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Abstract. Mobile Ad-hoc Networks (MANETs) are composed of a set
of communicating devices which are able to spontaneously interconnect
without any pre-existing infrastructure. In such scenario, broadcasting
becomes an operation of capital importance for the own existence and op-
eration of the network. Optimizing a broadcasting strategy in MANETs
is a multiobjective problem accounting for three goals: reaching as many
stations as possible, minimizing the network utilization, and reducing
the makespan. In this paper, we face this multiobjective problem with
a state-of-the-art multiobjective scatter search algorithm called AbSS
(Archive-based Scatter Search) that computes a Pareto front of solu-
tions to empower a human designer with the ability of choosing the
preferred configuration for the network. Results are compared against
those obtained with the previous proposal used for solving the problem,
a cellular multiobjective genetic algorithm (cMOGA). We conclude that
AbSS outperforms cMOGA with respect to three different metrics.

1 Introduction

Mobile Ad-hoc Networks (MANETs) are fluctuating networks populated by a set
of communicating devices called stations (they are also called terminals) which
can spontaneously interconnect each other without a pre-existing infrastructure.
This means that no carrier is present in such networks as it is usual in many
other types of communication networks. Stations in MANETs are usually lap-
tops, PDAs, or mobile phones, equipped with network cards featuring wireless
technologies such as Bluetooth and/or IEEE802.11 (WiFi). In this scenario, a)
stations communicate within a limited range, and b) stations can move while
communicating. A consequence of mobility is that the topology of such networks
may change quickly and in unpredictable ways. This dynamical behavior consti-
tutes one of the main obstacles for performing efficient communications on such
networks.

Broadcasting is a common operation at the application level and is also widely
used for solving many network layer problems being, for example, the basis
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mechanism for many routing protocols. In a given MANET, due to host mobility,
broadcasting is expected to be performed very frequently (e.g., for paging a
particular host, sending an alarm signal, and/or finding a route to a given target
terminal). Broadcasting may also serve as a last resort to provide multicast
services in networks with such rapidly changing topologies and stems for the
organization of terminals in groups. Hence, having a well-tuned broadcasting
strategy will result in a major impact in network performance.

In this paper we are considering the problem of broadcasting on a particular
sub-class of MANETs called Metropolitan MANETs, which cover from shopping
malls to metropolitan areas. Instead of providing a generic protocol performing
well on average situations, our proposal consists of optimally tuning the broad-
casting service for a set of networks and for a particular category of broadcast
messages. Optimizing a broadcasting strategy is a multiobjective problem where
multiple functions have to be satisfied at the same time: maximizing the number
of stations reached, minimizing the network use, and minimizing the makespan
are three examples of the potential objectives. In this work, the broadcasting
strategy considered for optimization is DFCN [1], and the target networks are
metropolitan MANETs. Since manipulating such networks is difficult, we must
rely on software simulators for evaluating the scenarios from the designer point-
of-view.

Contrary to single objective optimization, multiobjective optimization is not
restricted to find a unique solution of a given multiobjective problem, but a set
of solutions known as the Pareto optimal set. For instance, taking as an example
the problem we are dealing with, one solution can represent the best result
concerning the number of reached stations, while another solution could be the
best one concerning the makespan. These solutions are said to be nondominated.
The result provided by a multiobjective optimization algorithm is then a set of
nondominated solutions (the Pareto optima) which are collectively known as the
Pareto front when plotted in the objective space. The mission of the decision
maker is to choose the most adequate solution from the Pareto front.

This multiobjective problem of broadcasting in MANETs, which has been
previously addressed with a cellular genetic algorithm (cMOGA) in [2], is now
tackled with a state-of-the-art multiobjective scatter search algorithm called
AbSS (Archive-based Scatter Search) [3]. Scatter search [4, 5, 6] has been suc-
cessfully applied to a wide variety of optimization problems [5], but it has not
been extended to deal with MOPs until recently [3, 7, 8, 9]. This metaheuristic
technique starts from an initial set of diverse solutions from which a subset,
known as the reference set (RefSet), is built by including both high quality
solutions and highly diverse solutions. Then, an iterative procedure systemati-
cally combines the solutions in RefSet somehow for generating new (hopefully
better) solutions that may be used for updating the reference set and even the
initial population. After that, an iterative procedure is used to locate an optimal
solution.

