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Preface

Evolutionary computation (EC) techniques are efficient nature-inspired planning
and optimization methods based on the principles of natural evolution and genet-
ics. Due to their efficiency and the simple underlying principles, these methods
can be used for a large number of problems in the context of problem solving,
optimization, and machine learning. A large and continuously increasing number
of researchers and practitioners make use of EC techniques in many application
domains. This book presents a careful selection of relevant EC applications com-
bined with thorough examinations of techniques for a successful application of
EC. The presented papers illustrate the current state of the art in the applica-
tion of EC and should help and inspire researchers and practitioners to develop
efficient EC methods for design and problem solving.

All the papers in this book were presented during EvoWorkshops 2006, which
consisted of a varying collection of workshops on application-oriented aspects of
EC. Since 1998, the format of the EvoWorkshops has proved to be very successful
and to represent significant advances in the application areas of EC. As a result,
over the last few years, EvoWorkshops has become one of the major events
to focus solely on applicational aspects of EC, constituting an important link
between EC research and the application of EC in a variety of domains.

EvoWorkshops is co-located with EuroGP, the main European event dedi-
cated to genetic programming, and EvoCOP, which has become the main Eu-
ropean conference on evolutionary computation in combinatorial optimization.
The proceedings for both of these events, EuroGP 2006 and EvoCOP 2006, are
also available in the LNCS series (number 3905 and 3906).

EvoWorkshops 2006, of which this volume contains the proceedings, was
held in Budapest, Hungary, on April 10-12, 2006, jointly with EuroGP 2006
and EvoCOP 2006. EvoWorkshops 2006 consisted of the following i ndividual
workshops:

— FEvoBIO, the Fourth European Workshop on Evolutionary Bioinformatics,

— EvoCOMNET, the Third European Workshop on Evolutionary Computation
in Communications, Networks, and Connected Systems,

— FEvoHOT, the Third European Workshop on Evolutionary Computation in
Hardware Optimization,

— FEvolASP, the Eighth European Workshop on Evolutionary Computation in
Image Analysis and Signal Processing,

— EvoINTERACTION, the First European Workshop on Interactive Evolution
and Humanized Computational Intelligence,

— EvoMUSART, the Fourth European Workshop on Evolutionary Music and
Art, and



VIII Preface

— FvoSTOC, the Third European Workshop on Evolutionary Algorithms in
Stochastic and Dynamic Environments.

EvoBIO is concerned with the exploitation of EC and related techniques
in bioinformatics and computational biology. For analyzing and understanding
biological data, EC plays an increasingly important role in the pharmaceutical
industry, in biotechnology, and in associated industries, as well as in scientific
discovery.

EvoCOMNET addresses the application of EC techniques to problems in
communications, networks, and connected systems. New communication tech-
nologies, the creation of interconnected communication and information net-
works such as the Internet, new types of interpersonal and interorganizational
communication, and the integration and interconnection of production centers
and industries are the driving forces on the road towards a connected, networked
society. EC techniques are important tools for facing these challenges.

EvoHOT highlights the latest developments in the field of EC applications to
hardware and design optimization. This includes various aspects like the design
of electrical and digital circuits or the solving of classical hardware optimization
problems.

EvoIASP, which was the first international event solely dedicated to the
applications of EC to image analysis and signal processing, addressed this year
topics ranging from fingerprinting to classification problems and artificial ants.

Evolnteraction deals with various aspects of interactive evolution, and more
broadly of computational intelligence in interaction with human intelligence,
including methodology, theoretical issues, and new applications.Interaction with
humans raises several problems, mainly linked to what has been called the user
bottleneck, i.e. human fatigue.

EvoMUSART focuses on the use of EC techniques for the development of cre-
ative systems. There is a growing interest in the application of these techniques
in fields such as art, music, architecture, and design. The goal of EvoMUSART
is to bring together researchers that use EC in this context, providing an oppor-
tunity to promote, present and discuss the latest work in the area, fostering its
further developments and collaboration among researchers.

EvoSTOC addresses the application of EC in stochastic environments. This
includes optimization problems with noisy and approximated fitness functions
that are changing over time, the treatment of noise, and the search for robust
solutions. These topics recently gained increasing attention in the EC community
and EvoSTOC was the first workshop that provided a platform to present and
discuss the latest research in this field.

EvoWorkshops 2006 continued the tradition of providing researchers in these
fields, as well as people from industry, students, and interested newcomers, with
an opportunity to present new results, discuss current developments and appli-
cations, or just become acquainted with the world of EC, besides fostering closer
future interaction between members of all scientific communities that may ben-
efit from EC techniques.
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This year, the EvoWorkshops had the highest number of submissions ever.
The number of submissions increased from 123 in 2004 to 143 in 2005 to 149
in 2006. EvoWorkshops 2006 accepted full papers with twelve pages and short
papers with a reduced number of five pages. The acceptance rate of 43.6% for
EvoWorkshops 2006 is an indicator for the high quality of the papers presented at
the workshops and included in these proceedings. The following table gives some
details on the number of submissions, the number of accepted papers, and the
acceptance ratios for EvoWorkshops 2005 and EvoWorkshops 2006 (accepted
short papers are in brackets). Of further importance for the statistics is the
acceptance rate of EvoWorkshops 2004 which was 44.7%.

2006 2005

year submissions accept ratio submissions accept ratio
EvoBIO 40 21 52.5% 32 13 40.6%
EvoCOMNET 16 5 31.2% 22 5 22.7%
EvoHOT 9 5 55.6% 11 7 63.6%
EvoIASP 35 12(7)  34.3% 37 17 45.9%
Evolnteraction 8 6 75% - - -

EvoMUSART 29 10(4) 34.5% 29 10(6) 34.5%
EvoSTOC 12 6(2) 50.0% 12 44)  33.3%
Total 149 65(13) 43.6% 143 56(10) 39.1%

We would like to thank all the members of the program committees for
their quick and thorough work. We thank the Artpool Art Research Center
of Budapest, and especially Gyorgy Galantai, for offering space and expertise
without which the wonderful evolutionary art and music exhibition associated
with the conference would not have been possible. Furthermore, we would like
to acknowledge the support from Napier University, Edinburgh.

Finally, we would like to say a special thanks to everybody who was involved
in the preparation of the event. Special thanks are due to Jennifer Willies, whose
work is a great and invaluable help. Without her support, running such a type
of conference with a large number of different organizers and different opinions
would be impossible. Further thanks go to the local organizer, Aniko Ekart, and
her group, who made it possible to run such a conference in such a nice place.

April 2006 Franz Rothlauf Jirgen Branke  Stefano Cagnoni
Ernesto Costa Carlos Cotta Rolf Drechsler
Evelyne Lutton Penousal Machado Jason H. Moore
Juan Romero  George D. Smith Giovanni Squillero
Hideyuki Takagi



Organization

EvoWorkshops 2006 was jointly organized with EuroGP 2006 and EvoCOP 2006.

Organizing Committee

EvoWorkshops chair: Franz Rothlauf, University of Mannheim, Germany

Local chair: Aniko Ekart, Hungarian Academy of Sciences,
Hungary

Publicity chair: Steven Gustafson, University of Nottingham, UK

EvoBIO co-chairs: Carlos Cotta, Universidad de Malaga, Spain

Jason H. Moore, Darthmouth Medical School, USA

EvoCOMNET co-chairs: Franz Rothlauf, University of Mannheim, Germany
George D. Smith, University of East Anglia, UK

EvoHOT co-chairs: Giovanni Squillero, Politecnico di Torino, Italy
Rolf Drechsler, University of Bremen, Germany

EvoIASP chair: Stefano Cagnoni, University of Parma, Italy

Evolnteraction co-chairs: Evelyne Lutton, INRIA, France
Hideyuki Takagi, Kyushu University, Japan

EvoMUSART co-chairs: Juan Romero, University of A Coruna, Spain,
Penousal Machado, University of Coimbra, Portugal

EvoSTOC co-chairs: Jiirgen Branke, University of Karlsruhe, Germany
Ernesto Costa, University of Coimbra, Portugal

Program Committees

EvoBIO Program Committee:

Jestis Aguilar, Pablo de Olavide University, Spain

Jacek Blazewicz, Poznan University of Technology, Poland
Vincenzo Cutello, University of Catania, Italy

Gary Fogel, Natural Selection Inc., USA

James Foster, University of Idaho, USA

Alex Freitas, University of Kent, UK

Radl Giréldez, Pablo de Olavide University, Spain
Rosalba Giugno, University of Catania, Italy

Jin-Kao Hao, University of Angers, France

Natalio Krasnogor, University of Nottingham, UK



XII Organization

Bill Langdon, University of Essex, UK

Robert MacCallum, Imperial College London, UK

Elena Marchiori, Vrije Universiteit Amsterdam, The Netherlands
Andrew Martin, University College London, UK

Pablo Moscato, University of Newcastle, Australia

Vic J. Rayward-Smith, University of East Anglia, UK

John Rowe, University of Birmingham, UK

Jem Rowland, University of Wales, UK

El-Ghagzali Talbi, INRIA Futurs, France

Antoine van Kampen, Academic Medical Center, The Netherlands
Gwen Volkert, Kent State University, UK

Ray Walshe, Dublin City University, Ireland

Eckart Zitzler, ETH Zurich, Switzerland

Igor Zwir, University of Granada, Spain

EvoCOMNET Program Committee:

Stuart Allen, Cardiff University, UK

Jin-Kao Hao, University of Angers, France

Bryant Julstrom, St. Cloud State University, USA
Paul Marrow, BT UK, UK

Geoff McKeown, UEA Norwich, UK

Giinther R. Raidl, Vienna University of Technology, Austria
Vic Rayward-Smith, UEA Norwich, UK

Franz Rothlauf, University of Mannheim, Germany
Giovanni Squillero, Politecnico di Torino, Italy
George D. Smith, University of East Anglia, UK
Andrew Tuson, City University, London, UK

EvoHOT Program Committee:

Varun Aggarwal, Massachusetts Institute of Technology, USA
Bernd Becker, Albert-Ludwigs-University Freiburg, Germany
Rolf Drechsler, University of Bremen, Germany

Michelanglo Grosso, Politecnico di Torino, Italy

Andrew Kinane, Dublin City University, Ireland

Gabriella Kékai, University of Erlangen, Germany

Una-May O’Reilly, Massachusetts Institute of Technology, USA
Mihai Oltean, Babeg-Bolyai University, Romania

Gregor Papa, Jozef Stefan Institute, Slovenia

Ernesto Sanchez, Politecnico di Torino, Italy

Lukas Sekanina, Brno University of Technology, Czech Republic
Massimiliano Schillaci, Politecnico di Torino, Italy

Giovanni Squillero, Politecnico di Torino, Italy

Luca Sterpone, Politecnico di Torino, Italy

Andreas Veneris, University of Toronto, Canada



Organization

EvoIASP Program Committee:

Lucia Ballerini, Orebro University, Sweden

Bir Bhanu, University of California, USA

Leonardo Bocchi, University of Florence, Italy

Alberto Broggi, University of Parma, Italy

Stefano Cagnoni, University of Parma, Italy

Ela Claridge, University of Birmingham, UK

Laura Dipietro, Massachusetts Institute of Technology, USA
Marc Ebner, University of Wiirzburg, Germany

Daniel Howard, Qinetiq, UK

Mario Koeppen, FhG IPK Berlin, Germany

Evelyne Lutton, INRIA, France

Gustavo Olague, CICESE, Mexico

Riccardo Poli, University of Essex, UK

Stephen Smith, University of York, UK

Giovanni Squillero, Politecnico di Torino, Italy

Kiyoshi Tanaka, Shinshu University, Japan

Ankur M. Teredesai, Rochester Institute of Technology, USA
Andy Tyrrell, University of York, UK

Leonardo Vanneschi, University of Milan Bicocca, Italy
Robert Vanyi, Siemens PSE, Hungary

Mengjie Zhang, Victoria University of Wellington, New Zealand

EvolInteraction Program Committee:

Thomas Baeck, Leiden University / Nutech Solutions, USA
Eric Bonabeau, Icosystem, USA

Praminda Caleb-Solly, University of the West of England, UK
Pierre Collet, Université du Littoral, Calais, France
Michael Herdy, Virtuelles Prototyping, Germany
Fang-Cheng Hsu, Aletheia University, R.O. China
Christian Jacob, University of Calgary, USA

Daisuke Katagami, Tokyu Institute of Technology, Japan
Penousal Machado, University of Coimbra, Spain

Yoichiro Maeda, University of Fukui, Japan

Hiroaki Nishino, Oita University, Japan

Tan C. Parmee, University of the West of England, UK
Yago Saez, Universidad CARLOS IIT de Madrid, Spain
Marc Schoenauer, INRIA, France

Daniel Thalmann, EPFL, Switzerland

Tatsuo Unemi, Souka University, Japan

Leuo-Hong Wang, Aletheia University, R.O. China

XIII



XIV Organization

EvoMUSART Program Committee:

Alan Dorin, Monash University, Australia
Alice C. Eldridge, University of Sussex, UK
Amilcar Cardoso, University of Coimbra, Portugal
Alejandro Pazos, University of A Coruna, Spain
Anargyros Sarafopoulos, Bournemouth University, UK
Andrew Horner, University of Science & Technology, Hong Kong
Antonino Santos, University of A Coruna, Spain
Bill Manaris, College of Charleston, USA
Carlos Grilo, School of Technology and Management of Leiria, Portugal
Colin Johnson, University of Kent, UK
Eduardo R. Miranda, University of Plymouth, UK
Evelyne Lutton, INRIA, France
Francisco Camara Pereira, University of Coimbra, Portugal
Gary Greenfield, University of Richmond, USA
Gerhard Widmer, Johannes Kepler University Linz, Austria
James McDermott, University of Limerick, Ireland
Janis Jefferies, Goldsmiths College, University of London, UK
Jeffrey Ventrella, Independent Artist, USA
John Collomosse, University of Bath, UK
Jon McCormack, Monash University, Australia
Jorge Tavares, University of Coimbra, Portugal
Ken Musgrave, Pandromeda, Inc., US
Lee Spector, Hampshire College, USA
Luigi Pagliarini, Academy of Fine Arts of Rome, Italy
& University of Southern Denmark, Denmark
Martin Hemberg, Imperial College London, UK
Matthew Lewis, Ohio State University, USA
Mauro Annunziato, Plancton Art Studio, Italy
Michael Young, University of London, UK
Niall J.L. Griffith, University of Limerick, Ireland
Paul Brown, Centre for Computational Neuroscience and Robotics,
University of Sussex, UK
Paulo Urbano, Universidade de Lisboa, Portugal
Peter Bentley, University College London, UK
Peter Todd, Max Planck Institute for Human Development, Germany
Rafael Ramirez, Pompeu Fabra University, Spain
Rodney Waschka II, North Carolina State University, USA
Scott Draves, San Francisco, USA
Stefano Cagnoni, University of Parma, Italy
Stephen Todd, IBM, UK
Tatsuo Unemi, Soka University, Japan
Tim Blackwell, University of London, UK
William Latham, Art Games Ltd., UK



Organization

EvoSTOC Program Committee:

Dirk Arnold, Dalhousie University, Canada

Hans-Georg Beyer, Vorarlberg University of Applied Sciences, Austria
Tim Blackwell, Goldsmiths College, UK

Yaochu Jin, Honda Research Institute, Germany

Stephan Meisel, Technical University Braunschweig, Germany
Daniel Merkle, University of Leipzig, Germany

Martin Middendorf, University of Leipzig, Germany

Ron Morrison, Mitretek Systems, USA

Ferrante Neri, University of Technology of Bari, Italy

Yew Soon Ong, Nanyang Technological University, Singapore
William Rand, Northwestern University, USA

Christian Schmidt, University of Karlsruhe, Germany

Sima Uyar, Istanbul Technical University, Turkey

Karsten Weicker, Leipzig University of Applied Sciences, Germany
Shengxiang Yang, University of Leicester, UK

Sponsoring Institutions

— EvoNet, the Network of Excellence on Evolutionary Computing
— Artpool Art Research Center, Budapest, Hungary

XV



Table of Contents

EvoBIO Contributions

Functional Classification of G-Protein Coupled Receptors, Based on
Their Specific Ligand Coupling Patterns
Burcu Bakir, Osman Ugur Sezermamn . .............c.cooiiiien. ..

Incorporating Biological Domain Knowledge into Cluster Validity
Assessment
Nadia Bolshakova, Francisco Azuaje, Pddraig Cunningham .........

A Novel Mathematical Model for the Optimization of DNA-Chip
Design and Its Implementation
Kornélia Danyi, Gabriella Kokai, Jozsef Csontos .................

A Hybrid GA/SVM Approach for Gene Selection and Classification of
Microarray Data
Edmundo Bonilla Huerta, Béatrice Duval, Jin-Kao Hao ...........

Multi-stage Evolutionary Algorithms for Efficient Identification of Gene
Regulatory Networks
Kee-Young Kim, Dong-Yeon Cho, Byoung-Tak Zhang .............

Human Papillomavirus Risk Type Classification from Protein Sequences
Using Support Vector Machines
Sun Kim, Byoung-Tak Zhang . ........ ... .. ...

Hierarchical Clustering, Languages and Cancer
Pritha Mahata, Wagner Costa, Carlos Cotta,
Pablo MoSCato . . .......o e

Robust SVM-Based Biomarker Selection with Noisy Mass Spectrometric
Proteomic Data

FElena Marchiori, Connie R. Jimenez, Mikkel West-Nielsen,

Niels H.H. Heegaard . ......... ... ...

On the Use of Variable Complementarity for Feature Selection in
Cancer Classification
Patrick Emmanuel Meyer, Gianluca Bontempi . ...................

13

23

34

45

o7

67

79

91



XVIII Table of Contents

Comparison of Neural Network Optimization Approaches for Studies of
Human Genetics

Alison A. Motsinger, Scott M. Dudek, Lance W. Hahn,

Marylyn D. Ritchie ...... ... . e

Obtaining Biclusters in Microarrays with Population-Based Heuristics
Pablo Palacios, David Pelta, Armando Blanco . ...................

Multiple Sequence Alignment Based on Set Covers
Alexandre H.L. Porto, Valmir C. Barbosa ........................

A Methodology for Determining Amino-Acid Substitution Matrices
from Set Covers
Alexandre H.L. Porto, Valmir C. Barbosa ........................

Multi-Objective Evolutionary Algorithm for Discovering Peptide
Binding Motifs
Menaka Rajapakse, Bertil Schmidt, Viadimir Brusic ...............

Mining Structural Databases: An Evolutionary Multi-Objetive
Conceptual Clustering Methodology

Rocio Romero-Zaliz, Cristina Rubio-Escudero, Oscar Cordon,

Oscar Harari, Coral del Val, Igor Zwir ....... ... .. .. .. .. .....

Optimal Selection of Microarray Analysis Methods Using a Conceptual
Clustering Algorithm

Cristina Rubio-Escudero, Rocio Romero-Zdliz, Oscar Corddn,

Oscar Harari, Coral del Val, Igor Zwir ......... .. ... oo,

Microarray Probe Design Using e-Multi-Objective Evolutionary
Algorithms with Thermodynamic Criteria
Soo-Yong Shin, In-Hee Lee, Byoung-Tak Zhang ...................

An Algorithm for the Automated Verification of DNA Supercontig
Assemblies
Nikola Stojanovic ........... ..

From HP Lattice Models to Real Proteins: Coordination Number
Prediction Using Learning Classifier Systems

Michael Stout, Jaume Bacardit, Jonathan D. Hirst,

Natalio Krasnogor, Jacek Blazewicz ......... ... .. .. ... ........

Conditional Random Fields for Predicting and Analyzing Histone
Occupancy, Acetylation and Methylation Areas in DNA Sequences
Dang Hung Tran, Tho Hoan Pham, Kenji Satou, Tu Bao Ho . ......



Table of Contents

DNA Fragment Assembly: An Ant Colony System Approach
Wannasak Wetcharaporn, Nachol Chaiyaratana,
Sissades TONGSIMG .. .. oo v e e

EvoCOMNET Contributions

BeeHiveGuard: A Step Towards Secure Nature Inspired Routing
Algorithms
Horst F. Wedde, Constantin Timm, Muddassar Farooq ............

Optimal Broadcasting in Metropolitan MANETSs Using Multiobjective
Scatter Search

Francisco Luna, Antonio J. Nebro, Bernabé Dorronsoro,

Enrique Alba, Pascal Bouvry, Luc Hogie .........................

Evolutionary Design of OAB and AAB Communication Schedules for
Interconnection Networks
Milos Ohlidal, Jiri Jaros, Josef Schwarz, Viclav Dvordk ...........

A Multiagent Algorithm for Graph Partitioning
Francesc Comellas, Emili Sapena ........ ... .. ... i,

Tracing Denial of Service Origin: Ant Colony Approach
Chia-Mei Chen, Bing Chiang Jeng, Chia Ru Yang,
Gu Hsin Lai ... ..o

EvoHOT Contributions

Optimisation of Constant Matrix Multiplication Operation Hardware
Using a Genetic Algorithm
Andrew Kinane, Valentin Muresan, Noel O’Connor ...............

Finding Compact BDDs Using Genetic Programming
Ulrich Kiihne, Nicole Drechsler .......... ... . ...

Efficient Evolutionary Approaches for the Data Ordering Problem with
Inversion

Doina Logofatu, Rolf Drechsler ....... ... .. .. i,

GRACE: Generative Robust Analog Circuit Exploration
Michael A. Terry, Jonathan Marcus, Matthew Farrell,
Varun Aggarwal, Una-May O’Reilly . ......... ... .. ... ... ......

XIX



XX Table of Contents

On the Practical Limits of the Evolutionary Digital Filter Design at
the Gate Level
Lukas Sekanina, Zdenek Vasicek ........ ... i 344

EvoIASP Contributions

Image Space Colonization Algorithm
Leonardo Bocchi, Lucia Ballering . ........ .. ... .. ... ... ..... 356

Enhancement of an Automatic Fingerprint Identification System Using
a Genetic Algorithm and Genetic Programming
Wannasak Wetcharaporn, Nachol Chaiyaratana,
Sanpachai Huvanandana . .......... .. .. i, 368

Evolutionary Singularity Filter Bank Optimization for Fingerprint
Image Enhancement
Ung-Keun Cho, Jin-Hyuk Hong, Sung-Bae Cho ................... 380

Evolutionary Generation of Prototypes for a Learning Vector
Quantization Classifier
Luigi Pietro Cordella, Claudio De Stefano, Francesco Fontanella,
Angelo Marcelli . . ... 391

Automatic Classification of Handsegmented Image Parts with
Differential Evolution
ITvanoe De Falco, Antonio Della Cioppa, Ernesto Tarantino. ........ 403

Mixed-Integer Evolution Strategies and Their Application to
Intravascular Ultrasound Image Analysis
Rui Li, Michael T.M. Emmerich, Ernst G.P. Bovenkamp,
Jeroen Eggermont, Thomas Bdck, Jouke Dijkstra,
Johan H.C. Retber .. .. ... e 415

The Honeybee Search Algorithm for Three-Dimensional Reconstruction
Gustavo Olague, Cesar Puente ..............ouiiiiennenann... 427

Improving the Segmentation Stage of a Pedestrian Tracking
Video-Based System by Means of Evolution Strategies
Oscar Pérez, Miguel Angel Patricio, Jesus Garcia,
José Manuel Molina . ........ ... i 438

An Adaptive Stochastic Collision Detection Between Deformable
Objects Using Particle Swarm Optimization
Tianzhu Wang, Wenhui Li, Yi Wang, Zihou Ge,
Dongfeng Han .. ... 450



Table of Contents

Genetic Programming for Automatic Stress Detection in Spoken English
Huayang Xie, Mengjie Zhang, Peter Andreae .....................

Localisation Fitness in GP for Object Detection
Mengjie Zhang, Malcolm Lett .. ... ... ... .. .. .. ...

Immune Multiobjective Optimization Algorithm for Unsupervised
Feature Selection
Xiangrong Zhang, Bin Lu, Shuiping Gou, Licheng Jiao ............

Classifying and Counting Vehicles in Traffic Control Applications
Francesco Archetti, Enza Messina, Daniele Toscani,
Leonardo Vanneschi ...... ... i

A Neural Evolutionary Classification Method for Brain-Wave Analysis
Antonia Azzini, Andrea G.B. Tettamanzi ........................

Differential Evolution Applied to a Multimodal Information Theoretic
Optimization Problem
Patricia Besson, Jean-Marc Vesin, Viad Popovici, Murat Kunt ... ..

Artificial Life Models in Lung CTs
Sorin Cristian Cheran, Gianfranco Gargano ......................

Learning High-Level Visual Concepts Using Attributed Primitives and
Genetic Programming
Krzysztof Krawiec . .. .....cou e

Evolutionary Denoising Based on an Estimation of Holder Exponents
with Oscillations
Pierrick Legrand, Evelyne Lutton, Gustavo Olague ................

Probability Evolutionary Algorithm Based Human Body Tracking
Shuhan Shen, Weirong Chen ......... ... ...

EvoINTERACTION Contributions

On Interactive Evolution Strategies
Ron Breukelaar, Michael T.M. Emmerich, Thomas Bédck ..........

An Experimental Comparative Study for Interactive Evolutionary
Computation Problems
Yago Sdez, Pedro Isasi, Javier Segovia, Asuncion Mochon..........

XXI

460

472

484

495

500

505

510

515

520

525

530



XXII  Table of Contents

Creating Chance by New Interactive Evolutionary Computation:
Bipartite Graph Based Interactive Genetic Algorithm
Chao-Fu Hong, Hsiao-Fang Yang, Leuo-hong Wang, Mu-Hua Lin,
Po-Wen Yang, Geng-Sian Lin . ...........c0 i,

Interactive Evolutionary Computation Framework and the On-Chance
Operator for Product Design
Leuo-hong Wang, Meng-yuan Sung, Chao-fu Hong ................

Practically Applying Interactive Genetic Algorithms to Customers’
Designs on a Customizable C2C Framework: Entrusting Select
Operations to IGA Users

Fang-Cheng Hsu, Ming-Hsiang Hung . ....... ... .. ... .. oo,

Evaluation of Sequential, Multi-objective, and Parallel Interactive
Genetic Algorithms for Multi-objective Floor Plan Optimisation
Alexandra Melike Brintrup, Hideyuki Takagi, Jeremy Ramsden .. ...

EvoMUSART Contributions

Supervised Genetic Search for Parameter Selection in Painterly
Rendering
John P. Collomosse . ...

Robot Paintings Evolved Using Simulated Robots
Gary Greenfield ..... ... . .. . .

Consensual Paintings
Paulo Urbano . ...... ..

Using Physiological Signals to Evolve Art
Tristan Basa, Christian Anthony Go, Kil-Sang Yoo,
Won-Hyung Lee .. ... ... . i

Science of Networks and Music: A New Approach on Musical Analysis
and Creation
Gianfranco Campolongo, Stefano Vena ......... .. ... .. ... .....

Continuous-Time Recurrent Neural Networks for Generative and
Interactive Musical Performance
Oliver Bown, Sebastian Lexer ........... .. ... iinnnn..

Synthesising Timbres and Timbre-Changes from Adjectives/Adverbs
Alex Gounaropoulos, Colin G. Johnson ..........................



Table of Contents

Modelling Expressive Performance: A Regression Tree Approach Based
on Strongly Typed Genetic Programming
Amaury Hazan, Rafael Ramirez, Esteban Maestre, Alfonso Perez,
ANtonio Pertusa . .. ... e

Evolutionary Musique Concréte
Cristyn Magnus ... ... ..o

A Connectionist Architecture for the Evolution of Rhythms
Joao Magalhaes Martins, Eduardo Reck Miranda .................

MovieGene: Evolutionary Video Production Based on Genetic
Algorithms and Cinematic Properties

Nuno A.C. Henriques, Nuno Correia, Jonatas Manzolli,

Luis Correia, Teresa Chambel ............ . .. .. . iiiiiininn..

Audible Convergence for Optimal Base Melody Extension with
Statistical Genre-Specific Interval Distance Evaluation
Ronald Hochreiter ........ ... .. e

A Two-Stage Autonomous Evolutionary Music Composer
Yaser Khalifa, Robert Foster ......... ... .. .. i,

Layered Genetical Algorithms Evolving into Musical Accompaniment
Generation
Ribamar Santarosa, Artemis Moroni, Jonatas Manzolli ............

EvoSTOC Contributions

A Preliminary Study on Handling Uncertainty in Indicator-Based
Multiobjective Optimization
Matthieu Basseur, Eckart Zitzler......... ... ... . ...

Fluctuating Crosstalk as a Source of Deterministic Noise and Its Effects
on GA Scalability

Kumara Sastry, Paul Winward, David E. Goldberg,

Claudio Lima . ...... .. e

Integrating Techniques from Statistical Ranking into Evolutionary
Algorithms
Christian Schmidt, Jirgen Branke, Stephen E. Chick ..............

The Role of Representations in Dynamic Knapsack Problems
Jiirgen Branke, Merve Orbayr, Sima Uyar........ ... ... ... ......

XXIIT



XXIV Table of Contents

The Effect of Building Block Construction on the Behavior of the GA
in Dynamic Environments: A Case Study Using the Shaky Ladder
Hyperplane-Defined Functions

William Rand, Rick Riolo....... ... .. . . .. . . . . . 776

Associative Memory Scheme for Genetic Algorithms in Dynamic
Environments
Shengriang Yang ... ... .. 788

Bayesian Optimization Algorithms for Dynamic Problems
Milos Kobliha, Josef Schwarz, Jiri Ocendsek ..................... 800

Prudent-Daring vs Tolerant Survivor Selection Schemes in Control
Design of Electric Drives
Ferrante Neri, Giuseppe L. Cascella, Nadia Salvatore,
Anna V. Kononova, Giuseppe Acciant ..............c.ccoueioo... 805

Author Index . ... . 811



Functional Classification of G-Protein Coupled
Receptors, Based on Their Specific Ligand
Coupling Patterns

Burcu Bakir! and Osman Ugur Sezerman?
L School of Biology, Georgia Institute of Technology, Atlanta, USA
2 Sabanci University, Istanbul, Turkey

Abstract. Functional identification of G-Protein Coupled Receptors
(GPCRs) is one of the current focus areas of pharmaceutical research.
Although thousands of GPCR sequences are known, many of them re-
main as orphan sequences (the activating ligand is unknown). Therefore,
classification methods for automated characterization of orphan GPCRs
are imperative. In this study, for predicting Level 2 subfamilies of Amine
GPCRs, a novel method for obtaining fixed-length feature vectors, based
on the existence of activating ligand specific patterns, has been developed
and utilized for a Support Vector Machine (SVM)-based classification.
Exploiting the fact that there is a non-promiscuous relationship between
the specific binding of GPCRs into their ligands and their functional
classification, our method classifies Level 2 subfamilies of Amine GPCRs
with a high predictive accuracy of 97.02% in a ten-fold cross validation
test. The presented machine learning approach, bridges the gulf between
the excess amount of GPCR sequence data and their poor functional
characterization.

1 Introduction

G-Protein Coupled Receptors (GPCRs) are vital protein bundles with their key
role in cellular signaling and regulation of various basic physiological processes.
With their versatile functions in a wide range of physiological cellular condi-
tions, they constitute one of the vastest families of eukaryotic transmembrane
proteins [29]. In addition to the biological importance of their functional roles,
their interaction with more than 50% of prescription drugs have lead GPCRs
to be an excellent potential therapeutic target class for drug design and cur-
rent pharmaceutical research. Over the last 20 years, several hundred new drugs
have been registered which are directed towards modulating more than 20 dif-
ferent GPCRs, and approximately 40% of the top 200 synthetic drugs act on
GPCRs [6]. Therefore, many pharmaceutical companies are involved in carrying
out research aimed towards understanding the structure and function of these
GPCR proteins. Even though thousands of GPCR sequences are known as a
result of ongoing genomics projects [10], the crystal structure has been solved
only for one GPCR sequence using electron diffraction at medium resolution (2.8

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 1-12, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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A) to date [15] and for many of the GPCRs the activating ligand is unknown,
which are called orphan GPCRs [25]. Hence, based on sequence information,
a functional classification method of those orphan GPCRs and new upcoming
GPCR sequences is of great practical use in facilitating the identification and
characterization of novel GPCRs.

Albeit laboratory experiments are the most reliable methods, they are not
cost and labour effective. To automate the process, computational methods such
as decision trees, discriminant analysis, neural networks and support vector ma-
chines (SVMs), have been extensively used in the fields of classification of biolog-
ical data [21]. Among these methods, SVMs give best prediction performance,
when applied to many real-life classification problems, including biological issues
[30]. One of the most critical issues in classification is the minimization of the
probability of error on test data using the trained classifier, which is also known
as structural risk minimization. It has been demonstrated that SVMs are able
to minimize the structural risk through finding a unique hyper-plane with max-
imum margin to separate data from two classes [27]. Therefore, compared with
the other classification methods, SVM classifiers supply the best generalization
ability on unseen data [30].

In the current literature, to classify GPCRs in different levels of families,
there exist different attempts, such as using primary database search tools, e.g.,
BLAST [1], FASTA [20]. However, these methods require the query protein to
be significantly similar to the database sequences in order to work properly.
In addition to these database search tools, the same problem is addressed by
using secondary database methods (profiles and patterns for classification), e.g.,
Attwood et al. have worked in particular on GPCRs in the PRINTS database
[2] (whose data appeared in INTERPRO database [17]). Hidden Markov Models
[24], bagging classification trees [32] and SVMs [13], [31] are other methods that
have been used to classify GPCRs in different levels of families. Karchin et al.
conducted the most comprehensive controlled experiments for sequence based
prediction of GPCRs in [13] and showed that SVMs gave the highest accuracy
in recognizing GPCR families. Whereas, in SVMs, an initial step to transform
each protein sequence into a fixed-length vector is required and the predictive
accuracy of SVMs significantly depends on this particular fixed-length vector. In
[13], it is also pointed out that the SVM performance could be further increased
by using feature vectors that encode only the most relevant features, since SVMs
do not identify the features most responsible for class discrimination. Therefore,
for an accurate SVM classification, feature vectors should reflect the unique
biological information contained in sequences, which is specific to the type of
classification problem.

In this paper, we address Level 2 subfamily classification of Amine GPCRs
problem by applying Support Vector Machine (SVM) technique, using a novel
fixed-length feature vector, based on the existence of activating ligand specific
patterns. We obtain discriminative feature vectors by utilizing biological knowl-
edge of the Level 2 subfamilies’ transmembrane topology and identifying specific
patterns for each Level 2 subfamily. Since these specific patterns carry ligand
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binding information, the features obtained from these patterns are more relevant
features than amino acid and dipeptide composition of GPCR sequences, which
in turn improves the accuracy of GPCR Level 2 subfamily classification. Apply-
ing our method on Amine Level 1 subfamily of GPCRs [10], we have shown that
the classification accuracy is increased compared to the previous studies at the
same level of classification.

2 Background

G-Protein Coupled Receptor Database (GPCRDB) information system orga-
nizes the GPCRs into a hierarchy of classes, Level 1 subfamilies (sub-families),
Level 2 subfamilies (sub-sub-families), and types, based on the pharmacological
classification of receptors [10]. A simplified view of GPCR family tree is pre-
sented in Figure 1. Since the binding of GPCRs into their specified ligands is
important for drug design purposes, GPCRDB defines the classifications chemi-
cally (according to which ligands the receptor binds, based on the experimental
data), rather than by sequence homology [13]. For class discrimination, gen-
eralization of the features shared by a diverse group of examples is required.
Whereas, for subfamily discrimination, only the examples, that differ slightly,
should be grouped together. Therefore, for GPCR, subfamily classification prob-
lem, which is also related to GPCR function prediction, the ligand type that
GPCR binds is more crucial than it is for GPCR class discrimination.

Classes — (:11355;’;x g ‘ \ e

. Class B (lagsc  ClassD  Class E

N -
e e,

“,

- Amine - Peptide H;,,.mmc Rhodopsin +——Level 1 Subfamilies
TR,

L / W protein (sub-families)
T / T
-~ ."I '\.\ oLl \"‘-».\_
Muscarinic ! - rotonine— Level 2 Subfamilies
i . Adrenoceptors Dopamine ~ Serotonin evel = ”
Acetylcholine (sub-sub-families)

Fig. 1. Portion of GPCR family tree showing the five main classes of GPCRs and some
subfamily members, based on the GPCRDB information system [10]

3 Materials and Methods

3.1 Benchmark Data

For GPCR function prediction from sequence information, subfamily recogni-
tion is more important than class recognition [13]. As mentioned before, sub-
family recognition requires the knowledge of ligand coupling information of the
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receptor proteins. It is claimed that according to the binding of GPCRs with
different ligand types, GPCRs are classified into at least six different families
[9]. Among the sub-families in GPCRDB, Amine Level 1 subfamily of class A
GPCRs is classified into seven sub-sub-families: (i) Muscarinic Acetylcholine, (ii)
Adrenoceptors, (iii) Dopamine, (iv) Histamine, (v) Serotonin, (vi) Octopamine,
(vii) Trace amine Level 2 subfamilies, according to the March 2005 release (9.0)
of GPCRDB (Horn et al., 1998). Therefore, the correlation between sub-family
classification and the specific binding of GPCRs to their ligands can be computa-
tionally explored for Level 2 subfamily classification of Amine Level 1 subfamily.
Moreover, compared to the other classes, since Class A dominates by accounting
for more than 80% of sequences as March 2005 release (9.0) of GPCRDB [10],
it is the best studied class among different GPCRs. Thus, we will be able to
compare our work with the previous studies. We use the same dataset, as that
of Elrod and Chau, for Amine Level 1 subfamily GPCR sequences in GPCRDB,
belonging to one of Acetylcholine, Adrenoceptor, Dopamine, Serotonin sub-sub-
families, which have enough entries inside as a statistically significant training
set, as shown in Table 1. The GPCR sequences in this dataset were extracted
through the website http://www.expasy.org (SWISS-PROT database, Release
46.4, 2005) and fixed-length feature vectors are created for each sequence as it
is explained in the next section.

Table 1. Summary of 168 Class A, Amine GPCRs, classified into four Level 2 Sub-
families as shown in [9]

Level 2 Subfamilies Number of Sequences
Acetylcholine 31
Adrenoceptor 44

Dopamine 39
Serotonin 54
TOTAL 168

3.2 Fixed-Length Feature Vector Creation

Since protein sequences are of variable length, for classification, these sequences
should be converted into fixed-length feature vectors. In order to obtain those
fixed-length feature vectors, which also carry ligand specificity information, we
followed a three step procedure as outlined in Figure 2. The first step, i.e., Topol-
ogy Prediction step, aims to extract extracellular loop regions of the GPCR se-
quences since ligands couple to the outer loops of the GPCRs. So as to force
fixed-length feature vectors to encode only biologically relevant features, ac-
tivating ligand specificity information is taken into account. For this purpose,
conserved patterns, which are specific to each sub-sub-family of GPCR sequences
are found in extracellular GPCR sequences in step two, i.e., Pattern Discovery
step. In third step, i.e., Pattern Matching step, the existence of those activating
ligand specific (specific for a sub-sub-family) patterns is checked. So that we in-
tegrate the coupling specificity of GPCRs into their ligands knowledge into our
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Fig. 2. Flow chart for fixed-length feature vector creation

novel fixed-length feature vectors. Details of the three steps (Topology Predic-
tion, Pattern Discovery, and Pattern Matching) for fixed-length feature vector
creation are described below.

Topology Prediction. Since transmembrane (TM) topology pattern is shown
to be well conserved among GPCRs that have the same function [19], for the
168 GPCR sequences in Elrod and Chau’s dataset, TM topology is checked. For
topology prediction, Hidden Markov Model for Topology Prediction (HMMTOP)
server, which accurately predicts the topology of helical TM proteins, is used [26].
In order to segment amino acid sequences into membrane, inside, outside parts,
HMMTOP method utilizes HMMs in a way that the product of the relative
frequencies of the amino acids of these segments along the amino acid sequence
is maximized. This shows that the maximum of the likelihood function on the
space of all possible topologies of a given amino acid sequence, correlates with
the experimentally established topology [25].

Following topology prediction, extracellular loop sequences are extracted for
each 168 GPCR sequences, based on the fact that ligands couple to extracellular
loops of GPCRs and we are interested in the relation between ligand specificity
of GPCRs and GPCR sub-sub-family classification.

Pattern Discovery. In the second step of the fixed-length feature vector cre-
ation, for each sub-sub-family of GPCR sequences, flexible patterns that are
conserved in the extracellular loop of that particular sub-sub-family GPCR se-
quences are found by using Pratt 2.1., flexible pattern discovery program [4].
Due to the flexibility of the Pratt patterns, they include ambiguous compo-
nents, fixed and flexible wildcards, in addition to their identity components [12].
Hence, Pratt patterns are described using PROSITE notation [4].

Pratt finds patterns matching a subset of the input sequences. This subset is
defined by ”Min Percentage Seqs to Match (MPSM)” parameter, which defines
the minimum percentage of the input sequences that should match a pattern.
This threshold is set to 50% and 75% in this study in order not to allow for
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some very specific patterns that are not general to all GPCR sequences in any
sub-sub-family. This can also be thought as a precaution to prevent overfitting
problem. For each class of GPCRs, 50 conserved patterns are identified by two
different MPSM parameters (50 and 75).

Pattern Matching. The final step for creating fixed-length feature vectors is
to check for the existence of every activating ligand specific pattern in each outer
GPCR sequence. In order to check the existence of the flexible Pratt patterns, all
patterns in PROSITE notation are converted into regular expression form and
then they are searched within 168 extracellular GPCR sequences. Consequently,
by taking activating ligand specific pattern existence information into account,
each GPCR sequence is represented with a vector in the 200 dimensional space
(50 patterns multiplied by 4 output classes).

Gk = (Gk,1,Gr2, - .., Gr200) (1)

where G,1 , Gk,2 G200 are the 200 components of activating ligand specific
pattern inclusion for the k** extracellular GPCR sequence Gy. Note that if the
k' extracellular GPCR sequence has the pattern j, then G ;=1 and if the k"
extracellular GPCR sequence does not have the pattern j, then G} ;=0, where
i=1, 2, ... 200.

Writing down each fixed-length feature vector, G, in a new row, we obtain
a Gy,; matrix, where k=1, 2, ... 168; j=1, 2, ... 200. After insertion of the sub-
sub-family labels for each of the GPCR sequences into the zeroth dimension of
each Gy, vector (G 0), the matrix corresponds to a training set. So that k=0, 1,
2, ... 168, where G} is 1, 2, 3 or 4, since four sub-sub-families are defined for
this classification problem. Note that these 4 class output labelling (1, 2, 3, 4)
does not imply any relationship between classes.

We have also created a second fixed-length feature vector, by using the best
10 patterns among the 50 patterns based on significance scores assigned by the
Pratt program from each sub-sub-family. Using a similar representation, Gy, is
denoted in 40 dimensional space (10 patterns multiplied by 4 output classes),
where j=1, 2, ... 40. A G} ; matrix is formed (similar to above), where k=1, 2,
... 168 and j=1, 2, ... 40 corresponding another training set.

As a result, four training sets (two training sets with 50 MPSM parameter,
for j up to 40 or 200; another two with 75 MPSM parameter, for j up to 40
or 200) are created to produce a classifier using Support Vector Machines, as
mentioned in detail below.

3.3 Classification Using Support Vector Machine (SVM)

The efficiency of SVMs for classification problems made them applicable in many
real-world applications, including biological issues such as: protein classification
and gene expression data analysis. SVM-based method for classification of sub-
families of GPCRs, is first developed by Karchin et al. [13]. When applied to
the problem of discriminating both Level 1 and Level 2 subfamilies of GPCRs,
SVMs are shown to make significantly fewer errors of both false positive and
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false negative than WU-BLAST and SAM-T2K profile HMMs [13]. For these
reasons, we selected to use SVMs for GPCRs’ Level 2 subfamily classification
problem.

4 Experiments

Since we are interested in the classification of Amine Level 1 sub-family into
four Level 2 subfamilies, we are facing with a multi-class classification problem.
We use LIBSVM software [7], which deals with multi-class classification problem
implementing ”one-against-one” approach. As suggested in [11], to be able to get
satisfactory results, some preprocesses are performed before building a classifier
using LIBSVM. Preprocesses, that are performed in this study, can be summa-
rized in two headlines: i) Choice of Kernel function, ii) Grid search combined
with cross-validation for parameter tuning.

4.1 Choice of Kernel Function

Among linear, polynomial, radial basis function (RBF) and sigmoid Kernel func-
tions, RBF kernel is a reasonable first choice as stated in [11], [14], [16]. There-
fore, grid search and parameter tuning is done on RBF kernels. However, results
obtained by using those four kernels are compared with parameter tuned RBF
kernel at the end.

4.2 Cross-Validation and Grid Search

In order to get better accuracy using RBF kernel for SVM classification, penalty
parameter of error term, C, and 7 parameter, which is specific to RBF ker-
nel, should be tuned. Grid search procedure identifies the best (C, ) pair, so
that using these parameters the classifier (model) can accurately predict unseen
test data [11]. Since the accuracy on test data also depends on the examples
in the test data, cross validation is a better choice to tune (C, 7) parameters
and select the best model that neither overfits nor underrepresents the training
data. Compared to other advanced methods for parameter tuning, grid-search is
straightforward, easy to implement and its computational time is not much more
than advanced methods. Additionally, since each (C, ) is independent, it can be
easily parallelized. During grid search, it is recommended to try exponentially
growing sequences of (C, ) to identify good parameters [11].

To be able to solve our multi-class SVM classification problem, for each of
our four training sets, grid search is performed for C' = 275,274 ... 219 and
~v=2%2%..,2710 Figure 3 shows the grid search with 10-fold cross validation
for the training data with 200 attributes and 50 MPSM parameter. As it is
seen in Figure 3, highest cross-validation accuracy is reached when y=2"% and
C=(2%, 2'9). After two preprocessing steps, as mentioned above, we build our
classifiers using RBF kernel with best (C, ) parameter pair, which is specific to
the training set. Since we do not have a test set, and the number of examples in
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the training set is not big enough to separate into two, 10-fold cross-validation
is done for each of the four training sets. Combining our biologically relevant
fixed-length feature vector definition with a robust kernel, RBF, and parameter
tuning with a grid search technique shows promising results, which is analyzed
more in detail in the next section.
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Fig. 3. Coarse grid search on C and with 10-fold cross validation for the training data
with 200 attributes and 50 MPSM parameter. Highest cross-validation accuracy is
obtained when y=2"* and C=(2°, 2'9).

5 Results

As mentioned before, in addition to the SVM classification with parameter tuned
RBF kernel, other three standard kernel functions are tested as well (with their
default parameters) on our four training data using 10-fold cross validation.
Results for each experiment are summarized in Table 2.

Classification with RBF kernel with parameter tuning clearly outperforms
other kernel functions in all cases. Since linear kernel is the specialized form of
RBF kernel, results obtained with these two kernels without parameter tuning
are quite close. Although, the classification accuracy with 200 and 40 attributes
are so close, accuracy with 200 attributes are consistently better than with 40
attributes. The probable reason behind this observation is that 40 attributes are
not enough to represent the examples (more attributes are needed to discrimi-
nate between data points), or those chosen 40 attributes do not correctly reflect
the data points. In contrast to the strict domination of 200 attributes over 40
attributes, there is no such a relationship between training data with 50 MPSM
parameter and 75 MPSM parameter. While sometimes one performs better, it
is vice versa (e.g. results of RBF Kernel and RBF* Kernel in Table 2). Lower
accuracy for the training data with 75 MPSM parameter is caused by overfit-
ting, which decreases accuracy at the end whereas with 50 MPSM parameter,
patterns that are conserved in at least 50% of the data can not represent overall
data.
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In this paper, for the classification of Level 2 Subfamily of Amine GPCR’s,
97.02% prediction accuracy is achieved in a ten-fold cross validation. Compared
to the existing GPCR functional classification methods, for the classification of
Level 2 Subfamily of Amine GPCR’s, our result is superior to the SVM method
with a simpler fixed-length feature vector definition and no parameter tuning,
where prediction accuracy is 94.01% [31] and covariant discriminant algorithm,
where prediction accuracy is 83.23% [9]. In another study, Ying et al. performs
classification for both sub-family and sub-sub-family levels of GPCRs using bag-
ging classification tree [32] . For sub-sub-family level, using the same dataset [9],
our prediction accuracy in a ten-fold cross validation (97.02%) is higher than
their prediction accuracy obtained in ten-fold cross validation (82.4%). More
extensive comparison with previous studies is presented in the following section.

Table 2. Results for four different training sets, as explained in the text, using four
different kernel functions and RBF kernel with parameter tuning (RBF*), with 10-fold
cross-validation

# of MPSM Linear Polynomial  Sigmoid RBF RBF*
Attributes Parameter  Kernel Kernel Kernel Kernel Kernel
200 75 94.0476 48.8095 91.6667 91.6667 95.2381
200 50 96.4286 32.1429 86.3095 90.4762 97.0238
40 75 89.2857 47.0238 84.5238 86.3095 92.8571
40 50 92.8571 32.1479 84.5238 85.7143 93.4524

6 Discussion

The difference of this study from previous studies can be emphasized in two
main points:

i) Fized-length feature vector creation: We developed a novel method for ob-
taining fixed-length feature vectors of SVM. The naive idea that using direct pro-
tein sequence information as feature vector can not be used in SVM classification
since the sequence length is not fixed. Many studies [9], [32], [31] attempted this
problem by defining a fixed-length feature vector based on the protein’s amino
acid composition. Following the representation in [8], each protein is represented
by a vector, X, in 20 dimensional space, where each dimension corresponds
to how many times that particular amino acid, which represents that specific
dimension, occurred in those particular protein.

Xk = (Xk71,Xk72,-.-,Xk720) (2)

where X1 , Xg2 ... X0 are 20 components of amino acid composition for
the k" protein X}. In addition to the amino acid composition, in some of the
studies, fixed-length vector is obtained by dipeptide composition [3]|, which takes
local order of amino acids into account, in addition to the information about the
fraction of amino acids. The dipeptide composition of each protein is shown
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using fractions of all possible dipeptides, where fraction of dipeptide i is the
ratio of the number of dipeptide i in the protein divided by the total number
of all possible dipeptides, namely 400. Alternatively, each protein sequence can
also be transformed into a fixed-length feature vector, in the form of Fischer
score vector [13].

Since in this study, the effect of activating ligand specificity in Level 2 Subfam-
ily classification of Amine GPCRs is emphasized, a new feature vector is built,
based on this observation. In this regard, we have used the existence information
of activating ligand specific patterns, as fixed-length feature vectors, in order to
come up with a biologically meaningful and distinctive measure. Therefore, the
superiority of our feature vector stems from the biological importance of ligand
coupling specificity for Level 2 Subfamily classification of Amine GPCRs. By
combining those feature vectors with a robust kernel function, and parameter
tuning strategy, we come up with an accurate classification method.

i1) Classification level: Apart from the definition of the feature vector for SVM,
the exact classification level that we concentrate on, has been attempted in a few
previous studies. Ying and Yanda and Ying et al. attempted the classification
problem in the same Level 2 Subfamily of Amine GPCRs by using SVMs with
amino acid composition as feature vector [31] and bagging classification tree
[32], respectively. Our difference with their work is based on our novel feature
vector definition as it is mentioned above, which in turn significantly affects the
prediction accuracy (from 82.4% to 97.02% and 94.01% to 97.02% respectively).
Apart from these particular papers, most of the previous studies concentrate
on Superfamily level or Level 1 Subfamily. Although Karchin et al. have done
experiments by using hierarchical multi-class SVMs, on Level 2 Subfamily [13] ,
they combine Class A Level 2 Subfamilies with Class C Level 2 Subfamilies.

Performance results in this study are promising and outperform other com-
petitive techniques that classify GPCRs at the same level, with a very high cross
validation accuracy of 97.02%. This result is mainly due to the definition of our
feature vectors, since compared studies do not take into account such conserved
pattern information for proper functioning of the GPCR. As the importance
of specific ligand binding into GPCRs and the hidden information behind this
binding is pointed out previously [13], we realized the use of ligand specific
coupling patterns for creation of fixed-length feature vectors, which answers the
need for biologically relevant features. Using these vectors for SVM classification
and doing grid search for model selection, the accuracy have further improved
even with very few sequences. With such accurate and automated GPCR func-
tional classification methods, we are hoping to accelerate the pace of identifying
proper GPCRs to facilitate drug discovery especially for schizophrenic and psy-
chiatric diseases. Therefore, one of our future goals is to automate the presented
procedure and come up with an integrated environment to perform GPCR clas-
sification conveniently with many flexible options to the biological users, who
are not experts on the topic.
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Abstract. This paper presents an approach for assessing cluster validity
based on similarity knowledge extracted from the Gene Ontology (GO)
and databases annotated to the GO. A knowledge-driven cluster valid-
ity assessment system for microarray data was implemented. Different
methods were applied to measure similarity between yeast genes prod-
ucts based on the GO. This research proposes two methods for calculat-
ing cluster validity indices using GO-driven similarity. The first approach
processes overall similarity values, which are calculated by taking into
account the combined annotations originating from the three GO hierar-
chies. The second approach is based on the calculation of GO hierarchy-
independent similarity values, which originate from each of these hierar-
chies. A traditional node-counting method and an information content
technique have been implemented to measure knowledge-based similar-
ity between genes products (biological distances). The results contribute
to the evaluation of clustering outcomes and the identification of opti-
mal cluster partitions, which may represent an effective tool to support
biomedical knowledge discovery in gene expression data analysis.

1 Introduction

Over the past few years DNA microarrays have become a key tool in functional
genomics. They allow monitoring the expression of thousands of genes in parallel
over many experimental conditions (e.g. tissue types, growth environments). This
technology enables researchers to collect significant amounts of data, which need
to be analysed to discover functional relationships between genes or samples. The
results from a single experiment are generally presented in the form of a data
matrix in which rows represent genes and columns represent conditions. Each
entry in the data matrix is a measure of the expression level of a particular gene
under a specific condition.

A central step in the analysis of DNA microarray data is the identification of
groups of genes and/or conditions that exhibit similar expression patterns. Clus-
tering is a fundamental approach to classifying expression patterns for biological
and biomedical applications. The main assumption is that genes that are con-
tained in a particular functional pathway should be co-regulated and therefore
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should exhibit similar patterns of expression [1]. A great variety of clustering al-
gorithms have been developed for gene expression data. The next data analysis
step is to integrate these numerical analyses of co-expressed genes with biolog-
ical function information. Many approaches and tools have been proposed to
address this problem at different processing levels. Some methods, for example,
score whole clustering outcomes or specific clusters according to their biological
relevance, other techniques aim to estimate the significance of over-represented
functional annotations, such as those encoded in the Gene Ontology (GO), in
clusters [2], [3], [4], [5]. Some approaches directly incorporate biological knowl-
edge (e.g. functional, curated annotations) into the clustering process to aid in
the detection of relevant clusters of co-expressed genes involved in common pro-
cesses [6], [7]. Several tools have been developed for ontological analysis of gene
expression data (see review by Khatri and Draghici [8], for instance) and more
tools are likely to be proposed in the future.

The prediction of the correct number of clusters in a data set is a funda-
mental problem in unsupervised learning. Various cluster validity indices have
been proposed to measure the quality of clustering results [9], [10]. Recent stud-
ies confirm that there is no universal pattern recognition and clustering model
to predict molecular profiles across different datasets. Thus, it is useful not to
rely on one single clustering or validation method, but to apply a variety of
approaches. Therefore, combination of GO-based (knowledge-driven) validation
and microarray data (data-driven) validation methods may be used for the es-
timation of the number of clusters. This estimation approach may represent a
useful tool to support biological and biomedical knowledge discovery.

We implemented a knowledge-driven cluster validity assessment system for
microarray data clustering. Unlike traditional methods that only use (gene ex-
pression) data-derived indices, our method consists of validity indices that incor-
porate similarity knowledge originating from the GO and a GO-driven annota-
tion database. We used annotations from the Saccharomyces Genome Database
(SGD) (October 2005 release of the GO database). A traditional node-counting
method proposed by Wu and Palmer [11] and an information content technique
proposed by Resnik [12] were implemented to measure similarity between genes
products. These similarity measurements have not been implemented for clus-
tering evaluation by other research.

The main objective of this research is to assess the application of knowledge-
driven cluster validity methods to estimate the number of clusters in a known
data set derived from Saccharomyces cerevisiae.

2 The GO and Cluster Validity Assessment

The automated integration of background knowledge is fundamental to support
the generation and validation of hypotheses about the function of gene prod-
ucts. The GO and GO-based annotation databases represent recent examples
of such knowledge resources. The GO is a structured, shared vocabulary that
allows the annotation of gene products across different model organisms. The
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GO comprises three independent hierarchies: molecular function (MF), biological
process (BP) and cellular component (CC). Researchers can represent relation-
ships between gene products and annotation terms encoded in these hierarchies.
Previous research has applied GO information to detect over-represented func-
tional annotations in clusters of genes obtained from expression analyses [13]. It
has also been suggested to assess gene sequence similarity and expression cor-
relation [14]. For a deeper review of the GO and its applications, the reader is
referred to its website (http://www.geneontology.org) and Wang et al. [14].

Topological and statistical information extracted from the GO and databases
annotated to the GO may be used to measure similarity between gene products.
Different GO-driven similarity assessment methods may be then implemented to
perform clustering or to quantify the quality of the resulting clusters. Cluster va-
lidity assessment may consist of data- and knowledge-driven methods, which aim
to estimate the optimal cluster partition from a collection of candidate partitions
[15]. Data-driven methods mainly include statistical tests or validity indices ap-
plied to the data clustered. A data-driven, cluster validity assessment platform
was previously reported by Bolshakova and Azuaje, [9], [L0]. We have previously
proposed knowledge-driven methods to enhance the predictive reliability and
potential biological relevance of the results [15].

Traditional GO-based cluster description methods have consisted of statisti-
cal analyses of the enrichment of GO terms in a cluster. Currently, there is a
relatively large number of tools implementing such an approach [8]. At the same
time, this approach is severely limited in certain regards (for detailed review on
ontological analysis see by Khatri and Draghici [8]). For instance, overestimation
of probability values describing over-representation of terms. This may be due
to the lack of more complete knowledge or the incorporation of biased datasets
to make statistical adjustments and detect spurious associations. However, the
application of GO-based similarity to perform clustering and validate clustering
outcomes has not been widely investigated. A recent contribution by Speer et
al. [16], [17] presented an algorithm that incorporates GO annotations to clus-
ter genes. They applied data-driven Davies-Bouldin and Silhouette indices to
estimate the quality of the clusters.

This research applies two approaches to calculating cluster validity indices.
The first approach processes overall similarity values, which are calculated by
taking into account the combined annotations originating from the three GO
hierarchies. The second approach is based on the calculation of independent
similarity values, which originate from each of these hierarchies. The second
approach allows one to estimate the effect of each of the GO hierarchies on the
validation process.

3 GO-Based Similarity Measurement Techniques

For a given pair of gene products, g; and g, sets of GO terms T} = t; and T = {;
are used to annotate these genes. Before estimating between-gene similarity it
is first necessary to understand how to measure between-term similarity. We
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implemented GO-based between-term similarity using a traditional approach
proposed by Wu and Palmer [11] and an information content technique proposed
by Resnik [12].

3.1 Wu and Palmer-Based Method
Similarity was defined by Wu and Palmer [11] as follows:
2N

= NN (1)

N; +N; +2N
where N; and N; are the number of links (edges) from ¢; and ¢; to their closest
common parent in the GO hierarchy, T;;, and N is the number of links from 7j;
to the GO hierarchy root.

This similarity assessment metric may be transformed into a distance, d,
metric:

Sim(t,’, tj)

d(ti, tj) =1- sim(ti, tj) (2)
then the average inter-set similarity value across each pair of ¢; and ¢; is com-
puted [13]:

d(gka gm) = azng(d(tkla tmj)) (3)

This between-term distance aggregation may then be used as an estimate of

the GO-based similarity between two genes products g and g,,, which is defined
as:

N
d(gr, gm) = avg(l — 4
(9ks Gm) al_’ng( NM+ij+2N) (4)

3.2 Resnik-Based Similarity Measurement

This similarity was defined by Resnik [12] as follows:

sim(ti, t;) = max(—log(p(Ti;))) ()

T;; is defined as above and has the highest information value V' defined as

—log(p(T;;)),where p(T;;) is a probability, of finding term T;; (or its descendants)
in the dataset of genes under study, i.e. the SGD in this study.

Such similarity assessment metric may be transformed into a distance metric:

1
= e (6)
1+ sim(t,t;)
Based on the average value across each pair of t; and ¢;, as computed by

Azuaje and Bodenreider [13], the GO-based similarity between two genes prod-
ucts g1 and g5 is defined as:

d(ti, t;)

1
(e, gm) = avel, | max(flog(p(Tkmij)))) Q
In this research we first study an approach based on the aggregation of sim-
ilarity information originating from all three GO. We also proposed and imple-
mented three hierarchy - specific similarity assessment techniques, each based on
information individually extracted from each GO hierarchy (BP, MF and CC).



Incorporating Biological Domain Knowledge 17

4 Clustering and Cluster Validation Methods

4.1 Clustering

The data analysed in this paper comprised yeast genes described by their ex-
pression values during the cell cycle [18]. Previous research has shown that dis-
joint clusters of genes are significantly associated with each of the five cell cycle
stages: early G1, late G1, S, G2, M. Several cluster partitions (with numbers
of clusters from two to six clusters), obtained with the k-means algorithm, were
analysed to estimate the optimum number of clusters for this dataset. Clustering
was performed with the Machaon CVE tool [10].

4.2 Cluster Validation Methods

Cluster validation was performed using two validity indices: the C-index [19]
and the Goodman-Kruskal index [20], whose data-driven versions have been
shown to be effective cluster validity estimators for different types of clustering
applications. Nevertheless, each of the implemented validation methods has their
advantages and limitations. For example, Goodman-Kruskal index is expected
to be robust against outliers because quadruples of patterns are used for its
computation. However, its drawback is its high computational complexity in
comparison, for example, with the C-index.

C-index. The C-indez [19], C, is defined as follows:

S — Smin

¢= Sma:z: - szn (8)

where S, Spin, Smaz are calculated as follows. Let p be the number of all pairs
of samples (conditions) from the same cluster. Then S is the sum of distances
between samples in those p pairs. Let P be a number of all possible pairs of
samples in the dataset. Ordering those P pairs by distances we can select p pairs
with the smallest and p pairs with the largest distances between samples. The
sum of the p smallest distances is equal to S;,;,, whilst the sum of the p largest
is equal to Spuae. From this formula it follows that the nominator will be small if
pairs of samples with small distances are in the same cluster. Thus, small values
of C' correspond to good clusters. We calculated distances using the knowledge-
driven methods described above. The number of clusters that minimize C-index
is taken as the optimal number of clusters, c.

Goodman-Kruskal index. For a given dataset, X;(j = 1,,k, where k is the
total number of samples (gene products in this application), j, in the dataset,
this method assigns all possible quadruples [20]. Let d be the distance between
any two samples (w and z, or y and z) in X;. A quadruple is called concordant
if one of the following two conditions is true:

d(w,z) < d(y,z) , w and z are in the same cluster and y and z are in different
clusters.
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d(w,z) > d(y,z), w and z are in different clusters and y and z are in the
same cluster.

By contrast, a quadruple is called disconcordant if one of following two con-
ditions is true:

d(w,z) < d(y,z), w and z are in different clusters and y and z are in the
same cluster.

d(w,z) > d(y, z), w and = are in the same cluster and y and z are in different
clusters.

We adapted this method by calculating distances using the knowledge-driven
methods described above.

A good partition is one with many concordant and few disconcordant quadru-
ples. Let N.on and Ng;s denote the number of concordant and disconcordant
quadruples, respectively. Then the Goodman-Kruskal index, GK, is defined as:

Ncon - Ndis (9)

B Ncon + Ndis
Large values of GK are associated with good partitions. Thus, the number of
clusters that maximize the GK index is taken as the optimal number of clusters, c.

GK

5 Results

The clustering algorithm was applied to produce different partitions consisting
of 2 to 6 clusters each. Then, the validity indices were computed for each of
these partitioning results. The two GO-based similarity assessment techniques
introduced above were used for all cases to calculate biological distances between
the genes.

Tables 1 to 4 show the predictions made by the validity indices at each number
of clusters. Bold entries represent the optimal number of clusters, ¢, predicted
by each method. In the tables the first cluster validity index approach processes
overall GO-based similarity values, which are calculated by taking into account
the combined annotations originating from the three GO hierarchies. The other
indices are based on the calculation of independent similarity values, indepen-
dently obtained from each of the GO hierarchies.

The C-indices based on Resnik similarity measurement and similarity informa-
tion from the MF, BP and the combined hierarchies indicated that the optimal

Table 1. C-index predictions based on Wu and Palmer’s GO-based similarity metric
for expression clusters originating from yeast data

Validity indices based on: ¢=2 ¢=3 c¢=4 c¢=5 =6
Combined hierarchies 0.51 0.472 0.464 0.453 0.463
Biological process 0.501 0.321 0.259 0.235 0.237
Molecular function 0.501 0.32 0.274 0.243 0.272
Cellular component 0.514 0.586 0.602 0.614 0.615
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Table 2. C-index values predictions based on Resnik’s GO-based similarity estimation
technique for expression clusters originating from yeast data

Validity indices based on: ¢=2 ¢=3 c¢=4 c¢=5 ¢=6
Combined hierarchies 0.504 0.395 0.373 0.349 0.369

Biological process 0.503 0.321 0.261 0.234 0.243
Molecular function 0.501 0.32 0.278 0.25 0.29
Cellular component 0.517 0.645 0.69 0.723 0.759

Table 3. Goodman-Kruskal index values used Wu and Palmer’s similarity metric for
expression clusters originating from yeast data

Validity indices based on: ¢=2 ¢=3 c=4 ¢=5 =6
Combined hierarchies -0.023 -0.01 -0.018 0.004 -0.017

Biological process -0.013 0.005 -0.005 0.034 0.018
Molecular function -0.02 0.009 0.005 0.066 -0.026
Cellular component -0.025 -0.022 -0.032 -0.046 -0.025

Table 4. Goodman-Kruskal index values used Resnik’s similarity metric for expression
clusters originating from yeast data

Validity indices based on: ¢=2 ¢=3 c=4 ¢=5 =6
Combined hierarchies -0.026 -0.001  -0.02 0.016 -0.01

Biological process -0.018 0.014 -0.012 0.055 0.044
Molecular function -0.02 0.012 0.004 0.087 -0.016
Cellular component -0.025 -0.035 -0.024 -0.037 -0.025

number of clusters is ¢ = 5, which is consistent with the cluster structure ex-
pected [18]. The C-indices based on Wu and Palmer similarity measurement and
similarity information from the MF and BP indicated that the optimal number
of clusters is ¢ = 5. In all cases only the method based on the CC hierarchy
suggested the partition with two clusters as the optimal partition, which con-
firms that cellular localization information does not adequately reflect relevant
functional relationships in this dataset.

For the Goodman-Kruskal method again only the method based on the CC
hierarchy suggested the partition different from ¢ = 5 as the optimal partition.

6 Accompanying Tool

The approaches described in this paper are available as part of the Machaon
CVE (Clustering and Validation Environment) [10]. This software platform has
been designed to support clustering-based analyses of expression patterns in-
cluding several data- and knowledge-driven cluster validity indices. The pro-
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gram and additional information may be found at http://www.cs.tcd.ie/ Na-
dia.Bolshakova/GOtool.html

7 Conclusion

This paper presented an approach to assessing cluster validity based on similar-
ity knowledge extracted from the GO and GO-driven functional databases. A
knowledge-driven cluster validity assessment system for microarray data cluster-
ing was implemented. Edge-counting and information content approaches were
implemented to measure similarity between genes products based on the GO.
Edge-counting approach calculates the distance between the nodes associated
with these terms in a hierarchy. The shorter the distance, the higher the simi-
larity. The limitation is that it heavily relies on the idea that nodes and links in
the GO are uniformly distributed.

The research applies two methods for calculating cluster validity indices. The
first approach process overall similarity values, which are calculated by taking
into account the combined annotations originating from the three GO hierar-
chies. The second approach is based on the calculation of independent similarity
values, which originate from each of these hierarchies. The advantage of our
method compared to other computer-based validity assessment approaches lies
in the application of prior biological knowledge to estimate functional distances
between genes and the quality of the resulting clusters. This study contributes
to the development of techniques for facilitating the statistical and biological
validity assessment of data mining results in functional genomics.

It was shown that the applied GO-based cluster validity indices could be
used to support the discovery of clusters of genes sharing similar functions. Such
clusters may indicate regulatory pathways, which could be significantly relevant
to specific phenotypes or physiological conditions.

Previous research has successfully applied C-index using knowledge-driven
methods (GO-based Resnik similarity measure) [15] to estimate the quality of
the clusters.

Future research will include the comparison and combination of different data-
and knowledge-driven cluster validity indices. Further analyses will comprise,
for instance, the implementation of permutation tests as well as comprehensive
cluster descriptions using significantly over-represented GO terms.

The results contribute to the evaluation of clustering outcomes and the iden-
tification of optimal cluster partitions, which may represent an effective tool to
support biomedical knowledge discovery in gene expression data analysis.
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Abstract. A variety of recent achievements in the field of biology, chemistry and
information technology have made possible the development of DNA chips. They
allow us to analyze the sequences and functions of different genes simultaneously
and detect small differences in those. They are source of tremendous amount of
data in the field of Bioinformatics. Moreover, the engineering process of DNA
chip requires the latest results of information technology, too. In this paper, we
address the mathematical problem of the prediction the hybridization process on
the chip surface. A novel in situ in silico approach is presented and the obtained
results are discussed.

1 Introduction

The rapid development of nanotechnology and computer science led to the emergence
of a new research field, called bioinformatics. One of the most important technique of
this new discipline is DNA—chip or DNA—microarray. It also represents a revolutionary
innovation in the area of applied medical diagnostics. With the help of it the presence of
pathogens and a predominant proportion of genetically based diseases can be detected
parallel very quickly and accurately. In other words, it can extremely accelerate the
precise diagnostics, so the appropriate treatment can be started earlier.

Nevertheless, the more extensive use of the method is nowadays limited by its high
operational costs. For example the production of 80 homogeneous chips with 20,000
DNA fragments costs approximately € 40,000. The largest part of these expenses re-
sults from the production of the so—called masks, which are used to determine the chem-
ical structure of DNA pieces. Obviously, the large manufacturing costs mean substantial
disadvantage. Therefore, the designing process needs special attention. The aim of our
work is to facilitate the engineering process and help to avoid extra charges which are
due to chemicals carrying non—appropriate genetical information.

We proceed as follows: In section 2 a short introduction to DNA—chip technology
and Simulated Annealing method is given. The estimation of the hybridization is sum-
marized in section 3. Our mathematical model is presented together with its optimiza-
tion in section 4. The test results can be found in section 5, and conclusion with future
work plans in section 6.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 23-33, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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2 DNA-Chips

DNA—chip itself is a solid carrier (glass or special plastic plate) with a set of single
stranded DNA fragments, so—called probes on it. The sample is usually a solution which
also contains DNA fragments. According to Watson and Crick a DNA molecule consists
of two helically twisted strands connected together with a series of hydrogen bonds
(double—helix) and each strand has 4 distinct building blocks (nucleotides or bases),
adenine (dA), guanine (dG), cytosine (dC) and thymine (dT). Generally, the different
basis sequences determine different genes, which are large DNA fragments, carry and
transmit genetic information. The smaller DNA pieces are called oligo—nucleotides. En-
ergetically favorable, if dA bonds to dT and dC pairs with dG, which means there exists
aone to one correspondence in the set of DNA fragments. There is another important bi-
jective function f: DNA —> RNA, which is based on similar chemically preferred pairs,
dArU, dTrA, dCrG and dGrC where RNA fragments are variations with repetitive rA,
rU, rC and rG elements. The Central Dogma of Molecular Biology, which is the law
of genetic information storage and transfer in living organisms is based on these spe-
cial relationships (Figure 1). Indeed, if one investigate a sample using a DNA—chip then
only the unique complementary basis sequences ought to form double—helixes. This
process is known as hybridization. Nevertheless, every molecular process observed at
macroscopic level is stochastic. Depending on the basis sequences it is possible to arise
some non exactly complementary distorted double—helix. The energetically less stable
basis pairs are the so called mismatches (MM). MMs and mutations are closely related,
MM s can alter into mutations and with the help of them even a single mutation can be
detected. Since we can select the probe sequences, it is theoretically possible to indicate
all well-known and unknown mutations in the sample. DNA—chip technology takes the
advantages of parallel experiments, even up to 100,000 different oligo—nucleotides can
be applied on a single chip and the investigation takes only a few minutes. Based on the
application area chips can be divided into three major categories:

— Diagnostic chips (oligoDNA—Chips): The length (number of bases) of the used
probe oligo—nucleotides is between 20 and 60. They are mainly used in the di-
agnostics of pathogens and detection of genetically originated disorders.

— Transcriptional chips (cDNA—Chips): The length of the used probe oligo—
nucleotides is typically larger than 100 nucleotides. They are often used in can-
cer research to detect changes and similarities between healthy and tumour cells.

— Chips for sequence analysis: The probe nucleotides are quite short. The goal is to
determine the overlapping frames and substrings of genes. In fact, sequence analy-
sis is an application of the well-known shortest common superstring problem.

All three kinds of DNA—chips serve to detect the presence or absence of certain nu-
cleotide chains in the analyzed sample. Although the philosophy is basically the same,
there are some substantial differences among the groups. In our point of view the most
remarkable one is the role of mutations, which is the most important in the first group.

There are several different DNA—chip manufacturing techniques have been devel-
oped during the last decade. In the case of diagnostic chips, the most frequently applied
procedure is very similar to those used in computer chip fabrication [1]. Photolitho-
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Fig. 1. The flow of genetic information

graphic processes such as photosensitive masks are combined with solid phase chem-
istry to bond DNA fragments onto the surface. With the series of specific masks and
chemical steps high density chips can be constructed. In the development, application
and propagation of DNA—chips S. Fodor played a decisive role [2, 3,4].

