximation for sorting by weighted reversals, transpositions, and
inverted transpositions because w(π) ≤ ∑k

i=1 wi ≤ 1.5 lb(π̃) = 1.5 lb(π) ≤
1.5 w(π).

Note that it is not possible to transform 2-cycles into 3-cycles as done in [15]
because these transformations would change the score and the lower bound.

3.3 The Algorithm for Simple Permutations

Given a simple permutation π, the overall goal is to find a sorting sequence
op1, op2, . . . , opk of π such that

∑k
i=1Δσi ≥

∑k
i=1 wi

4
3wt

. By a reasoning similar

to the proof of Theorem 7, it then follows
∑k

i=1 wi ≤ 1.5 lb(π). To achieve this
goal, we search for a “starting sequence” op1, . . . , opj of at most four operations
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(i.e., 1 ≤ j ≤ 4) such that
∑j

i=1 Δσi ≥
∑j

i=1 wi
4

3wt
. This procedure is iterated

(i.e., we next search for a starting sequence of opj ◦ · · · ◦ op1(π) etc.) until the
identity permutation is reached.

The algorithm starts by searching for an arbitrary cycle c of length ≥ 2 in the
reality-desire diagram of π. If the cycle is an r-oriented 2-cycle or a t-oriented 3-
cycle, the starting sequence can consist solely of the operation op1 that eliminates
this cycle (i.e., op1 is a 1r, 2t or 2tr move that cuts the cycle into 1-cycles). This
is because Δσ1/w1 = 2/wt ≥ 4/3wt. Otherwise, according to Lemma 3, c must
have a nontwisted chord that is intersected by another cycle d. The algorithm
now searches for this cycle and examines the configuration of the cycles c and
d. Depending on the configuration found, the algorithm either directly outputs
a starting sequence that meets the requirements or, again by Lemma 3, there
must be a chord in the configuration that is intersected by a cycle e that is not
yet in the configuration. Consequently, the algorithm searches for this cycle and
adds it to the configuration. This goes on until a configuration is found for which
a starting sequence can be provided. The algorithm is based on a descision tree
that can be found in Tables 1, 2, and 3. Note that every configuration consists
of at most four cycles.

A careful inspection of the starting sequences described in [14] and [15] for
configurations that do not contain 2-cycles reveals that these sequences also
work in our case. Therefore, we merely have to consider configurations with at
least one r-unoriented 2-cycle (recall that r-oriented 2-cycles can immediately
be eliminated). These cases are listed below and example configurations can be
found in Fig. 3.

Case 1. c and d are two intersecting 2-cycles (Fig. 3a).

Case 2. A 2-cycle c intersects the nontwisted chord of a 1-twisted 3-cycle d
(Fig. 3b).

Case 3. c and e are 2-cycles, whereas d is a nontwisted 3-cycle. c and e are not
intersecting, and each nontwisted chord of d is intersected by c or e (Fig. 3c).

c

d

a)

c

d

b)

c

d

e

c)

c
d

e

d)

cd

e f

e)

c

d

e

f)

c

d
g)

c

d
h)

Fig. 3. Example configurations for the new cases to be taken into account
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Case 4. c is a 2-cycle, whereas d and e are intersecting nontwisted 3-cycles. c
intersects the nontwisted chords of d and e that are not intersected by the other
3-cycle (Fig. 3d).

Case 5. d and e are two intersecting nontwisted 3-cycles, whereas c and f are
2-cycles. c intersects with the nontwisted chord of d that is not intersected by e,
and f intersects with the nontwisted chord of e that is not intersected by d. c
and d do not intersect with f , and e does not intersect with c (Fig. 3e).

Case 6. c is a 1-twisted 3-cycle and d is a nontwisted 3-cycle that intersects
the nontwisted chord of c. The remaining chord of d (the one not intersected by
c) is intersected by a 2-cycle e that does not intersect the nontwisted chord of c
(Fig. 3f).

Case 7. c and d are two intersecting 1-twisted 3-cycles. d intersects the non-
twisted chord of c, but c does not intersect the nontwisted chord of d (Fig. 3g).

Case 8. Two 1-twisted 3-cycles c and d form a 1-twisted pair (Fig. 3h).

Although the last two cases do not contain a 2-cycle, they have to be taken into
account because in these cases we need a further intersecting cycle, which may
be a 2-cycle.

To exemplify our method, we will give the starting sequences for Cases 4 and 6.
Figs. 4 and 5 depict the configurations before and after the application of an
operation in the sequence. In each configuration, the reality-edges on which the
next operation acts are marked with x or ∗. If three edges are marked with ∗, the
operation is a transposition. If two edges are marked with x and one is marked
with ∗, the operation is a transreversal, and the segment between the two x will
be inverted. If two edges are marked with x and none is marked with ∗, the
operation is a reversal.

A full listing of the starting sequences can be found in [2]. In the following
Δcodd (Δceven) denotes the change in the number of odd (even) cycles after the
application of the starting sequence.

Lemma 8. For Case 4, there is a 0r1r2tr-sequence with Δcodd = 4 and Δ
ceven = −1.

Proof. The sequence is described in Fig. 4. We have
∑
Δσi/

∑
wi = 2(wr +

wt)/wt(2wr + wt). This value varies from 4/3wt (for wt : wr = 1 : 1) to 3/2wt

(for wt : wr = 2 : 1).

c

d

ex

x
x

x

*

x
x

Fig. 4. Sequence for Case 4
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*

*
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*
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Fig. 5. The sequences for Case 6

Lemma 9. For Case 6, there is a 0t2t2t1r-sequence or a 0t2t2tr1r-sequence with
Δcodd = 6 and Δceven = −1.

Proof. There are five possible configurations. For all of them, a sequence is de-
scribed in Fig. 5. The last operation of each sequence is a reversal that splits
the last 2-cycle into adjacencies (the resulting configurations are not shown in
the figure). Note that for these sequences, we have

∑
Δσi/

∑
wi = (4wt +

2wr)/wt(3wt +wr). This value varies from 10/7wt (for wt : wr = 2 : 1) to 3/2wt

(for wt : wr = 1 : 1).

4 Further Improvements

Our algorithm is implemented in C++ and it has time complexity O(n2). There
are several possible improvements to the basic algorithm that can decrease its
running time or its approximation ratio. Some of these improvements are:
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– Using a special data structure described in [16], it is possible to find the dif-
ferent cases in sublinear time. The running time improves to O(n3/2√log n);
cf. [15].

– Examining configurations with more cycles could improve the approxima-
tion ratio. Using this strategy, Elias and Hartman [10] recently succeeded
in improving the performance ratio for sorting by transpositions from 1.5
to 1.375. It is highly expected that this strategy can also improve the per-
formance ratio of sorting by weighted reversals, transpositions, and inverted
transpositions.

– The algorithm can be combined with a greedy strategy: Instead of beginning
with the first cycle in the reality-desire diagram, we start the search at
each cycle in the diagram, and use a sequence with the best gain in score.
This increases the running time by a factor of n, but the algorithm will
find better sorting sequences, and changes in the weight function result in
different sorting sequences.
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Abstract. The assignment of orthologous genes between a pair of
genomes is a fundamental and challenging problem in comparative ge-
nomics, since many computational methods for solving various biological
problems critically rely on bona fide orthologs as input. While it is usu-
ally done using sequence similarity search, we recently proposed a new
combinatorial approach that combines sequence similarity and genome
rearrangement. This paper continues the development of the approach
and unites genome rearrangement events and (post-speciation) duplica-
tion events in a single framework under the parsimony principle. In this
framework, orthologous genes are assumed to correspond to each other
in the most parsimonious evolutionary scenario involving both genome
rearrangement and (post-speciation) gene duplication. Besides several
original algorithmic contributions, the enhanced method allows for the
detection of inparalogs. Following this approach, we have implemented
a high-throughput system for ortholog assignment on a genome scale,
called MSOAR, and applied it to the genomes of human and mouse.
As the result will show, MSOAR is able to find 99 more true orthologs
than the INPARANOID program did. We have also compared MSOAR
with the iterated exemplar algorithm on simulated data and found that
MSOAR performed very well in terms of assignment accuracy. These
test results indiate that our approach is very promising for genome-wide
ortholog assignment.

