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Abstract. This paper proposes and compares two approaches to defeat
the noise due the measurement errors in control system design of electric
drives. The former is based on a penalized fitness and two cooperative-
competitive survivor selection schemes, the latter is based on a survivor
selection scheme which makes use of the tolerance interval related to the
noise distribution. These approaches use adaptive rules in parameter set-
ting to execute both the explicit and the implicit averaging in order to
obtain the noise defeating in the optimization process with a relatively
low number of fitness evaluations. The results show that the two ap-
proaches differently bias the population diversity and that the first can
outperform the second but requires a more accurate parameter setting.

1 Introduction and Problem Description

When an evolutionary algorithm is implemented, the individuals are explicitly
or implicitly sorted according to their fitness values in order to perform a parent
selection, a survivor selection or to assign a lifetime score. If the evolutionary
optimization is performed in a noisy environment, the solutions can be wrongly
sorted due to the fitness overestimations and underestimations (see [1] and [2]).
This paper proposes and compares two different approaches to treat the noisy
environment and shows an application to the control of a Permanent Magnet
Synchronous Motor (PMSM) in presence of measurement errors. In Fig. 1 the
block diagram of a vector-controlled PMSM drive is shown. For details concern-
ing this control scheme see [3], [4] and [5]. The problem of the control design
(self-commissioning) can be formulated as the determination of ten parameters
(see Fig. 2) which solve a multi-objective optimization problem in H ⊂ R

10.
The performance given by each solution is numerically evaluated through a cost
objective function f built up by means of the weighted-sum of f1,j, f2,j, f3,j and
f4,j which respectively measure the speed error at the settling, speed overshoot,
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Fig. 1. Motor control system
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Fig. 2. Candidate solution

speed rise-time, and undesired d-axis-current oscillations for each speed step j of
a training test (see [5] for details). Since each single objective function requires
a set of measurements the measurement errors affect the objective function f
which is therefore noisy.

2 Prudent-Daring and Tolerant Selection Schemes

The Adaptive Prudent-Daring Evolutionary Algorithm (APDEA) ex-
ecutes the minimization of f operating dynamically on both the population size
and the number of fitness evaluations (sample size). For each individual, the
fitness f is replaced with an ”image” fitness function given by f̂ = fest + b

ni
s

where the estimated fitness fest [1] is the current average fitness calculated over
ni

s samples (related to the ith individual of the population) and b is a weight
coefficient. b

ni
s

is a penalty term which has a big influence for unreliable solutions
(ni

s low) and which progressively tends to have a negligible influence for reliable
solutions (ni

s � 1). Besides, a maximum number of samples nmax
s is established

taking into account the features of the noise under examination. An initial sam-
pling of points (see Fig.2) is done at pseudo-random. At the first generation the
fitness f̂ is calculated (with ni

s = 1) for all the individuals and the coefficient

ξ = min
{
1,

∣∣∣ f̂best−f̂avg

f̂best

∣∣∣
}

is determined. f̂best and f̂avg are respectively the best
and average fitness values among the individuals of the population. The coeffi-
cient ξ is a fitness-based index of the population diversity; it can be seen as a mea-
surement of the state of the convergence of the algorithm (see [5]). In fact if ξ ≈ 1
there is a high population diversity and therefore the convergence conditions are
far; if ξ ≈ 0 there is a low population diversity and therefore the convergence is
approaching. At each subsequent generation µ individuals undergoing crossover
are selected according to the ranking selection [6] and the blend crossover [7] is
then applied. The mutation probability is then calculated by pm = 0.4 (1 − ξ)
and the mutation is executed (see for details [5]). The fitness values of the λ
offspring individuals are calculated (with ni

s = 1 ) and the population made up
of both parents and offspring (µ + λ) undergoes the following survivor selection
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based on two cooperative-competitive [8] schemes. a) Prudent Survivor Selec-
tion: the value Spru = Sf

pru + Sv
pru (1 − ξ) is calculated and the best performing

Spru individuals according to f̂ are thus selected. Sf
pru is the minimum size of

the prudent population and Sv
pru is the maximum size of the variable population;

b) Daring Survivor Selection: the value Sdar = round (Smax
dar ξ) is calculated and

the best performing Sdar individuals according to fest are thus selected. Smax
dar is

maximum size of the daring population; c) The prudent and daring populations
are merged (Spop = Spru + Sdar). Thus, the algorithm prudently selects a part
of the population taking into account the reliability of the solutions and dares
give the surviving chance to those solutions which are not reliable (ni

s low) but
which are promising (fest high). Moreover, the algorithmic logic is based on the
idea that for ξ ≈ 1 (Spru small and Sdar big) the fitness values are very different
among each other and a wrongly estimated individual coming from the daring
survivor selection does not strongly affect the operation of sorting according to
the fitness. On the contrary, for ξ ≈ 0 (Spru big and Sdar small) a wrongly es-
timated individual could significantly affect the operation of sorting according
to the fitness. In the last case, to dare introduce an unreliable individual could
mean to introduce a wrong direction search [1]. The newly merged population
then undergoes a reevaluating cycle: for each individual the value of additional
samples nadd

s = round
(
nmax

s
(1−ξ)

ni
s

)
is calculated and nadd

s fitness reevaluations

are executed. The values of ni
s, fest and f̂ are then updated. Consequently, the

number of reevaluations to be executed on one individual depends on the state
of the whole population (i.e. ξ) and on the previous history of the individual
(i.e. ni

s). Finally, the coefficient ξ is updated at the end of each generation.