2.1 Sample Analysis Using DNA-Chips

The investigation is a multi—step experiment involving the following processes (Figure
2). (i) Amplification (multiplication) of DNA strands in the sample to obtain appropriate
amount of them. (ii) Labeling of the fragments with flourescent dye to monitor the sam-
ple. (iii) Hybridization between the sample and probe sequences immobilized onto the
chip surface. (iv) Measuring the fluorescence of labeled DNA fragments to determine
where hybridization occured. (v) Data interpretation. Beside the last step, which is also
a time—consuming and computer demanding process chip design is apparently the most
important step which precedes the investigation and determines its success or failure.

2.2 Role of Hybridization — The Nearest Neighbor Method

The computational prediction of the thermodynamics of hybridization plays a pivotal
role in chip design. Accordingly, several methods have already been proposed to es-
timate the melting point or temperature (T,,) of nucleic acid duplexes. At the melting
temperature 50% of the DNA fragment and its perfect complement form duplex, the
other half are in free single stranded state due to molecular thermal motion. In fact, the
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probability of hybridization and the 7,,—point are descriptors of the same thermodynam-
ical property: the stability of the duplex. The higher the 7, the more likely hybridiza-
tion occurs. To calculate 7;, the simpler methods use the chemical formula of the chains
(eq.1.) and empirical parameters are accounted for solvation effects (eq. 2.).

Ty = 2(HA +#T) + 4(#C + #G) (1)

where #X means the number of X bases in the sequence.
Tm=38.15+16.6 xlog[Na™] +41(Xs+ Xc) —500/L — 0.62F )

where L, F are empirical parameters, X, Xc can be simply calculated from #G and #C.
In the most complicated and flexible case the actual sequence of the chains is also taken
into consideration (eq.3.) [5, 6].

_— AH,
" ASo+RxIn[c/4]

where 8H)) is the enthalpy, S the entropy and ¢ the oligo concentration. dHy and &S
depend on the base—sequences and 12 constants (const) stated by the examination [7, 8].

Although, there is a scientific dispute [9, 10, 11, 12] about the best parameter set the
nearest neighbor (NN) method (eq. 3.) is generally considered to be the most accurate
prediction of T,,. Nevertheless, substantial problems have been left unsolved consid-
ering NN. First of all, the NN parameters are not valid in solid phase, they are based
on fluid phase measurements. Secondly, they originally were developed to describe the
thermodynamics of perfect-matching sequences and their extension to other cases is
painful, there still exist quite a few mismatches without parameter. Lastly, every pa-
rameter defined by experiments has limited scope. Reparametrization can help to solve

—273.15 + const* log[Na™], 3)



A Novel Mathematical Model for the Optimization of DNA—Chip Design 27

these problems, but it requires a tremendous amount of experimental work regarding the
NN approach. In addition, if one consider carefully the last argument, then this is not
else than only a stone on Sisyphus’s way. A more effective approach will be presented
in the following sections to avoid these difficulties.

2.3 Simulated Annealing

Simulated Annealing (SA, [13]) is a randomized procedure, which supplies good ap-
proximation solutions for combinatorial optimization problems in many practical cases
[14,15, 16, 17]. This technology was developed at the beginning of the 80’s. As its name
implies, the SA exploits an analogy between the way how a metal cools and freezes into
a minimum energy crystal structure (the annealing process) and the search for a min-
imum in a more general system. The success of the process depends strongly on the
choice of a control parameter, called temperature. In order to be able to provide as good
as possible cooling plan for the Simulated Annealing, the investigation of the proce-
dure’s convergence behavior is necessary.

Simulated Annealing is started with a feasible solution of the combinatorial opti-
mization problem and in every iteration a randomly selected neighbour solution is pro-
duced. The algorithm employs a random search which not only accepts changes that
decrease objective function, but also some changes that increase it. If the change has
a better function value, one turns into it and iterates. Otherwise one accepts the new
solution only with a certain probability. This probability decreases with increasing the
iteration number, because of the decreasing temperature.

3 Insitu, in silico Chip Design

As we mentioned earlier, regarding DNA the most stable state if the four bases can form
Watson—Crick basis pairs: dG = dC, dA = dT (where every hyphen means one hydro-
gen bond). If two sequences are exactly complementary then they will hybridize with
each other under appropriate conditions. Since, duplex formation is a stochastic process
hybridization can occur between non perfectly matching sequences and its probability
is in inverse proportion to the number of MMs. Furthermore, one can conclude that dif-
ferent MMs might have different effects on hybridization. Accordingly, the following
parameters are specified in our model:

1. Type—dependent parameters: In the case of DNA, the number of Watson—Crick pairs
and MMs is 2 and 8, respectively. The number of possible combinations are (4+§_1)
(Table 1. a). There are 4 Watson—Crick pairs and 12 MMs considering DNA-RNA

hybrids, where the order of elements is significant (‘]‘) X (411) (Table 1. b).
Every type—dependent parameter is restricted into the [0.0, 10.0] interval:
0.0 <dXrY <10.0, where X € {A,G,C,T} and Y € {A,G,C,U}

Apparently, the positions of MMs in the sequence are not equivalents (Figure 3).
That is why, the following parameter type was introduced:



28 K. Danyi, G. Koékai, and J. Csontos

Table 1. a) The commutative Cayley table of DNA/DNA—pairs, the off diagonal elements are
MMs and the different ones are in italic; b) The Cayley table of DNA/RNA—pairs, the off diagonal
elements are MMs

dA dC dG dT DNA/DNA
dAdA dCdA dGdA dTdA dA
dAdC dCdC dGdC dTdC dC
dAdG dCdG dGdG dTdG dG
dAdT dCdT dGdT dTdT dT

dA dC dG dT DNA/RNA
dArA dCrA dGrA dTrA rA
dArC dCrC dGrC dTrC rC
dArG dCrG dGrG dTrG rG
dArU dCrU dGrU dTrU rU

a) b)

2. Position—dependent parameters: they are determined by the length of the sequence
and the position of the mismatch:

— The length of sequences is also important; a mismatch has greater importance,
if the length of the sequence is shorter. The f(x) function for weighting the
position of the mismatch has to be defined according to the length of sequences.

— The importance of the sequence positions follows a maximum curve regarding
MMs. The speed of growth or the decrease depends on the length of the se-
quence and MMs have less influence on the probability of hybridization at both
ends of the chain, as if they were in the center of the sequence (Figure 3).

AAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAA
TTTTTTTTTTTTTITITITTITTITTITTITTTITITITITTITTITTTITTTT

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG
TTTTTTTTTTITTTTTTITTTITTITTTITTITTTITTITTITTITTITTT

Fig. 3. The influence of the MM position on hybridization

3. Solution—dependent parameters:
They cover the experimental conditions i.e. salt and sample concentrations and
other environmental factors, which also effect the probability of hybridization. The
experimental conditions are specified by the scientist, who plans and accomplishes
the work. One can assume that these values do not change in a certain laboratory.
Although we do not use these parameters explicitly, they are originally involved in
our approach.

In our basic model, we optimize only the type—dependent parameters, and set the
other parameters to appropriate values (Section 4.2).
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4 Methods

All the above mentioned parameters represent the chemical sense in our model. With
the help of MMs, which are weighted by the appropriate parameters, the mathematical
model for the estimation of hybridization probability can be presented:

P(hybridization) = max{ (Z Wpos (1) * Wynm (m (l))> } )

where [ is the length of sequence, i is the position number, m(i) is the type of mismatch
at position i, wpes(i) € R is the weight of position i and wy,,(m(i)) is the weight of
mismatch type at position i.

If there is no mismatch at the position i, then w o4 (i) = Wy (m(i)) = 0. If appropriate
values are assigned to the parameters, experiments can be replaced by computations.

4.1 Optimization of Parameters

The following target function was used in the optimization process.

n,m )
Z=min <Z|au ij| )
ij

where the element a;; was derived from the chip experiment (TIFF image processing)
and its value based on the hybridization of the row i and column j DNA fragment, n,
m are the dimensions of the chip. The b;; elements of the B matrix are computed as
follows:

Z Wpos Wmm l]k)a

where [ is the length of sequence, S;; is the sequence on the chip in row i and column
J» Sijk is the MM at position k in this sequence. Thus the elements of matrix B are
calculated from character strings, which consist of the variations of the four indications
(A,C,G,T).

In a real dataset, the proportions of MMs are usually not balanced. In order to pro-
portionately optimize the MM weights, we need to scale the number of the present MMs
and expand the target function. The percent of every mismatch in the dataset is calcu-
lated as follows: N 100

_ Nm(n) * %
Pt 2}21 Nm(t)
where m(t) is the mismatch, N, is the number of m(¢) mismatch in the real dataset.
In order to scale the number of MMs considering DNA-RNA chips, the proportion of
]00% = 8.3333% (the evenly distributed MMs) and p,, ;) is taken, thus the scale weight
for mismatch m(t) is:

8.3333
*omie) = Pm(r) "
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The target function can be extended as follows:

n,m 5 /
7=min (Z |aij - bij| Hscm(k)i_;')
ij k=1

where $¢,(x),; is the scale weight of the mismatch at position k in probe—sequence at
position (7, j) on the chip.

4.2 The Setting of Weight Parameters

The position—dependent parameters were not allowed to change during the optimization
and a general function was used, which means only the length dependence of MMs were
taken into consideration. The function used by us is the following:

£0) = \/ min {distbegmgi),distmd(i)} |
2
where distpegin (i) is the distance of position i from the beginning of sequence, dist,,q(i)
is the distance of position i from the end of sequence and / is the length of the sequence.
Figure 4 shows this function.

Fig. 4. The weight function for calculating the position—dependent parameters

4.3 Optimization with Simulated Annealing

The search space consists of vectors of the 12 MM parameters. The parameters can
have all the values from the [0.0,10.0] interval. At the beginning of the optimization
process, the parameter values are set to 1.0. For the generation of new solutions the
values of current parameters are increased with a random number from the interval
of [-0.1,0.1]. With the changed parameters the difference of the theoretical and the
experimental matrices is computed and compared with the previous result. Based on
the Simulated Annealing method these results are taken or rejected.

In order to determine the initial test temperature and the maximum iteration number,
the efficiency of the optimization was tested in several intervals. In this study, only the
linear cooling schedule was used.
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S Results

Figure 5 shows the differences between average optimum values in the dependence of
the initial test temperature and the number of iterations. The initial test temperature was
increased from 50 to 140 and number of iterations from 10 to 55. It can be seen that the
optimum values increase, if the temperature is between 50 and 70 and the number of
iterations are between 50 and 70. In contrast if the temperature is between 100 and 140
and the number of iterations is 20, the difference between the model and experiment is
acceptable. Since SA is a stochastic search method, we repeated the samples 100 times
for each case.

Fig. 5. The average optimum values generated by the method using different temperature and
iteration number

5.1 The Comparison of the Optimized Parameter

In Figure 6 and 7 the variation of the parameter values can be observed. Those param-
eters, which are important from the biochemical point of view are represented by grey
columns, the others are in black.

It can be seen that starting form 1.0 at an early stage the values are mixed. How-
ever, with the advance of the optimization process the important and the less notable
parameters separate from each other and the most important ones obtain the highest
weight, eventually. If we take into account the fact that the hybrid RNA/DNA structures
are more stable then the DNA/DNA duplex ones and the base pair cytosine and guanine
stands for a stronger interaction than the double hydrogen—bonded adenine and thymine
(or uracil) the following conclusion can be made:

Regarding DNA/RNA hybrid systems, the RNA-side mismatches should determine
mainly the stability of the hybridization. The theoretical consideration stays in coher-
ence with the parameters resulted from the optimization process. As you can see in
Figure 7, 5 out of the 6 possible mismatches on the RNA-side possess the first 5 posi-
tions based on the weight (dTrC, dArC, dGrG, dArG, dTrG).
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difference 6.10964 difference 4.82974
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Fig. 6. The values of the type—dependent parameters in the case of goal function 6.10964 and
4.82974

difference 2.42093 difference 1.86422
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Fig.7. The values of the type—depended parameters in the case of goal function 2.42093 and
1.86422

6 Conclusion

The prediction of thermodynamical properties of nucleic acids using computer model-
ing has not been solved yet. The main problem sources are (i) the parameters used in
the computation and determined by time consuming and expensive experiments can be
applied only to fluid phase, (ii) the lack of MM parameters, (iii) the parameters strongly
depend on the experimental conditions (e.g. temperature, solvent, etc.).

We presented a novel theoretical model (in situ in silico approach) to estimate the
hybridization process between DNA/DNA and DNA/RNA strands and eliminate the
previously mentioned defects. With the help of this new method, the in silico optimiza-
tion process takes place in situ the DNA—chip laboratory, then using the established
parameters one can model the hybridization, which is the cornerstone of DNA—chip
design.

By the computation done so far the implemented simulated annealing method was
used with linear cooling curve. Beside the experimental test of the method, the exponen-
tial and Boltzmann—sigmoid cooling scheme are in progress as well as the optimization
of the position—dependent parameters.
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Abstract. We propose a Genetic Algorithm (GA) approach combined
with Support Vector Machines (SVM) for the classification of high
dimensional Microarray data. This approach is associated to a fuzzy
logic based pre-filtering technique. The GA is used to evolve gene subsets
whose fitness is evaluated by a SVM classifier. Using archive records
of 7good” gene subsets, a frequency based technique is introduced to
identify the most informative genes. Our approach is assessed on two
well-known cancer datasets and shows competitive results with six
existing methods.

Keywords: Genetic algorithms, Fuzzy logic, Support vector machines,
Feature selection, Classification, Microarray data.

1 Introduction

The DNA Microarray technology allows measuring simultaneously the expres-
sion level of a great number of genes in tissue samples. A number of works have
studied classification methods in order to recognize cancerous and normal tissues
by analyzing Microarray data [1,8,2]. The Microarray technology typically pro-
duces large datasets with expression values for thousands of genes (2000~20000)
in a cell mixture, but only few samples are available (20~80).

From the classification point of view, it is well known that, when the number
of samples is much smaller than the number of features, classification methods
may lead to data overfitting, meaning that one can easily find a decision func-
tion that correctly classifies the training data but this function may behave very
poorly on the test data. Moreover, data with a high number of features require
inevitably large processing time. So, for analyzing Microarray data, it is neces-
sary to reduce the data dimensionality by selecting a subset of genes that are
relevant for classification.

In the last years, many approaches, in particular various Genetic Algorithms
(GAs) and Support Vector Machines (SVMs), have been successfully applied
to Microarray data analysis [6,19,16,10,15,17,18,13]. In Section 3, we review
some of the most popular approaches.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 34-44, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we are interested in gene selection and classification of DNA
Microarray data in order to distinguish tumor samples from normal ones. For
this purpose, we propose a hybrid model that uses several complementary tech-
niques: fuzzy logic, a Genetic algorithm (GA) combined with a Support Vector
Machine (SVM) and an archive-based gene selection technique. Comparing with
previous studies, our approach has several particular features. First, to cope
with the difficulty related to high dimensional data, we introduce a fuzzy logic
based pre-processing tool which allows to reduce largely the data dimensionality
by grouping similar genes. Second, our GA uses archives to record high quality
solutions. These archives are then analyzed to identify the most frequently ap-
pearing genes which would correspond to the most predictive genes. Third, the
GA combined with a SVM classifier is used both for selecting predictive genes
and for final gene selection and classification.

The proposed approach is experimentally assessed on two well-known cancer
datasets (Leukemia [8] and Colon [1]). Comparisons with six state-of-the-art
methods show competitive results according to the conventional criteria.

The remainder of this paper is organized as follows. In Section 2, we describe
briefly the two Microarray datasets used in this study. In Section 3, we review
some popular gene selection approaches for the classification of Microarray data.
In Section 4, we introduce the general scheme of our hybrid model. In Section
5, we describe our GA/SVM approach. Experimental results are presented in
Section 6. Finally conclusions are given in Section 7.

2 Datasets

In this study, we use two well-known public datasets, the Leukemia dataset
and the Colon cancer dataset. All samples were measured using high-density
oligonucleotide arrays [2].

The Leukemia dataset® consists of 72 Microarray experiments (samples) with
7129 gene expression levels. The problem is to distinguish between two types of
Leukemia, Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia
(ALL). The complete dataset contains 25 AML samples of and 47 ALL samples.
As in other experiments [8], 38 out of 72 samples are used as training data (27
ALL samples and 11 AML samples) and the remaining samples (20 ALL samples
and 14 AML samples) are used as test data.

The Colon cancer dataset? contains the expression of 6000 genes with 62 cell
samples taken from colon cancer patients, but only 2000 genes were selected
based on the confidence in the measured expression levels [1]. 40 of 62 samples
are tumor samples and the remaining samples (22 of 62) are normal ones. In
this paper, the first 31 out of 62 samples were used as training data and the
remainder samples as test data.

! Available at: http://www.broad.mit.edu/cgi-bin/cancer/publications,.
2 Available at: http://microarray.princeton.edu/oncology /affydata/index.html.
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3 Review of Feature Selection Approaches

Feature selection for classification is a very active research topic since many ap-
plication areas involve data with tens of thousands of variables [9]. This section
concerns more specifically a literature review of previous studies on feature selec-
tion and classification of Microarray Data, with a special focus on the Leukemia
and the Colon datasets presented in Section 2.

Feature selection can be seen as a typical combinatorial problem. Informally,
given a dataset described by a large number of features, the aim is to find out,
within the space of feature subsets, the smallest subset that leads to the highest
rate of correct classification. Given the importance of feature selection, many
solution methods have been developed. Roughly speaking, existing methods for
feature selection belong to three main families [9]: the filter approach, the wrap-
per approach and the embedded approach.

The filter methods separate the feature selection process from the classifica-
tion process. These methods select feature subsets independently of the learning
algorithm that is used for classification. In most cases, the selection relies on
an individual evaluation of each feature [8, 6], therefore the interactions between
features are not taken into account.

In contrast, the wrapper approach relies on a classification algorithm that is
used as a black box to evaluate each candidate subset of features; the quality
of a candidate subset is given by the performance of the classifier obtained on
the training data. Wrapper methods are generally computation intensive since
the classifier must be trained for each candidate subset. Several strategies can
be considered to explore the space of possible subsets. In particular, in [14], evo-
lutionary algorithms are used with a k-nearest neighbor classifier. In [12], the
author develops parallel genetic algorithms using adaptive operators. In [18], one
finds a SVM wrapper with a standard GA. In [20], the selection-classification
problem is treated as a multi-objective optimization problem, minimizing si-
multaneously the number of genes (features) and the number of misclassified
examples.

Finally, in embedded methods, the process of selection is performed during the
training of a specific learning machine. A representative work of this approach is
the method that uses support vector machines with recursive feature elimination
(SVM/RFE) [10]. The selection is based on a ranking of the genes and, at each
step, the gene with the smallest ranking criterion is eliminated. The ranking
criterion is obtained from the weights of a SVM trained on the current set of
genes. In this sense, embedded methods are an extension of the wrapper models.
There are other variants of these approaches, see [21,7] for two examples.

4 General Model for Gene Selection and Classification

The work reported in this paper is based on a hybrid approach combining fuzzy
logic, GA and SVM. Our general model may be characterized as a three-stage
sequential process, using complementary techniques to shrink (or reduce) grad-
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ually the search space. The rest of this section gives a brief description of these
three stages.

Stage 1 Pre-processing by fuzzy logic. This stage aims to reduce the di-
mension of the initial problem by eliminating gene redundancy. This stage is ba-
sically composed of four steps. First, the gene expression levels are transformed
into fuzzy subsets with Gaussian representations. Second, the Cosine amplitude
method is employed to assess fuzzy similarities between genes. We build a simi-
larity matrix that is then transformed to a matrix of fuzzy equivalence relations
by different compositions. Third, using a—cuts [23] with decreasing values of «,
we obtain groups of similar genes that correspond to fuzzy equivalence classes of
genes. Fourth, for each group, one gene is randomly taken as the representative
of the group and other genes of the group are ignored. Applying this dimension
reduction technique to the datasets presented in Section 2, the set of 7129 genes
for Leukemia (2000 genes for Colon respectively) is reduced to 1360 genes (943
genes respectively). Therefore, the search space is dramatically reduced. As we
show later in Section 6, with this reduced set of genes, we will be able to ob-
tain high quality classification results. A detailed description of this stage goes
beyond the scope of this paper and can be found in [3].

Stage 2 Gene subset selection by GA/SVM. From the reduced set of genes
obtained in the previous pre-processing stage, this second stage uses a wrapper
approach that combines a GA and a SVM to accomplish the feature (gene)
subset selection. The basic idea here consists in using a GA to discover ”good”
subsets of genes, the goodness of a subset being evaluated by a SVM classifier
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on a set of training data (see Section 2). During this stage, high quality gene
subsets are recorded to an archive in order to be further analyzed.

At the end of the GA, the analysis of the archived gene subsets is performed:
gene subsets are compared among them and the most frequently appearing genes
are identified. This process typically leads to a further reduced set of genes (<100
genes for the Leukemia and Colon dataset). Fig.1 (top) shows a general picture
of this stage.

Stage 3 Classification. Stage 2 has identified a reduced set of relevant genes
which is now used in the final step of gene selection and classification. From this
set of genes, a new round of search is carried out using the previous GA/SVM,
this time to classify the test data (see Section 2). This stage will thus select the
most predictive genes to classify the test data. Fig.1 (bottom) shows a general
picture of this stage.

5 Gene Selection and Classification by GA/SVM

We describe now the hybrid GA/SVM algorithm for carrying out Stages 2 and 3
of the general model for gene selection and classification. As explained previously,
the GA is designed both for discovering good gene subsets and for final gene
selection and classification. The SVM-based classifier is used to ensure the fitness
evaluation of each candidate gene subset. One important feature of the GA
developed in this work is the use of an archive to record quality gene subsets
discovered during the gene subset selection stage. This archive is then analyzed to
identify a small number of highly frequently appearing genes that are used in the
final classification stage. Notice that the idea of archiving good solutions is not
really a new one because it is already used in some multiobjective evolutionary
algorithms [26]. However, as we will see later in Section 5.3, our way of exploiting
the information of the archive to identify predictive genes is original and useful.

From these retained genes obtained from archive analysis, the same GA/-
SVM algorithm is applied to the test data to perform the final gene selection
and classification tasks.

5.1 The Genetic Algorithm

General Schema. The basic components of our GA are presented later in this
section. Here we show the general algorithm. The GA follows a generational
schema with a form of elitism. To obtain a new population from the current
population P, the top E% of the population P are recorded, E being fixed to
10% or 15% in our experiments (see Section 6). Then, the following two actions
are taken: 1) select two parents and apply (with a given probability) the crossover
to create two new solutions which are muted (with a given probability), and 2)
replace the parents by their offspring. These two actions are repeated for a pre-
fixed number of times. Finally, the recorded elite chromosomes are copied backed
to the population P to replace the worst rated chromosomes. At this point, one
generation is accomplished.
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Chromosome and initial population. The chromosomes are binary-encoded,
each allele (bit) of the chromosome represents a gene. If an allele is '1’ it means
that this gene is kept in the gene subset and ’0’ indicates that the gene is not
included in the subset. Each chromosome represents thus a gene subset. For Stage
2 of the general model, the chromosome length is equal to the number of genes
pre-selected by the fuzzy pre-processing (i.e. 1360 for the Leukemia dataset and
943 genes for the Colon dataset). For Stage 3, the chromosome length depends
on the size of the gene subset retained after analyzing the solution archive (see
section 5.3). In both cases, the initial population of the GA is randomly generated
according to a uniform distribution.

Fitness function. The fitness of a chromosome, i.e. a subset of genes, is assessed
by the classification rate on the initial datasets. In other words, a subset of genes
leading to a high classification rate is considered to be better than a subset
leading to a low classification rate. In our case, a SVM classifier (see Section 5.2)
ensures this classification task.

Selection, crossover, mutation, and replacement. We use the roulette
wheel selection and random one-point crossover and multi-uniform mutation
operators. Offspring replaces always their parents. An elitism mechanism is also
applied to conserve the top 10% or 15% chromosomes of the population between
two successive generations.

Archives of high quality gene subsets. Given a chromosome (a candidate
subset of genes), the SVM classifier gives its fitness in terms of classification
rate on the training data set. If the classification rate is high enough (defined
by a threshold theta, see Fig. 1.a), the subset of genes is recorded in an archive.
In this paper, the threshold theta is set to 0.90 and 0.91 respectively for the
Leukemia and Colon dataset.

Stopping criterion. The evolution process ends when a pre-defined number of
generations is reached or a fitness value of 100% is obtained.

5.2 The SVM Classifier

Support Vector Machines [24] are basically binary classification algorithms.
When the data are linearly separable, SVM computes the hyperplane that max-
imizes the margin between the training examples and the class boundary. When
the data are not linearly separable, the examples are mapped to a high dimen-
sional space where such a separating hyperplane can be found. The mechanism
that defines this mapping process is called the kernel function. SVM are powerful
classifiers with good performance in the domain of Microarray data [10, 17]. They
can be applied to data with a great number of genes, but it has been showed
that their performance is increased by reducing the number of genes [6, 2].

In our wrapper GA/SVM algorithm, we use a SVM classifier to assess the
quality of a gene subset. For a chromosome x that represents a gene subset,
we apply a Leave-One-Out Cross-Validation (LOOCV) method to calculate the
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average accuracy (rate of correct classification) of a SVM trained with this gene
subset [11]. The LOOCV procedure means that one sample from the dataset
is considered as a test case while a SVM is trained on all the other samples,
and this evaluation is repeated for each sample. So for each chromosome =,
Fitness(x) = accuracysy p ().

One of the key elements of a SVM classifier concerns the choice of its kernel.
In our study, we have chosen to use the RBF kernel. We also experimented
Gaussian and polynomial kernels. For polynomial kernels, the main difficulty is
to determine an appropriate polynomial degree while the results we obtained
with the Gaussian kernel are not satisfactory. Notice that RBF has been used
in several previous studies for Microarray data classification [4, 18, 5].

5.3 Archive Analysis

At the end of stage 2 and prior to the final classification (Stage 3), the archive
is analyzed and the most frequently appearing genes in the archive are retained
for the final gene selection and classification (stage 3). Typically, this analysis
will lead to a limited number of genes (between 50 to 100). From these genes,
the GA/SVM algorithm will then determine the final set of genes relevant to
classify the data.

6 Experimental Results and Comparisons

6.1 Parameters Settings

For our GA/SVM algorithm, the GA is implemented in Matlab (Version 5.3.1
for Windows). The SVM classifier is based on the SVM Toolbox developed by
Gavin Cawley?>.

Table 1. GA parameters for the stage of gene subset selection (Stage 2)

Parameters Leukemia Colon
Size of population 500 500
Length of chromosome 1360 943
Number of generations 2500 2500

Crossover rate 0.95 0.98
Mutation rate 0.02 0.01
Elitism rate E 10% 15%

The GA parameters used in our model of gene subset selection for the
Leukemia and Colon datasets are shown in Tables 1 and 2. For the SVM clas-
sifier, the same parameters settings are used in the two stages of gene subset
selection and classification. The normalization parameter C' is fixed at 100 and
the control parameter v for the RBF kernel of SVM is fixed to 0.5. Notice that

3 http://theoval.sys.eua.uk/~gce/svm /toolbox
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Table 2. GA parameters for the stage of classification (Stage 3)

Parameters Leukemia Colon
Size of population 50 50
Length of chromosome 100 50
Number of generations 500 500

Crossover rate 0.985 0.985
Mutation rate 0.02 0.01
Elitism rate E 15% 15%

given the input data used by the GA/SVM are already normalized during the
Fuzzy Logic pre-processing, the normalization parameter C' has in fact little
influence in our case.

6.2 Results and Comparisons

To carry out our experiments, our GA/SVM algorithm is run 5 times on each of
the Leukemia and Colon datasets. To calculate the average classification rate of
a given gene subset, the LOOCYV procedure [11] is employed.

Table 3 summarizes our results (Column 2) for the Leukemia and Colon
datasets together with the results of six state-of-the-art methods from the liter-
ature (Columns 3-8). The conventional criteria are used to compare the results:
the classification accuracy in terms of the rate of correct classification (first num-
ber) and the number of used genes (the number in parenthesis, ”-” indicating
that the number of genes is not available). For AG/SVM, the classification rate
that we present is the average classification rate obtained from the 5 independent
runs and the number of selected genes is the minimum number obtained from
these runs. Detailed results can be found in Table 4.

As it can be observed, for the Leukemia dataset, we obtain a classification
rate of 100% using 25 gens, which is much better than that reported in [6, 5].
This same performance is achieved by [25, 18, 20, 10], with fewer genes selected.
[20] and [10] reports the minimal number of genes. However, in [20] the evolu-
tionary method begins with a largely reduced set of 50 genes, published in [8]
as interesting genes.

The most interesting results that we obtained with our model concern the
Colon dataset since our approach offers the highest (averaged) correct classifica-
tion rate (99.41%); the number of selected genes is greater than the one obtained
by [20] or by [25, 10], but it is smaller than the one reported in [18]. An analysis

Table 3. Comparison of GA/SVM with six state of the art methods

Methods
Dataset GA&SVM  [6] [25] [18] [5] [20] [10]
Leukemia 100(25) 94.10(-) 100(8) 100(6) 95.0(-) 100(4) 100(2)
Colon  99.41(10) 90.30(-) 91.9(3) 93.55(12) 91.0(-) 97.0(7) 98.0(4)
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Table 4. GA/SVM performance on 5 runs

Runs Run 1 Run2 Run3 Run4 Run5 Average class. rate
Leukemia 100(25) 100(28) 100(30) 100(46) 100(35) 100
Colon  99.64(10) 99.83(15) 97.88(10) 99.83(15) 99.83(15) 99.41

of our results shows that several biologically significant genes reported in [8] are
found by our approach.

Table 4 shows the detailed results of 5 independent runs of our GA/SVM
algorithm. As it can be observed, these results are quite stable. For the Leukemia
dataset, each of the 5 runs obtains a classification rate of 100% while for the
Colon dataset, the best run gives a classification rate of 99.64. Even the worst
obtains a classification rate of 97.88.

7 Conclusions

In this paper, we presented a general approach for gene selection and classifi-
cation of high dimensional DNA Microarray data. This approach begins with a
fuzzy logic based pre-processing technique that aims to cope with the imprecise
nature of the expression levels and to reduce the initial dimension of the input
dataset. Following this pre-processing stage, a hybrid wrapper system combin-
ing a Genetic Algorithm with a SVM classifier is used to identify potentially
predictive gene subsets that are then used to carry out the final gene selection
and classification tasks. Another important feature of our approach concerns the
introduction of an archive of high quality solutions, which allows limiting the
GA/SVM exploration to a set of frequently appearing genes.

This approach was experimentally evaluated on the widely studied Leukemia
and Colon cancer datasets and compared with six previous methods. The re-
sults show that our approach is able to obtain very high classification accuracy.
In particular, to our knowledge, this is the first time that a averaged correct
classification rate of 99.41% (with 10 genes) is reached for the Colon dataset.

This approach can be further improved on several aspects. First, we notice
that our method does not provide the smallest number of genes on the Leukemia
data. This is due to the fact that the GA is only guided by the criterion of
classification accuracy. Therefore, the criterion of the number of genes should be
integrated into the fitness function. This can be achieved by an aggregated fitness
function or a bi-criteria evaluation. Second, the high computation time required
in stage 2 can be reduced by the use of a faster classifier (or an approximate
fitness function). For example, the m-features operator reported in [22] may
be considered. Also, a fine-tuning of SVM parameters in stage 3 may lead to
improved results. Finally, we intend to apply our approach to other DNA chip
data and to study the behavior of our model.
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Abstract. With the availability of the time series data from the high-throughput
technologies, diverse approaches have been proposed to model gene regulatory
networks. Compared with others, S-system has the advantage for these tasks in
the sense that it can provide both quantitative (structural) and qualitative (dy-
namical) modeling in one framework. However, it is not easy to identify the
structure of the true network since the number of parameters to be estimated is
much larger than that of the available data. Moreover, conventional parameter
estimation requires the time-consuming numerical integration to reproduce dy-
namic profiles for the S-system. In this paper, we propose multi-stage evolu-
tionary algorithms to identify gene regulatory networks efficiently. With the
symbolic regression by genetic programming (GP), we can evade the numerical
integration steps. This is because the estimation of slopes for each time-course
data can be obtained from the results of GP. We also develop hybrid evolution-
ary algorithms and modified fitness evaluation function to identify the structure
of gene regulatory networks and to estimate the corresponding parameters at the
same time. By applying the proposed method to the identification of an artificial
genetic network, we verify its capability of finding the true S-system.

1 Introduction

Although mathematical modeling for the biochemical networks can be achieved at
different level of detail (see [1] and [2] for the reviews of metabolic and genetic regu-
latory networks modeling), we can cluster them into three dominant approaches [3].
One extreme case is mainly intended to describe the pattern of interactions between
the components. Graph-based representation gives us the insight for large architec-
tural features within a cell and allows us to discovery principles of cellular organiza-
tion [4]. However, it is difficult to handle the dynamics of the whole system since
these models are very abstract. The other extreme primarily focuses on describing the
dynamics of the systems by some kinds of equations which can explain the biochemi-
cal interactions with stochastic kinetics [5, 6]. While these approaches lead to realis-
tic, quantitative modeling on cellular dynamics, the application is limited to the small
systems due to their computational complexities.

One of the appropriate approaches for the pathway structure and dynamics identifi-
cation is S-system [7]. It is represented as a system of ordinary differential equations
which have a particular form, where each component process is characterized by

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 4556, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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power-law functions. S-system is not only general enough to represent any nonlinear
relationship among the components but also able to be mapped onto the network
structure directly. In spite of these advantages, there is a serious drawback which
prevents the S-system from wildly spreading over the systems biology communities.
Its large number of parameters should be estimated for the small number of observed
dynamic trends. Provided that n components such as genes and proteins are involved
in a certain living system, we must optimize at least 2n(n+1) parameters for the S-
system.

Evolutionary computation has been used from its inception for automatic identifica-
tion of a given system or process [8]. For the S-system models, some evolutionary
search techniques have been proposed [9-12]. However, they require the time-
consuming numerical integrations to reproduce dynamic profiles for the fitness
evaluations. To avoid this problem, Almeida and Voit have employed an artificial
neural network (ANN) to smooth the measured data for obtaining slopes of gene ex-
pression level curves [13]. By comparing the slope of each S-system in the population
with the estimated one from ANN, we can evaluate the fitness values of the individu-
als without the computationally expensive numerical integrations of differential equa-
tions. This method also provides the opportunity for a parallel implementation of the
identification task since a tightly coupled system of non-linear differential equations
can be separated. Hence, they are able to reduce the time complexity drastically.
While collocation method [14] can save the computational cost by approximating
dynamic profiles, their estimated systems tend to be invalid since the number of
measured data is usually insufficient. This lack of data problem can be resolved by
sampling new points from the fitted curves. For the well-estimated profiles, however,
we should determine the optimal topology of the artificial neural network such as the
number of hidden units and layers.

In this paper, we propose multi-stage evolutionary algorithms to identify gene regu-
latory networks efficiently. With the symbolic regression by genetic programming
(GP), we could evade the numerical integration steps. Here, we have no need to pre-
determine the topology of the model for the expression profiles since genetic pro-
gramming can optimized the topology automatically. We also develop hybrid evolu-
tionary algorithms to identify the structure of gene regulatory networks and to esti-
mate the corresponding parameters at the same time. Most previous evolutionary
approaches for the S-system identification have used the structural simplification
procedure in which some parameters whose values are less than a given threshold are
reset to zero. Although this method is able to make the network structure sparse, the
true connections which represent somewhat small effect can be deleted during the
procedures. That is, it is not easy to set the suitable value for the threshold. In our
scheme, Binary matrices for a network structure and real vectors and matrices for
parameter values of S-system are combined into a chromosome and co-evolved to
find the best descriptive model for the given data. Hence we can identify the S-system
without specifying the threshold values for the structural simplification. By applying
the proposed method to the artificial gene expression profiles, we successfully identi-
fied the true structure and estimated the reasonable parameter values with the smaller
number of data than the previous study.
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2 Materials and Methods

2.1 S-System

The S-system [7, 15] is a set of nonlinear differential equations described as follows:

n+m n+m

—_aHXg” ﬂHX", i=12,. )

where n is the number of dependent variables whose concentrations X; change dy-
namically according to above equations and m is the number of independent variables
whose concentrations remain constant during the processes. The non-negative pa-
rameters a; and f; are called rate constants. The real-value exponents g; and h; are
kinetic orders to represent the interactive effect of X; to X;. These differential equa-
tions can be divided into two components. The first term represents influences that
increase X; and the second term represents influences that decrease X;. Thus, X; in-
duces the synthesis of X; in case g; > 0, whereas X; inhibits the increase of X; if g; < 0.
Similarly, a positive (negative) value of h; indicates that X; expedites (restrains) the
decline of X;.

We should estimate at least 2n(n+1) parameters even if the values related to the in-
dependent variables are assumed to be known. That is, a;, f;, g;, and h;; are parameters
that must be estimated by evolutionary algorithms (EAs). The generally adopted fit-
ness function for EAs is the sum of relative squared errors:

X, ()—- X(t)
=S 3[Ma)

where T is the number of sampling points for fitness evaluation, X is the measured

data points from the biological experiments and X is the values obtained by the nu-
merical integration step of the S-system in the population.

2.2 Symbolic Regression by Genetic Programming

As we mentioned in the introduction, numerical integration steps for the fitness
evaluations are very time-consuming. To circumvent these processes, we propose 2-
stage evolutionary algorithms for finding the structures and parameters of S-systems.
As a preprocessing step, genetic programming (GP) [16] performs symbolic regres-
sion for the given time-course data. Through this step, we can predict the dynamic
profiles of the given S-system and obtain more data points as well as the derivations
of the point for the second stage of our algorithm. This allows us to get rid of the
numerical integrations in the fitness evaluations. Compared with the study which
employed the artificial neural networks [13], genetic programming has the following
advantages for the curve fitting tasks. First, there is no necessity for adjusting the
number of hidden layers and units. Second, the results of GPs are more understand-
able than those of neural networks since GPs return some mathematical functions
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instead of the illegible graph and a set of weights. Hence, we can easily obtain deriva-
tions of each time point if the result functions of GPs are differentiable.

2.3 Hybrid Evolutionary Algorithms

At the second stage of our evolutionary algorithm, we use a hybrid evolutionary algo-
rithm for searching the structures and parameters of S-system. The whole procedure
of our algorithm is summarized in Fig. 1.

Biochemical Experiment

[ | Biological Periodic measurement

: system
I
Evolutionary algorithms
T T T e r
S-system of Substitution GP Slope of
< —> . .
Belected chromosome e regression line

Estimated slope ——» Evaluation

i — |

Fig. 1. The whole proposed multi-stage evolutionary algorithm for the identification of
S-system

In biochemical experiment step, the dynamic profiles of the involved genes can be
obtained by the periodic measurement. We are also able to predict slopes at each time
point from the regression line of the measured data by genetic programming. Then,
we can evaluate and optimize the chromosomes of evolutionary algorithms by com-
paring the estimated slopes which came from the data substitution into the S-system
with the predicted slopes of the GP regression lines. Hence, the fitness values of each
S-system can be evaluated without the time-consuming numerical integrations as

follows:
Eos ZT:(X(I) X(t)]

i=l t=1 X (t) (3)
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X2 > X3
N S
\ X4

(a) graph representation

dX1:12X0.x_10X0.5 dX2:8XU.5_3X0.75
dt ’ : dt : :
ax dX
dts =3X$’75 _SX;J.SXE.Z dt4 =2X,0'5—6Xf'8
(b) S-system
0010 1000
1000 0100
g= h=
0100 00 1 1
1000 000 1
binary matrices for the structure
120 00 00 -08 00 100 05 00 00 00
8.0 05 00 00 00 30 00 075 00 00
o= g= ﬁ: h=
3.0 00 075 00 00 50 00 00 05 02
20 05 00 00 00 6.0 00 00 00 08

real vectors and matrices for the parameters

(c) the structure of the chromosome

Fig. 2. (a) The true structure of the artificial gene regulatory network (b) S-system representa-
tion (c) The structure of the chromosome in our hybrid evolutionary algorithms

where T is the number of sampling points, X is the gradient of the regression line
obtained by the genetic programming and X" is the calculated value of each equation
in the S-system.

We develop hybrid evolutionary algorithms to identify the structure of gene regula-
tory networks and to estimate the corresponding parameters at the same time. In this
scheme, Binary matrices for a network structure and real vectors and matrices for
parameter values of S-system are combined into a chromosome (Fig. 2) and co-
evolved to find the best descriptive model for the given data. While crossover opera-
tor is applied to binary matrices for searching the structure of the system, their corre-
sponding parameter values also exchanges. This kind of crossover can inherit the
good structures as well as the parameter values in the parents to the offspring. That is,
we use a row exchange crossover which simply selects the row of the matrix g or &
(or both) on the parents, and swaps each other with the parameter values in the real
vectors and matrices. For example, Fig. 3(a) shows the case in which we select the
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second row of g on parents. Mutation operator randomly selects an equation of a par-
ent, and then inserts or deletes a component at the selected parent as shown in Fig.
3(b) and (c). These operators perform the local searches in the structure space. In this
case, the parameter values are randomly generated for the insertion and reset to zero
for the deletion.

0 0 1 0 0 0 0 1
o o op @ 1 0 0P

PLoe=lo 170 ot 2214 0 0 o

1 0 0 O 0 0 1 O

0 0 1 0 0 0 0 1
S s

Ol 2= 100 © #7100 o0

1 0 0 O 0O 0 1 0

(a) crossover (g only)

1 0 0 O

o 0 0 1
parent 8= g—@
0O 110 O

1 00 O

, 0 0w0 1
offspring g = g = @
0O 1 0 O

(b) mutation (insert) (c) mutation (delete)

Fig. 3. Crossover and mutation operators for the binary matrices

We also give some variety to the fitness function in equation (3). In conventional
scheme, all points of data have the same weights on the fitness values. However, it is
difficult to fit the data points which have large second-order differentiation. More-
over, this makes the parameter values of the chromosomes different from the true one
even if they have good fitness values. Thus we multiply the second-order differentia-
tion to each term of evaluation function. The modified fitness function in our algo-
rithm described as follows:

e, (X,0-X0)
o in(t)( X, () j

“4)

where X is the gradient of the GP regression line, X is second-order differentiation
and X' is the calculated value of the each equation in the S-system. By introducing X
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to fitness function, we can obtain better fitness value of true structure than those of
other structures. After the fitness values of the offspring created by the crossover and
mutation according to their probabilities are evaluated by equation (4), parameters in
the real vectors and matrices are adjusted through the (1+1) evolutionary strategy
[17].

We employ the restricted tournament selection (RTS) proposed originally in [18]
to prevent the premature convergence on a local-optimum structure and to find multi-
ple topology candidates. In RTS, a subset of the current population is selected for
each newly created offspring. The size of these subsets is fixed to some constant
called the window size. Then, the new offspring competes with the most similar
member of the subset. Since the window size is set to the population size in our im-
plementation, each offspring is compared with all S-system in the current population.
If the new one is better, it replaces the corresponding individual; otherwise, the new
one is discarded. For the similarity measure, we calculate the structural hamming
distances between the new offspring and all individuals in the population by using the
binary matrices.

3 Experimental Results

3.1 Data

To evaluate the performance of the proposed algorithms, we consider the artificial
gene regulatory network which came from [13]. This gene regulatory network mod-
eled 4 reactants influenced with one another and all reactants are auto-regulated. The
S-system model for the used gene regulatory network is represented in Fig. 2(a) and
(b) and the time-course graph of the given gene regulatory network is represented in
Fig. 4(a). To create artificial time-course profiles, we solve this true S-system with the
initial values, X;(0)=1.4, X,(0)=2.7, X5(0)=1.2, and X,(0)=0.4 by using the 4th-order
Runge-Kutta method. The size of sampled data point is 25 and their time intervals are
0.2 seconds as shown in Fig. 4(b). We set 4 times smaller number of time points than
that of the previous study [13] since it is very difficult to obtain a lot of time-course
data from the real biological measurements.

3.2 Results of the Genetic Programming

We use Frayn’s GPLib library [18] for the symbolic regression with GP. To evolve
the mathematical models for the given data, we use the function set F' = {+, -, X, /, /,
sin, exp, log, sqrt} and terminal set 7 = {¢, R, n}, where R is real constant and ¢ is the
time point. The population size is 3,000 and the maximum number of generations is
2,000. Tournament selection is used and its size is 4. Crossover rate is 0.35 and muta-
tion rate is 0.5. We set the length penalty of the genetic program as zero for the accu-
rate curve fitting. We generate 100 points and derivations from the obtained models
for the input of the next stage, that is, the hybrid evolutionary algorithms.



52

K.-Y. Kim, D.-Y. Cho, and B.-T. Zhang

3.5 T T T T T T
——original X1
ey ——-original X2
ak s~ b original X3/ 4
S ~ original X4
250 A o 1
8 . —— o
= I =X T T
s 2+ , TR S
o —— ISR
= B TR
=Y
8 154, i
E o
AN
-
1t 4
\
\
05 S
. S e oS i S s
[} 0.5 1 1.5 2 25 3 5:0 4 45 L}
Time
(a) original graph
35 T T T T T
.r"’ ’ *\\
3y + Bl
. \_ .
_ 28 A5 e J
- . o
% g \‘\ Freping g i i b S —
= 2 i = T e UG
o ! g ‘_._.ﬁ—"'"_*d ” = -
2 s ——regression line X1
= ¥ regression line X2
@ 135/ regression line X3 |7
E f‘f\ ------ regression line X4
- S, « sampled original X1
Ll = sampled original X2 |7
\.\ = sampled original X3
. « sampled original X4
0.5 e
+
T .
0 1 1 1 1
[} 0.5 1 1.5 2 25 3 5:0 4 45 L}

Time
(b) sample data points and regression results by GP
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Results of the genetic programming step are as follows:

J1(®=(sqrt((((sqrt(((sqrt(2.957153))-((sin(sqrt(#)))+((sin((1.854912)-(((sqrt((3)*(1)))
*(sqrt()))+(4.435898))))+(-2.355442))))*(£)))+((40.675830)/(exp((r) *((sqrt(¢))-
((sin(((sin((((sqrt((3.756391)*(£)))*(sqrt(s)))+(10g(86)))+(7)))+(3))+(sin(sin((1.654737
)*(1))))))+(-2.355442)))))))/(sqrt(54.598150)))/(sqrt(7.931547)))),

So@O=(sqrt(((3.777992)-(((((4.190957)-(())-((sin(((O)*((DND))-(((()*((2.883554)
1((4)-(log(H)))))+(2.791190))-((exp((1)-(2.226704)))*(sqrt(9.642561))))/((1)(1))))
#(2.678347)))/(3.462360))+(3.792098))-(4.796861))/(4)))+(((((3.792098)-((exp(1))

/(3.462360)))-(()*(()™ND)) /(O ONI(()ND))))),

J3(n=((log(log(exp(log(log(exp(exp(((log(exp(m)))-((sin((9)+(((1)+(8.000000))
A(sqrt(1.420245)))))/(((exp(1)*(379.000000))/(84.000000))))-((sin((8)+(((£)
+(((10g(109))-(1.258803))/(6.620476)))\(sqrt(log(4.059461))))))
/(((exp(((8.337047)*((log(log(sqrt(3.021610))))+(2.000000)))-(5.912041)))*(exp(1)))
/(85.000000)))))))))NN(5.933873)),

FAD=((((10g(6.249382))((sqrt(6))*(((sqrt(10.000000))"((1.172486)-(1)))
/(6.981835)))M((1.161464)-((1.161464)/(((((sqrt(6.249382))*((log(7.008566))
#((((((exp((6.980522)/((sqrt(6.288201))7(1.344547)))M((1.735082)~(1)))
/(0.290257))*(sqrt(6.000000)))(((9.704760)7((-0.050358)-()))-(£)))/(0))))
A(1.634223)+((7.277223)M((0.290257)-(£))))MO0.161464))/(£)))))/(6.980522)).

Fig. 4 shows the true profiles and estimated curves and sampled data points from the
genetic programming and we confirm that the GP recover the true dynamics of the S-
system

3.3 Results of the Hybrid Evolutionary Algorithms

Using 100 points obtained from the GP step, we search the S-system by the hybrid
evolutionary algorithms. This step is composed with steady-state evolutionary algo-
rithms with local optimization procedure - (1+1) evolutionary strategy. For the sparse
network structures, we adopt a structural constraint which the evolved networks
should satisfy. That is, each gene is assumed to be related to one or two other genes in
the system. Hence, the randomly generated initial individuals and offspring by cross-
over and mutation operators should have one or two non-zeros elements in g and .
Crossover rate is 0.8 and mutation rate is 0.3. As a local optimization for the parame-
ter values, (1+1) evolutionary strategy is performed for 80 fitness evaluations. The
search ranges of the parameters are [0.0, 15.0] for a; and §;, and [-1.0, 1.0] for g; and
h;. With the population size of 10%, the proposed algorithm successfully identified the
true structure after 10° generation. As shown in Fig. 5, we can also recover the dy-
namic profiles with the estimated parameters.

14.614 00 00 -0623 00
| 8.123 _|0486 0.0 00 00
3.088 §= 00 0761 00 00

2.866 0254 00 00 00
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Fig. 5. The results of the proposed hybrid evolutionary algorithms

4 Conclusion

We propose multi-stage evolutionary algorithms to identify gene regulatory networks
efficiently with the S-system representation. We adopt the pre-processing symbolic
regression step by genetic programming for avoiding the time-consuming numerical
integration. We also develop hybrid genetic algorithms and modify the fitness func-
tion to identify the structure of gene regulatory networks and to estimate the corre-
sponding parameters simultaneously without the threshold values for the sparse net-
work structures. By applying the proposed method to the identification of an artificial
genetic network, we verify its capability of finding the true S-system.

One important future work is to demonstrate the usefulness of the proposed algo-
rithm for real experimental biological data such as the gene expression profiles from
the microarrays and NMR measurements of some metabolites. As the by-product of
the population diversity maintenance of our evolutionary algorithms, we will be able
to attain the different plausible topologies for the network very efficiently. These can
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be reliable candidates to the biologists who want to discover unknown interactions
among some components in the genetic networks.
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Abstract. Infection by the human papillomavirus (HPV) is associated
with the development of cervical cancer. HPV can be classified to high-
and low-risk type according to its malignant potential, and detection of
the risk type is important to understand the mechanisms and diagnose
potential patients. In this paper, we classify the HPV protein sequences
by support vector machines. A string kernel is introduced to discriminate
HPV protein sequences. The kernel emphasizes amino acids pairs with
a distance. In the experiments, our approach is compared with previous
methods in accuracy and F1-score, and it has showed better performance.
Also, the prediction results for unknown HPV types are presented.

1 Introduction

The cervical cancer is a leading cause of cancer death among women worldwide.
Epidemiologic studies have shown that the association of genital human papillo-
mavirus (HPV) with cervical cancer is strong, independent of other risk factors
[1]. HPV infection causes virtually all cases of cervical cancer because certain
high-risk HPV's develop cancer even though most cases of HPV are low-risk and
rarely develop into cancer. Especially, high-risk HPV types could induce more
than 95% of cervical cancer in woman.

The HPV is a relatively small, double-strand DNA tumor virus that belongs
to the papovavirus family (papilloma, polyoma, and simian vacuolating viruses).
More than 100 human types are specific for epithelial cells including skin, respira-
tory mucosa, or the genital tract. And the genital tract HPV types are classified
into two or three types such as low-, intermediate-, and high-risk types by their
relative malignant potential [2]. The common, unifying oncogenic feature of the
vast majority of cervical cancers is the presence of HPV, especially high-risk type
HPV [3]. Thus the risk type detection of HPVs have become one of the most
essential procedures in cervical cancer remedy. Currently, the HPV risk types
are still manually classified by experts, and there is no deterministic method to
expect the risk type for unknown or new HPVs.

Since the HPV classification is important in medical judgments, there have
been many epidemiological and experimental studies to identify HPV risk types
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[3]. Polymerase chain reaction (PCR) is a sensitive technique for the detection of
very small amounts of HPV’s nucleic acids in clinical specimens. It has been used
in most epidemiological studies that have evaluated the role of these viruses in
cervical cancer causation [4]. Bosch et al. [1] investigated epidemiological charac-
teristic that whether the association between HPV infection and cervical cancer
is consistent worldwide in the context of geographic variation. Burk et al. [5] in-
spected the risk factors for HPV infection in 604 young college women through
examining social relationship and detected various factors of HPV infection with
L1 consensus primer PCR and Southern blot hybridization. Mufioz et al. [6] clas-
sified the HPV risk types with epidemiological experiments based on risk factor
analysis. They pooled real data from 1,918 cervical cancer patients and analyzed
it by PCR based assays.

Detection of HPV risk types can be a protein function prediction even though
functions are described at many levels, ranging from biochemical function to bio-
logical processes and pathways, all the way up to the organ or organism level [7].
Many approaches for protein function prediction are based on similarity search
between proteins with known function. The similarity among proteins can be
defined in a multitude of ways [8]: sequence alignment, structure match by com-
mon surface clefts or binding sites, common chemical features, or certain motifs
comparison. However, none of the existing prediction systems can guarantee gen-
erally good performance. Thus it is required to develop classification methods
for HPV risk types. Eom et al. [9] presented a sequence comparison method for
HPYV classification. They use DNA sequences to discriminate risk types based
on genetic algorithms. Joung et al. [10] combined with several methods for the
risk type prediction from protein sequences. Protein sequences are first aligned,
and the subsequences in high-risk HPVs against low-risk HPVs are selected by
hidden Markov models. Then a support vector machine is used to determine the
risk types. The main drawback of this paper is that the method is biased by
one sequence pattern. Alternatively, biomedical literature can be used to predict
HPV risk types [11]. But, text mining approaches have the limitation for predic-
tion capability because they only depend on texts to capture the classification
evidence, and the obvious keywords such as ‘high’ tend to be appeared in the
literature explicitly.

In this paper, we propose a method to classify HPV risk types using pro-
tein sequences. Our approach is based on support vector machines (SVM) to
discriminate low- and high-risk types and a string kernel is introduced to deal
with protein sequences. The string kernel first maps to the space consisting of
all subsequences of amino acids pair. A RBF kernel is then used for nonlinear
mapping into a higher dimensional space and similarity calculation. Especially,
the proposed kernel only uses amino acids of both ends in k-length subsequences
to improve the classification performance. It is motivated by the assumption
that amino acids pairs with certain distance affects the HPV’s biological func-
tion, i.e. risk type, more than consecutive amino acids. The experimental results
show that our approach provides better performance than previous approaches
in accuracy and F1-score.
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Our work addresses how to classify HPV risk types from protein sequences
by SVM approaches, which can provide a guide to determine unknown or new
HPVs. The paper is organized as follows. In Section 2, we explain the SVM
method for classification. Then the string kernel for HPV protein sequence is
presented in Section 3. In Section 4, we present the experimental results and
draw conclusions in Section 5.

2 Support Vector Machine Classifiers

We use support vector machines to classify HPV risk types. A string kernel-based
SVM is trained on HPV protein sequences and tested on unknown sequences.
Support vector machines have been developed by Vapnik to give robust perfor-
mance for classification and regression problems in noisy, complex data [12]. It
has been widely used from text categorization to bioinformatics in recent days.
When it is used for classification problem, a kernel and a set of labeled vectors,
which is marked to positive or negative class are given. The kernel functions in-
troduce nonlinear features in hypothesis space without explicitly requiring non-
linear algorithms. SVMs learn a linear decision boundary in the feature space
mapped by the kernel in order to separate the data into two classes.

For a feature mapping ¢, the training data S = {x;, v}/, is mapped into
the feature space &(S) = {P(x;),yi}1 ;. In the feature space, SVMs learn the
hyperplane f = (w,®(x)) + byw € RY b € R, and the decision is made by
sgn({w,®(x)) + b). The decision boundary is the hyperplane f = 0 and its
margin is 1/||wl||. SVMs find a hyperplane that has the maximal margin from
each class among normalized hyperplanes.

To find the optimal hyperplane, it can be formulated as the following problem:

1
minimize 2||w||2 (1)
subject to y;((w,P(x;)) +b) >1, i=1,...,n. (2)
By introducing Lagrange multipliers ai; > 0, ¢ = 1,...,n, we get the following

dual optimization problem:

maximize Za, Zzaza]yzy] )gﬁ( )> (3>

=1 i=1 j=1
subject to a; >0, i=1,...,n, (4)

n
Zaiyi =0. (5)
i=1

By solving this dual problem, one obtains optimal solution «;,1 < i < n,
which needs to determine the parameters (w, b). For the solution «;, ..., a,, the
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nonlinear decision function f(x) is expressed in terms of the following
parameters:

f(x) = sgn (Z aiyi (P(x), D(xi)) + b) (6)

= sgn (Z OéiyiK(X, Xi) + b) . (7)
i=1

We can work on the feature space by using kernel functions, and any kernel
function K satisfying Mercer’s condition can be used.

3 Kernel Function

For HPV protein classification, we introduce a string kernel based on the spec-
trum kernel method. The spectrum kernel was used to detect remote homology
detection [13][14]. The input space X consists of all finite length sequences of
characters from an alphabet A of size |A| =1 (I = 20 for amino acids). Given
a number k > 1, the k-spectrum of a protein sequence is the set of all possible
k-length subsequences (k-mers) that it contains. The feature map is indexed by
all possible subsequences a of length k from A. The k-spectrum feature map
@i (x) from X to R can be defined as:

P () = (¢a(7))acar- (®)

where ¢,(z) = number of occurrences of a occurs in . Thus the k-spectrum
kernel function K*(z;, ;) for two sequences x; and z; is obtained by taking the
inner product in feature space:

Ki (@i, x5) = (P (i), P () 9)

To fit in with HPV risk type classification, we want to modify the spectrum
kernel. Proteins are linear chains of amino acids, which are made during the
process of translation, and it is called primary structure. The natural shape of
proteins are not such as straight lines, rather 3-dimensional structures formed by
protein folding, which is a consequence of the primary structure. The structure
of a similar homologous sequence can be helpful to identify the tertiary structure
of the given sequence. Here, we assume that the amino acids pair with certain
distance affect HPV’s risk type function more than consecutive amino acids
according to its 3-dimensional structure property, and the HPV risk types can
be identified by the amino acids pair with a fixed distance, which mostly influence
on risk type decision. This assumption is somewhat rough, but it can be useful
for relatively short and «a helix-dominant sequences.

Under the assumption, we want to define a string kernel, the gap-spectrum
kernel based on k-spectrum. For a fixed k-mer a = ajas ... ax, a; € A, 2-length
sequence 3 = ajax, 3 € A% 3 indicates the amino acids pair with (k-2) gap.
The feature map W (x) is defined as:
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Table 1. The manually classified risk types of 72 HPVs

Type Class Type Class Type Class Type Class
HPV1 Low HPV20  Low HPV38  Low HPV57 ?
HPV2 Low HPV21 Low HPV39 High HPV58 High
HPV3 Low HPV22 Low HPV40 Low HPV59 High
HPV4 Low HPV23  Low HPV41 Low HPV60  Low
HPV5 Low HPV24 Low HPV42 Low HPV61 High
HPV6 Low HPV25  Low HPV43  Low HPV63  Low
HPVT Low HPV26 ? HPV44  Low HPV65  Low
HPVS Low HPV27 Low HPV45 High HPV66 High
HPV9 Low HPV28 Low HPV47 Low HPV67 High
HPV10  Low HPV29  Low HPV48  Low HPV68  High
HPV11 Low HPV30 Low HPV49  Low HPV70 ?
HPV12 Low HPV31 High HPV50 Low HPV72 High
HPV13  Low HPV32  Low HPV51  High HPV73  Low
HPV15 Low HPV33 High HPV52 High HPVT74 Low
HPV16  High HPV34  Low HPV53  Low HPV75  Low
HPV17  Low HPV35  High HPV54 ? HPV7T6  Low
HPV18  High HPV36 Low HPV55 Low HPVTT Low
HPV19  Low HPV37  Low HPV56  High HPV80  Low

V() = (¢5()) penz- (10)

where ¢g(z) = number of occurrences of # occurs in z. Furthermore a nonlinear
kernel function, RBF kernel is appended to increase the discrimination ability
between HPV risk types. By closure properties of kernels [15], the gap-spectrum
kernel is defined as follows:

Ky (2i, ;) = K' (W (1), Pr(z5)) (11)
= exp (=W (z:) — Wi (2)|7) - (12)

where v > 0. This string kernel is used in combination with the SVM explained
in Section 2.

4 Experimental Results

4.1 Data Set

In this paper, we use the HPV sequence database in Los Alamos National Lab-
oratory (LANL) [16], and total 72 types of HPV are used for experiments. The
risk types of HPVs were determined based on the HPV compendium (1997). If
a HPV belongs to skin-related or cutaneous groups, the HPV is classified into
low-risk type. On the other hand, a HPV is classified as a high-risk if it is known
to be high-risk type for cervical cancer. The comments in LANL database are
used to decide risk types for some HPVs, which are difficult to be classified.
Seventeen sequences out of 72 HPVs were classified as high-risk types (16, 18,
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Accuracy

Window size

Fig. 1. SVM classification performance by window size

31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 61, 66, 67, 68, and 72), and others were
classified as low-risk types. Table 1 shows the HPV types and their classified
risk type. The symbol ‘7’ in the table denotes unknown risk type that cannot be
determined.

Since several proteins can be applied to discriminate HPVs, we have evalu-
ated the classification accuracy using the SVM with RBF kernel to determine the
gene products to be used for the experiments. The input data is the normalized
frequency vector by sliding window method. It has been performed to decide the
most informative protein among gene products for HPV risk type classification.
Figure 1 depicts the accuracy changes by window size for E6, E7, and L1 pro-
teins. The accuracy is the result of leave-one-out cross-validation. It indicates
that the accuracy using E6 protein is mostly higher than using E7 and L1 pro-
teins. However, the overall accuracy gets high by increasing window size for all
proteins because the HPV sequences are relatively short and unique patterns are
more generated when window size is long. That is, the learners overfit protein
sequences for long window size. Viral early proteins E6 and E7 are known for
inducing immortalization and transformation in rodent and human cell types.
E6 proteins produced by the high-risk HPV types can bind to and inactivate
the tumor suppressor protein, thus facilitating tumor progression [16][17]. This
process plays an important role in the development of cervical cancer. For these
reasons, we have chosen E6 protein sequences corresponding to the 72 HPVs.

4.2 Evaluation Measure

For the HPV prediction, it is important to get high-risk HPVs as many as
possible, although a few low-risk HPVs are misclassified, hence we evaluate the
system performance using F1-score rather than Matthews correlation coefficient.
F1-score is a performance measure usually used for information retrieval systems,
and it is effective to evaluate how well the classifier did when it assigned classes
such as high-risk type.
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Table 2. The contingency table to evaluate the classification performance

Risk type answer

High Low
Prediction High a b
result Low c d

When binary scales are used for both answer and prediction, a contingency
table is established showing how the data set is divided by these two measures
(Table 2). By the table, the classification performance is measured as follows:

isi ¢ 100%
TECLSI0N — .
p a-+b ¢

recall = -100%
a+c

2 - precision - recall
F1— score = . .
precision + recall

4.3 HPYV Classification

We have tested the gap-spectrum SVM method using E6 protein sequences.
Leave-one-out cross-validation is used to determine the classification perfor-
mance. Figure 2 shows the accuracy changes according to k£ given in Equation
(12). The graph shows the accuracy has the highest performance (97.22%) when
k = 4, and the performance is decreases as it gets more or less k. k = 4 means
that we only use the amino acids pairs which have two gaps between them for
HPV classification. k = 2 is exactly same as the SVM using RBF kernel with
2-spectrum method, and the accuracy is 94.44% for k = 2. Even though it gives
higher score than other methods as shown in Figure 3, the kernel methods with
k > 2 still gives better performance. As a result, the amino acids pair with a
distance can provide more evidence than consecutive amino acids to discriminate
low- and high-risk HPV proteins.

The final classification performance in accuracy and F1-score is given in Figure
3. It compares with previous results using SVM approaches based on sequence
alignment and text mining approaches. The SVM method which utilizes align-
ment information has been reported in [10]. AdaCost and naive Bayes are text
mining methods using HPV literature data, which have been reported in [11].
Our approach shows 97.22% of accuracy and 95.00% of F1-score, while previous
SVM method shows 93.15% of accuracy and 85.71% of Fl-score. For text-based
classification, the AdaCost method shows 93.05% of accuracy and 86.49% of
Fl-score, and the naive Bayes method shows 81.94% of accuracy and 63.64%
of Fl-score. Additionally, the accuracy obtained from the DNA sequence-based
method [9] is 85.64%. It is interesting that it gets relatively higher score in F1-
score than in accuracy. Fl-score is related with the number of high-risk HPVs
found by classifiers, while accuracy is related with the number of HPVs which is
correctly classified. Therefore, F1-score is more important than accuracy in this
task.
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Accuracy

Fig. 2. Accuracy changes by the gap-spectrum kernel

100 T T T T 100
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Fig. 3. The performance comparison of proposed approaches and previous classification
methods

Text mining approaches only depend on the clues from text sentences. If the
text documents are unavailable for unknown HPVs, there is no way to clas-
sify them, whereas the sequence-based classification does not need to use any
additional information except sequence itself.

Table 3 shows the risk type prediction for HPVs marked as unknown in Ta-
ble 1. HPV26, HPV54, HPV57, and HPV70 are predicted as high-, low-, low-,
and high-risk, respectively. The prediction results for HPV26 and HPV54 are
identical to the one in Mufioz et al. [6], and we assume that their results are cor-
rect because it is based on epidemiologic classification from over 1,900 patients.
For HPV70, there are different decisions for the risk type according to previous
research [6][18][19], and the risk type of HPV57 cannot be decided yet because
of insufficient previous works. By the prediction results, we can conclude our
approach provides certain probability for whether unknown HPVs are high-risk
or not.
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Table 3. Predicted risk type for unknown HPVs

Type HPV26 HPV54 HPV57 HPV70
Risk High Low Low High

5 Conclusion

We have presented a machine learning approach to classify HPV risk types.
Our method uses the SVM classifier with the gap-spectrum kernel based on k-
spectrum methods. The proposed kernel is designed to emphasize amino acids
pair with a fixed distance, which can be suitable for relatively short and «
helix-dominant sequences. For the experiments, the performance has been mea-
sured based on leave-one-out cross-validation. According to experimental results,
amino acids pair with a fixed distance provides good performance to discriminate
HPYV proteins by its risk. Especially, it is important not to have false negatives
as many as possible in this task. Therefore F1-score is important because it con-
siders both precision and recall based on high-risk type. Our approach shows
significant improvement in Fl-score as compared with previous methods, and
the prediction for unknown HPV types has given promising results. We can con-
clude that the relationship between amino acids with £ = 4 supports important
role to divide low- and high-risk function in HPV E6 proteins.

In this paper, we consider all protein subsequences equally. Even though SVMs
naturally detect the important factors in a high-dimensional space, it is necessary
to analyze what components are more informative for HPV risk types. Also,
protein structure or biological literature information can be combined with this
method for more accurate prediction. Thus, study on exploring efficient analysis
method remains as future works.
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Abstract. In this paper, we introduce a novel objective function for the
hierarchical clustering of data from distance matrices, a very relevant
task in Bioinformatics. To test the robustness of the method, we test it
in two areas: (a) the problem of deriving a phylogeny of languages and
(b) subtype cancer classification from microarray data. For comparison
purposes, we also consider both the use of ultrametric trees (generated
via a two-phase evolutionary approach that creates a large number of
hypothesis trees, and then takes a consensus), and the best-known results
from the literature.

We used a dataset of measured ’separation time’ among 84 Indo-
European languages. The hierarchy we produce agrees very well with
existing data about these languages across a wide range of levels, and
it helps to clarify and raise new hypothesis about the evolution of these
languages.

Our method also generated a classification tree for the different can-
cers in the NCI60 microarray dataset (comprising gene expression data
for 60 cancer cell lines). In this case, the method seems to support the
current belief about the heterogeneous nature of the ovarian, breast and
non-small-lung cancer, as opposed to the relative homogeneity of other
types of cancer. However, our method reveals a close relationship of the
melanoma and CNS cell-lines. This is in correspondence with the fact
that metastatic melanoma first appears in central nervous system (CNS).

1 Introduction

A large number of articles in bioinformatics use single-objective unsupervised
hierarchical clustering algorithms to identify “subtypes”. Biologically-oriented
journals, in general, have low requirements in terms of algorithmic reproducibil-
ity. The validation of the algorithms used in different problem scenarios is either
poor or non-existing. Working on a dataset of measured separation times be-
tween 84 Indo-European languages we started to notice the deficiencies of a
large number of hierarchical clustering schemes. The same problems occur when
analyzing datasets derived from mitochondrial DNA distances among species [1].

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 67-78, 2006.
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In this paper, we pose the clustering problem as a graph optimization problem
and propose a novel objective function which performs very well in diverse types
of datasets. We start with a distance matrix for a set of objects and compute
a weighted graph in which vertices represent objects and edges are weighted by
the distance between the corresponding vertices. Then our objective function
tries to obtain a solution whose fitness is maximal and proportional to the sum
of the weights on the edges between two sets of vertices, and to the sum of
the reciprocals of the weights on the edges inside the sets. We denote this as
arithmetic-harmonic cut. The recursive application of such cuts generates a tree-
based classification of the data. While our primary concern is the classification of
microarray data, we are also interested in testing the robustness of the approach,
validating it in other domains. For this purpose, we show results for two different
datasets: (a) a dataset for 84 Indo-European languages, and (b) a dataset for
60 cancerous cell-lines (NCI60). Next section will provide more details on the
algorithmic methods we have used.

2 Hierarchical Clustering Methods Considered

In addition to the clustering solutions available in the literature for the datasets
considered, we have used two unsupervised techniques for computing alternative
solutions. The first one is based on arithmetic-harmonic cuts, and the second
one relies on the utilization of ultrametric trees. These will be described below.

2.1 Arithmetic-Harmonic Cuts

The method of arithmetic-harmonic cuts approaches the construction of the
hierarchy in a top-down fashion. To be precise, it can be described as a recur-
sive process in which we solve a graph optimization problem at each step. Let
G(E,V,W) be an undirected, complete weighted graph with no self-loops and
such that the weight of any edge is a positive integer number (i.e., w(e) > 0)
representing distance or some measure of dissimilarity between a pair of objects.
We first find a partition of the set V' of vertices into {5, V'\ S}, which generates a
partition of the set E of edges in two sets E;;, and F,,;:. The set F,,; C E is the
set of edges that link a vertex in S and a vertex in V'\ S (similarly, E;, = E\ Epu:
is the set of edges connecting vertices in the same partition). Such a partition is
defined by maximizing the following objective function

F= ( ) w<e>> (Z 1/w<e>> (1)

e€FEqut e€E;n

We have implemented an exact backtracking algorithm and also a memetic al-
gorithm (similar to the work of Merz and Freisleben [2] for GRAPH BIPARTI-
TIONING) as a meta-heuristic to calculate the best partitioning of the vertices
for a given graph. The difference with respect to [2] is that we remove the con-
straint of equal partitioning of the graph in our memetic algorithm. Thus, the
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memetic algorithm uses (a) a differential greedy algorithm (similar to that in [3])
for initialization of a set of solutions for the problem, (b) a differential greedy
crossover (a modification of the algorithm in [2]) for evolution of the population,
and (c) a variable neighborhood local search (see [4]) to improve the newly gen-
erated solutions. Whenever the population stagnates, we keep the best solution
and re-initialize the rest of solutions in the set. We use this memetic algorithm
if the graph contains more than 25 vertices, and a backtracking enumeration
algorithm otherwise. Notice that even though backtracking gives us an optimal
solution, a memetic algorithm may not. However, in the considered datasets, the
memetic algorithm consistently generated the same solution in all runs (thus it
is presumably optimal). By applying this method (backtracking or memetic al-
gorithm depending on the number of vertices) recursively, we have at each step a
graph as input, and the two subgraphs induced by each of the sets of the vertex
partition as output; stopping when we arrive to a graph with just one vertex,
we generate a hierarchical clustering in a top-down fashion.

The rationale of the use of our objective function can be clear if we rearrange
its terms. We can write

F = 0B~ | Boue]) B 2
i

where A,y is the arithmetic mean of the weights that connect vertices of S
with V'\ S (the cut); H;j, is the harmonic mean of the weights of the edges not
in the cut, and |E,,;| is the cardinality of the cut. Informally, maximizing F is
equivalent to try to find a cut that discriminates well the two groups, normalized
by the harmonic mean of the intra-cluster dissimilarity, and multiplied by a
factor that is maximum when the two groups have a similar number of elements.
Normalizing by the harmonic mean allows the denominator being more stable
to the presence of outlier samples when associated to either V or V'\ S. For this
reason, we denote this partition as arithmetic-harmonic cut.

Notice that maximizing the first part of the objective function, i.e.,
> ecr,,, w(e) (the total weights of edges across the two sets) is the same as
solving the MAX-CuUT problem for graph G, which is a N P-hard problem. How-
ever, it turns out that the hierarchy generated by partitions using MAx-CuT
does not corroborate the previous knowledge about the datasets. This is prob-
ably due to the fact that no importance is given in MAX-CUT to the similarity
of vertices within the sets. We also considered the objective function

F = Z w(e) — Z w(e) (3)
e€Eout e€E;n

However, the resulting partition by maximizing F’ turns out to be no better
than the partition obtained from MAX-CuT.

2.2 Ultrametric Trees

Ultrametric trees constitute a very amenable approach for fitting distance ma-
trices to trees. In essence, an ultrametric tree T is a weighted tree in which the
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distance D;; between any two leaves ¢ and j (measured as the sum of the weights
of the edges that have to be traversed to reach ¢ from j inside T') verifies that
D;; < max{D;x,Djr}, 1 < 4,4,k < n, where n is the number of leaves. This
equation implies that given any internal node h in 7', it holds that Dp; = Dy
for any leaves 7, j having h as ancestor.

The use of ultrametric trees has several advantages in hierarchical classifica-
tion. First of all, edge weights are very easy to compute: given a distance matrix
M containing dissimilarity values for a collection of objects, and a candidate
tree T, the minimum weights such that D;; > M;; and T is ultrametric can be
computed in O(n?) [5]. Secondly, they adapt very well to dynamical processes
evolving at a more or less constant rate. Finally, even if the latter is not the case,
they provide a very good approximation to more relaxed criteria such as mere
additivity, that would be much more computationally expensive to calculate.
Notice also that finding the optimal topology T for a given distance matrix M
under the ultrametric assumption is NP-hard [5].