1 Introduction

Orthologs and paralogs, originally defined in [6], refer to two fundamentally differ-
ent types of homologous genes. They differ in the way that they arose: orthologs
are genes that evolved by speciation, while paralogs are genes that evolved by
duplication. To better describe the evolutionary process and functional diver-
sification of genes, paralogs are further divided into two subtypes: outparalogs,
which evolved via an ancient duplication preceding a given speciation event un-
der consideration, and inparalogs, which evolved more recently, subsequent to
the speciation event [16][10]. For a given set of inparalogs on a genome, there
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Speciation 1

Gene duplication 1

Gene duplication 2

Speciation 2

A

B C

G1 G2 G3

Fig. 1. An illustration of orthologous and paralogous relationships. After two speciation
events and two gene duplications, three present genomes, G1 = (A1), G2 = (B1, C1)
and G3 = (B2, C2, C3) are obtained. In this scenario, all genes in G2 and G3 are co-
orthologous to gene A1. Genes B1 and C1 are outparalogs w.r.t. G3 (i.e., the 2nd
speciation), and are inparalogs w.r.t. G1 (i.e., the 1st speciation). Gene C2 is the
direct descendant (i.e., true exemplar) of the ancestral gene C while C3 is not, if C3 is
duplicated from C2. C1 and C2 are said to form a pair of main orthologs.

commonly exists a gene that is the direct descendant of the ancestral gene of the
set, namely the one that best reflects the original position of the ancestral gene
in the ancestral genome. Sankoff [17] called such a gene the true exemplar of the
inparalogous set. Given two genomes, two sets of inparalogous genes (one from
each genome) are co-orthologous if they are descendants of the same ancestral
gene at the time of speciation. These concepts are illustrated in Figure 1.

Clearly, orthologs are evolutionary and, typically, functional counterparts in
different species. Therefore, many existing computational methods for solving
various biological problems, e.g., the inference of functions of new genes and the
analysis of phylogenetic relationship between different species, use orthologs in
a critical way. A major complication with the use of orthologs in these methods,
however, is that orthology is not necessarily a one-to-one relationship because a
single gene in one phylogenetic lineage may correspond to a whole family of inpar-
alogs in another lineage. More caution should be taken while such one-to-many
and many-to-many relationships are applied to the transfer of functional assign-
ments because inparalogs could have acquired new functions during the course
of evolution. As a consequence, the identification of orthologs and inparalogs, es-
pecially those one-to-one orthology relationships, is critical for evolutionary and
functional genomics, and thus a fundamental problem in computational biology.

It follows from the definition of orthologs and paralogs that the best way to
identify orthologs is to measure the divergence time between homologous genes
in two different genomes. As the divergence time could be estimated by com-
paring the DNA or protein sequences of genes, most of the existing algorithms
for ortholog assignment, such as the well-known COG system [21][23] and IN-
PARANOID program [16], rely mainly on sequence similarity (usually measured
via BLAST scores [1]). An implicit, but often questionable, assumption behind
these methods is that the evolutionary rates of all genes in a homologous family
are equal. Incorrect ortholog assignments might be obtained if the real rates of
evolution vary significantly between paralogs. On the other hand, we observe
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that molecular evolution proceeds in two different forms: local mutation and
global rearrangement. Local mutations include base substitution, insertion and
deletion, and global rearrangements include reversal (i.e. inversion), transloca-
tion, fusion, fission and so on. Apparently, the sequence similarity-based methods
for ortholog assignment make use of local mutations only and neglect genome
rearrangement events that might contain a lot of valuable information.

In our recent papers [4][5], we initiated the study of ortholog assignment via
genome rearrangement and proposed an approach that takes advantage of evolu-
tionary evidences from both local mutations and global rearrangements. It begins
by identifying homologous gene families on each genome and the correspondence
between families on both genomes using homology search. The homologs are then
treated as copies of the same genes, and ortholog assignment is formulated as
a natural optimization problem of rearranging one genome consisting of a se-
quence of (possibly duplicated) genes into the other with the minimum number
of reversals, where the most parsimonious rearrangement process should sug-
gest orthologous gene pairs in a straightforward way. A high-throughput system,
called SOAR, was implemented based on this approach. Though our preliminary
experiments on simulated data and real data (the X chromosomes of human and
mouse) have demonstrated that SOAR is very promising as an ortholog assign-
ment method, it has the drawback of ignoring the issue of inparalogs. In fact, it
assumed that there were no gene duplications after the speciation event consid-
ered. As a consequence, it only outputs one-to-one orthology relationships and
every gene is forced to form an orthologous pair. Moreover, it is only able to deal
with unichromosomal genomes. In this paper, we present several improvements
that are crucial for more accurate ortholog assignment. In particular, the method
will be extended to deal with inparalogs explicitly by incorporating a more realis-
tic evolutionary model that allows duplication events after the speciation event.
In summary, our main contributions in this study include

– We introduce a subtype of orthologs, called main orthologs, to delineate sets
of co-orthologous genes. For two inparalogous sets of co-orthologous genes,
the main ortholog pair is simply defined as the two true exemplar genes of
each set (see Figure 1 for an example).1 Since a true exemplar is a gene
that best reflects the original position of the ancestral gene in the ancestral
genome, main orthologs are therefore the positional counterpart of orthologs
in different species. By definition, main orthologs form a one-to-one corre-
spondence, thus allowing for the possibility of direct transfer of functional
assignments. We believe that, compared with other types of ortholog pairs,
main orthologs are more likely to be functional counterparts in different
species, since they are both evolutionary and positional counterparts.

– In our previous study, the evolutionary model assumes that there is no gene
duplication subsequent to the given speciation event. Thus, no inparalogs are
assumed to be present in the compared genomes, which is clearly inappro-
priate for nuclear genomes. In this paper, we propose a parsimony approach

1 Note that, our definition of a main ortholog pair is different from the one in [16],
where it refers to a mutually best hit in an orthologous group.
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based on a more realistic evolutionary model that combines both rearrange-
ment events (including reversal, translocation, gene fusion and gene fission)
and gene duplication events. This will allow us to treat inparalogs explicitly.
More specifically, in order to assign orthologs, we reconstruct an evolution-
ary scenario since the splitting of the two input genomes, by minimizing the
(total) number of reversals, translocations, fusions, fissions and duplication
events necessary to transform one genome into the other (i.e., by computing
the rearrangement/duplication distance between two genomes). Such a most
parsimonious evolutionary scenario should reveal main ortholog pairs and
inparalogs in a straightforward way.

– Computing the rearrangement/duplication distance between two genomes is
known to be very hard. We have developed an efficient heuristic algorithm
that works well on large multichromosomal genomes like human and mouse.
We strengthen and extend some of the algorithmic techniques developed in
[4][5], including (sub)optimal assignment rules, minimum common partition,
and maximum graph decomposition, as well as a new post-processing step
that removes “noise” gene pairs that are most likely to consist of inparalogs.

– Based on the above heuristic algorithm, we have implemented a high-through
put system for automatic assignment of (main) orthologs and the detection
of inparalogs on a genome scale, called MSOAR. By testing it on simulated
data and human and mouse genomes, the MSOAR system is shown to be
quite effective for ortholog assignment. For example, it is able to find 99 more
true ortholog pairs between human and mouse than INPARANOID [16].

Related work. In the past decade, many computational methods for ortholog
assignment have been proposed, most of which are based primarily on sequence
similarity. These methods include the COG system [21][23], EGO (previously
called TOGA)[11], INPARANOID [16], and OrthoMCL [12], just to name a few.
Some of these methods combine sequence similarity and a parsimony principle,
such as the reconciled tree method [25] and the bootstrap tree method [20],
or make use of synteny information, such as OrthoParaMap [3] and the recent
method proposed by Zheng et al. [26]. However, none of these papers use genome
rearrangement. On the other hand, there have been a few papers in the litera-
ture that study rearrangement between genomes with duplicated genes, which
is closely related to ortholog assignment. Sankoff [17] proposed an approach to
identify the true exemplar gene of each gene family, by minimizing the break-
point/reversal distance between two reduced genomes that consist of only true
exemplar genes. El-Mabrouk [14] developed an approach to reconstruct an ances-
tor of a modern genome by minimizing the number of duplication transpositions
and reversals. The work in [13][18] attempts to find a one-to-one gene corre-
spondence between gene families based on conserved segments. Very recently,
Swenson et al. [19] presented some algorithmic results on the cycle splitting
problem in a combinatorial framework similar to the one introduced in [4][5].

The rest of the paper is organized as follows. We first discuss the parsimony
principle employed in our ortholog assignment approach in Section 2. Section 3
describes the heuristic algorithm implemented in MSOAR. Section 4 will present
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our experiments on simulated data and on the whole genome data of human and
mouse. Finally, some concluding remarks are given in Section 5.

