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Abstract. This paper presents a novel Strongly-Typed Genetic Pro-
gramming approach for building Regression Trees in order to model ex-
pressive music performance. The approach consists of inducing a Re-
gression Tree model from training data (monophonic recordings of Jazz
standards) for transforming an inexpressive melody into an expressive
one. The work presented in this paper is an extension of [1], where we
induced general expressive performance rules explaining part of the train-
ing examples. Here, the emphasis is on inducing a generative model (i.e.
a model capable of generating expressive performances) which covers
all the training examples. We present our evolutionary approach for a
one-dimensional regression task: the performed note duration ratio pre-
diction. We then show the encouraging results of experiments with Jazz
musical material, and sketch the milestones which will enable the system
to generate expressive music performance in a broader sense.

1 Background

1.1 The Expressive Performance Modelling Problem

Modelling expressive music performance is one of the most challenging aspects of
computer music. The focus of this work is to study how skilled musicians (here
a Jazz saxophone player) express and communicate their view of the musical
and emotional content of musical pieces by introducing deviations and changes
of various parameters. The expressive performance modelling problem can be
stated as follows. We define an expressive performance database B that consists
of a set of pairs (Si, Ei), where Si is a set of melodic features of a given score note
Ni, and Ei is a set of acoustic features describing the expressive transformations
applied to note Ni. The problem is to find a model M that will minimise the
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error Err(M(Si), Ei) between the prediction M(Si) and the actual expressive
transformation Ei for all the pairs (Si, Ei) in B. Typically Si is a set of features
describing the melodic context of note Ni, such as its melodic and rhythmic
intervals with its neighbours or its metrical position in the bar. On the other
hand, Ei contain local timing and overall energy information of the performed
note, but can also contain finer-grain information about some intra-note features
(e.g. energy envelope shape, as studied in [2], or pitch envelope).

1.2 Regression Trees for Expressive Performance Modelling

In the past, we have studied expressive deviations on note duration, note on-
set and note energy [3]. We have used this study as the basis of an inductive
content-based transformation system for performing expressive transformation
on musical phrases. Among the generative models we induced, Regression Trees
and Model Trees (an extension of the former) showed the best accuracy.

Regression Trees, are widely used in pattern recognition tasks, each non-leaf
node in a Regression Tree performs a test on a particular input value (e.g. in-
equality with a constant), while each non-leaf node is a number representing
the predicted value. By using a succession of IF-THEN-ELSE rules, Regression
Trees iteratively split the set of training examples into subsets where the pre-
diction can be achieved with increasing accuracy. The resulting structure is a
coherent set of mutually-excluding rules which represents the training set in a
hierarchical way. Figure 1 shows an example of a simple Regression Tree. This
tree performs tests on 2 different features and returns a numerical prediction at
its leaves. Whether this tree can produce accurate predictions when processing
unseen data depends directly on the generalisation power of the model. To en-
sure good generalisation capability, tree induction algorithms, such as C4.5 [4]
and M5 [5], provide pruning operations that rely on statistical analysis on the
set of training examples.

Fig. 1. A simple Regression Tree example. Tests are performed on 2 different features,
namely Feature0 and Feature1. If a test succeeds, the left-side children is executed,
while if the test fails, the right-side children is executed. When reaching a leaf, a
numerical prediction is returned.
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1.3 Evaluation Methodology for Expressive Transformation Data

We would like to add in the building process an evaluation of the model when
predicting expressive transformations of musical excerpts in different musical sit-
uations. An example is to measure the system’s ability to predict transformations
of a given musical fragment at a given tempo when the model was built using
training data based on recordings of the same tune but played slightly faster.
Another example would be to compare the system behaviour when providing
predictions on two dissimilar tunes when it was trained using data representing
only one of these. In this work, we intend to evaluate the ability of our model
to solve expressive musical performance situations considering these aspects.