Ultrametric trees have been computed using an evolutionary two-phase pro-
cedure: firstly, a collection of high quality tentative trees are generated; subse-
quently, a consensus method is used to summarize this collection into a single
tree. Beginning with the former, the generation of high quality (i.e., minimum
weight) ultrametric trees has been approached using an evolutionary algorithm
based on the scatter search template. Starting from the solution provided by the
complete-link agglomerative algorithm, an initial population of trees is produced
by perturbation (internal exchanges of branches). Then, an evolutionary cycle
is performed using tree-based path relinking for recombination [6], and internal
rotations for local search (no mutation is used). Whenever the system stagnates,
the population is restarted by keeping the best solution and generating new trees
by exchanging branches among existing trees.

Once a collection of high quality trees has been found, the consensus method
is used to amalgamate them. This is done using the TreeRank measure [7] as
similarity metric among trees. This measure is based on counting the number of
times we have to traverse an edge upwards or downwards in order to go from a
certain leaf to another one. By computing how different these figures are for two
trees, we obtain a dissimilarity value. The TreeRank measure is currently being
used in TreeBASE! —one of the most widely used phylogenetic databases— for
the purposes of handling queries for similar trees.

The consensus algorithm we have used is an evolutionary metaheuristic that
evolves tentative trees following [8]. Given the collection of trees we want to
summarize, the sum of dissimilarities to the tentative tree is used as the fitness
function (to be minimized). Evolution is performed using the prune-delete-graft
operator [9,10] for recombination, no mutation, binary tournament selection,
and elitist replacement. In our experiments, we have considered all different
trees generated by the scatter search method in one hundred runs, and then
running the consensus algorithm one hundred times on this collection. The best
solution out of these latter 100 runs is kept as the final consensus tree.

! http://www.treebase.org
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3 Classifying Indo-European Languages

Two major hypotheses exist about the origin of Indo-European languages: the
‘Kurgan expansion’ and the ‘Anatolian farming’ hypotheses. Based on archae-
ological evidences, the Kurgan theory [11] says that Kurgan horsemen (near
current Russia) went to Europe and the Near East around 6000 years B.C.
On the other hand, the Anatolian theory [12] claims that Indo-European lan-
guages expanded with the spread of agriculture from Anatolia (present Turkey)
around 8000-9500 years B.C. Scientists have used genetic [13, 14, 15] and numer-
ical [16,17] methods to complete the linguistic phylogeny of the Indo-European
languages. However, there are still some doubts about its exact topology.

The dataset we analyse is the distance-matrix for 84 Indo-European languages
generated by Dyen et al. [18]. They used a list of basic vocabulary and estimated
historical relationships (similarity) between two languages by computing the ra-
tio of number of words (cognates) shared by them and the total number of words.
Furthermore, one also considers the replacement rates of each word in the vocab-
ulary. By considering the above ratio and replacement rates, they generated the
so-called “separation time” between pairs of languages, which they provided as
a distance-matrix of 84 languages. This dataset is the same that was used in [17]
where the neighbor-net analysis method provided some hints on possible lat-
eral information transfer while still provide an overall hierarchical relationships
among the languages.

Gray and Atkinson used a Bayesian Markov chain Monte Carlo method to
generate and analyze a large number of (10000) tentative trees [16]. Although
their method is in remarkable agreement with the timing of the Anatolian hy-
pothesis, the method also shows how much uncertainty still exists to validate
some subtrees. The posterior probability of some subtrees can be as low as 0.36
in some cases, e.g., in dividing a sub-tree into Indo-Iranian and Albanian lan-
guages, and 0.4 in dividing the Greek and Armenian groups from the most of the
languages (with the exception of the Tocharian and the Hittite, extinct languages
introduced by authors to the original dataset by Dyer et al.) [18].

We have applied our method of arithmetic-harmonic cut to Dyen et al.’s
dataset. The language tree we have obtained using this cut is shown in Fig. 1(a).
As it can be seen, this method separates the relatively older languages (a Greco-
Armenian-Albanian-Indo-Iranian group) from the relatively newer languages
(a Celtic-Slavic-Germanic-Romanic group). Unlike our tree, the tree in [16]
(see Fig. 1(b)) first separated the extinct Tocharians, Hittite, and the Greco-
Armenian group languages from the rest. Their tree had the Albanian branch
together with the Indo-Iranian group. We note that the resulting subtree of Indo-
Iranian-Albanian languages are divided with only 0.36 bayesian posterior prob-
ability. This raises a concern, as it may be the case that Indo-Iranian-Albanian
languages are older than what was claimed in [16] and they are more suited to
be temporally closer to the Greco-Armenian languages. In fact, the work in [17]
with neighbor-net analysis has produced a network with Albanians very close
to the Greco-Armenian languages. Thus, our topology for the main divisions
seem reasonable and is in closer relationship with the spread of farming from
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the Middle East between 10,000 and 6,000 years ago, which also correlates well
with the first principal component of the genetic variation of 95 polymorphisms
[19], which solely accounts for 28 % of the total variation.
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In addition to this fact, there are certain strange relations between languages
at the leaves of Gray’s tree. After checking the distance matrix, we find several
cases in which our tree seems to produce a more reasonable branching than Gray
and Atkinson’s. First of all, the closest neighbor of Czech and Slovak languages
are Lusatian languages. It is probably natural to have Czech, CzechE and Slo-
vak placed in a subtree closer to Lusatian languages. In the trees generated from
both arithmetic-harmonic cut (Fig. 1(a)) and the ultrametric trees (Fig. 1(c)),
we see that these languages are placed next to each other. However in Fig. 1(b)
generated by [16], Czech and Slovak are placed closer to Ukrainian, Byelorussian
and Russian. Secondly, Catalan is a language evolved from Latin, with strong
influences from French and Spanish. As a consequence of its Latin origin, Italian
is the closest language of Catalan in the dataset. The position of Catalan with
Italian and Ladin in our tree seems very natural, as hybridizations with French
and Spanish occurred later (note that the bayesian posterior probability is 0.83
for its link with the Spanish-Portuguese group). See [16] for the details of proba-
bilities in the Figure 1(b). Although Italian’s closest language is Ladin, the latter
was placed closer to RomanianList and Vlach with the posterior probability of
0.88. Also, notice the position of the Italian with 0.59 posterior probability. Fi-
nally, there are also small differences in the topology of small subtrees between
our hierarchy and Gray’s, namely, those regarding Dutchlist-Afrikaans-Flemish,
Greek languages, Albanian languages and the position of Bengali in the Aryan
languages among others. The differences seem to occur mainly where the poste-
rior probability of one or several branchings is low.

An important difference is that in our classification the Celtic languages are
considered closer to Baltic-Slavic languages. This goes against the current be-
lief of Celtic’s closeness to Romanic and Germanic languages. Note that in
Gray and Atkinson’s classification, the branchings of (Germanic,Romance) and
(Celtic,(Germanic,Romance)) have low posterior probabilities (0.46 and 0.67, re-
spectively). The minimum-weight ultrametric tree (see Fig. 1(c)) for this dataset
also considers Celtic and Slavic languages to be the closest ones as groups. How-
ever, this tree disagrees with our tree in the primary branches. For instance, it
first takes out Indo-Afghan languages as outliers, then considers Albanian and
Greco-Armenian languages as outliers successively. In the tree obtained by the
arithmetic-harmonic cut, all these outliers are grouped together. Notice that
even at the successive branchings, the consensus ultrametric tree often produces
a large number of outliers (see e.g., Indic and Iranian branches of Figure 1(c)).

4 A Molecular Classification of 60 Tumors

Validation of our methodology on the languages dataset has allowed us to have
confidence in applying it in our primary problem domain, classification of cancer
samples. In this section, we show how our partitioning algorithm finds subtypes
of human cancers. We study a dataset from 60 tumor cell-lines used in National
Cancer Institute’s (NCI) screen for anti-cancer drugs. We use the gene expression
of these cell lines given as a cDNA microarray with 6,830 genes for each cell-line.
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Fig.2. (a) Classification of NCI60 dataset using arithmetic-harmonic cuts. Genetic
signatures with (b) 1101 genes for the first partition into Node 1 and Node 2, (c) 695
genes for the second partition into Node 3 and Node 4, and (d) 696 genes for the third
partition into Node 5 and Node 6.

The analysis of this dataset was done by Ross et al. in 2000 [20], where a result
of a hierarchical clustering for this dataset was first discussed. Their result shows
that the cell lines from same origin were grouped together in case of leukaemia,
melanoma, colon, renal and ovarian cancers, with a few exceptions. However, cell-
lines derived from non-small lung carcinoma and breast tumors were distributed
in multiple places suggesting a heterogeneous nature.

Fig. 2(a) shows the result of applying arithmetic-harmonic cut on this dataset.
In Fig. 2(b),(c) and (d), we show the genetic signatures (most differentially
expressed genes in the two sides of the partition) of the first three partitions
using the cut with 1,101, 696 and 695 genes respectively. In the genetic signatures
(computed with the method described in [21] and [22]), each row corresponds to
a gene and each column corresponds to a tumor sample.
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We will now compare the hierarchy generated by arithmetic-harmonic cuts
to Ross et al.’s classification tree and the consensus ultrametric tree, shown in
Fig. 3. All clustering methods agree in the fact that some of the tumors, (e.g.,
leukaemia, renal, melanoma, central nervous system) are relatively homogeneous,
i.e., most samples of these tumors are grouped together with a few exceptions.
However, in Ross et al.’s solution and in the ultrametric tree, all melanoma
samples except LOXIMVT are grouped with colon and leukaemia tumors (see the
lower branches of both trees in Figure 3), whereas arithmetic-harmonic cut shows
a marked difference in the first division. It groups all melanoma tumor samples
(including LOXIMVI) with CNS (Central Nervous System), renal, ovarian and
some of the breast and lung tumor samples (see Node 2 in Fig. 2(a)). Since
CNS is the closest group to the melanoma samples in this figure, we may infer
that this clustering supports the hypothesis that central nervous system (CNS)
and melanoma may share important genetic pathways with similar expression.
We note that CNS is a favorite site of metastasis in patients with advanced
melanoma and that it is the first site of relapse in 15 — 20% of melanoma cases
[23,24]. Also notice that CNS metastases from melanoma and renal tumors are
also often misdiagnosed as primary brain tumors [25]. However, our literature
survey did not reveal a close relationship of melanoma with colon or leukaemia,
as compared to its relation with CNS.

The three methods, however, behave slightly differently in clustering non-
small-lung, breast and ovarian tumors. First of all, all clustering methods applied
on NCI60 group together ovarian tumor samples OVCAR-3, OVCARO4 and
IGROV1. However, the positions of OVCAR-5, SK-OV-3 and OVCAR-8 differ
in the outcomes of the different methods suggesting a possible heterogeneity of
ovarian tumors. Also, it was suggested by Perou et al. [26] that there are 6 types
of breast-cancers. All clustering methods more or less agree with the fact that the
breast tumors (HS-578T, BT-549, MDA-MB-231, MCF7, T-47D, MDA-MB435,
MDAN) are scattered in 4-5 places. In all methods, breast tumors HS-578T,
BT-549 and MDA-MB231 are together with CNS/renal tumor samples; MCF7
and T-47D tumors are clustered with colon tumors; MDA-N and MDA-MB435
tumors are grouped with melanoma tumor samples. This is a definite indication
that the breast cancer is a heterogeneous disease. Similarly, small-lung-cancer
samples are distributed in all the three methods.

In the above comparison, we need to remember that ultrametric trees are
largely used in cladistics, and assume that all species evolve at a constant rate
(cf. Sect. 2). Such an assumption suits rather well the universe of languages
(they evolve according to mutual contact between sub-populations, assimilating
the words or phonemes from each other). However, unlike biological beings like
bacteria or more complex life forms, the tumor cell-lines do not have a common
ancestor. Tumors are defects in DNA, which cause malignant cell proliferation.
Thus, the ultrametric approach may be susceptible to errors in the classifica-
tion of cancer samples. Therefore, the position of melanoma samples in the tree
produced by the arithmetic-harmonic cut should not be considered incorrect.
Actually, the position of melanoma with CNS suggests an interesting quest, that
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Fig. 3. Classification of NCI60 Dataset from (a) Ross et al. and (b) ultrametric tree

of finding common activated genetic pathways, as it is known that the brain is a
primary point of metastasis to an individual with melanoma condition [23, 24].

5 Conclusions

We proposed two new approaches for hierarchical clustering and showed the
result of applying these methods on two very diverse datasets. The hierarchies
we produce for both languages and cancer samples in this method agree very well
with existing data about these datasets. It also raises some interesting questions.
The arithmetic-harmonic cut seems to correlate well with the results of the
first component of the genetic variation provided by Cavalli-Sforza and his co-
authors [19]. It indicates a branching in two major groups, with an earlier group
“moving” towards Europe (actually, the advanced farming hypothesis at work),
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later followed by another group moving in the same direction (evolving in Greek
and Albanian and Armenian languages) while another group “moved” south-
east and later differentiated in Iranian and Indic languages. It also suggest a
commonality of Celtic, Baltic and Slavic (a hypothesis also raised in the past,
and also supported by the consensus of the ultrametric trees). These differences,
as well as small others, with the solution provided by Gray and Atkinson’s
seem to be in branchings where the bayesian posterior probability is low, and
our methods agree where the posterior probability is high. The consensus of
the ultrametric trees seem to suggest a single wave towards Europe, but a first
branching in an Albanian group, followed by a second branching with the Greek
and Armenian in one subgroup seems less plausible to us.

Overall, our results seem to indicate that it is important to use several hier-
archical clustering algorithms and to analyze common subgroupings. In the case
of tumor samples, it is indeed the case that this is the most relevant outcome as
we do not have any guarantee that the samples “share” a common “ancestor”.
The question: “Which tree is the best one ?”7 might actually be highly irrele-
vant to the the real problem at hand, as it seems to be the consensus of these
trees the most important outcome. Results on a number of other clustering al-
gorithms on these datasets (which we were unable to show here for reasons of
space), indicates that more research in robust algorithm methods needs to be
done for molecular subtype classification in cancer and that validation of the
methodology with different problem settings is highly beneficial to develop it.
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Abstract. Computational analysis of mass spectrometric (MS) pro-
teomic data from sera is of potential relevance for diagnosis, progno-
sis, choice of therapy, and study of disease activity. To this aim, feature
selection techniques based on machine learning can be applied for de-
tecting potential biomarkes and biomaker patterns. A key issue concerns
the interpretability and robustness of the output results given by such
techniques. In this paper we propose a robust method for feature se-
lection with MS proteomic data. The method consists of the sequentail
application of a filter feature selection algorithm, RELIEF, followed by
multiple runs of a wrapper feature selection technique based on support
vector machines (SVM), where each run is obtained by changing the
class label of one support vector. Frequencies of features selected over
the runs are used to identify features which are robust with respect to
perturbations of the data. This method is tested on a dataset produced
by a specific MS technique, called MALDI-TOF MS. Two classes have
been artificially generated by spiking. Moreover, the samples have been
collected at different storage durations. Leave-one-out cross validation
(LOOCYV) applied to the resulting dataset, indicates that the proposed
feature selection method is capable of identifying highly discriminatory
proteomic patterns.

1 Introduction

Feature selection (FS) for classification can be formulated as a combinatorial
optimization problem: finding the feature set maximizing the predictive perfor-
mance of the classifier trained from these features. F'S is a major research topic
in supervised learning and data mining [10, 16, 12]. For the sake of the learning
performance, it is highly desirable to discard irrelevant features prior to learn-
ing, especially when the number of available features significantly outnumbers
the number of samples, like in biomedical studies. Because of its computational
intractability, the FS problem has been tackled by means of heuristic algorithms
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based on statistics and machine learning [10, 20, 22]. Biological experiments from
laboratory technologies like microarray and mass spectrometry techniques, gen-
erate data with a very high number of variables (features), in general much
larger than the number of samples. Therefore F'S provides a fundamental step in
the analysis of such type of data [27]. Ideally one would like to detect potential
biomarkers and biomarker patterns, that both highly discriminate diseased from
healthy samples and are biological interpretable. However, as substantiated in
recent publications like [19,3,21], reliability and reproducibility of results de-
pend on the particular way samples are handled [26], on the instability of the
laboratory technology, as well as on the specific techniques employed in the
computational analysis.

In this paper we consider FS for classification with MS proteomic data from
sera. Various machine learning and statistical techniques for feature selection
have been applied to proteomic data, like [15,17,8,13,5,6, 7], in order to detect
potential tumor biomarkers for (early) cancer diagnosis (clinical proteomics). A
summary of actual challenges and critical assessment of clinical proteomics can
be found, e.g., in [21].

Here we propose a new method for FS with MS proteomic data. The goal is to
identify potential biomarker patterns that not only highly discriminate diseased
and healthy samples, but also are robust with respect to perturbation of the data.
The method consists of three main steps. First, a popular filter feature selection
algorithm, RELIEF, is used as pre-processing in order to reduce the number of
considered features. Next, multiple runs of linear SVM are considered, where at
each run a perturbed training set is used, obtained by changing the class label
of one support vector. Each run generates a large subset of selected features.
The frequency (over the runs) of selection of the features is used to choose the
most robust ones, namely those with highest frequency. Finally, the resulting
features are transformed into feature intervals, by considering the ordering of
the features, where neighbour features refer to peptides of similar masses.

The method generates a subset of feature intervals, where both the number
of intervals and features are automatically selected. These intervals describe
potential biomarker patterns.

We analyze experimentally the performance of the method on a real-life
dataset with controlled insertion of noisy samples (long storage time samples)
and “relevant” features (spiked molecules) [26]. The results indicate that the
method performs robust feature selection, by selecting features corresponding
to m/z measurements near to the (average of m/z values of the peak of the)
spiked molecules, and by misclassifying only 1 noisy sample (with long storage
time).

2 Background

This section describes in brief the Machine Learning techniques we use in the
proposed feature selection method.
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2.1 Linear Support Vector Machines

In linear SVM-based binary classification [25, 2], samples of two classes are lin-
early separated by means of a maximum margin hyperplane, that is, the hy-
perplane that maximizes the sum of the distances between the hyperplane and
its closest points of each of the two classes (the margin). When the classes are
not linearly separable, a variant of SVM, called soft-margin SVM, is used. This
SVM variant penalizes misclassification errors and employs a parameter (the
soft-margin constant C) to control the cost of misclassification.

Training a linear SVM classifier amounts to solving the following constrained
optimization problem:
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with one constraint for each training sample x;. Usually the dual form of the
optimization problem is solved:
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such that 0 < a; < C, Y7, ayy; = 0. SVM requires O(m?) storage and O(m?)
to solve.

The resulting decision function f(x) = w - x + b has weight vector w =
ZZ;I apypXk- Samples x; for which «; > 0 are called support vectors, since
they uniquely define the maximum margin hyperplane. Samples with a; — C' are
misclassified.

Maximizing the margin allows one to minimize bounds on generalization error.
Because the size of the margin does not depend on the input dimension, SVM
are robust with respect to data with high number of features. However, SVM
are sensitive to the presence of (potential) outliers, (cf. [11] for an illustrative
example) due to the regularization term for penalizing misclassification (which
depends on the choice of C).

2.2 Variable Selection Techniques

One can distinguish three main approaches for feature ranking/selection: wrap-
per, filter and embedded.

— In the wrapper approach features are selected /ranked by taking into account
their contribution to the performance of a given type of classifier (e.g., SVM).

— In the filter approach the selection/ranking of features is not (directly) biased
towards the performance of a specific type of classifier, but is based on an
evaluation criterion for quantifying how well feature (subsets) discriminate
the two classes.

— Finally, in the embedded approach feature selection/ranking is part of the
training procedure of a classifier, like in decision trees.
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The effectiveness of these approaches depends on the application domain.
The wrapper approach is favoured in many works since the selection of the
features is directly linked to the performance of a chosen type of classifier. On
the other hand, algorithms based on the filter approach, like RELIEF, are in
general more efficient and have been successfully applied to real life domains [28].
Techniques based on the embedded approach provide a global approach, where
feature selection is a by-product of the training algorithm for classification.

SVM Feature Selection (SVMFS)

The weights w; of a linear SVM classifier provide information about feature
relevance, where a bigger weight value implies higher feature relevance. In this
paper a feature z; is scored by means of w? [11]. Feature weights, obtained by
training a linear SVM on the training set, are used in a scoring function for
ranking features as described above. The algorithm for feature selection based
on SVM is illustrated below (in pseudo-code).

SVMFS
hinput: training set X, number of features
to be selected M

%houtput: subset Selected of M features

train linear classifier with SVM on X;

score features using the squared value of
the weights of the classifier;

Selected = M features with highest score;

return Selected;

RELIEF

RELIEF [23,14] is a filter-based feature ranking algorithm that assigns a score
to features based on how well the features separate training samples from their
nearest neighbours from the same and from the opposite class.

The algorithm constructs iteratively a weight vector, which is initially equal
to zero. At each iteration, RELIEF selects one sample, adds to the weight the
difference between that sample and its nearest sample from the opposite class
(called nearest miss), and subtracts the difference between that sample and its
nearest neighbour from the same class (called nearest hit). The iterative process
terminates when all training samples have been considered. The resulting weight
of a feature is divided by its range of values (computed using only the training
set). Subsampling can be used to improve efficiency in case of a large training
set. The pseudo-code of the RELIEF algorithm used in our experiments is given
below.

RELIEF

%input: training set X

%output: Ranking of features
nr_feat = total number of features;
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weights = zero vector of size nr_feat;
for all samples exa in training set do
hit(exa) = nearest neighbour of exa
from same class;

miss(exa) = nearest neighbour of exa
from opposite class;
weights = weights-abs(exa-hit(exa))+

abs(exa - miss(exa));
end;
scale each weight using range of corresponding m/z
value intensity over the training set;
Ranking = obtained by sorting weights
in decreasing order;
return Ranking;

3 Mass Spectrometric Proteomic Data

83

The MS proteomic dataset here considered is obtained by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), a
recent laboratory technology which offers protein profiling at high resolution and
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Fig.1. A MALDI-TOF MS spiked sample for one person at storage duration time t=0
(top) and t=48 (bottom): x-axis contains (identifiers of) the m/z values of peptides

and the y-axis their concentration
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throughput. It measures the relative abundance of ionisable low molecular weight
peptides in complex mixtures, like serum (cf. e.g. [4]). Because it is relatively
inexpensive and noninvasive, it is considered a promising new technology for
classifying disease status and for tumor biomarker detection.

MALDI-TOF MS technology produces a graph of the relative abundance of
ionized peptides (y-axis) versus their mass-to-charge (m/z) ratios (z-axis). (see
Figure 1) The m/z ratios are proportional to the peptide masses, but the tech-
nique is not able to identify individual peptides, because different peptides may
have the same mass and because of limitations in the m/z resolution.

Given proteomic profiles from healthy and diseased individuals, the goal is to
build a classifier for tumor diagnostics and to identify those proteins that are
potentially involved in the disease.

The dataset considered in this study consists of 96 samples obtained from
human sera of 8 adult persons. Spiking has been used to produce two classes,
and 6 different storage durations (t=0, 1, 4, 8, 24, 48 hours) have been used to
produce noisy data. Each profile contains 22572 m/z measurements. Adjacent
m/z measurements correspond to peptides with similar mass versus charge. Thus
the ordering on the x-axis has a biological meaning. This ordering will be used
in the FS method described in the next section.

The complete procedure for generating such data is described in detail in [26],
where this and other datasets have been analyzed for the first time. Calibration
standards containing seven peptides and four proteins were used as artificial
markers (Bruker Daltonik) and consisted of the following molecules with aver-
age molecular masses given in parentheses: angiotensin IT (1047.20), angiotensin I
(1297.51), substance P (1348.66), bombesin (1620.88), ACTH clip 1-17 (2094.46),
ACTH clip 18-39 (2466.73), somatostatin 28 (3149.61), insulin (5734.56), ubiqui-
tin I (8565.89), and cytochrome ¢ (6181.05) and myoglobin (8476.77). However,
no signal was recovered for the following four spiked molecules, possibly due to
losses during the laboratory sample processing procedure: substance P (1348.6),
ACTH clip 1-17 (2094.46), cytochrome ¢ (6181.05), and myoglobin (8476.77) [26].

In [18], we used this dataset for comparing the performance of two popular
feature selection techniques, RELIEF and Recursive Feature Selection with linear
SVM, and the performance of two classification techniques, SVM and K nearest
neighbours. The results indicated that, in general, better predictive performance
does not correspond to better biological interpretability of the selected features
(m/z values).

4 The Method

We propose a F'S method, consisting of three steps, called Filter, Wrapper, and
Interval step (FWI). The method is illustrated below in pseudo-code.

FWI
%input: training set X
%number M of features to be selected by RELIEF
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%number N (N<M) of features to be selected by SVMFS
%SVM parameter C
%houtput: Set Int of feature intervals

%FILTER step:
F = M features selected with RELIEF;

%WRAPPER step:

SV = set of support vectors obtained by training
SVM on X;

for x in SV

T = X with label of x changed;

F(x) = N features selected by SVMFS applied to T;
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end;
count = maximum number of times that a feature

occurs in the sequence of F(x), x in SV;

W = features occurring count times 1in the sequence

of F(x), x in SV;

%INTERVAL step:
Cl = {C1, .., Cn} clustering of W, with

Ci= (w(),.., w(ni))

w(1)<..< w(ni)

s.t. idx(w(j+1))-idx(w(j)) <= 2
for all j in [1..nil;

Int = {Int_1, .., Int_n} intervals from Cl, with

Int_i= {w in Features s.t. w >= min(Ci)
and w<= max(Ci)} for i in [1,n];

return Int;

Let us explain a bit in more detail the steps performed by FWI.

— FWI starts by skimming the number of features, by applying the Filter
(F) step. Here RELIEF is employed in order to select M features. In the F
step one typically retains about M=5000 m/z measurements from the initial
22572.

In the Wrapper (W) step, robust wrapper based feature selection is per-
formed using the features that passed the Filter selection. In the Wrapper
(W) step, the support vectors of SVM trained on all the features are used for
perturbing the data. More precisely, multiple runs of SVMF'S are performed,
where at each run the class label of one support vector is changed. Each run
generates a set of N features (typical value N=1000). The resulting sequence
of feature sets is then considered. The maximum number count of times a
feature occurs in the sequence is computed, and all features occurring count
times in the sequence are selected.

— Finally, in the Interval (I) step, the selected m/z features are segmented as
follows. The sequence of features in W, ordered by m/z values, is segmented
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in such a way that each pair of consecutive features in one segment C; is
at most two positions apart in the sequence of all features ordered by m/z
values (in the above pseudo-code idxz(w) gives the position of feature w in
the ordered sequence of all features). Finally each sequence C; generates
one interval I; containing all m/z measurements between the first and last
element of C;.

The F step can be viewed as a kind of preprocessing, while steps W and 1
are heuristics for overcoming the problem of variability due to perturbations of
the data that can possibly originate from noise. The method requires the user
to specify 3 parameters, in particular the sizes M and N of the feature subsets
selected by RELIEF and SVMFS, respectively. However, note that the values of
M and N can be chosen to be fairly big, and the final smaller size of the feature
subset selected by FWI is determined automatically by the algorithm.

5 Numerical Experiments

In order to assess the effectiveness of the modules of FWI, we consider the
following four algorithms:

1. Wrapper feature selection (W), obtained by applying the W step of the FWT.
2. Wrapper Interval (WI), obtained by applying steps W followed by I.

3. Feature Wrapper (FW), obtained by applying steps F followed by W.

4. The complete Feature Wrapper Interval algorithm FWI.

Because of the small size of the data, LOOCYV is used for comparing the per-
formance of the four algorithms (cf., e.g., [9]). At each leave-one-out run, all but
one element of the data is used as training set, and the left-out element is used
for testing the predictive performance of the resulting classifier. Observe that the
96 samples of the considered dataset are not independent one of the other, as
required for a correct application of LOOCV, because they are generated from 8
persons, and neither the 6 different storage times nor the spiking guarantee the
production of independent samples. Nevertheless, the corresponding bias intro-
duced in the LOOCYV procedure affects the results of each algorithm, hence the
results can be used for comparing the performance of the algorithms. However,
such bias possibly affects the estimation of the generalization error.

Table 1 summarizes LOOCV performance results of the experiments. We use
accuracy, sensitivity and specificity as quality measures for comparing the algo-
rithms. Other measures, like AUC (Area Under the ROC Curve), can be used.
As illustrated e.g. in [1], there is a good agreement between accuracy and AUC
as to the ranking of the performance of the classification algorithms.

The results indicate that there is an improvement in predictive performance
of the four algorithms, with best accuracy achieved by FWIL.

The misclassified samples over all the LOOCV runs have storage time equal
to 24 or 48 hours, indicating that longer storage time affects negatively classifi-
cation of proteomic samples. Algorithm W misclassifies a total of 5 samples, of
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Table 1. Results: LOOCV sensitivity, specificity and accuracy (with standard devia-
tion between brackets)

Method Accuracy Sensitivity Specificity

w 0.9479 (0.2234) 0.9375 (0.2446) 0.9583 (0.2019)
WI 0.9583 (0.2019) 0.9583 (0.2019) 0.9583 (0.2019)
FW 1.0000 (0.0000) 0.9583 (0.2019) 0.9792 ( 0.1436)

FWI 1.0000 (0.0000) 0.9792 ( 0.1443) 0.9896 (0.1021)
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Fig. 2. Number of m/z measurements selected over LOOCV runs

which 2 spiked at t= 48, 1 spiked at t=24, and 2 normal at t=24. WI improves
by correcly classifying the one spiked sample with t=24. Furthermore, FW mis-
classifies a total of 2 samples, the normal sample at t=24 like W and WI, and one
normal at t=48, while it correctly classifies all spiked samples. Finally, FWI only
misclassifies a total of 1 sample, the normal one at t=24, like W, WI, and FW.

Each algorithm selects about 120 features at each run, which are distributed
(in the Interval step) in about 15 clusters.

We further analyze the results of FWI. Figure 2 shows m/z measurements ver-
sus the number of times they are selected over all LOOCV. On the x-axis the lo-
cation of the spiked molecules is indicated by circles. The plot indicates that m/z
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Fig. 3. A typical m/z selection generated by FWI, the corresponding values of the
mean spiked and normal profile at the selected m/z values, and the spiked molecules

measurements in proximity of spiked molecules are more often selected over the
LOOCYV runs, except for m/z measurements in the neighbourhood of 4000 and
5000, which do not correspond to m/z measurements of spiked molecules. In the
absence of additional information (e.g. tandem mass spectra yielding sequence
tags) it is difficult to know what these peak values represent. One possibility
is that the higher molecular weight spiked molecules are partially degraded in
serum, and these peaks are proteolytically cleaved peptides from larger proteins
(due to large storage time at room temperature) in the sample itself. However,
this possibility has not yet been examined in depth. Figure 3 shows a typical set
of m/z measurements generated by FWI, and the mean value of the intensities
of spiked and normal samples for the selected m/z measurements.

In conclusion, results indicate that FWT performs robust m/z selection, where
the selected features are close to the spiked molecules, and the misclassification
error is close to zero, with misclassification of only noisy (that is high storage
temperature) samples.

6 Conclusion

We have proposed a method for robust feature selection with MS proteomic
data. The method can be considered as a small step towards the development of
a feature selection methodology addressing the specific issues of the underlying
laboratory technology. In particular, in this paper we addressed the issue of per-
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forming robust feature selection in the presence of noisy samples which perturb
the data and negatively affect sample classification. The W and I steps of the
proposed FWI method provide heuristics for tackling this problem.

This issue is related to broader questions about reproducibility and validity
of results in the discovery-based “omics” research [21,24]. In a special session on
genomics of a recent issue of Science an essay entitled “Getting the noise out of
gene arrays” noted that “[tjhousands of papers have reported results obtained
using gene array ... But are these results reproducible?” [19]. A controversy about
reprodicibility and validity of results from MS proteomic data is ongoing [3, 21]
and the path for achieving such ambitious goals appears still long.
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Abstract. The paper presents an original filter approach for effective
feature selection in classification tasks with a very large number of input
variables. The approach is based on the use of a new information theo-
retic selection criterion: the double input symmetrical relevance (DISR).
The rationale of the criterion is that a set of variables can return an
information on the output class that is higher than the sum of the infor-
mations of each variable taken individually. This property will be made
explicit by defining the measure of variable complementarity. A feature
selection filter based on the DISR criterion is compared in theoretical
and experimental terms to recently proposed information theoretic cri-
teria. Experimental results on a set of eleven microarray classification
tasks show that the proposed technique is competitive with existing fil-
ter selection methods.

1 Introduction

Statisticians and data-miners are used to build predictive models and infer de-
pendencies between variables on the basis of observed data. However, in a lot
of emerging domains, like bioinformatics, they are facing datasets characterized
by a very large number of features (up to several thousands), a large amount of
noise, non-linear dependencies and, often, only several hundreds of samples. In
this context, the detection of functional relationships as well as the design of ef-
fective classifiers appears to be a major challenge. Recent technological advances,
like microarray technology, have made it possible to simultaneously interrogate
thousands of genes in a biological specimen. It follows that two classification
problems commonly encountered in bioinformatics are how to distinguish be-
tween tumor classes and how to predict the effects of medical treatments on
the basis of microarray gene expression profiles. If we formalize this prediction
task as a supervised classification problem, we realize that we are facing a prob-
lem where the number of input variables, represented by the number of genes,
is huge (around several thousands) and the number of samples, represented by
the clinical trials, is very limited (around several tens). Because of well-known
numerical and statistical accuracy issues, it is typically necessary to reduce the
number of variables before starting a learning procedure. Furthermore, select-
ing features (i.e. genes) can increase the intelligibility of a model while at the
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same time decreasing measurements and storage requirements [1]. A number
of experimental studies [2,3,4] have shown that irrelevant and redundant fea-
tures can dramatically reduce the predictive accuracy of models builded from
data.

Feature selection is a topic of machine learning whose objective is selecting,
among a set of input variables, the ones that will lead to the best predictive
model. Two well-known approaches in feature selection combine a search strat-
egy with a stochastic evaluation function: the filter approach and the wrapper
approach (see [3,2]). In the wrapper approach, the evaluation function is the
validation outcome (e.g. by leave-one-out) of the learning algorithm itself. In
the filter approach, examples of evaluation functions are probabilistic distance,
interclass distance, information theoretic or probabilistic dependence measures.
These measures are often considered as intrinsic properties of the data, because
they are calculated directly on the raw data instead of requiring a learning model
that smoothes distributions or reduces the noise.

This paper will focus on the use of filter techniques for feature selection in su-
pervised classification tasks. In particular, we present an original filter approach
based on a new information theoretic selection criterion, called the double input
symmetrical relevance (DISR). This criterion combines two well known intuitions
of feature selection: first, a combination of variables can return more informa-
tion on the output class than the sum of the information returned by each of
the variables taken individually. This property will be made explicit by defin-
ing the notion of variable complementarity. Secondly, in absence of any further
knowledge on how subsets of d variables should combine, it is intuitive to as-
sume a combination of the best performing subsets of d — 1 variables as the
most promising set. This intuition will be made formal by the computation of a
lower-bound on the information of a subset of variables expressed as the average
of information of all its sub-subsets.

The DISR criterion can be used to select among a finite number of alternative
subsets the one expected to return the maximum amount of information on the
output class. As we intend to benchmark its performance with respect to state-
of-the-art information theoretic criteria we define an experimental session where
several filter algorithms with different selection criteria but the same search
strategy are compared. In our experiments we compare the filter based on DISR
with four state-of the art approaches: a Ranking algorithm [5] and three filters
based on the same search strategy: the forward selection. The three state-of-the-
art criteria are the Relevance criterion [6], the Minimum Redudancy Maximum
Relevance criterion [7] and the Conditional Mutual Information Maximization
criterion [8]. The assessment of the different filters is obtained by measuring
the classification accuracy of several learning algorithms which adopt as inputs
the set of variables returned by each of the filter methods. For our benchmark
purposes, we use eleven public-domain multi-class microarray gene expression
datasets. The experimental results show that the proposed technique is compet-
itive with existing filter selection methods.
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2 Information Theoretic Notions for Feature Selection

This paper deals with supervised multi-class classification. We will assume ei-
ther that all the variables are discrete or that they can be made discrete by a
quantization step. Hereafter, we will denote by Y the discrete output random
variable representing the class and by X the multi-dimensional discrete input
random variable.

In qualitative terms, feature selection boils down to select, among a set of po-
tential variables, the most relevant ones. At the same time it would be appealing
that these selected variables are not redundant. The notions of relevance and re-
dundancy can be made more formal thanks to the use of dependency measures
[2,9].

Let us first introduce some concepts of information theory:

Definition 1. [10] The conditional entropy of Y given Z, denoted by H(Y|Z)
s defined as:
H(Y|Z) ==Y ply,2)logp(y|2) (1)

yeEY 2€Z

and the I(X;Y|Z) is the conditional mutual information.

Definition 2. [10] The conditional mutual information of the random variables
X andY given Z is defined as:

I(X;Y|Z) = H(X|Z) - H(X|Z,Y) (2)

These definitions allow us to introduce the following measure of relevance pro-
posed by [6]:

Definition 3. Relevance.

Consider three random variables XY and Z and their joint probability distri-
bution px.v,z(x,y,z). If H(Y|Z) = 0, then the variable relevance of X toY
gwen Z, denoted by r(X;Y|Z), is zero. Else if H(Y|Z) # 0, then the variable
relevance of X to'Y given Z is defined as:

rxeyiz) = 1) 0
H(Y|Z)

According to this definition the relevance is a function 0 < 7(X;Y|Z) < 1 that
measures the relative reduction of uncertainty of Y provided by X once the value
of Z is given.

In the following, we rather consider as measure of relevance the classical (non-
normalized) mutual information, i.e. I(X;;Y|Xs), where X; denotes an input
variable and Xg a subset of variables not containing X;.

The formalization of the notion of relevance makes explicit one of the major
challenges in feature selection: the mutual information between an input variable
X; and the output class Y is conditionally dependent. This means that an input
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variable X; having a significative relevance to Y given Xg, can return a null
relevance conditioned on an other variable. The following two examples may
serve to better illustrate this idea.

Ezample 1. Consider the four random variables Y, X;, Xg and Xj; such that

Y = X; + Xg and Xy = ¥

Given Xg, X; has a large relevance (I(X;;Y|Xs) = H(Y|Xs)), while its rele-
vance goes to zero in the case where it is conditioned to X (i.e. I(X;; Y| X ) =
0). In this example, X; and X have both a high mutual information with the
output Y but a low conditional mutual information when conditioned to the
other variable.

The next example shows that the relevance can also increase by conditioning.

Ezample 2. Consider the three random variables Y, X; and Xg such that Y and
X; are independent and Y = X; + Xg.

In this case the mutual information of X; with Y is zero (I(X;;Y) = 0) whereas
the conditional mutual informatione increases up when conditioned to Xg (i.e.
I(Xi;Y[Xs) = H(Y|Xs)).

These examples show that it is hard to predict, in terms of relevance, the joint
effect of several input variables on an output variable Y.

As shown in Example 1 the mutual information I(X; ;;Y) of a set {X;, X;}
(aka joint mutual information [11]) can be smaller than the sum of each rele-
vance taken separately. In generic terms, we could describe these two variables
as redundant for the task of classifying Y. For a formal definition of redundancy
we refer the reader to [9,7]. Also, as shown in Example 2, it could happen that
two variables have jointly a larger mutual information with Y than when they
are considered separately. In this case we say that the two variables are comple-
mentary. Note that variable complementarity should warn us against eliminating
variables with null mutual information with the output (i.e. I(X;;Y) = 0) since
the joint information of two random variables I(X; ;;Y") can be higher than the
sum of their individual informations I(X;;Y) and I(X;;Y).

Variable complementarity was underlined experimentally in [1] and explained
in [12] as a second order term of the Mdébius representation of the mutual
information. It can be useful to define the notion of complementarity between
two variables with respect to an output Y as the difference between the joint
mutual information and the sum of the ”individual” mutual informations. We
introduce then the following measure:

Definition 4. The complementarity of two random variables X; and X; with
respect to an output Y is defined as,

Cy(X“X]):I(XL],Y)—I(XZ,Y)—I(X],Y) (4)
where Xi,j = {XZ,XJ}

We define two variables as complementary if their measure of complementarity
with respect to Y is positive. Note that if the complementarity is zero, the
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two variables are independent. We remark also that a negative value of the
complementarity can be taken as a measure of the redundancy of a pair of
variables for the task of predicting Y.
The example 2 is an illustration of complementarity between X; and Xg since
in that case:
I(X;5;Y) >£(X¢;Y_)/+I(XS;Y) (5)

-~
0

Another illustration of complementarity is given by the well-known XOR
problem [2,1]:

X, 1100
Ezample 8. Xor problem: X5 1010
Y=X1®X,0110

We see that X; and X5 have a null mutual information with the output, once
they are taken individually (i.e. I(X1;Y) = 0, I(X2;Y) = 0). However, when
they are taken together the mutual information I(X; 2;Y) = H(Y) > 0 of the
subset is positive.

Complementarity explains why an apparently irrelevant combination of vari-
ables can eventually perform efficiently in a learning task. In the following sec-
tion, we will proceed to a critical survey of information theoretic approaches
existing in literature, by stressing when and where the notion of complementar-
ity is taken into account.

3 State of the Art

As mutual information can measure relevance, this quantity is currently used in
literature for performing feature selection. One of the main reasons for adopting
it is its low complexity computational cost (O(d x N) where d is the number of
variables and N is the number of samples) in the case of discrete variables. The
following sections will sketch four state-of-the-art filter approaches that use this
quantity.

3.1 Variable Ranking (Rank)

The ranking method returns a ranking of variables on the basis of their individual
mutual information with the output. This means that, given n input variables,
the method first computes n times the quantity I(X;,Y), ¢ = 1,...,n, then
ranks the variables according to this quantity and eventually discards the least
relevant ones [5].

The main advantage of the method is its rapidity of execution. Indeed, only
n computations of mutual information are required for a resulting complexity
O(nx2xN). The main drawback derives from the fact that possible redundancies
between variables is not taken into account. Indeed, two redundant variables,
yet highly relevant taken individually, will be both well ranked. As a result, a
model that uses these two variables is dangerously prone to an increased variance
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without any gain in terms of bias reduction. On the contrary, two variables can
be complementary to the output (i.e. highly relevant together) while each of
them appears to be poorly relevant once taken individually (see Example 2 or
Example 3). As a consequence, these variables could be badly ranked, or worse
eliminated, by the ranking filter.

3.2 Filters Combining Relevance and Redundancy Analysis

Although the variable ranking algorithm is reputed to be fast, it may be poorly
efficient as it only relies on individual relevance. Recently, new algorithms that
combine relevance and redundancy analysis offer a good trade-off between ac-
curacy and computational load as the Fast Correlation Based Filter [9]. Also,
some heuristic search methods such as the best first search (also known as the
forward selection) can be combined efficiently with information theoretic criteria
in order to select the best variable given a previously selected subset.

Forward Selection is a search method that starts with an empty set of vari-
ables. At each step, it selects the variable that brings the best improvement
(according to the selection criterion). As a consequence, each selected variable
does influence the evaluations of the following steps. This hill-climbing search
selects a subset of d < n variables in d steps and explores only Z?:o(n — 1)
evaluations.

In the following sections, several information theoretic criteria existing in
the literature and that can be easily combined with the forward selection, are
presented.

Relevance Criterion (REL). The relevance criterion is a well-known crite-
rion which is used together with the forward selection search strategy [6]. The
approach consists in updating a set of selected variables Xg with the variable
X; featuring the maximum relevance I(X;;Y|Xg). This strategy prevents from
selecting a variable which, though relevant to Y, is redundant with respect to a
previously selected one.

In analytical terms, the variable X g, returned by the relevance criterion is,

Xppr = arg max {I(X;Y|Xs)} (6)

where X_g = X \ Xy is the set difference between the original set of inputs X
and the set of variables Xg selected so far!.

Although this method is appealing, it presents some major drawbacks. The
estimation of the relevance requires the estimation of several multivariate densi-
ties, a problem known to be ill-posed. For instance, at the dth step of the forward
search, the search algorithm asks for n — d evaluations where each evaluation
requires the computation of a (d+ 1)-variate density. It is known that, for a large
d, the estimations are poorly accurate and computationally expensive. For these
two reasons we recently assisted to the adoption of selection criteria based on
bi- and tri-variate densities only.

! Note that in [6] a normalized version of relevance (Eq. 3) is used.
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Minimum Redundancy - Maximum Relevance criterion (MRMR).
The minimum redundancy - maximum relevance criterion [7] consists in selecting
the variable X; among the not yet selected features X_g that maximizes u; — z;,
where u; is a relevance term and z; is a redundancy term. More precisely, u; is
the relevance of X; to the output Y alone, and z; is the mean redundancy of X;
to each variables X; € Xg already selected.

sy Y I X)) 0

X;€EXs
X = R
MRMR = aI'g X@ITEIF;(%S {Uz Zz} (9)

At each step, this method selects the variable which has the best trade-off
relevance-redundancy. This selection criterion is fast and efficient. At step d of
the forward search, the search algorithm computes n — d evaluations where each
evaluation requires the estimation of (d 4+ 1) bi-variate densities (one for each
already selected variables plus one with the output). It has been shown in [7] that
the MRMR criterion is an optimal first order approximation of the conditional
relevance criterion. Furthermore, MRMR avoids the estimation of multivariate
densities by using multiple bivariate densities.

Note that, although the method aims to address the issue of redundancy
between variables through the term z;, it is not able to take into account the
complementarities between variables. This could be ineffective in situations like
the one of Example 2 where, although the set {X;, Xs} has a large relevance to
Y, we observe that

1. the redundancy term z; is large due to the redundancy of X; and Xg
2. the relevance term wu; is small since X; is not relevant to Y.

Conditional Mutual Information Maximization Criterion (CMIM).
This approach [8] proposes to select the feature X; € X_g whose minimal con-
ditional relevance I(X;;Y'|X;) among the selected features X; € Xg, is maximal.
This requires the computation of the mutual information of X; and the output
Y, conditional on each feature X; € Xg previously selected. Then, the mini-
mal value is retained and the feature that has a maximal minimal conditional
relevance is selected.

In formal notation, the variable returned according to the CMIM 2 criterion
is,

Xeomiv = arg ngggs{xgg)gs I(X3Y[X;)} (10)

This selection criterion is powerful. It selects relevant variables, it avoids re-
dundancy, it avoids estimating high dimensional multivariate densities and un-
like the previous method, it does not ignore variable complementarity. However,

2 Note that in [8] this method was applied to select binary features in a pattern
recognition task.
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it will not necessary select a variable complementary with the already selected
variables. Indeed, a variable that has a high complementarity with an already
selected variable will be characterized by a high conditional mutual information
with that variable but not necessarily by a high minimal conditional information
(see example 3).

In terms of complexity, note that at the dth step of the forward search, the
algorithm computes n — d evaluations where each evaluation following CMIM
requires the estimation of d tri-variate densities (one for each previously selected
variable).

In the following chapter, we propose a new criterion that deals more explicitly
with complementary variables.

4 Double Input Symmetrical Relevance (DISR) Criterion

A lower bound on mutual information. In this section, we derive a lower
bound on the the mutual information between a subset Xg and a target variable
Y. It is shown [13] that this quantity is lower bounded by the average of the
same quantity computed for all the sub-subsets Xgs_; = Xg\ X; of Xg.

Theorem 1. Let Xg = {X1,..., Xa} be a subset of d variables of X and Xg_; =
Xs\X;, i€1,...,d a subset of Xg that does not contain the variable X;.
Then,

I(Xsv)> | ;HXS,Z-;Y) (11)

The theorem expresses that the mutual information of a subset S and a target
variable Y is lower bounded by the quantity £ (I(Xg;Y)), that is the average of
the same quantity computed for all the sub-subsets Xg_; of Xg.

In the following, we will use this theorem as a theoretical support to the
following heuristic: without any additional knowledge on how subsets of d vari-
ables should combine, the most promising subset is a combination of the best
performing subsets of (d — 1 variables).

Criterion. Given a fixed number d of variables, we can write the problem of
feature selection in the following form:

Sbest = arg _ max 1(Xs;Y) (12)

In other words, the goal of feature selection is to find the subset of d variables
which maximizes the mutual information with the output Y.

Our idea consists in replacing the maximization of the quantity I(Xg;Y) by
the maximization of its lower bound £ (I(Xg;Y)):

arg max I(Xs;Y) 2 arg _ max | iz:I(XS—ﬁY) (13)
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Replacing again the right-hand term by its lower bound and recursively until we
have subsets of two variables:

> argmsaxz ZI(XS,(M);Y) > argmgxz ZI(XM§Y) (14)

icS jes i€S jes

In other words, without any information on how to combine subsets made
of more than two variables, the most promising subset (the best bound) is the
one with the highest sum of mutual information on all the combinations of
two variables. We choose to stop the recursivity at two variables because it
is the minimal size of subset that can capture variable complementarity (i.e.
I(X;;;Y)=I(X;Y)+ I(X;;Y) + Cy (X;; X;)). Note that this strategy, when
we stop the recursion at one variable, boils down to the ranking approach.

A similar approach has been developped in [12] based on the Md&bius rep-
resentation of mutual information. However, in order to improve the selection
procedure we use here a normalized measure of mutual information very close
to the symmetrical uncertainty presented in [9]: the symmetrical relevance.

Definition 5. Given two random variables X,Y a joint probability distribution
p(x,y), the symmetrical relevance SR(X,Y) is defined as:

I(X,Y)

SR(X:;Y) = H(X,Y)

(15)
This definition expresses that symmetrical relevance is a function 0 < SR(X;Y)
< 1 that indicates the “concentration” of mutual information “contained” in

p(z,y).
As a consequence, our resulting criterion is the following:

Xprsr = arg Xmgb(xs{ > SR(Xi;Y)} (16)
‘ - X;€Xs

The main advantage in using this criterion for selecting variables is that a
complementary variable of an already selected one has a much higher probability
to be selected than with other criteria. As this criterion measures symmetrical
relevance on all the combination of two variables (double input) of a subset, we
have called the criterion: the double input symmetrical relevance (DISR). At the

Table 1. Qualitative comparison of different information theoretic filters, according to
different aspects: relevance selection, redundancy avoidance, complementarity selection
and multivariate densities avoidance

criterion rank REL MRMR CMIM DISR
relevance selection vV Vv \% \Y \Y
redundancy avoidance -V \% \% \Y
complementarity selection -V — — A%
multivariate density avoidance V = — \% \% \%
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dth step of the forward search, the search algorithm computes n — d evaluations
where each evaluation requires the estimation of d tri-variate densities (one for
each previously selected variable). In the next section, the DISR criterion is
assessed and compared with the other heuristic search filters discussed in the
Section 3.

Table 1 summarizes the methods discussed so far in terms of some peculiar
aspects: the capacity of selecting relevant variables, of avoiding redundancy, of
selecting complementary features and of avoiding the computation of multivari-
ate densities.

5 Experiments

A major topic in bioinformatics is how to build accurate classifiers for cancer di-
agnostic and prognostic purposes on the basis of microarray genomic signatures.
This task can be considered as a challenging benchmark for feature selection
algorithms [7] given the high feature to sample ratio.

We use eleven public domain multi-class datasets from [14] (Table 2) in order
to assess and compare our technique with the state-of-the-art approaches.

In our experimental framework, each continuous variable has been discretized
in equal sized interval. The number of intervals of each input is based on the Scott
criterion, see [15]. All the datasets are partitioned into two parts: a selection set
and a test set (each having size equal to N/2). We compare the filter based
on DISR with the four state-of the art approaches discussed above: a Ranking
algorithm and three filters based on the Relevance criterion, the Minimum Re-
dudancy Maximum Relevance criterion and the Conditional Mutual Information

Table 2. The 11 datasets of microarray cancer from http://www.tech.plym.ac.uk.
The column n represents the number of probes in the microarray, the column N the
number of samples and the column ¢ the number of classes. The remaining columns
contain the average accuracy of each selection method averaged over the three classifiers
(SVM, 3-NN, naive Bayes). The accuracy of the two best methods for each dataset is
typed in bold face.

Dataset (DN) n N ¢ Rank REL CMIM MRMR DISR

11 Tumors 12534 87 11 49% 46% 48% 42% 49%
14 Tumors 15010 308 26 22% 25% 20% 26% 19%
9 Tumors 5727 60 9 19% 36% 20%  23% 28%
Leukemial 5328 72 1% 74% 1%  69% 78%
Leukemia2 11226 72 68% 57% 62% 65% 67%
Prostate Tumor 10510 102 76% 66% 62% 8% 73%
Brain Tumorl 5921 90 73% 70% T0% 0% 71%
Brain Tumor2 10368 50 47% 47% 49% 59% 60%
Lung Cancer 12601 203 84% 4% 82% 7% 4%
SRBCT 2309 83 0% 53% 5% 5% 67%
DLBCL 5470 77 7% 88% 70% 1% 88%

N o O O W W
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Table 3. Statistically (0.1 level and 0.2 level of a paired two-tailed t-test) significant
wins, ties or losses over best first search combined with DISR criterion

W/T/L VS DISR Rank REL CMIM MRMR Rank REL CMIM MRMR

3-NN 0/9/2 1/8/2 1/7/3 2/7/2 1/5/51/7/3 1/7/3 2/7/2
Naive Bayes  3/8/02/7/2 1/8/2 1/9/1 4/7/03/6/2 1/8/2 1/9/1
SVM 2/9/02/6/3 2/6/3 2/8/1 2/6/3 3/4/4 2/5/4 3/5/3

Maximization criterion, respectively. Each selection method stops after that 15
variables have been selected. Then, the evaluation of the selection is done on
the test set, by using a ten-fold cross validation with a 3-nearest neighbor, a
naive Bayes and a SVM learning algorithm with a radial kernel. Each learning
technique led to the choice of a different number of variables in a range from 2
to 15. Then for each of the eleven datasets and for each selection method, the
best number of variables and the classification accuracy is computed. A set of
statistical paired t-test on the set of classification errors are reported in Table 3.

As far as the implementation of the three learning methods is concerned, we
used the algorithms made available by the R statistical language [16].

According to Table 2, the DISR criterion outperforms slightely all the other
methods in terms of average accuracy. Furthermore, our method is one of the
two best methods for 7 out of 11 datasets.

Table 3 reports the significant wins, ties or losses (at 0.1 and 0.2 significance
levels of a paired two-tailed t-test, respectively) of the DISR criterion against all
the other. We remark that in the case a 3-Nearest Neighbor, the DISR criterion
is equivalent to MRMR, and better than all the other methods. For a naive
Bayes classifier, the performances of the DISR are slightly lower. This is not
surprising because the benefits of the DISR criterion are related to variable
complementarity whereas the success of a naive Bayes classifier typically relies
on the opposite, that is variable independence. As far as the SVM classifier is
concerned, at the 0.1 significance level, DISR appears to be slightly better than
both REL and CMIM, and slightly worse than RANK and MRMR. However, at
0.2 significance level the DISR outperforms all the other methods except MRMR.

6 Conclusion and Future Work

This paper formalized an original notion in feature selection: variable comple-
mentarity. Also, a lower bound on the mutual information of a subset of variables
with the output was demonstrated. On the basis of these considerations, we pro-
posed a new selection criterion: the double input symmetrical relevance (DISR).
The experimental session shows that this criterion is promising in high feature-
to-sample ratio classifaction tasks like gene expression microarray datasets. Note
that in gene selection, variable complementarity can be biologically meaningful
since it is common to observe combination of genes acting together.

Further experiments will focus on (i) datasets with more samples and/or less
features, (ii) other search strategies than the forward selection in order to validate
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the criterion in a wider range of domains, (iii) the impact of the discretization
method to the efficiency of the feature selection algorithms.
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Abstract. A major goal of human genetics is the identification of susceptibility
genes associated with common, complex diseases. The preponderance of gene-
gene and gene-environment interactions comprising the genetic architecture of
common diseases presents a difficult challenge. To address this, novel
computational approaches have been applied to studies of human disease.
These novel approaches seek to capture the complexity inherent in common
diseases. Previously, we developed a genetic programming neural network
(GPNN) to optimize network architecture for the detection of disease
susceptibility genes in association studies. While GPNN was a successful
endeavor, we wanted to address the limitations in its flexibility and ease of
development. To this end, we developed a grammatical evolution neural
network (GENN) approach that accounts for the drawbacks of GPNN. In this
study we show that this new method has high power to detect gene-gene
interactions in simulated data. We also compare the performance of GENN to
GPNN, a traditional back-propagation neural network (BPNN) and a random
search algorithm. GENN outperforms both BPNN and the random search, and
performs at least as well as GPNN. This study demonstrates the utility of using
GE to evolve NN in studies of complex human disease.

1 Introduction

The identification and characterization of susceptibility genes for common complex
human diseases, such as hypertension, is a difficult challenge[1,2]. This is largely due
to the complexity of these diseases, and the likelihood that many disease susceptibility
genes exhibit effects that are dependent partially or solely on interactions with other
genes and the environment. These interactions, known as epistasis, are difficult to
detect using traditional statistical methods[3]. Thus, a number of novel statistical and
computational methods have been developed[4-11]. Neural networks (NN) are a
supervised pattern recognition method commonly used in many fields for data
mining. The back propagation NN (BPNN) is one of the most commonly used
NN[12] and is the NN chosen for most genetic epidemiology studies [13-21].
Successful use of NN for data mining requires defining an optimal NN architecture
for the problem at hand. However, it is not always intuitive what the optimal
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architecture should be for a given dataset and, as a result, a cumbersome trial and
error approach is often taken.

Previously, we implemented a neural network optimized via genetic programming
(GPNN)[22]. Optimizing neural network architecture with genetic programming was
first proposed by Koza and Rice[23]. We implemented and extended the GPNN
approach for use in association studies of human disease. The goal of GPNN was to
improve upon the trial-and-error process of choosing an optimal architecture for a
pure feed-forward back propagation neural network[22]. GPNN optimizes the inputs
from a large pool of variables, the weights, and the connectivity of the network -
including the number of hidden layers and the number of nodes in the hidden layer.
Thus, the algorithm automatically generates optimal neural network architecture for a
given dataset. This gives it an advantage over the traditional back propagation NN, in
which the inputs and architecture are pre-specified and only the weights are
optimized.

GPNN was a successful endeavor — it has shown high power to detect gene-gene
interactions in both simulated and real data[24]. Still, there are limitations to evolving
NN using this type of machine learning algorithm. First, the GP implementation that
was used for GPNN involves building binary expression trees. Therefore, each node
is connected to exactly two nodes at the level below it in the network. This did not
seem to hinder the power of GPNN in smaller datasets[22,24-26]; however, we
hypothesize that for more complex data, more complicated NN will be required, and
two connections per node may not be sufficient. Second, changes to GPNN require
altering and recompiling source code, which hinders flexibility and increases
development time. For example, GPNN is limited in the depth of the network. This
means there is a limit to the number of levels the network can contain. Again, this
was not a hindrance for GPNN in the previous power studies[22,24-26], but this may
not scale well for more complex datasets.

In response to these concerns, we developed a NN approach for detecting gene-
gene interactions that uses grammatical evolution (GE) as a strategy for the
optimization of the NN architecture. Grammatical evolution (GE) is a variation on
genetic programming that addresses some of the drawbacks of GP[27,28]. GE has
been shown to be effective in evolving Petri Nets, which are discrete dynamical
systems that look structurally similar to neural networks, used to model biochemical
systems[29]. By using a grammar, substantial changes can be made to the way that
NN are constructed through simple manipulations to the text file where the grammar
is specified. No changes in source code are required and thus, there is no
recompiling. The end result is a decrease in development time and an increase in
flexibility. These two features are important improvements over GPNN.

Preliminary studies with GPNN show that an evolutionary optimization is more
powerful than traditional approaches for detecting gene-gene interactions. We have
shown that the GPNN strategy is able to model and detect gene-gene interactions in
the absence of main effects in many epistasis models with higher power than back
propagation NNJ[22], stepwise logistic regression[26], and a stand alone GP[25].
GPNN has also detected interactions in a real data analysis of Parkinson’s
disease[24]. Similarly to GPNN, the grammatical evolution optimized neural
network (GENN) optimizes the inputs from a pool of variables, the synaptic weights,
and the architecture of the network. The algorithm automatically selects the
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appropriate network architecture for a particular dataset. Thus, if GE allows for
more flexible evolution of NN, can it perform as well or better than GPNN?

Because GENN retains the beneficial properties of GPNN and offers substantial
improvements in terms of flexibility and development, we hypothesize that NN
optimized by GE will exhibit power equal to and even exceeding GPNN. In this
study, we compare the performance of GENN to a more traditional back-propagation
NN, a random search algorithm, and GPNN. We find that both GENN and GPNN
outperform the random search and the BPNN. We also show that GENN is equal in
power to GPNN in detecting gene-gene interactions in our simulated disease models.

2 Methods

2.1 Grammatical Evolution Neural Network (GENN)

Grammatical Evolution (GE) is a form of evolutionary computation that allows the
generation of computer programs using grammars[27,28]. GE uses populations
made of linear genomes that are translated by the grammar. Each individual consists
of a binary genome divided into codons. Mutation can occur on individual bits along
the genome, but crossover only occurs between codons. These codons are translated
according to the grammar into a resulting phenotype (in this case, a functional NN).
The resulting individual/phenotype can be tested for fitness and evolutionary
operators are applied to create subsequent generations. By using the grammar to
map a NN, GE separates genotype from phenotype. This allows for greater genetic
diversity within a population than offered by other evolutionary algorithms, like GP.
Since GENN uses a grammar to define the structure of the resulting NN, we can
easily vary the behavior of the program with changes to the grammar.

GE differs from GP in several ways. First, unlike GP, GE uses a linear genome -
similar to a genetic algorithm. Second, GE performs mapping from genotype to
phenotype using the rules of a grammar, much like the “rules” of the biological
process of DNA transcription into mRNA. Finally, all evolutionary processes take
place at the chromosomal level (binary strings) rather than the phenotypic level
(binary expression tree). Ultimately, the goal of GP and GE is synonymous: to
evolve computer programs using evolutionary processes[27,28].

A detailed description of GE can be found in O’Neill and Ryan[28]. Briefly, a
Backus-Naur Form (BNF) grammar must be defined for the process of genotype-to-
phenotype mapping. A variable-length binary string genome is used in a genetic
algorithm, with a set of 8 bits constituting a codon. Each binary codon represents an
integer value used to select a rule in the grammar. One non-terminal element is
designated by the grammar as the start element. The mapping process proceeds as the
first codon maps the start symbol of the solution to a rule by generating an integer
value from the 8 bits. To select a rule, the operator used is {(codon integer value)
MOD (number of rules)}. The start element is replaced by the elements of the rule
selected and this process proceeds until only terminal elements remain. A wrapping
process can be used if the program has non-terminals at the point at which the end of
the chromosome has been reached so that the algorithm returns to the start of the
chromosome to obtain the next codon. This wrapping process can be allowed to
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occur N times as necessary, where N is defined in the configuration file. The
resulting phenotype is a NN, which can then be evaluated for fitness.

The steps of GENN are similar to GPNN[22]. First, GENN has a set of
parameters that must be initialized in the configuration file. Second, the data are
divided into 10 equal parts for 10-fold cross-validation. Here, we train GENN on
9/10 of the data to develop a NN model. Later, we test this model on the other 1/10
of the data to evaluate the predictive ability of the model. This approach has been
described in detail for GPNN[22]. Third, training of GENN begins by generating an
initial population of random solutions. Each solution is generated via sensible
initialization[28]. Using sensible initialization, an initial population is generated that
creates functioning NN. In the sensible initialization step an expression tree is
created using the grammar. The software assigns a minimum depth to each rule that
describes the depth required for the rule to be completed. As each tree is built, the
algorithm randomly selects only rules that can fit within the remaining depth of the
tree. Half of the individual NN are built to the maximum depth by only selecting
recursive rules until a non-recursive rule must be chosen to complete the tree and
half are generated to a random depth no greater than the maximum by selecting any
rule that can fit in the remaining depth of the tree. The final step in initialization is to
convert nodes of the tree into corresponding codons. Fourth, each NN is evaluated on
the training set and its fitness recorded. Fifth, the best solutions are selected for
crossover and reproduction using a selection technique. The selection method can be
specified in the configuration file, where the options are uniform, rank, roulette, and
tournament[30]. A proportion of the best solutions will be directly copied
(reproduced) into the new generation. Another proportion of solutions will be used
for crossover with other best solutions. The crossover is performed at the
chromosomal level, not at the level of the expression tree. The new generation,
which is equal in size to the original population, begins the cycle again. This
continues until some criterion is met, after which GENN stops. This criterion is
either a classification error of zero or a limit on the number of generations. An
optimal solution is identified after each generation. At the end of GENN evolution,
the overall best solution is selected as the optimal NN. Sixth, this best GENN model
is tested on the 1/10 of the data left out to estimate the prediction error of the model.
Steps two through six are performed ten times with the same parameters settings,
each time using a different 9/10 of the data for training and 1/10 of the data for
testing. An overview of the GENN algorithm is shown in Figure 1.

We have implemented GE to optimize inputs, architecture, and weights of a NN.
The grammar used is available from the authors upon request. The GA used to
evolve the binary string that is transcribed into a NN has the following parameters in
the current implementation: crossover rate = 0.9, mutation = 0.01, population = 200,
max generations = 50, codon size = 8, GE wrapping count = 2, min chromosome size
(in terms of codons) = 50, max chromosome size = 1000, selection = roulette (can
also be uniform, rank, or tournament), and sensible initialization depth = 10. To
prevent stalling in local minima, the island model of parallelization is used, where
the best individual is passed to each of the other processes after every 25
generations[31]. The genome is derived from GAlib (version 2.4.5) which is freely
available at http://lancet.mit.edu/ga/dist/, and a typical GA one-point crossover of
linear chromosomes is used.
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Fig. 1. An overview of the GENN method. The steps correspond to the description of the
method in Section 2.1.

Classification error is calculated on the set of training data as the fitness metric.
As mentioned earlier, the dataset is divided into cross-validation subsets. GENN is
optimized using a training set of data, and a subset of the data is left out as a test set
to evaluate the final solution and prevent over-fitting. Classification error refers to
the number of samples in the training dataset that are incorrectly classified by the
network. Prediction error, which refers to the number of samples in the test dataset
that are incorrectly classified using the GENN model generated during training, is
used for final model selection. The overall goal of the learning process is to find
genetic models that accurately classify the data. Cross-validation is used in
conjunction with this learning process to produce a model that not only can
accurately classify the data at hand, but can predict on future, unseen data.

2.2 Genetic Programming Neural Networks (GPNN)

GPNN uses genetic programming to determine the optimal architecture for neural
networks. Both the method and the software have previously been described[22].
GPNN was applied as presented in the references. Like GENN, models are trained on
classification error, and a cross validation consistency and prediction error are
determined for the final model. Unlike GENN, previous studies have shown cross
validation consistency as the best criterion for final model selection. However for this
study, the results are identical whether you use cross-validation consistency or
prediction error for final model selection. All configuration parameters are identical to
those in GENN. This will allow for a direct comparison of GPNN and GENN.
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2.3 Random Search Algorithm

As a negative control, a random-search algorithm was implemented. The random
search algorithm uses the same fitness metric as both GENN and GPNN. The random
search generates the initial chromosome population as described above for GENN,
using sensible initialization, but this new random population occurs at every
generation instead of only at the beginning of the run. Genotype-to-phenotype
mapping is performed just as it is for GENN. The algorithm stores the single best
network over all generations and returns that as the final model. All other networks
are discarded.

2.4 Back Propagation Neural Network

In this study, we used a traditional fully-connected, feed-forward network comprised
of one input layer, zero, one or two hidden layers, and one output layer, trained by
back-propagation. The software used, the NICO toolkit, was developed at the Royal
Institute of Technology, (http://www.speech.kth.se/NICO/index.html).

Defining the network architecture is an important decision that can greatly affect
the results of the analysis[32]. There are several strategies utilized for architecture
selection, including a prediction error fitness measure such that an architecture is
selected by its generalization to new observations[32], or a classification (training)
error metric[33]. Because we use cross-validation to verify the generalizability of our
models, and to make a more fair comparison to the other methods in this study, we
used classification error as a basis for evaluating and making changes to the BPNN
architecture. We began with a very small network, and several parameters were
varied to obtain an appropriate architecture for each dataset, including: the number of
hidden layers, the number of nodes in the hidden layer, and the learning momentum
(the fraction of the previous change in a weight that is added to the next change).
This trial and error approach is typically employed for optimization of BPNN
architecture[33,34]. BPNN was implemented as described in [22]. Final model
selection was performed based on lowest prediction error, as with GENN.

2.5 Data Simulation

Epistasis, or gene-gene interaction, occurs when the phenotype under study cannot be
predicted from the independent effects of any single gene, but is the result of
combined effects of two or more genes[34]. It is increasingly accepted that epistasis
plays an important role in the genetic architecture of common genetic diseases[35].
Penetrance functions are used to represent epistatic genetic models in this simulation
study. Penetrance defines the probability of disease given a particular genotype
combination by modeling the relationship between genetic variations and disease risk.

For our power studies, we simulated case-control data using two different epistasis
models exhibiting interaction effects in the absence of main effects. Models that lack
main effects are desirable because they challenge the method to find gene-gene
interactions in a complex dataset. Also, a method able to detect purely interactive
terms will be likely to identify main effects as well.
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Table 1. Multilocus penetrance functions used to simulate case-control data exhibiting gene-
gene interactions in the absence of main effects. Penetrance is calculated as
p(diseaselgenotype). Marginal penetrance values (not shown) are all equal for each model.

a. Model 1 b. Model 2
BB Bb bb BB Bb bb
AA 0 .10 0 AA 0 0 .10
Aa .10 0 .10 Aa 0 .50
aa 0 .10 0 Aa .10 0 0

To evaluate the power of the above methods for detecting gene-gene interactions,
we simulated case-control data using two different two-locus epistasis models in which
the functional loci are single nucleotide polymorphisms (SNPs). The first model was
initially described by Li and Reich[36], and later by Moore [37]. This model is based
on the nonlinear XOR function[38] that generates an interaction effect in which high
risk of disease is dependent on inheriting a heterozygous genotype (Aa) from one locus
or a heterozygous genotype (Bb) from a second locus, but not both. The high risk
genotypes are AaBB, Aabb, AABD, and aaBb, all with penetrance of 0.1 (Table 1a).
The proportion of the trait variance that is due to genetics, or heritability, of this model
is low. Specifically, as calculated according to Culverhouse et al[39], the heritability is
0.053. The second model was initially described by Frankel and Schork[40], and
later by Moore[37]. In this second model, high risk of disease is dependent on
inheriting exactly two high risk alleles (A and/or B) from two different loci. In this
model, the high risk genotypes were AAbb, AaBb, and aaBB, with penetrance of 0.1,
0.5, and 0.1 respectively (Table 1b). The heritability of this model is 0.051.

These models were selected because they exhibit interaction effects in the absence
of any main effects when genotypes were generated according to Hardy-Weinberg
proportions (in both models, p=q=0.5). For both models, we simulated 100 datasets
consisting of 200 cases and 200 controls, each with 10 SNPs, 2 of which were
functional. The data were generated using the software package described by Moore
et al[37]. Dummy variable encoding was used for each dataset, where n-/ dummy
variables were used for n levels[19]. Data were formatted with rows representing
individuals and columns representing dummy-encoded genotypes with the final
column representing disease status. Though biological relevance of these models is
uncertain, they do represent a “worst case scenario” in the detection of epistasis. If a
method performs well under such minimal effects, it is predicted it will also perform
well in identifying gene-gene interactions in models with greater effect sizes.

2.6 Data Analysis

We used all four methods (GENN, GPNN, BPNN and random search) to analyze both
epistasis models. The configuration parameter settings were identical for GENN,
GPNN and the random search (without evolutionary operators for random search): 10
demes, migration every 25 generations, population size of 200 per deme, 50
generations, crossover rate of 0.9, and a reproduction rate of 0.1. For GENN and the
random search, prediction error was used for final model selection as described in
Section 2.1. For GPNN, cross-validation consistency was calculated for each model
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and the final model was selected based on this metric (as described in [22]). Sensible
initialization was used in all three algorithms.

For our traditional BPNN analysis, all possible inputs were used and the
significance of each input was calculated from its input relevance R_I, where R_I is
the sum of squared weights for the i input divided by the sum of squared weights
for all inputs[38]. Next, we performed 1000 permutations of the data to determine
what input relevance was required to consider a SNP significant in the BPNN model
(data not shown). This empirical range of critical relevance values for determining
significance was 10.43% - 11.83% based on the permutation testing experiments.
Cross validation consistency was also calculated and an empirical cutoff for the cross
validation consistency was determined through permutation testing (using 1000
randomized datasets). This cutoff was used to select SNPs that were functional in the
epistasis model for each dataset. A cross validation consistency of greater than 5 was
required to be statistically significant.

Power for all analyses is reported under each epistatic model as the number of
times the algorithm correctly identified the correct functional loci (both with and
without any false positive loci) over 100 datasets. Final model selection was
performed for each method based on optimum performance in previous studies[22].
If either one or both of the dummy variables representing a single SNP was selected,
that locus was considered present in the model.