2 Assigning Orthologs Under Maximum Parsimony

The two genomes to be compared, denoted as Π and Γ , have typically under-
gone series of genome rearrangement and gene duplication events since they split
from their last common ancestral genome. Clearly, we could easily identify main
orthologs and inparalogs if given such an evolutionary scenario. Based on this
observation, we propose an approach to reconstruct the evolutionary scenario
on the basis of the parsimony principle, i.e., we postulate the minimal possible
number of rearrangement events and duplication events in the evolution of two
genomes since their splitting so as to assign orthologs. Equivalently, it can be
formulated as a problem of finding a most parsimonious transformation from
one genome into the other by genome rearrangements and gene duplications,
without explicitly inferring their ancestral genome. Let R(Π,Γ ) and D(Π,Γ )
denote the number of rearrangement events and the number of gene duplica-
tions in a most parsimonious transformation, respectively, and RD(Π,Γ ) de-
notes the rearrangement/duplication (RD) distance between Π and Γ satisfying
RD(Π,Γ ) = R(Π,Γ ) + D(Π,Γ ). Most genome rearrangement events will be
considered in this study, including reversal, translocation, fusion and fission.

In practice, we will impose two constraints on this optimization problem,
based on some biological considerations. First, we require that at least one
member of each family that appears in the other genome be assigned orthol-
ogy, because each family should provide an essential function and the gene(s)
retaining this function is more likely conserved during the evolution. Second,
observe that the assignment of orthologs that leads to the minimum rearrange-
ment/duplication distance is not necessarily unique. Therefore, among all as-
signments with the minimum rearrangement/duplication distance, we attempt
to find one that also minimizes R(Π,Γ ), in order to avoid introducing unneces-
sary false orthologous pairs.

Figure 2 presents a simple example to illustrate the basic idea behind our par-
simony approach. Consider two genomes, Π = −b−a1+c+a2+d+a4+e+f+g
and Γ = +a1 + b + c + a2 + d + e + a5 + f + a3 + g, sharing a gene family a
with multiple copies. As shown in Figure 2, both genomes evolved from the same
ancestral genome +a+ b + c+ d + e+ f + g, Π by one inversion and one gene
duplication and Γ by two gene duplications, respectively. By computing the re-
arrangement/duplication distance RD(Π,Γ ) = 4, the true evolutionary scenario
can be reconstructed, which then suggests that the two genes a1 form a pair of
main orthologs, as well as the two genes a2. Meanwhile, a3, a4, and a5 are inferred
as inparalogs that were derived from duplications after the speciation event. It
is interesting to see that here a4 is not assigned orthology to a3 or a5 greedily.
(Note that they are orthologs, but not main orthologs, by our definition.) This
simple example illustrates that, by minimizing the reversal/duplication distance,
our approach is able to pick correct main orthologs out of sets of inparalogs.
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the genome Γthe genome Π

Fig. 2. An evolutionary history of two genomes Π and Γ . Π evolved from the ancestor
by one inversion and one gene duplication, and Γ by two duplications.

Note that, although gene loss may occur in the course of evolution, it actually
has no impact on the capability of assigning ortholog by our method. If an
inparalog is lost, the gene loss event can be simply ignored and this will not affect
ortholog assignment. If some gene of a main ortholog pair is lost, our approach
attempts to identify the other gene as an inparalog rather than to assign it a
wrong orthology, which also makes some sense especially when considering the
transfer of functional assignment.

3 The MSOAR System

Following the parsimony principle discussed in the previous section, we have im-
plemented a high-throughput system for ortholog assignment, called MSOAR. It
employs a heuristic to calculate the rearrangement/duplication distance between
two genomes, which can be used to reconstruct a most parsimonious evolutionary
scenario. In this section, we discuss in detail the heuristic algorithm.

We represent a gene by a symbol of some finite alphabet A, and its orientation
by the sign + or −. A chromosome is a sequence of genes, while a genome is a set
of chromosomes. Usually, a genome is represented as a set Π = {π(1), · · · , π(N)},
where π(i) = 〈π(i)1 · · ·π(i)ni〉 is a sequence of oriented genes in the ith chro-
mosome. Recall the genome rearrangement problem between two genomes with
distinct oriented genes. Hannenhalli and Pevzner developed algorithms for cal-
culating genome rearrangement distance on both unichromosomal [7] and mul-
tichromosomal genomes [8] in polynomial time. The rearrangement distance
between multichromosomal genomes is the minimum number of reversals, translo-
cations, fissions and fusions that would transform one genome into the other.
Given two multichromosomal genomes Π and Γ , Hannenhalli and Pevzner [8]
gave a formula for calculating the genome rearrangement distance (called the
HP formula in this paper). Tesler [22], and Ozery-Flato and Shamir [15] then
suggested some corrections to the formula (called the revised HP formula):

d(Π,Γ )=b(Π,Γ )− c(Π,Γ )+pΓΓ (Π,Γ )+r(Π,Γ )+# s
′
(Π,Γ )−gr

′
(Π,Γ )+fr

′
(Π,Γ )

2 $
where b(Π,Γ ) is the number of black edges in the breakpoint graph G(Π,Γ ),
c(Π,Γ ) is the overall number of cycles and paths, pΓΓ (Π,Γ ) is the number of
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Fig. 3. An outline of MSOAR
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′
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′
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′
are some parameters in terms of real-knots

[15]. In practice, the dominant parts of the formula are the first three terms.
When the genomesΠ and Γ contain duplicated genes, however, the rearrange-

ment/duplication distance problem (i.e. RD(Π,Γ )) cannot be directly solved
by the revised HP formula. In fact, we can prove that computing the rearrange-
ment/duplication distance is NP-hard by a reduction similar to the one employed
in the proof of Theorem 4.2 of [5]. Note that, once the main ortholog pairs are as-
signed and the inparalogs are identified, the rearrangement/duplication distance
can be easily computed as follows. The number of duplications is determined by
the number of inparalogs. After removing all the inparalogs, the rearrangement
distance between the reduced genomes, which now have equal gene content, can
be computed using the above formula since every gene can be regarded as unique.
An outline of MSOAR is illustrated in Figure 3.

3.1 Homology Search and Gene Family Construction

MSOAR starts by calculating the pairwise similarity scores between all gene
sequences of the two input genomes. An all-versus-all gene sequence comparison
by BLASTp is used to accomplish this. As in [16], two cutoffs are applied to
each pair of BLASTp hits. Two genes are considered homologous if (1) the bit
score is no less than 50 and (2) the matching segment spans above 50% of each
gene in length. In order to eliminate potential false main ortholog pairs, we take
the top five bidirectional best hits of each gene as its potential main orthologs if
their logarithmic E-value is less than the 80% of the best logarithmic E-value. By
clustering homologous genes using the standard single linkage method, we obtain
gene families. A gene family is said to be trivial if it has cardinality exactly 2,
i.e. with one occurrence in each genome. Otherwise it is said to be non-trivial.
A gene belonging to a trivial (or non-trivial) family is said to be trivial (or non-
trivial, resp.). We use a hit graph (denoted as H) to describe the relationship
between genes within each family. A hit graph is a bipartite graph illustrating
the BLASTp hits between two genomes. Each vertex represents a gene and an
edge connects two vertices from different genomes if they are potential main
orthologs. Figure 4 gives an example of the hit graph. Adjacent genes in the hit
graph are regarded as candidates for main ortholog pairs.

3.2 (Sub)Optimal Assignment Rules

We presented three assignment rules for identifying individual ortholog assign-
ments that are (nearly) optimal in SOAR [4][5]. In MSOAR, we will add two
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Fig. 4. A hit graph for genomes Π = {〈+a, +d〉, 〈+b1,−c1,−b2〉} and Γ =
{〈+a, +b3, +c2〉, 〈+b4, +c3, +d〉}, each having two chromosomes

more assignment rules, which could make the system more efficient. The four
rearrangement operations (reversal, translocation, fission and fusion) can be
mimicked by reversals when we represent a multichromosomal genome by a con-
catenate [8][22]. This approach reduces the problem of computing rearrangement
distance between two multichromosomal genomes to the problem of computing
the reversal distance between two optimal concatenates. Since these two new
rules are only concerned with segments of consecutive genes within a single
chromosome, which also form gene segments in an optimal concatenate, the
unichromosomal HP formula [7] can be used to prove their (sub)optimality. Let
G and H be two chromosomes in genomes Π and Γ , respectively. A chromo-
some segment is defined as a substring of some chromosome (i.e. a consecutive
sequence of genes). A chromosome segment (gi1gi2 · · · gin) in G matches a chro-
mosome segment (hj1hj2 · · ·hjn) in H if git and hjt are connected by an edge in
the hit graph and have the same orientations for all 1 ≤ t ≤ n.

Theorem 1. Assume that a chromosome segment (gi1gi2 · · · gin) in G, matches
a chromosome segment (hj1hj2 · · ·hjn) in H or its reversal, where gi1 ,gin , hj1

and hjn are trivial but the other genes are not. Define two new genomes Π ′ and
Γ ′ by assigning orthology between git and hjt or git and gjn+1−t (in the case of
matching by a reversal), for all 1 ≤ t ≤ n. Then, RD(Π,Γ ) ≤ RD(Π ′, Γ ′) ≤
RD(Π,Γ ) + 2.

