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Abstract. We describe our efforts to evolve robot paintings using simu-
lated robots. Our evolutionary framework considers only the initial posi-
tions and initial directions of the simulated robots. Our fitness functions
depend on the global properties of the resulting robot paintings and on
the behavior of the simulated robots that occurs while making the paint-
ings. Our evolutionary framework therefore implements an optimization
algorithm that can be used to try and help identify robot paintings with
desirable aesthetic properties. The goal of this work is to better under-
stand how art making by a collection of autonomous cooperating robots
might occur in such a way that the robots themselves are able to partic-
ipate in the evaluation of their creative efforts.

1 Introduction

Open Problem #3 of McCormack’s five open problems in evolutionary music
and art (EMA) [1] requires one, “To create EMA systems that produce art
recognized by humans for its artistic contribution (as opposed to any purely
technical fetish or fascination).” The recent publicity garnered by the robot
paintings of Moura, Ramos, and Pereira that resulted from their ARTSBOT
(ARTistic Swarm roBOTS) Project might at first glance be seen as a solu-
tion to McCormack’s third open problem since the paintings are described on
the web (see http://alfa.ist.utl.pt/ cvrm/staff/vramos/Artsbot.html) as “arti-
ficial art,” and in print as “non-human art” [2] or “symbiotic art” [3]. Note
that here the symbiosis is intended to be between human and robot. The site
http://www.lxxl.pt/artsbot/ where the images of the robot paintings with the
best resolution can be found also provides a “Symbiotic Art Manifesto” written
by Moura and Pereira.

It is unfortunate that some of the hyperbole associated with the ARTSBOT
project detracts from what is potentially a promising new development in evo-
lutionary art. At the center of the ARTSBOT Project lies an implementation
of a collective robotics art making system to create what are known as swarm
paintings. The ARTSBOT team reveals this by saying [4] — to paraphrase and
polish slightly — that the artworks are made by “a swarm of autonomous robots,
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that ‘live’ [by] avoiding simply [executing] streams [of commands] coming from
an external computer, [and] instead actually co-evolve within the canvas [en-
vironment]; acting [by] laying ink according to simple inner threshold stimu-
lus response functions, [while] simultaneously reacting to the chromatic stimu-
lus present in the canvas environment [left by other robots], as well as by the
distributed feedback, [that] affect[s] their future collective behavior.” We note
that ARTSBOT was one of the few collective robotics entries in the most re-
cent international ArtBot art exhibition for “robotic art and art-making robots”
(see http://artbots.org/2004/participants/). Moura and Pereira claim that they
have created organisms that generate drawings without any intervention on their
part thereby creating “a new kind of art” based on a paradigm of non-human
autonomous entities that allow personal expression by human artists to be aban-
doned [3]. Perhaps this somewhat of an exaggeration. Since the controllers for
their robots were not evolved, ARTSBOT is not an evolutionary art system,
but rather an art making system consisting of human programmed autonomous
agents that reside and function in an artificial ecosystem. There is a close con-
nection here between stigmergy [5] — the situation where autonomous agents
alter their environment either accidentally or on purpose in such a way that
they influence other agents to perform actions that achieve an objective such as
nest building — and swarm painting. The principal difference is that stigmergy
is usually associated with a clearly defined task or objective while swarm paint-
ing is usually associated with the more poorly defined objective of producing
aesthetic imagery.

While in our opinion the question of whether or not the ARTSBOT robot
paintings are more than what McCormack referred to as a “technical fascination”
has not yet been satisfactorily answered, what is most significant to us is the fact
that ARTSBOT does not address McCormack’s penultimate challenge, Open
Problem #5, which requires one: “To create artificial ecosystems where agents
create and recognize their own creativity.” In this paper using simulated collective
robotics and taking for motivation the penultimate problem of how autonomous
robots engaged in making swarm paintings might eventually go about learning
to recognize their own creativity, as a first step we investigate an evolutionary
framework that is designed to show how simulated robots might be able to
formulate ways to evaluate the aesthetic quality of their paintings. Unlike the
aesthetic evaluation system for agent produced art studied by Saunders and
Gero where each agent produced its own paintings and the evaluation model
was based on social dynamics [6], we consider an aesthetic evaluation system
where the collective agents are given shared access to a set of image evaluation
parameters which can then be used either individually or collectively to modify
the image making process. To help understand the consequences of our design,
we consider what effect different types of computations made using our set of
evaluation parameters have on our robot paintings.