3 Results

Table 2 lists the power results from all four algorithms. Because of the small size of
the dataset, all four algorithms performed reasonably well. With a limited number of
SNPs, these learning algorithms can effectively become exhaustive searches. As
hypothesized, GENN and GPNN both out-performed the traditional BPNN and the
random search. The performance of GENN and GPNN were consistent, as expected.
This demonstrates that GENN will work at least as well as GPNN, while allowing for
faster development and more flexible use. Because the number of variables included
in the dataset was small, the random search performed reasonably well, as the trial
and error approach had a limited number of variables to search through. As Table 2
shows, there is a large gap in the performance of the random search between Model 1
and Model 2. This is probably due to the difference in the difficulty inherent in the
two models. The power of BPNN to detect Model 2 was also lower than for Model 1,
indicating a difference in the challenge of modeling the different models.
Additionally, the stochastic nature of a random algorithm can lead to erratic results, as
shown here. These erratic power results further demonstrate the utility of an
evolutionary approach to optimizing NN architecture. The random search even
outperformed BPNN for Model 1, probably because the random search was able to
search through more possible NN architectures than BPNN so was able to find the
correct model more often in these simulations.
Table 3 summarizes the average classification error (training error) and prediction
error (testing error) for the four algorithms evaluated using the 100 datasets for each
model. Due to the probabilistic nature of the functions used in the data simulation,
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Table 2. Power (%) for each method on both gene-gene interaction models (with no false
positive loci)

Epistasis Model GENN GPNN BPNN Random Search
1 100 100 53 87
2 100 100 42 10

Table 3. Results for all four algorithms, demonstrating average classification error (CE) and
prediction error (PE) for each epistasis model. The range of observed observations is listed
below the average.

Model GENN GPNN BPNN Random Search
CE PE CE PE CE PE CE PE

1 0.237 0.237 0.237 0.237 0.008 0.340 0.236 0.237
(212- (:210- (:200- (:208- (.000- (:201- (.088- (.075-

.254) .255) .284) .279) .183) .410) .483) .400)

2 0.243 0.243 0.242 0.243 0.008 0.303 0.242 0.245
(212- (:209- (212- (:210- (.000- (:240- (.080- (.075-

.260) 271) .261) .269) .181) .410) .494) .400)

Table 4. Power (%) for each method to detect functional SNPs in both gene-gene interaction
models (with or without false positive loci)

Model GENN GPNN BPNN Random Search
SNP 1 SNP2 | SNP 1 SNP2 | SNP 1 SNP 2 SNP1 | SNP2

1 100 100 100 100 88 90 100 100

2 100 100 100 100 80 82 100 100

there is some degree of noise present in the data. The average error inherent in the
100 Model 1 datasets is 24%, and the error in the Model 2 datasets is 18%. As the
table shows, GENN, GPNN and the random search all had error rates closely
reflecting the real amount of noise in the data. Those three algorithms had lower
prediction errors than BPNN, while BPNN had lower classification errors for both
models. The lower classification error is due to model over-fitting. The other three
algorithms, including even the random search, are better able to model gene-gene
interaction and develop NN models that can generalize to unseen data. While the
random search did not demonstrate the same degree of over-fitting experienced with
BPNN, the averages reported here disguise the fact that the range of errors across
datasets was very high. While the average errors for the random search look similar
to those for GPNN and GENN, the range of observed values was much larger,
implying that the random search also tends to over-fit. We speculate that GENN and
GPNN are not over-fitting because, while these methods are theoretically able to
build a tree with all variables included, neither method is building a fully connected
NN using all variables.

To further understand the behavior of the algorithms, and in particular the
seemingly inconsistent results of the random search’s average errors and low relative
power, we calculated power for each functional locus as the proportion of times a
SNP was included in the final model (regardless of what other SNPs are present in
the model) for all datasets. Table 4 lists the results of this power calculation for all
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four methods. The tendency of the random search algorithm to over-fit models
becomes clear in the comparisons of Tables 2-4. The random search finds the
functional SNPs, but includes many false positive loci, which is highly undesirable
since the end goal of association analysis is variable selection. The same false
positive trend holds true for BPNN.

4 Discussion

We have demonstrated that grammatical evolution is a valid approach for optimizing
the architecture of NN. We have shown that GENN outperforms both a random
search and traditional BPNN for analysis of simulated epistasis genetic models.
Because of the small number of SNPs in this study, both BPNN and the random
search NN had modest power, as one would expect. With a small number of
variables to test, examining low-order combinations is relatively easy. As the number
of variables increases, the resultant combinatorial explosion limits the feasibility of
trial and error approaches. Moody[33] demonstrates that enumeration of all possible
NN architectures is impossible, and there is no way to know if a globally optimal
architecture is selected. The performance gap between the evolutionarily optimized
algorithms and the trial and error approaches is expected to widen as the number of
variables increases.

Additionally, we show that GENN performs at least as well as GPNN. Because of
the limited number of noise variables, and the fact that these two methods reached
the upper limit of power, a more extensive comparison between GENN and GPNN
needs to be performed. Power will need to be studied in a range of datasets,
demonstrating a wide range of heritability values and number of noise variables.
Because of the greater flexibility of GE compared to GP, we predict that GENN will
out-perform GPNN on more complex datasets.

Because the end-goal of these methods is variable selection, performance has been
evaluated according to this metric in this study. In future studies, it would be
interesting to evaluate the architectures of the NN that are constructed by these
different methods to further evaluate the differences in their performance. Other
measures of model fitness, such as sensitivity and specificity could also be dissected
in evaluating the performance of GENN.

Also, while simulated data are necessary in method development, the eventual
purpose of this method is for the analysis of real data. GENN will need to be tested
on real case-control genetic data.

This study introduces a novel computational method and demonstrates that GENN
has the potential to mature into a useful software tool for the analysis of gene-gene
interactions associated with complex clinical endpoints. The ease of flexibility and
ease of development of utilizing a grammar will aid in additional studies with this
method.
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Abstract. In this article, we shall analyze the behavior of population-
based heuristics for obtaining biclusters from DNA microarray data.
More specifically, we shall propose an evolutionary algorithm, an esti-
mation of distribution algorithm, and several memetic algorithms that
differ in the local search used.

In order to analyze the effectiveness of the proposed algorithms, the
freely available yeast microarray dataset has been used. The results ob-
tained have been compared with the algorithm proposed by Cheng and
Church.

Both in terms of the computation time and the quality of the solu-
tions, the comparison reveals that a standard evolutionary algorithm and
the estimation of distribution algorithm offer an efficient alternative for
obtaining biclusters.

1 Introduction

One of the research fields which has aroused the greatest interest towards the
end of the 20th century and whose future is expected to be as equally promising
in the 21st century is the study of an organism’s genome or genomics.

By way of a brief history, it was Gregor Mendel who defined the gene concept
in his research as the element where information about hereditary characteristics
is to be found. At a later stage, Avery, McCleod and McCarty demonstrated that
an organism’s genetic information stems from a macromolecule called deoxyri-
bonucleic acid (DNA); it was later discovered that genetic information located
in specific areas of the DNA (the genes) enabled protein synthesis; this was fol-
lowed by the sequencing of the genome of certain organisms (including humans).
This and future consequences awakened a great deal of interest among scientists.

Since proteins are responsible for carrying out cellular functions, cellular func-
tioning therefore depends on the proteins synthesized by the genes, and is de-
termined by regulation of protein synthesis (gene expression) and control of its
activity.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 115-126, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The process whereby the approximately 30,000 genes in the human genome
are expressed as proteins involves two steps: 1) the DNA sequence is transcribed
in messenger RNA sequences (mRNA); and 2) the mRNA sequences are in turn
translated into amino acid sequences which comprise the proteins.

Measuring the mRNA levels provides a detailed vision of the subset of genes
which are expressed in different types of cells under different conditions. Mea-
suring these levels of gene expression under different conditions helps explore the
following aspects (among others) in greater depth: a) The function of the genes,
b) How several genes interact and ¢) How different experimental treatments
affect cell function.

Recent advances in array-based methods enable expression levels of thou-
sands of genes to be measured simultaneously. These measurements are obtained
by quantizing the mRNA hybridization with a ¢cDNA array, or oligonucleotide
probes fixed in a solid substance.

Technological advances in the development of cDNA arrays simultaneously
produce an amazingly large quantity of data relating to the transcription levels of
thousands of genes and in specific conditions. For knowledge extraction (function
of the genes, implication of certain genes in specific illnesses, etc.), researchers
use consolidated methodologies and specific ones are being developed. However,
although the results obtained so far are getting better, there is still room for
improvement.

2 Gene Expression Matrices

In a gene expression matrix, the rows represent genes and the columns represent
samples, and each cell contains a number which characterizes the expression level
of a particular gene in a particular sample.

Like most experimental techniques, microarrays measure the final objective
indirectly through another physical quantity, for example the relative abundance
of mRNA through the fluorescence intensity of the spots in an array.

Microarray-based techniques are still a long way from providing the exact
quantity of mRNA in a cell. The measurements are naturally relative: essen-
tially we can compare the expression levels of one gene in different samples or
different genes in one sample, so that it is necessary to apply a suitable nor-
malization to enable comparisons between data. Moreover, as the value of the
microarray-based gene expression can be considerably greater according to the
reliability and limitations of a particular microarray technique for certain types
of measurements, data normalization is a key issue to consider.

Once we have constructed the gene expression matrix, the second step is to
analyze it and attempt to obtain information from it.

In this work we shall use the biclustering concept introduced by Hartigan [6]
to capture the degree of similarity between a subset of elements within a subset
of attributes. Church applied this technique on DNA microarrays [3].

The advantage of biclustering as opposed to traditional clustering when ap-
plied to the field of microarrays lies in its ability to identify groups of genes
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that show similar activity patterns under a specific subset of the experimental
conditions. Therefore, biclustering approaches are the key technique to use when
one or more of the following situations applies [7]:

1. Only a small set of the genes participates in a cellular process of interest.

2. An interesting cellular process is active only in a subset of the conditions.

3. A single gene may participate in multiple pathways that may or not be
coactive under all conditions.

Besides, the biclusters should not be exclusive and/or exhaustive: A gene /
condition should be able to belong to more than one cluster or to no cluster at
all and be grouped using a subset of conditions/genes.

2.1 Biclustering Techniques

In this section, we briefly present some representative strategies in literature for
obtaining biclusters.

Cheng and Church in [3], proposed a set of heuristic algorithms whose func-
tion, beginning with the complete matrix, is based on the execution of iterative
stages: deletion and addition of rows in order to obtain biclusters.

The FLOC algorithm (Flexible Overlapped Clustering) [16], is a variant of
previous work, which performs an iterative process from an initial set of biclusters
in an attempt to improve their overall quality. In each iteration, a row or column
is added or deleted from each bicluster in order to produce the ideal set of
biclusters in terms of having the greatest similarity. The algorithm finishes when
there is no improvement in the overall quality of the previous set of biclusters.

The CLICK algorithm is based on the construction of bipartite graphs [13].
This algorithm uses the following three stages to obtain biclusters: a) Identify
regions which may contain biclusters; b) Identify the biclusters and c¢) Refine
biclusters to their minimum size.

The double conjugated clustering algorithm [2], where the search for biclusters
is performed on two different search spaces: one comprising the genes, and the
other the experiments. In this way, a clustering algorithm is applied to each
space independently. In order to join the clusters induced in both processes, two
functions are defined which enable one node from one space to be converted into
the conjugated node of the other space, and vice versa. The final adjustment
between both search spaces is obtained by means of a new clustering process to
correct the clusters conjugated in the other space.

The pCluster algorithm [14]| uses a more general similarity type. Two objects
therefore belong to the same cluster if they display a similar pattern for a subset
of dimensions. This enables biclusters to be discovered with elements which com-
ply with the same pattern although they are not close to each other. Discovering
these biclusters is essential when revealing gene behavior.

Finally, the pMafia algorithm [10] consists of a parallel implementation of
a grid algorithm [12,15] adapted for biclusters. Each dimension is divided into
small intervals of a fixed size called "windows". During the clustering process,
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when two adjacent windows are similar, they merge and a new one is created.
The algorithm uses the parallelism to reduce the computation time.

The last years have shown an increasing interest in this field. We suggest the
interested reader to check out the excellent survey by Madeira and Oliveira [7].

2.2 Measuring the Quality of a Bicluster

Below, we shall define the main concepts which form the basis of the residue-
based bicluster induction methods towards which we have directed our research.

Definition: Let D be a gene expression matrix, of the size n x m (Dpxm),
where the set of rows F' = {G1, Ga, ..., G, } represents the genes and the set
of columns R = {F1, Es, ..., E;,,} represents the conditions or experiments.
Each element d;; in the matrix matches the expression level (absolute or
relative) of gene G; in experiment E;.

Definition: Given a gene expression matrix Dy, xm, a bicluster is a pair (1, .J),
where I C {1,...,n} is a subset of rows of F' and J C {1,...,m} is a sub-
set of columns of R, in which the genes G; with i € I behave in a similar way.

Definition: Given a bicluster (I,.J), the residue (7;;) of an element d;; of the
bicluster is calculated according to Equation 1.

rij = dij — dig —drj +dpg (1)

where 5 J

>icr, dig
dp; = €D 3)
’ 2]
Ziel jeJ dij

drj = I (4)

|- [J]

The residue is an indicator of the degree of coherence of an element in relation
to the remaining elements in the bicluster, additionally providing the bias of
the objects and the relevant attributes. Therefore, the smaller the value of the
residue, the greater the coherence.

Definition: Given a bicluster (I,.J), the residue (r7;) of the bicluster can be
obtained from Equation 5, where 7;; is the residue of the element d;; and
vy is the volume of the bicluster.

s
rrg = ZzGI,jGJ‘ Z]| (5)
vrJg

In order to determine the overall quality of a bicluster, its residue is defined

as the mean of the residues of all its elements. This mean could be arithmetic,

geometric, etc. Here, we applied the arithmetic mean.
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3 Proposed Population Based Techniques

In this section, we shall describe the particular characteristics of the genetic al-
gorithm (GA), the memetic algorithms (MA), and the estimation of distribution
algorithm (EDA) which have been implemented.

3.1 Genetic Algorithm

As the simplest population based technique, we shall implement a classical ge-
netic algorithm, with elitism. The main characteristics are described next.

Codification: The solution’s representation is as follows: given a data matrix
D of size n x m, the biclusters are encoded in a vector of size n + m, where
the first n positions represent the rows and the last m positions represent the
columns of the bicluster. Each position of the vector can have one of two values
(1 or 0) indicating whether the corresponding row or column is to be found (1)
or not (0) in the bicluster.

Selection: Baker’s stochastic universal sampling was chosen as the selection
method. This is a roulette wheel method with slots which are sized according to
the fitness of each chromosome.

Crossover: the uniform operator is used: given two parents, the offspring keep
the values common to both of them, while every other value is randomly taken
from any of the parents.

Mutation: a BitFlip mechanism was chosen: given an individual in the popu-
lation, one of its bit values is changed for its complementary one.

Fitness: is measured as the residue associated to the bicluster represented by a
given individual.

Restart: For the restart strategy, we have chosen to move the best individual
to the new population. In addition, 20 % of the new population will be the best
individual in the current mutated generation and the rest shall be generated
randomly. This restart shall be applied when 10 % of the generations to be
made have taken place with no change in the best element in the population.

3.2 Memetic Algorithms

Memetic algorithms have been studied from practical and theoretical points of
view since 15 years ago [5] and, while very complex strategies are being devel-
oped, in their simplest form they can still be considered as a genetic algorithm
hybridized with a local search operator.

Here, and departing from the genetic algorithm described before we imple-
mented several basic memetic algorithms using two different local search tech-
niques, namely:

— K-opt: the chromosomes can also be seen as a permutation of the rows
and columns of the bicluster so that we could apply k-opt movements on
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them, which in particular would consist in exchanging with each other k bits
of a given solution. If this exchange leads to an improvement, a new k-opt
movement would be undertaken and this process would be continued until
no improvement is made in certain number of trials.

We constructed 4 different memetic schemes for values of k € {2,3,4,5}.

— Taboo Search (TS): a very basic TS strategy is used. The neighborhood
is sampled using the mutation operator described for the GA.

3.3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) were described for the first time
by H. Muehlenbein and G. Paab [8]|. In EDAs, the solution space is represented
by means of a probability distribution associated with the individuals selected
in each generation and not with a population. This probability distribution is
calculated from a set of individuals selected from the previous generation. Once
obtained, it is sampled in order to generate descendants so that neither the
mutation nor the crossover is applied in the EDAs.

The easiest way to calculate the probability distribution consists in consider-
ing all the variables of interest to be independent. So, the probability estimation
is converted into the product of the marginal probabilities of n variables as:

p(x) = II;L, p(:) (6)

Different approximations to the methodology can be found, including: the uni-
variate marginal distribution algorithm [9], population-based incremental learn-
ing [1] and the compact genetic algorithm [4].

In this work we shall focus on the Univariate Marginal Distribution Algorithm
(UMDA, in what follows). UMDA maintains a population of N individuals, to
which a selection method is applied in order to create a new population. From
this new population, the frequencies of each gene are obtained and used to
generate a new population of N individuals. This mechanism for generating the
population is a type of crossover operator which replaces the traditional GA
crossover operator.

The process in detail is as follows:

1. Choose the M best individuals in the current population which are in the
set Dlsjl.

2. Estimate the probability distribution of the current population using Eq. 7.

3. Generate a new population of N individuals from the probability distribution
which is stored in the set DZSE.

The probability distribution is expressed as the product of invariable marginal
probabilities, which is estimated from the marginal frequencies:

S 65(X; = @y D))

) =" T (7)
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where §;(X; = xi|DlS_“1) is 1 for the j** individual in M if the value of gene X;
is equal to x;, in any other case it will be 0.
The outline of our UMDA-based algorithm can be seen in Algorithm 1.

Algorithm 1. Proposed Estimation of Distribution Algorithm
1. Generate initial population of size N
2. Do itersNow =0
3. While itersNow < maxlIters
(a) Choose § individuals
(b) Estimate the probability distribution of the M individuals
(c) Sample the distribution in order to obtain new individuals
(d) Replace the old population with the new one
4. End While
Return best individual
6. End

o

4 Experiments

In order to evaluate and analyze the implemented algorithms, the yeast expres-
sion data set has been used, comprising 17 experiments (columns) on 2900 genes
(rows). This gene expression data set was chosen since it is one of the most used
in literature by the majority of experts in this field, thereby enabling our results
to be compared.

The results obtained with the proposed tools have been compared using the
algorithm proposed by Church in [3] as a reference algorithm.

Following an empirical study, the following parameters were fixed: a popula-
tion of 200 individuals and 200 generations. The crossover and mutation proba-
bilities were fixed at 0.8 and 0.6, respectively.

Each algorithm was executed 30 times, and the seed of the random number
generator was changed in each execution. At the end of each execution, the best
bicluster found was recorded.

4.1 Results

This section includes the results obtained by the proposed algorithms and the
reference algorithm. We also performed a random sampling of biclusters in order
to check the expected residue value for a random bicluster.

Table 1 shows the corresponding residues for the best and worst biclusters,
the mean and typical deviation on 30 executions, and also an indication of the
time taken for each execution. The average size of the resulting biclusters are
also displayed. Results for Reference algorithm were taken over 100 bicluster
while 10 random solutions were generated.
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Figure 1 shows the histograms of residue (a), rows (b) and columns (c) of
the best biclusters found by every algorithm. Results for k-opt for k£ > 3 were
omitted for visualization purposes (although they were extremely similar to those
of 2-opt). These figures give us a global view of the whole set of best biclusters
available, enabling to quickly check out the region of the search space covered
by every strategy.

Several aspects can be highlighted from the table and the histograms. First
one is that the GA achieves very good residue values despite the simplicity of its
components’ definitions. On average, the biclusters generated are quite big (825
rows and 8 columns).

The joint use of GA with local search, leading to different memetic schemes,
does not seem to be useful. The simpler local search schemes (k-opt) increase
the residue while the average number of rows in the bicluster is significantly
reduced. In this case, and given the standard deviation values, it is clear that
there is a problem of convergence which is independent of the k value. Moreover,
no statistical differences were detected for different values of k.

As the complexity of the local search is increased, from 2-opt to TS, the
residue values also increase. This becomes clear if we look at the corresponding
histogram. In turn, the sizes of the biclusters obtained are slightly higher than
those obtained by k-opt.

The EDA strategy achieves the lowest average residue value, while the corre-
sponding bicluster sizes are about 200 rows and 8 columns. The average residue
for the reference algorithm is almost three times higher than that of EDA, while
the biclusters are smaller on average(although the number of columns is in-
creased from 8 to 12). The reference algorithm presents the highest variability
in residue, number of rows and columns (this is clearly seen in the histograms).

In order to determine what differences in terms of residue are significant, a
Kruskal-Wallis test was performed. The test reveals significant differences among
the median of the residues of the algorithms. Then, pairwise U Man-Witney non
parametrical test were performed and they confirm that the differences among
the algorithms were significant.

Another element to analyze is the computational time used. The faster al-
gorithm, and the best one on bicluster quality, is EDA, followed by the GA.
The addition of local search to GA increases the computational time consider-
ably while not having the same counterpart in biclusters quality. The Church’s
algorithm has quite acceptable running times.

In Fig. 2 we plot the volume of the best solutions (calculated as rows x
columns) against residue for algorithms GA, EDA and Reference). This plot re-
veals several things. First one is the existence of many alternative solutions with
similar residue. See for example the vertical range for residue between 5-10. This
fact is most notably for GA and EDA. In second place we can see that the Refer-
ence algorithm is able to obtain very similar solutions in size while very different
in residue. Both facts clearly encourage the use of population based techniques
that allow to simply manage a set of solutions of diverse characteristics.
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Table 1. Statistical Values of residue and size of the biclusters found by every algo-
rithm. Time is in minutes per run.

Residue Average Size
Algorithm Avg (sd) Best Worst Rows (sd) Cols (sd) Time
GA 8.83 (0.81) 7.30 11.82 825.19 (488.32) 7.94 (4.11) 5
EDA 5.72 (1.45) 4.81 9.87 213.28 (109.74) 8.28 (0.70) 3
GA+2-opt 10.46 (0.04) 10.35 10.50 235.62 (9.95) 8.07 (0.26) 10
GA+3-opt 10.45 (0.05) 10.36 10.50 241.59 (10.14) 8.07 (0.26) 14
GA-+4-opt 10.45 (0.05) 10.37 10.49 24348 (11.71) 8.14 (0.35) 15
GA+5-opt 10.47 (0.04) 10.33 10.50 240.83 (15.67) 8.04 (0.21) 17
GA+TS  17.07 (1.94) 13.90 20.68 280.20 (10.99) 8.00 (0.12) 14
Church 14.19 (3.59) 7.77 29.78 166.70 (226.37) 12.09 (4.40) 5-10
Random  23.51 (2.60) 5.75 34.26 1407.30 (841.16) 9.48 (4.60) —
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Fig. 1. Histograms of residue (a) , row (b) and column’s (c) values of the best biclusters
obtained by every algorithm. Results for k-opt for k£ > 3 were omitted. TS and 2-opt
stands for the memetic algorithm using such local search scheme.
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Finally, Fig. 3 shows the evolution of the average residue over the time for
typical runs of EDA, GA, GA+TS and GA + 2-opt. The faster convergence is
achieved by EDA; given that no restart mechanism is included, EDA becomes
stagnated during the last half of the time available. The curves for GA and
GA+2-opt are pretty similar: both algorithms show a continuous but very slow
convergence. Also, GA+TS is the worst method: it seems like the algorithm
can not made the population to converge. We have two hypothesis for these
behaviors: first one there may be a problem in the local search parameters;
second one may be related with the fact that a small change in the genotype
can give raise to a big change in the phenotype and, when this fact occurs, the
use of local search is not recommendable. Both situations are under study but
we suspect the second reason may be more relevant.



Obtaining Biclusters in Microarrays with Population-Based Heuristics 125

5 Conclusions and Future Research

The population based techniques tested here showed as robust and efficient
strategies for coping with the obtention of biclustering in microarray matrices.

More specifically, the simple EDA implemented was able to obtain better
solutions than the other algorithms (including the reference one) while using
less computational time.

We are aware that the analysis of biclustering results is somehow controversial
because it is not clear what makes a bicluster “good” or not. In principle, it seems
desirable for the biclusters to be as large as possible and to maintain low residue
levels. This would indicate that a high number of genes have been identified with
a similar expression profile in a large number of conditions.

Also, Aguilar [11] proved that the mean squared residue is not precise enough,
from the mathematical point of view, to discover shifting and scaling patterns
simultaneously and he pointed out that the characterization of an objective
function H that allows to detect both patterns simultaneously would be very
beneficial. To the best of our knowledge, such function is still not available.

A byproduct of using these population-based techniques is that, at the end
of each run, we have available a set of high quality solutions. This is extremely
important because the ultimate goal is to obtain a set of genes “biologically”
related, so the optimization point is somehow secondary. In this context, the
use of more complex strategies like memetic algorithms without having problem
specific operators seems not to be recommendable.
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Abstract. We introduce a new heuristic for the multiple alignment of
a set of sequences. The heuristic is based on a set cover of the residue
alphabet of the sequences, and also on the determination of a significant
set of blocks comprising subsequences of the sequences to be aligned.
These blocks are obtained with the aid of a new data structure, called
a suffix-set tree, which is constructed from the input sequences with
the guidance of the residue-alphabet set cover and generalizes the well-
known suffix tree of the sequence set. We provide performance results on
selected BAliBASE amino-acid sequences and compare them with those
yielded by some prominent approaches.

Keywords: Multiple sequence alignment; Set covers.

1 Introduction

The multiple alignment of biological sequences is one of the most important
problems in computational molecular biology. It has applications in many differ-
ent important domains, such as the analysis of protein structure and function,
the detection of conserved patterns and domain organization of a protein family,
evolutionary studies based on phylogenetic analysis, and database searching for
new members of a protein family.

The problem of multiple sequence alignment can be stated in the following
manner. Let sq,..., sk, with k > 2, be sequences of lengths nq,...,ng, respec-
tively, over a residue alphabet R. An alignment A of these sequences is a k x [
matrix such that A7, j], for 1 <i <k and 1 < j <1, is either a character in R
or the special character that we call a gap character. In A, fixing 7 and varying j
from 1 through [ must reproduce s; exactly if gap characters are skipped. Fixing
j, in turn, yields k characters that are said to be aligned in A, of which at least
one must be in R. Note, then, that max{ny,...,ng} <1 <ni+---+ng.

The goal of the multiple sequence alignment problem is to determine the most
biologically significant alignment of s1, ..., si. Finding this alignment requires an
objective function to associate a score with each possible alignment, and in this
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F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 127-137, 2006.
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case the multiple sequence alignment problem is to find an alignment, known as
the optimal alignment, that maximizes the objective function. There exist many
different objective functions that can be used, but none of them guarantees
that the corresponding optimal alignment is the most biologically significant
alignment of the sequences. It follows from the definition of an alignment that
the number of different alignments of a given set of sequences is exponentially
large; in fact, the multiple sequence alignment problem is known to be at least
NP-hard [1]. Feasible approaches to solve the problem are then all of a heuristic
nature.

In this paper we describe a new heuristic that is based on set covers of the
residue alphabet R. Such a set cover is a collection of subsets of R whose union
yields R precisely. The idea behind the use of a set cover is that each subset can
be made to contain all the residues from R that possess certain structural or
physicochemical properties in common. The most familiar scenario for the use of
set covers is the case of R as a set of amino acids, so henceforth we concentrate
mainly on multiple protein alignments. Set covers of an amino-acid alphabet
have been studied extensively (e.g., [2]).

Set covers lie at the heart of the new heuristic. In essence, what they do is
to allow the introduction of a new data structure, called a suffix-set tree, that
generalizes the well-known suffix tree of a set of sequences and can be used in
the determination of subsequence blocks that ultimately give rise to the desired
alignment. In general terms, this is the same approach as some others in the
literature, but our use of set covers as its basis provides a fundamentally more
direct link between relevant properties shared by groups of residues and the
resulting alignment.

The following is how the remainder of the paper is organized. In Section 2 we
introduce our new data structure and in Section 3 describe our new approach to
multiple sequence alignment. Then we proceed in Section 4 to the presentation
of computational results of the new method as compared to some of its most
prominent competitors, and finalize with conclusions in Section 5.

2 Suffix-Set Trees

In this section we describe our new data structure. It is a generalization of the
well-known suffix tree of a set of sequences, which is one of the most important
data structures in the field of pattern recognition. Such a suffix tree has O(n; +
-+ 4 ny) nodes and can be constructed in O(ny + -+ + ng) time [3].

Suffix trees can be applied to many problems, but their principal application
in computational molecular biology is to assist the algorithms that try to obtain
blocks comprising biologically significant subsequences of a set of sequences,
known as the motifs of that set. These motifs, in the case of proteins, encode
structural or functional similarities; in the case of nucleic acids, they encode
mainly the promoter regions.

Let C = {C4,...,C,} be a set cover of R, and let X¢ = {aq,...,ap, a5} be
a new alphabet having a character «; for each C; € C and a further character
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ag possessing a function similar to the terminator used in suffix trees. Like the
suffix tree, our new data structure is also a rooted tree; it has edges labeled
by sequences of characters from X and nodes labeled by indices into some of
$1,-..,Sk to mark suffix beginnings. We call it a suffix-set tree and it has the
following properties:

— The first character of the label on an edge connecting a node to one of its
children is a different character of X¢ for each child.

— Each nonempty suffix of every one of the k sequences is associated with at
least one leaf of the tree; conversely, each leaf of the tree is associated with
at least one nonempty suffix of some sequence (if more that one, then all
suffixes associated with the leaf have the same length). Thus, each leaf is
labeled by a set like {(i1,71),..., (ig,7q)} for some ¢ > 1, where (i4,Jq),
forl <a<g¢q 1<i, <k and1 < j, < n;,, indicates that the suffix
Siy [Ja - -mi, ] of s;, is associated with the leaf.

— Let v be anode of the tree. The label of v is the set {(i1, 1), .- ., (ig, jq)} that
represents the ¢ suffixes collectively associated with the leaves of the subtree
rooted at v. If a, - - - o, is the concatenation of the labels on the path from
the root of the tree to v, excluding if necessary the terminal character ag,
then ag, - - - ac, is a common representation of all prefixes of length r of the
suffixes associated with the leaves of the subtree rooted at v. If s;, [jq - - 14, ]
is one of these suffixes, then for 1 < b < r we have s;, [j, +b—1] € C,, (that
is, the bth character of the suffix is a member of C.,).

Note that, when C is a partition of R into singletons, the suffix-set tree be-
comes the familiar suffix tree of si,...,s;. In order to see this, it suffices to
identify for each character in each sequence the member C; of C to which it be-
longs, and then substitute «; for that character. We show in Figure 1 a suffix-set
tree for R = {A,C,G, T}, Cy = {A,G, T}, C; = {C,T}, s; = AGCTAG, and
so = GGGATCGA.

In the strategy to be described in Section 3 we do not construct the suffix-set
tree to completion, but rather only the portion of the tree that is needed to
represent all suffix prefixes of length at most M (a fixed parameter). Clearly, the
number of nodes in the tree is O(p™), therefore polynomial in p given the fixed
parameter M. It is relatively simple to see that the tree can be constructed in
O (pM+1(TL1 +--- 4+ nk) +pM+2|R‘2) time.

3 Alignments from Set Covers

For 2 < k' < k, let t1,...,tx be subsequences of si,..., s, such that each ¢,
is a subsequence of a different s;, , with 1 < a < k" and 1 <4, < k. We call
{t1,...,trw} a block. If A’ is an alignment of ¢1,...,t; having I’ columns, then
the score of A’, denoted by S(A’), is a function, to be introduced shortly, of

U k-1 ¥

TAY =33 > Q.5 Ala.c, A'b,d), (1)

c=1 a=1 b=a+1
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where p¢ is the position in s;, of the rightmost character of ¢, whose column
in A" is no greater than ¢ (pS = 0, if none exists), and similarly for pj. In
(1), Q (S, ps, A'la,c], A'lb, c]) is the contribution to T'(A’) of aligning the two
characters A’[a, c] and A’[b, ] given p¢ and pg. If both A'[a,c] and A'[b, ] are
gap characters, then we let @ (pS, ps, A'[a, c], A’[b, c]) = 0. Otherwise, the value
of Q (pS,ps, A'la, ], A’[b, c]) is determined through a sequence of two steps.

The first step is the determination of the combined number of optimal global
and local pairwise alignments of s;, and s;, that go through the p§,p; cell of the
dynamic-programming matrix. In what follows, we split this number into three
others, and let each of U1 (p%,pg), ..., Us(pS, ps) be either a linearly normalized
version of the corresponding number within the interval [1, L] for L a parameter,
if that number is strictly positive, or 0, otherwise. We use U (p, p§) in reference
to the case of optimal alignments through the pg,pf cell that align s;, [p] to
si, [P5], Ua(pS, pg) for alignments of s;, [pS] to a gap character, and Us(pg, p5) for
alignments of s;, [pf] to a gap character.

The second step is the determination of @ (pg, p5, A'la, c], A'[b, c]) itself from
the quantities U1 (pg,pf), ..., Us(ps, pg). I Ur(pl,p5) = -+ = Us(pg,pg) =0 (no
optimal alignments through the p¢ ,pf cell), then Q (pS, p5, A'[a, c], A'[b, c]) = —L.
Otherwise, we have the following cases to consider, where z € {1,2,3} selects
among Uy, Us, and Us depending, as explained above, on A'[a, ¢] and A’[b, ¢]:

- If Uz(p27pg) > Oa then Q (p§7pg7A/[a7C}7A/[ba C]) = Uz(p;7pg)
— If U.(pS,p5) = 0, then

Q (p27pg7 A/[a7 C], A/[b7 C]) = —Il'liIl+ {Ul (p27pg)7 UZ(pZ7pg)7 U3(pg7pg)} 5

where we use min™ to denote the minimum of the strictly positive arguments
only.

What this second step is doing is to favor the alignment of A’[a, ] to A’[b, c] in
proportion to its popularity in optimal pairwise alignments of s;, and s;,, and
similarly to penalize it—heavily when cell p¢, pj is part of no optimal pairwise
alignment, less so if it is but not aligning A’[a, c] to A’[b, ¢].

Finally, the function that yields S(A’) from T'(A’) is designed to differentiate
two alignments of different blocks for which 7" might yield the same value. We do
so by subtracting off T'(A’) the fraction of |T'(A")| obtained from the average of
two numbers in [0, 1]. The first number is 1 —&’/k and seeks to privilege (decrease
T by a smaller value) the block with the greater number of subsequences. The
second number is a function of the so-called identity score of an alignment,
that is, the fraction of the number of aligned residue pairs that corresponds to
identical residues. If we denote the identity score of A’ by I(.A’), then the second
number is 1 — I(A’) and aims at privileging alignments whose identity scores are
comparatively greater. We then have

!/ /
S(A') = T(A) - (2 - I(A’)) Teon (@)

The remainder of this section is devoted to describing our heuristic to obtain
a k x [ alignment A of the sequences s1,..., sk, given the set cover C of the
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Fig.1. An example suffix-set tree, node labels shown only for the leaves. Each node
label is expressed more compactly than in the text; for example, “I2,1I14” stands for
the label {(1,2),(2,4)}.

residue alphabet R. The suffix-set tree 7 of sq,..
first describe how to obtain a suitable set B of blocks from s, ..
how to obtain A from B.

., Sk plays a central role. We
., Sk, and then

3.1 Blocks from Set Covers

We start by creating a set B of blocks that is initialized to () and is augmented
by the inclusion of new blocks as they are generated. The size of B is at all times
bounded by yet another parameter, denoted by IV.

Every node v of 7 that is not the root may contribute blocks to B. If
n, < k is the number of distinct sequences with suffixes associated with v
and [, < M is the common prefix length of all those suffixes, then each block
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contributed by v is formed exclusively by some of the length-l, prefixes as its
subsequences, totaling at least two and including at most one from each of the
n, sequences.

Let Ap denote an alignment of block B’s subsequences. Block formation for
node v proceeds as follows. First the n, sequences are sorted in nonincreasing
order of their numbers of suffixes associated with v and a new block is created
for each prefix of the first-ranking sequence. An attempt is then made to add
more prefixes to each such block B by visiting the remaining n, — 1 sequences
in order and selecting for each one the prefix, if any, that increases S(Apg) the
most when Ap acquires another row by the addition of that prefix. It is worthy
of mention that, as prefixes coalesce into the final form of B, Ap never contains
any gap characters, in which case @ is seen to revert to a simpler form. But
notice that the functional form in (2) continues to be effective, not only because
of the identity scores, but also because the expansion of B involves comparing
alignments that may differ in numbers of rows (a unit difference, to be specific).
At the end, all blocks still having one single sequence are discarded.

Once v’s contribution to B is available, it is sorted and then merged into B (we
may think of B as being internally organized as a sorted list). Both operations
seek to retain inside B those blocks whose alignments’ scores are greater. If
needed, additional tie-breaking criteria are employed, including those that are
already reflected in (2): greater numbers of subsequences and identity scores are
preferred.

Now say that two blocks B and B’ are such that B is contained in B’ if every
subsequence of B is itself a subsequence of the corresponding subsequence of B’.
Once every non-root node of 7 has been considered for contributing to 5, the
resulting B is further pruned by the removal of every block that is contained in
another of at least the same score. After this, B undergoes another fix, which is
to extend its blocks by the addition of new subsequences so that at the end they
all contain exactly one subsequence from each of s1, ..., sg.

The following is how we achieve this extension for block B € B. We consider
the unrepresented sequences one by one in nonincreasing order of their lengths.
Then we use a semi-global algorithm to align the current Apg to a subsequence of
the unrepresented sequence under consideration. This algorithm employs the @
function in place of a substitution matrix and gap costs. As B is thus extended,
its alignment Ap changes as well, and may now acquire gap characters for the
first time.

The final step in this setup process of B is to once again examine all its
blocks and remove every block B such that either S(Ag) < 0 or Ap is contained
in Ap: for some other B’ € B for which S(Ap) < S(Ap/). The containment
of one alignment in another is a notion completely analogous to that of block
containment introduced above.

3.2 Alignments from Blocks

The B that we now have contains k-subsequence blocks exclusively, all having
nonnegative-score alignments that are not contained in one another (except when
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the container has a lower score). In this new phase of the heuristic we build a
weighted acyclic directed graph D from B. Manipulating this graph appropriately
eventually yields the desired alignment A of sq, ..., sk.

The node set of D is BU {s,t}, where s and ¢ are two special nodes. In D,
an edge exists directed from s to each B € B, and also from each B € B to
t. No other edges are incident to s or ¢, which are then a source and a sink
in D, respectively (i.e., s only has outgoing edges, ¢ only incoming edges). The
additional edges of D are deployed among the members of B in the following
manner. For B, B’ € B, an edge exists directed from B to B’ if every subsequence
of B starts to the left of the corresponding subsequence of B’ in the appropriate
sequence of si,...,s,. In addition, if B and B’ overlap, then Ag and Ap/ are
also required to be identical in all the overlapping columns. Edges deployed in
this manner lead, clearly, to an acyclic directed graph.

In D, both edges and nodes have weights. Edge weights depend on how the
blocks intersect the sequences si, ..., sk. Specifically, if an edge exists from B
to B’ and the two blocks are nonoverlapping, then its weight is —z, where x
is the standard deviation of the intervening sequence-segment lengths. Edges
outgoing from s or incoming to t are weighted in the trivially analogous
manner.

Weights for edges between overlapping blocks and node weights are computed
similarly to each other (except for s and ¢, whose weights are equal to 0). If
is the number of residues in node B, then its weight is :v/\/k In the case of
an edge between the overlapping B and B’, we let z be the number of common
residues and set the edge’s weight to —z/v/k. We remark, finally, that this weight-
assignment methodology is very similar to the one in [4], the main difference
being that we count residues instead of alignment sizes.

Having built D, we are then two further steps away from the final alignment
A. The first step is to find an s-to-t directed path in D whose weighted length
is greatest. Since D is acyclic, this can be achieved efficiently. Every block B
appearing on this optimal path immediately contributes Ap as part of A, but
there still remain unaligned sequence segments.

The second step and final action of the heuristic is then to complete the miss-
ing positions of A. We describe what is done between nonoverlapping successive
blocks, but clearly the same has to be applied to the left of the first block on
the optimal path and to the right of the last block. Let B and B’ be nonover-
lapping blocks appearing in succession on the optimal path. Let t1,...,t; be
the intervening subsequences of si, ..., s that are still unaligned. We select the
largest of t1,...,t; and use it to initialize a new alignment along with as many
gap characters as needed for every one of t1, ..., ¢ that is empty. We then visit
each of the remaining subsequences in nonincreasing length order and align it
to the current, partially built new alignment. The method used here is totally
analogous to the one used in Section 3.1 for providing every block with exactly k
subsequences, the only difference being that a global (as opposed to semi-global)
procedure is used.
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4 Computational Results

We have conducted extensive experimentation in order to evaluate the perfor-
mance of the heuristic of Section 3. Our strategy has been to employ the BAI-
iBASE suite [5] as the source of sequence sets, and to seek comparative results
vis-a-vis some prominent approaches, namely CLUSTAL W [6], PRRN [7], DI-
ALIGN [8,9], T-COFFEE [10], and MAFFT [11]. The BAliBASE suite comprises
167 families of amino-acid sequences divided into eight reference sets, each of
which especially constructed to emphasize some of the most common scenarios
related to multiple sequence alignment. The suite contains a reference alignment
for each of its families, in most cases along with motif annotations given the
reference alignment. We have concentrated our experiments on the families for
which such annotations are available, namely the first five reference sets.

The metrics we use to evaluate a certain alignment A are motif-constrained
versions of those originally introduced along with the BAIiBASE suite: the sum-
of-pairs score (SPS), denoted by SPS(A), and the column score (CS), denoted
by CS(A). If we let pape be a 0-1 variable such that pap. = 1 if and only if the
residues Ala, ¢] and A[b, ¢] share the same column in the BAIIBASE reference
alignment for the same sequences, then the version of SPS(A) we use is the
average value of p,p. over the residue pairs that are annotated as belonging
to motifs in the reference alignment. Similarly, if C. is the 0-1 variable having
value 1 if and only if all the residues in column ¢ of A also share a column in
the reference alignment, then we use C'S(A) as the average value of C.. over the
columns of motifs in the reference alignment.

All the experiments with the heuristic of Section 3 were carried out with
M=1,...,4, L =20, and N = 200. Combining the numbers of optimal global
and local pairwise alignments as indicated in the introduction to Section 3 was
achieved via convex combinations with proportions that varied from one BAI-
iBASE reference set to another.! The set covers we used are the one introduced
n [12], here denoted by Z, and the one from [13], here denoted by S. In both
cases, R is the set of amino acids. We used the substitution matrices BLOSUM62
[14], PAM250 [15], and VTML160 [16], together with gap costs as given in [17] for
BLOSUM62 and PAM250 or as in [18] for VTML160.

We have found M = 2 to be the best choice nearly always, and found also
that the VTML160-S pair for the combination of a substitution matrix and a set
cover appears as a first choice most often, with the only noteworthy exception
of Reference Set 4, in which case it seems best to use the pair BLOSUM62-Z. The
results we present next refer to comparing the heuristic of Section 3 given these
choices to the five competing approaches mentioned earlier. The approaches
that predate the introduction of the BAIiBASE suite were run with default
parameters (this is the case of CLUSTAL W, PRRN, and DIALIGN), while
the others, having appeared with computational results on the BAIiBASE suite

! Following initial tuning experiments, weights for the numbers of optimal global pair-
wise alignments were as follows: 0.10 (Reference Set 1.1), 0.20 (Set 1.2), 0.05 (Set
1.3), 0.55 (Set 2), 0.50 (Set 3), 1.00 (Set 4), and 0.15 (Set 5).
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Fig. 2. Average scores for our best choices and the five competing approaches

when first published, were run with their best parameter choices (this applies to
T-COFFEE and to MAFFT).

Comparative results are given in Figure 2, where we show average SPS and
CS values inside each of the BAIIBASE reference sets we considered. It is clear
from Figure 2 that no absolute best can be identified throughout all the reference
sets. As we examine the reference sets individually, though, we see that at least
one of the two substitution-matrix, set-cover pairs used with our heuristic is
in general competitive with the best contender. Noteworthy situations are the
superior performance of our heuristic on Reference Set 5, and also its weak
performance on Reference Set 3. As for the corresponding running times, our
current implementation performs competitively as well when compared to the
others: on an Intel Pentium 4 processor running at 1.8 GHz with 1 Gbytes of
main memory, ours has taken from 1843.74 to 2010.81 seconds to complete, so
it is slower than the fastest performer (MAFFT, 95.59 seconds) but faster than
the slowest one (T-COFFEE, 4922.50 seconds).

5 Concluding Remarks

Many of our heuristic’s details can still undergo improvements that go beyond
the mere search for a more efficient implementation. One possibility is clearly
the use of potentially better pairwise alignments, both global and local, when
they are needed as described in Section 3. This possibility is already exploited by
T-COFFEE, which not only employs a position-specific score matrix, but also
uses CLUSTAL W to obtain global pairwise alignments, among other things.
We also see improvement possibilities in the block- and alignment-extension
methods described at the ends of Sections 3.1 and 3.2, respectively. In these two
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occasions, sequences or subsequences are considered in nonincreasing order of
their lengths, which of course is an approach simple to the point of in no way
taking into account the biological significance of the sequences or subsequences.

It is also apparent from our presentation of the heuristic in Section 3 that sev-
eral options exist for many of its building parts. This refers not only to choosing
parameter values but also to selecting auxiliary algorithms at several points.
Whether better choices exist in terms of yielding even more significant align-
ments, and doing it perhaps faster as well, remains to be verified.
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Abstract. We introduce a new methodology for the determination of
amino-acid substitution matrices for use in the alignment of proteins.
The new methodology is based on a pre-existing set cover on the set of
residues and on the undirected graph that describes residue exchange-
ability given the set cover. For fixed functional forms indicating how
to obtain edge weights from the set cover and, after that, substitution-
matrix elements from weighted distances on the graph, the resulting sub-
stitution matrix can be checked for performance against some known set
of reference alignments and for given gap costs. Finding the appropriate
functional forms and gap costs can then be formulated as an optimiza-
tion problem that seeks to maximize the performance of the substitution
matrix on the reference alignment set. We give computational results on
the BAIIBASE suite using a genetic algorithm for optimization. Initial
results indicate that it is possible to obtain substitution matrices whose
performance is either comparable to or surpasses that of several others.

Keywords: Sequence alignment; Substitution matrix; Residue set cover.

1 Introduction

One of the most central problems of computational molecular biology is to align
two sequences of residues, a residue being generically understood as a nucleotide
or an amino acid, depending respectively on whether the sequences under con-
sideration are nucleic acids or proteins. This problem lies at the heart of several
higher-level applications, such as heuristically searching sequence bases or align-
ing a larger number of sequences concomitantly for the identification of special
common substructures (the so-called motifs, cf. [1]) that encode structural or
functional similarities of the sequences or yet the sequences’ promoter regions in
the case of nucleic acids, for example.

Finding the best alignment between two sequences is based on maximizing
a scoring function that quantifies the overall similarity between the sequences.
Normally this similarity function has two main components. The first one is
a symmetric matrix, known as the substitution matrix for the set of residues

* Corresponding author.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 138-148, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A Methodology for Determining Amino-Acid Substitution Matrices 139

under consideration, which gives the contribution the function is to incur when
two residues are aligned to each other. The second component represents the cost
of aligning a residue in a sequence to a gap in the other, and gives the negative
contribution to be incurred by the similarity function when this happens. There is
no consensually accepted, general-purpose criterion for selecting a substitution
matrix or a gap-cost function. Common criteria here include those that stem
from structural or physicochemical characteristics of the residues and those that
somehow seek to reproduce well-known alignments as faithfully as possible [2].

We then see that, even though an optimal alignment between two sequences
is algorithmically well understood and amenable to being computed efficiently,
the inherent difficulty of selecting appropriate scoring parameters suggests that
the problem is still challenging in a number of ways. This is especially true of the
case of protein alignment, owing primarily to the fact that the set of residues is
significantly larger than in the case of nucleic acids, and also to the existence of
a multitude of criteria whereby amino acids can be structurally or functionally
exchanged by one another.

For a given structural or physicochemical property (or set of properties) of
amino acids, this exchangeability may be expressed by a set cover of the set
of all amino acids, that is, by a collection of subsets of that set that includes
every amino acid in at least one subset. Each of these subsets represents the
possibility of exchanging any of its amino acids by any other. Set covers in this
context have been studied extensively [3] and constitute our departing point in
this paper. As we describe in Section 2, we introduce a new methodology for
discovering both an appropriate substitution matrix and gap-cost parameters
that starts by considering an amino-acid set cover. It then builds a graph from
the set cover and sets up an optimization problem whose solution is the desired
substitution matrix and gap costs.

The resulting optimization problem is defined on a set of target sequence
pairs, preferably one that embodies as great a variety of situations as possible.
The target pairs are assumed to have known alignments, so the optimal solution
to the problem of finding parameters comprises the substitution matrix and the
gap costs whose use in a predefined alignment algorithm yields alignments of the
target pairs that in some sense come nearest the known alignments of the same
pairs. Our optimization problem is set up as a problem of combinatorial search,
being therefore highly unstructured and devoid of any facilitating differentiabil-
ity properties. Reasonable ways to approach its solution are then all heuristic in
nature. In Section 3, we present the results of extensive computational experi-
ments that employ an evolutionary algorithm and targets the BAIIBASE pairs
of amino-acid sequences [4].

Notice, in the context of the methodology categorization we mentioned earlier
in passing, that our new methodology is of a dual character: it both relies on
structural and physicochemical similarities among amino acids and depends on
a given set of aligned sequences in order to arrive at a substitution matrix and
gap costs.

We close in Section 4 with conclusions.
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2 The Methodology

We describe our methodology for sequences on a generic set R of residues and
only specialize it to the case of proteins in Section 3. Given two residue sequences
X and Y of lengths  and y, respectively, a global alignment of X and Y can
be expressed by the 2 X z matrix A having the property that its first line, when
read from left to right, is X possibly augmented by interspersed gaps, the same
holding for the second line and Y, so long as no column of A comprises gaps only.
It follows that max{x,y} < z < x + y. In the case of a local alignment, that is,
an alignment of a subsequence of X and another of Y, this matrix representation
remains essentially unchanged, provided of course that x and y are set to indicate
the sizes of the two subsequences.

For a given substitution matrix S and a pair (h, g) of gap costs,! the similarity
score of alignment A, denoted by F g 9(A), is given by

Fg(A) = ng’g(A(Lj)’A(Q,j))’ (1)

where fg’g(A(l,j),A(Q,j)) gives the contribution of aligning A(1,7) to A(2,7)
as either S(A(1,7), A(2, 7)), if neither A(1, ) nor A(2,j) is a gap; or —(h + g),
if either A(1,j) or A(2,7) is the first gap in a contiguous group of gaps; or yet
—g, if either A(1,j) or A(2,j) is the kth gap in a contiguous group of gaps for
k > 1. An optimal global alignment of X and Y is one that maximizes the sim-
ilarity score of (1) over all possible global alignments of the two sequences. An
optimal local alignment of X and Y, in turn, is the optimal global alignment of
the subsequences of X and Y for which the similarity score is maximum over all
pairs of subsequences of the two sequences. The set of all optimal alignments of
X and Y may be exponentially large in x and y, but it does nonetheless admit
a concise representation as a matrix or directed graph that can be computed ef-
ficiently by well-known dynamic programming techniques, regardless of whether
a global alignment of the two sequences is desired or a local one. We refer to this
representation as A y-.

Our strategy for the determination of a suitable substitution matrix starts
with a set cover C = {C,...,C.} of the residue set R, that is, C is such that
C1U---UC, = R. Next we define G to be an undirected graph of node set R
having an edge between two nodes (residues) u and v if and only if at least one
of Cy,...,C, contains both u and v. Graph G provides a natural association
between how exchangeable a node is by another and the distance between them
in the graph. Intuitively, the closer two nodes are to each other in G the more
exchangeable they are and we expect an alignment of the two to contribute rel-
atively more positively to the overall similarity score. Quantifying this intuition
involves crucial decisions, so we approach the problem in two careful steps, each

! For k > 0, we assume the customary affine function p(k) = h + gk with h,g > 0 to
express the cost of aligning the kth gap of a contiguous group of gaps in a line of A
to a residue in the other line as p(k) — p(k — 1), assuming p(0) = 0 [5].
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leaving considerable room for flexibility. The first step consists of turning G into
a weighted graph, that is, assigning nonnegative weights to its edges, and then
computing the weighted distance between all pairs of nodes. The second step
addresses the turning of these weighted distances into elements of a substitution
matrix so that larger distances signify ever more restricted exchangeability.

Let us begin with the first step. For (u,v) an edge of G, let w(u,v) denote its
weight. We define the value of w(u, v) on the premise that, if the exchangeability
of u and v comes from their concomitant membership in a large set of C, then it
should eventually result in a smaller contribution to the overall similarity score
than if they were members of a smaller set. In other words, the former situation
bespeaks an intuitive “weakness” of the property that makes the two residues
exchangeable. In broad terms, then, we should let w(u,v) be determined by the
smallest of the sets of C to which both v and v belong, and should also let it be
a nondecreasing function of the size of this smallest set.

Let ¢~ be the size of the smallest set of C and ¢ the size of its largest set. Let
Cy. be the size of the smallest set of C of which both u and v are members. We
consider two functional forms according to which w(u, v) may depend on ¢, , as
a nondecreasing function. Both forms force w(u, v) to be constrained within the
interval [w™, w™] with w™ > 0. For A > 1, the first form is the convex function

A

c . —Cc
_ — =+ _ U,V
wnluo) = o+ ) (70 ®
while the second is the concave function
wa(u,v) =w — (wh —w”) ¢ = ' (3)
S ct—c ) 7

Having established weights for all the edges of G, let d,,, denote the weighted
distance between nodes u and v. Clearly, d,, = 0 and, if no path exists in
G between u and v (i.e., G is not connected and the two nodes belong to two
different connected components), then d,, , = co.

Carrying out the second step, which is obtaining the elements of the substitu-
tion matrix from the weighted distances on G, involves difficult choices as well.
While, intuitively, it is clear that residues separated by larger weighted distances
in G are to be less exchangeable for each other than residues that are closer to
each other (in weighted terms) in G, the functional form that the transforma-
tion of weighted distances into substitution-matrix elements is to take is once
again subject to somewhat arbitrary decisions. What we do is to set S(u,v) = 0 if
dy,» = 00, and to consider two candidate functional forms for the transformation
in the case of finite distances.

Let us initially set [S~, S*] as the interval within which each element of the
substitution matrix S is to be constrained (we assume S~ > 0 for consistency
with the substitution-matrix element that goes with an infinite distance, whose
value we have just set to 0). Let us also denote by d* the largest (finite) weighted
distance occurring in G for the choice of weights at hand. We then consider two
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functional forms for expressing the dependency of S(u,v), as a nonincreasing
function, upon a finite d,, .. For ;t > 1, we once again consider a convex function,

— + — d+ - duv a
Si(u,v) =S~ + (ST -8 )( pn ) , (4)
and a concave one,
dUU "
So(u,v) =St — (ST —87) ( d‘;‘ > . (5)

Once we decide on one of the two functional forms (2) or (3), and similarly
on one of (4) or (5), and also choose values for w™, wt, A\, S7, ST, and g,
then the substitution matrix S as obtained from C is well-defined and, together
with the gap-cost parameters h and g, can be used to find the representation
A%y of the set of all optimal (global or local) alignments between the two
sequences X and Y. The quality of our choices regarding functional forms and
parameters, and hence the quality of the resulting S, h, and g, can be assessed
if a reference alignment, call it A%y, is available for the two sequences. When

this is the case, we let pg’g(A’"X’Y7 A% y) be the fraction of the columns of A -

that also appear in at least one of the alignments that are represented in A% y-.

The substitution matrix S, and also h and g, are then taken to be as good for
Xy as pg’g(AS(ﬁy,A}y) is close to 1.

Thus, given a residue set cover C and a set A" of reference alignments (each
alignment on a different pair of sequences over the same residue set R), obtaining
the best possible substitution matrix .S and gap-cost parameters h and g can be
formulated as the following optimization problem: find functional forms and pa-
rameters that maximize some (for now unspecified) average of pl? (A% vy Ax y)
over all pairs (X,Y) of sequences such that A% y € A”. In the next section, we
make this definition precise when residues are amino acids and proceed to the
description of computational results.

3 Computational Results

Let b,, be a two-valued variable indicating which of (2) or (3) is to be taken as the
functional form for the edge weights, and similarly let bg indicate which of (4)
or (5) is to give the functional form for the elements of S. These new parameters
defined, we begin by establishing bounds on the domains from which each of the
other eight parameters involved in the optimization problem may take values,
and also make those domains discrete inside such bounds by taking equally
spaced delimiters. For the purposes of our study in this section, this results in
what is shown in Table 1.

The parameter domains shown in Table 1 make up for over 3.7 trillion possible
combinations, yielding about 1.6 billion different substitution matrices. The set
of all such combinations seems to be structured in no usable way, so finding the
best combination with respect to some set of reference alignments as discussed in
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Table 1. Parameters and their domains

Parameter Description Domain

bw Selects between (2) and (3)  {1,2}

w” Least possible edge weight {0.5,0.55,...,1}
wt Greatest possible edge weight {1,1.125,...,5}
A Exponent for use in (2) or (3) {1,1.125,...,5}
bs Selects between (4) and (5)  {1,2}

S~ Least possible element of S {0.5,0.55,...,1}
St Greatest possible element of S {1,1.25,...,25}
I Exponent for use in (4) or (5) {1,1.125,...,5}
h Initialization gap cost {2,2.5,...,30}
g Extension gap cost {0.25,0.375,...,5}

Section 2 must not depend on any technique of explicit enumeration but rather
on some heuristic approach.

The approach we use in this section is to employ an evolutionary algorithm
for finding the best possible combination within reasonable time bounds. Each
individual for this algorithm is a 10-tuple indicating one of the possible combina-
tion of parameter values. Our evolutionary algorithm is a standard generational
genetic algorithm. It produces a sequence of 100-individual generations, the first
of which is obtained by randomly choosing a value for each of the 10 parameters
in order to produce each of its individuals. Each of the subsequent generations is
obtained from the current generation by a combination of crossover and muta-
tion operations, following an initial elitist step whereby the 5 fittest individuals
of the current generation are copied to the new one.

While the new generation is not full, either a pair of individuals is selected
from the current generation to undergo crossover (with probability 0.5) or one
individual is selected to undergo a single-locus mutation (with probability 0.5).2
The pair of individuals resulting from the crossover, or the single mutated indi-
vidual, is added to the new generation, unless an individual that is being added
is identical to an individual that already exists in the population. When this
happens, the duplicating individual is substituted for by a randomly generated
individual. Selection is performed in proportion to the individuals’ linearly nor-
malized fitnesses.3

The crux of this genetic algorithm is of course how to assess an individual’s
fitness, and this is where an extant set of reference alignments A" comes in. In our

2 Both the crossover point and the locus for mutation are chosen at random, essentially
with the parameters’ domains in mind, so that the probability that such a choice
singles out a parameter whose domain has size a is proportional to loga. Mutating
the parameter’s value is achieved straightforwardly, while breaking the 10-tuples for
crossover requires the further step of interpreting the parameter as a binary number.

3 This means that, for 1 < k < 100, the kth fittest individual in the generation is
selected with probability proportional to L — (L — 1)(k — 1)/99, where L is chosen
so that the expression yields a value L times larger for the fittest individual than it
does for the least fit (for which it yields value 1). We use L = 10 throughout.
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study we take A" to be the set of alignments present in the BAIIBASE suite. It
contains 167 families of amino-acid sequences arranged into eight reference sets.
For each family of the first five reference sets two pieces of reference information
are provided: a multiple alignment of all the sequences in the family and a
demarcation of the relevant motifs given the multiple alignment. Families in the
remaining three reference sets are not provided with motif demarcations, so we
refrain from using them in our experiments, since the fitness function that we
use relies on reference motifs as well. Note that, even though the BAIiBASE
suite is targeted at multiple sequence alignments, each such alignment trivially
implies a pairwise alignment for all sequence pairs in each family and also motif
fragments for each pair. Our set A" then comprises every sequence pair from
the BAIiBASE suite for which a reference alignment exists with accompanying
motif demarcation.

The organization of the BAIiBASE suite suggests a host of possibilities for
evaluating the efficacy of a substitution matrix S and of gap-cost parameters h
and g. For a pair of sequences (X,Y’), whose reference alignment is A’y y € A",
and recalling that A% y- represents the set of all optimal alignments of X and

Y given S, h, and g, we use four variants of the pg’g( vsAx.y) of Section 2
as the bases of the fitness function to be used by the genetic algorithm. These
are denoted by pS (A% y, A% y) through pS 1(A% y, A% y) and differ among
themselves as to which of the columns of the reference ahgnment are checked to
be present in at least one of the optimal alignments. We let them be as follows:

— pgﬁ(A’"Xy, A}y) is based on all the columns of A% y;

- p@;-‘;(A’”X,Y, A y) is based on all the columns of A’ - that contain no gaps;
- pg:g(A’“Xy, A% y) is based on all the columns of A’ y- that lie within motifs;
- pg’Z(A’"Xy, A y) is based on all the columns of A’ y- that lie within motifs

)

and contain no gaps.

These defined, we first average each one of them over A" before combining
them into a fitness function. The average that we take is computed in the in-
directly weighted style of [6], which aims at preventing any family with overly
many pairs, or any pair on which S, h, and g are particularly effective, from
influencing the average too strongly.

The weighting takes place on an array having 10 lines, one for each of the
nonoverlapping 0.1-wide intervals within [0, 1], and one column for each of the
BAIiBASE families. Initially each pair (X,Y") having a reference alignment A%y
in A" is associated with the array cell whose column corresponds to its family
and whose line is given by the interval within which the identity score of the
reference alignment A% - falls. This score is the ratio of the number of columns
of A’y y whose two amino acids are identical to the number of columns that have
no gaps (when averaging pg:g(A’“Xy,A}’Y) or pg:Z(ATx7y,Aj;(7Y), only columns
that lie within motifs are taken into account).

For 1 < k < 4, we then let pS 7(A") be the average of pS WAy, Ak y)

over A" obtained as follows. First take the average of pS (A% y, A y) for each
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array cell over the sequence pairs (X,Y") that are associated with it (cells with no
pairs are ignored). Then pg:i(A’”) is computed by first averaging those averages
that correspond to the same line of the array and finally averaging the resulting
numbers (note that lines whose cells were all ignored for having no sequence
pairs associated with them do not participate in this final average).

We are then in position to state the definition of our fitness function. We
denote it by Lpg’g (A") to emphasize its dependency on how well S, h, and g
lead to alignments that are in good accord with the alignments of A". It is
given by the standard Euclidean norm of the four-dimensional vector whose kth
component is pg:i(Ar), that is,

2

PI(AT) = ¢ [gan] o [olan] (©)

Clearly, 0 < o9 (A") < 2 always.

We found through initial experiments that carrying over with our algorithm
for each single generation requires roughly 13 to 14 hours on an Intel Pentium 4
processor running at 2.26 GHz and equipped with 512 Mbytes of main memory.
Practically all of this effort is related to computing Lpg’g (A") for each individual
in the current population, and because this is done in a manner that is fully
independent from any other individual, we can speed the overall computation
up nearly optimally by simply bringing more processors into the effort.

The results we describe next were obtained on four processors running in
parallel and for the following simplifications. We concentrated solely on evolving
individuals under global alignments for the set cover of [7], and considered, in
addition, only the subset of A", denoted by A™!, comprising sequence pairs that
are relative to the BAIiBASE reference set 1. In this case, the fitness function to
be maximized is Lpg’g (A™1), defined as in (6) when A™! substitutes for A”. Given
these simplifications, computing through each generation has taken roughly 20
minutes.

The substitution matrices we have used for the sake of comparison are BCO030
8], BENNER74 [9], BLOSUM62 [10], FENG [11], GONNET [12], MCLACH [13], NWSGAPPEP
[14], PAM250 [15], RAO [16], RUSSELL-RH [17], and VIML160 [18]. The gap-cost
parameters h and g we used with them are the ones from [8] for BC0030 and
RUSSELL-RH, from [19] for VTML160, and from [6] for all others.

Our results are summarized in the four plots of Figure 1, each giving the
evolution of one of pg:?(A’"’l), R pg:Z(A’"’l) for the fittest individuals along the
generations. We show this evolution against dashed lines that delimit the inter-
vals within which the corresponding figures for the matrices used for comparison
are located. Clearly, the genetic algorithm very quickly produces a substitution
matrix, with associated gap costs, that surpasses this interval as far as the fitness
components pg:g(A’"’l) and pg”i(A’"’l) are concerned, even though it lags behind
in terms of pgﬁ(A’"’l) and pg:g(A’"’l). This substitution matrix, it turns out, is
then superior to all those other matrices when it comes to stressing alignment
columns that lie within motifs.
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tively in (a) through (d)

4 Concluding Remarks

We have introduced a new methodology for the determination of amino-acid
substitution matrices. The new methodology starts with a set cover of the residue
alphabet under consideration and builds an undirected graph in which node
vicinity is taken to represent residue exchangeability. The desired substitution
matrix arises as a function of weighted distances in this graph. Determining
the edge weights, and also how to convert the resulting weighted distances into
substitution-matrix elements, constitute the outcome of an optimization process
that runs on a set of reference sequence alignments and also outputs gap costs for
use with the substitution matrix. Our methodology is then of a hybrid nature:
it relies both on the structural and physicochemical properties that underlie the
set cover in use and on an extant set of reference sequence alignments.

The optimization problem to be solved is well-defined: given parameterized
functional forms for turning cover sets into edge weights and weighted distances
into substitution-matrix elements, the problem asks for parameter values and
gap costs that maximize a certain objective function on the reference set of
alignments. We have reported on computational experiments that use a genetic
algorithm as optimization method and the BAIIBASE suite as the source of the
required reference alignments.
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Our results so far indicate that the new methodology is capable of producing
substitution matrices whose performance falls within the same range of a number
of known matrices’ even before any optimization is actually performed (i.e., based
on the random parameter instantiation that precedes the genetic algorithm); this
alone, we believe, singles out our methodology as a principled way of determining
substitution matrices that concentrates all the effort related to the structure and
physicochemical properties of amino acids on the discovery of an appropriate set
cover. They also indicate, in a restricted setting, that the methodology can yield
substitution matrices that surpass all the others against which they were tested.

We have also found that strengthening this latter conclusion so that it holds
in a wider variety of scenarios depends on how efficiently we can run the genetic
algorithm. Fortunately, it appears that it is all a matter of how many processors
can be amassed for the effort, since the genetic procedure is inherently amenable
to parallel processing and highly scalable, too. There is, of course, also the issue
of investigating alternative functional forms and parameter ranges to set up
the optimization problem, and in fact the issue of considering other objective
functions as well. Together with the search for faster optimization, these issues
make for a very rich array of possibilities for further study.
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Abstract. Multi-Objective Evolutionary Algorithms (MOEA) use Genetic Al-
gorithms (GA) to find a set of potential solutions, which are reached by com-
promising trade-offs between the multiple objectives. This paper presents a
novel approach using MOEA to search for a motif which can unravel rules gov-
erning peptide binding to medically important receptors with applications to
drugs and vaccines target discovery. However, the degeneracy of motifs due to
the varying physicochemical properties at the binding sites across large number
of active peptides poses a challenge for the detection of motifs of specific mole-
cules such as MHC Class II molecule I-A%’ of the non-obese diabetic (NOD)
mouse. Several motifs have been experimentally derived for I-A%” molecule, but
they differ from each other significantly. We have formulated the problem of
finding a consensus motif for I-A?” by using MOEA as an outcome that satisfies
two objectives: extract prior information by minimizing the distance between
the experimentally derived motifs and the resulting matrix by MOEA; minimize
the overall number of false positives and negatives resulting by using the puta-
tive MOEA-derived motif. The MOEA results in a Pareto optimal set of motifs
from which the best motif is chosen by the Area under the Receiver Operator
Characteristics (Aroc) performance on an independent test dataset. We com-
pared the MOEA-derived motif with the experimentally derived motifs and mo-
tifs derived by computational techniques such as MEME, RANKPEP, and
Gibbs Motif Sampler. The overall predictive performance of the MOEA derived
motif is comparable or better than the experimentally derived motifs and is bet-
ter than the computationally derived motifs.

1 Introduction

Multi-Objective Evolutionary Algorithms (MOEA) have been effectively used in
various domains to solve real-world complex search problems. Multi-objective prob-
lems need simultaneous optimization of number of competing objectives and result in
a set of solutions called Pareto optimal set. These can be solved as a single objective
optimization problem by combining all objectives into a single objective. Solving
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multi-objective problems as a single objective problem requires many simulation runs
before achieving a set of Pareto optimal solutions. Another way of optimizing multi-
objective problems is to use MOEAs that are able to find Pareto-optimal solutions in a
single simulation run. A number of MOEAs has been suggested in the literature
[11[2][3][4]. In a single objective GA a fitness function is used to asses the solution
population, while MOEAs measure the dominance of individuals in the population
and rank the solutions. A solution is said to be dominant if it is as good as or better
than all the other solutions for all objectives [1]. Often, there is more than one domi-
nant solution, which is known as the Pareto-front, representing the best solutions from
a single iteration. A recently introduced MOEA known as non-dominated sorting
genetic algorithm II (NSGA-II) by Deb et al. has been effectively applied for many
real-world problems and has shown to be computationally efficient due to the incor-
poration of two new mechanisms: elitism and diversity-preservation [5]. Our study of
motif discovery by using MOEA was carried out with NSGA-II that allows using
multiple constraints [1].

In this paper, we describe the use of MOEAs in discovering peptide motifs associ-
ated with binding to I-A®" molecule, which is involved in insulin-dependent diabetes
mellitus (IDDM) in the non obese diabetic (NOD) mice [6-16]. A consensus motif
that can describe peptide binding interactions to NOD mouse I-A%’” molecule has not
been accurately defined by experimental or by computational means [25]. The motifs
derived for this MHC Class II molecule are purely by experimental methods and ma-
jority of these experimentally derived motifs are mutually inconsistent thereby mak-
ing it difficult to generalize across available datasets [26]. Moreover, no comparative
study has been carried out to decipher the composition of amino acids in these bind-
ing peptides using computational methods.

A peptide motif is a representation of a conserved region of protein sequences that
is linked to a specific biological function, for example peptide binding to a particular
receptor. Multiple binding peptides normally contain a consensus motif that defines
the binding rules to a particular receptor. A widely used representation of a motif is
the quantitative matrix that contains kx20 coefficients where k corresponds to the
length of the motif and 20 to the number of different amino acids in a protein se-
quence. The score for the prediction to a binder is calculated by summing or multiply-
ing the matrix coefficients. Several experimental approaches have been attempted in
finding motifs [6-12]. Popular computational tools available for finding motifs in
protein sequences are: MEME [21], Gibbs motif sampler [22] and Rankpep [23].

In this study, a motif is expressed as a quantitative scoring matrix representing
many possible interactions among amino acids, and the positions of binding to pep-
tides. To derive a MOEA solution, two objectives were defined and the validity of the
objectives is controlled by two constraints imposes on the effects of the objectives
under the evaluation.

2 Materials and Methods

The motif discovery for I-A?’ dataset is performed with MOEA (NSGA-II). The ap-
proach for the discovery of a consensus motif is described in the subsequent sections.
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2.1 I-A¥ Datasets

Ten different I-A%’ datasets were extracted from several independent studies [9-18].
Each experimental dataset provides peptides which are classified as binders or non-
binders with a label which have been assigned according to their experimental bind-
ing affinities. The dataset available can be expressed as D = {D ;: i=1,2,....d } where d
denotes the number of datasets. Let i ™ data set, D; = {(xy, vij): j =1, 2,...., n; } where
x; is the j sequence in the i " dataset and the label v; € {b, nb} indicates whether the
sequence X;;is a binder (b), or a non-binder (nb).

2.2 Experimental Motifs

Seven different reported k-mer motifs (MHC binging motifs are of k=9 amino acid
length) [6-12] have been derived for predicting peptide binders to I-A%” molecule. The
residues, which contribute significantly to peptide binding, are called primary anchor
residues and the positions they occur are called anchor positions. Anchor positions
may be occupied by so called preferred residues which are tolerated, but alone con-
tribute little to peptide binding strength. In [6-12] each motif describes amino acids at
primary and secondary anchor positions, as well as “forbidden” amino acids at spe-
cific positions. We interpret these as anchor, tolerated, and non-tolerated amino acids.
These experimental motifs can be expressed as R = {R;: i=1,2,....r } where r denotes
the number of experimentally found motifs. The Table 1 below illustrates an example
of an experimentally derived Reizis peptide binding motif to I-A%".

Table 1. An illustration of a representative peptide binding motif to I-A8’ molecule (Reizis
motif, [9]). The positions P4, P6 and P9 are primary anchor positions where binding is highly
likely to occur.

Position | Anchor Tolerated Not tolerated
P1 VEQMHLPD - R

P2 - - -

P3 - - -

P4 ILPV HY QEK

P5 - - -

Po6 ATSNV - LYQK

P7 QVYLHINRF | - -

P8 - - -

P9 ED SM LYTQK

2.3 Binding Score Matrix Representation of a Motif

In this section we give a formal definition of the target model as a quantitative matrix.
A k-mer motif in an amino acid sequence is usually characterized by a binding score
matrix Q = {qi. }xxo0 Where g, denotes the binding score of the site i of the motif

when it occupies by the amino-acid a € Z where Z denotes the set of 20 amino-
acid residues. A binding score computed by adding the scores assigned for each amino
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acid in the respective positions of a k-mer motif not only indicates the likelihood of
the presence of a particular motif but also determines the likelihood that a sequence
containing the motif that binds to another sequence. Therefore, a binding score matrix
can be viewed as a quantification of a real biological functioning or binding of the
motif to other peptides. Given a binding score matrix Q of size kx20 we define the
binding score, s for a k—mer motif, m’, starting at the position j* in a sequence

x=(x,,X,+-x,) of length n as:

§= max s, ey

jell,n—k+1} 7
2

where s; = 2 G,
i=0,....k-1
And the location of the motif is given by
j = argmax s, )
jelln—k+1)

We denote s(xjs : m’) to indicate the binding score of the motif m" present at j* posi-
tion of the peptide sequence x.

2.4 Multi-Objective Evolutionary Algorithm: NSGA-II

NSGA-II incorporates several mechanisms that facilitate faster and better conver-
gence of a solution population for multi-objective problems. These mechanisms in-
clude non-dominated sorting, elitism, diversity preservation, and constrained han-
dling. A solution is said to be dominant if it is as good as or better than the other solu-
tions with respect to all objectives. Non-dominated sorting refers to sorting of indi-
viduals that are not dominated by any other individual in the population with respect
to every objective. All the non-dominated individuals are assigned the same fitness
value. The same procedure is then carried out on the remaining population until a new
set of non-dominated solutions is found. The solutions found in the subsequent rounds
are assigned a fitness value lower than in the previous round and the process contin-
ues on until the whole population is partitioned into non-dominated fronts with di-
verse fitness values. The elitism prevents loosing fit individuals encountered in ear-
lier generations by allowing parents to compete with offspring. In NSGA-II, the di-
versity of Pareto-optimal solutions is maintained by imposing a measure known as
crowding distance measure. More details on these mechanisms can be found in
[1][24].