Theorem 2. Assume that for a chromosome segment (gi1gi2 · · · gin) in G and
a chromosome segment (hj1hj2 · · ·hjn) in H, gi1 matches hj1 , gin matches hjn ,
and gi2 · · · gin−1 matches the reversal of hj2 · · ·hjn−1 , where gi1 , gin , hj1 and
hjn are trivial but the other genes are not. Define two new genomes Π ′ and
Γ ′ by assigning orthology between git and gjn+1−t, for all 1 < t < n. Then,
RD(Π,Γ ) ≤ RD(Π ′, Γ ′) ≤ RD(Π,Γ ) + 2.

3.3 Minimum Common Partition

We extend the minimum common partition (MCP) problem, which was first in-
troduced in [4][5] to reduce the number of duplicates of each gene in ortholog
assignment, to multichromosomal genomes. Use π(i)j to represent a chromo-
some segment or its reversal in chromosome i of genome Π . A chromosome
partition is a list {π(i)1, π(i)2, · · · , π(i)n} of chromosome segments such that the
concatenation of the segments (or their reversals) in some order results in the
chromosome i. A genome partition is the union of some partitions of all the
chromosomes. A list of chromosome segments is called a common partition of
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two genomes Π and Γ if it is a partition of both Π and Γ . Furthermore, a min-
imum common partition is a partition with the minimum cardinality (denoted
as L(Π,Γ )) over all possible common partitions of Π and Γ . The MCP problem
is the problem of finding the minimum common partition between two given
genomes. Two genomes have a common partition if and only if they have equal
gene content (i.e. they have the same number of duplications for each gene).

We can further extend MCP to an arbitrary pair of genomes that might have
unequal gene contents. A gene matching M between genomes Π and Γ is a
matching between the genes of Π and Γ , which can be defined by a maximum
matching in their hit graph H. Given a gene mathing M, two reduced genomes
(denoted as Π̃M and Γ̃M) with equal gene content can be obtained by removing
all the unmatched genes. The minimum common partition of Π and Γ is defined
as the minimum L(Π̃M, Γ̃M)) among all gene matchings M.

Given two genomes Π and Γ , recall that RD(Π,Γ ) is the rearrangement/
duplication distance between them. Let Nu be the number of unmatched genes
introduced by a gene matching and Nc be the number of chromosomes. Based
on the fact that inserting two genes into the two genomes under consideration,
one for each genome, will increase the rearrangement distance by at most three,
the following theorem can be obtained to establish the relationship between the
minimum common partition and the rearrangement/duplication distance.

Theorem 3. For any two genomes Π and Γ , (L(Π,Γ ) − Nc − 2)/3 + Nu ≤
RD(Π,Γ ) ≤ L(Π,Γ ) + 2Nc +Nu + 1.

An efficient heuristic algorithm for MCP on unichromosomal genomes was given
in [4][5]. The algorithm constructs the so called ”pair-match” graphs and then
attempts to find a large independent set. We extend the method to multichro-
mosomal genomes in a straightforward way.

3.4 Maximum Graph Decomposition

After minimum common partition, the genomes Π and Γ may still contain du-
plicates, although the number of duplicates is expected to be small. In order to
match all the genes, we define another problem, called maximum graph decom-
position (MGD). The MGD problem is: among all pairs of reduced genomes of
Π and Γ obtained by all possible gene matchings, find one with the maximum
value of c(Π,Γ )− pΓΓ (Π,Γ ).

Using the basic framework developed in [4][5], we design a greedy algorithm
in MSOAR to solve MGD using a new graph, called the complete-breakpoint
graph. The complete-breakpoint graph associated with Π and Γ is denoted as
G, which is adapted from the breakpoint graph of multichromosomal genomes
of equal gene content consisting of only singletons [8]. The prefix “complete” is
added here to differentiate from the partial graphs in [4][5]. If Π and Γ have
different numbers of chromosomes, add null chromosomes to the genome with
fewer chromosomes to make them both have Nc chromosomes. As defined in [8],
a cap is used as a marker that serves as a chromosomal end delimiter when we
convert a multichromosomal genome into a unichromosomal genome. A capping
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Fig. 5. The complete-breakpoint graph of two genomes with unequal gene contents
Π = {〈+a, +d〉, 〈+b1,−c1,−b2〉} and Γ = {〈+a,+b3, +c2〉, 〈+b4, +c3, +d〉}. The hit
graph of these two genomes is shown in Figure 4.

of a chromosome π(i) is π(i) = 〈π(i)0π(i)1 · · ·π(i)niπ(i)ni+1〉, where π(i)0 is the
left cap of π(i), called lcap, and π(i)ni+1 is the right cap, called rcap. Choose any
capping and an arbitrary concatenation to transform Π and Γ into unichrom-
somal genomes π̂ and γ̂. In the complete-breakpoint graph G, every gene or cap
g from each genome is represented by two ordered vertices αt αh if α is positive
or αh αt if it is negative. Insert black edges between vertices that correspond to
adjacent genes (or caps) in the same genome except the pairs of the form αh

i and
αt

i from the same gene (or cap) αi. Insert cross-genome grey edges (π̂t
i ,γ̂

t
j) and

(π̂h
i , γ̂h

j ) if gene π̂i and gene γ̂j are connected by an edge in the hit graph or they
are the same caps. Next, we delete the left vertex of every lcap, the right vertex
of every rcap and all the edges incident on them. The calculation of RD dis-
tance using the resulting graph no longer depends on the actual concatenations.
Finally, we make the complete-breakpoint graph independent on the capping of
Γ , by deleting the 2Nc black edges incident on the γ̂ cap vertices. These cap
vertices are called Π-caps. The vertex on the other end of a deleted black edge
is called a Γ -tail unless the black edge arises from a null chromosome, in which
case both of its ends are Π-caps. An example of the complete-breakpoint graph
is shown in Figure 5. The complete-breakpoint graph contains both cycles and
paths. Depending on whether the end points are both Π-caps, both Γ -tails or
one of each, a path could be classified as a ΠΠ-path,ΓΓ -path or ΠΓ -path.

After the complete-breakpoint graph is constructed, we try to find small cycles
and short ΠΓ -paths first, and then finish the decomposition by finding the rest
ofΠΠ-paths and ΓΓ -paths. The decomposition has to satisfy the following three
conditions: (1) every vertex belongs to at most one cycle or path (2) the two
vertices representing each gene must be connected respectively to the two vertices
of a single gene in the other genome by edges of the cycles or paths, otherwise
both must be removed, i.e., the connections satisfy a pairing condition; and (3)
the edges within a genome and across genomes alternate in a cycle or a path.
Intuitively, small cycles may lead to large cycle decompositions, although it is not
always the case. Moreover, the more ΠΓ -paths, the fewer ΓΓ -paths, because the
number of Γ -tail vertices is fixed and each vertex can only belong to at most one
path. Note that during the cycle decomposition, some gene vertices might have
all of their cross-genome edges removed since Π and Γ may have unequal gene
contents and these genes are regarded as inparalogs. If two gene vertices αt

i and
αh

i have no cross genome edges incident on them during the cycle decomposition,
they need to be removed from the complete-breakpoint graph right away and a
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black edge need to be inserted between two endpoints of the deleted black edges
arising from αt

i and αh
i .

Any feasible solution of the MCD problem gives a maximal matching between
the genes of Π and the genes of Γ . The genes that have not been matched will be
assigned as inparalogs of the matched ones in the same family. The matched genes
suggest possible main ortholog pairs and a rearrangement scenario to transform
Π to Γ by the operations reversal, translocation, fusion and fission.

3.5 “Noise” Gene Pairs Detection

The maximum graph decomposition of a complete-breakpoint graph G deter-
mines a one-to-one gene matching between two genomes. Unmatched genes are
removed since either they are potential inparalogs or their orthology counter-
parts were lost during the evolution. However, some individual paralogs might
be forced to be assigned as main ortholog pairs because the maximum graph
decomposition always gives a maximal matching between all the genes. There-
fore, it is necessary to remove these “noise” gene pairs so that the output main
ortholog pairs are more reliable.

After removing the unmatched genes, we obtain two reduced genomes with
equal gene content. Remove all the gene pairs whose deletion would decrease
the rearrangement distance of reduced genomes by at least two. Note that, in
this case, the rearrangement/duplication distance will never increase since the
deletion of a gene pair may only increase the number of duplications required in
an optimal scenario by two. As mentioned before, we require that at least one
main ortholog pair of each gene family be kept during this post-processing.

MSOAR combines the suboptimal ortholog assignment rules, heuristic MCP
algorithm, heuristic MGD algorithm, and “noise” gene pair detection step to
find all the potential main ortholog pairs and detect inparalogs.