The contributions of this work are summarized in the following. Firstly, we
solve the broadcasting problem on MANETs using a multiobjective scatter
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search, and compare the results with those obtained with cMOGA. Secondly,
we are dealing in this work with a more realistic problem than the one faced
in [2] because we are using an interesting real world scenario (a shopping mall)
never tackled before.

The rest of the paper is structured as follows. In the next section, we detail
the multiobjective problem of broadcasting in MANETs. Section 3 includes the
description of the multiobjective scatter search algorithm. Metrics, parameter-
ization, and results are presented in Sect. 4. Finally, conclusions and lines of
future work are given in Sect. 5.

2 Problem Definition

The problem we study in this paper consists of, given an input MANET, deter-
mining the most adequate parameters for a broadcasting strategy in it. We first
describe in Sect. 2.1 the target networks we have used. Section 2.2 is devoted to
the presentation of DFCN, the broadcasting strategy to be tuned. Finally, the
MOP we define for this work is presented in Sect. 2.3.

2.1 Metropolitan Mobile Ad-Hoc Networks

Metropolitan mobile ad-hoc networks are MANETs with some particular prop-
erties. Firstly, they have one or more areas where the node density is higher than
the average. These points are called VHS, standing for Virtual Hot Spots, that
can be statistically detected. A VHS may be, for example, a shopping center, an
airport, or an office. Secondly, virtual hot spots do not remain active full time,
i.e., they can appear and disappear from the network (e.g., supermarkets are
open, roughly, from 9 a.m. to 9 p.m., and outside this period of time, the node
density within the corresponding area is close to zero).

To deal with such kind of networks, we have to rely on software simulators.
In this work we have used Madhoc 1, a metropolitan MANET simulator. It
aims at providing a tool for simulating different level services based on different
technologies on MANETs for different environments, ranging from open areas to
metropolitan ones. In order to make more realistic the simulations, Madhoc has
been endowed with an observation window such that only the devices located
inside this window are taken into account for measurements. Hence, we allow
the existence of a changing number of devices in the network as it happens in
real MANETs. This recent feature of Madhoc is displayed in Fig. 1, where both
an example of a metropolitan MANET (a) and the effects of introducing an
observation window on it (b) are shown. We highlight as well a typical action of
devices going in and leaving the window in the right part of the figure. In all the
tests in this work, this observation window is 70% of the total simulation area.
The main parameters of Madhoc used for defining the network characteristics
are the following:

1 http://www-lih.univ-lehavre.fr/∼hogie/madhoc/
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Fig. 1. (a) Metropolitan MANET, and (b) the effect of the observation window

size: defines the network simulation area in terms of square meters.
density : is the average density of nodes per square kilometer (i.e., the number

of devices per square kilometer).
environment : determines the mobility model for the stations and the radio

wave propagation model. That is, this feature defines how the stations are
moving as well as the area within which they are moving (open areas, build-
ings, streets, etc.), thus determining how radio waves are propagated.

2.2 Delayed Flooding with Cumulative Neighborhood

Broadcasting strategies in MANETs can be classified into four categories: sim-
ple flooding, probability-based methods, area-based methods, and neighbor-
knowledge-based methods (a survey can be found in [10]). This categorization is
based on the way that protocols select re-broadcasting stations.

Broadcasting protocols can also be classified depending on whether they deal
with mobility or not. The vast majority of present protocols do not consider any
active management of station mobility. The Delayed Flooding with Cumulative
Neighborhood (DFCN) protocol belongs to the neighbor-knowledge-based class,
and it features an active management of station mobility so it is able to make
new broadcasting decisions on new neighbor discovery. For being able to run the
DFCN protocol, the following assumptions must be met:

– Like many other neighbor-knowledge-based broadcasting protocols (FWSP,
SBA, etc.), DFCN requires the knowledge of 1-hop neighborhood, which can
be obtained by using “hello” packets at a lower network layer. The set of
neighbors of station s is named N(s).