Chromosome representation: Each individual (binding score matrix) in the popula-
tion is represented by an ensemble of kn real numbers representing elements in the k x
n matrix, where k represents motif length and n represents number of residues. These
real numbers are bound by a lower and upper limit.
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Objectives: The objectives are defined to realize a motif that can best represent the
characteristics of the I-A*” binding motif. The dataset of each experiment in the litera-
ture gives the information whether the particular sequence is a binder or non-binder.
Using this information, the numbers of true positives (TP) and true negatives (TN)
determined by solutions in the population is computed. By incorporating the TPs and
TN resulting from the evaluation and by taking into the account the cumulative dis-
tance between a putative motif, m, representing a binding score matrix Q and the
score matrix representation of the experimental motifs set, Q(R), we can define two
objective functions f; and f; as follows:

min £, = (FP+FN) )

min £, = ¥ |Q-Q(R)| )

i=1
where FP and FN denotes false positives and false negatives, respectively. And

Q(R[.) represents the score matrix representation of an experimental motif, R;.

Constraints: Two constraints are defined as follows:

(6)

\2
[}

¢, =1.0-((x; *FP)/NB)

c, =1.0-((a, *FN)/B) (7

v
[=]

The ¢, and ¢, are the two control parameters preventing all binders and non-binders

being recognized as binders and vice versa. NB and B correspond to the number of
true non-binders and binders in the training dataset.

3 Experiments and Results

3.1 Datasets

Ten datasets [9-18] consisting of short peptides ranging from 9-30 amino acids per
sequence were extracted. The datasets [9-14] together with the unpublished dataset
[17] were combined and used as the training dataset after the removal of duplicates.
The training set consists of 351 binding peptides and 140 non-binding peptides. Two
remaining datasets, Suri [15] and Stratmann [16] were used as the testing dataset. The
Stratmann test set contains only 118 binders and three non binders while Suri dataset
contains 20 binders and two non binders. Due to the small number of experimentally
determined non-binders, we extended the number of non-binders in this set to 1000 by
generating random peptides. The generation of random peptides involved adding
correct proportions of amino acids to each peptide so that the generated peptide mim-
ics real protein peptides [20]. Of 1000 random peptides generated, at most five per-
cent are presumed to be binders and this error estimate was taken into consideration
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for the performance analysis. This percentage was estimated based on the analysis of
I-A¥’ binding data given in [20].

3.2 Score Matrix Representation of the Experimental Motifs

The following scoring scheme is used to represent each experimental motif in [8-12]
as a quantitative matrix. Two experimental motifs [6,7] were excluded as they do not
describe many of the k-mer positions, or have assigned fewer residues for the de-
scribed positions. For all the other motifs, all non tolerated positions were given a
score of 0. Well tolerated residues were assigned a maximum score of 127. The pre-
ferred residues at the primary anchor positions were assigned half the maximum
score. And the positions that do not carry any predefined residues were assigned one
third of the maximum score. The distance to each of these score matrices is calculated
and the sum of all the distances is used to optimize the objective function, f>.

3.3 Multi-Objective Evolutionary Algorithm: NSGA-II Parameters

For the MOEA optimization runs, we used a population of 500, where each individual
representing 180 real numbers bound by the limits 0 and 127. A crossover probability
for the real variables is set to 1.0, and the mutation probability of 0.006, distribution
index for crossover and mutation are set to 15 and 30, respectively. After 300 genera-
tions, the evolutionary process was terminated. The convergence of the algorithm to
the final population is illustrated in Figure 1. Having a number of Pareto solutions
allows the user to choose a best solution. Of the motif solution set, we chose the motif
that gives the highest Aroc for the test dataset.
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Fig. 1. Final population after 300 iterations, with the mutation probability=0.006 and cross-over
probability=1.0. Fitness1 depicts the sum of FP and FN with respect to the best individuals in
the population whereas Fitness2 indicates the cumulative sum of the distances to the experi-
mental motifs and the best individuals (score matrices) in the population.



Multi-Objective Evolutionary Algorithm for Discovering Peptide Binding Motifs 155

3.4 Performance Comparison

Computationally derived motifs: MEME, Gibbs Motif Sampler and Rankpep.
All binders in the training set are used to derive a motif by the computational methods
MEME, Rankpep, and Gibbs motif sampler. Three motifs were derived from the
MEME, and the motif that performed the best was used for our experiments M-K-R-
H-G-L-D-N-Y. With the Gibbs motif sampler, the residues at each position that con-
veyed the highest mutual information content were retained and the motif was com-
posed N(MP)-K(V)-A(RI)-T(H)-G(A)-E(FL)-D(Q)-N(YL)-K(YV). For Rankpep, the
consensus motif was W-Y-A-H-A-F-K-Y-V. Using these motifs and scoring matrices
we measured the predictive performance on the Stratmann and Suri datasets combined
with randomly generated non-binders. The performance (Figure 2a) was measured by
the Area under the Receiver Operating Characteristics (Agroc) curves (see [26]).

Experimentally derived motifs. The performance of the experimentally derived
motifs was estimated by assigning a scoring scheme: anchor residues have weight 4,
tolerated 2, and non-tolerated -4. Primary anchor positions were assigned weight 4
and secondary anchor positions have weight 2. The primary and secondary anchor
positions were defined according to the motif descriptions by the authors. The Aroc
plots for the experimental motifs and the MOEA derived motif are shown in Figure
2(b). Of seven experimentally derived motifs the Agoc curves of only five motifs are
shown in Figure 2(b) for clarity. The Agoc calculations for all motifs are given in the
Table 2. Overall, the motif derived from MOEA performed better on the test dataset-
than the other motifs described in literature and the computationally derived motifs by
MEME, Gibbs Motif Sampler and Rankpep (Figure 2).

1 T T T — T ——— -

—_— ez T
f;:‘i'_ — TSmO
0.8 T ]
= S e — MOEA
= D6 — -~ MEME 1
z 0 i — . RANKPEP
& //"," — GIBBES MOTIF SAMPLER
0.2 f,{c" .
D i 1 1 1 1 1 1 1 1 1
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 (IR=] 1
1-specificity
= — MOEA
= ---- Reizis
= — - Harrison |
A — - Gregori
—  Latek a
, Rammensee
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Fig. 2. a) Agoc plots between theoretically derived motifs (a). b) Performance comparison
between five experimentally derived motifs and MOEA-motif.
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Table 2. The Agoc values from predictions using each motif on the independent test dataset.
Aroc>0.9 correspond to excellent, 0.8<Aroc<0.9 to good, 0.7<Aroc<0.8 to marginal prediction
accuracy. Agoc=0.5 corresponds to random guessing, and 0.5<Agoc<0.7 to poor predictions.

Motif AROC
Reizis 0.81
Harrison 0.81
Gregori 0.78
Latek 0.79
Rammensee 0.78
Reich 0.74
Amor 0.78
MEME 0.72
Gibbs 0.81
Rankpep 0.75
MOEA 0.87

Table 3. The Aroc values estimated on the individual datasets used in deriving the experimen-
tal motifs by the best performing motifs in Table 2

Motif
Dataset Reizis Harrison Gibbs | MOEA
Reizis 0.95 0.75 0.33 0.77
Harrison 0.68 0.88 0.79 0.76
Gregori 0.74 0.69 0.77 0.84
Latek 0.95 0.64 0.81 0.89
Corper 0.50 0.53 0.39 0.70
MHCPEP 0.59 0.72 0.64 0.85
Yu 0.48 0.33 0.58 0.61

The performance of the Multi-objective motif on the individual datasets used in the
derivation of the experimental motifs show similar or better results (greater than 0.7
Aroc value) compared to the performance of other motifs across datasets (Table 3).
The performance of the motifs on their respective datasets indicated their bias towards
their own datasets. Overall MOEA-derived matrix performed well across all datasets
except in the case of Yu dataset, for which it gave the Agroc=0.61. Other experimental
motifs on the same dataset performed poorly with Aroc<0.61 except for the Latek
motif (Aroc>0.7). The MOEA-derived matrix reconciles significant variances in the
experimental motifs and minimizes the number of false predictions in the test dataset
as compared to the performance of previously determined experimental motif.

4 Conclusions

We have proposed MOEA for deriving a consensus motif from a number of experi-
mentally derived motifs. One of the objectives of our approach is to optimize the
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number of true predictions across all I-A¥ datasets, which was not the case with the
experimentally derived motifs. The experimental motifs formulated from each inde-
pendent study show biases to their own datasets - they perform well on the respective
dataset, but poorly on the other datasets. The other objective is to capture the signifi-
cance of each motif and combine them together so that the resulting motif can act as a
consensus motif characterizing all the experimental motifs. As we can see from the
results, the derived motif performed comparatively well on all the datasets. Further-
more, the MOEA evolved solution outperformed all the other computationally derived
motifs demonstrating its suitability for discovery of highly accurate motifs.
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Abstract. The increased availability of biological databases contain-
ing representations of complex objects permits access to vast amounts of
data. In spite of the recent renewed interest in knowledge-discovery tech-
niques (or data mining), there is a dearth of data analysis methods in-
tended to facilitate understanding of the represented objects and related
systems by their most representative features and those relationship de-
rived from these features (i.e., structural data). In this paper we propose
a conceptual clustering methodology termed EMO-CC for Ewvolution-
ary Multi-Objective Conceptual Clustering that uses multi-objective and
multi-modal optimization techniques based on Evolutionary Algorithms
that uncover representative substructures from structural databases. Be-
sides, EMO-CC provides annotations of the uncovered substructures,
and based on them, applies an unsupervised classification approach to
retrieve new members of previously discovered substructures. We apply
EMO-CC to the Gene Ontology database to recover interesting sub-
structures that describes problems from different points of view and use
them to explain inmuno-inflammatory responses measured in terms of
gene expression profiles derived from the analysis of longitudinal blood
expression profiles of human volunteers treated with intravenous endo-
toxin compared to placebo.

1 Introduction

The increased availability of biological databases containing representations of
complex objects such as microarray time series, regulatory networks or metabolic
pathways permits access to vast amounts of data where these objects may be
found, observed, or developed [1,2,3]. In spite of the recent renewed interest
in knowledge-discovery techniques (or data mining), there is a dearth of data
analysis methods intended to facilitate understanding of the represented objects
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and related systems by their most representative features and those relationship
derived from these features (i.e., structural data).

Structural data can be viewed as a graph containing nodes representing ob-
jects, which have features linked to other nodes by edges corresponding to their
relationships. Interesting objects in structural data are represented as substruc-
tures, which consists of subgraph partitions of the datasets [4]. Conceptual clus-
tering techniques have been successfully applied to structural data to uncover
objects or concepts that relates objects, by searching through a predefined space
of potential hypothesis (i.e., subgraphs that represent associations of features)
for the hypothesis that best fits the training examples [5]. However, the for-
mulation of the search problem in a graph-based structure would result in the
generation of many substructures with small extent as it is easier to explain or
model match smaller data subsets than those that constitute a significant portion
of the dataset. For this reason, any successful methodology should also consider
additional criteria to extract better defined concepts based on the size of the
substructure being explained, the number of retrieved substructures, and their
diversity [4,6]. The former are conflicting criteria that can be approached as
an optimization problem. Multi-objective optimization techniques can evaluate
concepts or substructures based on the conflicting criteria, and thus, to retrieve
meaningful substructures from structural databases.

In this paper we propose a conceptual clustering methodology termed EMO-
CC for Ewvolutionary Multi-Objective Conceptual Clustering that uses multi-
objective and multi-modal optimization techniques. The EMO-CC methodology
uses an efficient search process based on Evolutionary Algorithms [7, 8, 9], which
inspects large data spaces that otherwise would be intractable. Besides, EMO-CC
provides annotations of the uncovered substructures, and based on them, applies
an unsupervised classification approach to retrieve new members of previously
discovered substructures. We apply EMO-CC to the Gene Ontology database
(i.e., the GO Project [3]) to recover interesting substructures containing genes
sharing a common set of terms, which are defined at different levels of specificity
and correspond to different ontologies, producing novel annotations based on
them. Particularly, we use these substructures to explain inmuno-inflammatory
responses measured in terms of gene expression profiles derived from the analy-
sis of longitudinal blood expression profiles of human volunteers treated with
intravenous endotoxin compared to placebo [10].

This work is organized as follows. Section 2 reviews the conceptual clustering
problem. Section 3 describes the EMO-CC methodology. Section 4 shows the
customization and results of applying EMO-CC to the GO database to explain
gene expression profiles from the inflammatory problem. Section 5 introduces
the discussion.

2 Conceptual Clustering

Cluster analysis —or simply clustering— is a data mining technique often used to
identify various groupings or taxonomies in real-world databases [11]. Most ex-
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isting methods for clustering are designed for linear feature-value data. However,
sometimes we need to represent structural data that do not only contains de-
scriptions of individual observations in databases, but also relationships among
these observations. Therefore, mining into structural databases entails address-
ing both the uncertainty of which observations should be placed together, and
also which distinct relationships among features best characterize different sets
of observations, having in mind that, a priori, we do not know which feature is
meaningful for a given relationship.

Conceptual clustering, in contrast to most typical clustering techniques [12],
have been successfully applied to structural databases to uncover concepts that
are embedded in subsets of structural data or substructures [4]. While most
machine learning techniques applied directly or indirectly to structural data-
bases exhibit methodological differences, they do share the same framework
even though they employ distinct metrics, heuristics or probability interpre-
tations [13,4]: (1) Database representation. Structural data can be viewed as a
graph containing nodes representing objects, which have features linked to other
nodes by edges corresponding to their relations. A substructure consists of a
subgraph of structural data [4]; (2) Structure Learning. This process consists of
searching through the space for potential substructures, and either returning the
best one found or an optimal sample of them; (3)Cluster evaluation. The sub-
structure quality is measured by optimizing several criteria, including specificity,
where harboring more features always increases the inferential power; sensitivity,
where a large coverage of the dataset produces good generality; and diversity,
where minimally overlapping between clusters generates more distinct clusters
and descriptions from different angles; (4) Database compression. The database
compression provides simpler representations of the objects in a database; and
(5) Inference. New observations can be predicted from previously learned sub-
structures by using classifiers that optimize their matching based on distance
[14] or probabilistic metrics [5]).

3 An Evolutionary Multi-Objective Conceptual
Clustering Methodology (EMO-CC)

We explicitly propose a method for each of the conceptual clustering steps men-
tioned:

(1) Database representation by using structures as graphs, where nodes cor-
respond to database features and edges to the relationships among these
features.

(2) Structure learning by searching in the feature space to obtain optimal
substructures using an efficient multi-objective evolutionary algorithm, as
well as appropriate objective definitions to guide the search relying on the
NSGA-IT algorithm [15]. Basic configuration of this algorithm is explained
below:

Chromosome representation. EMO-CC encodes feasible substructures in the
chromosomes of the algorithm population. Each chromosome is implemented
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as a tree, where this representation in GAs is known as Genetic Programming
(GP) [16]. This chromosome representation encodes each node and edge of
the tree with a label, describing the type of feature, and an associated tag
that indicates the value of such feature. The initial population consists of a
set of chromosomes, each one built by choosing a random observation from
the input database and extracting a subtree from its tree representation. The
set of all non-dominated chromosomes of the final population represents a
clustering of the given data.

Genetic operators. EMO-CC applies crossover and mutation operators with
a given probability over the chromosomes composing the population of the
GP. The crossover operator is performed by swapping two random subtrees,
which is a classical choice in GP. The mutation operators used in our GP im-
plementation are also classical and straightforward: (1) Delete a leaf, where
a random leaf of the tree is selected and deleted along with the edge that
connects it to the tree; (2) Change a node, where a random node is selected
and replaced by another node belonging to the set of nodes constrained to
have the same tag; and, (3) Add a leaf, where a random leaf is created and
connected to the tree by a new edge.

Selection. EMO-CC uses a classical binary tournament selection method [17],
which chooses two parent chromosomes and selects the one with the higher
fitness value.

Multi-objective optimization. We consider that good substructures are those
ones that maximize the specificity and sensitivity objectives. On the one
hand, the specificity of a substructure is associated with its size (i.e., the
number of objects and features that compose the substructure), which cor-
responds to the size of the tree represented in the chromosome. On the
other hand, the sensitivity of a substructure is calculated as the number
of instances that occur in the substructure, where an instance occur in a
substructure if its tree representation is a subtree of the substructure tree.
These are opposing objectives since the more specific the substructure, the
less sensitive it becomes to detect new instances.

Non-dominance relationship. We select substructures that satisfy a trade-
off between their specificity and sensitivity by selecting a set of solutions
that are non-dominated, in the sense that there is no other solution that
is superior to them in all objectives (i.e., Pareto optimal front [8,6]). An-
other objective that is indirectly considered is the substructure diversity,
which consists of maintaining a distributed set of solutions in the Pareto
front. Therefore, to address all of these objectives our approach applies the
non-dominance relationship locally, that is, it identifies all non-dominated
optimal substructures that have no better solution in a neighborhood [8, 6].
We consider that two substructures are in the same neighborhood if they
have at least a 50% of instances occurring in both of them calculated based
on the Jaccard’s coefficient [18].

Clustering evaluation applying the non-dominance relationship between
conflicting criteria in a neighborhood to achieve cohesive, well supported,
and diverse substructures.
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(4) Compression of substructures based on an circumstantial query, thus
allowing flexible and adaptive substructures to different contexts.

(5) Inference by using an unsupervised fuzzy k-nearest prototype classifier that
characterizes new instances based on available knowledge. It calculates the
membership of a query observation z, in a set of I previously identified
substructures.

4 Application of the EMO-CC Methodology to the Gene
Ontology Structural Database

Massive microarray experiments provide a wide view of the gene regulation prob-
lem; however, most of the biological knowledge extracted from these experiments
include few relevant genes, some of which are difficult to be identified because
of their low expression levels. Moreover, it is also difficult to distinguish among
expressed genes that behave differentially between treatments, time, patients
and other factors that are always hidden in typical microarray protocols (e.g.,
gender or age). Here we focus on the challenge of explaining these profiles and
re-discover them based on independent biological information.

We therefore apply EMO-CC to discover interesting substructures in the
Gene Ontology database that can explain classes composed of microarray gene
profiles having similar behaviors of their expression over time, treatment, and
patient. The Gene Ontology (GO) network stores one of the most powerful char-
acterization of genes, containing three structured vocabularies (i.e., ontologies)
that describe gene products in terms of their associated biological processes, cel-
lular components and molecular functions in a species-independent manner [3].
The GO terms are organized as hierarchical networks, where each level corre-
sponds to a different specificity definition of such terms (i.e., higher level terms
are more general than lower level terms). Particularly, from the computational
point of view, these networks are organized as structures called directed acyclic
graphs (DAGs), which are one way routed graphs that can be represented as
trees. Therefore, identifying which distinct relationships among features best
characterize different sets of observations does not only have to consider the
process of grouping distinct type of features, but also defining at which level of
specificity they have to be represented.

4.1 EMO-CC Customization for the GO Domain

We used the GO database and compatibilized the terms with descriptions pro-
vided by Affymetrix, where each observation of the database has the following
features: (1) Name: Affymetrix identifier for each gene in HG-U133A v2.0 set
of arrays; (2) Biological process: List of the biological processes where a gene
product is involved (e.g., mitosis or purine metabolism); (3) Molecular function:
List of the biological functions of the gene product (e.g., carbohydrate binding
and ATPase activity), which is indexed by a list of integer GO codes; and (3)
Cellular component: List of the cellular components indicating location of gene
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Specificity = 0.6769
Sensitivity = 0.0051

Fig. 1. An example of a chromosome representing a cluster. (a) The tree representation,
gray boxes represent the most specific GO terms of the concept of the cluster, the level
of each term is shown between parenthesis. (b) The list of genes that correspond to
the cluster. (c) The values corresponding to the sensitivity and specificity objective
functions.

products (e.g., nucleus, telomere, and origin recognition complex), which are
indexed by a list of integer GO codes.

An instance for the GO domain is redefined as the particular subset of values
that constitutes a prefix tree! of a database observation in contrast to a subtree
as in the general case. Then, an instance occurs in a substructure if a subgraph
of the prefix tree that represent that instance matches with the substructure
tree, where this tree contains tagged nodes with the type of feature (e.g., bio-
logical process), and the corresponding values (e.g., GO:0007165), and the edges
represent relationship between features (i.e., tagged nodes).

Good substructures are those ones that result in a trade-off between sensi-
tivity and specificity. Although, the sensitivity can be calculated based on the
number of instances in a substructure, the specificity of the substructure is not
linearly dependent to its size, as it was previously defined based on the number
of nodes and edges because of the level component included in the GO domain.
Thus, we redefine the specificity as the distance among all most specific nodes
of an instance i and the closest leaf-node in the substructure S:

U dist(node, ,node;
S S ) "

Specificity(S) = K

where the distance is calculated as the number of edges between two nodes, the
level of a node is calculated as the length of the shortest path to the root node, U
is the number of leaf-nodes in substructure S, and K is the number of instances
occurring in substructure S. An example of a chormosome representing a cluster
concept is shown in Figure 1.

4.2 Experiments and Analysis of Results

The structural database used for the GO domain is composed of 1770 instances
of genes and their GO associated terms. The population of the evolutionary

! Tree T’ is a prefix tree of T if T' can be obtained from T” by appending zero or more
subtrees to some of the nodes in T". Notice that any tree T is a prefix of itself.
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algorithm is initialized by 50% of randomly chosen subtrees of the database and
by another 50% of random instances. The parameters of the algorithms used for
this domain are shown in Table 1. The EMO-CC approach was run ten times
with different seeds and the average of these runs is reported.

Table 1. Parameters for the GO domain

Parameter Value
Population Size 200
Number of Objective Evaluations 20000
Crossover probability 0.6
Mutation probability 0.2

4.3 Computational Analysis

We compare EMO-CC with two other methods, APRIORI and SUBDUE, all of
which satisfy in some extent those features shared by machine learning meth-
ods introduced in Section 3. Although APRIORI and SUBDUE are not MO
algorithms, we illustrate the obtained Pareto fronts in Figure 2 to perform fair
comparisons with EMO-CC. In addition, we verify the performance of the former
methods by applying some multi-objective comparison metrics, namely C and
ND (19, 20]. The metric C(X’, X”') measures the dominance relationship between
the set of non-dominated solutions X’ over other set of non-dominated solutions
X". The value C(X’, X”) = 1 means that all points in X" are dominated by
points in X’. The opposite, C(X’, X”) = 0, represents the situation where none
of the points in X" are covered by the set X’. The metric N'D(X’, X"') compares
two sets of non-dominated solutions and gives the number of solutions of X’ not
equal and not dominated by any member of X”. The values obtained by the
methods are shown in Table 2,

.« o . o
.

. o .

K X o ‘.oz"u.

o o1 oz 5 06 07 08 o o1 oz 06 07 o8 o o1 o0z o 06 07 08

03 04 O 03 04 05 304 05
SPECIFICITY SPECIFICITY SPECIFICITY

(a) APRIORI (b) SUBDUE (¢) EMO-CC

Fig. 2. Pareto fronts for the GO domain by using two conflicting objectives: specificity
and sensitivity. (a) Non-dominated solutions reported by the APRIORI method. (b)
Solutions recovered by the SUBDUE method. (c) Substructures recovered by the EMO-
CC methodology, where more than one solution for the same specificity level indicates
that they correspond to different neighborhoods.
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The obtained results of applying the former metrics reveal that there is no
solution obtained by EMO-CC that is dominated by APRIORI, and only one so-
lution obtained by SUBDUE dominates solutions belonging to the Pareto front
found by EMO-CC (Table 2(a)), as described by metric C, while there is no
solution of the latter method that dominates any solution from the other two
approaches. Moreover, the EMO-CC method discovers more non-dominated so-
lutions, as evaluated by metric N'D (Table 2(b)), than both APRIORI and SUB-
DUE methods. The difference between the values reported by the N'D metric
from EMO- CC and those ones from APRIORI and SUBDUE (i.e., 181.89 and
171.80 vs. 1.20 and 1.60 from Table 2(b)) suggests that EMO-CC retrieves al-
most all solutions identified by the other methods and covers a wide set of all of
optimal solutions that can be obtained in the GO domain. This is in contrast to
the few solutions that are identified by the APRIORI and SUBDUE methods,
but remain undetected by the EMO-CC method (i.e., 1.20 and 1.60 in average
from Table 2(b)).

In addition, the EMO-CC method recovers most and more diverse solutions
than those found by the APRIORI and SUBDUE methods. Particularly, our
approach retrieves substructures of the Pareto optimal front containing few in-
stances harboring several features (i.e., cohesive substructures), which were un-
detected by the other methods.

Table 2. Comparative evaluation of the solutions identified by APRIORI, SUBDUE
and EMO-CC for the GO domain by using different metrics

(a) C metric

C(X’, X" APRIORI SUBDUE EMO-CC average (stdev)
APRIORI - 0.00000 0.00000 (0.00000)
SUBDUE 0.00000 0.00050 (0.00160)

EMO-CC average (stdev) 0.00000 (0.00000) 0.08421 (0.04438) -
(b) N'D metric

ND(X', X") APRIORI SUBDUE EMO-CC average (stdev)
APRIORI - 1 1.20 (0.42)
SUBDUE 13 1.60 (1.17)

EMO-CC average (stdev) 181.80 (11.99) 171.80 (11.62) -

Biological results analysis using gene expression profiles. We consider 24
independent classes containing gene expression profiles derived from the analy-
sis of 48 GeneChips® HG-U133A v2.0 from Affymetrix Inc., corresponding to
an inflammatory response study performed on human volunteers treated with
intravenous endotoxin compared to placebo [10]. The data has been acquired
from samples taken from human blood to eight patients over time at 0, 2, 4, 6,
9 and 24 hours, where four had been treated with intravenous endotoxin (i.e.,
patients 1 to 4) and four with placebo (i.e., patients 5 to 8). We will use these
gene expression profiles for validating the substructures detected by EMO-CC,
or, in other words, which are explained by these substructures.
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Table 3. Clusters derived from the GO information by EMO-CC intersecting signifi-
cantly with class #13 from the gene expression information. Solid lines separate groups
of clusters which GO information is not related, while dashed lines separate clusters
within these groups, as shown in Figure 3.

#Substr. Biological process Molecular function Cellular component
179 GO:0006915 GO:0005887
apoptosis integral to plasma membrane
(level: 6) (level: 4)
536 GO:0007165 G0:0016021
signal transduction integral to membrane
(level: 4) (level: 3)
759 GO:0007165 GO:0005887
signal transduction integral to plasma membrane
(level: 4) (level: 4)
89 GO:0007154 G0:0016021
cell communication integral to membrane
(level: 3) (level: 3)
256 GO:0007154 G0:0016021
cell communication integral to membrane
(level: 3) (level: 3)
GO:0050875
cellular physiological process
(level: 3)
380 GO:0007165 G0:0016021
signal transduction integral to membrane
(level: 4) (level: 3)
G0O:0050875
cellular physiological process
(level: 3)
607 GO0:0004871 G0:0016021
signal transducer activity integral to membrane
(level: 2) (level: 3)

For example class #13 is described by several substructures (Table 3). Sig-
nificantly, these descriptions are based on different types of descriptions (e.g.,
process and cellular components) that belong to different levels of the GO struc-
ture (e.g., level 6 or level 4). These diverse substructures are optimal in the sense
that belong to the Pareto optimal front (Figure 2) between specific and sensitive
descriptions. The effect of the substructures on the explained class #13 can be
visualized in (Figure 3).

EMO-CC, as a machine learning method (see Section 3 (4)), compresses those
substructures that explain an expression profile from the same point of view to
provide a summarized explanation of this phenomena (Table 3). For example,
substructures #89 and #216 are compressed because they are indistinguishable
for the class corresponding to the expression profile #13, while substructure
#179 describes it from a very different point of view and is preserved as a diverse
solution. This compression is dynamic because substructures are re-grouped in a
context-dependent fashion, where the context corresponds to an explained class
and a different classification can produce a distinct substructure association (e.g.,
substructures #89 and #216 are indistinguishable for class #13, while may be
not the case for other class of microarray or clinical experiments). Notably, this
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Fig. 3. The effects of the explanation of the expression class #13 based on the GO
substructures identified by EMO-CC. The dashed rectangle illustrated the local ap-
plication of the non-dominance relationship within a class, and the summarization of
two indistinguishable substructures for this class. Grey filled graphs correspond to the
compressed substructures of Table 3.

classification is performed based on completely external information provided by
GO database, instead of the levels of expression.

In addition, EMO-CC applies an unsupervised inferential approach (see Sec-
tion 3 (5)) which calculates the membership of a query observation z, in a set
of I previously identified substructures, to classify new instances. Since the ob-
tained substructures are not disjoint, a given observation may belong to more
than one cluster.

The unsupervised inferential mechanism of EMO-CC allows to identify new
genes belonging to a particular expression profile. This is exemplified by the gene
212659_s_at, which was recovered by its proximity to substructure #824 and
shows a similar expression pattern to the genes of class #17 (Figure 4), but was
ignored by the statistical methods used to recover differentially expressed genes
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Fig. 4. Expression of Substructure B #824 where gene product 212659 s at is classi-
fied. The observation classified is highlighted.

[10]. Tt is noteworthy that this gene was not identified by its similarity with
the centroid of the expression class #17, but from an independent substructure
provided by EMO-CC.

5 Discussion

Unlike typical clustering techniques, conceptual clustering methods have been
successfully applied to structural information in order to reveal hidden concepts
by searching through a predefined space of potential hypothesis. However, the
formulation of the search problem in a biological network would often result in a
conflicting paradigm. On the one hand, generating a large number of substruc-
tures, each containing a very small number of genes that share all considered
features, makes it hard to find commonalities among similarly regulated genes.
On the other hand, generating a small number of groups in which their members
share a limited number of features, would fail to discriminate between members
of a molecular pathway.

In order to tackle these problems, we proposed the EMO-CC methodology
that identifies conceptual clusters and classifies co-regulated genes based on mul-
tiple features that characterizes them, including functional descriptions, molec-
ular processes and cellular components, at different levels of specificity.

EMO-CC allows gene membership to more than one substructure by using a
flexible classifier [14, 21], thus, explicitly treating the substructures as hypothe-
ses, that can be tested and refined [5]. Moreover, these hypotheses can produce
novel annotations among different types of features at multiple specificity levels,
which explain co-regulation phenotypes and can be used to conduct gene-wide
searches.

Also, EMO-CC considers gene expression as one independent feature, thereby
allowing classification of genes even in the absence of its expression. Moreover,
EMO-CC minimizes the number of substructures by using a flexible compression
strategy that groups similar substructures based on their ability to describe
gene profiles derived from different experimental conditions (e.g., microarray
expression, or Chip-on-Chip binding occupancy).
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Our proposed methodology is applicable to a wide set of domains, being
easily to customize to particular problem, and may be an appropriate white-
box technique to uncover rear and unknown patterns in structural databases.
Particularly, this guideline can be easily extended to more complex networks
comprising protein-protein or different regulatory interactions [1,2].
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Abstract. The rapid development of methods that select over/under expressed
genes from microarray experiments have not yet matched the need for tools that
identify informational profiles that differentiate between experimental condi-
tions such as time, treatment and phenotype. Uncertainty arises when methods
devoted to identify significantly expressed genes are evaluated: do all microar-
ray analysis methods yield similar results from the same input dataset? do dif-
ferent microarray datasets require distinct analysis methods?. We performed a
detailed evaluation of several microarray analysis methods, finding that none of
these methods alone identifies all observable differential profiles, nor subsumes
the results obtained by the other methods. Consequently, we propose a proce-
dure that, given certain user-defined preferences, generates an optimal suite of
statistical methods. These solutions are optimal in the sense that they constitute
partial ordered subsets of all possible method-associations bounded by both, the
most specific and the most sensitive available solution.

1 Introduction

Advances in molecular biology and computational techniques permit the systematical
study of molecular processes that underlie biological systems [1]. Particularly, mi-
croarray technology has revolutionized modern biomedical research by its capacity to
monitor changes in RNA abundance for thousands of genes simultaneously [2].

To address the statistical challenge of analyzing these large data sets, new methods
have emerged ([3], [4], [5], [6], [7] and many others). However, there is a dearth of
computational methods to facilitate understanding of differential gene expression pro-
files (e.g., profiles that change over time and/or over treatments and/or over patient)
and to decide which is the most reliable method to identify differences across profiles.

We investigated the performance of several commonly used statistical methods, in-
cluding T-Tests [4], Permutation Tests [S], Analysis of Variance [6] and Repeated
Measures ANOVA [7], in identifying differential expression profiles that change over
time, treatments and phenotype. We found that these methods do not identify all ob-

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 172-183, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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servable distinct profiles. Moreover, none of them subsumes the results obtained by
the other methods.

In view of these results, we propose a conceptual clustering method [8], [9], [10],
devoted to discover optimal associations of microarray analysis methods in an effort
to identify differential gene expression profiles.

2 Methods

We propose a conceptual clustering approach [8], [9], [10] devoted to identify optimal
associations among microarray analysis methods in an effort to identify differential
expression profiles (Fig. 1). This approach consists of six phases: (1) preprocessing of
the dataset; (2) identification of differentially expressed genes by application of sev-
eral statistical methods; (3) arrangement of a lattice structure containing all possible
associations of the statistical methods applied; (4) association of differentially ex-
pressed genes into differential profiles by clustering genes that change their expres-
sion over time, patient and/or treatment; (5) evaluation of the performance of the
method-associations based on their specificity and sensitivity in the identification of
previously detected differential profiles, using multiobjective optimization techniques
[11], [12]. We create a set of method association rules based on the learned mappings
of differential profiles into method-associations, [13]; (6) finally, we are able to pre-
dict optimal method-associations to identify differential profiles in new microarray
datasets by use of the method association rules.

2.1 Identification of Differentially Expressed Genes

We perform the retrieval of differentially expressed genes from one experimental
condition to the other/s by application of several statistical techniques [3], [14], har-
boring Student’s T-Test proposed in [4], including some of the variants the method
poses to distinguish changes in the abundance of RNA occurring over both treatment
and time; Permutation Test described in [5], also including a time approach; Analysis
of Variance described in [6]; and Longitudinal Data approach by using Repeated
Measures Analysis of Variance described in [7].

i
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Fig. 1. Graphical representation of the methodology. The squared boxes represent the phases of
the methodology, the round cornered boxes correspond to the input/output data at each step,
and the ellipses the operations performed at each phase.
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2.2 Detection of Method-Associations

We arrange a lattice containing all potential associations of the statistical methods
used to retrieve differentially expressed genes (Fig. 2). The methods are associated as:

M=(M'M> M" M'eM>* M'oM* ... . MoM>’®. . OoM"}, (1)

where @ is a classical set operator (e.g., the union (UJ) or the intersection (1)) ap-
plied to the sets of genes retrieved by each method, and M corresponds to T-Test,
M? to T-Test considering time, M 3 Permutation Test, M* Permutation Test con
sidering time, M> ANOVA over treatment, M° ANOVA over time, M~ ANOVA
over treatment and time, M® RMANOVA over treatment, M° RMANOVA over
time and M'® RMANOVA over treatment and time.

The lattice containing all potential method-associations, M, is structured from top
(i.e., intersection of all methods) to bottom (i.e., union of all methods) [15]. Each
node in the lattice (M ‘e M ) is applied to the microarray dataset (D) retrieving the
set of differentially expressed genes that are recognized by the method or method-
associations in such node (M '(D)).

[ M OMPOM ) OM? ]
)
Cmotons ). (Cmvtobort .. - omr-'op )
MTOM
o Cargar )
C Meoveond ] . | Mzr\A/lljr\M4 ... M2~ o)

M AMOMN...0M

Fig. 2. Lattice structure containing all statistical methods potential associations

2.3 Identification of Differential Profiles

The set of genes previously identified in Section 2.2 serves as a means to create dif-
ferential expression profiles (i.e., sets of genes with coordinate changes in RNA
abundance) between treatment F, , control P, and subject. The applied representation
(Fig. 3) allows us to identify different pattern behavior among patients inside the
same experimental group, since this information may be missed if patients in the same
experimental group were not plotted individually.

We clustered separately genes in treatment and control groups. Therefore, genes
belonging to a cluster in treatment, P, , can fit in more than one cluster in control, P,

and vice versa. We apply the K-means clustering algorithm [16] and identify differen-
tial profiles denoted as (P.F.), which are pairwise relationships between profiles, P,
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Fig. 3. The expression profiles have been represented separately for each experimental group
and patients arranged individually

and F., from treatment and control experiments, respectively. This relationship is de-
fined as the significant intersection of genes between P, and F., which is constrained
by a threshold based on the typical statistical power of 80%.

2.4 Creation of Method Association Rule

We create a set of method association rules that, given a set of differential
profiles queried by the user, suggests the most appropriate method-associations
capable to retrieve them. The method association rules are created based on the
lattice structure from Section 2.2, containing all potential method-associations, and
the set of all possible differential profiles P from Section 2.4 defined as
P={(PrPc)ys.s (PrFc), } Where (PrFe) € P represents each of the differential pro-
files present in P.

2.4.1 Method-Association Performance Evaluation _
We evaluate the performance of the method-associations M'e M for the query pro-
files X® =(x,,..,x,), over two objectives: specificity and sensitivity

Specificity = TN (TP + FN)  Sensitivity = TP /(TP + FN) , )

where TP stands for True Positives (i.e., genes exhibiting profile x,€ X°, which
have been successfully retrieved by the applied method-association M'), TN stands
for True Negatives (i.e., genes exhibiting profile x,  X° and not retrieved by M'),
FP stands for False Positives (i.e., genes exhibiting profile x,  X* and retrieved by
M') and FN stands for False Negatives (i.e., genes exhibiting profile x, € X * and
not retrieved by M"). These four factors are calculated as:

p- 200 py (D=0 )ﬂ(f—n ) pp (L= Ly 9" ND=1)  3)
4 (D-¢") (D-¢") 9"
where @" represents the genes in the microarray set D that exhibit the queried profile

x,€X 5 and ni =M i(D ), the genes from D retrieved by the method-association M i

2.4.2 Method-Association Selection
We evaluate the method-associations in M based on their specificity and sensitivity.
These two objectives are always conflicting, so we use a multiobjective optimization
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technique to maximize them, allowing us to detect all optimal methods-associations in
M for the query profiles X° [11], [12]. We define objectives (0,0,) corresponding
to specificity and sensitivity respectively.

2.4.3 Creation of a Set of Method Association Rules
We use the non-dominated method-associations described in Section 2.4.2 to create

the method association rules R = {Rl, e Rk} where R/ € R is defined as:
R/ (IF X, IS (PrPo){ AND, .., AND X, 1S (PP, )f THEN z/ 15 M'with C/ | 4)
Where (x,...,x,) are the profiles X° queried by the user; (PP, )1 e (PTPC) eP,;

feM is the appropriate method-association to retrieve X ° accordlng to rule R’ ;
and C/ denotes a measure of the specificity/sensitivity levels for z’, defined as:

) ) 5
(w, %0,(M)) + (w, *0,(M 1)) ©)

w, +W2

c’ =

where w, and w, are the weights associated to (O,,0,) respectively. These values
are provided by the user based on the relevance of each of these objectives for the
particular study. If no values are given, the standard (0.5, 0.5) are used.

2.5 Prediction Using Method Association Rules

The prediction phase works at two levels depending on the given input. If the input is
a microarray data set D’, our methodology will provide the differential expression
profiles P’ in the data set along with the optimal method-associations to retrieve such
profiles. It might be the case that some of the differential profiles P’ uncovered from
D’ were not included in the set of differential profiles P already learned by the meth-
odology. Consequently, the information provided as input will be used to update P
and R. If the input is a set of query profiles X ° , the output will consist of the optimal
method-association M" for X° at a certain C’ value. To obtain these outputs, we
apply matching and inference operations to the method association rule set [17].
Given an association rule set R={R',..., R"}, for the differential profiles pro-
vided as the query set X5=(x,...,x,), we define the matching degreeQ of
x, € X° with the if-part of the association rule R I a
(6)

Ox, (P P:)] ) =1~ Z—(PTPC)Z ,

with || || being the Euclidean distance, and (P P.) the centroids of the profiles.
Therefore, given a set of query profiles X ° , we define the strength of activation of
the if-part of the rule R’ as:

RY(X5)=min(Q(x, (PP ) s ., O(x,, (PP))) N

Let h/ (R'(X*),C") denote the degree of association of the query profiles X*
with the method-association M 'according to rule R and the specificity/sensitivity
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level C/ . This degree is obtained by applying a product operator between R’ (X*)
and C/ . The optimal method-association for the queried profiles X ° is defined as:

MR ( Ri(XS),Ci)=r51ak)( h ( R7(X%),C7). (8)

3 Results

We apply our procedure to a data set derived from longitudinal blood expression pro-
files of human volunteers treated with intravenous endotoxin compared to placebo.
We expect to identify molecular pathways that provide insight into the host response
over time to systemic inflammatory insults, as part of a Large-scale Collaborative Re-
search Project sponsored by the National Institute of General Medical Sciences
(www.gluegrant.org) [18].

The data were acquired from blood samples collected from eight normal human
volunteers, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with
placebo (i.e., patients 5 to 8) [18]. Complementary RNA was generated from circulat-
ing leukocytes at 0, 2, 4, 6, 9 and 24 hours after the i.v. infusion and hybridized with
GeneChips® HG-U133A v2.0 from Affymetryx Inc., containing a set of 22283 genes.

3.1 Identification of Differentially Expressed Genes

The statistical methods harbored have been applied using the standard p-value
o =0.05. The number of differentially expressed genes retrieved by each of the
methods from the original set of genes is M'-10942 genes, M*-7841, M*-3904,
M*-8023, M’-13151, M°-4588, M’-6070, M*-8557, M°-3995, M'-3367.
These values show the number of significant genes retrieved by each of the statistical
methods ranges in a wide rank. Moreover, the concordance rates also vary widely, in-

Table 1. Coincidence between methods in the retrieval of genes. The number in each cell
represents a ratio of coincidence between genes retrieved by the statistical method in that col-
umn and the genes retrieved by the statistical method in that row relative to the total number of
genes retrieved by the method in the row ((Row() Column)/ Row).

% M M2 M3 M4 M5 MO M7 M8 M Mo
Mm! -- 92.20 52.29 75.05 96.48 69.23 85.55 70.06 61.33 50.52
M?2 56.06 - 34.07 57.84 85.27 59.54 71.11 62.64 50.57 42.98
M3 82.19 88.07 - 96.24 94.77 57.35 78.75 72.87 56.86 46.73
M4 67.22 85.19 54.84 -- 95.16 55.49 73.65 70.20 51.49 42.83
M3 55.20 77.80 33.45 58.94 - 50.28 66.72 66.38 46.42 38.93
MO 59.04 83.51 31.11 52.84 77.30 - 89.63 56.56 60.64 49.38
M’ 58.36 79.79 34.18 56.10 82.05 71.70 - 62.34 57.23 49.07
M3 57.36 84.34 37.96 64.17 95.96 54.30 74.80 -- 49.62 40.51
Mm?° 62.10 84.21 36.63 58.21 84.74 72.00 84.95 61.36 -- 72.31
M0 59.56 83.34 35.05 56.37 82.72 68.26 84.80 58.34 84.19
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dicating that none of the methods subsumes the others (Table 1)(e.g., from the genes
retrieved by M, only 31.11% are also retrieved by M’ , and 52.29% by M").

3.2 Association of Statistical Methods

The lattice arranged in this particular work contains all potential combinations of un-
ion and intersection of the ten statistical methods applied. Thus, M’ is defined as

M={M' M. . MO MeM> MaoMm,. ..,
Mr*eoM?,. .. Meom*oMm? .. . MeMmMeMed. oM oM

We found that there is a relationship between the statistical methods and the differ-
ential profiles they are able to identify (see Section 2.2), having differential profiles
identified by some methods and not by others. For example, the differential profile in
(Fig. 4(a)) harbors 29 genes in our dataset D and is only retrieved by those statistical
methods that take into account the time factor (e.g., M 2 , which retrieves more than
90% of these genes). This happens because the statistical methods that consider the
treatment vs. control factor make an average of the expression values from patients 1
and 2 with those of patients 3 and 4 by considering them as replicas. Consequently,
the differential behavior between them is lost.

TREATMENT CONTROL
e e ]

a) —+
b) e —

>
—»>

Fig. 4. Examples of differential profiles only identified by some of the statistical methods

3.3 Identification of Differential Profiles

The expression profiles have been represented separately for each experimental group
(Section 2.3), and patients arranged individually. In our current problem, with eight
patients, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with
placebo (i.e., patients 5 to 8), and data retrieved over time at hours 0, 2, 4, 6, 9 and 24,
each profile is represented by 24 consecutive time points (see Fig. 5).

The differential profiles extracted from the treatment group show different levels of
expression change. For example, there are sets of genes sharing very high variations
in the levels of expression (e.g., profiles 15, 19, 21, and 22 in Fig. 5). In addition,
some other profiles show differential characteristics for the patients (e.g., profiles 8
and 16 in Fig. 5). In the control group, the profiles are more homogeneous than in the
treatment group.

Typically, testing the coincidence among different data sources and clustering
methods serves as a tool to investigate the validity of the identified groupings [19].
We follow this guideline to increase the confidence in the obtained differential pro-
files. Therefore, we calculate the coincidence between our retrieved differential profi-
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Fig. 5. Representation of the differential profiles obtained separately for the treatment and con-
trol groups using the statistical methods applied in the current work

les and external information provided by the Gene Ontology database [20]. To ad-
dress this problem we developed an evolutionary multiobjective conceptual clustering
methodology (R.R.Z., C.R.E., O.C, J.P.C., and I.Z., manuscript in preparation) that
extracts clusters composed of features such as biological processes, molecular func-
tions and cellular components defined at different specificity levels, and compare
these clusters with our differential profiles by using a coincidence index test based on
the hypergeometric distribution [9], [10], [19].

3.4 Creation of Method Association Rules

We have arbitrarily selected six profiles (i.e., (B.F.),,..., (B F.),) identifying a total
of 1395 genes in our dataset D and plotted as treatment clusters 2, 3, 4, 5, 10 and 12 in
Fig. 5. These profiles represent genes exhibiting non-uniform behavior for distinct pa-
tients in the treatment group, and genes with changes in a level of expression smaller
than 5000. We applied our methodology to find the optimal method-associations M’
to retrieve them.

3.4.1 Method Association Performance Evaluation

The results of the evaluation of the method-associations contained in the lattice M’ for
the differential profiles are shown in Table 2, where the information relative to the
sensitivity and specificity levels for the application of the most representative method-
associations over D is also specified. On the one hand, we observe that the union set
of the genes obtained by seven of the statistical methods evaluated (i.e., methods
MZ,M3,M5,M6,M7,M8,M'0) contains the 1395 genes desired (i.e., sensitivity
value of 1) but with a low level of specificity (i.e., value of 0.369). On the other hand,
the intersection set of genes obtained by the same seven statistical methods has a very
low level of sensitivity (i.e., only 95 out of the 1395 genes were retrieved), whereas
the value for specificity is very high. In between these two extremes we see some
other method-associations which evaluation reveal trade-off solutions between the
specificity and sensitivity objectives (Table 2).
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3.4.2 Method Association Selection

Once the method-associations M have been evaluated, we search for the non-
dominance relations in their applications to the microarray dataset D. The decision is
based on the levels of specificity and sensitivity in Table 2. The Pareto optimal front
conformed by this set of non-dominated method-associations is represented in Fig. 6.

Table 2. Specificity and sensitivity values for the method-associations. The non-dominated so-
lutions are pointed out with a star.

Methods Specificity Sensitivity
M? 0.611 0.707
M? 0.826 0.205
M3 0.448 0.785
* M 0.813 0.447
* M’ 0.747 0.587
M 0.625 0.537
# M"° 0.859 0.322
M?* A M? 0.803 0.432
# M* U M? 0.618 0.866
# Union of (M2,M>,M°> . M° M7, M8 M) 0.3690 1
* Intersection of (M2,M> M> M M7 M® M%) 0.983 0.066

08

_________________

06 drmpmmmm—mm

Specificity

04 o

02 = (1, 0369

[ S
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Fig. 6. Results of the evaluation of the method-associations contained in the lattice M’ for the
six selected differential profiles

3.4.3 Creation of Method Association Rules

The set of method association rules is created based on the evaluated profiles (i.e.,
(P,P.),,...,(PP.)s), and the method-associations M 'present in the Pareto optimal
front of non-dominated solutions. The weights (w,,w,) associated to the objectives
(0,,0,) are set to (0.5, 0.5) to calculate the specificity/sensitivity measure C f Weil-
lustrate two association rules extracted from the evaluation of M’ over the former pro-
files, which have the following form:

R':IF x, IS (P.P.)) AND,..., AND x, IS (P.P.)! THEN Z' IS M*WITH C'

where C/ is calculated based on the specificity/sensitivity levels obtained on the ap-
plication of such method over (P.F.), ,..., (P.P-)q profiles (Table 2):
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C' =(0.5%0.813) +(0.5%0.447)/(0.5+0.5) = 0.631
and: R*: IF x, IS (B, P.); AND,...,AND x,IS (P,P.). THEN Z*ISM* UM WITH C*
where C? is defined as: C* = (0.5*%0.618)+(0.5*0.866) /(0.5+0.5) =0.742

3.5 Prediction Using Method Association Rules

To evaluate the ability of our computational approach to retrieve differential profiles,
we have randomly selected 100 query sets X° containing a random number of dif-
ferential profiles from the 24 actually available. Using the method association rules
created, and averaging the results, we obtained an 86.92% of overall performance
measurement [21] as a particular correlation coefficient implementation.5 Prediction
using method association rules

4 Discussion

The emergence of microarray technology as a standard tool for biomedical research
has necessarily led to the rapid development of specific analytical methods to handle
these large data sets. Despite the multiplicity of methods devoted to identify differen-
tially expressed genes, there is a dearth of computational methods intended to opti-
mize use of a particular method or suite of methods. Our motivation was to address
two frequently asked questions: 1) do all methods retrieve the same results with the
same set of input data, and 2) are the results from methods which retrieve a smaller
amount of genes subsumed in the results of methods retrieving a larger amount of
genes? We have shown herein how commonly used statistical methods yield different
results for the same data input: each statistical method applied neither identifies all
observable differential profiles, nor subsumes the results obtained by the other meth-
ods (see Tables 1 and 2). Our method also addresses another common conundrum,
specifically the need for computational methods to facilitate understanding of differ-
ential gene expression profiles, to establish comparisons among them, and to decide
which the most reliable method to identify informational profiles is. In this context we
propose a procedure that generates optimal associations of microarray analysis meth-
ods for the set of data being analyzed, based on the differential expression profiles
exhibited by the genes in the dataset.

The generation of the optimal method-associations is based on a set of previously
obtained method association rules between differential profiles and the optimal
method-associations to identify them. The methodology proposed is valid for either
providing the optimal method-associations for a set of query profiles, or identifying
all differential profiles in a given set of microarray data, suggesting the optimal
method-associations for them and updating the set of possible profiles used for pre-
diction. Although we have applied our procedure to a time-course structured experi-
ment, we have to take into account that time-course experiments constitute more gen-
eral cases than simpler microarray problems where time is not a factor and microarray
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samples are taken as single data points. Therefore, the methodology presented is also
useful for simpler microarray experiments with single data points.

This approach presents various advantages over the standard analytical methods
usually applied to microarray experiments. First, it permits combining the results of
independent analytical methods for microarray experiments. Our proposal consists of
a conceptual clustering technique that combines the advantages of the methods ap-
plied. The combination of the union and intersection operators also provides the pos-
sibility of querying negative samples (i.e., genes which exhibit a given profiles but
not others). Second, it permits interaction with the user in the selection of differen-
tially expressed profiles, where the user provides the differential profiles queried from
the set of microarray data and receives the optimal combination of statistical methods
to retrieve the genes exhibiting those profiles. Third, the representation used for the
profiles is optimal, as plotting the patients sequentially presents advantages over the
traditional one, where all biological replicates (i.e., patients in the same experimental
group) are combined in just one set of values. The main advantage of this representa-
tion is that we can examine the behavior of the genes independently in each patient,
making it possible for us to recognize different behaviors of genes across the patients
in the same experimental group. These differences can help us to discover the influ-
ence of biological conditions not previously considered in the experiment such as
gender or age. Finally, the system provides solutions based on a trade-off of specific-
ity vs. sensitivity, whereas other methods evaluate their solutions over one measure,
usually a ratio of False Positives and the total number of genes retrieved [4], [5]. As a
result of this trade-off, the procedure provides as output all non-dominated solutions
in terms of specificity and sensitivity by application of multiobjective techniques.

The computational procedure we propose solves many of the problems actually
present in the process of analyzing a microarray experiment, such as the decision of
analytical methodology to follow, extraction of results biologically significant for the
experts, proper management of complex experiments harboring experimental condi-
tions, time-series and patients. Therefore, it sets up a robust platform for the analysis
of all types of microarray experiments, from the simplest experimental design to the
most complex, providing accurate and reliable results.
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Abstract. As DNA microarrays have been widely used for gene expres-
sion profiling and other fields, the importance of reliable probe design for
microarray has been highlighted. First, the probe design for DNA mi-
croarray was formulated as a constrained multi-objective optimization
task by investigating the characteristics of probe design. Then the probe
set for human paillomavrius (HPV) was found using e-multi-objective
evolutionary algorithm with thermodynamic fitness calculation. The evo-
lutionary optimization of probe set showed better results than the com-
mercial microarray probe set made by Biomedlab Co. Korea.

1 Introduction

DNA microarray, especially oligonucleotide array, consists of the DNA sequences
called probes, which are DNA complementaries to the genes of interest, on a solid
surface. When the molecules of a cell is put to the microarray, if there exists a
complementary oligonucleotide to one of the probes, it would hybridize to the
probe so that a user can detect it using various methods. In this way, DNA
microarray can provide the information on whether a gene is expressed or not
for hundreds of genes simultaneously. Therefore, DNA microarray is widely used
to study cell cycle, gene expression profiling, and other DNA-related phenomena
in a cell; and has become the method of choice to monitor the expression level
of a large number of genes.

By the way, microarray depends on the quality of probe sets that used. If a
probe hybridizes to not only its target gene but also other genes, the microarray
may produce misleading data. Thus, one needs to design the probe set care-
fully to get precise data. Till now, lots of probe design methods and strategies
are suggested reflecting its importance [16]. Gordon and Sensen proposed a Os-
prey system based on various well-defined criteria [5]. Zuker group implemented
OlgioArray 2.0 using thermodynamic data to predict secondary structures and
to calculate the specificity of targets on chips [10]. Wang and Seed suggested
OligoPicker which uses BLAST search for sequence specificity decision [18].

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 184-195, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Though they have shown the good results, the main algorithm of most pre-
vious system is a simple generate and filter-out approach. Recently, a method
based on machine learning algorithms such as naive Bayes, decision trees, and
neural networks has been proposed for aiding probe selection [15]. And in our
previous work [8], we used a multi-objective evolutionary algorithm for probe
selection of DNA microarray. We designed 19 probes for human papillomaviruses
using non-dominated sorting genetic algorithm-I1I (NSGA-II). In this paper, we
improved our previous approach in many ways. First, we reformulated the probe
design problem by investigating the characteristics of the probe design. Sec-
ond, we adopted e-multi-objective evolutionary algorithm (e-MOEA) instead of
NSGA-IL. In a related field, DNA sequence design for DNA computing, we no-
ticed that e-MOEA outperforms NSGA-II for DNA sequence design problem [12].
Based on these results, we improved the main algorithms to e-MOEA. Third, we
changed the fitness criteria of probe design by combining thermodynamic data
and sequence similarity search.

In the following sections, we explain the suggested probe design method in
detail. In section 2, we briefly introduce the multi-objective optimization prob-
lem and formulate the probe design problem as multi-objective optimization
problem. Section 3 and 4 describe our probe design method and provide the
experimental results. In Section 5, the conclusion will be followed.

2 Multi-Objective Probe Design

2.1 Multi-Objective Optimization Problem

A multi-objective optimization problem (MOP) has a number of conflicting objec-
tives which are to be optimized [1]. For non-conflicting objectives, the optimiza-
tion of one objective implies the optimization of the other and both objectives can
be treated as one objective. And if there exists priority between objectives, one can
optimize objectives according to the priority by optimizing single objective which
is the weighted sum of objectives. Therefore, for both cases, the given problem
becomes a single objective optimization problem. However, in MOP, objectives
conflict each other and there is no given priority between objectives, which makes
the optimization more difficult than in single objective case.

The general form of multi-objective optimization problem is like the following:

Optimize fm(X), m=1,---,M,
subject to g;(X)>0, j=1,---,N,
xEL)gxigng),izl,no,n (1)
where, X is a vector of n decision variable [z1,-- - ,z,]T, f represents objective,

g is constraint, M denotes the number of objectives, and N the number of
constraints. =) is lower value of decision variable and z(Y) is upper value of
decision variable.

Given an optimization problem, one’s goal is to find optimal solution(s). For
a single objective case, the optimality of a solution is determined by simply
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comparing its objective function value to others. In multi-objective case, the
optimality of a solution is determined by domination relation between solutions.
A solution X is said to dominate other solution Y in the case of maximization
when the following two conditions are satisfied and denoted by X <Y

Vie{i,---, M}, fi((X)) = fi((Y)),
Fi € {i,--, M}, fi((X)) > fil(Y)). (2)

Therefore, the optimal solutions for a MOP are those that are not dominated by
any other solutions. Thus, one’s goal in MOP is to find such a non-dominated
set of solutions.

2.2 Probe Design as Multi-Objective Optimization

There exist several criteria to evaluate the set of probes [5]. We list the generally
used conditions for good probes:

1. The probe sequence for each gene should not appear other genes except its
target gene.

2. The probe sequence for each gene should be different from each other as
much as possible.

3. The non-specific interaction between probe and target should be minimized.

4. The probe sequence for each gene should not have secondary structure such
as hairpin.

5. The melting temperatures of the probes should be uniform.

The first three conditions concern with the specificity of the probes. And the
secondary structure of a probe can disturb the hybridization with its target gene.
Lastly, the probes on a oligonucleotide chip are exposed to the same experimental
condition. If the melting temperatures of the probes are not uniform, some probes
can not hybridize with its target.

We formulated the above conditions for clear definition of microarray probe
design problem. The first condition regarded as a constraint, since it is the basic
requirement for probes. And the fifth condition was not considered as one of
objectives but was used as the final decision criterion to choose the best solution
among diverse Pareto optimal solutions which are the results of the MOEA run.

Therefore, we formulated the microarray probe design using three fitness
functions and one constraint. Before going on the formulation of the prob-
lem, let us introduce the basic notations. We denote a set of n probes by
P ={p1,p2, -+ ,pn}, where p; = {A,C, G, T} fori =1,2,--- n, [ is the length
of each probe. And we denote the set of target genes by T' = {t1,- - , ¢, }.

The constraint is the basic requirement for probes.

g(P) = subseq(pi,t;), (3)
i#]

subseq(pi, ;) = { 1 if p; occurs in ¢; at least once

0 otherwise
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Since the probe sequences should not be the subsequence of the non-target gene
sequences (condition 1), this constraint is the basic requirement. And from its
definition, this constraint should be zero. Other conditions are implemented
as three fitness functions. First one is to prevent hybridization between probe
and non-target genes (condition 2). Second is to prevent hybridization between
probe and improper position of target genes (condition 3). Even though probe
hybridized to the undesired site of its target gene, this can give the right infor-
mation. Therefore, this seems to be unnecessary fitness functions. However, for
more specific probe design, we add this fitness function in our design criteria.
Last one is to prohibit forming unwanted secondary structures which can dis-
turb the hybridization between probe and target (condition 4). They could be
abstracted as follows:

AP) =" hybridize(p;. t;), (4)
i#£]

fZ(P) = Z hybridizetarget(piati)a (5)

f3(P) = Zsecondary(pi). (6)

(3

where, hybridize(p;,t;) has non-zero value in proportion to the hybridiza-
tion likelihood between p; and t;. hybridizeiarget(pi,ti) is similar with
hybridize(p;,t;). It increases its value when p; and ¢; hybridize in the non-
designed positions which are not the chosen site for p; in ¢;. secondary(p;) has
non-zero value in accordance with the probability that p; can form the unwanted
secondary structures.

The relationship between three objectives are shown in Fig. 1. The graphs
were plotted using 42° 20-mer DNA sequences and their Watson-Crick comple-
mentary combinations. f; or fo has the some conflict relation with f3. Though,
in precise, the relation should be treated as random, these objectives could be
solved by MOEAs. And f; and f> has a linear relation as we expected.

From above, the probe design problem is formulated as an MOP with 3 min-
imization objectives and 1 equality constraints.

Minimize f;(P),i=1,2,3;
subject to g(P) =0. (7

3 Multi-Objective Evolutionary Probe Optimization

To design probe set that satisfies above condition, we used e-multi-objective
evolutionary algorithm (e-MOEA). There exist several methods to find such non-
dominated set of solutions for a MOP. Among them, evolutionary method is one
of the most popular and actively studied methods. It has the advantage that it
can provide a set of non-dominated solutions by one run due to a population-
based method [1]. And among various multi-objective evolutionary algorithms,
e-MOEA has shown the best performance [7,2, 3].
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Fig. 1. The relationship between objectives for probe design. The data are generated
using 20 mer DNA sequences and Watson-Crick complement.

3.1 e-Multi-Objective Evolutionary Algorithm

e-multi-objective evolutionary algorithm (e-MOEA) is a steady-state genetic al-
gorithm using elite archive and e-dominance relation [7, 3]. The most important
characteristic of e-MOEA is the e-dominance relation. In e-dominance relation,
x e-dominates y if the difference between x and y is greater than or equal to a
certain amount € in all objectives and is strictly better than y by € in at least
one objective. The mathematical definition is

X e—dominates Y <<= (1+¢)f(X)> f(Y). (8)

The e-dominance is introduced to maintain a representative subset of non-
dominated individuals. The e-non-dominated set is smaller than the usual non-
dominated set, for the non-dominated solutions which can be e-dominated by
others are removed in e-non-dominated set. Therefore, e-Pareto set is a subset
of the Pareto-optimal set which e-dominates all Pareto-optimal solutions. And
the minimum distance between nearest solutions can be guaranteed by dividing
whole search space into many grides. The density of the approximate set can be
adjusted by controlling the value of € [7]. Utilizing the e-dominance in selecting
representative subset of non-dominated set and maintaining them in the archive
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1. Randomly generate initial pool.
2. Sort by domination, and set first front as archive.
3. Generate one new individual by choosing the parents from population and archive.
(a) Choose two individuals from population.
(b) Choose dominating solution, if dominates; choose random one, otherwise.
(c) Choose one individuals from archive.
(d) Perform crossover and mutation.
4. Update archive.
(a) Replace e-dominated individual(s) in the archive with new individual, if new
individual e-dominates archive member(s).
(b) Leave dominating member, if there are more than one archive members in
the same grid.
(¢) Add new individual, if archive members do not dominate new individual.
5. Update population.
(a) Replace dominating individual(s) with new individual.
(b) Replace randomly selected population member with new individual, if there
is no population member which dominates the new individual.
6. Check termination.

Fig. 2. The psedocode of e MOEA

throughout generations, ee MOEA showed good convergence and diversity per-
formance [2, 3, 7].

The procedure of e-MOEA for probe optimization is explained in Fig. 2. We
slightly modified ee MOEA proposed by Deb [2]. At each generation, parents for
new offspring are chosen from the population and the archive respectively. The
parent from the population is chosen by tournament selection and the parent
from the archive is selected randomly. Then, an offspring is produced from these
parents and evaluated. The offspring replaces an individual of the population if
there exists one dominated by it in usual sense. If the offspring e-dominates one
or more members of the archive, it replaces the e-dominated members. Or, the
offspring is added to the archive if no archive member e-dominates it and it e-
dominates no archive member. Otherwise, the offspring is discarded. Therefore,
the e-non-dominated individuals are always the member of the archive. This
process is repeated until termination [7].

3.2 Thermodynamic Fitness Calculation

The previous microarray probe design tools can be classified into two groups
by their probe specificity evaluation methods: thermodynamic approach [10, 9]
and sequence similarity search approach [18, 4]. In thermodynamic approach, the
optimum probes are picked based on having free energy for the correct target, and
maximizing the difference in free energy to other mismatched target sequences.
A sequence similarity search methods used BLAST or BLAT [6] to check cross-
hybridization. Since thermodynamic approach is more accurate method between
them [10, 9], we calculate the fitness objectives in 2.2 using thermodynamic data.
The thermodynamic fitness functions are implemented by the modified Mfold
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eMOEA for Candidate Selection

J L

Many Possible Solutions

S L

BLAT Search / Hybridization Simulation / Others

Fig. 3. The steps for probe design

[19] for OligoArray problem [10]. We downloaded the stand-alone program source
code and slightly modified for fitness functions.

3.3 Probe Selection Procedure

The multi-objective evolutionary algorithm has the advantage that one can get
the Pareto optimal solutions at a time. However the users usually need one
promising solution, not the set of whole Pareto optimal solutions. Therefore, we
incorporated the decision makers to select the most promising solution among
Pareto solutions. First, the Pareto optimal solutions can be found by e-MOEA.
Then, BLAT search [6], hybridization simulation [13], and melting temperature
calculation choose one candidate solution. BLAT is a BLAST-like sequence align-
ment tool, but much faster than BLAST [6]. NACST/Sim [13] is a hybridization
simulation tool to check cross-hybridization based on nearest neighbor model of
DNA [11]. Melting temperature is also calculated by nearest neighbor model.

Through these steps, user could be recommended the most promising probe
set while maintaining the flexibility to select among various solutions. Using
the characteristics of MOEA, we can improve the reliability of the optimized
probe set by combining the diverse criteria such thermodynamic fitness calcula-
tion, sequence similarity search, and other user-define criteriaThis procedure is
summarized in Fig. 3.

4 Experimental Results

4.1 Human Papillomavirus

The proposed constrained multi-objective approach was used to find probe set of
human papillomavirus (HPV). HPV is known to be the cause of cervical cancer
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[17]. HPV types can be divided into two classes: ones that are very likely to cause
the cervical cancer and the others that are not. 19 genotypes of HPV belong to
the first class are selected as target genes. The goal is to discriminate each
of 19 genotypes among themselves. The selected 19 genes are HPV6, HPV11,
HPV16, HPV18, HPV31, HPV33, HPV34, HPV35, HPV39, HPV40, HPV42,
HPV44, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59, and HPV66. And
to improve the accuracy, L1 region of each gene sequences is chosen. Each gene
and L1 region are selected by Biomedlab Co., Korea with experts’ laborious
works.

4.2 Parameter Settings

Based on the experimental data from Biomedlab, the length of each probe was
set to 30 nucleotides long. For e-MOEA, we used the various parameters. The
size of population was set as 100 and the maximum generation number as 1,
1,000, 5,000, and 100,000. The crossover and mutation rates were set as 0.9 and
0.01 respectively. The € was set as 1 for better convergence. For BLAT, we use
default parameter settings. For NACST/Sim, we set hybridization temperature
as 40°C, where the concentration of sodium ion and oligomers were set to 1M
and 1uM respectively. The hybridization temperature was decided based on the
experimental data from Biomedlab.

4.3 Probe Design Results

Our method is based on evolutionary approach, not a simple generate-filter ap-
proach which is used by most previous probe design tools. To check the merits of
evolutionary approach, we compared the results by varying maximum generation
from 1 to 100,000. Evolutionary algorithm with generation 1 would be the same
as generate-filter method. The comparison results are shown in Table 1. As we
expected, design with more generation can find better probe set. In the aspect
of the number of average cross-hybridization which is checked by NACST /Sim,
probe set with more generation produces the less cross-hybridization. A cross-
hybridization means the undesirable hybridization between probes and genes.
Especially, the comparison result between generation 1 and 1,000 showed the
remarkable improvement. This means evolutionary approach can design more
reliable probe set compared to the simple method. In addition, more than 1,000
generation did not show the impressive improvement. This result implies one
does not need a quite large number of generation to find better probe set.

Table 1. The comparison result for various generation. As generation goes on, the
probes show the less cross-hybridizations.

Generation 1 1,000 5,000 100,000
Number of average cross-hybridization 41.33 13.45 13  10.64
Number of Pareto-optimal probe sets 12 11 4 38



192 S.-Y. Shin, I.-H. Lee, and B.-T. Zhang

Table 2. in silico hybridization results for Pareto set with generation 1000

Set Number of cross-hybridization
0 16
15
15
12
23
11
9
10
7
11
19

© 00 O Ui W=

—
o

Table 3. The comparison result between probes in commercial chip (Biomedlab),
selected probes using NSGA-II [8], and selected probes with e MOEA. First row means
the undesirable hybridization between probes and genes calculated by NACST /Sim.
Second raw represent the similar sequences appear in the wrong position. Therefore, 0
means the probe sequence appear only in its original position. The proposed method
(e-MOEA showed best performance for all aspects.

e-MOEA NSGA-II  Biomedlab. Probes
7+ cross-hybridization 7 21 17
BLAT search 0 0 (1 for whole) 0
Melting temperature (°C) 72.58 + 3.55 74.87 +2.34 77.52 £5.03

As shown in Table 1, there are various candidate probe sets (4 ~ 38) as re-
sults of e-MOEA. To choose best probe set among candidate probe sets, we used
BLAT with HPV gene sequences first. However, we could not find any cross-
hybridization using BLAT unfortunately. Since L1 region of HPV sequences is
very well discriminated parts of HPV sequences, there is no similar sequences.
Even when we compared L1 region sequences with whole HPV sequences using
BLAT, we can find only few similar sequences. Second, we use in silico hybridiza-
tion using NACST/Sim. The results are shown in Table 2. We used NACST/Sim
for Pareto set found by 1000 generation. As explained previously, 1000 genera-
tion showed the most significant result and other runs required too much run
times. As a result, we chose set no. 8 for final probe set, since that set showed
the smallest number of cross-hybridization.

To verify the reliability of final probe set, we compared the probe set by e-
MOEA with the probes in commercial chip made by Biomedlab and the probe set
by NSGA-II [8]. Table 3 showed the comparison results. e MOEA found the best
probe set. Probe set by NSGA-II has three times more cross-hybridizations and
Biomedlab probes has 2.5 times more cross-hybridizations. We ran BLAT for L1
region and whole HPV sequence respectively. BLAT found one similar sequences
for whole HPV sequences in NSGA-II probe set, and could not find any more
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Table 4. The final set of probes chosen by the proposed method for HPV

HPV Type Probe Sequence
HPV6  CATGTACTCTTTATAATCAGAATTGGTGTA
HPV11l TCTGAATTAGTGTATGTAGCAGATTTAGAC
HPV16 TCCTTAAAGTTAGTATTTTTATATGTAGTT
HPV18 ATGTCTGCTATACTGCTTAAATTTGGTAGC
HPV31 CTTAAATACTCTTTAAAATTACTACTTTTA
HPV33 CTGTCACTAGTTACTTGTGTGCATAAAGTC
HPV34 GTGCAGTTGTACTTGTGGATTGTGTACCTA
HPV35 TTTATATGTACTGTCACTAGAAGACACAGC
HPV39 AAGGTATGGAAGACTCTATAGAGGTAGATA
HPV40 CTTGAAATTACTGTTATTATATGGGGTTGG
HPV42 AAATTAGCAGCTGTATATGTATCACCAGAT
HPV44  TTGCTTATATTGTTCACTAGTATATGTAGA
HPV45 CATGTCTACTATACTGCTTAAACTTAGTAG
HPV51 AAAGTTACTTGGAGTAAATGTTGGGGAAAC
HPV52 TTTATATGTGCTTTCCTTTTTAACCTCAGC
HPV56 ATTAATTTTTCGTGCATCATATTTACTTAA
HPV58 TTTATATGTACCTTCCTTAGTTACTTCAGT
HPV59 TAGGTGTGTATACATTAGGAATAGAAGAAG
HPV66 GAAGGTATTGATTGATTTCACGGGCATCAT

similar sequences. Probe set by eeMOEA has also the lowest melting temperature
among three probe sets. Though NSGA-IT has the smallest melting temperature
variation, the difference is not so significant compared to e-MOEA. The reason
why NSGA-IT found the near uniform melting temperature probe set is NSGA-
IT used the melting temperature variation as one of objectives [8]. Even though
we did not use that objective, our approach can find the comparable results.
The probes practically used in Biomedlab showed the poorest results in melting
temperature, even though the melting temperature variation is important for the
microarray experiment protocols. The final probe set generated by the proposed
approach is shown in Table 4.

5 Conclusion

We formulated the probe design problem as a constrained multi-objective opti-
mization problem and presented a multi-objective evolutionary method for the
problem. Because our method is based on multi-objective evolutionary algo-
rithm, it has the advantage to provide multiple choices to users. And to make
it easy to choose among candidates, we suggested the criteria as an assistant
to the decision maker. It is shown that the proposed method could be useful to
design good probes by applying it to real-world problem and comparing them
to currently used probes.

Though the previous works focused on finding the moderate probe set in short
time, we focused on improving the quality of probe set. Therefore, our approach



194 S.-Y. Shin, I.-H. Lee, and B.-T. Zhang

need more computational time compared to the previous approaches. However,
we showed the small iterations can improve the probe set quality significantly. In
addition, MOEA can combine thermodynamic methods and sequence similarity
search. Since these results are the preliminary results, it is necessary to optimize
several time consuming stages.
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Abstract. Genome sequencing has achieved tremendous progress over
the last few years. However, along with the speedup of the process and an
ever increasing volume of data there are continuing concerns about the
quality of the assembled sequence. Many genomes have been sequenced
only to a draft, leaving the data in a series of more—or—less organized
scaffolds, and many feature a small, but not negligible number of mis-
assembled pieces. In this paper we present a new method for automated
flagging of potential trouble spots in large assembled supercontigs. It
can be incorporated into existing quality control pipelines and lead to a
considerable improvement in the sensitivity to certain types of errors.