The Adaptive Tolerant Evolutionary Algorithm (ATEA) assumes that
the noise is Gaussian and that its standard deviation has the same constant
value in all the points of the domain H under study. Taking into account these
hypotheses, the wideness wTI of the Tolerance Interval related to noise has been
determined as shown in [9]. The ATEA works on the fitness f̃ = fest [1]. An
initial sampling is performed at pseudo-random. The fitness values f of these in-
dividuals are determined and the coefficient ξ = min

{
1,

∣∣∣fbest−favg

fbest

∣∣∣
}

is thus cal-

culated. In the generic kth generation the following steps are executed. Selection
(µ), blend corossover and mutation occur as for the APDEA. The fitness values
related to the offspring newly generated (λ) are thus calculated. The (µ + λ)
individuals undergo the Tolerant Survivor Selection consisting of the following.
a) The individuals are sorted according to the fitness f̃ ; b) The population size
Spop = Sf

pop + Sv
pop (1 − ξ) is calculated; c) The individual having position Spop

with fitness f̃Spop is detected and an auxiliary population made up of individuals

whose fitness value falls within
[
f̃Spop − wTI

2 , f̃Spop + wT I

2

]
is created; d) For each

individual of this auxiliary population the value nadd
s = round

(
nmax

s
(1−ξ)

ni
s

)
is

calculated and nadd
s fitness reevaluations are executed. The values of ni

s and f̃
are then updated; e) The main population (made up of (µ + λ) individuals) is
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updated and resorted according to f̃ ; f) The best performing Spop individuals are
saved for the subsequent generation. Finally, the value of ξ is updated according
to the formula ξ = min

{
1,

∣∣∣ f̃best−f̃avg

f̃best

∣∣∣
}
. The main idea behind the ATEA is

that if it is possible to prove that an individual, even if underestimated, is in the
top part of the list, it should not be reevaluated; analogously if an individual
is so bad that, even if overestimated, is in the bottom part of the list. In other
words, when Spop is calculated, the algorithm implicitly divides the population
in three categories: individuals surely good, individuals surely bad and individ-
uals which require a more attentive analysis. The individuals surely good or bad
do not require additional evaluations; the others require a reevaluation cycle.

3 Numerical Results and Conclusion

Following the procedure described in [9] for Gaussian distribution, the 90% of
the fitness samples falls in a tolerance interval with wideness wTI = 0.1702
with a probability γ = 0.99. Both the APDEA and the ATEA have been ex-
ecuted in order to minimize the fitness f with nmax

s = 10. Concerning the
APDEA Spru ∈ [40, 160], Sdar ∈ [0, 20] and b = 0.2; concerning the ATEA
Spop ∈ [40, 160]. Also a standard Reevaluating Genetic Algorithm (RGA) em-
ploying the same crossover and mutation techniques used for the APDEA and
the ATEA has been implemented. This RGA executes the averaging over time
[2] with a sample size nmax

s = 10 for every evaluation and makes use of a stan-
dard survivor selection which saves at each generation the prefixed Spop = 100
best performing individuals. Each of the three algorithms has been executed 65
times. Each execution has been stopped after 20000 fitness evaluations. Table 1
compares the best performing solutions found by the three methods and shows
the best fitness values f , the average best fitness f̄ (over the 65 experiments)
and the corresponding standard deviation σ. The algorithmic performances and
the behavior of ξ for the APDEA and the ATEA are shown in Fig. 3 and in
Fig. 4 respectively. The numerical results show that both the APDEA and the
ATEA converge faster than the RGA to solutions very similar among each other.
Concerning the convergence velocity, the APDEA proved to be more performing
than the ATEA. Moreover the APDEA is more general than the ATEA since
the latter makes use of the assumption that the noise is Gaussian and with a
constant σ in all the domain. On the other hand, the APDEA, unlike the ATEA,
requires the setting of b and Smax

dar . A wrong choice of b would lead to a too strong
or too weak penalization in the fitness function. Analogously, Smax

dar determines
the audacity of the algorithm and its wrong setting could lead to either a wrong

Table 1. Solutions and related Fitness

Kisd τisd Kisq τisq Kωr τωr τsm K1 K2 K3 f f̄ σ

RGA 10.99 0.0023 6.66 0.0012 0.243 0.0141 0.0106 0.0019 0.0009 0.1891 0.858 0.867 0.0134

APDEA 11.49 0.0022 6.20 0.0011 0.264 0.0145 0.0109 0.0021 0.0006 0.1901 0.851 0.861 0.0158

ATEA 11.14 0.0021 6.61 0.0013 0.259 0.0132 0.0101 0.0020 0.0008 0.1957 0.854 0.860 0.0120
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search direction or an excessive exploitation. Regarding nmax
s , that is a parame-

ter common for both APDEA and ATEA, the setting is a much less critical issue.
In fact, it can be set as the minimum sample size which describes a proportion
of distribution with a given probability (see [9]). Fig. 4 shows that in the case of
the APDEA, ξ has high-frequency oscillations before settling down to the value
0. For the ATEA, ξ has less oscillations with low-frequency. Our interpretation
of this phenomenon is the following. The APDEA introduces during the dar-
ing selection some unreliable solutions before reevaluating them. This behavior
leads to an abrupt increasing of the population diversity that is corrected during
the survivor selection of the subsequent generation. On the contrary, the ATEA
aims to properly sort the candidate solutions and to include for the subsequent
generation only the solutions that are surely in the top part of the list. Conse-
quently, the classical recombination and mutation are the ones in charge of the
exploration. This logic leads to a milder variation of the population diversity.
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