– Each message m carries —embedded in its header— the set of IDs of the
1-hop neighbors of its most recent sender.

– Each station maintains local information about all the messages received.
Each instance of this local information consists of the following items:
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• the ID of the message received;
• the set of IDs of the stations that are known to have received the message;
• the decision of whether the message should be forwarded or not.

– DFCN requires the use of a random delay before possibly re-emitting a
broadcast message m. This delay, called Random Assessment Delay (RAD),
is intended to preventing collisions. More precisely, when a station s emits
a message m, all the stations in N(s) receive it at the same time. It is then
likely that all of them forward m simultaneously, and this simultaneity entails
network collisions. The RAD aims at randomly delaying the retransmission
of m. As every station in N(s) waits for the expiration of a different RAD
before forwarding m, the risk of collisions is hugely reduced.

DFCN is an event driven algorithm which can be divided into three main
parts: the two first ones deal with the station handling of outcoming events,
which are (1) new message reception and (2) detection of a new neighbor. The
third part (3) consists of the decision making of the station for emission as a
follow-up of one of the two previous events. The behavior resulting from message
reception is referred to as reactive behavior; when a new neighbor is discovered,
the behavior is referred as proactive behavior.

Let s1 and s2 be two stations in the neighborhood of one another. When
s1 sends a packet to s2, it attaches the set N(s1) to the packet. At reception,
s2 hence knows that each station in N(s1) has received the packet. The set of
stations which have potentially not yet received the packet is then N(s2) −
N(s1). If s2 re-emits the packet, the effective number of stations newly reached
is maximized by the heuristic function: h(s2, s1) = |N(s2) − N(s1)|.

In order to minimize the network overload caused by a possible packet re-
emission, this re-emission occurs only if the number of newly reached stations
is greater than a given threshold. This threshold is a function of the number of
stations in the neighborhood (the local network density) of the recipient station
s2. It is written threshold(|N(s)|). The decision made by s2 to re-emit the packet
received from s1 is defined by the boolean function:

Re-emit (s2, s1) =

��
�

true h (s2, s1) ≥ threshold (|N (s2)|)

false otherwise .
(1)

If the threshold is exceeded, the recipient station s2 becomes an emitter after a
random delay defined by RAD. The threshold function, which allows DFCN to
facilitate the message re-broadcasting when the connectivity is low, depends on
the size of the neighborhood n, as given by:

threshold(n) =

��
�

1 n ≤ safeDensity

minGain ∗ n otherwise .
(2)

where safeDensity is the maximum safe density below which DFCN always
rebroadcasts and minGain is the minimum gain for rebroadcasting, i.e., the
ratio between the number of neighbors which have not received the message and
the total number of neighbors.
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Each time a station s gets a new neighbor, the RAD for all messages is set
to zero and, therefore, messages are immediately candidate to emission. If N(s)
is greater than a given threshold, which we have called proD, this behavior is
disabled, so no action is undertaken on new neighbor discovery. proD is used for
avoiding massive packet rebroadcasting when a new station appears in highly
dense areas, that is, avoiding network congestions on the proactive behavior.

2.3 MOP Definition: DFCNT

From the description of the previous section, the following DFCN parameters
are to be tuned:

minGain is the minimum gain for rebroadcasting. This is the most impor-
tant parameter for tuning DFCN, since minimizing the bandwidth should
be highly dependent on the network density. It ranges from 0.0 to 1.0.

[lowerBoundRAD,upperBoundRAD] defines the RAD value (random de-
lay for rebroadcasting in milliseconds). Both parameters take values in the
interval [0.0, 10.0] milliseconds.

proD is the maximal density (proD ∈ [0, 100]) for which it is still needed using
proactive behavior (i.e., reacting on new neighbors) for complementing the
reactive behavior.

safeDensity defines a maximum safe density of the threshold which ranges
from 0 to 100 devices.

These parameters, i.e., a DFCN configuration, characterize the search space.
Here, the objectives to be optimized are: minimizing the makespan (in seconds),
maximizing the network coverage (percentage of devices having received the
broadcasting message), and minimizing the bandwidth used (in number of trans-
missions). Thus, we have defined a triple objective MOP, which has been called
DFCNT (standing for DFCN Tuning). For obtaining the values of these objective
functions we have used Madhoc because it implements the DFCN broadcasting
protocol. Then, our goal is to obtain the Pareto front of DFCNT (and the cor-
responding DFCN configurations) in terms of these three objectives.