1 Introduction

Despite the advances in the genome sequencing technology, quality of the as-
sembled products remains a major concern. A recent study done by the Genome
Sciences Centre in Vancouver, Canada, in collaboration with several sequencing
centers in the United States has identified an average of 4.19 to 4.57 assem-
bly problems per one million bases including an average of 0.3 to 0.4 wrong and
misassembled clones (Rene Warren, personal communication). While these num-
bers are reasonably low for such complex operation as the assembly of vertebrate
genomes, they are sufficiently high to warrant continued attention.

The first vertebrate genome assembled was that of human. This task was
preceded by the construction of detailed maps and the establishment of a large
number of markers along chromosomes [5]. Only after this task has been sub-
stantially completed the sequencing of many large insert clones (Yeast Artifi-
cial Chromosomes, YACs, at first, followed by more stable Bacterial Artificial
Chromosomes, BACs) could begin. At first, the Human Genome Project centers
intended to perform the sequencing in a structured way, following the maps and
progressively expanding the tiling path of large insert clones (further referred to
as LICs), finishing them to full accuracy (initially set to less than one error in
every ten thousand bases) in the process. While the groups outside the United
States continued pursuing this strategy, which resulted in the early completion
of chromosomes 21 [2] and 22[1], the emergence of the whole—genome shotgun
strategy [15] and subsequent challenge to the public effort by a private company,

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 196-207, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Celera Genomics, led to the change of course for the consortium members lo-
cated in the US. The human genome has been first released as draft sequence [6]
covering about 90% of its euchromatic part, mostly as a collection of unordered
and unoriented contigs featuring 147,821 gaps. The finished sequence followed
almost three years later [7].

While Celera constructed its scaffolds of the human genome using the whole—
genome shotgun approach and mixing clones of different lengths [14], the public
HGP was completed using LICs, mostly BACs from CalTech and RPC-11 li-
braries. Initially there were about 600,000 of these clones, of average length of
150Kb, and only a part of these were selected for further breaking into sequenc-
ing clones (M13 or plasmid, each of about 2Kb in length). The remainder has
been end sequenced, generating paired reads of about 500 to 1,000 bases long,
and used as an aid in the final assembly of chromosomes. BAC clones have been
created by partial digestion of DNA with restriction enzymes, EcoRI and HindIII
at CalTech, and EcoRI and Mbol for RPC-11. In order to generate the desired
range of LIC sizes the enzymes have been appropriately diluted.

After the HGP switch to the rapid generation of draft sequence the goals
of clone selection have changed from the orderly generation of tiling paths of
finished LICs to the identification of non-overlapping clones, in order to assure
the production of the maximal possible amount of new sequence (Ken Dewar,
personal communication). In consequence, after generating the draft the public
consortium was left with a daunting task of organizing thousands of contigs in
which more than 50% of the bases lied in assembled regions of less than 100Kb.
This process was prone to laboratory errors in clone handling, which we have
addressed in an earlier paper [13], and to the incorrect placement of LICs in
tiling paths. In this manuscript we address a new computational method whose
original development was done in order to address the latter issue.

The efforts of generating the complete human sequence could be broadly clas-
sified in two categories: finishing of individual LICs and their arrangement along
chromosomes. While the challenges concerning the former mostly lied in labora-
tory work, the latter primarily involved computation. The first arrangement have
been produced by W. James Kent at the University of California, Santa Cruz [9],
who used the information contained in the initial sequence contigs, linkage and
fingerprint maps, mRNA and Expressed Sequence Tags (EST) data, and BAC
end sequences. The Institute for Genomic Research (TIGR) in Rockville, Mary-
land, provided end sequences for about 500,000 BACs from the human libraries,
out of which about 300,000 were sequenced from both ends (generating around
600,000 paired reads) and the remaining 200,000 were unpaired. In addition,
about 750,000 fosmid clones (similar to BACs, but much shorter — about 40Kb
in size, on average) have been created and end-sequenced for the verification of
the assembly. These clones provided another 8 x coverage of the human genome,
bringing the total to almost 30—fold redundancy [7].

After the completion of the Human Genome Project, the sequencing com-
munity has been steadily moving towards the whole—genome shotgun assembly
method. The mouse [10] and rat [12] genomes have been assembled using a hy-
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Fig. 1. Coverage of genomic sequence by large insert clones. These actually sequenced,
represented by solid lines form a tiling path, while these only end-sequenced (repre-
sented by solid ends with reads pointing towards each other) are shown as dotted lines.
If the paired end-reads were placed on the path in the right orientation and at about
right distance, this was considered as additional coverage of the enclosed bases. The
thick line at the bottom represents the assembled chromosomal region.

brid approach, and the subsequent vertebrate genomes were assembled by new
mega—assemblers [8,11,4]. However, large insert clones still play a role in the
assembly of genomic scaffolds [3, 14], which use both BAC and fosmid end reads
in addition to shorter fragments.

2 Distribution of Large Insert Clones in the Genome

The finished human genome, and the other ones subsequently sequenced, have
been verified for correctness using several methods, however an early signal that
there might be a problem with an assembled scaffold comes from the depth of
its coverage. At the level of LIC assembly this would be the coverage by BACs
and similar clones, and the method used by the sequencing centers involved the
detection of areas where the coverage differed from the expected by more than
3.5 standard deviations (¢). While it is almost certain that coverage deviating
more than 3.5¢ (and thus less than 0.0005 likely to occur by chance) indicates an
error, this criterion may miss quite a few better hidden problems. More reason-
able boundary would be at 99% or even 95% significance (about two standard
deviations from the mean), however the number of clones flagged by such screen
would be very large, especially in the light of the properties of LIC coverage.

The development of the method described in this paper originated in the late
days of the HGP. The genome closure group at the Whitehead Institute Center
for Genome Research (further referred to as WICGR) was in charge of finishing
human chromosomes 8, 11p, 15, 17 and 18q. The selection of clones and the
subsequent verification of the correctness of the assembly were done through
hybridizations done at the laboratory bench, comparison of finished sequences
with maps and checking of the placement of BAC end reads. Since only a subset
of available human BACs have been actually sequenced, the consistent placement
of ends of unsequenced clones, at the right distance and orientation, provided
additional virtual coverage and helped ensure that the assembly was correct.
The placement of such clones is illustrated in Figure 1.

A large fraction of BAC end reads (paired and unpaired) provided by TIGR
have not been mapped on the draft assembly of the human genome, due to its
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Coverage

3125529

Fig. 2. Coverage of RefSeq supercontig NT 000765 with BAC clones. Positions within
the supercontig are plotted on the X-axis (0-3173457). Fold coverage over the sampled
positions is represented along the Y-axis.

greatly repetitive structure and the fact that TIGR has used the draft masked
for known repeats. Using unmasked sequence, the WICGR, group succeeded to
place about 25% more reads, and assure LIC coverage of almost 15x through-
out the part of the genome it was in charge of, not counting the additional 8x
from fosmid libraries (Nathaniel Strauss, WICGR closure group, personal com-
munication). The expectation was that every DNA base would be covered by a
relatively stable number of clones, roughly around the mean, and a missassembly
would be indicated by anomalies. However, it was somewhat surprising to see
that the actual coverage could show large variations, as illustrated in Figure 2.

The first suspect for this apparent paradox was an uneven distribution of
the restriction enzyme target sites in parts of the genome. While this is gener-
ally true, in particular for heterochromatic and other satellite regions, in most
chromosomal DNA these sites are distributed in agreement with Poisson ex-
pectation. However, although random, the particular placement layout in any
sequence dictates a certain coverage pattern, with well defined positions of un-
usually high or unusually low coverage, i.e. the number of LICs selected from
that region. This has been verified by simulating the clone library construction
in silico and selecting the number of clones to provide several hundred, and even
several thousand—fold virtual coverage of the target regions. Even at numbers
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Fig. 3. Coverage curves for a 3Mb genomic region. The top part of the figure plots the
curve achieved at virtual coverage up to 3000x (average ~ 2500 ). The bottom part
shows the coverage up to 2000x (average ~ 1600x). At such high coverages the peaks
and dips of the curve tend to stabilize at fixed locations, although minor variations can
still be detected.

as low as 100x, the limiting curve (to which we shall further refer by £) would
converge to a pattern characteristic for that region, with well defined peaks and
bottoms, as illustrated in Figure 3.

This observation led to an idea to compare the actual coverage of a genomic
region not with an a priori determined mean coverage, but with its own charac-
teristic limiting curve £. Given a long supercontig, our software would be trained
to learn £, then compare the actual coverage (whose curve will be referred to by
C, or Cy, for kx coverage) with it. If C would feature peaks and dips at the posi-
tions consistent with £ that would indicate a correct assembly almost regardless
of the number of mapped clones.

3 Coverage Simulation and Comparison Algorithm

Although L stabilizes at high values, the practical coverage redundancies are
usually low, and for what amounts to a small sample one can expect considerable
random variation. We have thus decided to apply our algorithm only to outliers
showing a difference from the mean greater than two standard deviations.

Our algorithm starts by reading the sequence of the assembled supercontig,
and a file describing the conditions under which the clone libraries covering this
region have been created. This file contains the percentages of the LICs created
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by each restriction enzyme, as well as the enzyme target site, percent dilution
(for partial digest) and the permissible clone size range. In addition, this file
can contain the information about the other clones used (fosmids or plasmids),
whether they are digested by restriction enzymes or randomly sheared, and what
percentage of each has been included in the libraries. In the training phase, the
software mimics the process done in the laboratory, constructs the clone libraries
covering the segment and outputs the file containing the virtual libraries.

The creation of the virtual libraries is the most time—consuming step of the
analysis. In order to faithfully reproduce the laboratory procedure, the soft-
ware must search the sequence for the target sites of the restriction enzymes
(GAATTC for EcoRI, AAGCTT for HindIII and GATC for Mbol, for instance).
It does not need to scan both strands, since these enzymes cut at palindromic
sequences, but it needs to make a random decision whether to cut or not every
time a site is found, in accordance with the specified dilution. Thus, for instance,
a 2.5% dilution of a six—cutter enzyme would dictate a cut with only 0.025 prob-
ability — since under the assumption of equal nucleotide representations in the
genome the likelihood of finding a target is 415, the probability of a cut at any
particular position would be about p ~ 6 x 1079, i.e. about every 164Kb. Since
the occurrence of the cuts is a Poisson process, one can find the probability of
the next cut within the permissible clone size range using the exponential dis-
tribution, giving P{a < X < b} = e P* — 7P’ If ¢ = 120,000 and b = 180,000
this would be P{120,000 < X < 180,000} ~ 0.15 . Virtual clones whose size
falls outside of this range must be discarded. On a Unix workstation this may
take several minutes per megabase, for higher coverages, so we have limited it to
500x or less in practical runs. Consequently, the scanning of the entire human
genome would take several days on a single workstation, and several hours on
a supercomputing system such as the UTA Distributed and Parallel Computing
Cluster.

After the virtual LIC library covering the sequence in the input has been
constructed, another module takes it over to map the ends of these clones to
the right positions. This step is not necessary when constructing £, but it is
essential for testing. The clone ends mapping introduces errors at rates specified
as parameters, including the percentage of clones for which only one end would
be sequenced (thus mimicking the discarding of poor quality reads during the
actual sequencing), and the percentage of clones where one or both ends cannot
be unambiguously mapped to the genome. By manipulating these parameters it
is possible to test the behavior of the software under various scenarios.

The most common error during the construction of large supercontigs, span-
ning millions of base pairs, is in the collapsing of regions of large segmental
duplications. If the sequences of two copies are very similar (so that the differ-
ences can be attributed to genetic variation between the individuals whose DNA
has been used for the libraries, or, in a very small number of cases, sequencing
errors), the assembly may lay two copies on the top of each other, causing the
omission of DNA between the duplicate loci. As shown in Figure 4, in terms of
the coverage of the region by clones, such situation may lead to either reduced or
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Fig. 4. Two possible interleaving sequence deletion scenarios: (a) Line represents chro-
mosomal DNA, with two narrow boxes indicating a large (> 200Kb) segmental dupli-
cation. LICs covering the area are shown on the top. Bottom line connects spots where
an incorrect link has been established. The area between the duplicates is presumed
to be longer than a single clone; (b) Collapsed segments with the area between them
deleted. Spanning clones from the left copy are shown at the top, and these from the
right copy at the bottom. Clone end sequences whose matching other end now fails
to map in the region are circled; (¢) On a line representing chromosomal DNA, two
narrow boxes indicate shorter (< 100Kb) duplicated segment. LICs covering the area
are shown on the top. Bottom line connects spots where an incorrect link has been
established. The area between the duplicated segments is presumed to be longer than
a single clone; (d) Collapsed segments with the area between them deleted. Spanning
clones from the left copy are shown at the top, and these from the right copy at the
bottom. Clone end sequences whose matching other end now fails to map in the region
are circled. Both deletions are characterized by anomalous coverage, with spikes in the
number of unpaired clone ends along the edges of the collapsed duplications.

increased coverage in conjunction with the increase in the number of errors, i.e.
clone ends mapping to the region at unlikely distance, or as unpaired matches.
In both cases it is unlikely that the limiting curve £ for the region would confirm
such spike, and indeed for suitable lengths of duplicated sequences (see the re-
sults below) we have not seen a case where a combination of standard deviation
measure and the comparison of £ and C has not identified the problem spot.
The core of our method is the comparison module. It uses the constructed £
and scans the region (supercontig) in sliding windows of pre-set size, which can
be adjusted in accordance with the conditions of the assembly. In our runs we
have used windows of size 100Kb, since we were looking primarily at the deletions
due to missassemblies at the LIC level. If the length d of the duplicated area
is less than one clone size L and k is the overall redundancy of coverage, then
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the coverage over the collapsed duplicates would be reduced to about de with
areas up to L in length on each side of the collapsed duplicates with error rates
increased above the background to approximately k(LL_d). If d > L then the
collapsed area would feature an increase in coverage of about min(2k, %) over
the midpoint of the collapsed segments with coverage gradually falling to & over
the min(L, ¢) bases on both flanks of the collapsed region in addition to the
error rate of ~ k for up to L bases around the flanks. In all cases, the signs of
trouble should be present over at least 100Kb. This number would be different
depending on the mixture of LIC sizes used in different sequencing projects.
The calculation of the mean expected coverage u, and the standard devia-
tion o, for £ and pe and o¢ for C are done at the supercontig level, but the
comparisons are done locally in each window. The number of sampling points
n within a window is automatically determined based on the actual coverage k
of the examined region, and set to 1.5 the expected number of clone starts and
ends. If, for instance, the coverage is 20x in clones of 150Kb, it is expected that
a region of 100Kb would feature about 27 points where the coverage changes (a
new clone starting or an old one ending), so we would chose 40 sampling points.
However, the coverage values for the limiting curve (expressed in hundreds, if
not thousands) and the actual data (10x — 30x) need to be put on a uniform
scale. If the clones layout were completely random, then the amount of coverage
over any point would be normally distributed, so we convert both the limiting
and actual values at sampling points z; (we denote them by L(z;) and Ci(x;))

i)— Cr(xi)—
to the standard normal curve as z£ = E(m;)£ He and zic’c = & oi ek We then
k

compare z~ and sz — if both are within two standard deviations from the 0
mean (indicating that a deviation was neither expected nor has happened) for
all i+ = 1,n we accept the coverage over the window as correct. However, if this
condition is not satisfied for any point z; additional constraints are examined:

1. It must be that | 25 — sz |< 3.5 Vie][l,n|, and

2. The Pearson correlation coefficient r calculated over all z* and z
rv/n—2
V1—r2
n — 2 degrees of freedom, at 95% significance.

Cr

;" must not

reject non—correlation of £ and Cy, using as a Student—t variable with

Only if both 1 and 2 above are satisfied the window is considered correct, oth-
erwise it is reported as a potential problem spot.

4 Algorithm Performance

Even after many adjustments of our software it was rejecting the assembly of the
RefSeq supercontig NT 000765, whose coverage is shown in Figure 2, as incor-
rect at two loci, around 1.2Mb and around 2.3Mb. Further examination of that
supercontig has indeed established a missassembly, and NT 000765 has been
subsequently withdrawn from the GenBank. However, although this software
has been used on several genomic regions, it has not been incorporated into the
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Table 1. The results of the analysis of 27 windows within a 3Mb genomic region under
various simulated coverages. Each simulation has been repeated 10 times with error
rates ranging between 0% and 10%. For each coverage the comparison has been made
with the limiting curve £ constructed from virtual coverage of 500x.

Coverage Total Windows Percentage Windows flagged False positive

windows outside +20 outside +20 problematic percentage
300x 270 14 5.19% 0 0%
100x 270 28 10.37% 2 0.74%
30x 270 48 17.78% 24 8.89%
20x 270 44 16.3% 30 11.11%
10x 270 52 19.26% 34 12.59%

genome closure pipeline (due to the departure from WICGR and HGP of both
the author and the closure group leader! who requested this work).

In order to gain a systematic perspective on the performance of our algorithm
we have done a series of simulations using several supercontigs of 2Mb to 5Mb,
downloaded from the RefSeq division of the GenBank. Actual coverages have
been simulated at various levels, and the BAC ends mapping error rate has
been varied between 0 and 35%. The results obtained at < 10% error rate on
a 3Mb long sequence are shown in Table 1. As it can be seen from the table,
the number of widows failing the two standard deviations test at coverage 300x
is about 5%, which corresponds well with the number of windows expected to
have coverage outside +£2¢ bound, by chance. Since at 300x the coverage curve
is mostly stable, it indicates that the number of outliers is not unusual, and
that it is consistent with the Poisson distribution of the recognition sites for
the restriction enzymes. However, the particular locations of these outliers are
characteristic of the genomic region in question, as demonstrated by excellent
correlation of C3pg curve with £. At Cigo and further down to more practical
coverages of Csg, Coo and Cip the number of violations becomes progressively
larger, up to almost 20%. This is partially because the chance outliers are more
dispersed at smaller sample sizes, and for a window to fail the +20 test it is
enough that one of its sample points fall outside these bounds, in either £ or C.
In these cases, the number of outliers is still higher than expected, perhaps due
to the difference in global versus local variance.

At low coverages the false positive ratio can be high (up to 12.59% of windows
for 10x at error rate < 10%, and higher in the presence of more errors, when it
starts behaving as a random sequence — Table 2), but it still cuts the number
of windows that need further checking to about half of these failing the +2¢
test. As mentioned above, the two standard deviations threshold is much better
than 3.5 used in the HGP, and our software has still successfully flagged every
missassembled region of the right size which we were aware of (and, in particular,
the errors deliberately introduced for testing).

! Dr. Ken Dewar, now at McGill University and Genome Quebec Innovation Centre
in Montreal, Canada.
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For LIC sizes of ~150Kb, when the segmental duplications are over less than
100Kb, the coverage at the collapsed area would concentrate around the mean
of gk or less and when the duplicated areas are longer than 200Kb it would peak
at around ék or more, up to 2k. In both cases our software was successful in
identifying the introduced problem spots, due to a low probability of correlating
outliers in both £ and C. This does not mean that our algorithm has zero prob-
ability of a false negative, only that in these cases its false negative ratio is low
and that it has not happened in our tests. However, when the duplicated area
is between 100Kb and 200Kb the expected coverage over the collapsed part is
about the same as normal, so the algorithm is more vulnerable to errors. In fact,
its incorrect assumption of correlation between £ and C is similar to when C is
constructed on a sequence different than that used to construct £. The results
of the comparisons of unrelated £ and C are shown in Table 2.

Table 2. The results of the analysis of 27 windows within two unrelated 3Mb genomic
regions under various simulated coverages. Each simulation has been repeated 10 times
with no introduced errors. For each coverage the comparison has been made with the
unrelated limiting curve £ constructed from virtual coverage of 500%.

Coverage Total Windows Percentage Windows flagged Problematic

windows outside +20 outside +20 problematic percentage
300x 270 97 35.93% 70 25.93%
100x 270 69 25.56% 50 18.52%
30x 270 90 33.33% 65 24.07%
20x 270 81 30.0% 60 22.22%
10x 270 80 29.63% 61 22.59%

From Table 2 it can be seen that many windows never get into testing for
the correlation with £. Since both £ and C are correctly constructed for their
respective regions, there is a large proportion of windows in which no points
violate the +2¢ rule. However, since £ and C are not related, their outliers
are uncorrelated, and thus a larger percentage of their windows (25.56-35.93
versus normal 5.19-19.26) has a £20 outlier in either £ or C. Because of the
random arrangement of these outliers the decrease in coverage for C has only
marginal effect on their number. While more than two thirds of the outliers have
been identified as problematic, there was still a chance of a sufficient correlation
between £ and C, leading to a considerable false negative rate.

In consequence, while this algorithm performs reasonably well for the mis-
sassemblies resulting from collapsing duplications less than 2?{4 and greater than
43L (although with a substantial false positive ratio), it is not appropriate for
detecting these of about 23L through 43L . These should be checked for by other
methods, but the task is now easier as the approximate size of the duplications
can be targeted.
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5 Discussion

No single sequence assembly quality check works best, and a sequencing facility
should apply multiple methods in order to assure the correctness of their data.
In particular, when the duplicated genome sequences are adjacent, the analy-
sis should rely on the sizes of clones and the orientation of their end reads in
addition to the techniques described in this paper. However, the algorithm we
have described provides a considerable improvement in sensitivity when com-
pared with the simple 3.50 test, and reduces the need for checking the outliers
of two standard deviations for about 50%. Most of the regions which are labeled
suspicious by our software can be relatively quickly checked for the presence
of flanking spikes in the error rates, thus reducing the need for more detailed
examination to only a handful of serious suspects.

A new tool, SEMBLANCE, is currently under development at the Washington
University Genome Sequencing Center (David Messina, personal communica-
tion). This software is designed for the comprehensive assessment of the quality
of whole—genome sequence assemblies, assessment of the impact of physical maps
on the assembly quality and the comparison of assemblies done at different levels
of coverage redundancy. So far, SEMBLANCE has been applied to the analysis
of whole-genome assemblies of the chimpanzee genome, at very low coverages,
comparing them with chimpanzee BAC clones not used in the assemblies. Since
the whole—genome strategies generally include a significant proportion of LICs
(BACs and fosmids) the algorithm we have described here would be useful as a
part of a quality control toolkit such as SEMBLANCE.

Shearing of the DNA, as opposed to the digestion by restriction enzymes, has
been the method of choice for the construction of small sequencing clones for
a long time, and recently the genomic library construction efforts have moved
towards the application of this technology to fosmids, as well. Once the assem-
blies start being done based exclusively on sheared clones, we expect that the
algorithm described here would lose much of its relevance — since the bound-
aries of sheared clones are not associated with any particular sequence motif and
are theoretically uniformly distributed throughout the genome, one can expect
that £ would be flat, and that no particular “signature” limiting curve could be
associated with a supercontig. However, many already assembled genomes still
need to be refined, and some even partially reassembled, and many LIC libraries
exist for the genomes which have not been fully sequenced yet. In consequence,
we expect that in the near future at least some parts of genome assembles will
be done using clones whose nature lends itself to the analysis by this algorithm
[3,16], and to the extent they are present our approach would prove to be a
valuable addition to any assembly quality assessment software toolkit.
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Abstract. Prediction of the coordination number (CN) of residues in
proteins based solely on protein sequence has recently received renewed
attention. At the same time, simplified protein models such as the HP
model have been used to understand protein folding and protein structure
prediction. These models represent the sequence of a protein using two
residue types: hydrophobic and polar, and restrict the residue locations
to those of a lattice. The aim of this paper is to compare CN prediction
at three levels of abstraction a) 3D Cubic lattice HP model proteins,
b) Real proteins represented by their HP sequence and ¢) Real proteins
using residue sequence alone. For the 3D HP lattice model proteins the
CN of each residue is simply the number of neighboring residues on the
lattice. For the real proteins, we use a recent real-valued definition of CN
proposed by Kinjo et al. To perform the predictions we use GAssist, a re-
cent evolutionary computation based machine learning method belonging
to the Learning Classifier System (LCS) family. Its performance was com-
pared against some alternative learning techniques. Predictions using the
HP sequence representation with only two residue types were only a little
worse than those using a full 20 letter amino acid alphabet (64% vs 68%
for two state prediction, 45% vs 50% for three state prediction and 30%
vs 33% for five state prediction). That HP sequence information alone
can result in predictions accuracies that are within 5% of those obtained
using full residue type information indicates that hydrophobicity is a key
determinant of CN and further justifies studies of simplified models.

1 Introduction

The prediction of the 3D structures of proteins is both a fundamental and dif-
ficult problem in computational biology. A popular approach to this problem is

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 208-220, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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to predict some specific attributes of a protein, such as the secondary structure,
the solvent accessibility or the coordination number. The coordination number
(CN) problem is defined as the prediction, for a given residue, of the number of
residues from the same protein that are in contact with it. Two residues are said
to be in contact when the distance between the two is below a certain threshold.
This problem is closely related to contact map (CM) prediction. It is generally
believed that functional sites in proteins are formed from a pocket of residues
termed an active site. Active site residues consist of a number of buried (high
CN) residues hence studies of CN are of relevance to understanding protein
function.

While protein structure prediction remains unsolved, researchers have re-
sorted to simplified protein models to try to gain understanding of both the pro-
cess of folding and the algorithms needed to predict it [1,2, 3,4, 5]. Approaches
have included fuzzy sets, cellular automata, L-systems and memetic algorithms
[6,7,8,9,10,11]. One common simplification is to focus only on the residues
(C-alpha or C-beta atoms) rather than all the atoms in the protein. A further
simplification is to reduce the number of residue types to less than twenty by
using residue sequence representations based, for instance, on physical proper-
ties such as hydrophobicity, as in the so called hydrophobic/polar (HP) models.
Another simplification is to reduce the number of spatial degrees of freedom
by restricting the atom or residue locations to those of a lattice [3,5]. Lattices
of various geometries have been explored, e.g., two-dimensional triangular and
square geometries or three-dimensional diamond and face centered cubic [9].

The aim of this paper is to compare CN prediction for simplified HP lattice
model proteins (Lattice-HP) with the prediction of the same feature for real pro-
teins using either all twenty amino acid types (Real-AA) or using only the HP
representation (Real-HP). This was done for several levels of class assignment
(two state, three state and five state) and for a range of machine learning algo-
rithms (LCS, C4.5 and NaiveBayes). The CN definition we use for real proteins
was proposed recently by Kinjo et al.[12]. This is a continuous valued function,
rather than the more frequently used discrete formulation [13].

The machine learning algorithm we focus on belongs to the family of Learning
Classifier Systems (LCS) [14, 15], which are rule-based machine learning systems
using evolutionary computation [16] as the search mechanism. Specifically, we
have used a recent system called GAssist, which generates accurate, compact and
highly interpretable solutions [17]. The performance of GAssist will be tested
against some alternative learning mechanisms, and the performance of all these
machine learning paradigms will be discussed.

2 Problem Definition

There is a large literature in CN/CM prediction, in which a variety of machine
learning paradigms have been used, such as linear regression [12], neural networks
[13], a combination of self-organizing maps and genetic programming [18] or
support vector machines [19]. Several kinds of input information have been used



210 M. Stout et al.

in CN prediction besides the residue type of the residues in the chain, such
as global information of the protein chain [12], data from multiple sequences
alignments [13,19,18,12] (mainly from PSI-BLAST [20]), predicted secondary
structure [13,19], predicted solvent accessibility [13] or sequence conservation
[19].

There are also two main definitions of the distance used to determine whether
there is contact between two residues. Some methods use the Euclidean distance
between the C, atoms of the two residues, while others use the Cg atom (C,
for glycine). Also, several methods discard the contacts between consecutive
residues in the chain, and define a minimum chain separation as well as useing
many different distance thresholds. Figure 1 shows a graphical representation of
a non-local contact between two residues of a protein chain.

Native
Contact state

e

Primary structure

Fig. 1. Graphical representation of a non-local residue contact in a protein

Finally, there are two approaches to classification. Some methods predict the
absolute CN, assigning a class to each possible value of CN. Other methods
group instances ! with close CN, for example, separating the instances with
CNs lower or higher than the average of the training set, or defining classes in a
way that guarantees uniform class distribution. We employ the latter approach
as explained in section 2.3

2.1 HP Models

In the HP model (and its variants) the 20 residue types are reduced to two
classes: non-polar or hydrophobic (H) and polar (P) or hydrophilic. An n residue
protein is represented by a sequence s € {H, P} with |s| = n. The sequence s
is mapped to a lattice, where each residue in s occupies a different lattice cell
and the mapping is required to be self-avoiding. The energy potential in the
HP model reflects the propensity of hydrophobic residues to form a hydrophobic
core.
In the HP model, optimal (i.e. native) structures minimize the following en-
ergy potential:
E(s)= Y (Aijey) (1)

i<j ; 1<t,5<n

! For the rest of the paper the machine learning definition of instance is used: individ-
ual independent example of the concept to be learned [21]. That is, a set of features
and the associated output (a class) that is to be predicted.
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where

A 1if 4,4 are in contact and |i — j| > 1
“J ] 0 otherwise

(2)

In the standard HP model, contacts that are HP and PP are assigned an
energy of 0 and an HH contact is assigned an energy of -1.

2.2 Definition of CIN

The distance used to determine contact by Kinjo et al. is defined using the Cjg
atom (C,, for glycine) of the residues. The boundary of the sphere defined by
the distance cutoff d. € ®* is made smooth by using a sigmoid function. Also,
a minimum chain separation of two residues is required. Formally, the CN (O?)
of the residue i of protein chain p is computed as:

1
or=% (3)
i 1+ exp(w(ry; —d.))
where r;; is the distance between the Cz atoms of the 7th and jth residues. The

constant w determines the sharpness of the boundary of the sphere. A value of
three for w was used for all the experiments.

2.3 Conversion of the Real-Valued CN Definition into a
Classification Domain

In order to convert the real-valued CN definition into a set of discrete states,
so that it can be used as a classification dataset, Kinjo et al. propose a method
to determine systematically some CN partitions resulting in an N class dataset.
They choose the boundaries between classes in such a way as to generate classes
with a uniform number of instances. They test two versions of this method.
Defining the class boundaries separately for each residue type or defining them
globally for all 20 residue types. In this study the later definition was adopted
for simplicity and because it is more widely used.

3 The GAssist Learning Classifier System

GAssist [17] is a Pittsburgh Genetic-Based Machine Learning system descendant
of GABIL [15]. The system applies a near-standard generational GA that evolves
individuals that represent complete problem solutions. An individual consists of
an ordered, variable-length rule set. A special fitness function based on the
Minimum Description Length (MDL) principle [22] is used. The MDL principle
is a metric applied in general to a theory (being a rule set here) which balances
the complexity and accuracy of the rule set. The details and rationale of this
fitness formula are explained in [17]. The system also uses a windowing scheme
called ILAS (incremental learning with alternating strata) [23] to reduce the



212 M. Stout et al.

run-time of the system, especially for dataset with hundreds of thousands of
instances as in this paper. We have used the GABIL [15] rule-based knowledge
representation for nominal attributes and the adaptive discretization intervals
(ADI) rule representation [17] for real-valued ones.

4 Experimental Framework

4.1 HP Lattice-Based Datasets

Two datasets were employed in this study, a 3D HP lattice model protein
dataset and a data set of real proteins. Table 1 summarizes both datasets,
which are available at http://www.cs.nott.ac.uk/~nxk/hppdb.html. For the
Lattice-HP study, a set of structures from Hart’s Tortilla Benchmark Col-
lection (http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-
benchmarks.html) was used. This consisted of 15 structures on the simple cubic
lattice (CN=6). Windows were generated for one, two and three residues at each
side of a central residue and the CN class of the central residue assigned as the
class of the instance. The instances was divided randomly into ten pairs of train-
ing and test sets These sets act in a similar way to a ten-fold cross-validation.
The process was repeated ten times to create ten pairs of training and test sets.
Each reported accuracy will be, therefore, the average of one hundred values.

Table 1. Details of the data sets used in these experiments

Name Lattice-HP K1050
Type 3D Cubic Lattice Real Proteins
Number of Sequences 15 1050
Minimum Sequence Length 27 80
Maximum Sequence Length 48 2329
Total Hydrophobic 316 170493
Total Polar 309 84850
Total Residues 625 255343

4.2 Real Proteins Dataset

We have used the same dataset and training/test partitions used by Kinjo et al.
[12]. The real protein dataset (Real-AA) was selected from PDB-REPRDB [24]
with the following conditions: less than 30% sequence identity, sequence length
greater than 50, no membrane proteins, no nonstandard residues, no chain breaks,
resolution better than 2 A and having a crystallographic R factor better than 20%.
Chains that had no entry in the HSSP [25] database were discarded. The final
data set contains 1050 protein chains. CN was computed using a distance cutoff
of 10 A. Windows were generated for one, two and three residues at each side of a
central residue and the CN class of the central residue assigned as the class of the
instance. The set was divided randomly into ten pairs of training and test set using
950 proteins for training and 100 for testing in each set. These sets act in a similar
way to a ten-fold cross-validation. The proteins included in each partition are re-
ported in http://macclOl.genes.nig.ac.jp/~akinjo/sippre/suppl/list/.
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We have placed a copy of the dataset used in this paper at http://www.asap.
cs.nott.ac.uk/~jqb/EvoBI0_dataset.tar.gz(approx.85MB). This same
dataset was used to generate a real protein HP sequence dataset (Real-HP) by
assigning each residue a value of Hydrophobic or Polar as shown in Table 2,
following Broome and Hecht [26].

Table 2. Assignment of residues as Hydrophobic or Polar

Residue (one letter code) Assignment
ACFGILMPSTVWY Hydrophobic
DEHKRQN Polar

4.3 Attribute Distributions

For the Lattice-HP dataset, Figure 2 shows the distribution of hydrophobic/polar
residues. Distributions are shown for a range of class assignments, two state,
three state and five state. A higher proportion of hydrophobic residues are ob-
served in the high CN classes, corresponding to a core of buried hydrophobic
residues. A higher proportion of polar residues are found in the low CN (ex-
posed) classes. This is not surprising, since these model protein structures have
been optimized on the basis of hydrophobicity to group the hydrophobic residues
together.

Two state Three state Five state
o _ o _ o _
- mh - =h - mh
op op op
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Fig.2. Distribution of hydrophobic/polar residues in the Lattice-HP dataset:
h=hydrophobic, p=polar

For the Real-HP dataset, Figure 3 shows the distribution of hydropho-
bic/polar residues two state, three state and five state class assignments. In
these distributions hydrophobic residues are significantly more prevalent in the
high CN classes, corresponding to a core of buried hydrophobic residues. The ap-
proximately equal distribution of hydrophobic and polar residues observed in the
low CN classes (corresponding to exposed/surface residues) may stem from the
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approximately two hydrophobic to one polar assignment ratio in Table 2. These
distributions provide a baseline against which the performance of the prediction
algorithms can be gauged.

Two state Three state Five state
o e
- mh - mh - mh
£

«© «© «©
2 S ¢ o g o7
=] =] =]
° B °
3 o | 3 o | 3 o |
o o o o o o
k) k) k)
s = s = s =
b= o € o € o
o o o
Q Q Q
[sI [sI [sI

o o o

c = c = c =

0 1 0 1 2 o 1 2 38 4
Class Assignment Class Assignment Class Assignment

Fig.3. Distribution of hydrophobic/polar residues in the Real-HP dataset:
h=hydrophobic, p=polar

5 Results

The performance of GAssist was compared to two other machine learning sys-
tems: C4.5 [27], a rule induction system and Naive Bayes [28], a Bayesian learn-
ing algorithm. The WEKA [21] implementation of these algorithms was used.
Student t-tests were applied to the mean prediction accuracies (rather than indi-
vidual experimental data points) to determine, for each dataset, those algorithms
that significantly outperformed other methods using a confidence interval of 95%
and Bonferroni correction [29] for multiple pair-wise comparisons was used.

5.1 Lattice-HP Datasets

Table 3 compares the results of two, three and five state CN predictions for
a range of window sizes for the GAssist LCS, Naive Bayes and C4.5 using the
Lattice-HP dataset. A window size of three means three residues either side of the
central residue, i.e. a seven residue peptide. As the number of states is increased
the accuracy decreases from around 80% to around 51% for all algorithms. For
each state as the window size is increased the accuracy increases by around
0.1-0.2%. With the exception of the C4.5 algorithm which shows a decrease in
accuracy with increasing window size in two and three state predictions. There
were no significant differences detected in these tests.

For two states, the best prediction was given by C4.5 with window size of
one (80%=+4.9). For three states the best prediction was given by GAssist with
window size of two (67%=4.1). For five states GAssist again gave the best pre-
dictions for a window size of three (52.7%4+5.3).
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Table 3. Lattice-HP Prediction Accuracies

Number of States Algorithm Window Slz,e

1 2 3
GAssist 79.8 £4.9 80.2 £5.0 80.0 £5.3
2 C4.5 80.2 +£4.9 79.9 £5.0 79.7 £5.1
NaiveBayes 79.8 £4.9 80.0 £4.9 80.2 £5.0
GAssist 67.4 +£4.9 67.8 £4.1 67.3 £5.0
3 C4.5 67.5 £4.8 67.6 4.2 66.6 5.0
NaiveBayes 67.2 4.6 67.3 +4.4 67.5 £4.8
GAssist 51.4 £4.6 51.3 £4.2 52.7 £5.3
5 C4.5 51.7 £4.5 51.0 £4.1 52.2 £5.1

NaiveBayes 51.7 4.6 52.3 £4.3 51.9 £5.6

5.2 Real Proteins

Table 4 compares the results of two, three and five state CN predictions on real
proteins for the GAssist LCS, Naive Bayes and C4.5 for the Real-HP dataset.
When an HP sequence representation was used, an increase in the number of
states is accompanied by a decrease in accuracy from around 63-64% to around
29-30% for all algorithms. For each state, as the window size is increased the
accuracy increases by around 1%. For two states, the best predictions were
given by GAssist and C4.5 with window size of three (64.4%=£0.5). For three
states the best prediction was given by C4.5 with window size of two (45%=0.4).
For five states C4.5 again gave the best predictions for a window size of three
(30.4%=+0.5).

Table 4. CN Prediction Accuracies for the Real-HP and Real-AA datasets. A e means
that GAssist outperformed the Algorithm to the left (5% t-test significance). A o label
means that the Algorithm on the left outperformed GAssist (5% t-test significance).

HP Based Residue Based
State Algorithm Window Size Window Size
1 2 3 1 2 3
GAssist  63.64+0.6 63.9+£0.6 64.4+0.5 67.5£0.4 67.9+0.4 68.2+0.4
2 C4.5 63.64+0.6 63.940.6 64.4+0.5 67.3£0.4 67.5£0.3 67.8£0.3

NaiveBayes 63.6£0.6 63.94+0.6 64.3+0.5 67.6+0.4 68.0+0.4 68.8+0.30
GAssist  44.9£0.5 45.14+0.5 45.6+0.4 48.8+0.4 49.0+0.4 49.3+0.4

3 C4.5 44.940.5 45.1£0.5 45.84+0.4 48.84+0.3 48.7+0.3 49.14+0.3
NaiveBayes 44.7£0.5 45.240.5 45.7+0.4 49.0+0.4 49.6+0.50 50.7£0.30
GAssist  29.0£0.3 29.6+0.5 30.1+£0.5 32.2+0.3 32.5+0.3 32.7+0.4

5 C4.5 29.040.3 29.7+0.4 30.4£0.5 31.9£0.4 31.440.4e 31.0£0.5e
NaiveBayes 29.0£0.3 29.740.4 30.1+0.5 33.0£0.20 33.9+0.30 34.7£0.40

Using full residue information, an increase in the number of states is accom-
panied by a decrease in accuracy from around 68% to around 34% for all algo-
rithms. For each state, as the window size is increased, the accuracy increases by
around 0.5%, with the exception of the C4.5 algorithm which shows a decrease
in accuracy with increasing window size in five state predictions. The LCS out-
performed C4.5 two times and was outperformed by Naive Bayes six times. For
two, three and five state predictions the best results were given by Naive Bayes
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with window size of three (68.8%+0.3, 50.7%=+0.3 and 34.7%=0.4 respectively).
Most interestingly, moving from HP sequence representation to full residue type
sequence information only results in a 4% increase for two and three state and
1-2% increase for, the more informative, five state prediction.

5.3 Brief Estimation of Information Loss

In order to understand the effect of using a lower-dimensionality profile of a
protein chain such as the HP model, we have computed some simple statistics
on the datasets. Two measures are computed:

#unique instances

(4)

redundancy = 1 —
Y #total instances

( #unique instances ) 1
#unique antecedents

#states — 1 (5)

inconsistency =

Equation 4 shows the effect of reducing the alphabet and the window size:
creating many copies of the same instances. Equation 5 shows how this reduction
creates inconsistent instances: instances with equal input attributes (antecedent)
but different class. For the sake of clarity this measure has been normalized for
the different number of target states. Table 5 shows these ratios. For two-states
and window size of one, the Real-HP dataset shows the most extreme case: any
possible antecedent appears in the data set associated to both classes. Fortu-
nately, the proportions of the two classes for each antecedent are different, and
the system can still learn. We see how the Real-HP dataset is highly redun-
dant and how the Real-AA dataset of window size two and three presents low
redundancy and inconsistency rate.

Table 5. Redundancy and inconsistency rate of the tested real-proteins datasets

HP representation AA representation
States Window Size Redundancy Inconsistency Redundancy Inconsistency

1 99.99% 100.000% 93.69% 90.02%

2 2 99.94% 92.50% 6.14% 3.85%
3 99.75% 81.71% 0.21% 0.05%

1 99.98% 96.88% 90.90% 87.01%

3 2 99.92% 86.25% 4.50% 2.84%
3 99.66% 76.00% 0.17% 0.04%

1 99.97% 93.75% 85.84% 81.52%

5 2 99.86% 86.25% 2.97% 1.84%
3 99.46% 74.36% 0.14% 0.03%

6 Discussion

The LCS and other machine learning algorithms preformed at similar levels for
these CN prediction tasks. Generally, increasing the number of classes (number
of states) leads to a reduction in prediction accuracy which can be partly offset
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by using a larger window size. Reduction of input information from full residue
type to HP sequence reduces the accuracy of prediction. The algorithms were,
however, all capable of predictions using HP sequence that were within 5% of
the accuracies obtained using full residue type sequences.

For all of the algorithms studied, in the case of the most informative five
state predictions, moving from HP lattice to real protein HP sequences leads to
a reduction of CN prediction accuracy from levels of around 50% to levels of
around 30%. The significant reduction in the spatial degrees of freedom in the
Lattice-HP models leads to an improvement in prediction accuracy of around
20%.

In contrast, moving from the real protein HP sequences to real protein full
residue type sequences (for the same five state CN predictions) only a 3-5%
improvement in prediction accuracy results from inclusion of this additional
residue type information. This seems to indicate that hydrophobicity information
is a key determinant of CN and that algorithmic studies of HP models are
relevant. The rules that result from a reduced two letter alphabet are simpler and
easier to understand than those from the full residue type studies. For example,
for the HP representation a rule set giving 62.9% accuracy is shown below (an
X symbol is used to represent positions at the end of the chains, that is beyond
the central residue being studied).

1. If AA_ ¢ {«} and AA € {h} and AA; € {p} then class is 1
2. If AA_, € {h} and AA € {h} and AA; ¢ {z} then classis 1
3. If AA_; € {p} and AA € {h} and AA, € {h} then class is 1
4. Default class is 0

In these rules, a class assignment of high is represented by 1 and low by 0.
For the full residue type representation a rule set giving 67.7% accuracy is:

1. If AA_, ¢ {D,E,K,N,P,Q,R,S, X} and AA ¢ {D,E,K,N,P,Q,R,S,T}
and AA; ¢ {D,E,K,Q, X} then class is 1

2. If AA, ¢ {X} and AA € {AC,F,I,L,M,V,W,Y} and AA; ¢
{D,E,H,Q,S, X} then class is 1

3. If AA, ¢ {P, X, Y} and AA € {A/C,F,I,L,M, VW, Y} and AA; ¢
{K,M, T,W, X, Y} then class is 1

4. If AA_, ¢ {H,I,K,M, X} and AA € {C,F,I,L,M,V,W,Y} and AA; ¢
{M, X} then class is 1

5. Default class is 0

Recently, Kinjo et al [12] reported two, three and ten state CN prediction
at accuracies of 72.1%, 53.7%, and 18.8% respectively, which is higher than our
results. However, they use a non-standard accuracy measure that usually gives
slightly higher results than the one used in this paper. Also, they use more input
information than was used in the experiments reported in this paper.

The aim of this paper was to compare the performance difference between the
Real-AA and Real-HP representations, not to obtain the best CN results. We
have undertaken more detailed studies on both the HP model dataset for CN
and Residue Burial prediction and the real protein datasets for CN prediction
in comparison to the Kinjo work (papers submitted).
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7 Conclusions and Further Work

This paper has shown that it is possible to predict residue CN for HP Lattice
model proteins at a level of around 52% for five state prediction using a window
of three residues either side of the prediced residue. For real proteins, five state
CN prediction using a window size of three can be performed at a level of 30%
using HP residue profiles. This can be increased to 32% using full sequence
information. This is perhaps understandable since reducing the sequence to an
HP sequence discards useful information. However, the representation with only
two residue types is only a little worse than that with a full twenty letter alphabet
(64% vs 68% for two state prediction, 45% vs 50% for three state prediction and
30% vs 33% for five state prediction). Thus, most of the information is contained
in the HP representation, indicating that hydrophobicity is a key determinant
of CN. This is consistent with earlier studies [30].

Initial estimates of information inconsistency (ambiguous antecedent to con-
sequent assignments) in the reduced two letter alphabet dataset indicate that
considerable inconsistency is present even for five state assignments using larger
window sizes. The algorithms presumably learn from the various distributions
of these inconsistencies during their learning stage. Li et al. [31] have investi-
gated whether there is a minimal residue type alphabet by which proteins can
be folded. They conclude that a ten letter alphabet may be sufficient to charac-
terize the complexity of proteins. We are performing studies to investigate such
reduced letter alphabets and to quantify the information loss in each. In future,
we will extend these studies to prediction of other structural attributes, such
as secondary structure and relative solvent accessibility. These studies will help
determine the relative utility of CN for designing prediction heuristics for HP
models and Real proteins.
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Abstract. Eukaryotic genomes are packaged by the wrapping of DNA
around histone octamers to form nucleosomes. Nucleosome occupan-
cies together with their acetylation and methylation are important
modification factors on all nuclear processes involving DNA. There
have been recently many studies of mapping these modifications in
DNA sequences and of relationship between them and various genetic
activities, such as transcription, DNA repair, and DNA remodeling.
However, most of these studies are experimental approaches. In this
paper, we introduce a computational approach to both predicting and
analyzing nucleosome occupancy, acetylation, and methylation areas
in DNA sequences. Our method employs conditional random fields
(CRFs) to discriminate between DNA areas with high and low relative
occupancy, acetylation, or methylation; and rank features of DNA
sequences based on their weight in the CRFs model trained from the
datasets of these DNA modifications. The results from our method on
the yeast genome reveal genetic area preferences of nucleosome occu-
pancy, acetylation, and methylation are consistent with previous studies.

Keywords: Histone proteins, acetylation, methylation, conditional
random fields.

1 Introduction

Eukaryotic genomes are packaged into nucleosomes that consist of 145-147 base
pairs of DNA wrapped around a histone octamer [9]. The histone components of
nucleosomes and their modification state (of which acetylation and methylation
are the most important ones) can profoundly influence many genetic activities,
including transcription [2,4, 5, 16], DNA repair, and DNA remodeling [13].
There have been recently many studies of mapping histone occupancies to-
gether with their modifications in DNA sequences and of relationship between
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them and various genetic activities concerning DNAs [1,2,5,7,16,18,19]. But
most of these studies were experimentally conducted by the combination of chro-
matin immunoprecipitation and whole-genome DNA microarrays, or ChIP-Chip
protocol.

The nucleosome occupancy as well as its modifications such as acetylation
and methylation mainly depend on the DNA sequence area they incorporate
in. The majority of acetylation and methylation occurs at specific highly con-
served residues in the histone components of nucleosomes: acetylation sites in-
clude at least nine lysines in histone H3 and H4 (H3K9, H3K14, H3K18, H3K23,
H3K27, H4K5, H4K8, H4K12, and H4K16); methylation sites include H3K4,
H3K9, H3K27, H3K36, H3K79, H3R17, H4K20, H4K59, H4R3 [14]. When a nu-
cleosome appears in a specific DNA sequence area, these potentially sites can
have a certain acetylation or methylation level [5, 16].

Recently we have introduced a support vector machine (SVM)-based method
to qualitatively predict histone occupancy, acetylation and methylation areas in
DNA sequences [15]. In this paper, we present a different computational method
for this prediction problem. We employ conditional random fields (CRF) [6], a
novel machine learning technique, to discriminate between DNA areas with high
and low relative occupancy, acetylation, or methylation. Our experiments showed
that CRF-based method has competitive performance with SVM method. More-
over, similar to SVMs, our CRF method can extract informative k-gram features
based on their weight in the CRF's model trained from the datasets of these DNA
modifications. The results from our CRF-method on the yeast genome are con-
sistent with those from the SVM method and reveal genetic area preferences
of nucleosome occupancy, acetylation, and methylation that are consistent with
previous studies.

2 Materials and Methods

2.1 Datasets

From the genome-wide map of nucleosome acetylation and methylation reported
in [16], we extracted 14 datasets and used to illustrate the performance of our
method. These datasets are described in detail in Table 1. Each example in the
datasets corresponds to a DNA sequence area (segment) with a fixed length L
(in our experiments, we selected L = 200,500, 1000, 1500). A DNA sequence
area is assigned to the positive class if the relative occupancy, acetylation, or
methylation [16] measured at its middle position is greater than 1.2, and to the
negative class if the relative occupancy, acetylation, or methylation is lesser than
0.8. Sequences with value in between 0.8 and 1.2 are ignored.

2.2 Conditional Random Fields

The sequential classification problem is well known in several scientific fields,
especially computational linguistics, and computational biology [6]. There are
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Table 1. Datasets of histone occupancy, acetylation, and methylation by ChIP-Chip
protocol in vivo [16]

Dataset F#positives #negatives Description

H3.YPD 7667 7298 H3 occupancy

H4.YPD 6480 8121 H4 occupancy

H3.H202 17971 15516  H3.H202 occupancy
H3K9acvsH3.YPD 15415 12367  H3K9 acetylation relative to H3
H3K14acvsH3.YPD 18771 14277  H3K14 acetylation relative to H3
H3K14acvsWCE.YPD 17672 16290 H3K14 acetylation relative to WCE
H3K14acvsH3.H202 18410 15685  H3K14 acetylation relative to H3.H202
H4acvsH3.YPD 18410 15685  H4 acetylation relative to H3
H4acvsH3.H202 18143 12540  H4 acetylation relative to H3.H202
H3K4melvsH3.YPD 17266 14411  H3K4 monomethylation relative to H3
H3K4me2vsH3.YPD 18143 12540 H3K4 dimethylation relative to H3
H3K4me3vsH3.YPD 19604 17195  H3K4 trimethylation relative to H3
H3K36me3vsH3.YPD 18892 15988  H3K36 trimethylation relative to H3

H3K79me3vsH3.YPD 15337 13500  H3K79 trimethylation relative to H3

two kinds of model for solving this problem, generative models and conditional
models. While generative models define a joint probability distribution of the
observation and labelling sequences p(X,Y’), the conditional models specify the
probability of a label given an observation sequence p(Y|X). The main draw-
back in generative models is that, in order to define a joint probability distri-
bution, they must enumerate all possible observation sequences, which may be
not feasible in practice [6,12,21]. Our work employs conditional models, spe-
cially conditional random fields, which can overcome the drawbacks of generative
models.

CRF [6] is a probabilistic framework for segmenting and labelling sequential
data using conditional model [6]. It has the form of a undirected graph that
defines a log-linear distribution over label sequences given a particular obser-
vation sequence. CRFs have several advantages over other models (e.g., HMMs
and MEMMSs) such as relaxing strong independence Markov assumptions and
avoiding weakness called the label bias problem [6, 11,12, 21].

Definition. CRF's can be represented by an undirected graphical model. Ac-
cording to [6], we define G = (V, E) to be an undirected graph, with v € V
corresponds to each of the random variables representing a label sequence Y,
from Y, and e € E corresponds to the definition of conditional independence for
undirected graphical models. In other words, two vertices v; and v; are condi-
tionally independent given all other random variables in the graph.

In theory, CRFs can be represented by arbitrarily structure graph, although
in this work, we focus on linear-chain structure graph. Let X = (x1, z2, ..., x7) be
an observed data sequence; S be a set of finite state machines, each is associated
with a label | € L; and Y = (y1,y2,...,yr) be the state sequence. The linear-
chain CRF's [20,12] then define the conditional probability of a state sequence
given an input sequence as follows
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p9(Y|X) = Z(l)() exp(ZzTZI Zk )‘kfk(yi—h yZ7X77/>)

where Z(X) =3 ¢ e:vp(ziTzl >k Mk (Yi—1, i, X, 1)) is a normalization factor
over all state sequences, and fx(y;—1,yi, X, 1) are feature functions, each of them
is either a state feature function or a transition function [20,12,21]. A state
feature captures a particular property of the observation sequence X at current
state y;. A transition feature represents sequential dependencies by combining
the label I’ of the previous state y;_1 and the label I of the current state ;.
As [6], we assume that the feature functions is fixed, and denote A = {\;} as a
weight vector which to be learned through training.

Inference in CRF's. Inference in CRFs is to find a state sequence y* which is
the most likely given the observation sequence x

y* = argmax,p(ylv) = argmax, {exp(S1y S Mefi(yi-1,0,7:1)) )

Similarly to HMMs, CRFs use a dynamic programming method for finding
y* [6,21,12]. In fact, we choose the most well-known method being the Vieterbi
algorithm [17]. Viterbi stores the probability of the most likely path up to time
t which accounts for the first ¢ observations and ends in state y;. We define this
probability to be ax(y;) (0 <t < T —1). We set ap(y;) to be the probability of
starting in state y;. The recursion is given by

a1 = mazy,; {a(y;)exp (32, M fu(Ys, vi, 2, 1))}

At the end time (i.e., t =T — 1), we can backtrack through the stored infor-
mation to find the most likely sequence y*.

Training CRFs. Let D = {(2*,¢")}
trained by finding the weight vector
likelihood

be the training data set. CRFs are

N
k=1
0 = {\,\2,...} to maximize the log-

. . 2
L= Z;\’zl log (pe(yD]z)) =3, 2,

where the second sum is a Gaussian prior over parameters (with variance o?)
that provides smoothing to help coping with sparsity in the training data [3].

Since the likelihood function in exponential models of CRFs is convex, the
above optimization problem always has the global optimum solution, which can
be found by an iterated estimation procedure. The traditional method for train-
ing in CRF's is iterative scaling algorithms [6,21]. Sine those methods are very
slow for classification [20], therefore we use quasi-Newton methods, such as L-
BFGS [8], which are significantly more efficient [10, 20].

L-BFGS is a limited-memory quasi-Newton procedure for unconstrained op-
timization that requires the value and gradient vector of a function to be opti-
mized. Assuming that the training labels on instance j make its state path unam-
biguous, let y9) denote that path, then the first-derivative of the log-likelihood is
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L= (Zj,v:l Ck(yu),x@) - (Zle Zypa(ymj))ck(y’x(j))) —

where C(y,z), the count of feature f; given y and =z, equal to
23:1 fe(yiz1,yi, 2, i), ie., the sum of fr(y;—1,v:,2,4) values for all posi-
tions 7 in the training sequence. The first two terms correspond to the difference
between the empirical and the model expected values of feature f;. The last
term is the first-derivative of the Gaussian prior.

2.3 Features of a DNA Sequence Area

The most important issue in CRFs learning is to select a set of features that
hopefully capture the relevant relationships among observations and label se-
quences. CRF's have two kinds of features, state features and transition features.
However, in this work we focus only on state features. Also, each observation
sequence in the datasets has only one observation (L-DNA sequence area) and
the label sequence is a sequence of 0 (negative class) and 1 (positive class).
Our feature set to input to CRF systems is built by two steps. First, we use
a k-sliding window along a DNA sequence to get binary k-grams (patterns of
k consecutive nucleotide symbols). Each DNA sequence is thus represented by
a binary 4*-dimensional vector of all possible k-grams. Second, we define the
unigram function for each k-gram as follows:

1 if the t** k-gram appear in the sequence z
u(z) =
0 otherwise

Therefore, the relationship between the observation and two classes, positive
and negative, is described in the following features:

ut(x) if y belong to positive class

ftP(y7x> =
0 otherwise

ut(x) if y belong to negative class

ftN (yv Z‘) =
0 otherwise

3 Results and Discussion

3.1 Prediction of Histone Occupancy, Acetylation, and Methylation

We used CRFs with the limited-memory quasi-Newton method (Section 2.2) to
perform threefold cross-validation on 14 datasets of histone occupancy, acety-
lation and methylation areas (Table 1). Three criteria of precision, recall and
Fl-measure are used to report the results:
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o _ TP o _ TN
Precisionpositive = 1py pp; Precisionnegative = pyipn

TP . _ TN
Reca”positive = TP+FN> Recallneyative —~ TN+FP

Precision — Precisionpositive +Precisionpegative
- 2
_ Recallpositivet+Recallpegative
Recall = 5
2#(Precision*Recall)
Precision+ Recall

F1 —measure =
where TP,TN,FP,FN are the number of true positive, true negative, false
positive and false negative examples, respectively.

Through various experiments we found that our method gave the best results
when predicting nucleosome occupancy, acetylation, and methylation for DNA
sequence areas of length L = 500 (data not shown). Due to the computational
complexity, we have only tried with k£ < 6 and report here the results from sets
of k-grams with k=5, k=6, k=4,5, and k=>5,6.(Table 2).

The highest performance of our CRF method (at 18" L-BFGS it-
eration) for relative histone occupancy predictions (H3, H4, H3.H202),
and acetylation predictions (H3K9acvsH3, H3Kl4acvsH3, H3K14acvsWCE,
H3K14acvsH3.H202, H4acvsH3, H4acvsH3.H202), as well as methylation
predictions (H3K4melvsH3, H3K4me2vsH3, H3K4me3vsH3, H3K36me3vsH3,
H3K79me3vsH3.YPD) achieved when we use features of both 5-grams and 6-
grams (Table 2). The numbers in the brackets are the performance of the sup-
port vector machine (SVM)-based method (which was used in [15] to address the
same problem) when using the same binary k-gram features. As it can be seen,
CRF method is competitive with SVM-based method. In some cases, CRF's gave
better performance, but in others performance was worse. SVM method can take
into account the number of k-gram occurrences that represents DNA sequence
better than binary k-gram features, hence SVM method can achive better per-
formance [15]. However, CRFs have some advantages over SVMs such as they
can easily incorporate knowledge into their prediction, and in the future we will
take account annotated information concerning DNA sequence into our CRF
method to improve the prediction results.

3.2 Genetic Area Preferences of Histone Occupancy, Acetylation,
and Methylation

During the training CRF's model, we reported the weight of features (i.e. weight
vector, see Section 2.2). In a CRF model, features with the larger weight would
be more relevant than those with lower weight. We ranked the features based on
their weight supporting for either positive or negative classes in CRF models,
which were trained on 14 datasets. Table 3 and Table 4 show the most informative
features from a set of 4-grams and 5-grams at 18" L-BFGS iteration (which did
though give the best performance (Table 2), but to make later interpretation
easily) for histone occupancy, acetylation, and methylation.

Informative features ranked by our CRF-based method agree with those from
the previous SVM-based method [15]. They can be useful to analyze the genetic
area preferences of histone occupancy, acetylation, and methylation. For exam-
ple, CG (CpG) is a dinuceotide that appears very often in the most informative
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Table 3. Most informative features selected from CRFs model for positive class with
k-grams=4 and k-grams=5

Dataset Feature Weight Feature Weight Feature Weight Feature Weight
H3.YPD CTTCA 0.16 CTTTA 0.15 TGCAG 0.14 ACAGC 0.14
CGGC 0.13 TGAAG 0.13 GTTTG 0.13 GCGA 0.13
GTGAT 0.13 TCATC 0.13 TGGC 0.13 CAGC 0.13
H4.YPD TAAT 0.26 CTTCA 0.23 CAAAT 0.22 GCCAC 0.20
GGATC 0.20 CTGGT 0.19 TTGGG 0.19 ATTTG 0.18
ATCAG 0.18 GCAG 0.18 TATA 0.18 TTTA 0.17
H3.H202 CCGC 0.21 GCGC 0.21 CGGC 0.20 CGGG 0.19
GCCG 0.18 CGCG 0.18 GGCC 0.18 CATGG 0.17
CCGG 0.16 CCCT 0.15 CGCC 0.15 CCACC 0.15
H3K9acvsH3.YPD CATGC 0.11 CAGGG 0.10 GTTCG 0.10 GCGAG 0.10
CTTAG 0.09 TCTCG 0.09 TACC 0.09 GATAC 0.09
CCCCG 0.09 AGGCG 0.09 GCCGG 0.09 CACCG 0.09
H3K1l4acvsH3.YPD GCGTG 0.12 TTTTT 0.10 TAGTC 0.09 CTCGC 0.09
CTCAT 0.09 CACC 0.08 TCTCT 0.08 ATATA 0.08
CTTTT 0.08 AAAAA 0.08 AGCGG 0.08 TTTTC 0.08
H3K14acvsWCE.YPD ACGGT 0.10 TCTCT 0.10 AGCCT 0.09 CTCAT 0.09
CGGA 0.09 CGGC 0.09 CACC 0.09 TCCG 0.09
AGTCG 0.08 TTGCT 0.08 ATGCG 0.08 GGAGT 0.08
H3K1l4acvsH3.H202 AGGGG 0.12 CCCCT 0.1 TAGTC 0.10 CACC 0.10
CGAGG 0.09 CACAC 0.09 CGTAC 0.09 CCCGG 0.08
ATGCG 0.08 TTAGT 0.08 TCTCT 0.08 CGTGC 0.08
H4acvsH3.YPD CTCAT 0.12 AGCAA 0.10 CACAC 0.10 CACC 0.09
GAAAA 0.09 GATAC 0.08 CATGC 0.08 TACCC 0.08
TAGTC 0.08 TTAT 0.08 TCTCT 0.07 CAAGT 0.07
H4acvsH3.H202 AGGGG 0.18 GGGGG 0.14 AAAAG 0.13 CCCCT 0.12
GTGGC 0.1 AAGGG 0.10 CTCCC 0.09 CTTGT 0.09
ACACG 0.09 GATAC 0.09 GGGAG 0.09 CCTCG 0.08
H3K4melvsH3.YPD GGCA 0.08 TATC 0.08 CCAG 0.08 CTTGA 0.08
TTAA 0.08 TGCGG 0.08 TGCAT 0.07r CCTCA 0.07
TCCAA 0.07 AACCC 0.07 AGTT 0.07 GGTTG 0.07
H3K4me2vsH3.YPD CTCAT 0.06 ATGAG 0.06 GGGAA 0.06 CTTGT 0.06
AGACA 0.06 GATCT 0.05 CACTT 0.06 ACCAC 0.05
AGTCC 0.05 GCTTA 0.05 AAAGA 0.05 GTCCA 0.05
H3K4me3vsH3.YPD CACC 0.10 ACCCG 0.09 AGCCA 0.09 CAAGT 0.08
GTCCA 0.08 GTCAA 0.08 TCTCT 0.08 GAAAA 0.07
GCGTG 0.07 CTCAT 0.07 TAGTC 0.07 TCACT 0.07
H3K36me3vsH3.YPD AAAA 0.14 TACT 0.12 ATAT 0.10 TTTT 0.10
GTGA 0.10 CCTCC 0.09 TAAT 0.09 CGTCC 0.09
CATCA 0.09 AGTT 0.09 AACA 0.09 GGACG 0.09
H3K79me3vsH3.YPD TATA 0.22 TAAT 0.22 TAAA 0.16 ATAT 0.16
TATT 0.14 ATTA 0.14 CATCA 0.14 TTAGA 0.14
TGCA 0.13 TACT 0.13 TTTA 0.13 GATTT 0.11

negative features (Table 4). In other words, CG-rich DNA sequence areas are
often free of histone occupancy, acetylation, or methylation. We all knew that
CpG islands are usually near to gene starts. So we can infer from our results
that promoter regions are often not occupied by nucleosomes. This is consistent
with previous results by experimental approaches in vivo [16].

4 Conclusion

We have introduced a conditional model based method to predict qualitative
histone occupancy, acetylation, and methylation areas in DNA sequences. We
have selected a basic set of features based on DNA-sequence. Moreover, our
model can evaluate the informative features to discriminate between DNA areas
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Table 4. Most informative features selected from CRFs model for negative class with
k-grams=4 and k-grams=5

Dataset
H3.YPD

H4.YPD

H3.H202

H3K9acvsH3.YPD

H3K14acvsH3.YPD

H3K14acvsWCE.YPD

H3K14acvsH3.H202

H4acvsH3.YPD

H4acvsH3.H202

H3K4melvsH3.YPD

H3K4me2vsH3.YPD

H3K4me3vsH3.YPD

H3K36me3vsH3.YPD

H3K79me3vsH3.YPD

Feature Weight Feature Weight Feature Weight Feature Weight

CGCGC
CGCGG
GCGGG
AAAAA
CGGAC
CGCGC
CGCGC
CCGCG
ccccece
GCCGC
ATTTG
TCTT
GCCGC
ATTTG
CCAAA
CGCGG
CTTA
AACA
AAATT
CTTA
AAGC
GCCGC
CAAG
TTTGA
TATTA
TTTTG
AAGC
GAAG
CAATT
ACCCG
ATATT
TAATA
CTAAA
GCCGC
ACCCC
GCGCG
GAAG
TAGGA
CTCAT
TATAT
TTGT
ACGTA

0.15
0.09
0.08
0.38
0.26
0.23
0.35
0.22
0.16
0.13
0.09
0.09
0.11
0.08
0.07
0.14
0.11
0.10
0.12
0.08
0.08
0.15
0.09
0.08
0.10
0.09
0.08
0.10
0.08
0.07
0.09
0.06
0.05
0.14
0.09
0.08
0.18
0.10
0.09
0.22
0.16
0.13

TTTTT
CCGCG
TTATA
TTTTT
TTATA
CCCGG
GCGCG
TTTTT
GGGCG
GCAC
AAAG
ATATT
CCAAT
ATTCA
TCTAA
GCCGC
TCTT
CAAG
TAGT
TATTA
CATA
TATTA
TCGGA
AACA
TCGT
TAATT
TACG
TACAC
ATAGT
GCGTG
TATTA
TAATT
GCCGC
CGCGG
GCGGC
CTCT
ATAGT
CTTAA
GTACT
ATATA
TTATA
GAAG

0.13
0.09
0.08
0.29
0.26
0.22
0.27
0.20
0.15
0.10
0.09
0.09
0.09
0.08
0.07
0.12
0.10
0.09
0.11
0.08
0.08
0.11
0.09
0.08
0.09
0.08
0.08
0.10
0.08
0.07
0.08
0.05
0.05
0.09
0.09
0.08
0.12
0.10
0.09
0.20
0.16
0.13

AAAAA
CGGGC
TTTTA
AGAAA
TATAT
GGCT
GCGGG
AGGT
CCGGG
TCCAA
TTCTG
GCAG
TTATC
TGATG
CATCA
AAGC
CGCGC
CTCT
TACG
GCGTC
TCCC
CTCT
TTATC
TTCTT
TGGAT
AATTT
CCATA
CCGAG
CCGGC
TGGG
TGAAG
TTAAT
AACAT
CAAG
CTTA
AACA
TATAT
CTCGA
ACCCG
ACATA
TATAA
GCCCG

0.12
0.09
0.07
0.27
0.25
0.22
0.23
0.18
0.15
0.10
0.09
0.09
0.08
0.08
0.07
0.12
0.10
0.09
0.08
0.08
0.07
0.11
0.09
0.08
0.09
0.08
0.08
0.09
0.08
0.07
0.07
0.05
0.05
0.09
0.09
0.07
0.12
0.09
0.09
0.19
0.16
0.13

GCGCG
CGTGC
GGCCG
GCGCG
CGTGC
CGCGG
CGCGG
CTTC
ACCA
CCTCC
CAAAT
GCTG
CTCGT
AAATT
TCAG
GCGGC
TCAG
GTCC
GTGGG
GTGA
AATCA
GCGGC
ATATT
CCAAA
ATATT
ACAG
TAAAA
TATGT
CGAGG
TCCTA
AATAT
GTAAT
ATCAT
TCAG
AAGC
GCGTC
AAAAG
CACC
ACATA
AAAAA
GCCGC
CTTC

0.11
0.08
0.07
0.27
0.23
0.21
0.22
0.16
0.14
0.10
0.09
0.09
0.08
0.08
0.07
0.11
0.10
0.09
0.08
0.08
0.07
0.10
0.08
0.08
0.09
0.08
0.08
0.08
0.08
0.07
0.06
0.05
0.05
0.09
0.08
0.07
0.11
0.09
0.09
0.17
0.15
0.12

with high and low occupancy, acetylation, or methylation. In the near future,
we plan to incorporate features related to sequence motifs into our method in
order to capture more faithfully the constrains on the model.
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Abstract. This paper presents the use of an ant colony system (ACS)
algorithm in DNA fragment assembly. The assembly problem generally
arises during the sequencing of large strands of DNA where the strands
are needed to be shotgun-replicated and broken into fragments that are
small enough for sequencing. The assembly problem can thus be classi-
fied as a combinatorial optimisation problem where the aim is to find
the right order of each fragment in the ordering sequence that leads
to the formation of a consensus sequence that truly reflects the origi-
nal DNA strands. The assembly procedure proposed is composed of two
stages: fragment assembly and contiguous sequence (contig) assembly.
In the fragment assembly stage, a possible alignment between fragments
is determined with the use of a Smith-Waterman algorithm where the
fragment ordering sequence is created using the ACS algorithm. The re-
sulting contigs are then assembled together using a nearest neighbour
heuristic (NNH) rule. The results indicate that in overall the perfor-
mance of the combined ACS/NNH technique is superior to that of the
NNH search and a CAP3 program. The results also reveal that the solu-
tions produced by the CAP3 program contain a higher number of contigs
than the solutions produced by the proposed technique. In addition, the
quality of the combined ACS/NNH solutions is higher than that of the
CAP3 solutions when the problem size is large.

1 Introduction

In order to understand the whole genetic makeup of an organism, the informa-
tion regarding the entire DNA (deoxyribonucleic acid) sequence is required. The
most famous research project that attempts to attain such information is the
Human Genome Project [1] where the entire DNA sequence of a human genome,

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 231-242, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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covering over three billion genetic codes, is investigated. To achieve the goal, the
project has to be divided into many components. One of major components is
DNA fragment assembly. DNA is a double helix comprised of two complementary
strands of polynucleotides. Each strand of DNA can be viewed as a character
string over an alphabet of four letters: A, G, C and T. The four letters represent
four bases, which are adenine (A), guanine (G), cytosine (C) and thymine (T).
The two strands are complementary in the sense that at corresponding positions
A’s are always paired with T’s and C’s with G’s. These pairs of complementary
bases are referred to as “base pairs”. At present, strands of DNA that are longer
than 600 base pairs cannot routinely be sequenced accurately [2]. The sequenc-
ing technique that involves fragmentation of a DNA strand is called a shotgun
sequencing technique. Basically, DNA is first replicated many times and then in-
dividual strands of the double helix are broken randomly into smaller fragments.
This produces a set of out of order fragments short enough for sequencing.

A DNA fragment assembly problem involves finding the right order of each
fragment in the fragment ordering sequence, which leads to the formation of a
consensus sequence that truly reflects the parent DNA strands. In other words,
the DNA fragment assembly problem can be treated as a combinatorial opti-
misation problem. A number of deterministic and stochastic search techniques
have been used to solve DNA fragment assembly problems [3]. For instance,
Huang and Madan [4] and Green [5] have used a greedy search algorithm to
solve the problem. However, a manual manipulation on the computer-generated
result is required to obtain a biologically plausible final result. Other determin-
istic search algorithms that have been investigated include a branch-and-cut
algorithm [6] and a graph-theoretic algorithm where DNA fragments are either
represented by graph nodes [7,8] or graph edges [9]. The capability of stochas-
tic search algorithms such as a simulated annealing algorithm [10], a genetic
algorithm [11,12,13] and a neural network based prediction technique [14] has
also been investigated. The best DNA fragment assembly results obtained from
stochastic searches have been reported in Parsons and Johnson [12], and Kim and
Mohan [13] where genetic algorithms have proven to outperform greedy search
techniques in relatively small-sized problems. In addition, the need for manual
intervention is also eliminated in this case. Although a significant improvement
over the greedy search result has been achieved, the search efficiency could be
further improved if the redundancy in the solution representation could be elim-
inated from the search algorithms [11]. Similar to a number of combinatorial
optimisation techniques, the use of a permutation representation is required to
represent a DNA fragment ordering solution in a genetic algorithm search. With
such representation, different ordering solutions can produce the same DNA con-
sensus sequence. Due to the nature of a genetic algorithm as a parallel search
technique, the representation redundancy mentioned would inevitably reduce
the algorithm efficiency. A stochastic search algorithm that does not suffer from
such effect is an ant colony system (ACS) algorithm [15].

The natural metaphor on which ant algorithms are based is that of ant
colonies. Real ants are capable of finding the shortest path between a food
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source and their nest without using visual clues by exploiting pheromone in-
formation. While walking, ants deposit pheromone on the ground, and proba-
bilistically follow pheromone previously deposited by other ants. The way ants
exploit pheromone to find the shortest path between two points can be described
as follows. Consider a situation where ants arrive at a decision point in which
they have to decide between two possible paths for both getting to and returning
from their destination. Since they have no clue about which is the best choice,
they have to pick the path randomly. It can be expected that on average half
of the ants will decide to go on one path and the rest choose to travel on the
other path. Suppose that all ants walk at approximately the same speed, the
pheromone deposited will accumulate faster on the shorter path. After a short
transitory period the difference between the amounts of pheromone on the two
paths is sufficiently large so as to influence the decision of other ants arriving at
the decision point. New ants will thus prefer to choose the shorter path since at
the decision point they perceive more pheromone. At the end, all ants will use
the shorter path. If the ants have to complete a circular tour covering n different
destinations without visiting order preference, the emerged shortest path will be
a solution to the n-city travelling salesman problem (TSP). Although the ACS
algorithm also exploits stochastic parallel search mechanisms, the algorithm per-
formance does not depend upon the solution representation. This is because the
optimal solution found by the ACS algorithm will emerge as a single “shortest
path”. In other words, the problem regarding the redundancy in the solution
representation mentioned early would be completely irrelevant to the context of
the ACS algorithm search.