4 Experiments

In order to test the performance of MSOAR as a tool of assigning orthologs, we
have applied it to both simulated and real genome sequence data, and compared
its results with two well-known algorithms in the literature, namely, an iterated
version of the exemplar algorithm and INPARANOID.

4.1 Simulated Data

In order to assess the validity of our parsimony principle as a means of distin-
guishing main orthologs from inparalogs, we conduct two simple experiments
to estimate the probability of inparalogs that may incorrectly be assigned or-
thology by transforming one genome into another with the minimum number of
rearrangement and duplication events. The first experiment is done as follows.
First, we simulate a genome G with 100 distinct genes, and then randomly per-
form k reversals on G to obtain another genome H . The boundaries of these
reversals are uniformly distributed within the genome. Next, make a copy of
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some gene that is randomly selected from H and insert it back into H as a
duplicate. Clearly, the inserted gene is an inparalog, by definition. In this case,
there are only two possible ortholog assignments between G and H . Therefore,
we can easily calculate the rearrangement/duplicate distance between G and H ,
and know the ortholog assignment that will be made by the parsimony principle.
We repeat the above procedure on 100 random instances for each k, 0 ≤ k < 60,
and count the number of instances for which the inparalogs are correctly iden-
tified. The distribution of these inparalogs against the number k of reversals
is plotted in Figure 6 (the curve marked “one inparalog inserted”). The result
shows that with a very high probability (> 90%, for each k < 55) the main
ortholog and inparalog can be correctly identified. This suggests that an orthol-
ogy assignment between two genes that are the positional counterparts between
two genomes tends to result in the smaller rearrangement/duplication distance,
compared to the distance given by an assignment involving inparalogs.

The second experiment is conducted to estimate the probability that two in-
paralogs, one from each genome, would be identified as a main ortholog pair,
instead of as two individual inparalogs. Its data is generated similarly as the first
experiment, except that a same copy of the gene is also inserted into genome G,
resulting in a non-trivial gene family of size four in both genomes. As before,
we count the number of instances for which two inparalogs are correctly iden-
tified, and plot its distribution in Figure 6 (the curve marked “two inparalogs
inserted”). The result shows that it is very unlikely that two inparalogs from
different genomes are assigned as a (main) ortholog pair. This and the above
findings provide some basic support for the validity of using the parsimony ap-
proach to identify main orthologs.

We further use simulated data to assess the performance of our heuristic
algorithm for ortholog assignment. In order to make a comparison test, we im-
plemented the exemplar algorithm [17] and extended it into a tool for ortholog
assignment as described in [5], called the iterated exemplar algorithm. The simu-
lated data is generated as follows. Start from a genomeG with n distinct symbols
whose signs are generated randomly. Each symbol defines a single gene family.



590 Z. Fu et al.

Then randomly combine two gene families into a new family until r singletons
are left in the genome G. Perform k reversals on G to obtain a genome H as in
the previous experiments. Finally, randomly insert c inparalogs (each is a copy of
some gene randomly selected) into the two genomes. Note that some singletons
may be duplicated during this step so that more non-trivial gene families could
be generated. The quadruple (n, r, k, c) specifies the parameters for generating
two genomes as test data.

We run the iterated exemplar algorithm [17][5] and our heuristic algorithm
on 20 random instances for each combination of parameters. The average per-
formance of both algorithms is shown in Figure 7, in terms of the number of
incorrectly assigned orthologs (i.e., genes in a genome that are not assigned or-
thology to their positional counterparts in the other genome) and inparalogs. As
we can see, our heuristic algorithm is quite reliable in assigning orthologs and
identifying inparalogs. On average, the number of incorrect assignments gen-
erally increases as the number of reversals k increases. While both algorithms
perform equally well for inparalogous gene identification, our heuristic algorithm
produces fewer incorrect ortholog assignments than the iterated exemplar algo-
rithm, especially for the instances generated using parameters n = 100, r = 80,
and c = 5 (see Figure 7).
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4.2 Real Data

We consider two model genomes: Human (Homo sapiens) and Mouse (Mus mus-
culus). Gene positions, transcripts and translations were downloaded from the
UCSC Genome Browser [9] web site (http://genome.ucsc.edu). We used the
canonical splice variants from the Build 35 human genome assembly (UCSC
hg17, May 2004) and the Build 34 assembly of the mouse genome (UCSC mm6,
March 2005). There are 20181 protein sequences in human genome assembly
hg17 and 17858 sequences in mouse genome assembly mm6. Due to assembly
errors and other reasons, 220 human and 114 mouse genes were mapped to more
than one location in the respective genomes. For such a gene, we kept the first
transcription start position which is closest to the 5

′
end as its start coordinate.

A homology search was then performed and a hit graph between human and
mouse built as described in Section 3.1.
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As shown in Table 1, before removing “noise” gene pairs, MSOAR assigned
13395 main orthologs pairs between human and mouse. Then MSOAR removed
177 “noise”gene pairs and output 13218 main orthologs pairs. The distribu-
tion of the number of orthologs assigned by MSOAR between human chro-
mosomes and mouse chromosomes is illustrated in Fig 8. It shows that the
top 3 chromosome pairs between human and mouse with the largest num-
bers of orthologs are human chromosome 17 vs. mouse chromosome 11, hu-
man chromosome 1 vs. mouse chromosome 4, and human chromosome X vs.
mouse chromosome X, which are consistent with the Mouse Human synteny
alignments. (http://www.sanger.ac.uk/Projects/M musculus/publications/
fpcmap-2002/mouse-s.shtml).

We validate our assignments by using gene annotation, in particular, gene
names. To obtain the most accurate list of gene names, we have cross-linked
database tables from the UCSC Genome Browser with gene names extracted
from UniProt [2] release 6.0 (September 2005). The official name of a gene is
usually given to convey the character or function of the gene [24]. Genes with
identical names are most likely to be an orthologous pair, although we should
keep in mind that many names were given mostly based on sequence similarity
and erroneous/inconsistent names are known to exist in the annotation. Some
genes have names beginning with “LOC” or ending with “Rik” or even have no
names, implying that these genes have not yet been assigned official names or
their functions have not been validated. If a pair of genes output by MSOAR
have completely identical gene symbol, we count them as a true positive pair; if
they have different names without substring “LOC”or “Rik”, it is a false positive
pair; otherwise, it is counted as an unknown pair. We also calculate the total
number of assignable pairs of orthologs, i.e. the total number of pairs of genes

Fig. 8. Distribution of the number of ortholog pairs assigned by MSOAR across all
pairs of the human and mouse chromosomes. The chromosome pairs with more than
250 main ortholog pairs are labeled. E.g., the highest bar is human chromosome 17 vs.
mouse chromosome 11, between which 825 main ortholog pairs were assigned.
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with identical names. For example, there are 9891 assignable orthologous gene
pairs between human and mouse. Before removing “noise” gene pairs, MSOAR
predicted 13395 ortholog pairs, among which 9263 are true positives, 2171 are
unknown pairs and 1961 are false positives, resulting in a sensitivity of 93.65%
and a specificity of 81.01%. After removing “noise” gene pairs, MSOAR predicted
13218 ortholog pairs, among which 9214 are true positives, 2126 are unknown
pairs and 1878 are false positives, resulting in a sensitivity of 93.16% and a
specificity of 81.25%. It is interesting to note that the last step of MSOAR
identified 177 “noise” gene pairs, among which 72.32% were false positives. This
result shows that the identification of “noise” gene pairs effectively detects false
positives and could provide more reliable ortholog assignment.

The comparison result between MSOAR and INPARANOID [16] is shown
in Table 1. MSOAR was able to identify 99 more true ortholog pairs than IN-
PARANOID, although it also reported more false positives.

Table 1. Comparison of ortholog assignments between MSOAR and INPARANOID

assignable assigned true positive unkown
MSOAR (before removing “noise” pairs) 9891 13395 9263 2171
MSOAR (after removing “noise” pairs) 9891 13218 9214 2126

INPARANOID 9891 12758 9115 2034

5 Concluding Remarks

Although we anticipate that the system MSOAR will be a very useful tool for
ortholog assignment, more systematics tests will be needed to reveal the true
potential of this parsimony approach. Our immediate future work includes the
incorporation of transpositions into the system and consideration of weighing
the evolutionary events.
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Abstract. A probabilistic graphical model is developed in order to
detect the dependent evolution between different sites in biological se-
quences. Given a multiple sequence alignment for each molecule of inter-
est and a phylogenetic tree, the model can predict potential interactions
within or between nucleic acids and proteins. Initial validation of the
model is carried out using tRNA sequence data. The model is able to
accurately identify the secondary structure of tRNA as well as several
known tertiary interactions.