3 Multiobjective Scatter Search

In this section, we first give a brief overview of the scatter search technique and,
second, we describe the modifications on this standard scatter search for dealing
with MOPs to explain our proposed AbSS.

3.1 Scatter Search

Most implementations of scatter search use the template proposed by Glover
in [4]. As depicted in Fig. 2, this metaheuristic consists of five methods: diver-
sification generation, improvement, reference set update, subset generation, and
solution combination.
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Fig. 2. Outline of the standard scatter search algorithm

The scatter search technique starts by creating an initial set of diverse indi-
viduals in the initialization phase. This phase consists of iteratively generating
new solutions by invoking the diversification generation method; each solution
is passed to the improvement method, which usually applies a local search pro-
cedure in an iterative manner, and the resulting individual is included into the
initial set P. After the initial phase, the scatter search main loop starts.

The main loop begins building the reference set from the initial set by invok-
ing the reference set update method. The reference set is a collection of both
high quality solutions and diverse solutions that are used for generating new
individuals. Solutions in this set are systematically grouped into subsets of two
or more individuals by means of the subset generation method. In the next step,
solutions in each subset are combined to create a new individual, according to
the solution combination method. Then, the improvement method is applied to
every new individual. The final step consists of deciding whether the resulting
solution is inserted into the reference set or not. This loop is executed until a
termination condition is met (for example, a given number of iterations has been
performed, or the subset generation method does not produce new subsets).

Optionally, there is a re-start process invoked when the subset generation
method does not produce new subsets of solutions. The idea is to obtain a new
initial set, which will now include the current individuals in the reference set.
The rest of individuals is generated by using the diversification generation and
improvement methods, as in the initial phase.

3.2 AbSS

AbSS (Archive-based Scatter Search) [3] is based on the aforementioned scatter
search template and its application to solve bounded continuous single objective
optimization problems [6]. It uses an external archive for storing nondominated
solutions and combines ideas of three state-of-the-art evolutionary algorithms
for solving MOPs. In concrete, the archive management follows the scheme of



262 F. Luna et al.

PAES [11], but using the crowding distance of NSGA-II [12] as a niching measure
instead of the PAES adaptive grid; additionally, the density estimation found in
SPEA2 [13] is adopted for selecting the solutions from the initial set that will
build the reference set. Once described the overall view of the technique, we now
detail the five methods to engineer AbSS:

– Diversification Generation Method: Its goal is to generate an initial
set P of diverse solutions. The method consists of dividing, for every new
solution, the range of each variable into a number of subranges of equal
size; then, each solution is created in two steps. Firstly, a subrange is ran-
domly chosen, with the probability of selecting a subrange being inversely
proportional to its frequency count (the number of times the subrange has
been previously selected); secondly, a value is uniformly randomly generated
within the selected range.

– Improvement Method: It is a local search method based on a mutation
operator (Polynomial mutation [14]) and a Pareto dominance test. It oper-
ates by iteratively mutating an individual with the aim of improving it. Since
we are dealing with MOPs, it may occur that the newly generated individual
and the current one are nondominated each other (Pareto dominance test).
In this case, the original individual is inserted into the external archive and
the mutated individual becomes the new current one.

– Reference Set Update Method: A similar issue rises when building the
RefSet in this method, i.e., how to pick up the best among a set of nondom-
inated solutions. RefSet is composed of two subsets, RefSet1 and RefSet2
so that the first one contains the best quality solutions in the initial set of
solutions, while the second subset should be filled with solutions promoting
diversity. While RefSet2 is constructed by choosing those individuals whose
minimum Euclidean distance to the reference set is the highest, RefSet1 is
built by using the concepts of strength raw fitness and a density estimation
of SPEA2 [13] when choosing the best individuals.

– Subset Generation Method: It generates all pairwise combinations of
solutions in RefSet1 and, separately, in RefSet2.

– Solution Combination Method: The simulated binary crossover
(SBX) [14] is used for combining solutions in AbSS.