The organisation of this paper is as follows. In section 2, the overview of a
DNA fragment assembly problem will be given. In section 3, the background on
the ACS algorithm will be discussed. The application of the ACS algorithm on
the DNA fragment assembly problem will be explained in section 4. Next, the
case studies are explained in section 5. The results obtained after applying the
ACS algorithm to the problem and the result discussions are given in section 6.
Finally, the conclusions are drawn in section 7.

2 DNA Fragment Assembly Problem

In order to create a DNA map, the original complementary strands of DNA
are first replicated many times. Then individual strands of the double helix are
broken randomly into small fragments. Base ordering in each fragment can sub-
sequently be identified by applying a base calling procedure on the fluorescent
trace-data [16]. After the bases on each fragment have been sequenced, the frag-
ments are then aligned in order to create a consensus sequence that represents
the original or parent DNA strands. An alignment between two fragments can
be created if there is a portion from each fragment that together can produce a
match between either the same-base ordering sequences or the complementary-
base ordering sequences. This is because the fragments can come from the same
strand or different complementary strands. The alignments of fragments are
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Original Fragment Set
AGCAC

ATCAAGGAAC

GACTC

TTCTA

TTTGCC

Parent Strands
TTAGCACAGGAACTCTA
RERRRERRERERRERE!
AATCGTGTCCTTGAGAT

DNA Fragment Assembly Consensus Sequence

TTTGC-C TTAGCACAGGAACTCTA
AGCAC
ATCA-AGGAAC
GA-CTC
TTCTA

Fig. 1. Schematic diagram of the fragment assembly process

schematically displayed in Fig. 1. From Fig. 1, the consensus sequence truly
represents a strand from the parent DNA strands because there is an overlap
portion between each pair of aligned fragments. The number of matching bases
between two aligned fragments together with penalties from mismatches and
gaps are generally referred to as the overlap score. In order to obtain an over-
lap score, the alignment are chosen to maximise the number of matching bases
between the two fragments and minimise mismatches and gaps. If the search
for a possible alignment between a given fragment and other fragments returns
either a relatively low or a zero overlap score, there will be gaps in the consensus
sequence. In such a case, the consensus sequence will contain multiple disjoint
sequences called contiguous sequences or contigs. In other words, it is desirable
to have only one contig in the consensus sequence. Notice that each base on
the consensus sequence is determined by applying a majority vote rule to each
column of bases in the aligned fragments.

3 Ant Colony System Algorithm

The ant colony system (ACS) algorithm is a search algorithm, which has its root
from the study of insect collective behaviour [15]. The search algorithm is suit-
able to a combinatorial optimisation problem, which has a characteristic similar
to that of a TSP. In the context of a TSP, an ant will choose to make a transition
from one city to the next city using the information regarding the distance and
the pheromone deposited between the cities. Pheromone is a substance left on
the path by other ants that have previously made a transition between the two
cities of interest. The level of pheromone is directly correlated to the number
of ants that have travelled between the cities and hence inversely proportional
to the distance between the cities. The more pheromone being deposited on the
path, the higher the number of ants that will choose to make the transition
through that path. After all ants have completed the circular tour that covers
all cities, the paths on the shortest global tour will receive additional pheromone
deposition. This will encourage more ants to make a tour that utilises paths,
which make up the shortest global tour in the future. By reinforcing the deci-
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sion that leads to the construction of the shortest global tour using pheromone
deposition, an optimal solution to the TSP would be co-operatively created by
all ants in the colony.

Based on the overview of the algorithm, three main components that make up
the algorithm are a state transition rule, a local pheromone-updating rule and
a global pheromone-updating rule. In addition, Dorigo and Gambardella [15]
have also introduced the use of a data set called a candidate list that creates a
limitation on the city chosen by an ant for a state transition. The explanation
on these three rules and the candidate list can be found in Dorigo and Gam-
bardella [15]. Although the explanation of the ACS algorithm is given in the
context of a TSP, the ACS algorithm can be easily applied to a DNA fragment
assembly problem. This is because the overlap score, which provides information
regarding how well two fragments can fit together, can be directly viewed as the
inverse of the distance between two cities.

4 Application of the ACS Algorithm to the DNA
Fragment Assembly Problem

A DNA fragment assembly problem can generally be viewed as a combinatorial
optimisation problem that is closely related to a TSP [11]. Detailed comparison
between the two problems and how the ACS algorithm can be applied to the
DNA fragment assembly problem are discussed as follows.

4.1 Comparison Between a DNA Fragment Assembly Problem and
a TSP

By making an analogy between cities in a TSP and fragments in an assembly
problem, it can be easily seen that the overlap score can be viewed as the inverse
of the distance between cities. However, a DNA fragment assembly problem is
a special kind of symmetric TSPs. In brief, distances between cities r and s in
the forward and backward journeys are equal in a symmetric TSP. A factor that
makes a DNA fragment assembly problem a special form of symmetric TSPs
is the consideration on the original parent DNA strand at which the fragment
came. Each fragment used in the assembly process has an equal probability of
coming from one of the two parent DNA strands. With different assumptions on
the origin of the fragment, the resulting overlap score would also be different.
With this factor, there are four possible configurations for obtaining the overlap
score between two fragments. The summary of four alignment configurations is
given in Table 1. From Table 1, during the use of the ACS algorithm if an ant
is at fragment r where the fragment is assumed to come from the forward DNA
strand, the only possible configurations for an alignment with fragment s are
configurations 1 and 2. On the other hand, if the fragment r comes from the
complementary strand where the order of base reads must always be in reverse,
the feasible configurations for an alignment with fragment s are configurations
3 and 4.
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Table 1. Four alignment configurations between two fragments

Configuration Assumption about the Strand of Origin
Fragment r Fragment s

Forward Forward

Forward Reverse complement
Reverse complement Forward
Reverse complement Reverse complement

=W N =

4.2 Evaluation of an Overlap Score

From the previous sub-section, there are four possible configurations at which
two fragments can be aligned. An overlap score for an alignment between two
fragments can be calculated using a Smith-Waterman algorithm [17]. In brief,
the algorithm computes the locally best alignment between two fragments using
a dynamic programming approach. The only parameter settings required for the
Smith-Waterman algorithm are the similarity score matrix and the affine gap
penalty. In this paper, the similarity score matrix and the affine gap penalty
settings are based on the default settings of a PHRAP assembly program [5].
Basically, the scores +1 and —9 are used for a match and a mismatch involving
A, C, G or T, respectively while the score 0 is used for a match or a mismatch
involving N—mno base calling character. In addition, the score —11 is used for
the gap opening penalty (the first residue in a gap) and the score —10 is used
for the gap extension penalty (each subsequent residue). In this paper the SIM
program [18], which is an implementation of the Smith-Waterman algorithm in
a C programming language, is used to obtain the overlap score between two
fragments. With the use of the Smith-Waterman algorithm, the configurations
1 and 4 in Table 1 will have the same overlap score since both fragments are
assumed to come from the same parent strand. Similarly, the configurations 2
and 3 in Table 1 will have the same overlap score since the fragments are assumed
to come from different strands. After the overlap score has been calculated in
this manner, the fragment ordering sequence that leads to the formation of
a consensus sequence can be constructed by adding fragments to the existing
ordering sequence by one fragment at a time. In a schematic display, the fragment
ordering sequence would look similar to a ladder. This results from the way the
relative position of the fragment in the alignment is dictated by the overlap score
calculation procedure.

4.3 ACS Search Objective

The objective function investigated is a minimisation function, which is a com-
bination between the number of contigs and the difference in length between
the longest and the shortest contigs. With the use of this objective function, the
solution that has the lesser number of contigs will be regarded as the better so-
lution. The locations of the beginning and the end of each contig in the fragment
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ordering sequence are the locations where the overlap score between two consec-
utive fragments is lower than a threshold value, which in this investigation is set
to 95. However, more than one solution generated may have the same number
of contigs. If this is the case, the solution that is the better solution is the one
where the difference between the length of the longest and the shortest contigs
is minimal. This part of the objective function is derived from the desire that
the ultimate goal solution is the one with either only one contig or the fewest
possible number of contigs where each contig is reasonably long.

4.4 ACS State Transition and Pheromone-Updating Rules

In order to use an ACS algorithm in a DNA fragment assembly process, the
terms in the ACS rules that are required to change are the inverse of distance
term and the pheromone-updating factors. In the ACS state transition rule, a
decision is made using guidance from a pheromone-closeness product. The inverse
of distance terms can thus change to the overlap score between two fragments.
Similarly, in the ACS pheromone-updating rules, the tour length used in the
pheromone-updating factor (A7) will be substituted by the sum of inverse of
overlap scores obtained for the fragment ordering sequence generated. In the
ACS local pheromone updating rule, the pheromone updating factor Ar(r, s) will
be set to A7(r,s) = 79 = (n ISp,)~! where IS, is the sum of inverse of overlap
scores obtained using a nearest neighbour heuristic (NNH) rule. On the other
hand, the pheromone-updating factor Ar(r,s) in the ACS global pheromone
updating rule will be set to A7 (r,s) = (ISg) ! for (r,s) € global-best-solution
where IS gy, is the sum of inverse of overlap scores for the globally best solution.
The final ACS consensus sequence will be obtained by splitting the circular
fragment ordering sequence at the location where the overlap score between two
fragments is minimal.

5 Case Studies

The capability of the ACS algorithm in DNA fragment assembly will be tested
using data sets obtained from a GenBank database at the National Center
for Biotechnology Information or NCBI (http://www.ncbi.nlm.nih.gov). The
parent DNA strands in this case are extracted from the human chromosome 3
where the strands with the sequence length ranging from 21K to 83K base pairs
are utilised. It is noted that each complementary pair of parent DNA strands can
be referred from the database using its accession number. The fragments used
to construct the consensus sequence are also obtained from the same database
where each fragment is unclipped (low quality base reads are retained) and has
the total number of bases between 700 and 900. This means that the fragments
used in the case studies contain sequencing errors generally found in any ex-
periments. In addition, no base quality information is used during the assembly
investigation. In order for a consensus sequence to accurately represent the par-
ent DNA strands, there must be more than one fragment covering any base pairs
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Table 2. Information on the data set

Accession Number AC023501 AC023159 AC005903 AC026318

Base Pair 20,824 34,680 63,949 83,181
Case Study 1 2 3 4 5 6 7 8
Coverage 10 10 5 5 7 6 7 7
Number of Fragments 368 367 279 269 611 591 709 708
Gaps 0 1 0 6 0 1 0 1

of the parent strands. The average number of fragments covering each base pair
on the parent strands is generally referred to as coverage. In addition, for a con-
sensus sequence to be made up from one contig, there must be no gaps in the
fragment ordering sequence. In this paper, the data set is prepared such that the
consensus sequence contains either one contig or multiple contigs. The summary
of the data set descriptions is given in Table 2.

In order to benchmark the performance of the ACS algorithm, its search per-
formance will be compared with that of the NNH rule and a CAP3 program [4],
which is one of the most widely used programs in bioinformatics research com-
munity. Since the base quality information is not used during the assembly, the
solutions produced by the CAP3 program would be similar to the results from
a PHRAP program [5], which is also a standard program [13]. The parameter
setting for the ACS algorithm is the recommended setting for solving symmetric
travelling salesman problems given in Dorigo and Gambardella [15].

6 Results and Discussions

The ACS algorithm, the NNH rule and the CAP3 program have been applied to
all eight case studies. In the case of the NNH search, all possible n solutions with
different starting fragments are generated where n is the number of fragments.
The solutions are obtained using the sum of overlap scores as the maximisa-
tion objective. The best solution is then picked where contigs are produced by
assembling aligned fragments together and applying a majority-vote rule, as il-
lustrated in Fig. 1, for the base calling purpose. Next, an attempt on DNA contig
assembly is made where the overlap score between each contig is obtained using
a Smith-Waterman algorithm and the NNH rule is subsequently applied. Similar
to the early assembly procedure, all possible [ solutions are generated this time
where [ is the number of contigs from the primary assembly stage and the best
solution among [ solutions are chosen as the final solution. In contrast, the ACS
algorithm runs are repeated ten times in each case study using the optimisation
objective explained in sub-section 4.3. During each run, the initial solution used
is randomly chosen from all n solutions produced by the NNH rule. Similar to
the case of the NNH rule, after all ACS runs are finished, the best solution in
terms of the search objective employed is picked and contigs are obtained by
assembling fragments together. The contig assembly is then commenced where
the NNH rule is applied using the sum of overlap scores as the maximisation
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objective. It is noted that since the CAP3 program is deterministic in nature,
the program is executed only one time for each case study. From the assembly
results obtained, two discussion topics can be given: the number of contigs in
the final assembly solutions and the quality of the final solutions. These issues
are discussed as follows.

6.1 Number of Contigs in the Final Assembly Solutions

As mentioned earlier, after the primary DNA fragment assembly stage where
either the NNH rule or the ACS algorithm is applied to the problem, the resulting
DNA contigs are subsequently assembled together using the NNH rule. The final
numbers of contigs obtained from both approaches—the NNH+NNH approach
and the ACS+NNH approach—together with the number of contigs from the
solution generated by the CAP3 program, are reported in Table 3. From Table 3,
the CAP3 program outperforms the ACS4+NNH approach in cases 4 and 5 while
the ACS+NNH approach is the best technique in the remaining cases. The results
also indicate that as the problem size increases, the number of contigs produced
by the ACS4+NNH approach also increases. On the other hand, it appears that
there is no correlation between the problem size and the number of contigs in the
case of the CAP3 program. Based upon the above observation, it is sufficed to
say that the overall performance of the ACS+NNH approach is higher than that
of the CAP3 program. The comparison between the performances of NNH+NNH
and ACS+NNH approaches is now considered. Both techniques have the same
performance in cases 1, 2, 7 and 8 while the ACS+NNH approach has a higher
performance in cases 3, 4, 5 and 6. In overall, it can be concluded that there
is a range on the problem size at which the ACS+NNH approach is capable of
producing a better result than the NNH+NNH approach.

Table 3. Number of contigs from the solutions produced by the NNH+NNH approach,
the ACS+NNH approach and the CAP3 program
Problem Number of Contigs
Parent Strand NNH+NNH ACS+NNH CAP3
AC023501 (21K bases)

No gaps 1 1 1 3

With gaps 2 2 2 4
AC023159 (35K bases)

No gaps 1 11 5 10

With gaps 7 18 11 9
AC005903 (64K bases)

No gaps 1 14 11 3

With gaps 2 14 2 3
AC026318 (83K bases)

No gaps 1 15 15 25

With gaps 2 15 15 25
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6.2 Quality of the Assembly Solutions

In the previous sub-section, the numbers of contigs in the final assembly solutions
from all three techniques are compared. In this part of the discussion, the quality
of these contigs is examined. The quality of a contig is measured in terms of the
base difference between the parent DNA sequence and the contig of interest using
a Smith-Waterman algorithm with the setting described in sub-section 4.2. This
difference can be expressed in terms of an assembly error, which can be further
divided into three components: a substitution error, an insertion/deletion (indel)
error and a coverage error. A substitution error appears when a base in one of two
aligned sequences—a parent DNA sequence and a contig in this case—does not
match its counterpart in the other sequence. When a base in one aligned sequence
seems to have been deleted as the result of a divergence of the sequence from its
counterpart, such absence is labelled as a deletion error in the derived sequence.
On the other hand, when a base appears to have been inserted to produce a longer
sequence, an insertion error is labelled in the augmented sequence. A deletion in
one sequence can thus be viewed as an insertion in the other sequence. Hence,
these two types of error are generally referred to together as an indel error.
In contrast to substitution and indel errors, a coverage error is detected when
there are bases in the parent DNA sequence, which are located outside the part
of contig that best matches the parent sequence and thus not covered by any
contigs. The assembly errors in the contigs produced by all three techniques,
expressed in terms of the percentage of errors out of the total number of bases
in the parent sequence, are compared in Table 4.

Basically, the sum of substitution and insertion/deletion errors from the
ACS+NNH approach is higher than that of the CAP3 program in all case stud-
ies. However, in the first four case studies the coverage errors from the CAP3
program are either lower than or equal to that from the ACS+NNH approach
while the solutions that have lower coverage errors in the last four case studies
are produced by the ACS+NNH approach. It is also noticeable that the errors
from the NNH+NNH and ACS+NNH approaches are very similar in all case
studies except for the last two cases where the coverage errors of the solutions
from the ACS+NNH approach are lower. Based upon the results in terms of so-
lution quality, the right combination between the ACS algorithm and the CAP3
program may yield contigs that have even lower assembly errors. Since the core
search algorithm of the CAP3 program is a greedy search algorithm [4], the re-
placement of the CAP3 core algorithm with the ACS algorithm would be one
possible step towards the goal.

7 Conclusions

In this paper, a DNA fragment assembly problem, which is a complex combina-
torial optimisation problem that can be treated as a travelling salesman problem
(TSP), has been discussed. In the context of a TSP, a fragment ordering sequence
would represent a tour that covers all cities while the overlap score between two
aligned fragments in the ordering sequence can be viewed as the inverse of the
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Table 4. Assembly errors expressed in terms of the sum of substitution and inser-
tion/deletion errors, and the coverage error

Problem Substitution & Indel Errors (%) Coverage Error (%)
NNH+NNHACS+NNH CAP3 NNH+NNHACS+NNHCAP3
AC023501 (21K bases)

No gaps 1.63 1.89 0.13 0.00 0.00 0.00

With gaps 1.62 1.43 0.10 0.00 0.19 0.00
AC023159 (35K bases)

No gaps 1.17 1.57 0.21 8.48 8.22 6.98

With gaps N/A N/A 022  NJ/A N/A 110
AC005903 (64K bases)

No gaps 1.08 1.01 0.10 0.45 0.45 2.38

With gaps 1.02 0.97 0.11 0.47 1.22 2.06
AC026318 (83K bases)

No gaps 1.19 1.11 0.39 12.42 7.44 11.08

With gaps 1.19 1.09 0.40 12.23 7.49 10.87

distance between two cities. The assembly procedure proposed consists of two
stages: fragment assembly and contig assembly stages. In the fragment assembly
stage, a search for the best alignment between fragments is carried out using an
ant colony system (ACS) algorithm. The resulting contigs are then assembled
together using a nearest neighbour heuristic (NNH) rule in the contig assembly
stage. The assembly procedure proposed has been benchmarked against a CAP3
program [4]. The results suggest that the solutions produced by the CAP3 pro-
gram contain a higher number of contigs than the solutions generated by the
proposed technique. In addition, the quality of the combined ACS/NNH solu-
tions is higher than that of the CAP3 solutions when the problem size is large.
Since the core algorithm of the CAP3 program is a greedy search algorithm,
a replacement of the core algorithm with the ACS algorithm may yield an im-
provement on the final assembly solution.
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Abstract. Nature inspired routing protocols for fixed and mobile net-
works are becoming an active area of research. However, analyzing their
security threats and countering them have received little attention. In
this paper we discuss the security threats of a state-of-the-art rout-
ing protocol, BeeHive, and then extend the algorithm with our security
model to counter them. We further conclude from our extensive exper-
iments that standard cryptography techniques can not be utilized due
to their large processing and communication costs, if Nature inspired
routing protocols are to be deployed in real world networks.

1 Introduction

Nature inspired routing protocols are becoming an active area of research because
they do not require an a priori global system model of the network rather they
utilize a local system model as observed by the agents. The agents gather the
network state in a decentralized fashion and leave the corresponding information
on visited nodes. This information enables them to make routing decisions in a
decentralized fashion without the need of having access to complete network
topology. The algorithms can adapt autonomously to changes in the network, or
in traffic patterns. AntNet [1], BeeHive [15] and Distributed Genetic Algorithm
(DGA) [7] are state-of-the-art Nature inspired routing algorithms.

In all of the above-mentioned algorithms, the authors always implicitly trusted
the identity of the agents and their routing information. However, this assump-
tion is not valid for real world networks, where malicious intruders or compro-
mised nodes can wreak havoc. To our knowledge, little attention has been paid
to analyzing the security threats of Nature inspired routing protocols and effi-
ciently countering them. The router vendors are not willing to deploy Nature
inspired routing protocols in real networks because their security threats are not
properly investigated. We believe that a scalable security framework, which has
acceptable processing and communication costs, is an important step toward
deployment of such protocols in real world routers. This observation provided
the motivation for our current work in which we try to take the first step in this
direction by doing a comprehensive analysis of the security threats of the Bee-
Hive algorithm. We provide the important features of our security framework,
BeeHiveGuard, and measure its processing and communication costs.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 243-254, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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According to Perlman [9], a routing protocol can have anomalous behavior
because of two types of failures: simple and Byzantine. Simple failures occur
once a node crashes or a link goes down while Byzantine failures happen due
to the malicious nodes that launch agents into the networks. Such agents can
significantly alter the routing behavior of a routing protocol. In this work, we
focus on Byzantine failures because BeeHive is resilient to simple failures [15].

The rest of the paper is organized as follows. In Section 2, we provide a
brief overview of Byzantine failures/attacks that are relevant to Nature inspired
routing protocols. We then outline important features of considered BeeHive al-
gorithm in Section 3 and our security enhancements to it are discussed in Section
4. In Section 5, we discuss the simulated threat scenarios and then provide re-
sults from the extensive simulations in Section 6. Finally we conclude the paper
with an outlook to our future research.

2 Security Challenges in Nature Inspired Routing
Algorithms

In [6], the authors listed a number of attacks that the malicious nodes can launch
in Mobile Ad Hoc Networks (MANETSs). We briefly describe only those attacks
that are relevant to Nature inspired routing protocols within the context of fixed
networks.

— Fabrication attacks are launched by a router to change the normal route of a
data packet. This is accomplished by retransmitting old agents or by modi-
fying the information of agents or by launching bogus agents. A fabrication
attack can be further classified as:

e An update storm or malicious flooding. In this attack a malicious router
injects a large number of agents in a short interval of time into the
network. As a result, the information (mostly bogus) carried by its agents
spreads faster in the network than the true information of other routers.
Consequently, the malicious router can divert data packets towards itself.

e A replay attack. In this attack a router retransmits old agents that carry
outdated information in the network.

o A rushing attack. This attack in only possible in those routing protocols
in which the agents are identified with a unique sequence number. An
attacker launches the agents whose source address is of some other node.
Moreover, it assigns them a significantly high sequence number. In this
way it forces other routers to accept its bogus agents and drop the real
ones.

— Dropping attacks are powerful because they can divide a network into several
partitions. They are of two types: blackhole attack and network partition.

e Blackhole attack. In this attack, an attacker diverts data packets towards
itself and simply drops them.

e Network partition. An attacker tries to separate a network into k (k > 2)
partitions. As a result, the nodes in one partition can not communicate
with the nodes in the other partitions.
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— Tampering attack. In this attack, a malicious node simply modifies the rout-
ing information carried by an agent to its own benefits.

e Identity impersonating or spoofing. In this attack, a router impersonates
another router by launching bogus agents. As a result, the malicious
router can force data packets not to follow a path over another router
or it can divert them towards itself.

e Detour attack. An attacker forces its neighbors to route all their network
traffic over it.

Related Work. In [8,11,13,5,4], the authors have developed techniques to
counter some of the above-mentioned security threats in classical routing algo-
rithms. They utilized standard cryptography techniques i.e. digital signatures or
Hashed Message Authentication Code (HMAC) to avert fabrication and tam-
pering attacks. In these techniques, a router verifies that the originator of a
control message is the node that is indicated in the header. In [11], the authors
have secured distance vector routing protocols by incorporating the information
about a node and its predecessor node in the control packet. Sequence numbers
are used to identify an old or obsolete control packet. However, none of these
approaches try to analyze and counter the security threats related to the specific
features of Nature inspired routing algorithms with the exception of the prelim-
inary work of Zhong and Evans [16]. They studied the anomalous behavior of
AntNet [1] under three types of attacks: fabrication, dropping and tampering.
Their experiments clearly demonstrate that the malicious nodes can disrupt the
normal routing behavior of AntNet by launching these attacks.

3 BeeHive Algorithm

This algorithm was proposed by Wedde, Farooq and Zhang in [15]. The algorithm
is inspired by the communication language of honey bees. Each node periodically
sends a bee agent by broadcasting the replicas of it to each neighbor. The replicas
explore the network using priority queues and they use an estimation model
to estimate the propagation and queuing delay from a node, where they are
received, to their launching node. Once the replicas of the same agent arrive at
a node via different neighbors of the node, they exchange routing information to
model the network state at this node. Through this exchange of information by
the replicas at a node, the node is able to maintain a quality metric for reaching
destinations via its neighbors. The algorithm utilizes just forward moving agents
and no statistical parameters are stored in the routing tables. In BeeHive a
network is divided into Foraging Regions and Foraging Zones. Each node belongs
to only one Foraging Region. Each Foraging Region has a representative node.
A Foraging Zone of a node consists of all the nodes from which a replica of an
agent could reach this node in 7 hops. This approach significantly reduces the size
of the routing table because each node maintains detailed routing information
only about reaching the nodes within its Foraging Zone and for reaching the
representative nodes of the Foraging Regions. In this way, a data packet, whose
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destination is beyond the Foraging Zone of a node, is forwarded in the direction of
the representative node of the Foraging Region containing the destination node.
The next hop for a data packet at a node is selected in a probabilistic fashion
depending upon the goodness of each neighbor for reaching the destination.
BeeHive is also fault-tolerant to crashing of routers. The interested reader will
find more details in [15].

4 BeeHiveGuard

In our work, the basic motivation is to analyze the security threats of deploying
Nature inspired routing protocols and then to design and develop a comprehen-
sive security framework that can counter these threats. As a first step, we take
the BeeHive algorithm, introduced in the previous section, and extend it with
our security model that can counter these threats. We applied standard RSA
algorithm [10] for doing cryptography functions like encryption and decryption.
We name the new algorithm as BeeHiveGuard and discuss its relevant security
features. We assume that a secure key distribution infrastructure exists in the
network.

Agent integrity. The purpose of this extension is that the management infor-
mation related to a bee agent can not be modified/impersonated by an interme-
diate router. The values of relevant information fields of a bee agent that must
be protected are: its identifier and identifier of its replicas, its source address, its
time to live timer (TTL) and the address of its Foraging Region. The source node
signs these fields with its private key and puts the corresponding signature sigl
in the bee agent. If a traitorous router tries to change these fields or impersonate
someone else then other nodes can easily detect and discard the corresponding
bogus bee agents.

Routing information integrity. The purpose of this extension is to secure
the routing information i.e. the propagation delay or the queuing delay of a bee
agent. The delays are used to estimate the quality of a visited path. The routers
calculate the delay values and then modify them accordingly in the bee agents,
therefore, it becomes a challenging task to differentiate a valid modification
from a fake one. We can do it if we assume that no two subsequent routers on
a route fake their routing information. The basic idea is that a bee agent carries
the signed routing information of a node and its predecessor node. sig2 is the
signature obtained by signing the queuing and propagation delays of a visited
node and sig3 is the signature for its predecessor node. Figure 1 shows how
digital signatures are used to secure the routing information.

Node 1 launches two replicas of its bee agent towards Node 0 and Node 2
respectively. Node 1 has no predecessor, therefore, sig2 represents the signed
delays of the Node 1 and sig3 is obtained by signing a 0 value for both delays.
Once the replica arrives at Node 2 then sig3 is set to sig2 and the delays of this
node are signed in sign2. This process continues until the replica reaches Node
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sige=sign(po,qo)
sigs=sign(p+,qr)

sigz=sign(p,qr)
sigs=sign(0

sige=sign(p1,
sigs=sign(0,

sige=sign(pz,02) sige=sign(ps,qs)
sigs=sign(p1,q1) sigs=sign(pz,q2)

Fig. 1. Securing routing information in BeeHiveGuard

4. Then Node 4 estimates its delays to Node 1 by adding its delay values with
the ones of Node 3 and Node 2. As a result, Node 3 can only manipulate its
own delays but not the cumulative delays from Node 1 to Node 3. Moreover, a
node also compares the delay values in sig2 with the ones in sig3. If the delay
values in sig2 are lesser or equal to the ones in sig3 then the predecessor node has
provided fake delay values. As a result, sig2 value at this node is calculated with
the help of the delay values in sig3 and the bee agent continues its exploration.
Since a node utilizes the information of its predecessor node and the predecessor
node of its predecessor node, therefore, a predecessor node can not significantly
influence the routing behavior by faking its own routing information above.

5 Experiments

We designed a series of experiments, which simulate different types of threats in
the networks. The results of the experiments clearly demonstrate that BeeHive
algorithm is susceptible to a number of such attacks. We utilized a standard
cryptography library, OpenSSL [2], to implement our security model in the Bee-
HiveGuard algorithm. The library supports relevant cryptography techniques
like digital signatures, symmetric and asymmetric cryptography, and cryptog-
raphy hash functions. A profiling framework, which measures the processing
complexity of a function in cycles, is incorporated in the performance evaluation
framework presented in [14]. The empirical validation of our security model is
necessary because it is not a trivial task to formally model the emergent behavior
of Nature inspired routing protocols. BeeHiveGuard is realized in OMNeT++
simulator [12]. The experiments were conducted on Fujitsu Siemens PC, which
has a Pentium 4 3.0 GHz processor and 1 Gigabyte of RAM. The reported values
are an average of the values obtained from ten independent runs.

Tampering control messages. We simulated in topology Netl a malicious
node, which alters the queuing delay and propagation delay fields of the bee
agents passing through it. In Netl, a traffic session is started between Node 4
and Node 1. Node 3 modifies the queuing and propagation delays of the bee
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Fig. 2. Netl: Node 3 is tampering the queuing and the propagation delay

2

@@i@

Fig. 3. Net2: Impersonating, Detour and Flooding attacks launched by Node 4

Fig. 4. Net3: Rushing and dropping Attacks

agents launched by Node 1. As a result, it artificially increases the quality of the
path 4-3-2-1 as compared to 4-0-1.

Impersonating, Detour and Flooding attacks. In topology Net2, we cre-
ated a scenario which can simulate impersonating, detour and flooding attacks.
A traffic session is started between Node 3 and Node 0. In a normal mode, data
packets take the path 3-2-1-0. However, Node 4 launches the three attacks by
injecting a large number of bee agents, which have Node 0 as their source node
instead of Node 4. In this way, data packets also take the path 3-2-4-2-1-0.

Rushing and Dropping attacks. In topology Net3, we created a traffic session
between Node 5 and Node 0. In this scenario, Node 1 retransmits the bee agents
from Node 0 by increasing their agent id and changing their replica id to that
of the replicas of the path 0-2-*. As a result, Node 2 always drops the new bee
agents, which arrive directly from Node 0 because their agent id is smaller than
the ones which arrive over the path 0-1-2. Consequently, if the route 5-4-2-0
initially had a poor quality then its quality could never improve because Node
5 would always get the bogus bee agents through the path 0-1-2-4-5.
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6 Results

Tampering control messages. In Figure 5, one can see that in a normal mode
the path 4-0-1 is rated higher than the path 4-3-2-1 because of its smaller delays.
As a result, more data packets are routed on the path 4-0-1 as compared with the
path 4-3-2-1. However, the situation is drastically changed once Node 3 launches
its attack at 300 seconds by tampering the information in the bee agents (see
Figure 6). The impact of the attack is significantly reduced in BeeHive Guard
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(see Figure 7) because Node 3 can now just manipulate its own queuing and
propagation delays. Remember in BeeHive it can manipulate the delays of the
complete path 3-2-1.

Impersonating, Detour and Flooding attacks. One can see in Figure 8
that in a normal mode all data packets are routed on the path 3-2-1-0. Node 4
launches its attacks by transmitting bogus bee agents at 300 seconds. As a result,
it has successfully detoured a significantly large number of data packets towards
itself (see Figure 9). Please remember that the left subfigure of Figure 9 shows
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the number of packets that followed either the path 3-2-1 or 3-2-4. Consequently,
the number of data packets that followed the path 3-2-4-2-1 is not counted for
neighbor 1. Figure 10 shows that in BeeHiveGuard Node 4 is not able to influence
the routing decisions by propagating its bogus bee agents.

Rushing and Dropping attacks. It is obvious from Figure 11 that in a normal
mode BeeHive is able to achieve excellent load balancing in the steady state by
distributing the packets on the paths 5-3-1-* and 5-4-2-*. However, once Node
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1 launches its attack by retransmitting the bee agents of Node 0 with modified
agent and replica ids then the quality of the paths 5-4-2-* does not improve. As
a result, Node 1 is able to divert the network traffic towards itself through the
path 5-3-1. However, the impact in this attack is less significant as compared
with the previous ones (see Figure 12). Figure 13 shows that BeeHiveGuard has
successfully countered even these attacks because Node 1 could not modify the
bee agents launched by Node 0.

7 Costs of BeeHiveGuard

We have collected relevant cost and performance values in Table 1. A, is the
average number of processor cycles required to process a bee agent, R, models
the bandwidth consumed by the bee agents, S, models the additional bandwidth
consumed by data packets if they do not follow the shortest hop path, Ty,
is the average throughput (Mbits/sec) and t4 is the average delay (in milli-
seconds). It is easy to conclude from Table 1 that BeeHiveGuard is able to
counter the threats and provide the same throughput and packet delay (the two
important performance values) than that of BeeHive in a normal mode. However,
the security is achieved at a considerable processing and communication costs. In
Net1, the average processing complexity and the communication overhead of bee
agents increased to 98600% and 750% respecitvely as compared to the bee agents
in BeeHive. A similar tendency is observed in case of Net2 and Net3 (see Table
1). The significant increase in processing cost is due to complex mathematical
operations that are performed in classical cryptography. The bee agents now
carry additional fields like digital signatures and this results in a substantial
increase in their size. As a result, the communication overhead is also significantly
increased.

Table 1. Costs of BeeHiveGuard

Topology Algorithm Aq R, So Taw ta
Netl BeeHive 16699 0.022 0.473 0.79 0.004
Netl BeeHive - Attack (1) 16547 0.022 0.73 0.79 0.004
Netl BeeHiveGuard (2) 16341381 0.187 0.587 0.79 0.004
Difference (1) and (2) in % 98600 750 19.5 O 0

Net2 BeeHive 13924 0.018 0 0.79 0.004
Net2 BeeHive - Attack (3) 14703 0.057 1.443 0.79 0.008
Net2  BeeHiveGuard (4) 23603742 0.133 0 0.79 0.004
Difference (3) and (4) in % 160400 133.3 100 0 50

Net3 BeeHive 21219 0.029 0.133 0.79 0.005
Net3 BeeHive - Attack (5) 25353 0.017 0.29 0.788 0.007
Net3 BeeHiveGuard (6) 13247990 0.254 0.132 0.79 0.005
Difference (5) and (6) in % 52100 1390 544 0.2 285
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8 Conclusion and Future Work

We analyzed the security threats of a Nature inspired routing protocol, Bee-
Hive. However, the analysis can be easily extended to any Nature inspired rout-
ing protocol. The results of our extensive experiments reveal that the algorithm
is susceptible to a number of Byzantine attacks like tampering, impersonating,
detour, flooding, rushing and dropping that a malicious node can launch in the
network. The results of the experiments confirm that BeeHiveGuard can success-
fully counter all of these attacks. BeeHiveGuard utilizes standard cryptography
techniques for secure routing.

We extended an existing performance evaluation framework to measure the
processing complexity and communication costs of our security model. Our re-
sults indicate that the standard cryptography techniques are not feasible for
Nature inspired routing algorithms because the average agent complexity and
communication costs of a bee agent in BeeHiveGuard lies in the range from
52100% to 160400% and from 133% to 1390% respectively, as compared to Bee-
Hive. This overhead of providing security will hinder the normal packet switching
task of a real world router. The important conclusion of our current work is: if
Nature inspired routing protocols are to be deployed in real world networks then
a novel security architecture is to be developed whose processing and communi-
cation overheads are significantly smaller as compared with the existing cryptog-
raphy techniques. We believe that Artificial Immune Systems (AIS) [3] is one
such alternative paradigm. Our objective is to design and develop a comprehen-
sive and scalable security framework that does not use complex cryptography
techniques but provides the same security level. This will be the subject of our
forthcoming publications.
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Abstract. Mobile Ad-hoc Networks (MANETS) are composed of a set
of communicating devices which are able to spontaneously interconnect
without any pre-existing infrastructure. In such scenario, broadcasting
becomes an operation of capital importance for the own existence and op-
eration of the network. Optimizing a broadcasting strategy in MANETS
is a multiobjective problem accounting for three goals: reaching as many
stations as possible, minimizing the network utilization, and reducing
the makespan. In this paper, we face this multiobjective problem with
a state-of-the-art multiobjective scatter search algorithm called AbSS
(Archive-based Scatter Search) that computes a Pareto front of solu-
tions to empower a human designer with the ability of choosing the
preferred configuration for the network. Results are compared against
those obtained with the previous proposal used for solving the problem,
a cellular multiobjective genetic algorithm (¢cMOGA). We conclude that
ADbSS outperforms cMOGA with respect to three different metrics.

1 Introduction

Mobile Ad-hoc Networks (MANETS) are fluctuating networks populated by a set
of communicating devices called stations (they are also called terminals) which
can spontaneously interconnect each other without a pre-existing infrastructure.
This means that no carrier is present in such networks as it is usual in many
other types of communication networks. Stations in MANETSs are usually lap-
tops, PDAs, or mobile phones, equipped with network cards featuring wireless
technologies such as Bluetooth and/or IEEE802.11 (WiFi). In this scenario, a)
stations communicate within a limited range, and b) stations can move while
communicating. A consequence of mobility is that the topology of such networks
may change quickly and in unpredictable ways. This dynamical behavior consti-
tutes one of the main obstacles for performing efficient communications on such
networks.

Broadcasting is a common operation at the application level and is also widely
used for solving many network layer problems being, for example, the basis

* This work has been partially funded by the Ministry of Science and Technology and
FEDER under contract TIN2005-08818-C04-01 (the OPLINK project).

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 255-266, 2006.
© Springer-Verlag Berlin Heidelberg 2006



256 F. Luna et al.

mechanism for many routing protocols. In a given MANET, due to host mobility,
broadcasting is expected to be performed very frequently (e.g., for paging a
particular host, sending an alarm signal, and/or finding a route to a given target
terminal). Broadcasting may also serve as a last resort to provide multicast
services in networks with such rapidly changing topologies and stems for the
organization of terminals in groups. Hence, having a well-tuned broadcasting
strategy will result in a major impact in network performance.

In this paper we are considering the problem of broadcasting on a particular
sub-class of MANETS called Metropolitan MANETS, which cover from shopping
malls to metropolitan areas. Instead of providing a generic protocol performing
well on average situations, our proposal consists of optimally tuning the broad-
casting service for a set of networks and for a particular category of broadcast
messages. Optimizing a broadcasting strategy is a multiobjective problem where
multiple functions have to be satisfied at the same time: maximizing the number
of stations reached, minimizing the network use, and minimizing the makespan
are three examples of the potential objectives. In this work, the broadcasting
strategy considered for optimization is DFCN [1], and the target networks are
metropolitan MANETS. Since manipulating such networks is difficult, we must
rely on software simulators for evaluating the scenarios from the designer point-
of-view.

Contrary to single objective optimization, multiobjective optimization is not
restricted to find a unique solution of a given multiobjective problem, but a set
of solutions known as the Pareto optimal set. For instance, taking as an example
the problem we are dealing with, one solution can represent the best result
concerning the number of reached stations, while another solution could be the
best one concerning the makespan. These solutions are said to be nondominated.
The result provided by a multiobjective optimization algorithm is then a set of
nondominated solutions (the Pareto optima) which are collectively known as the
Pareto front when plotted in the objective space. The mission of the decision
maker is to choose the most adequate solution from the Pareto front.

This multiobjective problem of broadcasting in MANETS, which has been
previously addressed with a cellular genetic algorithm (¢cMOGA) in [2], is now
tackled with a state-of-the-art multiobjective scatter search algorithm called
ADbSS (Archive-based Scatter Search) [3]. Scatter search [4,5,6] has been suc-
cessfully applied to a wide variety of optimization problems [5], but it has not
been extended to deal with MOPs until recently [3,7,8,9]. This metaheuristic
technique starts from an initial set of diverse solutions from which a subset,
known as the reference set (RefSet), is built by including both high quality
solutions and highly diverse solutions. Then, an iterative procedure systemati-
cally combines the solutions in RefSet somehow for generating new (hopefully
better) solutions that may be used for updating the reference set and even the
initial population. After that, an iterative procedure is used to locate an optimal
solution.

The contributions of this work are summarized in the following. Firstly, we
solve the broadcasting problem on MANETSs using a multiobjective scatter
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search, and compare the results with those obtained with cMOGA. Secondly,
we are dealing in this work with a more realistic problem than the one faced
in [2] because we are using an interesting real world scenario (a shopping mall)
never tackled before.

The rest of the paper is structured as follows. In the next section, we detail
the multiobjective problem of broadcasting in MANETS. Section 3 includes the
description of the multiobjective scatter search algorithm. Metrics, parameter-
ization, and results are presented in Sect. 4. Finally, conclusions and lines of
future work are given in Sect. 5.

2 Problem Definition

The problem we study in this paper consists of, given an input MANET, deter-
mining the most adequate parameters for a broadcasting strategy in it. We first
describe in Sect. 2.1 the target networks we have used. Section 2.2 is devoted to
the presentation of DFCN, the broadcasting strategy to be tuned. Finally, the
MOP we define for this work is presented in Sect. 2.3.

2.1 Metropolitan Mobile Ad-Hoc Networks

Metropolitan mobile ad-hoc networks are MANET's with some particular prop-
erties. Firstly, they have one or more areas where the node density is higher than
the average. These points are called VHS, standing for Virtual Hot Spots, that
can be statistically detected. A VHS may be, for example, a shopping center, an
airport, or an office. Secondly, virtual hot spots do not remain active full time,
i.e., they can appear and disappear from the network (e.g., supermarkets are
open, roughly, from 9 a.m. to 9 p.m., and outside this period of time, the node
density within the corresponding area is close to zero).

To deal with such kind of networks, we have to rely on software simulators.
In this work we have used Madhoc !, a metropolitan MANET simulator. It
aims at providing a tool for simulating different level services based on different
technologies on MANETS for different environments, ranging from open areas to
metropolitan ones. In order to make more realistic the simulations, Madhoc has
been endowed with an observation window such that only the devices located
inside this window are taken into account for measurements. Hence, we allow
the existence of a changing number of devices in the network as it happens in
real MANETSs. This recent feature of Madhoc is displayed in Fig. 1, where both
an example of a metropolitan MANET (a) and the effects of introducing an
observation window on it (b) are shown. We highlight as well a typical action of
devices going in and leaving the window in the right part of the figure. In all the
tests in this work, this observation window is 70% of the total simulation area.
The main parameters of Madhoc used for defining the network characteristics
are the following;:

! http://www-lih.univ-lehavre.fr/~hogie/madhoc/
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Fig. 1. (a) Metropolitan MANET, and (b) the effect of the observation window

size: defines the network simulation area in terms of square meters.

density: is the average density of nodes per square kilometer (i.e., the number
of devices per square kilometer).

environment: determines the mobility model for the stations and the radio
wave propagation model. That is, this feature defines how the stations are
moving as well as the area within which they are moving (open areas, build-
ings, streets, etc.), thus determining how radio waves are propagated.

2.2 Delayed Flooding with Cumulative Neighborhood

Broadcasting strategies in MANETSs can be classified into four categories: sim-
ple flooding, probability-based methods, area-based methods, and neighbor-
knowledge-based methods (a survey can be found in [10]). This categorization is
based on the way that protocols select re-broadcasting stations.

Broadcasting protocols can also be classified depending on whether they deal
with mobility or not. The vast majority of present protocols do not consider any
active management of station mobility. The Delayed Flooding with Cumulative
Neighborhood (DFCN) protocol belongs to the neighbor-knowledge-based class,
and it features an active management of station mobility so it is able to make
new broadcasting decisions on new neighbor discovery. For being able to run the
DFCN protocol, the following assumptions must be met:

— Like many other neighbor-knowledge-based broadcasting protocols (FWSP,
SBA, etc.), DFCN requires the knowledge of 1-hop neighborhood, which can
be obtained by using “hello” packets at a lower network layer. The set of
neighbors of station s is named N(s).

— Each message m carries —embedded in its header— the set of IDs of the
1-hop neighbors of its most recent sender.

— Each station maintains local information about all the messages received.
Each instance of this local information consists of the following items:
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e the ID of the message received;
e the set of IDs of the stations that are known to have received the message;
e the decision of whether the message should be forwarded or not.

— DFCN requires the use of a random delay before possibly re-emitting a
broadcast message m. This delay, called Random Assessment Delay (RAD),
is intended to preventing collisions. More precisely, when a station s emits
a message m, all the stations in N (s) receive it at the same time. It is then
likely that all of them forward m simultaneously, and this simultaneity entails
network collisions. The RAD aims at randomly delaying the retransmission
of m. As every station in N(s) waits for the expiration of a different RAD
before forwarding m, the risk of collisions is hugely reduced.

DFCN is an event driven algorithm which can be divided into three main
parts: the two first ones deal with the station handling of outcoming events,
which are (1) new message reception and (2) detection of a new neighbor. The
third part (3) consists of the decision making of the station for emission as a
follow-up of one of the two previous events. The behavior resulting from message
reception is referred to as reactive behavior; when a new neighbor is discovered,
the behavior is referred as proactive behavior.

Let s; and sy be two stations in the neighborhood of one another. When
s1 sends a packet to so, it attaches the set N(s1) to the packet. At reception,
s2 hence knows that each station in N(s;) has received the packet. The set of
stations which have potentially not yet received the packet is then N(sq2) —
N(s1). If sp re-emits the packet, the effective number of stations newly reached
is maximized by the heuristic function: h(s2, s1) = |N(s2) — N(s1)|-

In order to minimize the network overload caused by a possible packet re-
emission, this re-emission occurs only if the number of newly reached stations
is greater than a given threshold. This threshold is a function of the number of
stations in the neighborhood (the local network density) of the recipient station
s9. It is written threshold(|N(s)|). The decision made by s to re-emit the packet
received from s; is defined by the boolean function:

true  h(s2, s1) > threshold (|N (s2)])

Re-emit (s2, s1) = { (1)

false  otherwise .

If the threshold is exceeded, the recipient station sy becomes an emitter after a
random delay defined by RAD. The threshold function, which allows DFCN to
facilitate the message re-broadcasting when the connectivity is low, depends on
the size of the neighborhood n, as given by:

1 n < safeDensity

threshold(n) = { (2)

minGain *n  otherwise .

where safeDensity is the maximum safe density below which DFCN always
rebroadcasts and minGain is the minimum gain for rebroadcasting, i.e., the
ratio between the number of neighbors which have not received the message and
the total number of neighbors.
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Each time a station s gets a new neighbor, the RAD for all messages is set
to zero and, therefore, messages are immediately candidate to emission. If N(s)
is greater than a given threshold, which we have called proD, this behavior is
disabled, so no action is undertaken on new neighbor discovery. proD is used for
avoiding massive packet rebroadcasting when a new station appears in highly
dense areas, that is, avoiding network congestions on the proactive behavior.

2.3 MOP Definition: DFCNT

From the description of the previous section, the following DFCN parameters
are to be tuned:

minGain is the minimum gain for rebroadcasting. This is the most impor-
tant parameter for tuning DFCN, since minimizing the bandwidth should
be highly dependent on the network density. It ranges from 0.0 to 1.0.

[lowerBoundRA D,upperBoundRAD] defines the RAD value (random de-
lay for rebroadcasting in milliseconds). Both parameters take values in the
interval [0.0,10.0] milliseconds.

proD is the maximal density (proD € [0,100]) for which it is still needed using
proactive behavior (i.e., reacting on new neighbors) for complementing the
reactive behavior.

safeDensity defines a maximum safe density of the threshold which ranges
from 0 to 100 devices.

These parameters, i.e., a DFCN configuration, characterize the search space.
Here, the objectives to be optimized are: minimizing the makespan (in seconds),
maximizing the network coverage (percentage of devices having received the
broadcasting message), and minimizing the bandwidth used (in number of trans-
missions). Thus, we have defined a triple objective MOP, which has been called
DFCNT (standing for DFCN Tuning). For obtaining the values of these objective
functions we have used Madhoc because it implements the DFCN broadcasting
protocol. Then, our goal is to obtain the Pareto front of DFCNT (and the cor-
responding DFCN configurations) in terms of these three objectives.

3 Multiobjective Scatter Search

In this section, we first give a brief overview of the scatter search technique and,
second, we describe the modifications on this standard scatter search for dealing
with MOPs to explain our proposed AbSS.

3.1 Scatter Search

Most implementations of scatter search use the template proposed by Glover
in [4]. As depicted in Fig. 2, this metaheuristic consists of five methods: diver-
sification generation, improvement, reference set update, subset generation, and
solution combination.
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Fig. 2. Outline of the standard scatter search algorithm

The scatter search technique starts by creating an initial set of diverse indi-
viduals in the initialization phase. This phase consists of iteratively generating
new solutions by invoking the diversification generation method; each solution
is passed to the improvement method, which usually applies a local search pro-
cedure in an iterative manner, and the resulting individual is included into the
initial set P. After the initial phase, the scatter search main loop starts.

The main loop begins building the reference set from the initial set by invok-
ing the reference set update method. The reference set is a collection of both
high quality solutions and diverse solutions that are used for generating new
individuals. Solutions in this set are systematically grouped into subsets of two
or more individuals by means of the subset generation method. In the next step,
solutions in each subset are combined to create a new individual, according to
the solution combination method. Then, the improvement method is applied to
every new individual. The final step consists of deciding whether the resulting
solution is inserted into the reference set or not. This loop is executed until a
termination condition is met (for example, a given number of iterations has been
performed, or the subset generation method does not produce new subsets).

Optionally, there is a re-start process invoked when the subset generation
method does not produce new subsets of solutions. The idea is to obtain a new
initial set, which will now include the current individuals in the reference set.
The rest of individuals is generated by using the diversification generation and
improvement methods, as in the initial phase.

3.2 AbSS

ADbSS (Archive-based Scatter Search) [3] is based on the aforementioned scatter
search template and its application to solve bounded continuous single objective
optimization problems [6]. It uses an external archive for storing nondominated
solutions and combines ideas of three state-of-the-art evolutionary algorithms
for solving MOPs. In concrete, the archive management follows the scheme of
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PAES [11], but using the crowding distance of NSGA-II [12] as a niching measure
instead of the PAES adaptive grid; additionally, the density estimation found in
SPEA2 [13] is adopted for selecting the solutions from the initial set that will
build the reference set. Once described the overall view of the technique, we now
detail the five methods to engineer AbSS:

— Diversification Generation Method: Its goal is to generate an initial
set P of diverse solutions. The method consists of dividing, for every new
solution, the range of each variable into a number of subranges of equal
size; then, each solution is created in two steps. Firstly, a subrange is ran-
domly chosen, with the probability of selecting a subrange being inversely
proportional to its frequency count (the number of times the subrange has
been previously selected); secondly, a value is uniformly randomly generated
within the selected range.

— Improvement Method: It is a local search method based on a mutation
operator (Polynomial mutation [14]) and a Pareto dominance test. It oper-
ates by iteratively mutating an individual with the aim of improving it. Since
we are dealing with MOPs, it may occur that the newly generated individual
and the current one are nondominated each other (Pareto dominance test).
In this case, the original individual is inserted into the external archive and
the mutated individual becomes the new current one.

— Reference Set Update Method: A similar issue rises when building the
RefSet in this method, i.e., how to pick up the best among a set of nondom-
inated solutions. RefSet is composed of two subsets, RefSet; and RefSet,
so that the first one contains the best quality solutions in the initial set of
solutions, while the second subset should be filled with solutions promoting
diversity. While RefSet, is constructed by choosing those individuals whose
minimum FEuclidean distance to the reference set is the highest, RefSet; is
built by using the concepts of strength raw fitness and a density estimation
of SPEA2 [13] when choosing the best individuals.

— Subset Generation Method: It generates all pairwise combinations of
solutions in RefSet; and, separately, in RefSets.

— Solution Combination Method: The simulated binary crossover
(SBX) [14] is used for combining solutions in AbSS.

4 Experiments

This section is devoted to presenting the experiments performed for this work.
We first describe the metrics used for measuring the performance of the result-
ing Pareto fronts. Next, the parameterization of AbSS and Madhoc is detailed.
Finally, we show the results for DFCNT and compare them against cMOGA [2].

4.1 Metrics

We have used three metrics for assessing the performance of both AbSS and
cMOGA: the number of Pareto optima that the optimizers are able to find, Set
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Coverage [15] which allows two algorithms to be compared in terms of Pareto
dominance, and Hypervolume [16] which measures both convergence and diver-
sity at the same time in the resulting Pareto fronts. They are defined as:

— Number of Pareto optima: Given that DFCNT is a difficult problem,
finding a high number of nondominated solutions could be itself a hard chal-
lenge for any multiobjective optimizer. In this sense, the number of Pareto
optima can be considered as a measure of the ability of the algorithm for
exploring difficult search spaces defined by hard MOPs like DFCNT.

— Set Coverage: The set coverage metric C(A, B) calculates the pro-

portion of solutions in B which are dominated by solutions of A:
C(A B) _ |{veB | 3a€A:a=b}|

R |B] )

A metric value C(A, B) = 1 means that all members of B are dominated

by A, whereas C(A, B) = 0 means that no member of B is dominated by
A. This way, the larger the C(A, B), the better the Pareto front A with
respect to B. Since the dominance operator is not symmetric, C(A, B) is not
necessarily equal to 1 — C(B, A), and both C(A, B) and C(B, A) have to be
computed for understanding how many solutions of A are covered by B and
vice versa.

— Hypervolume: This metric calculates the volume (in the objective space)
covered by members of a nondominated set of solutions Q. Let v; be the
volume enclosed by solution ¢ € Q. Then, a union of all hypercubes is found

and its hypervolume (HV) is calculated: HV = volume (U'ﬁ'l vi)
Algorithms with larger values of HV are desirable. Since this metric is

not free from arbitrary scaling of objectives, we have evaluated the metric
by using normalized objective function values.

4.2 Parameterization

As we stated in Sect. 2.1, the behavior of Madhoc has been defined based on three
parameters mainly: the size of the simulation area, the density of mobile stations,
and the type of environment. For our experiments, we have used a simulation
area of 40,000 square meters, a density of 2,000 stations per square kilometer,
and, from the available environments of Madhoc, the mall environment has been
used. This environment is intended to model a commercial shopping center, in
which stores are usually located together one each other in corridors. People go
from one store to another by these corridors, occasionally stopping for looking at
some shopwindows. Both the mobility of devices and their signal propagation are
restricted due to the walls of the building. A metropolitan MANET with such a
configuration has been shown in Fig. 1. Due to the stochastic nature of Madhoc,
five simulations (i.e., five different network instances) per function evaluation
have been performed so that the fitness values of the functions are computed as
the average resulting values of these five different network instances.

The configuration used for cMOGA is the same as that used in [2]: a popula-
tion of 100 individuals arranged in a 10 x 10 square toroidal grid, the neighbor-
hood is NEWS, binary tournament selection, simulated binary crossover (SBX)
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Table 1. Performance metrics for AbSS and cMOGA when solving DFCNT

AbSS cMOGA
Metric average std average std t-test
Number of Pareto Optima 98.7586 2.8119 98.1053 2.9000 —
Set Coverage 0.9865 0.0103 0.9793 0.0076 +
Hypervolume 0.8989 0.0695 0.8199 0.0854 +

with p. = 1.0, polynomial mutation (p,, = 1.0/L, L = individual length), archive
size of 100 individuals, and the adaptive grid of PAES [11] has been used as
crowding method (see [2] for further the details). Regarding AbSS, we have uti-
lized the parameterization proposed in [3]: external archive maximum size of 100
nondominated solutions, the size of the initial set P is 20, the number of itera-
tions in the improvement method is 5 (polynomial mutation with a distribution
index equal to 10), SBX crossover (solution combination method) also with a
distribution index equal to 10, and the size of RefSet; and RefSety as well is
10. Both cMOGA and AbSS stop when 25,000 function evaluations have been
computed. It is important to note that 25,000 evals x 5 simulations/eval means
that DFCN has been optimized over 125,000 different network instances.

4.3 Results

Let us now begin with the analysis of the results, which are presented in Table 1.
Since both AbSS and cMOGA are stochastic algorithms and we want to provide
the results with statistical confidence, 30 independent runs of each multiobjective
optimizer have been performed, as well as t-tests at 95% of significance level (last
column of Table 1). The t-test assesses whether the means of two samples are
statistically different from each other.

If we consider that the two algorithms are configured for obtaining 100 non-
dominated solutions at most (maximum archive size), values shown in Table 1
point out that most executions of the optimizers fill up the whole archive. Though
ADbSS returns a slightly higher number of Pareto optima on average than cMOGA
does, the difference is negligible and no statistical confidence exists (“—” symbol
in t-test column), thus showing that both optimizers have a similar ability for
exploring the search space of DFCNT.

As regards to the Set Coverage metric, we want to clarify that results shown
in column “AbSS” correspond to C(AbSS,cMOGA) whereas those presented in
column “cMOGA” are C(cMOGA, AbSS). As it can be seen in Table 1, AbSS
gets larger values for this metric than cMOGA and there exists statistical con-
fidence for this claim (see “+” symbol in the last column). This fact points out
that AbSS can find solutions that dominate more solutions of cMOGA than vice
versa. However, Set Coverage values are similar in both the cases, what indi-
cates that each algorithm computes high quality solutions that dominate most
solutions of the other, but those high quality solutions are in turn nondominated.

Last row in Table 1 presents the results of the Hypervolume metric. They
clearly show now that AbSS overcomes cMOGA when considering at the same
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Fig. 3. Two DFCNT fronts from both AbSS and cMOGA

time both convergence and diversity in the resulting Pareto fronts (all this sup-
ported with statistical confidence). Since the Set Coverage metric showed that
both optimizers were similar in terms of convergence, we can conclude that AbSS
is reaching this Hypervolume value because of the diversity in the found Pareto
front. That is, the set of nondominated solutions computed by AbSS covers a
larger region of the objective space, what is an important feature for actual de-
signs of MANETSs. We show an example Pareto front that capture the previous
claims in Fig. 3. Regarding coverage, the AbSS front (“+” symbols) is behind
(on the right) cMOGA solutions (“x” symbols). With respect to diversity, it
also can be seen that there are nondominated solutions from AbSS that reach
DFCN configurations where message coverage is around 40% of the stations
while cMOGA is not able to get solutions in this region of the objective space.
Therefore, using AbSS provides the network designer (decision maker) with a
wider set of DFCN parameter settings which ranges from configurations that get
a high coverage in a short makespan but using a high bandwidth to those cheap
solutions in terms of time and bandwidth being suitable if coverage is not a hard
constraint in the network.

5 Conclusions and Future Work

This paper investigated the usage of AbSS, a multiobjective scatter search
method, for optimally tuning the DFCN broadcasting strategy for MANETS.
The multiobjective problem to be solved is called DFCNT and has three goals:
minimizing makespan, maximizing network coverage, and minimizing the net-
work usage. DFCNT has been previously tackled with a cellular multiobjective
genetic algorithm called cMOGA.

Three metrics have been used for comparing the optimizers: Number of Pareto
optima, Set Coverage, and Hypervolume. Regarding the number of nondomi-
nated solutions found, AbSS got a slightly higher number of configurations for
DFCN on average than cMOGA, but differences are negligible. Regarding Set
Coverage and Hypervolume, resulting values from the metrics claim that solu-
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tions from the scatter search approach dominated those obtained with cMOGA
(convergence) as well as covered a larger region of the objective space (diver-
sity). From these results, a clear conclusion can be drawn: AbSS is a promising
approach for solving DFCNT with advantages over the existing one.

As a future work, we plan to perform more in depth analysis on using AbSS
for solving real world MOPs. On the one hand, we also intend to use different
scenarios where DFCN has to be tuned and, on the other hand, enlarge the
simulation area to a still larger metropolitan network for large cities.
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Abstract. Since chip multiprocessors are quickly penetrating new application
areas in network and media processing, their interconnection architectures be-
come a subject of sophisticated optimization. One-to-All Broadcast (OAB) and
All-to-All Broadcast (AAB) [2] group communications are frequently used in
many parallel algorithms and if their overhead cost is excessive, performance
degrades rapidly with a processor count. This paper deals with the design of a
new application-specific standard genetic algorithm (SGA) and the use of Hy-
brid parallel Genetic Simulated Annealing (HGSA) to design optimal commu-
nication algorithms for an arbitrary topology of the interconnection network.
Each of these algorithms is targeted for a different switching technique. The
OAB and AAB communication schedules were designed mainly for an asym-
metrical AMP [15] network and for the benchmark hypercube network [16] us-
ing Store-and-Forward (SF) and Wormhole (WH) switching.

1 Introduction

With parallel and distributed computing coming of age, multiprocessor systems are
more frequently found not only in high-end servers and workstations, but also in
small-scale parallel systems for high performance control, data acquisition and analy-
sis, image processing, networking processors, wireless communication, and game
computers. The design and optimization of hardware and software architectures for
these parallel embedded applications have been an active research area in recent
years. For many cases it is better to use several small processing nodes rather than a
single big and complex CPU. Nowadays, it is feasible to place large CPU clusters on
a single chip (multiprocessor SoCs, MSoCs), allowing both large local memories and
the high bandwidth of on-chip interconnect.

One of the greatest challenges faced by designers of digital systems is optimizing
the communication and interconnection between system components. As more and
more processor cores and other large reusable components have been integrated on
single silicon die, a need for a systematic approach to the design of communication
part has become acute. One reason is that buses, the former main means to connect
the components, could not scale to higher numbers of communication partners. Re-
cently the research opened up in Network on Chip (NoC) area, encompassing the
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interconnection/communication problem at all levels, from physical to the architec-
tural to the OS and application level [1].

Presently, there are many different interconnection network topologies for general
purpose multiprocessors, but new networks for specific parallel applications can still
be created. Whereas the lower bounds on the time complexity of various group com-
munications (in terms of required number of communication steps) can be mathemati-
cally derived for any network topology and the given communication pattern, finding
a corresponding schedule of communication is more difficult and in some cases it is
not known as yet. The rest of the paper addresses the quest for an optimal communi-
cation schedule based on evolutionary algorithms, provided that network topology
and a communication pattern are given.

2 Models of Communications

Communications between two partners (p2p) or among all (or a subset) of partners
engaged in parallel processing have a dramatic impact on the speedup of parallel
applications. Performance modelling of p2p and group communications is therefore
important in design of application-specific systems. A p2p communication may be
random (input data dependent) as far as source-destination pair or a message length is
concerned. However, in many parallel algorithms we often find certain communica-
tion patterns, which are regular in time, in space, or in both time and space; by space
we understand spatial distribution of processes on processors. Communications taking
place among a subset or among all processors are called group or collective commu-
nications. Examples of these may serve One-to-All Broadcast (OAB), All-to-All
Broadcast (AAB), One-to-All Scatter (OAS, a private message to each partner), All-
to-One Gather (AOG), All-to-All Scatter (AAS), permutation, scan, reduction and
others [2]. Provided that the amount of computation is known, as is usually true in
case of application-specific systems, the only thing that matters in obtaining the high-
est performance are group communication times.

The simplest time model of communication uses a number of communication steps
(rounds): point-to-point communication takes one step between adjacent nodes and
a number of steps if the nodes are not directly connected.

Two types of switching are used in this article. The first one is distance-sensitive
Store-and-Forward (SF). Each intermediate node on the path firstly receives the
whole message and then sends it to adjacent node in the next possible communication
step. The second type of switching is called wormhole (WH) switching. Here several
p2p messages between source-destination pairs, not necessarily neighbours can pro-
ceed concurrently and can be combined into a single step if their paths are disjoint. Of
course, for simplicity, we assume no contention for channels and no resulting delays.
An example of these switching techniques is shown in Fig. 1.

Further, we have to distinguish between unidirectional (simplex) channels and bi-
directional (half-duplex, full-duplex) channels. The number of ports that can be en-
gaged in communication simultaneously (1-port or all-port models of routers) has also
an impact on the number of communication steps and communication time, as well as
if nodes can combine/extract partial messages with negligible overhead (combining
model) or can only retransmit/consume original messages (non-combining model).
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We use all-port non-combining model in our experiments. The goal was to find
communication algorithms whose time complexity is as close as possible to mathe-
matically derived lower bounds on number of communication steps.

Store-and-forward

Py

>

time
Wormbhole Communication step
P |
P, | RS
Py | | [ P
Py [] [ Py >
Y time

Communication step

Fig. 1. Basic type of switching techniques

In our experimental runs mostly the well known hypercube [16] and AMP network
[15] topologies were tested, see Fig. 2. Optimal schedules for the former topology are
known and can therefore be used to evaluate quality of used algorithms; the feature of
the latter topology (for which optimal schedules are unknown) is that the number of
nodes with degree d that can be connected in a network is maximum.

Fig. 2. 32 processors AMP topology and 16 processors hypercube topology

3 Discrete Optimization Algorithms

Combinatorial search and optimization techniques in general are characterized by
quest for a solution to a problem from among many potential solutions. For many
search and optimization problems, exhaustive search is infeasible and some form of
guided search is undertaken instead. In addition, rather than only the best (optimal)
solution, a good non-optimal solution is often sought.
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3.1 Standard Genetic Algorithm (SGA)

A genetic algorithm [3] is a powerful, domain-independent search technique. SGA is
a population-based computational model that uses selection and recombination opera-
tors to generate new samples in the search space. A chromosome, consisting of genes,
represents one encoded solution from the search space. The values of genes are re-
ferred to as alleles. The chromosomes form population, which changes through the
evolution process. The reproduction process is performed in such a way that chromo-
somes, which represent better solutions, are given more chances to reproduce than
those chromosomes, which represent poorer solutions. The fitness function (a meas-
ure of quality) of chromosomes is defined in the frame of the population. The fitness
function is applied to genotype (chromosomes) for evaluating phenotype (decoded
form of the chromosome).

One point crossover and integer bound mutation were used as recombination op-
erators and tournament selection as selection operator.

3.2 Hybrid Parallel Genetic Simulated Annealing (HGSA)

HGSA [7] is a hybrid method that uses parallel Simulated Annealing (SA) [10] with
the operations used in standard genetic algorithms [8]. In the proposed algorithm,
several SA processes run in parallel. After a number of steps (after every ten iterations
of Metropolis algorithm), the crossover is used to produce new solutions.

During communication, which is activated each 10th iteration of Metropolis algo-
rithm, all processes sends their solution to a master. The master keeps one solution for
himself and sends one randomly chosen solution to each slave. The selection is based
on the roulette wheel, where the individual with the best value of the fitness function
has the highest probability of selection.

After communication phase, all processes have two individuals. Now the phase of
genetic crossover starts. Two additional children solutions are generated from two
parent solutions using double-point crossover. The solution with the best value of the
fitness function is selected and mutation is performed: always in case of the parent
solution, otherwise with a predefined probability. Mutation is performed by randomly
selecting genes and by randomly changing their values. A new solution of each proc-
ess is selected from the actual solution provided by SA process and from the solution,
which was obtained after genetic mutation. The selection is controlled by well-known
Metropolis criterion.

4 OAB and AAB Communication Patterns

OAB (One-to-All Broadcast) [4, 5] is a collective communication pattern. In this case,
one node (initiator) distributes the same message to all other nodes in the interconnec-
tion network. If only node subset takes part in communication, we talk about multi-
cast communication pattern (MC). This communication (as well as OAS [11, 12] with
distinct messages to receiving nodes) can be performed by sequentially sending the
message to particular nodes. This way is very inefficient because only one node sends
the message in each communication step. However we can use a better technique
using a broadcast tree when every node that received the message in previous com-
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munication step becomes an initiator of new multicast communication. Consequently,
the number of informed nodes increases by d* instead by d, where d is the node degree
and k is number of communication steps.

The goal of the proposed evolutionary algorithm is to find such a broadcast tree
(communication schedule) that it will be possible to inform all nodes in the minimal
number of communication steps. A resulting communication schedule has to be con-
flict-free, i.e. only one message can be transmitted via the same link in the same step
and the same direction.

Optimal communication schedules for OAB communication pattern using store
and forward and wormhole switching technique on eight nodes ring topology are
shown on the left side of Fig. 3. Broadcast trees are shown on the right side.

OAB - SF SF broadcast tree WH broadcast tree

Fig. 3. The optimal OAB schedules for 8 nodes ring topology and the relevant broadcast trees

The lower bounds on the number of communication steps for the all-port hyper-
cube and AMP topology are shown in Table 1. Parameters of the interconnection
network in Table 1 are: processors count P, network diameter D, node degree d, bi-
section width B, and average distance d,.

Table 1. Lower bounds on number of communication steps (all-port models) [13]

SF hypercube WH hypercube | SF AMP WH AMP

OAB [D (= d) [dlog(d+1)| |D [log 41 P |
AAB [[(P-1)/d] [(P-1)/d] [(P-Ddl |[(P=1)d]

S Design of Algorithms

The goal of proposed algorithms is to find a schedule of a group communication with
the number of steps as close as possible to the above lower bounds. The solution of
this optimization problem by means of evolutionary algorithms may be decomposed
into several phases. In the first phase, it is necessary to choose a suitable encoding of
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the problem into a chromosome. The second step is a definition of the fitness func-
tion, which determines quality of a chromosome. The next phase is design of the input
data structure for the evolutionary algorithm. The last phase includes experimental
runs of the evolutionary algorithm and search for the best set of its parameters. The
choice of parameters should speed-up the convergence of the algorithm and simulta-
neously minimizes a probability of getting stuck in local minima.

5.1 Solution Encoding

Different encodings were used for each optimization algorithm according to the
switching technique. We used an indirect encoding for OAB with wormhole switch-
ing optimized by SGA algorithm. Thus a chromosome does not include a decision
tree, but only instructions how to create it from chromosome. Any chromosome con-
sists of P genes. Every gene corresponds to one destination node. Individual genes
include three integer values. The first one is a source node index. The second one
determines the shortest path along which the message will by transmitted. The last
one is a communication step number when the communication will be performed.

The main disadvantage of this encoding is formation of inadmissible solutions dur-
ing process of genetic manipulation. We say that a solution is inadmissible if it is not
possible to construct correct broadcast tree from it. An example of inadmissible solu-
tion can be a case when some node receives a message in a given step from a node
that has not received the message yet. That is why admissibility verification has to be
carried out for every solution before every fitness function evaluation and if the need
be, the restoration will be accomplished. In Fig. 4, a chromosome for wormhole OAB
communication patter for the 8-node ring topology is presented.

Destination Communication step number
dh VAN N
0 1 2 3 4 6 7
|0|0|() 0|0|2 3|0|2 0|()|1 3|0| 6|0| 0|0|10|0|2|
F ——f " ¥
Source Gene The shortest paths index

Fig. 4. Encoding of broadcast tree in chromosome for SGA case

Very simply encoding of SF OAB communication pattern has been chosen for
HGSA. Every chromosome consists of P genes, where P is a number of processors in
a given topology. The gene’s index represents the destination processor for a mes-
sage. The gene consists of two integer components. The first component is an index
of one of the shortest path from source to destination. The second component is a
sequence of communication links on the path. Fig. 5 illustrates an example of this
encoding. The source processor has index 0. For completeness the chromosome in-
cludes also communication from source to source processor, but this communication
is not realized. This gene is included only for the easier evaluation of the fitness
function.
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The main advantage of this encoding is a short chromosome and the absence of in-
admissible solutions (every message is transmitted from the source to a destination).
The main disadvantage is a large number of possible values of the first gene compo-
nent. The number of the values rapidly increases with the distance from source to
destination as there are more shortest paths between them.

Destination
a0 1 2 3
0 0,0,.. 4 124, | 6 245.. | 9 135..
0 0 0
/ 0
Source%f—/
Gene The shortest path List of communi-

1nde?( frF)m source t0  cation steps
destination

Fig. 5. The structure of chromosome of HGSA in case of OAB

The AAB chromosome is an extension of a vector to matrix for both optimization
algorithms SGA and HGSA. An AAB chromosome is composed of P OAB chromo-
somes as every processor performs OAB.

5.2 The Fitness Function

The fitness function evaluation is the same for both proposed algorithms. It is based
on testing of conflict-freedom. We say that two communication paths are in conflict if
and only if they use the same communication link in the same time and in the same
direction (see Fig. 6). The fitness function is based on conflict counting. The optimal
communication schedule for the given number of communication steps must be con-
flict-free. If the conflict occurs, the schedule can not be used in real application.

Conflict-free

Fig. 6. Conflict in a communication schedule

Conflict
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5.3 The Shortest Paths Algorithm

This algorithm generates all shortest paths and saves them in the operating memory
into a specific data structure. The generating algorithm [6] is inspired by the breadth-
first search algorithms BFS. BES is based on the searching a graph, where the source
processor is chosen as a root. The edges create a tree used in searching process. A tree
is gradually constructed, one level at a time, from the root that is assigned an index of
a source node. When a new level of the tree is generated, every node at the lowest
level (leaf) is expanded. When a node is expanded, its successors are determined as
all its direct neighbours except those, which are already located at higher levels of the
tree (it is necessary to avoid cycles). Construction of the tree is finished when a value
of at least one leaf is equal to the index of a destination node. Destination leaves’
indices confirm the existence of searched paths, which are then stored as sequences of
incident node indices.

5.4 Heuristics

In SGA a new heuristic for chromosome restoration was used. The restoration (cor-
rection of the broadcast tree) proceeds subsequently in particular communication
steps. For every node we check if it receives the message from the node that has al-
ready received it in some previous communication step. As far as this condition is not
satisfied, the source node of this communication is randomly replaced by a node that
already has the message. Further, it is necessary to check already used shortest paths.
There is a finite number of the shortest paths from every source to every destination
node. If the second gene component (the index path) exceeds this value, the modulo
operation will be applied to this gene component.