This paper is organized as follows. In section two we provide some background
on the use of swarms and the non-interactive genetic algorithm for image making.
In section three we give the specifications for our simulated robots. In section four
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we describe how their controllers work. In section five we present our evolutionary
framework. In section six we define our set of image evaluation parameters and
then proceed to give examples of some of the robot paintings we evolved using
various fitness functions formulated based on these parameters. In section seven
we consider the implications of our work for the problem of how robot swarms
might go about evaluating their creative efforts. In section eight we offer our
summary and conclusions.

2 Background

The notion of swarm paintings was first introduced in an image processing paper
by Ramos that was contributed to an ant colony optimization (ACO) conference
[7]. Related work appeared in [8] and [9]. In this problem domain the use of
the interactive user-guided evolution paradigm that was originally proposed by
Sims [10] (i.e. the interactive genetic algorithm) was first studied by Aupetit
et al [11]. They investigated an ant colony simulation where the virtual ants
deposited and followed color – the scent — while exploring a toroidal grid in
order to produce “ant paintings.” Greenfield [12] non-interactively evolved ant
paintings by evolving the genomes required for governing the behaviors of the
virtual ants using fitness functions. His observation that only elementary tech-
niques were needed to measure ant exploration and ant cooperation capabilities
offers hope that relatively simple behavioral assessment parameters can be used
to help identify increased image complexity or well organized image compositions
in other evolutionary swarm painting scenarios. The use of the (non-interactive)
genetic algorithm in evolutionary art was first considered by Baluja et al [13].
Using this technique for evolving two-dimensional imagery, interesting results
have been obtained by Greenfield [14] using co-evolution and the image gener-
ation method known as “evolving expressions”, by Machado and Cardosa [15]
using neural nets, and by Bentley [16] in order to identify cellular automata
“patterns.” In general, the question of how to evaluate aesthetics on the basis of
scientific principles and computational methodologies is a difficult one. To sam-
ple several different author’s thoughts on the matter and help gauge the scope
of the debate see [17, 18, 19, 20, 21].

3 S-Robot Specification

The design of our simulated robots, or S-robots, is loosely based on a software
model for Khepera robot simulation by Harlan et al [22]. An S-robot is a virtual
circular entity with four binary valued proximity sensors together with a three-
channel color sensor. Three of the proximity sensors are located at the front of
the S-robot and the fourth is located at the rear. The forward and backward
sensors scan a field 120◦ wide and the two side sensors scan a field 45◦ wide in
such a way that there is a 15◦ overlap with the forward sensor. Thus the forward
facing ‘field of vision” is from −90◦ to +90◦ up to a distance of twenty units
and the rear facing field of vision is from −60◦ to 60◦ also up to a distance of
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twenty units. Proximity sensors detect other robots and environmental obsta-
cles or boundaries but do not distinguish between the two. The color sensor is
mounted directly beneath center (rx, ry) of the S-robot. The S-robot’s forward
direction is determined by the unit vector (dx, dy). For all of the images shown
here, the robot’s two pens were operated synchronously so that either both were
up or both were down. The reason for this was so that when the S-robot was
mark making, the pen colors could be chosen so that that the mark had an
automatic built-in highlight. An S-robot’s painting mark is five units wide. An
S-robot can swivel (i.e rotate in place) 10◦ clockwise or counterclockwise per
clock cycle and can move v units per clock cycle, −1 ≤ v ≤ 1, in either the
forward or backward direction in accordance with the sign of v. The S-robot
roams on an n × m unit gridded world.

4 S-Robot Controllers

The “onboard computer” for an S-robot is an interrupt driven controller whose
job is to place a sequence of commands in an execution queue, sleep until the
queue is empty, and then plan and load the S-robot’s next sequence of commands
when it is awoken. An S-robot is autonomous because it can place commands in
the queue to request sensors readings so that when it is awoken it can perform
actions based on these sensor values. The controller loads commands of the form
<mnemonic> <argument> where the mnemonic is chosen from the list:

MOV Move
SWI Swivel
SPD Set Speed
SNP Sense Proximity Vector
SNC Sense Color Vector
PUP Pen Up
PDN Pen Down

Only the MOV, SWI, and SPD commands actually make use of the argument,
in all other cases it is treated as a dummy argument. By having the controller
indicate how far it wants the S-robot to travel, or how many degrees it wants
the S-robot to swivel, the burden of timing shifts to the simulator itself. The
simulator calculates how many clock cycles these actions will take so that it
can manage the discrete event scheduling, synchronize the movements of all the
S-robots, detect collisions, and update the sensors accordingly.