4 Experiments

This section is devoted to presenting the experiments performed for this work.
We first describe the metrics used for measuring the performance of the result-
ing Pareto fronts. Next, the parameterization of AbSS and Madhoc is detailed.
Finally, we show the results for DFCNT and compare them against cMOGA [2].

4.1 Metrics

We have used three metrics for assessing the performance of both AbSS and
cMOGA: the number of Pareto optima that the optimizers are able to find, Set
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Coverage [15] which allows two algorithms to be compared in terms of Pareto
dominance, and Hypervolume [16] which measures both convergence and diver-
sity at the same time in the resulting Pareto fronts. They are defined as:

– Number of Pareto optima: Given that DFCNT is a difficult problem,
finding a high number of nondominated solutions could be itself a hard chal-
lenge for any multiobjective optimizer. In this sense, the number of Pareto
optima can be considered as a measure of the ability of the algorithm for
exploring difficult search spaces defined by hard MOPs like DFCNT.

– Set Coverage: The set coverage metric C(A, B) calculates the pro-
portion of solutions in B which are dominated by solutions of A:
C(A, B) = |{b∈B | ∃a∈A:a�b}|

|B| .
A metric value C(A, B) = 1 means that all members of B are dominated

by A, whereas C(A, B) = 0 means that no member of B is dominated by
A. This way, the larger the C(A, B), the better the Pareto front A with
respect to B. Since the dominance operator is not symmetric, C(A, B) is not
necessarily equal to 1 − C(B, A), and both C(A, B) and C(B, A) have to be
computed for understanding how many solutions of A are covered by B and
vice versa.

– Hypervolume: This metric calculates the volume (in the objective space)
covered by members of a nondominated set of solutions Q. Let vi be the
volume enclosed by solution i ∈ Q. Then, a union of all hypercubes is found
and its hypervolume (HV ) is calculated: HV = volume

(⋃|Q|
i=1 vi

)
.

Algorithms with larger values of HV are desirable. Since this metric is
not free from arbitrary scaling of objectives, we have evaluated the metric
by using normalized objective function values.

4.2 Parameterization

As we stated in Sect. 2.1, the behavior of Madhoc has been defined based on three
parameters mainly: the size of the simulation area, the density of mobile stations,
and the type of environment. For our experiments, we have used a simulation
area of 40,000 square meters, a density of 2,000 stations per square kilometer,
and, from the available environments of Madhoc, the mall environment has been
used. This environment is intended to model a commercial shopping center, in
which stores are usually located together one each other in corridors. People go
from one store to another by these corridors, occasionally stopping for looking at
some shopwindows. Both the mobility of devices and their signal propagation are
restricted due to the walls of the building. A metropolitan MANET with such a
configuration has been shown in Fig. 1. Due to the stochastic nature of Madhoc,
five simulations (i.e., five different network instances) per function evaluation
have been performed so that the fitness values of the functions are computed as
the average resulting values of these five different network instances.

The configuration used for cMOGA is the same as that used in [2]: a popula-
tion of 100 individuals arranged in a 10× 10 square toroidal grid, the neighbor-
hood is NEWS, binary tournament selection, simulated binary crossover (SBX)
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Table 1. Performance metrics for AbSS and cMOGA when solving DFCNT

AbSS cMOGA
Metric average std average std t-test

Number of Pareto Optima 98.7586 2.8119 98.1053 2.9000 –
Set Coverage 0.9865 0.0103 0.9793 0.0076 +
Hypervolume 0.8989 0.0695 0.8199 0.0854 +

with pc = 1.0, polynomial mutation (pm = 1.0/L, L = individual length), archive
size of 100 individuals, and the adaptive grid of PAES [11] has been used as
crowding method (see [2] for further the details). Regarding AbSS, we have uti-
lized the parameterization proposed in [3]: external archive maximum size of 100
nondominated solutions, the size of the initial set P is 20, the number of itera-
tions in the improvement method is 5 (polynomial mutation with a distribution
index equal to 10), SBX crossover (solution combination method) also with a
distribution index equal to 10, and the size of RefSet1 and RefSet2 as well is
10. Both cMOGA and AbSS stop when 25,000 function evaluations have been
computed. It is important to note that 25,000 evals × 5 simulations/eval means
that DFCN has been optimized over 125,000 different network instances.