1 Introduction

Recent advances in systems biology and comparative genomics are providing new
tools to study evolution from a systems perspective. Selective constraints often
operate on a system composed of multiple components, such that these compo-
nents evolve in a coordinated way. We use the term dependent evolution to de-
note the dependency of sequence evolution between multiple molecular entities.
A molecular entity can be a protein, a non-coding RNA, a DNA promoter, or a
single nucleotide or residue. Dependent evolution is prevalent in many biomolec-
ular systems. Instances include neo-functionalization and pseudogene formation
[1, 2], co-evolution of ligand-receptor pairs [3, 4], protein-protein interactions [5],
residues contributing to the tertiary structure of proteins [6], and RNA secondary
structure [7]. Understanding dependent evolution helps to predict the physical
interactions and functions of biomolecules, reconstruct their evolutionary history,
and further understand the relation between evolution and function.

In this work, we develop a computational method for detecting and char-
acterizing dependent evolution in orthologous sequences of multiple species.
Continuous-time Markov models of sequence substitutions encoding the depen-
dent or independent evolution of two molecular entities are constructed. The
spatial dependency of adjacent sites in the sequence is captured by a hidden
Markov model (HMM) specifying the interaction states of sites. As a proof-of-
concept demonstration, we apply the model to tRNA sequences and show that
the method can identify their secondary and tertiary structure.
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Models of co-evolution have been investigated in many previous studies. Some
of these have demonstrated that the sequence substitution rates of proteins are
correlated with their function [8] and relationships with other proteins, such
as the number of interactions [5], their interacting partners [5], and their co-
expressed genes [9]. The compensatory substitutions of RNA sequences have been
used to predict RNA secondary structure [10, 11, 12, 13, 14, 15, 16, 7, 17]. Other
studies have attempted to predict protein-protein interactions at the residue or
whole-protein levels by using co-evolutionary models [3, 4, 6, 18]. We use a frame-
work of continuous-time Markov models resembling those in [6, 18], although the
assumptions and mathematical approaches are significantly different.

2 Methods

In this study we use both general and specific evolutionary models to detect the
secondary and tertiary structure of tRNAs. These are well suited to a proof-of-
concept demonstration since nucleotide pairs have fewer joint states than residue
pairs (4 × 4 = 16 compared to 20 × 20 = 400), their interaction rules are rela-
tively simple (primarily Watson-Crick base pairing), the secondary and tertiary
interactions of tRNAs are already mapped, and a large number of aligned tRNA
sequences across many species are available.

The typical structure of the tRNA encoding methionine is shown in Fig. 1.
It comprises four stems, three major loops and one variable loop. Each stem
contains several nucleotide pairs forming hydrogen bonds (black bars in Fig. 1).
Those base pairs typically conform with the Watson-Crick complementary rule
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(AU or GC). Several GU pairs also form weaker hydrogen bonds (GU wobble).
In addition, nucleotide pairs that are distant in the secondary structure may also
form tertiary interactions (dotted lines in Fig. 1). Unlike secondary interactions,
tertiary interactions do not necessarily conform with the Watson-Crick rules or
GU wobble.

The co-evolutionary model that we developed is a probabilistic graphical
model, operating on a given alignment of families of sequences for two molecular
entities, along two orthogonal dimensions. The first dimension is time, with a
continuous-time Markov process modeling the potentially coupled evolution of
the two entities considered. This model operates at each position in the align-
ment, along a given phylogenetic tree. The second dimension is space, with an
HMM operating along the sequence alignment and determining which regions
of the two entities are co-evolving. Such graphical models were introduced by
[19, 20] and have been recently adopted for instance by [21] to model the evolu-
tion of single molecular entities.

Consider first the sequence evolution model of a single nucleotide. It is a
continuous-time Markov process with a substitution rate matrix Q:

dP(x(t))
dt

= P(x(t))Q. (1)

where x(t) denotes the sequence at time t and P(x(t)) a 1×4 probability vector
of x(t) being each nucleotide. Q is a 4 × 4 matrix with each row summed to
zero. Different rate matrices have been developed in the literature of molecular
evolution. In this work we use the HKY model [22], which characterizes Q by a
stationary distribution π and a transition/transversion ratio κ:

Q =

⎛⎜⎜⎝
− πC κπG πT

πA − πG κπT

κπA πC − πT

πA κπC πG −

⎞⎟⎟⎠ (2)

Each diagonal entry is the opposite of the sum of the other entries in the same
row. The transition probability P (x(t)|x(0)) is an entry of the matrix exponential
of Qt:

P (x(t) = b|x(0) = a) = eQt[a, b]. (3)

Given a phylogenetic tree and the length of its branches, the marginal likelihood
of the observed sequence data at the leaves is the joint likelihood summed over
all possible states of internal (ancestral) nodes. This marginal likelihood can be
efficiently calculated using a dynamic programming algorithm [23]. Briefly, let
u be a node in the tree, v and w its children, and tv, tw the branch lengths of
(u, v), (u,w). Define P (Lu|a) as the probability of all the leaves below u given
that the base assigned to u is a. The algorithm is then defined by the recursion:

P (Lu|a) =
{
I(xu = a) if u is a leaf,∑

b e
Qtv [a, b]P (Lv|b)

∑
c e

Qtw [a, c]P (Lw|c) otherwise. (4)

where I(.) is the indicator function.
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Now consider the sequence evolution model of a nucleotide pair. Define x(t) =
(x1(t), x2(t)) as the joint state of the nucleotide pair at time t. There are 16
possible joint states. The null model assumes that each nucleotide evolves inde-
pendently with an identical substitution rate matrix. Therefore, the transition
probability matrix is:

P (x(t)|x(0)) = (eQ ⊗ eQ)t. (5)

where eQ ⊗ eQ is the tensor product of two identical 4 × 4 matrices eQ. The
outcome is a 16 × 16 matrix, specifying the transition probability of the joint
state in a unit time. Each entry is the product of the corresponding entries in
the single nucleotide substitution matrices. For instance,

P (x(1) = (C,G)|x(0) = (A,U))
= P (x1(1) = C|x1(0) = A)P (x2(1) = G|x2(0) = U)
= eQ[A,C] · eQ[U,G].

(6)

The substitution rate Q2 = log(eQ ⊗ eQ) of the nucleotide pair transitions in
(5) is a 16 × 16 matrix, with the rates of single nucleotide changes identical to
those in (2) and zero rates on double nucleotide changes. More precisely, if we
denote (a, b) the joint state of a nucleotide pair:

Q2((a1, a2), (b1, b2)) =

⎧⎪⎪⎨⎪⎪⎩
Q(a1, b1) if a2 = b2,
Q(a2, b2) if a1 = b1,
−Q(a1, b1)−Q(a2, b2) if a1 = b1, a2 = b2,
0 otherwise.

(7)

Equations (5) and (7) are equivalent, and the latter is discussed in [24]. Intu-
itively, if two nucleotides evolve independently, then during an infinitesimal time
only one nucleotide can change, and the rate is identical to the single nucleotide
transition rate.

The alternative model assumes that the evolution of the two nucleotides is
coupled. One way to express their dependent evolution is to “reweight” the
entries of the substitution rate matrix by a potential term ψ:

Qa
2 = Q2 ◦ ψ. (8)

where ψ is a 16× 16 matrix and ◦ denotes the following operation:

Q2(a, b) ◦ ψ(a, b) =

⎧⎨⎩
Q2(a, b) · ψ(a, b) if a �= b,Q2(a, b) > 0,
ψ(a, b) if a �= b,Q2(a, b) = 0,
−∑b′ �=b Q2(a, b′) ◦ ψ(a, b′) if a = b.

(9)

It multiplies an off-diagonal, nonzero entry Q2(a, b) by ψ(a, b), sets the value of
a zero entry Q2(a, b) as ψ(a, b), and normalizes a diagonal entry as the opposite
of the sum of the other entries in the same row. Qa

2 is a valid substitution rate
matrix, thus its exponential induces a valid transition probability matrix.

We give (8) a mechanistic interpretation. The sequence substitution pattern
of a co-evolving pair is the composite effect of neutral mutations, which occur
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independently at each nucleotide, and a selective constraint, which operates on
the joint state. The potential term ψ rewards the state transitions that denote
co-evolution and penalizes the others. We set the ratio between penalty and
neutrality at ε, and the reward for simultaneous changes as r.

The choice of rewarded and penalized states is crucial. Here, we apply three
different criteria to reweight the joint states. The first criterion rewards the
state transitions that establish Watson-Crick base pairing from non-interacting
pairs, penalizes the state transitions which break it, and is neutral for all other
state transitions. We call it the “Watson-Crick co-evolution” or WC model.
Specifically, the potential term is:

ψ(x(0),x(1)) =

⎧⎪⎪⎨⎪⎪⎩
1
ε if x(0) is not WC and x(1) is WC,
ε if x(0) is WC and x(1) is not WC,
0 if x1(1) �= x1(0) and x2(1) �= x2(0),
1 otherwise.