1.4 An Evolutionary Computation Perspective

Most of tree induction algorithms are greedy, e.g. trees are induced top-down,
a node at a time. According to [6], several works pointed out the inadequacy
of greedy induction for difficult concepts. An alternative is to use Evolutionary
Computation techniques, and especially Genetic Programming to evolve Regres-
sion Trees. By combining the high-level representation of computer programs and
the near-optimal efficiency of learning with the parallel processing of several po-
tential solutions, the Genetic Programming framework is an interesting direction
for building such models. Koza [7] shows that this method has been successfully
applied to concept learning and empirical discovery tasks.

Background on Genetic Programming
Genetic Algorithms (GA) can be seen as a general optimisation method that
searches a large space of candidate hypotheses seeking one that perform best ac-
cording to a fitness function. As presented in [8], GA transform a population of
individuals, each with an associated value of fitness (i.e. ability to solve the prob-
lem), into a new generation of the population. The new generation is obtained
using the Darwinian principles of survival and reproduction of the fittest and
analogs of naturally occurring genetic operations such as crossover and mutation.
In [7], Koza presents the Genetic Programming (GP) extension. While in the GA
framework individuals are typically represented as binary or float strings, in the
GP paradigm the structures undergoing adaptation are hierarchical computer
programs of dynamically varying size and structure. These computer programs
are represented as trees, in which a node represents a function, while each leaf
is a terminal (e.g. input of the computer program).

Strongly Typed Genetic Programming
According to Montana [9], in standard GP, there is no way to restrict the
programs it generates to those where the functions operate on appropriate
data types. When the programs manipulate multiple data types and contain
functions designed to operate on particular data types, this can lead to unneces-
sarily large search times and/or unnecessarily poor generalisation performance.
This analysis is crucial in the context of building a Regression Tree model
for expressive music performance. Indeed, tests operate on input variables
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of the program, that is, inputs are compared to inputs which appear in the
training set. On the other hand, leaves contain predictions which should reflect
the distribution of outputs Ei in the training set. Although both inputs and
predictions of our model can be coded as float values, building a program that
performs direct comparisons between an input value, and an output value (i.e. a
melodic feature in Si and an expressive feature in Ei), would produce ineffective
computations, and a considerable effort would be spent in order to generate
individuals that reasonably fit the training examples. Montana presented an
enhanced version of GP called Strongly Typed Genetic Programming (STGP)
which enforces data type constraints. Using this approach, it is possible to
specify what type of data a given GP primitive can accept as argument (e.g.
type of input), or can return (e.g. output). To the best of our knowledge, this
work presents a novel approach for building Regression Trees using STGP.

In section 2, we describe how to represent the problem and implement
the structural constraints of Regression Trees using STGP types. Preliminary
results in predicting one-dimensional expressive transformations of musical
material are then presented in 3. Finally, Section 4 draws some conclusions and
future work.

2 An Approach for Building a STGP Regression Tree
Music Performance Model

2.1 Performance Training Data

Each score note Ni in the performance database B is annotated with a number
of attributes representing both properties of the note itself and some aspects of
the local context in which the note appears. Information about intrinsic proper-
ties of the note include the note duration and the note metrical position, while
information about its context include the duration of the previous and following
notes, and the extension and direction of the intervals between the note and the
previous and following notes. Thus, each Si in B contains six features sumaris-
ing this melodic information. In the last section, we will discuss the perspective
of generating new melodic representations for building expressive models. Each
note Ni is associated to a set of acoustic features Ei describing how the note was
played by the performer. This information was obtained by applying a segmen-
tation algorithm on the audio recordings and then performing an alignment of
the annotated audio with the score (see [10] for a detailed description of these
two steps). In this work, we focus on the duration ratio of the performed note,
i.e. ratio between the performed note duration and the score note duration. This
is obviously a first step before considering an extended set of expressive fea-
tures as presented in [2] and [3]. Because this work is preliminary, we limited
our training set to a few examples of the expressive performance database we
maintain, namely two versions of the excerpt Body And Soul, performed at 60
and 65 beats per minute, and two versions of Like Someone In Love, performed
at 120 and 140 beats per minute.
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2.2 Types and Primitives

Going back to Figure 1 we can see that the general structure of the Regression
Tree is the following. Each node is a test comparing an input with a value that
was generated analysing the training data. Each leaf is an output value con-
taining the numerical prediction. Thus, both inputs and outputs of the program
should have different types. We define 4 different types, namely InputValue, Feat-
Value, RegValue and Bool. The first three types represent floating-point values,
while the latter type represents boolean values that will be used when perform-
ing tests. Now we can define the primitives that will be used to build our models.
They are listed in Table. 1.