4.3 Results

Let us now begin with the analysis of the results, which are presented in Table 1.
Since both AbSS and cMOGA are stochastic algorithms and we want to provide
the results with statistical confidence, 30 independent runs of each multiobjective
optimizer have been performed, as well as t-tests at 95% of significance level (last
column of Table 1). The t-test assesses whether the means of two samples are
statistically different from each other.

If we consider that the two algorithms are configured for obtaining 100 non-
dominated solutions at most (maximum archive size), values shown in Table 1
point out that most executions of the optimizers fill up the whole archive. Though
AbSS returns a slightly higher number of Pareto optima on average than cMOGA
does, the difference is negligible and no statistical confidence exists (“–” symbol
in t-test column), thus showing that both optimizers have a similar ability for
exploring the search space of DFCNT.

As regards to the Set Coverage metric, we want to clarify that results shown
in column “AbSS” correspond to C(AbSS, cMOGA) whereas those presented in
column “cMOGA” are C(cMOGA, AbSS). As it can be seen in Table 1, AbSS
gets larger values for this metric than cMOGA and there exists statistical con-
fidence for this claim (see “+” symbol in the last column). This fact points out
that AbSS can find solutions that dominate more solutions of cMOGA than vice
versa. However, Set Coverage values are similar in both the cases, what indi-
cates that each algorithm computes high quality solutions that dominate most
solutions of the other, but those high quality solutions are in turn nondominated.

Last row in Table 1 presents the results of the Hypervolume metric. They
clearly show now that AbSS overcomes cMOGA when considering at the same
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Fig. 3. Two DFCNT fronts from both AbSS and cMOGA

time both convergence and diversity in the resulting Pareto fronts (all this sup-
ported with statistical confidence). Since the Set Coverage metric showed that
both optimizers were similar in terms of convergence, we can conclude that AbSS
is reaching this Hypervolume value because of the diversity in the found Pareto
front. That is, the set of nondominated solutions computed by AbSS covers a
larger region of the objective space, what is an important feature for actual de-
signs of MANETs. We show an example Pareto front that capture the previous
claims in Fig. 3. Regarding coverage, the AbSS front (“+” symbols) is behind
(on the right) cMOGA solutions (“×” symbols). With respect to diversity, it
also can be seen that there are nondominated solutions from AbSS that reach
DFCN configurations where message coverage is around 40% of the stations
while cMOGA is not able to get solutions in this region of the objective space.
Therefore, using AbSS provides the network designer (decision maker) with a
wider set of DFCN parameter settings which ranges from configurations that get
a high coverage in a short makespan but using a high bandwidth to those cheap
solutions in terms of time and bandwidth being suitable if coverage is not a hard
constraint in the network.

5 Conclusions and Future Work

This paper investigated the usage of AbSS, a multiobjective scatter search
method, for optimally tuning the DFCN broadcasting strategy for MANETs.
The multiobjective problem to be solved is called DFCNT and has three goals:
minimizing makespan, maximizing network coverage, and minimizing the net-
work usage. DFCNT has been previously tackled with a cellular multiobjective
genetic algorithm called cMOGA.

Three metrics have been used for comparing the optimizers: Number of Pareto
optima, Set Coverage, and Hypervolume. Regarding the number of nondomi-
nated solutions found, AbSS got a slightly higher number of configurations for
DFCN on average than cMOGA, but differences are negligible. Regarding Set
Coverage and Hypervolume, resulting values from the metrics claim that solu-
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tions from the scatter search approach dominated those obtained with cMOGA
(convergence) as well as covered a larger region of the objective space (diver-
sity). From these results, a clear conclusion can be drawn: AbSS is a promising
approach for solving DFCNT with advantages over the existing one.

As a future work, we plan to perform more in depth analysis on using AbSS
for solving real world MOPs. On the one hand, we also intend to use different
scenarios where DFCN has to be tuned and, on the other hand, enlarge the
simulation area to a still larger metropolitan network for large cities.
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