(10)

The second criterion includes the GU/UG pairs (denoted GU since the order
does not matter here) in the rewarded states. It thus rewards the state transi-
tions that establish Watson-Crick or GU wobble base pairs, penalizes the state
transitions which break the extended rule, and is neutral for all other state tran-
sitions. We call it the “Watson-Crick co-evolution with GU wobble” or WCW
model. Specifically,

ψ(x(0),x(1)) =

⎧⎪⎪⎨⎪⎪⎩
1
ε if x(0) is not WC or GU and x(1) is WC or GU,
ε if x(0) is WC or GU and x(1) is not WC or GU,
0 if x1(1) �= x1(0) and x2(1) �= x2(0),
1 otherwise.

(11)

Note that both the WC and the WCW model have zero rates on simultaneous
nucleotide changes.

The third criterion does not use prior knowledge of Watson-Crick base pair-
ing and GU wobble and only considers the simultaneous changes of the two
nucleotides (“simple co-evolution” or CO model). It rewards the state transi-
tions where both nucleotides change, and penalizes the state transitions where
only one nucleotide changes. Recall that the rates of simultaneous changes in
the independent model are zero. Therefore, we reward these transitions not by
reweighting their entries in Q2, but by giving them a positive rate r. Specifically,

ψ(x(0),x(1)) =

⎧⎨⎩
r if x1(1) �= x1(0) and x2(1) �= x2(0),
ε if either x1(1) = x1(0) or x2(1) = x2(0),
1 otherwise.

(12)

The CO model assumes that the interacting nucleotide pairs maintain sta-
ble states. In order to transition from one stable state to another, both nu-
cleotides must change. We introduce this general model in order to capture
tertiary interactions for which pairing rules are complex or unknown. Moreover,
since this general model incorporates no knowledge about nucleotide interactions
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and has only two extra free parameters (ε and r), it can be directly extended
to more complicated problems such as protein-protein interactions or multi-way
interactions.

We apply the dynamic programming algorithm described in (4) to evaluate
the marginal likelihood of the nucleotide pair data. Specifically, a, b and c are
the joint states of nucleotide pairs and eQt is defined as in (5) for the null model
and as the exponential of (8) times t for the alternative model.

In order to incorporate the spatial dimension of the nucleotide sequence into
the model, we define an HMM for the “interaction states” of the aligned se-
quences. Suppose that the sequences of two molecular entities are aligned (e.g.,
a tRNA sequence is aligned with itself in the opposite direction) across all species.
We define the “interaction state” y(s) of the sequence pair at alignment position
s as a binary random variable, indicating whether co-evolution occurs at posi-
tion s (i.e., y(s) = 1) or not (y(s) = 0). The y(s)’s are the hidden variables of
the HMM. Their transitions are specified by a homogeneous Markov chain with
transition probability P (y(s+ 1) = 1|y(s) = 0) = P (y(s+ 1) = 0|y(s) = 1) = α.
The observed variable X(s) comprises the sequences at position s across all
species. The emission probability P (X(s)|y(s)) corresponds to the likelihood of
the sequence data, conditioned on the null model of independent evolution or
the alternative model of co-evolution. The likelihoods are evaluated by the afore-
mentioned dynamic programming algorithm. Given the transition and emission
probabilities, we apply the Viterbi algorithm to identify the interacting regions
of the two sequences.

Issues arise when there are gaps in the aligned sequences. If “sparse” gaps
appear at scattered positions in a few species, we treat them as missing data,
by giving an equal probability to each nucleotide. If there are consistent gaps
appearing in consecutive regions over many species, we ignore those regions when
calculating the likelihood scores.

In order to quantify the confidence of the inferred interaction states, we used
the log-likelihood ratio (LLR) between the co-evolutionary model and the null
model, at each position within the Viterbi algorithm. Pollock et al. [6] have
pointed out that a χ2 distribution is not appropriate for such co-evolutionary
models. For this reason, we have not reported the p-values that might have oth-
erwise been calculated from a χ2 distribution with one (WC and WCW models)
or two (CO model) extra degrees of freedom.

3 Results

We applied our model to the methionine tRNA sequences of 60 species cover-
ing the three superkingdoms of life. Three different criteria were used to reward
and penalize the joint state transitions in the model of dependent evolution:
Watson-Crick base pairing, Watson-Crick base pairing with GU wobble, simul-
taneous changes. We compared the performance of each model in detecting sec-
ondary and tertiary interactions, and further investigated false positives and false
negatives.
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3.1 Data and Pre-processing

Aligned tRNA sequences were downloaded from the Rfam database [25]. Unique
sequences for the methionine tRNA (tRNA-Met, ATG codon) were extracted for
60 species, including archea, bacteria, eukaryotes and their organelles (mitochon-
dria and chloroplast). The length of the complete sequence alignment including
gaps was lseq = 119 nucleotides. A phylogenetic tree was derived from these
sequences using a Metropolis-coupled Markov chain Monte-Carlo (MC3) simu-
lation implemented in the MrBayes program [26]. The resulting tree was found
to be robust and consistent with the tree topologies obtained by parsimony using
the DNAPARS program of the PHYLIP package [27]. The phylogenetic tree of
the tRNA data is reported in the supplementary materials.

The tRNA sequence was then paired with itself in the opposite direction in or-
der to evaluate potential co-evolution between all possible nucleotide pairs. The
first entity in the model was the tRNA sequence itself, and the second entity was
the reversed sequence, shifted by a number of nucleotides varying from 1 to lseq,
and “rolled over” to match the length of the first entity. The co-evolutionary sig-
nal, which is the Viterbi path of the HMM, was then plotted as a lseq × lseq
matrix, where the x-axis represents the position in the sequence, and the y-axis
the offset. As an example, the expected signal for the structure depicted in Fig.1
is shown in Fig. 2. The figure comprises four symmetric patterns, which corre-
spond to the four stems of the tRNA secondary structure (in yellow): acceptor
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Fig. 2. Expected signal for the tRNA secondary structure (in yellow) and tertiary
structure (in green)
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stem at offset 2 and 3, anticodon stem at offset 30, TΨC stem at offset 44 and
45, and D stem at offset 75. The tertiary structure appears as symmetric isolated
nucleotide pairs (in green). The patterns are not symmetric with respect to the
diagonal line due to a gap between positions 60 and 80 covering padding to the
variable loop.

3.2 Sensitivity Analysis

A sensitivity analysis was carried out, varying ε from 10−3 to 0.90, r from 0
to 0.5, and α from 0.05 to 0.45 (results not shown). It was found that the per-
formance of the different methods depends on a reasonable choice of parameter
values. Indeed, the co-evolutionary models merge with the independent model for
ε = 1 and r = 0, therefore no signal can be detected for these parameter values.
Conversely, excessively small values for ε and large values for r compromise the
performance of the analysis. The parameter α can be seen as a spatial “smooth-
ing” factor, which tends to eliminate isolated hits as its value decreases. This can
help to eliminate isolated false positives from the contiguous secondary structure
signal, but can also prevent the identification of isolated tertiary interactions.
We henceforth report the results for ε = 0.5, r = 0.05 and α = 0.2.

3.3 Watson-Crick Co-evolution

The co-evolutionary signal detected by the WC model is shown as a ROC curve
and at a particular cutoff LLR value of 5.0 in Fig. 3. At this level of significance,
20 out of 21 secondary interactions were identified (in orange), and 4 out of 10
tertiary interactions (in red), resulting in 22 false positives (in light blue). The
“missing” secondary interaction, between nucleotides 36 and 55, shows evidence
of GU wobble, which can be contrasted with the purely Watson-Crick base pair-
ing of the true positive pair 39-52 (Table 1). The WC model is not suited to
the detection of such an interaction, though it is eventually picked up at a much
lower significance level (Fig. 3(a)).

As expected, the four tertiary interactions identified by the WC model
(Table 2) are mainly Watson-Crick, even though pairs 24-96 and 93-99, which

Table 1. Dinucleotide composition of one (a) true positive (b) false negative secondary
interaction, WC model

39-52 A C G U
A 0 0 0 14
C 0 0 5 0
G 0 39 0 0
U 2 0 0 0

36-55 A C G U
A 1 0 0 2
C 0 0 18 3
G 0 1 0 2
U 25 0 8 0

Table 2. Dinucleotide composition of detected tertiary interactions, WC model

9-17 A C G U
A 0 0 0 0
C 0 0 0 0
G 0 0 0 2
U 58 0 0 0

18-86 A C G U
A 0 1 1 24
C 0 0 0 0
G 0 30 0 1
U 1 0 0 0

24-96 A C G U
A 2 0 0 0
C 2 0 0 0
G 0 44 0 0
U 6 0 0 4

93-99 A C G U
A 11 0 0 0
C 0 0 0 0
G 0 0 0 0
U 48 0 0 1
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Fig. 3. Results from the WC model (a) ROC curves (b) signal at a LLR = 5.0 cut-
off. The three ROC curves refer to the secondary structure (in orange), the tertiary
structure (in red) and the complete structure (in blue) respectively.

are detected at a comparatively lower significance level, have some non-negligible
terms off the second diagonal.