Table 1. STGP primitives used in this study. Each primitive is presented along with the
number of arguments it handles, the type of each argument, and its return type. Note
that primitives EFeatValue and ERegValue, which are used for constant generation,
take no argument as input.

Primitive NameNumber of argumentsArguments Type Return Type

IF 3 1st: Bool, 2nd and 3rd:
RegValue

RegValue

LT 2 1st: InputValue, 2nd
FeatValue

Bool

EFeatValue 0 - FeatValue

ERegValue 0 - RegValue

The IF primitive tests whether its first argument of type Bool is true or false.
If the test succeeds, its second argument is returned, otherwise its third argu-
ment is returned (both second and third arguments have a RegValue type). The
LT primitive tests whether its first argument is lower than the second argument
(The former has a InputValue type and the latter FeatValue). The primitive
returns a Bool which value is true if the test succeeds, false otherwise. Given
the definitions of our types, we can see that during the building process the
output of the LT primitive will always be connected to the first argument of
the IF primitive. Instead, we could have chosen to use a single primitive IFLT
with 4 arguments (the first two being involved in InputValue typed comparison,
and the last two being used to return a RegValue). However, we think that re-
stricting the tests to inequalities would be a constraint for future developments.
EFeatValue and ERegValue are zero-argument primitives. We use them for gen-
erating constants. The first one generates constants to be involved in inequality
tests (primitive LT). In order to produce meaningful tests, values produced by
EInput are likely to be the values appearing in the vectors Si of the training
set. To ensure this, we collected all the features in Si in B. When creating a
EFeatValue primitive, we choose randomly one of them. Similarly, ERegValue
primitive generates constants of type RegValue that will form the numerical pre-
dictions returned by the model. It is desirable that these predictions respect
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Fig. 2. Duration ratio distribution in the training data

approximately the statistical distribution of the vectors Ei in B. In this case, we
focus on the single duration ratio in Ei. After having analysed the distribution of
this value (see Figure 2.2), we decide to randomly generate ERegValue following
a gaussian distribution fitting the training data.

2.3 Terminal Set

The elements of the terminal set are the inputs of the program. Each of the
features of test vector Si is associated to an input of the tree INi, 0 ≤ i ≤ 5.
Terminals are of type InputValue, thus they will only feed primitives accepting
arguments of this type (i.e. the LT primitive in the present case). Given the types,
primitives, and terminals presented above, we are now able to build a Regression
Tree structure in the STGP framework. Figure 3 shows how the example tree
introduced in Figure 1 is represented.

Fig. 3. STGP Regression Tree example involving two successive tests. Typed connec-
tions between primitives are appearing. Also, constants generated by zero-arguments
primitives appear in parentheses. EFV stands for EFeatValue, while ERV stands for
ERegValue. The arrow indicates the output point of the program.
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2.4 Genetic Operators

The genetic operators we use are basically a refinement of the operators proposed
by [7], and [9] in their Strongly Typed variant, where the operation is constrained
to produce a type-consistent structure. Operators are Tree Crossover, where
two individuals can swap subtrees, and Standard Mutation, where a subtree is
replaced by a newly generated one. Additionally, Shrink mutation replaces a
branch with one of its child nodes, and Swap mutation swaps two subtrees of an
individual. Also, two floating-point mutation operators where added to process
the randomly-generated constant returned by EInput and ERegValue primitives.

2.5 Fitness Evaluation

Individuals are evaluated on their ability to produce an output M(Si) that
matches Ei for each note Ni of a musical fragment in the training set. Con-
sequently, the fitness measure is the average error of the model Err(M(Si), Ei).
We use the following fitness function:

f =
1

1 + RMSE
(1)

where RMSE is the Root Mean Squared Error between training and predicted
duration ratio, averaged over the notes of a musical fragment, itself averaged over
all the training fragments. We are aware that this fitness measure is very general
and that it does not catch in detail the behaviour of the model (e.g. evolution of
the error note by note during the performance of a musical fragment). We have
no guarantee that the best ranked individual will be the model that performs
the best from the musical point of view. However this measure gives a first
search direction during the evolution. Future developments will take advantage
of perceptually-based fitness measures, but prior to this we have to address
the issue of multi-dimensional prediction (see Sec. 4) in order to generate new
melodies.