While in the future we would like to evolve the controllers themselves, in
this paper we make use of two controllers that we wrote ourselves in order to
consider how the cooperation between two S-robots was affected by their initial
placement and direction headings. Each of our controllers has four pre-planned
painting sequences it can load into the queue. For ease of managing simulated
evolution and evaluating the results, at run time we made only one of the four
painting sequences available to each controller. The four sequences can produce
an elongated double hooked curve, a wedge, a segment of a spiral, and a zigzag
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Fig. 1. Two S-robots using different controllers and different painting motifs. Note that
one of the S-robots did most of its painting by leaving its pens down while executing
a back-up and swivel sequence following boundary collisions.

Fig. 2. Images of two S-robots painting with, and without, exhibiting robot interaction.
On the left, the S-robot painting the closed figure is oblivious to its companion, while on
the right it collides with its companion and gets bumped into a new painting trajectory.

motif. Figure 1 shows an early S-robot test painting made using two S-robots
where one used the double hooked curve to draw closed figures and the other
used the zigzag sequence as it tried to roam more freely over the canvas. The
latter left the pens down during a back-up obstacle avoidance sequence which
explains the appearance of the long curving trails.

We now describe our two controllers. Controller A always first checks the for-
ward sensor. If it is clear, it queues the assigned painting command sequence
followed by commands to swivel, move a short distance away, and take a prox-
imity reading. If the forward sensor is set, but the backward sensor is clear,
it queues a back-up sequence followed by swivel sequence and again requests a
proximity reading. Otherwise, having concluded it is boxed in, it swivels and
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tries to move only a short distance away before taking a new proximity reading.
Controller B, on the other hand, can be set up so that it uses the color channel
sensors to search either for areas of the canvas that have not yet been painted or
for areas that have been painted by one of its companions. Whenever it locates
pixels of the type it is searching for, it queues the assigned painting command
sequence followed by a swivel sequence, otherwise it swivels and moves a short
distance from its present location. In both cases it again queues a color read-
ing. Figure 2 shows what happens when an S-robot with an A controller that
is drawing a closed figure gets bumped off course when an S-robot with a B
controller that is trying to fill in unpainted canvas gets too close.

5 Evolutionary Framework

The S-robot paintings described below were all painted on 200 × 200 canvases.
The S-robots were permitted to paint for 150,000 clock cycles. The genome for
an individual S-robot is the vector (sx, sy, d) where (sx, sy) is its initial position
and d is its initial true compass heading, −180 ≤ d < 180. For a collection, or
swarm, of N S-robots the genome g is the concatenation of the genomes of the
individual S-robots. Thus g is a vector with 3N components. The point mutation
operator applied to g displaces each component of g by a small amount, while the
crossover operator applied to genomes from two swarms implements the usual
uniform crossover operator for two vectors with the same number of components.

Our evolutionary framework uses a population of size P = 16. Some evolu-
tionary runs set the number of S-robots at N = 2 while others use N = 4. For
each of G = 30 generations, the painting made by the swarm of S-robots with
genome g is assigned fitness Fg using one of the calculation methods described
below. Then the P/2 least fit genomes are discarded and P/4 breeding pairs are
formed by cloning from the pool of P/2 survivors. Breeding within each pair is
performed using crossover. Finally all P genomes are subjected to point muta-
tion. Thus an evolutionary run considers G ·P = 30 ·16 = 480 S-robot paintings.
The painting associated with the most fit genome is logged after every five gen-
erations. Since point mutation is applied to every genome in the population at
the conclusion of every generation, the implicit genetic algorithm is non-elitest
and therefore the generation in which the most fit genome will appear during
the course of a run cannot be predicted in advance.

6 The S-Robot Fitness Calculation

When a group of N S-robots is making an S-robot painting, the following data is
collected: np, the number of squares of the grid that were painted; nb, the number
of times an S-robot reacted to the situation where the forward proximity bit was
set but the backward proximity bit was clear; ns, the number of times an S-robot
reacted to the situation where the forward and backward bits were both set; and
nc, the number of times an S-robot was successful at color sensing. Figure 3
shows an example of the improvement in image “complexity” that occurred over
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Fig. 3. S-robot paintings where fitness was determined by the two S-robot’s ability to
cover the canvas. The image on the left is the most fit image in the initial randomly
generated population, the image on the right is the most fit image after ten generations.