Many of the false positives seem to be vertically aligned in Fig. 3(b). A closer
examination reveals that these are composed of nucleotides which are highly
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Fig. 4. Results from the WCW model (a) ROC curves (b) signal at a LLR = 5.8
cutoff. The three ROC curves refer to the secondary structure (in orange), the tertiary
structure (in red) and the complete structure (in blue) respectively.

conserved individually, and appear to form a Watson-Crick pair without physi-
cally interacting. In particular, the constant nucleotides of the CAU anticodon
at positions 45-47 form spurious Watson-Crick base pairs with other highly
conserved nucleotides in the different loops of the tRNA structure.
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Fig. 5. Results from the CO model (a) ROC curves (b) signal at a LLR = 0.8 cut-
off. The three ROC curves refer to the secondary structure (in orange), the tertiary
structure (in red) and the complete structure (in blue) respectively.
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3.4 Watson-Crick Co-evolution with GU Wobble

The co-evolutionary signal detected by the WCW model is shown as a ROC
curve and at a particular cutoff LLR value of 5.8 in Fig. 4. At this level of
significance, 19 out of 21 secondary interactions were identified, and 1 out of
10 tertiary interactions, for only 2 false positives. The much steeper ROC curve
for secondary interactions demonstrates the benefit of incorporating additional
biochemical knowledge into the model. Indeed, as many secondary interactions
involve some degree of GU wobble, they are detected earlier by the WCW model
than they were by the WC model. In contrast, the identification of tertiary
interactions does not benefit from the refined model, because those rarely involve
GU wobble. The only exception is the 23-95 pair, which involves GU wobble,
but it is only detected for more than 200 false positives (beyond the boundaries
of Fig. 4(a)).

3.5 Simple Co-evolution Model

The co-evolutionary signal detected by the CO model is shown as a ROC curve
and at a particular cutoff LLR value of 0.8 in Fig. 5. At this level of significance,
all secondary interactions were identified, and 3 out of 10 tertiary interactions,
yielding 25 false positives. The tertiary interactions detected by the CO model
include the pairs 9-17 and 18-86, which were also identified by the WC and
WCW models. However, neither the 24-96, 93-99 nor 23-95 interactions were
identified, as for those pairs one nucleotide often varies while the other remains
constant (Table 2). Additionally, the 42-49 interaction was identified by the CO
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model, which had not been detected by the WC and WCW models because it
consists mainly of C-A and U-C pairs.

3.6 Detection of Tertiary Interactions: Summary

Figure 6 highlights the tRNA-Met tertiary interactions that have been detected
using one of the three co-evolutionary models. Among the ten annotated tertiary
interactions, six were identified by at least one of the models: 9-17 and 18-86 (all
three models, solid blue), 24-96 and 93-99 (WC and WCW models, solid blue),
23-95 (WCW model, dotted blue), 42-49 (CO model, solid red). The four remain-
ing interactions (dotted black) were not detected by any model. With the possible
exception of 30-82, none of those pairs shows a particular bias towards Watson-
Crick base pairing or simultaneous evolution in their dinucleotide composition,
so the failure to detect them using the aforementioned models is not surprising.

4 Discussion

We have shown that a probabilistic graphical model incorporating neutral muta-
tions, selective constraints and sequence adjacency can successfully identify the
secondary and tertiary interactions in a tRNA structure.

The comparison of the results of the WC and WCW models indicates a trade-
off between generality and performance. Indeed, increasing the specificity of
the model by incorporating more biological knowledge significantly improves
the detection of the secondary structure. However, the increased specificity of
the WC and WCW models causes them to miss a non-Watson Crick tertiary
interaction, which is detected by the much more general CO model. Given this
trade-off, the performance of the CO model turns out to be surprisingly good
for both secondary and tertiary interactions, and suggests that rewarding non-
specific simultaneous changes is a simple, yet powerful approach. This result
is encouraging when one considers using such probabilistic graphical models to
investigate the co-evolution of more complex molecular systems, for which the
interaction rules are not well characterized and the number of joint states is
much larger, e.g., between proteins and nucleic acids.

Currently the parameters of the models – ε, r, α and the LLR cutoff – are
set empirically. A more systematic way of estimating them from the data and
testing the model in cross-validation would be a useful extension of this work.

Some scenarios beyond the co-evolution of physically interacting molecules
may also be captured by this model. For instance, instead of rewarding simulta-
neous changes and penalizing unilateral changes, we can invert the potential term
to reward unilateral changes and penalize simultaneous changes. A possible inter-
pretation of this scenario is that the two entities are complementary in function,
such as paralogous genes after their duplication. The conservation of one gene
allows the evolution of the other, which can acquire a new function. A change in
both genes, however, is likely to be detrimental to their original functions and
thereby reduces the fitness. The modeling approach presented here could thus
provide a general framework to study the dependent evolution of biosequences.
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Supplementary Materials

The phylogenetic tree of the tRNA data across 60 species and the statistics of
dinucleotide composition of all the tertiary interactions are reported in http://
www.soe.ucsc.edu/˜chyeang/RECOMB06/.
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In [2], we would like to revise Figs. 2a) and 2b) on p.117-118 to the figure
below.

(a)

Fig. 2. (a) Bayesian networks for degradation (PTD) and repression (TR) regulatory
mechanisms: each network represents a particular set of conditional independencies
between miRNA, mRNA and protein measures. (b) Scatter plot of scores obtained
from both models for each miRNA/mRNA/protein triplet.

Given mRNA, protein and miRNA measurements x, y, z across tissues t =
1, · · · , 5 for each putative miRNA target, we have scored the two regulatory
models for each miRNA/mRNA/protein triplet using Bayesian scores computed
using

BayesianScore(PTD) =
∑

t

log
(
p(yt|xt)p(xt|zt)p(zt)

)
BayesianScore(TR) =

∑
t

log
(
p(yt|xt, zt)p(xt)p(zt)

)
(1)

where, for the miRNA/mRNA/protein triplets, each multinomial conditional
probability term is computed using leave-one-out cross-validation in which counts
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are obtained from the data with the given triplet excluded. Each conditional
probability was then integrated over a Dirichlet prior distribution on the pa-
rameters such that given a model and observations for variable u and its parent
variables Pa{u} under the given model,

p(u|Pa{u}, α) =
∫

Θ

dΘ p(u|Pa{u}, Θ)
∏
k

p(θk|α) (2)

where Θ is the set of parameter vectors for each multinomial distribution over
u corresponding to the kth configuration of the parents Pa{u}. For each par-
ent configuration k, the Dirichlet distribution p(θk|α) is then specified by set-
ting a pseudocount α = 1 for each of the 5 possible values of variable u.
These scores therefore correspond to the log-predictive distribution of a miRNA
/mRNA/protein triplet given one of the two models for miRNA regulation and
all other data.

We note that previously, Fig. 2b) had been generated using a Dirichlet
prior distribution on the data in which the number of pseudo-counts was ac-
cidentally set to be 1000. In addition, we were not using the leave-one-out
cross-validation setup above which was used to compute the new set of scores.
After setting our pseudocounts to the more reasonable value of 1 and using
the cross-validation procedure above for computing the model scores for each
miRNA/mRNA/protein data triplet, we have obtained the revised scatter plot
of Fig. 2b), which we believe to be representative of what is known about the
mechanisms of miRNA regulation. Our revised plot indicates that neither of the
TR or PTD models have significantly more support from the data. This result
is consistent with the fact that both mechanisms have experimental support [1,
3], as well as the suggestion that translation repression by miRNAs may be ac-
companied by the degradation of mRNA targets [1, 3]. In this case, the effect
of down-regulation via translational repression could still be observable as high
miRNA expression/low targeted mRNA expression. This is supported by our
results in [2], where we have been able to detect a large number of biologically
relevant miRNA targets using miRNA and mRNA patterns of expression alone.
However, our above results suggest that there may be many miRNA-target in-
teractions for which it will be necessary to incorporate protein data in our model
for miRNA regulation in order to draw inferences about whether the interaction
is relevant in vivo or not. Thus, we are currently working on extending the model
presented in [2] to account for protein data as well, which will hopefully allow us
to detect miRNA targets from expression data with even greater accuracy than
the GenMiR model and learning algorithm presented in [2].
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