2.6 Evolutionary Settings and Implementation

We define the following evolutionary settings for the different runs. The popula-
tion size is fixed to 200 individuals. The evolution stops if 500 generations have
been processed or if the fitness reaches a value of 0.95. We use a generational
replacement algorithm with a tournament selection. Crossover probability is set
to 0.9, with a branch-crossover probability of 0.2, which means that crossovers
are more likely to be performed on leaves, with the effect of redistributing the
constants and terminals in the tree. The Standard mutation probability is set
to 0.01, while the Swap mutation has been set to a higher value (0.1) in order
to let a individual reorganise its feature space partition with more probability.
Finally, Shrink mutation probability is set 0.05. The maximum tree depth has
been set to 10, which could lead to the generation of very complex individuals
(here we do not look for a compact model).
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We build our system using Open Beagle framework [11], which is a C++
object oriented framework for Evolutionary Computation. Open Beagle was pri-
marily designed for solving Genetic Programming tasks and includes STGP fea-
tures such as the operators presented above.

3 Results and Evaluation in Different Musical Situations

In this section, we test the ability of our model in predicting expressive trans-
formations given different training situations. Note that in this section we will
not focus on the fitness of the individuals as defined in last section. Rather, we
evaluate a model based on its error prediction. First, we address the problem of
evaluating precision and generalisation capability of the induced model in the
context of expressive music performance. In Figure. 4, we present the RMSE of
the best-so-far model when predicting the note duration ratio of the four ex-
cerpts presented above. On the top, the model is only trained with one of the
four fragments, namely Body and Soul played at 60 beats per minute, i.e, the
fitness function is only based on this error. On the bottom, the model is trained
using the four fragments. First we can see that excerpts that share the same

Fig. 4. Best-so-far individual RMSE for each of the target songs when the fitness takes
into account only the Body And Soul (played at 60 beats per minute) prediction error
(top), or when the fitness takes into account prediction the error of the four fragments
(bottom). Gray solid (respectively dashed) line is the RMSE of Body And Soul played
at 60 (respectively 65) beats per minute. Black solid (respectively dashed) line is the
RMSE of Like Someone In Love played at 120 (respectively 140) beats per minute.
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Fig. 5. Note by note Squared Error of the duration ratio during the evolution process

melodic representation evolve in a similar fashion. In the case of being trained
with only one song (top of Figure. 4), the prediction error start to differentiate
at generation 200. After this point, predictions concerning the training and sim-
ilar fragments become better while predictions concerning dissimilar fragments
become worse. On the other hand (bottom of Figure. 4), when all the fragments
are used during training, the error tends to be minimised for the four excerpts.
Some modifications of the model improve the prediction for all excerpts (e.g. gen-
eration 530), while others (e.g. generation 870) benefit only to excerpts sharing
the same melodic features.

Figure. 5 shows the note by note Squared Error of the duration ratio during
the evolution process. First generation model error appear on the back while
last generation model error is on the front. We can see, that even if the overall
error is minimised, some notes, such as note 61, 80, and 85 are modelled with
less accuracy. This means that the best tree model does not cover these melodic
situations appropriately. New specific branches should be created to perform
tests on melodic features that represent theses melodic situations.

Finally, in Figure. 6, we perform an informal comparison between two models
and the training data when predicting the duration ratio of each note the excerpt
Like Someone In Love played at 140 beats per minute. The first model is the
best-so-far STGP model obtained for this task (indicated in grey dotted line).
The second model (grey dashed line) was obtained using a propositional greedy
Regression Tree algorithm (see [3] for details), which is an accurate technique for
the performance modelling task. The black solid line corresponds to the actual
training data for this excerpt. We can see that both STGP and greedy Regression
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Fig. 6. Note by note duration ratio prediction for Like Someone in Love played at 140
beats per minute. Black solid line refers to the performance training data, grey dotted
line refers to the best-so-far STGP model, and grey dashed line corresponds to a greedy
Regression Tree model as presented in [3].