Fig. 4. Two S-robot paintings where image fitness was determined using a linear combi-
nation of the S-robot behavioral assessment terms. The goal is to evolve a composition.
The image on the left is the most fit image from the original population, the image on
the right is the most fit image from the twentieth generation.

time simply by letting Fg = np, thereby ensuring that the proportion of canvas
that was painted was optimized. Figure 3 shows a comparison of the most fit
image from the initial randomly generated genome population with the most fit
image after ten generations.

Figure 4 shows two S-robot paintings obtained using the fitness function given
by Fg = np − nb + 100ns + 1000nc. Over time evolution causes the canvas to
fill in more and locates the closed figure in such a way that maximal S-robot
interaction can occur. Figure 5 shows the two most fit S-robot paintings after
fifteen and thirty generations from a run using fitness given by Fg = np −
100ns+1000nc. They show two different “solutions” to the optimization problem
posed. One exhibits mutual following behavior by the two S-robots and the
other exhibits avoidance behavior since one S-robot retreats to a corner and
lingers there. Figure 6 shows the synergy that resulted when the fitness function
Fg = nsnc was used and the color sensing robot was initialized to seek the
paint trails of its companion. Finally, Figure 7 shows an example using fitness
function Fg = nsnc + npnb, which adds a new term to the previous fitness
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Fig. 5. S-robot paintings from the fifteenth and thirtieth generations obtained from a
run that used a fitness function that maximized the assessment terms np and nc, while
minimizing ns

Fig. 6. S-robot paintings from the tenth and twentieth generations obtained from a
run that used a fitness function that maximized S-robot interaction by using a product
of the behavioral assessment terms nb and nc

Fig. 7. S-robot paintings from the fifth and twentieth generations obtained from a run
that used a fitness function with interaction terms to maximize both S-robot interaction
and canvas coverage

function in order to increase canvas coverage in an effort to compensate for
the fact that one of the S-robots is now being restricted to making a smaller
mark when it paints. We believe these examples help support our contention
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that it is possible to impose a style on robot paintings by carefully devising the
fitness functions. That is, following a relatively brief period of experimentation to
discover how weighting and combining the parameters affects S-robot paintings,
one can become reasonably competent at formulating fitness functions using the
parameters in such a way that the evolved imagery will matching one’s own
aesthetic tastes.

7 On Autonomous Fitness Calculation

The previous section showed how the evolution of our S-robot paintings occurs
by using optimization to select the initial configurations of the individual S-
robot settings. This optimization treats the fitness calculation as a computation
that assigns an aesthetic value to each painting by the swarm of S-robots that
created it. Even though it would be a very time consuming process, we feel
it is important to make the observation that this fitness calculation could be
performed by the S-robots themselves, because we believe that any collection of
robots that is engaged in evaluating or recognizing their own creativity would
need to include some kind of aesthetic evaluation capability such as ours. Of
course, to fully implement the protocol that our S-robots would need to follow
in order to achieve this aesthetic evaluation goal, the functionality of the S-
robots would need to be enhanced so that they could exchange data with one
other, make use of a pseudo random number generator, and have their initial
position and heading correctly calibrated. Assuming this were done, an outline
of the protocol would be:

1. S-robots save their initial positions and headings.
2. While the painting is being executed, S-robots save information needed to

collectively calculate image fitness.
3. Designated S-robot traverses entire canvas to determine global statistics

needed for fitness calculation (e.g. paint coverage of canvas).
4. S-robots share data in such a way that each is able to calculate image fitness.
5. S-robots compare current fitness value to their saved fitness values to decide,

if necessary, which two of their saved genomes to cross, before mutating their
genomes for the next painting.

6. S-robots are placed on a new canvas with the correct desired initial positions
and headings.

It should be clear that it would not be too difficult to design more sophisticated
protocols for robot genomes involving controller settings, planning algorithms,
or painting sequences in addition to the initial configuration data.

8 Summary and Conclusions

We considered the problem of how to evolve swarm paintings. We did so by de-
veloping an evolutionary framework using simulated autonomous mark-making
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robots. To use the non-interactive genetic algorithm within this framework, we
introduced global image assessment parameters and local behavioral assessment
parameters that could be used for formulating fitness functions to evaluate, or
rank, images on the basis of criteria intended to identify aesthetically interesting
paintings. Even though evolution was only able to control the initial placement
and positioning of the robots, we gave examples to show how the use of different
fitness functions could affect the aesthetic qualities of the robot paintings. We
also explained how, in principle, our evolutionary fitness scheme could be man-
aged by the robots themselves. We believe this represents a first step towards
reaching the eventual goal of having autonomous robots collectively evaluate and
recognize their own creative efforts.
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