Tree models behave qualitatively well, and their mean prediction error is very
similar. Thus, our approach to build Regression Tree performance models based
on STGP is promising, although the results we present here are very preliminary.

4 Conclusion

We presented in this work a novel Strongly Typed Genetic Programming based
approach for building Regression Trees in order to model expressive music per-
formance. The Strongly Typed Genetic Programming framework has been in-
troduced, along with the primitives, operators and settings that we apply to this
particular task. Preliminary results show this technique to be competitive with
greedy Regression Tree techniques for a one-dimensional regression problem: the
prediction of the performed note duration ratio. We want to scale up our ap-
proach to the generation of expressive musical performances in a broader sense,
and plan to work in the following directions:

– Predict more expressive features, such as onset and mean note energy devia-
tion, which will enable the model to predict expressive melodies. This will be
achieved by defining a new RegValue complex data type, along with an ap-
propriate constant generator and operators. New fitness measures have to be
defined and in order to assert the musical similarity between the model’s out-
put and the performer’s transformations. We believe that the use of percep-
tually motivated fitness measures (e.g. [12]) instead of statistical errors (e.g.
RMSE) can lead to substantial improvements of the accuracy of our models
and make the difference with classical greedy techniques. Additionally, intra-
note features are of particular interest in monophonic performances and will
be considered. This will include energy, pitch, and timbrical features.
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– Generate new melodic representations for our expressive performance
database: as pointed out in Section. 2, the melodic representation we use
is based on musical common sense but is not necessarily the best one. A
particular drawback of this representation is that it only capture local con-
text information, when several works stress that expressive music perfor-
mance is a complex phenomenon which involves a multi-level representation
of the music. An interesting work perspective is to devise a evolutionary
melodic feature extractor that would coevolve with the performance model.
[13] presents relevant ideas to achieve this.

– Increase the amount of training data. We are aware that our database is still
small and that much more data is needed. New methods for the acquisition
of performance data from polyphonic recordings (which would allow us to
obtain data from commercial recordings) start to give interesting results. It
is mandatory to build a representative performance database if we want to
investigate thoroughly the generalisation (from both statistical and musical
point of of view) power of the induced models. We will use statistical tests
(e.g. 10-fold or one-song-out cross validation) to assess the performance of a
given model. However we want to keep track of the sequences of events we
are modelling, consequently we will avoid to use any technique which would
lead to loose the temporal continuity in the data.

– Towards a model with state. A drawback in the model architecture is that
it only bases its predictions on the melodic features of the note to be trans-
formed, while it should also have access to the past predictions it returned.
This last aspect is an important issue of the challenging expressive music
performance problem.

References

1. Ramirez, R., Hazan, A.: Understanding expressive music performance using ge-
netic algorithms. In: Third European Workshop on Evolutionary Music and Art,
Lauzane, Switzerland (2005)

2. Ramirez, R., Hazan, A., Maestre, E.: Intra-note features prediction model for jazz
saxophone performance. In: International Computer Music Conference, Barcelona,
Spain (2005)

3. Ramirez, R., Hazan, A.: A tool for generating and explaining expressive music
performances of monophonic jazz melodies. In: International Journal on Artificial
Intelligence Tools (to appear). (2006)

4. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc. (1993)

5. Quinlan, J.R.: Learning with Continuous Classes. In: 5th Australian Joint Con-
ference on Artificial Intelligence. (1992) 343–348

6. Murthy, S.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2 (1998) 345–389

7. Koza, J.: Genetic Programming: On the programming of Computers by means of
natural Selection. MIT Press, Cambridge, MA, USA (1992)

8. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbour, MI (1975)



Modelling Expressive Performance 687

9. Montana, D.: Strongly typed genetic programming. Technical Report #7866, 10
Moulton Street, Cambridge, MA 02138, USA (1993)
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