In HGSA two heuristics are used to speed up the convergence to a sub-optimal so-
lution. They decrease the probability of being trapped in local optima during the exe-
cution. The idea is a simple reduction of the path length. The first heuristics is used
after the initialization of HGSA and then after each application of Metropolis algo-
rithm. The length of the path from the source to the destination node has some value.
If the end node occurs in another gene with a smaller length, than the length and the
path in the original gene are changed accordingly.

message
0o —*> 7
0 ——--p 4

Fig. 7. Reduction of shorter path according to longer path

The second heuristics is used in all surveyed collective communications. It re-
moves using proper setting of the communication step for several nodes incident with
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the examined path. It means really to endeavour after suspending message in the node
during the usage of the same link by another message. However, this changing must
not increase the number of the communication steps of the optimal schedule.

In the case that above presented way doesn’t lead to improvement, it tries other
way and it is endeavor after the fastest sending message from source to destination.

6 Experimental Results

Both sequential SGA and parallel HGSA have been implemented in C/C++. They use
only standard C and C++ libraries to ensure good portability. HGSA implementation
uses MPI [9] routines for message passing and can therefore be compiled and run on
any architecture (clusters of workstations, MPPs, SMPs, etc.) for which an implemen-
tation of MPI standard is available.

The proposed algorithms were verified on some multiprocessor topologies (e.g.
Midimew, K-Ring...). Two topologies were examined most intensively, namely five
cases of hypercubes and five cases of AMP network topologies were used. Other
topologies were tested only in 8-node configuration.

The theoretical time complexity in terms of a minimal number of communication
steps can be derived for all examined topologies. Theoretical lower bounds of tested
topologies are shown in Table 2.

Table 2. Theoretical lower bounds of tested topologies

Lower bounds Hyper-8 Hyper-16 Hyper-32 | Hyper-64 | Hyper-128
OAB 2 2 2 3 3
AAB 3 4 5 6 7

AMP-8 AMP-23 AMP-32 | AMP-42 | AMP-53
OAB 2 2 3 3 3
AAB 2 6 8 11 13

K-ring Midimew | Moore Octagon | Ladder
OAB 2 2 2 2 4
AAB 2 2 3 3 4

Parameters of SGA were set to the same values for all runs, i.e. probability of
crossover 70%, probability of mutation 5%. 10 runs of SGA were performed for each
topology, whereas the size of population was set on the value, in which success rate
was better than 50%.

Parameters of HGSA were set to the same values for all runs too, i.e. 10 computers
in the master slave architecture, the length of communication interval between master
and slave was each 10’s iterations of Metropolis algorithm 10/10 (OAB/AAB), start
temperature 100, number of iterations in each temperature phases was 10, gradient of
cooling 0.9/0.99 (OAB/AAB). 15 runs of HGSA were performed for each topology.

We counted only the successful completions, i.e. those reaching the global opti-
mum. The success rate of both algorithms (SGA and HSGA) was measured and com-
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pared. If we compare success rate (Table 3) of AMP-23 and AMP-32 topology, we
see that the success rate is better for more complex topology. While for AMP-23 not
rounded time complexity is 1.94 steps, for AMP-32 it is 2.15 steps. The time com-
plexity of optimal communication schedule can not exceed two communication steps
in the first case whereas it can be split into three steps in the second case. By compar-
ing not rounded and rounded time complexities we can make a conclusion, that in the
case of AMP-32 topology, much more interconnection links remain unused and the
evolutionary algorithm has more space to find the optimal schedule. The same ab-
normality can be seen in some other topologies (hyper-32 and hyper-64). The success
rate 100% was achieved for all other examined topologies.

The presented data of HGSA deserves some comments. Firstly, OAB (SF) is quite
a simple operation and therefore the algorithm is likely to find an optimal solution
even for larger architectures. Optimal solutions have already been found for topolo-
gies with up to 32 processors and acceptable results have been attained for AAB.
A further improvement of these results can be expected in the future, because number
of experiments, which could be carried out so far, was limited by the overall run time
required for optimization (many hours if optimal solutions are sought). On the other
hand, if we need an acceptable solution quickly, the proposed algorithms allow to
accept a larger number of communication steps and the solution is found in much
shorter time.

Table 3. Success rate in achieving the optimum schedule

Hyper-8 | Hyper-16 Hyper-32 Hyper-64 | Hyper-128

SGA - OAB 100% 100% 50% 60% 50%
HGSA - OAB | 100% 100% 100% 100% 100%
SGA — AAB 70% 20% - - -

HGSA - AAB | 100% 80% - - -
AMP-8 AMP-23 AMP-32 AMP-42 | AMP-53

SGA — OAB 100% 50% 100% 60% 50%
HGSA - OAB | 100% 100% 100% 100% 100%
SGA — AAB 70% 30% 10% - -
HGSA - AAB | 100% 80% 10% - -

7 Conclusions

Optimization of communication schedules by means of the proposed evolutionary
algorithms has been successful. Optimal communication schedules achieve the lower
bounds of communication steps derived from graph-theoretical properties of intercon-
nection networks. It is evident that optimum schedules can speed-up execution of
many parallel programs that use collective communication as a part of their algorithm.

We have tested two types of evolutionary algorithms. The first one is standard ge-
netic algorithm SGA and the second one HGSA is a composition of parallel simulated
annealing and the standard genetic algorithm. Both presented algorithms are able to
find an optimal schedule of the given communication pattern for arbitrary network
topology, each one with sufficient efficiency.
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The future work will be focused on the communication patterns OAS and AAS in
case of HGSA and OAB, AAB in case of Estimation of Distribution Algorithms
(EDA) [14]. We will implement multi-criteria optimization in EDA algorithms (with-
out the need to enter the number of communication steps) and to design and imple-
ment more efficient heuristics for HGSA.

Importance and novelty of above goals should be emphasized. Algorithms, which
would be able to find all types of collective communication on any regular or irregu-
lar topology, were not published so far in spite of a growing importance especially for
multiprocessors on chips.
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Abstract. The k-cut problem is an NP-complete problem which con-
sists of finding a partition of a graph into k balanced parts such that the
number of cut edges is minimized. Different algorithms have been pro-
posed for this problem based on heuristic, geometrical and evolutionary
methods. In this paper we present a new simple multiagent algorithm,
ants, and we test its performance with standard graph benchmarks. The
results show that this method can outperform several current methods
while it is very simple to implement.

1 Introduction

Graph partitioning is a problem which appears in many different applications
such as VLSI design, data-mining, finite elements and communication in par-
allel computing. In the latter case, for example, the subdomains are mapped
to processors and to avoid bottlenecks, the assignment should be as uniform
as possible and the data exchange between processors minimized. In terms of
graphs, the goal is to find a balanced k-partition of a graph G = G(V, E) with
a minimal number of cut edges separating the sets from each other (k-cut). As
this is an NP-complete problem [5], for graphs with a large order we cannot be
sure we can find an optimal solution in a reasonable computation time: when
the size of the graph increases, the execution time of an algorithm capable of
solving the problem can be assumed to grow exponentially. Therefore the prob-
lem is practically unsolvable for most networks and for this reason heuristic and
probabilistic methods are implemented to obtain solutions close to the optimal
in a reasonable time. The only way to guarantee the optimal solution is an ex-
haustive search. Nevertheless, this is only applicable to very simple problems in
which the number of nodes is small.

Given the importance of the k-cut problem, there is a large literature propos-
ing different algorithms. For example, in [6] an heuristic method is introduced
which can find, for the general problem, approximate solutions in time O(|V|*")
and in [9] the algorithm proposed can find solutions within a factor of (2 —2/k)

* Research supported by the Ministerio de Educacién y Ciencia, Spain, and the Eu-
ropean Regional Development Fund under project TIC2002-00155.
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of the optimal k-cut requiring |V| — 1 max-flow computations. Recent more effi-
cient methods are based on multilevel paradigms [1, 12], in some cases combined
with evolutionary algorithms [10, 8].

In this paper we use a multiagent algorithm, ants, for the k-cut problem. This
algorithm has proved useful in coloring and frequency assignment problems [3, 2].
The method is simple to understand and to implement and the results obtained
with standard benchmarks show that it can outperform current algorithms.

2 Graph Partitioning

Let G = G(V, E) be an undirected graph where V is the vertex set and E the
edge set. Although in the general partitioning problem both vertices and edges
can be weighted, here as in most of the literature, they are given unit weights.
A partition of the graph is a mapping of V into k£ disjoint subdomains S; such
that the union of all subdomains is V| i.e. Ule S; = V. The cardinality of a
subdomain is the number of vertices in the subdomain S;, and the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) is denoted by E. and
referred to as the k-cut. The objective of graph partitioning is to find a partition
which evenly balances the cardinalities of each subdomain whilst minimizing the
total number of cut edges or cut-weight, |E.|. To evenly balance the partition,

the cardinality of the optimal subdomain is given by |Syp| = P‘;l—‘. The graph
partitioning problem can then be specified as: find a partition of G such that
|E.| is minimised subject to the constraint that [Sop] — 1 < [S;| < |Sope| for
1 <4 < k. In this paper we find partitions with perfect balance.

3 The ants Algorithm

The partitioning or k-cut problem described in the previous section, as many
other problems in graph theory, is an NP-complete problem [5]. Efficient algo-
rithms for this problem are known only for very particular classes of graphs.
When exact methods are not possible, sometimes it is sufficient to obtain an ap-
proximate solution with a fast and easy to implement method. This is the case
of simulated annealing, genetic algorithms, neural networks, ant colony based
systems, or multiagent methods like the one described here.

To implement any of these optimization methods we need a way to encode
the problem which has to be solved, and a system to quantify how “good” a
solution is. In our case a possible solution may be described using a list such
that each position is associated to a vertex of the graph and its value to a color
which represents the subdomain to which it belongs. The global cost function
simply counts the number of times that an edge joins vertices of different colors.
We use also a local cost function associated to each vertex defined as the ratio
between the number of neighbors that have different colors to the total number
of neighbors.
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Fig. 1. Movement of an ant towards the worst local node

The ants algorithm is a multiagent system based on the idea of parallel search.
Unlike other algorithms with a similar name which are generically known as ant-
colony optimization, our algorithm does not use “pheromones” or local memory.
Thus it is faster and easier to implement. A generic version of the algorithm
was proposed in [3]. The mechanism of the algorithm is as follows: Initially the
graph is k vertex colored at random keeping the number of vertices for each
color balanced. A given number of agents, which we call ants, is placed on the
vertices also at random. Then the ants move around the graph and change the
coloring according to a local optimization criterion: At a given iteration each
ant moves from the current position to the adjacent vertex with the lowest local
cost, i.e. the vertex with the greatest number of constraints (neighbors of a
different color) and replaces its color with a new color which increases the local
cost. At the same time, and to keep the balance, the algorithm chooses, from
a set of s random vertices, one with the lowest value of the local cost function
-from those which have the new color- and changes its color to the old color.
After these color changes, the local cost function is updated for the two chosen
vertices and their neighhors. The value of s is not critical, and for our tests we
considered s = 100. The actions are randomly repeated for each ant. An essential
characteristic of the algorithm comes precisely from the stochastic nature of the
changes performed. The agent or ant moves to the worst adjacent vertex with a
probability p,, (it moves randomly to any other adjacent vertex with probability
1 — pm), and assigns the best color, under probability p. (otherwise it assigns
any color at random). Both probabilities are adjustable parameters and allow the
algorithm to escape from local minima and obtain partitions with k-cuts close to
the optimal. The process is repeated until a solution fulfilling all the constraints is
found or the algorithm converges. The number of ants in the algorithm is another
adjustable parameter that should increase with the diameter of the graph (the
maximum of the distances between pairs of vertices).

In the same way as in an insect colony the action of different agents with
simple behaviors gives rise to a structure capable of carrying out complicated
tasks, the algorithm presented here, which is based on a series of simple local
actions that might even be carried out in parallel, can obtain restrictive graph
partitions. Note that our algorithm is not a simple sum of local searches, as
they would quickly lead to a local solution. The probabilities p,, and p. play an
important role in avoiding these minima, however their values are not critical
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and affect mainly the convergence time of the algorithm which is shorter for
larger values of p,, and p. as the index of local improvement at each iteration
increases.

An outline of the ants algorithm is shown here in pseudocode.

ANTS ALGORITHM:

Initialize
n (number of ants), k, pm, pe
Color each vertex of the graph at random forming %k balanced sets
Put each ant on a randomly chosen vertex
For all vertices
Initialize local cost function

End for
Initialize global cost function
best cost := global cost function

While (best cost > 0) do
For all ants
If (random < p,,)
Move the ant to the worst adjacent vertex
Else
Move randomly to any adjacent vertex
End if
If (random < p.)
Change vertex color to the best possible color
Else
Change to a randomly chosen color
End if
Keep balance (Change a randomly chosen vertex with low local cost
from the new to the old color )
For the chosen vertices and all adjacent vertices
Update local cost function
Update global cost function
End for
If (global cost function < best cost )
best cost = global cost function

End if
End for
End while
4 Results

We tested the algorithm using a set of benchmark graphs which are available
from the Graph Partitioning Archive, a website maintained by Chris Walshaw
[13]. The graphs can also be downloaded from Michael Trick’s website [11]. Many
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Table 1. Best partitions found with ants corresponding to perfect balance for 16 sub-
domains using benchmark graphs[13]. We provide for the graphs of reference the total
of vertices and edges, optimal subdomain size, cut size, new cut size and the algorithm
used to find the old cut size. Boldface denotes those values for which the ants al-
gorithm has outperformed the known result. Algorithms: Ch2.0, CHACO, multilevel
Kernighan-Lin (recursive bisection), version 2.0 (October 1995) [7]. J2.2, JOSTLE,
multilevel Kernighan-Lin (k-way), version 2.2 (March 2000) [14]. iJ, iterated JOSTLE,
iterated multilevel Kernighan-Lin (k-way) [12]. JE, JOSTLE Evolutionary, combined
evolutionary /multilevel scheme [10].

Graph vertices  edges domain size cut size [13] new cut size algorithm
(€2000.5 2000 999836 125 923294 922706 Ch2.0
C4000.5 4000 4000268 250 3709887 3708532 Ch2.0
DSJC125.1 125 736 8 524 522 iJ
DSJC1000.1 1000 40629 63 43078 43001 Ch2.0
DSJC1000.5 1000 249826 63 229362 228850 Ch2.0
jean 80 254 5 161 161 Ch2.0
flat1000 50 0 1000 245000 63 224403 224378 Ch2.0
flat1000 60 0 1000 245830 63 225546 225183 Ch2.0
flat1000 76 0 1000 246708 63 226371 225962 Ch2.0
1e450 5a 450 5714 29 4063 4030 JE
1e450 5b 450 5734 29 4065 4055 iJ
le450 5c 450 9803 29 7667 7656 iJ
le450 15a 450 8168 29 5636 5619 iJ
le450 15b 450 8169 29 5675 5641 iJ
1le450 15¢ 450 16680 29 13512 13509 iJ
le450 15d 450 16750 29 13556 13550 iJ
1le450 25a 450 8260 29 5325 5302 J2.2
le450 25b 450 8263 29 5041 5037 JE
1le450 25¢ 450 13343 29 13457 13456 iJ
le450 25d 450 17425 29 13584 13539 iJ
miles500 128 1170 8 771 770 JE
miles750 128 2113 8 1676 1673 iJ
miles1000 128 3216 8 2770 2768 iJ
miles1500 128 5198 8 4750 4750 J2.2
mulsol.i.1 197 3925 13 3275 3270 Ch2.0
mulsol.i.5 185 3973 12 3371 3368 Ch2.0
myciel4 23 71 2 64 64 J2.2
mycield 47 236 3 205 205 J2.2
myciel7 191 2360 12 1921 1920 iJ
queendb 5 25 160 2 151 151 J2.2
queen8 8 64 728 4 632 632 Ch2.0
queen8 12 96 1368 6 1128 1128 Ch2.0
queenl2 12 144 2596 9 2040 2020 iJ
queenl6 16 256 6320 16 4400 4400 J2.2



284 F. Comellas and E. Sapena

of these graphs were collected together for the second DIMACS implementation
challenge “NP Hard Problems: Maximum Clique, Graph Coloring, and Satis-
fiability”, see [4]. For the test we considered the most difficult case of perfect
balance and choose a partition into 16 sets.

The number of ants ranged from 3 to 9 depending on the order of the graph.
The probabilities p,, and p. were 0.9 and 0.85, respectively. We repeated the
algorithm 20 times for each graph (80 times for small graphs) and recorded the
best solutions. Each algorithm run takes around one minute, for a C program
(400 lines) compiled on a PC Pentium IV 2.8 GHz under Windows XP using
Dev-C++.

Most of the improvements were on results obtained previously with CHACO
(Ch2.0), a multilevel Kernighan-Lin (recursive bisection) [7] and iterated JOS-
TLE (iJ), an iterated multilevel Kernighan-Lin (k-way)[12]. In three cases we
improved on results obtained with JOSTLE Evolutionary (JE), a combined
evolutionary /multilevel scheme [10], and in six more cases we matched or out-
performed results obtained with JOSTLE (J2.2), a multilevel Kernighan-Lin
(k-way)[14]. In our experiments, the algorithm ants obtains better solutions for
the coloring test suite (16 subdomains, perfect balance) of graphs considered
in [12] in 27 cases and an equivalent solution in 7 cases (out of the 89 graph
instances).

5 Conclusion

The results show that our implementation of the multiagent algorithm ants for
the graph partitioning problem provides, for the balanced case, a new method
which complements, and even outperforms, known techniques. Given the sim-
plicity of the algorithm and its performance in the difficult case of balanced sets,
it is a promising method for graph partioning in the non-balanced cases. Note
also that adapting the algorithm for graphs with weighted vertices and edges
would be straightforward.

References

1. R. Banos, C. Gil, J. Ortega, and F. G. Montoya. Multilevel heuristic algorithm
for graph partitioning. In 3rd European Workshop on Evolutionary Computation
in Combinatorial Optimization. Lecture Notes in Comput. Sci. 2611 pp. 143-153
(2003).

2. J. Abril, F. Comellas, A. Cortés, J. Oz6én, M. Vaquer. A multi-agent system for
frequency assignment in cellular radio networks. IEEE Trans. Vehic. Tech. 49(5)
pp. 1558-1565 (2000).

3. F. Comellas and J. Ozén,. Graph coloring algorithms for assignment problems in
radio networks. Proc. Applications of Neural Networks to Telecommunications 2,
pp. 49-56. J. Alspector, R. Goodman and T.X. Brown (Eds.), Lawrence Erlbaum
Ass. Inc. Publis., Hillsdale, NJ (1995)

4. The Second DIMACS Implementation Challenge: 1992-1993: NP Hard Problems:
Maximum Clique, Graph Coloring, and Satisfiability. Organized by M. Trick (ac-
cessed January 8, 2006). http://dimacs.rutgers.edu/Challenges/index.html



10.

11.

12.

13.

14.

A Multiagent Algorithm for Graph Partitioning 285

. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness, New York: W.H. Freeman, 1979, ISBN 0-7167-10447.

. 0. Goldschmidt and D.S. Hochbaum. Polynomial algorithm for the k-cut problem.

Proc. 29th Ann. IEEE Symp. on Foundations of Comput. Sci., IEEE Computer
Society, 444-451. (1988).

. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In

S. Karin, editor, Proc. Supercomputing ’95, San Diego. ACM Press, New York,
1995.

. P. Korosec, J. Silc, B. Robi¢. Solving the mesh-partitioning problem with an ant-

colony algorithm. Parallel Computing 30(5-6) pp. 785-801 (2004).

. H. Saran and V. Vazirani. Finding k-cuts within twice the optimal. Proc. 32nd Ann.

IEEE Symp. on Foundations of Comput. Sci., IEEE Computer Society, 743-751
(1991)

A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and mul-
tilevel optimisation approach to graph partitioning. J. Global Optimization 29(2)
pp. 225-241 (2004).

M. Trick. Graph coloring instances (web page), accessed January 8, 2006.
http://mat.gsia.cmu.edu/COLOR/instances.html

C. Walshaw. Multilevel refinement for combinatorial optimisation problems. Annals
Oper. Res. 131 pp. 325-372 (2004).

C. Walshaw. The graph partioning archive (web page), accessed January 8, 2006.
http://staffweb.cms.gre.ac.uk/"c.walshaw/partition/

C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refine-
ment Algorithm. SIAM J. Sci. Comput. 22(1) pp. 63-80 (2000).



Tracing Denial of Service Origin: Ant Colony
Approach

Chia-Mei Chen, Bing Chiang Jeng, Chia Ru Yang, and Gu Hsin Lai

Department of Information Management,
National Sun Yat-Sen University,
Kaohsiung, 804, Taiwan

Abstract. Denial-of-Service (DoS) attacks with fake source IP addresses have
become a major threat to the Internet. Intrusion detection systems are often used
to detect DoS attacks. However, DoS attack packets attempt to exhaust
resources, degrading network performance or, even worse, causing network
breakdown. The proposed proactive approach is allocating the original attack
host(s) issuing the attacks and stopping the malicious traffic, instead of wasting
resources on the attack traffic.

Ant colony based traceback approach is presented in this study to identify
the DoS attack original source IP address. Instead of creating a new function or
processing a high volume of fine-grained data, the proposed IP address
traceback approach uses flow level information to identify the origin of a DoS
attack.

The proposed method is evaluated through simulation on various network
environments. The simulation results show that the proposed method can
successfully and efficiently find the DoS attack path in various simulated
network environments.

Keywords: IP traceback, NetFlow, DoS, Ant algorithm.

1 Introduction

According to a study conducted by the Computer Security Institute in 2003 [1], 90
percent of the 530 surveyed companies had detected computer security breaches in
2003. The same study found that 74 percent acknowledged financial losses due to
these security breaches. Although only 47 percent were able to quantify their losses,
the financial losses reported by 251 respondents totaled more than $202 million US
dollars. However, it is just a proverbial tip of the iceberg. Furthermore, according to
the statistics of Dollar Amount of Losses by Type [1], the denial of service (DoS)
attack is the second most expensive computer crime among survey respondents with
the cost of more than 65 million US dollars.

Nowadays, many organizations use firewall and Intrusion Detection Systems (IDS)
to secure their network. If the attacker conducts a DoS attack with a large amount of
traffic, the network would still be tied up. Most work in this area has focused on
tolerating attacks by mitigation their effects on the victim. Such a passive approach

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 286 —295, 2006.
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can provide an effective stopgap measure, but does not eliminate the problem nor
does it discourage the attackers.

The proactive approach is to find the source of the DoS attack and to cooperate
with the internet service provider (ISP) or the network administrators stopping the
traffic from the origin. Hence, it can restore normal network functionality, preventing
reoccurrences and, ultimately, holding the attackers accountable. However, many
network-based DoS attacks use the flaw of TCP/IP to manipulate and falsify the
source address in the IP header. Conventional trace methods might not be able to
identify the origin as the source address could be spoofed.

The goal of this work is to propose an IP traceback approach to finding out the
origin of the DoS attack using the existing traffic flow information, without extra
support from the routers. Furthermore, some previous work needs to process a large
amount of packets, which may be too costly for detecting DoS attacks. An ant colony
based traceback algorithm is proposed, using the traffic flow information as the trace
for ants to discover the attack path.

2 Related Work

Savage et al. [2] described and implemented probabilistic packet marking (PPM).
When a packet passes through a router, the router determines if marking this packet
according to a predefined probability to the IP fragment identification field is
facilitated to store the IP Traceback information.

Song and Perrig [3] proposed modifications on Savage’s method to further reduce
storage requirements by storing a hash of each IP address, instead of the address
itself. It assumes that the victim possesses a complete network map of all upstream
routers. After edge-fragment reassembly, the method compares the resulting IP
address hashes with the router IP address hashes derived from the network map to
facilitate attack path reconstruction.

One disadvantage of packet marking approach is that all routers on the attack path
are required to support packet marking. In addition, the IP header encoding may have
practical restrictions. It negatively impacts users that use fragmented IP datagrams
and such encoding might have compatibility issues with the current TCP/IP
framework.

Snoeren et al. [4] proposed a hash-based IP traceback scheme, Source Path
Isolation Engine (SPIE). As packets traverse the network, digests of the packets get
stored in the router. The hash-based IP traceback is predicated on the deployment of
SPIE-enhanced routers in place of existing routers in the network infrastructure. But
this deployment path was impractical, a SPIE system must be incrementally
deployable in the existing network infrastructure without retrofit or ‘forklift’ upgrade.
So the following research focuses on how to implement SPIE on current network
infrastructure. Strayer et al. [5] propose the concept of a SPIE Tap Box which is a
small, special purpose device that implements the full functionality of the SPIE but
without the benefit of access to the router’s forwarding engine and internal data
structure. Rather, the Tap Box must rely only on the information it can glean by
passively tapping the lines into and out the router.
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Processing overhead is a drawback of hash-based IP traceback, incurred in every
packet when the router to store its digest in the bloom filter. Another drawback is that
all the routers must support SPIE.

2.1 Ant Algorithm

Ant algorithms [7] are inspired by the behavior of natural ants and applied to many
different discrete optimization problems, such as vehicle routing and resource
scheduling. In an Ant algorithm, multiple agents, represented by ants, cooperate with
each other using indirect communication mediated by pheromone. The Ant colony
algorithm was first introduced to solve the Traveling Salesman Problem (TSP) [6].

A moving ant lays some pheromone (in varying quantities) on the ground, thus
marking the path it follows by a trail of this substance. While an isolated ant moves
essentially at random, an ant encountering a previously laid trail can detect it and
decide with a high probability to follow it, then reinforcing the trail with its own
pheromone.

A major characteristic of ant algorithms are the viability of autocatalytic processes.
A 'single-ant" autocatalytic process usually converges very quickly to a bad
suboptimal solution. Luckily, the interaction of many autocatalytic processes can lead
to rapid convergence to a subspace of the solution space that contains many good
solutions, causing the search activity to find quickly a very good solution, without
getting stuck in it. In other words, all the ants converge not to a single solution, but to
a subspace of solutions; thereafter they go on searching for improvements of the best
found solution. Therefore, we believe this feature will be helpful for finding a DoS
path.

3 Ant-Colony Approach to DoS Traceback

While an isolated ant moves essentially at random, an ant encountering a previously
laid pheromone trail can detect it and decide with high probability to follow it, thus
reinforcing the trail with its own pheromone. The collective behavior that emerges is
a form of autocatalytic behavior where the more the ants are following a trail, the
more attractive that trail becomes for being followed. In the proposed IP traceback
scheme, we use the average amount of the octets belonging to a DoS attack as the
pheromone. Therefore, a router with heavy traffic and more DoS attack flows; more
ants will choose it as the next node to move. This will form a positive feedback loop,
and finally most ants will follow the same path.

In the initialization phase, ants are positioned on the victim and initial values for
pheromone trail intensity are set on each router. When an ant starts from the victim, it
will use the topology information to find out all the neighbor routers, and then read
the flow information and the pheromone trail of neighbor nodes to compute the
probability. Then choose the next router to move to with the probability; this
procedure is repeated recursively until it reaches the boundary routers of the
monitored network.

When all the ants complete their travels, we use the information gathered by ants to
recompute the pheromone trail intensity. Then the next cycle starts with new
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pheromone trail intensity, until we find most of ants converge to the same path. In the
following section, we will describe the details of the proposed IP traceback scheme.

When the IDS on the victim’s network detects a DoS attack with spoofed
source(s), it could further analyze the packets of the DoS attack and find out the
suspected spoofed source IP address list. The proposed solution could take the victim
host as the starting point and perform the IP traceback. The detail of the ant colony
based DoS path traceback is described as follows.

At the initial stage, each network node uses the amount of total octets sent in

duration as f, and an initial value 7,(#) . The flow information is selected to

determine the probability when an ant chooses a path.

2. - [£. )
Z [Ti(t)]a ’ [fi]ﬁ

i€ neighbor

p,‘(t) =

where f is the total octets sent in duration of router j, and T, (1) is the intensity of

pheromone trail on router i at time t.

Figure 1(a) illustrates the case that the ants arrive at Router4, the probability of
their next move is determined based on the flow information of the neighbor routers.
We assume that the total octet sent from Router5 is 2000, Router6 is 5000 and
Router7 is 3000. Therefore, the probability of choosing Router5 is 20%, Router6 is
50% and Router7 is 30%. Figure 1(b) shows the probabililty of the next move to each
neighbor router. More ants would choose the path with more flow, as a DoS attack
generates lots of flows.
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Fig. 1. (a) the flow of Router 4; (b) the probability of selecting the next step

While exploring the network, each ant keeps track of the path and the number of
DoS flows. The above procedure is repeated tracing back to the upstream routers until
the ant reaches a boundary router of the monitored network. The intensity of
pheromone trail is revised after all the ants complete their route from the victim to a
boundary router. The path information obtained by each ant is used to

calculate A7, (t,t+1):
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ATl = &
Lk
where Qy is the total amount of the octets belonging to the DoS attack on the k-th
ant’s path and Ly is the length of the k-th ant’s path. A7(t,t+1) is the summation of the

pheromone laid by all the ants, expressed below.

Attt +1) =) Atf(r,1+1),

k-1
where ATl.k (t,t +1) is the quantity per unit of length of pheromone laid on router i

by the k-th ant between time t and t+1, so the more ants pass through the edge, the
more pheromone will be laid on edge. The change of pheromone results in positive
feedback -- the more ants are following a path, the more attractive that path becomes
for being follow.

The intensity of pheromone on router i can be revised once A7(t,t+1) is obtained
and is formulated as below.

t(+1)=p-7,)+ A7 (1,0 +1),
where P is a coefficient such that (1- 0 ) represents the evaporation of pheromone.

Each time all ants complete one iteration (cycle), the intensity of pheromone on
each router will be recalculated based on the above equation. Following the above
illustration shown in Figure 1, there would be more pheromone accumulated on
Router 7 which results in attracting more ants on Router 4 to choose Router 7 in the
following iterations, as Router 7 is on the DoS attack path.

The ant traceback process iterates until the tour counter reaches the user-defined
number of cycles or all ants make the same tour. The DoS attack path is constructed by
following the biggest probability of the upstream upstream router. In other words, the
proposed traceback follows the path chosen by most ants to find the DoS attack path.

3.1 NetFlow

NetFlow is a traffic profile monitoring technology [8] and could provide vital
information for DoS traceback. If the packet belongs to an existent flow, traffic
statistics of the corresponding flow will be increased, otherwise a new flow entry will
be created.
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(14011770243 140.117.72.10 140.117.71.89 14 .24 140.117.72.10
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|__iSpaofing 1P il gl 140.117.70.243 140,117.72.10
68.117.78.21 140.417,70.243 140.11772.40 1177189 1401177224
78 8 117.7831 1401177210
2102231231 I Sel1TIna  MOITLTD

140117,
iﬁ i‘i 32198 140,117,

Fig. 2. DoS NetFlow records
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A conceptual diagram of DoS NetFlow records is shown in Figure 2. The NetFlow
records exported by the routers along the DoS attack path will contain the DoS flows
whose source IP addresses are the spoofed ones. Such a feature is used to determine if
a router is on the DoS attack path and a traceback task can be initiated to find the
source of the DoS attack.

4 Performance Evaluation

We verify the proposed solution by implementing the proposed system and evaluating
the performance by simulation. A simulated network with NetFlow-enable routers is
deployed, as the proposed DoS traceback solution uses the flow-level information to
perform the traceback.

4.1 System Architecture

The proposed system architecture contains two major components in a monitored
network: the flow management component and traceback module, as shown in Figure
3. The flow management component collects the flow information of the routers in
the monitored network in support of the traceback module querying the related flow
information. The traceback module performs the traceback based on the flow
information.
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Fig. 3. The proposed system architecture
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The flow management component collects the flow based attributes. The open-
source tools, Scientific Linux [9], flow-tools [10], STREAM [11], are adopted in this
research to achieve the above NetFlow management purpose.

The proposed IP traceback scheme is based on ant algorithm and use NetFlow logs
to simulate the IP traceback process. Using artificial ants to explore the network and
collect information about the denial-of-service attacks to forecast the possible attack
path and traceback to the origin of the DoS attack.

4.2 Experimental Results

A simulated network environment is illustrated in Figure 4, deployed by VMware
Workstation [12]. Zebra [13], a routing freeware managing TCP/IP based routing
protocol, is adopted to simulate the routers in the experimental environment running
on FreeBSD.
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- v NetFlow ™.
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Fig. 4. The simulated network environment

In order to simulate the NetFlow function on Cisco equipments, we use fprobe
[14]' to monitor the traffic and periodically export NetFlow record to proposed
NetFlow management. In the simulated network environment, we use Harpoon [14] to
generate realistic network traffic which can generate TCP and UDP packet flows and
simulates the temporal and spatial characteristics as measured at the routers in a live

' A libpcap-based tool collects network traffic data and emits it as NetFlow flows to the
specified collector.
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environment. Hping [15] is selected to simulate SYN Flood attack with IP spoofing.
Hping, a complex ping-based program, can send the customized pings to the remote
hosts and networks. The simulated attack scenario is illustrated in Figure 5.
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Fig. 5. DoS attack scenario

Once the DoS flows are identified, the flow management component can find out
the octets sent by the DoS flows with the source address in the suspected source
address list. The finding then will be fed to the traceback component to find the DoS
attack path.

The results of the traceback are shown in the following figures presented in three
dimensional graphs, where the x-axis represents the path discovered by ants, the y-
axis represents the number of iterations, and the z-axis represents the number of ants
in y-th cycle found x-th path. The attack path found by the proposed ant colony based
traceback method is the one with the most ants.

Figure 6 shows the results of the traceback with full flow information provided by
the network. The proposed traceback method explores all the possible attack paths in
the initial stage of traceback and the ants would tend to converge to the attack path in
the following iterations. After about half of the simulation, most ants will converge on
the DoS attack path.

According to the results of the preliminary experiment, we verify that the proposed
solution can find out the DoS attack path in case all the routers in the network provide
flow information. However, in real environments, some flow information might be
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lost, especially at the router on the DoS attack path. Other experimental results are
eliminated due to the length of the paper, but they all conclude that the proposed
solution can find the DoS path efficiently and correctly.
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Fig. 6. The results of the traceback

5 Conclusion

DoS attacks have become one of the major threats in the Internet and cause massive
revenue loss for many companies. However, DoS attacks are often associated with
spoofed source addresses, making them hard to identify the attacker. A proactive
approach to DoS attacks is to find the original machine which issues the attack and
stop the malicious traffic.

In this research, the traceback based on ant colony is proposed to identify the DoS
attack origin. Unlike the previous traceback schemes, such as packet marketing and
logging, which use packet level information, the proposed traceback approach uses
flow level information. Although the packet level information provides detailed
information about the network, the high processing cost is a challenge for deploying
those IP traceback methods in the real networks.

Ant colony algorithms have been successfully applied to various routing and
optimization problems. Based on our observation, the proposed traceback problem is
a variation of a routing problem and hence an ant colony based algorithm could be
used to find the DoS attack path.

The proposed method is verified and evaluated through simulation. The simulation
results show that the proposed method can successfully and efficiently find the DoS
attack path in various simulated network environments. Hence, we conclude that the
proposed solution is an efficient method to find the DoS attack origin in the networks.
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The proposed DoS traceback method can identify the DoS attack path in case of

the spoofed source addresses. However, there are other attacks with spoofed source
addresses which need to be identified. Ant algorithms or other artificial intelligent
approaches could be further investigated for more generalized IP traceback problems.
A distributed flow management might be more scaleable for large networks. Further
study on the practical implementation and deployment on a large network can be done
to evaluate the scalability of the proposed solution.

References

10.
11.
12.
13.
14.
15.

. Computer Security Institute, “CSI/FBI Computer Crime and Security Survey, “2003,

http://www.crime-research.org/mews/11.06.2004/423/.

S. Savage, D. Wetherall, A.Karlin, and T.Anderson ., “Network Support for IP
Traceback,” IEEE/ACM Trans. Networking, vol. 9, no. 3, 2001, pp.226-237 .

D. Song and A. Perrig, “Advanced and Authenticated Marking Schemes for IP
Traceback,” Proc. IEEE INFOCOM, IEEE CS Press, 2001, pp. 878-886.

A.C. Soneren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tachakountio, B. Schwartz, S.T.
Kent and W.T. Strayer ,”Single-packet IP Traceback,” IEEE/ACM Trans. Networking, vol.
10, no.6, 2002, pp.721-734.

W.T Strayer, C.E. Jones, F. Tachakountio, B. Schwartz, R.C. Clements, M. Condell and C.
Partridge ,”Traceback of Single IP Packets Using SPIE,” Proc. DARPA information
Survivability Conference and Exposition — vol. 2 April 22 -24, 2003 Washington, DC. pp.
266

G. Upton, “Swarm Intelligence,” http://www.cs.earlham.edu/~uptongl/project/Swarm_
Intelligence.html\.

. M. Dorigo, V. Maniezzo & A. Colorni,” The Ant System: An Autocatalytic Optimizing

Process,” Technical Report No. 91-016 Revised, Politecnico di Milano, Italy, 1991.

Y. Gong ,’Detecting Worms and Abnormal Activities with NetFlow,” http://www.
securityfocus. com/ infocus/1796

Scientific Linux https://www.scientificlinux.org/

flow-tools information http://www.splintered.net/sw/flow-tools/

Stanford Stream data manager http://www-db.stanford.edu/stream/

VMware http://www.vmware.com/

zebra http://www.zebra.org/

fprobe http://fprobe.sourceforge.net/

hping http://www.hping.org/



Optimisation of Constant Matrix Multiplication
Operation Hardware Using a Genetic Algorithm

Andrew Kinane, Valentin Muresan, and Noel O’Connor

Centre for Digital Video Processing, Dublin City University, Dublin 9, Ireland
kinanea@eeng.dcu.ie

Abstract. The efficient design of multiplierless implementations of con-
stant matrix multipliers is challenged by the huge solution search spaces
even for small scale problems. Previous approaches tend to use hill-
climbing algorithms risking sub-optimal results. The three-stage algo-
rithm proposed in this paper partitions the global constant matrix mul-
tiplier into its constituent dot products, and all possible solutions are
derived for each dot product in the first two stages. The third stage
leverages the effective search capability of genetic programming to search
for global solutions created by combining dot product partial solutions.
A bonus feature of the algorithm is that the modelling is amenable to
hardware acceleration. Another bonus feature is a search space reduc-
tion early exit mechanism, made possible by the way the algorithm is
modelled. Results show an improvement on state of the art algorithms
with future potential for even greater savings.

1 Introduction

Applications involving the multiplication of variable data by constant values
are prevalent throughout signal processing. Some common tasks that involve
these operations are Finite Impulse Response filters (FIRs), the Discrete Fourier
Transform (DFT) and the Discrete Cosine Transform (DCT). Optimisation of
these kinds of constant multiplications will significantly impact the performance
of such tasks and the global system that uses them. The examples listed are
instances of a more generalised problem — that of a linear transform involving a
constant matrix multiplication (CMM). The problem is summarised as follows:
substitute all multiplications by constants with a minimum number of shifts and
additions/subtractions (we refer to both as ‘additions’) [1]. The optimisation
criterion may be extended beyond adder count to include factors like routability,
glitching etc. but is restricted to adder count in this paper.

2 Problem Statement

A CMM equation y = Ax (where y,x are N-point 1D data vectors and A is an
N x N matrix of M-bit fixed-point constants) may be thought of as a collection
of N dot products with each dot product y; expressed as follows:

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 296-307, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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N-1
y7:2aij$j7 i=0,...,N—1. (1)
j=0

Each constant may be represented in signed digit (SD) form:

M —
ai; = > byx2*,  byr €{1,0,1}, 1=-1. (2)

Combining Eqns. 1 and 2 yields a multiplierless dot product implementation
requiring only adders and shifters:

N_1M—
ZZ bijp2fx;, i=0,...,N—1. (3)
j=0 k=0

The goal is to find the optimal sub-expressions across all N dot products in

Eqn. 3 that require fewest adder resources. As reviewed below, three properties

can be used in the classification of approaches to this problem: SD permutation,

pattern search strategy and problem subdivision.

SD Permutation. Consider that each of the N x N M-bit fixed point constants
a;; have a finite set of possible SD representations. For example with M = 4
the constant (—3),, can be represented as either (0011),,(0101),, (1101), (0111); or
(1111),. To find the optimal number of adders, all SD representations of a,; should
be considered since for a CMM problem Canonic Signed Digit (CSD) represen-
tation is not guaranteed to be optimal (as shown in Section 5). The difficulty
is that the solution space is very large [2], hence SD permutation has thus far
been applied only to simpler problems [2, 3]. Potkonjak et. al. acknowledge the
potential of SD permutation but choose a single SD representation for each a.;
using a greedy heuristic. Neither of the recent CMM-specific algorithms in the
literature apply SD permutation [4, 5], but the algorithm proposed in this paper
does apply it.

Pattern Search. The goal of pattern searching is to find the sub-expressions
in the 3D bit matrix b,;, resulting in fewest adders. Usually b,;;, is divided into
N 2D slices along the i plane (i.e. taking each CMM dot product in isolation).
Patterns are searched for in the 2D slices independently before combining the
results for 3D. An example 2D slice is shown in Eqn. 4, a 4-point dot product
with random 8-bit SD constants.

ro—77 00117
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Algorithms may search for horizontal/vertical patterns (P1D) or diagonal pat-
terns (P2D) in the 2D slice. The P1D strategy implies a two-layer architecture
of a network of adders (with no shifting of addends) to generate distributed
weights for each row followed by a fast partial product summation tree (PPST)
to carry out the shift accumulate (Fig. 1). The P2D strategy implies a one-layer
architecture (Fig. 2) of a network of adders that in general may have shifted
addends (essentially merging the two layers of the P1D strategy).

Potkonjak et. al. use the P1D strategy and search for horizontal patterns
while others use the P2D strategy [4, 5]. However, these approaches select sub-
expressions iteratively based on some heuristic criteria that may preclude an
optimal realisation of the global problem. This is because the order of sub-
expression elimination affects the results [6]. The proposed algorithm sidesteps
this issue by building parallel solutions using the P1D strategy.

Problem Sub-Division. As in any hardware optimisation problem, synthesis
issues should be considered when choosing sub-expressions for an N-point dot
product (a 2D slice). If N is large (e.g. 1024-point FFT) then poor layout regular-
ity may result from complex wiring of sub-expressions from taps large distances
apart in the data vector. Indeed a recent paper has shown that choosing such
sub-expressions can result in a speed reduction and greater power consumption
[7]. It is therefore sensible to divide each N-point dot product into N/r sub r-
point dot product chunks, where » < N and r € Z, and optimise each chunk
independently. The CMM problem hence becomes N/r independent sub prob-
lems, each with N dot products of length r (Fig. 3). The optimal choice of r is
problem dependent, but the proposed algorithm currently uses r = 4 for reasons
outlined subsequently. Eqn. 4 is an example of a sub dot product with » = 4.

— -
Sub-Problem
aDD al]1 302 aDS

A = |::> * Nrows of chunks
: : : : % N/rcolumns of
chunks

% Each column a
CMM sub-problem

=)

Fig. 3. CMML Divide and Conquer
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3 Proposed Efficient Modelling Solution

The CMM problem is a difficult discrete combinatorial problem and currently
requires a shift to a higher class of algorithms for more robust near-optimal solu-
tions. This is because the current approaches are greedy hill-climbing algorithms
and the associated results are very problem dependent [6]. The challenge is in the
modelling of the problem to make it amenable to efficient computation. The al-
gorithm proposed here models the problem in such a way as to make it amenable
to so-called near-optimal algorithms (genetic algorithms (GAs), simulated an-
nealing, tabu-search) and also hardware acceleration. The proposed approach
incorporates SD permutation of the matrix constants and avoids hill-climbing
by evaluating parallel solutions for each permutation. Such an approach is com-
putationally demanding but the algorithm has been modelled with this in mind
and incorporates innovative fast search techniques to reduce this burden.

The proposed algorithm permutes the SD representations of the constants in
A. For each permutation, parallel solution options are built based on different
sub-expression choices. These parallel implementations are expressed as a sum
of products (SOP), where each product term in the SOP represents a particular
solution (with an associated adder count). The SD permutation is done on each
CMM dot product in isolation (Section 4.1), and the results are subsequently
combined (Section 4.2). The algorithm searches for the combined SOP that rep-
resents the overall best (in terms of adder count) sub-expression configuration to
implement the CMM equation. Previous approaches derive one implementation
option (akin to a single term SOP) whereas the proposed approach derives par-
allel implementations (a multi-term SOP). It is this multi-term SOP approach
and its manipulation (Section 4) that make the algorithm suitable for GAs and
hardware acceleration.

The proposed algorithm currently uses the P1D strategy, so it searches for
horizontal sub-expression patterns of {1} digits in a 2D slice. The proposed SOP
modelling idea can be extended to cover the P2D strategy by simply extending
the digit set from {+1} to {+1,+2,+,+4,+},...}. To save space, the reasoning
for this idea is not elaborated upon in this paper, but is targeted as future
work.

4 The Proposed CMM Optimisation Algorithm

The proposed approach is a three stage algorithm as depicted in Fig. 4. Firstly
all SD representations of the M-bit fixed point constants are evaluated using
an M-bit radix-2 SD counter (digit set {1,0,1}). Then, each dot product in the
CMM is processed independently by the dot product level (DPL) algorithm.
Finally the DPL results are merged by the CMM level (CMML) algorithm. The
three steps may execute in a pipelined manner with dynamic feedback between
stages. This offers search space reduction potential as outlined subsequently.
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Fig. 4. Summary of the CMM Optimisation Algorithm

4.1 Dot Product Level (DPL) Stage

The DPL algorithm iteratively builds a SOP, and the final SOP terms are the
unique sub-expression selection options after considering all SD permutations of
the dot product constants in question. The final SOP terms are listed in increas-
ing order of the number of adders required by the underlying sub-expressions.
Each SOP term is represented internally as a data structure with elements
p vec (a bit vector where each set bit represents a specific adder to be resource
allocated) and hw (the Hamming weight of p vec that records the total adder
requirement). The number of possible two input additions is equivalent to the
combinatorial problem of leaf-labelled complete rooted binary trees [8]. With r =
4, the number of possibilities is 180 (proof omitted to save space) and the general
series in r increases quickly for » > 4. We are currently researching an automated
method for configuring the DPL algorithm for any r. Currently, however, each
p vec is a 180-bit vector with a hw equal to the number of required adders.
The DPL algorithm executes for each SD permutation of the dot product
constants in question, and builds a ‘permutation SOP’ at each iteration. This
process is described in detail in [9]. The permutation SOP for Eqn. 4 is given by
Eqn. 5 where p, means bit v is set in the 180-bit p vec for that SOP term.

((p11)(Ps) (p3)(Ps1)(P10) (P0)) OR
((p11)(p6) (P10) (p52) (P0)) OR (5)
((Pu)(PG)(Pss)(Plo)(PO))

The first term in Eqn. 5 has hw = 6 so it requires 6 unique additions (+PPST)
to implement Eqn. 4 whereas the latter two options only require 5 unique ad-
ditions (+PPST). Obviously one of the latter two options is more efficient if
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Fig.5. DPL Skip List Arrangement

implementing this dot product in isolation. However, when targeting a CMM
problem one must consider the CMM level, and it may be that permuting the
first option at CMML gives a better overall result since it may overlap better
with requirements for the other dot products. Hence it is necessary to store the
entire SOP for each permutation at DPL and then permute these at CMML to
get the guaranteed optimal.

The algorithm checks each term in the permutation SOP produced at each
DPL iteration to see if it has already been found with a previous permutation.
If so it is discarded — only unique implementations are added to the global list.
This global list is implemented using a 2D skip list to minimise the overhead
of searching it with a new term from the current permutation SOP (Fig. 5) [9].
In the horizontal direction there are ‘skip nodes’ ordered from left to right in
order of increasing hw in the skip node list (SNL). In the vertical direction there
are ‘product nodes’ and each skip node points to a product node list (PNL)
of ordered product nodes where each product node in the PNL has the same
number of bits set (i.e. hw) in its p vec bit vector. When inserting a new term
into the list, a unique permutation ID (pid) is added to the node along with
p vec so that the SD permutation that generated it can be reconstructed.

The DPL algorithm is dominated by low level operations such as comparisons,
Boolean logic and bit counting. Indeed profiling shows that on average 60% of
the computation time is consumed by bit counting (50%) and bitwise OR (10%).
Such tasks can readily be accelerated in hardware by mapping the multi-term
SOP to a FIFO structure and the logic OR operations to OR gates.

4.2 Constant Matrix Multiplication Level (CMML) Stage

Once the DPL algorithm has run for each of the dot products in the CMM, there
will be N 2D skip lists — one for each of the N dot products examined. The task
now is to find the best set of overlapping product nodes for all of the CMM dot
products, with one node for each dot product. Overlapping nodes have similar
p vec set bits, and this results in adder resource sharing when implementing
the CMM. It is expected (though not guaranteed) that since the skip lists are
ordered with the lowest hw PNL first, the optimal result will be converged upon
quickly saving needless searching of large areas of the permutation space. The



302 A. Kinane, V. Muresan, and N. O’Connor

CMML algorithm searches for the optimal overlapping nodes from each of the
DPL lists.

Exhaustive Approach. An exhaustive CMML algorithm permutes the terms
in each skip list with terms from others, starting from the top of each. For each
permutation, N product nodes (one from each list) are combined using bitwise
OR and bit counting similar to the techniques used in the DPL algorithm. The
value of hw of the combined node represents the number of adders necessary to
implement the CMM for the current permutation. The potential exists to use the
lowest hw value found thus far to rule out areas of the search space — hence the
early exit mechanism referred to previously. For example if an improved value
of hw = 5 is found for a CMML solution, there is no point in searching DPL
PNLs with hw > 5 since they are guaranteed not to overlap with other DPL
PNLs and give a better result than 5. The current best value of hw at CMML
level could also be fed back to the DPL algorithm to reduce the size of the skip
lists generated by DPL (and hence permutation space) without compromising
optimality. However, despite the DPL skip list ordering, the huge permutation
space means that the exhaustive CMML approach is not tractable, especially as
N increases.

Genetic Programming Approach. The proposed modelling of the CMM
problem and bit vector representation of candidate solutions means that the
CMML algorithm is very amenable to GAs. The bit vectors can be interpreted
as chromosomes and the value of hw can be used to build an empirical fitness
function (the less adders required the fitter the candidate). A proposed GA to
implement the CMML algorithm is summarised in Algorithm 1.

Algorithm 1: GA-based CMML Algorithm
init pop(Q);
while /termination condition do
eval pop fitness();
selection();
recombination();
mutation();
end

A candidate solution c¢ is represented by a set of N pointers slp[4] [c], where
each pointer addresses a product node in dot product skip list 7 (¢=0,1,...,N -
1). The N product nodes are combined using bitwise OR and bit counting as
described in [9]. The task of the GA is to find the DPL component product
nodes that overlap as much as possible resulting in the fewest adders necessary
to implement the CMM with a P1D architecture (Fig. 1). The individual steps
of Algorithm 1 are described in the following sections.

Step 0 — Initialise Population. The size of the population is determined by
the parameter pop size. Since the DPL stage results are ordered as described



Optimisation of CMM Operation Hardware Using a GA 303

in Section 4.1, the population is initialised with candidates (sets of pointers)
near the top of the DPL lists. This is achieved by weighting the selection of the
initial candidates. Let z represent the address each of the N component pointers
slpl[%] [c] can assume for any candidate c. For each pointer, z is in the range
0 < z < NP,, where NP; is the number of product nodes in skip list 4. The
algorithm randomly sets the pointer address z for all N pointers for each of the
initial pop size candidates according to an exponential probability mass function
Eqn. 6.

p(2) = iexp(fz/m (6)

According to Eqn. 6, the lower the value of parameter p, the more likely a
candidate is to have DPL component pointers nearer the top of the respective
DPL skip lists (i.e. = tends to zero for each of the N pointers).

Step 1 — Population Fitness Evaluation. The fitness of a candidate solution
is obtained by doing a bitwise OR of all of the component pointees followed by
bit counting. The lower the resultant bit count the better, as it means less adder
resources are required to implement the CMM problem with a P1D hardware
architecture. In future work we intend extending the fitness function to include
factors like fanout and logic depth, e.g. Eqn. 7. Currently Eqn. 7 is restricted to
adder count only.

f = a(Adder Count) + g(Fanout) + v(Logic Depth) + ... (7)

Step 2 — Selection. A good selection method should maintain an appropri-
ate balance between selective pressure and population diversity. The proposed
method is a variation of Goldberg’s Boltzmann Tournament Selection algorithm
[10]. Tournament selection involves a pure random selection of t individuals
(t < pop size) that compete in terms of fitness against each other and the winner
is selected. This process is repeated pop size times. However, we propose to use
a strategy with a ‘fuzzy’ selection decision with ¢ = 2. Goldberg’s algorithm is
based upon simulated annealing, i.e. at high ‘temperatures’ there is a greater
chance that weak candidates may be selected, which enhances population diver-
sity and makes it less likely that the algorithm will get stuck in local optima. As
the temperature cools, the strong candidates begin to dominate selection since
the algorithm should be converging on the true optimum.

The proposed approach uses Eqn. 8 which is plotted along with the exponent
of X =7V 7™ in Fig. 6 where f(j) and f(k) are the fitness values of candidates

j and k respectively.
1 1

W= SO T g ex (8)

1+

As is clear from Fig. 6, as the temperature T decreases, the value of the expo-

nential term X moves further from the central vertical axis for a fixed f(j) and
f(k). As T decreases W — 1 when f(j) < f(k) and W — 0 when f(k) < f(5).

The original Boltzmann tournament selection algorithm proposed by Gold-

berg uses t = 3, and lets W equal the probability that j wins the tournament and
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Fig. 6. Boltzmann Decision Based Simulated Annealing

(1—w) be the probability that & wins the tournament [10]. We propose a variation
on Goldberg’s algorithm by introducing a fuzzy select threshold S to enhance
the population diversity. Using S, the selection algorithm can be programmed to
have a higher probability of selecting a weak candidate as a tournament victor
when the temperature T is high in the early generations. As the temperature
decreases and the algorithm converges on the optimum, the stronger candidate
has a greater chance of victory. The approach is summarised in Algorithm 2.

Algorithm 2: Fuzzy Boltzmann Tournament Selection Algorithm
if f(j) < f(k) then
if W > (0.5 + S) then j wins (strong victory);
else k Wins (weak victory)
end
else if f(j) > f(k) then
if W < (0.5 - S) then k wins (strong victory);
else j Wins (weak victory)
end

else
Choose pure random winner
end

To summarise, the proposed selection method maintains a balance between
population diversity and selection strength. The selection decision depends on
the relative fitness of competing individuals, the temperature T and the fuzzy
select threshold S. Since the GA should converge on globally optimal solutions as
the generations iterate, the parameters 7 and S should decay over the generations
to select the strong candidates with higher probability.

Step 3 — Recombination. After pop size individuals have been selected, a pro-
portion of these are further selected for uniform crossover based on a probability
p.. Since each candidate is represented by N pointers, the uniform crossover
process generates a random N-bit binary mask. Each bit location in the mask
determines the mixture of genetic material from the parents each offspring is cre-
ated with. Consider Fig. 7. If a bit location in the mask is ‘0’, the corresponding
pointer component for offspring ‘0’ is created respectively from parent ‘0’, and
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Fig. 7. Uniform Crossover Example

the corresponding component for offspring ‘1’ is created from parent ‘1’. The
opposite creation process occurs if the bit is ‘1°.

Step 4 — Mutation. After selection and crossover, the DPL component point-
ers of each candidate undergo mutation based on a probability p,,... If mutation
is applied, the degree of mutation is determined by a value M, where M € Z.
A pointer selected for mutation moves M pointer locations up (M < 0) or down
(M > 0) its associated DPL skip list. The range of mutations possible depends
on the value of a parameter M,,.,. The value for M is determined based on a
binomial probability density function p(M) Eqn. 9. This distribution means that
if mutation is applied, smaller mutations are more likely than large mutations.

(2M e — 1)!

0.5M(0.5)((2Mmax —1)—M) 9
(CMpae — 1) — M)! (0-5) ( )

pM) =,

To allow positive or negative mutations, the binomial distribution is re-aligned
about M =0 (where p(0) = 0 because M = 0 means no mutation).

After this step, the new population forming the next generation is ready and

the process loops back to step 1. The process continues iterating steps 1-4 until a

termination condition is met (a fixed number of generations or a time constraint).

4.3 Genetic Algorithm Parameter Selection

Choosing values for the parameters that steer a GA is a difficult problem in
itself. The parameter values in Table 1 have been obtained empirically by trial
and error, and future work will investigate a more sophisticated method. Based
on empirical observations, the tuned parameter values in Table 1 imply that the
CMML GA produces better results when there is weak selective pressure (strong
diversity). The reason for this is likely to be because the variance of the solution

Table 1. CMML Genetic Algorithm Parameters

Parameter Name Value
pop size Population Size 3000
m Initialisation Weight  10.0

T Selection Temperature 0.001
S Selection Threshold 0.4

Crossover Probability 0.98
Pt Mutation Probability 0.08
Moz Max Mutation Size 6

b~
)
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space fitness values is quite low, according to the current fitness function, relative
to the size of the solution space. Hence the current search is almost a "needle in a
haystack” search, so a healthy diversity is needed. Future work on this algorithm
aims to increase the dimensionality of the fitness function to include other factors
like logic depth and fanout as well as adder count. Extending the fitness function
should increase the granularity of the fitness values in the solution space. Hence
the tuned genetic algorithm parameters are likely to change in future so that
the selective pressure will increase.

5 Experimental Results

For a fair comparison with other approaches, the number of 1-bit full adders
(FAs) allocated in each optimised architecture should be used as opposed to
‘adder units’, since the bitwidth for each unit is unspecified in other publications
apart from in [5]. FA count more accurately represents circuit area requirements.
Using the 8-point 1D DCT (N = 8 with various M) as a benchmarking CMM
problem, Table 2 compares results with other approaches based on adder units
and FAs where possible. Our approach compares favourably with [5] in terms of
FAs (see FA% savings in Table 2), even though this gain is not reflected by the
number of adder units required.

Our previous results were based on running the proposed CMML GA with
untuned parameters for 100000 generations [9]. Using the tuned parameters of
Table 1, our results clearly improve as is evident from Table 2. The tuned pa-
rameters also find these improved solutions after fewer generations (1000). For
each of the benchmarks in Table 2, the tuned parameters cause the proposed
algorithm to invoke its search space reduction mechanism (Section 4.2). This
reduces the search space from the order of 10%° to 10'” without compromising the
quality of the results , representing a reduction of more than 99%. The hypoth-
esis of achieving extra saving by permuting the SD representations is validated
by the fact that the best SD permutation corresponding to our results in Table 2
are not the CSD permutation.

Even given the savings illustrated in Table 2, there exists significant potential
for improvement:

1. Investigation of an optimal value for r, that is the optimal sub division
of large CMM problems into independent chunks. This can only be truly

Table 2. 1D 8-point DCT Adder Unit / Full Adder Requirements

Initial [1] [4] [5] Ours
CMM Untuned GA [9] Tuned GA
oot P LR RA% + A FA%

DCT 8bit 300 94 65 56 739 78 730 1.2 77 712 3.7
DCT 12bit 368 100 76 70 1202 109 1056  12.1 108 1048 12.8
DCT 16bit 521 129 94 89 2009 150 1482  26.2 141 1290 35.8
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evaluated if synthesis parameters such as fanout and routability are included
in the fitness function as well as FA count.

The integration of the P2D strategy mentioned earlier. It is likely that there
exists an upper bound on the number of rows apart within the b;;, slice
between which useful sub-expressions will be found. This is because if sub-
expression addends come from rows far apart in b;,, the adders inferred have
a large bitwidth.

Extension of the fitness function as indicated, and subsequent tuning of the
GA parameters.

Conclusions

The general multiplierless CMM design problem has a huge search space, espe-
cially if different SD representations of the matrix constants are considered. The
proposed algorithm addresses this by organising the search space effectively, and
by using a GA to quickly search for near optimal solutions. Experimental results
validate the approach, and show an improvement on the current state of the art.
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Abstract. Binary Decision Diagrams (BDDs) can be used to design
multiplexor based circuits. Unfortunately, the most commonly used kind
of BDDs — ordered BDDs — has exponential size in the number of vari-
ables for many functions. In some cases, more general forms of BDDs
are more compact. In constrast to the minimization of OBDDs, which is
well understood, there are no heuristics for the construction of compact
BDDs up to today. In this paper we show that compact BDDs can be
constructed using Genetic Programming.

1 Introduction

Decision Diagrams (DDs) are used for the representation of Boolean functions
in many applications of VLSI CAD, e.g. in the area of logic synthesis [1] and
verification [2]. In the meantime DD-based approaches have also been integrated
in commercial tools.

The state-of-the-art data structure are Ordered Binary Decision Diagrams
(OBDDs) [2]. Since OBDDs are often not able to represent Boolean functions
efficiently due to the ordering restriction [3],[4],[5] many researchers have ex-
tended the OBDD concept mainly in two directions:

1. Consider different decomposition, e.g. ordered functional decision diagrams
(OFDDs) [6] and ordered Kronecker functional decision diagrams (OKFDDs)
[7] make use of AND/EXOR based decompositions.

2. Loosen the ordering restriction, e.g. general BDDs (GBDDs) [8] allow vari-
ables to occur several times.

Following the second approach, of course, the most powerful technique is to have
no restriction on the ordering at all, i.e. to use BDDs without any restrictions
on ordering or variable repetition. BDDs are often exponentially more succinct
than OBDDs and also for the applications mentioned above the ordering restric-
tions are often not needed. The main reason why OBDDs have been used more
frequently is that efficient minimization procedures exist, like e.g. sifting [9]. For
BDDs similar techniques are not available.

Evolutionary approaches have also been applied successfully to OBDDs, but
there the problem reduces to finding a good variable ordering, i.e. a permutation
of the input variables [10]. In [11] Genetic Programming has been applied to a
tree-like form of BDDs with some additional constraints.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 308-319, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In this paper we present an approach to BDD minimization based on Genetic
Programming. In contrast to the minimization of OBDDs we carry out all op-
erations directly on the graph structure of the BDD. By this, we present the
first heuristic approach to BDD minimization. Experimental results are given to
demonstrate the efficiency of the approach.

2 Preliminaries

2.1 Binary Decision Diagrams

A BDD is a directed acyclic and rooted graph Gy = (V, E) representing a
Boolean Function f : B™ —— B™. Each internal node v is labeled with a
Variable label(v) = z; € X,, = {z1,...,2,}, and has two successors then(v)
and else(v). The terminal nodes are labeled with 1 or 0 corresponding to the
constant Boolean functions. In each internal node the Shannon decomposition
g = %;g|z;=1 + 2ig|z,;=0 is carried out. The m root nodes represent the respective
output functions.

By restricting the structure of the BDD, special classes of BDDs can be
derived:

— A BDD is complete, if on each path from a root to a terminal node each
variable is encountered exactly once.

— A BDD is free (FBDD), if each variable is encountered at most once on each
path from a root to a terminal node.

— A BDD is ordered (OBDD), if it is free and the variables appear in the same
order on each path from a root to a terminal node.

OBDDs are a widely used data structure in hardware design and verification be-
cause they are a canonical representation of Boolean Functions and they provide
efficient synthesis algorithms. However, for many functions the size of the OBDD
depends on the variable ordering. It may vary between linear and exponential in
the number of variables [2]. A lot of research has focused on the so-called vari-
able ordering problem, which is NP-hard [12]. Furthermore, there are functions
for which all variable orderings lead to an OBDD with exponential size. In turn,
for some of these functions there exist FBDDs or BDDs of polynomial size [13].
This means that releasing the read-once restriction and the ordering of variables
can be advantageous. But in constrast to the minimization of OBDDs by finding
a good or optimal variable ordering — which is well understood [14],[9] — there
are no heuristics for the construction of small BDDs up to today.

2.2 BDD Circuits

BDDs can be directly mapped to a circuit based on multiplexors. If realized
with pass transistor logic, multiplexor cells can be used for synthesis at low cost
[15],[16],[1]. In the mapping, each internal node v of the BDD is replaced by a
MUX cell. Then the 1-input (the O-input) is connected to the MUX cell corre-
spondig to then(v) (else(v)). The select line is connected to the primary input
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Fig. 1. Example for a BDD circuit

index(v). An example for the transformation is shown in Figure 1'. Obviously,
the size of the BDD has direct influence on the chip area of the derived BDD
circuit. For this reason, it is important to find a BDD representation as small as
possible to minimize chip area.

3 Evolutionary Algorithm

The approach presented in this paper is based on Genetic Programming (GP)
[17]. Originally, GP was used to evolve LISP programs. The method at hand does
not consider programs, but works directly on the graph structure of the BDDs.
Several operators are provided to customize the algorithm for a specific problem.
The algorithm has been implemented on top of the evolving objects library [18],
an open source C++ library for evolutionary algorithms. The target function is
kept in memory as OBDD. For this the BDD package CUDD [19] is used. The
aim of the evolutionary algorithm is formulated as follows:

The objective is to evolve BDDs that are a correct and compact repre-
sentation of a given target function.

3.1 Flow of the Algorithm

The general structure of the evolutionary algorithm is based on the cycle given by
the EO library. The flow is depicted in Figure 2. The algorithm is parameterized
via command line switches in most of its parts. All of the operators described
below can be selected and the ratios can be adjusted individually. Furthermore
the algorithm provides different methods for selection, replacement and different
termination criterions. This high flexibility should enable the user to customize
the flow according to the respective problem.

3.2 Representation

The individuals are directed acyclic graphs with multiple root nodes, each cor-
responding to an output of the represented function. By adopting some popular

! In the figures, solid lines denote then edges and dashed lines denote else edges.
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‘ Evaluation H Operators ‘

Fig. 2. The flow of the algorithm

No

Selection

techniques used in BDD packages, the graphs are always reduced, i.e. isomorphic
subgraphs exist only once and there are no nodes with then(v) and else(v) being
identical.

3.3 Evaluation Function

As mentioned above, there are two objectives — correctness and compactness.
The two dimensions of fitness are ordered lexicographically, with correctness
being the more important one. Initially there is no limitation for the structure
of the represented BDDs. This means that there will be many individuals that
do not represent the target function correctly. Such invalid individuals are given
a worse fitness than the correct ones.

For the first dimension — correctness — it would be easy to test, if an indi-
vidual represents the target function correctly or not. But this would draw no
distinction between individuals that are “almost correct” and totally degener-
ated individuals. For this reason, a more sophisticated measure of correctness
is used. The evaluation function calculates the ratio of assignments a € B" for
which the function represented by the individual evaluates equivalently to the
target function, i.e. the correlation between the individual’s function and the
target function. The computation of the correlation is realised by computing
the XOR-BDD of the target function and the individual’s function and then
computing its ratio of satisfying assignments. For the latter step, the underlying
BDD package provides an efficient implementation without considering each of
the 2" possible assignments.

The second dimension of fitness is the sum of the number of internal nodes of
the individual and of the XOR-BDD already computed in the previous step of
evaluation. The XOR-BDD is considered again in order to punish degenerated
individuals that have few minterms in common with the target function. For a
correct individual, the XOR-BDD is the zero function, and only the individual’s
nodes are counted.
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3.4 Evolutionary Operators

Table 1 gives an overview of the genetic operators. Beyond the standard classes —
initialization, recombination and mutation — there are some special operators,
functionally conserving ones, which do not change the functional semantics of
the individuals but the structure of the graphs.

Table 1. Genetic operators

initialization Init
CuddInit

recombination NodeXover
OutputXover

mutation VariableMut
EdgeSwapMut
EraseNodeMut
AddMinterm

functionally conserving Restructuring
VariableDuplication
CombinedRestructuring
TautoReduction
SplitReduction
Resize

Initialization. There are two types of initialization, Init and CuddInit. The
first one generates random graphs with a given maximum depth. The second one
creates OBDDs with a randomized variable ordering which represent the target
function correctly. The name is derived from the underlying BDD package which
is used for the synthesis of the OBDDs.

Crossover. NodeXover is basically a standard GP crossover, i.e. a node is se-
lected from each parent, and the corresponding subgraphs are exchanged. As
the individuals are rather DAGs than trees, it has to be assured that no cyclic
subgraphs appear during the operation. The second crossover — OutputXover —
performs a uniform crossover on the output nodes of the parent individuals.
Thus it can only be applied to functions with multiple outputs. OutputXover is
supposed to combine individuals that already provide good solutions for single
output functions.

Mutation. Among the mutation operators there are three simple ones and
the customized AddMinterm operator. VariableMut exchanges the variable of
one randomly selected node. EdgeSwapMut selects one node and swaps its then
and else egdes. EraseNodeMut removes one node from the graph by replacing
it with one of its successors. This may be useful to eliminate redundant nodes.
AddMinterm works as follows: first an assignment a € B" is generated. If the
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Fig. 3. Example for the AddMinterm operator

individual and the target function evaluate to different values under this assign-
ment, a OBDD-like subgraph is added to the individual so that it will evaluate to
the correct value afterwards. In order to create the subgraph, the target function
is restricted in all variables that have been read on the path in the individual
that corresponds to the assignment a. Then the new subgraph is appended to
the end of this path. The operator can be used to speed up the algorithm, if
the target function is relatively complex and so it would take too long to find a
correct solution at all. It is a drawback that always OBDD-like subgraphs are
created. This may lead to local optima that are hard to escape from.

Ezxample 1. Figure 3 shows an example for the AddMinterm operator. Let the
target function be the 3 bit parity function given by f(xo,z1,z2) = o B 1 B x2.
Consider the individual in Figure 3(a) and the randomly chosen assignment
a = x9x1 2. The corresponding path is highlighted in the figure. As on this
path only z is evaluated, the remaining function to be added is frest = flzg=1 =
x1-T2+x1-x2. The OBDD for this function (see Figure 3(b)) is added to the end
of the path, obtaining the new indiviual in Figure 3(c). Note that the correlation
has increased from 5/8 to 7/8, i.e. only one of eight minterms is wrong after the
application of AddMinterm.

Functionally Conserving Operators. Among the functionally conserving op-
erators there are two operators that perform a local restructuring of the graphs.
Restructuring searches for subgraphs that are isomorphic to one of the graphs
shown in Figure 4 on the right and on the left. Then this subgraph is reduced to
the one shown in Figure 4 in the middle. Note that the three graphs are func-
tionally equivalent. The operator VariableDuplication duplicates a variable
on a randomly selected path. The transformation is shown in Figure 5. In this
way redundancy is added to the graph. In some cases this can lead to better so-
lutions if the redundancy is removed elsewhere in the graph (this can be done by
TautoReduction or SplitReduction which are described below). Furthermore
the operator increases the diversity of the population. CombinedRestructuring
is a combination of the two operators described above. Both are applied several
times in random order.
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Fig. 5. The VariableDuplication operator

curr lvl=TOP LEVEL;
done = false;
while (—done) do
for (:=TOP LEVEL downto curr lvl) do
for (each nodein level i) do
update path infos of child nodes;
od
od
for (each nodein level curr lvl 4+ 1) do
if nodeis redundant then remove node;
od
curr Wl = curr Wl — 1;
if curr vl <1 then done = true;
od

Fig. 6. Pseudocode for TautoReduction

Finally there are two operators that try to reduce the number of nodes with-
out changing the function of an individual. Algorithmically they are very sim-
ilar. Figure 6 shows the TautoReduction operator in pseudocode. It searches
for redundant nodes from top to bottom. A node v is identified redundant,
if the variable index(v) has already been evaluated to the same value on all
paths reaching v. A redundant node can then be replaced by the appropriate
SUCCEessOor.
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Fig. 7. Example for the TautoReduction operator

Example 2. Consider the individual shown in Figure 7. The marked node is
redundant because x has already been evaluated to 0 above and it can be replaced
by its else successor. In the next step, another node is identified redundant. In
this case x has been evaluated to 1 before and the node is replaced by its then
successor. The node marked in the third graph may not be removed because it
can be reached on two paths on which x is evaluated to different values.

SplitReduction works similar, except that it does not remove redundant nodes
but redirects edges instead. If in a node v the variable of one of its successor
nodes has always been evaluated to a certain value and never to its complement,
the edge to this node can be redirected to the appropriate successor node.

Example 3. Consider the individual in Figure 8. The else edge of the marked node
can be redirected to the terminal 1-node. Furthermore the then edge can be redi-
rected to the z node below because x has always been evaluated to 1 before.

By redirecting edges, SplitReduction will possibly “relieve” a node of redun-
dant edges and make it in turn a candidate for TautoReduction. It could be

Fig. 8. Example for the SplitReduction operator
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observed that the two operators work together quite well. Thus, there is a com-
bination of these two operators, called Resize. Resize can be called at the end
of every generation. It tries to reduce all individuals of the population using
TautoReduction and SplitReduction, so that the number of nodes does not
exceed a given bound. This can be used to keep the individuals relatively small
in order to save run time.

4 Experimental Results

Experiments have been carried out to show the effectiveness of the approach. The
runs presented in the following are supposed to exemplify the different working
methods of the evolutionary algorithm. The first one starts with a population of
randomly initialized graphs, the second one starts with correct OBDDs.

Ezample 4. Consider the hidden weighted bit (HWB) function given by the fol-
lowing equation:

0 ifw=20
HWB(xo,...,xn_l):{x L else where w = |zg,...,Tn_1].

HWB is known to have only OBDD representations of exponential size in the
number of variables, but FBDDs of quadratic size [13]. In this example the pre-
sented approach is used to evolve a BDD that represents the 4 bit HWB function.
The OBDD is shown in Figure 9 on the left. The parameters are set up as follows:
a deterministic tournament selection of size 2 and a comma replacement com-
bined with weak elitism are used. The population contains 100 individuals which
are initialized randomly with an initial depth of 6. The following genetic oper-
ators are applied: OutputXover with a rate of 0.2, VariableMut, EdgeSwapMut
and EraseNodeMut each with a rate of 0.05 and CombRestucturing with a rate
of 0.2. The optimal BDD shown in Figure 9 on the right could be evolved after
90 generations.

Fig. 9. OBDD and BDD for the 4 bit hidden weighted bit function
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Ezample 5. In [2] Bryant introduced a function f(zo,...,Z2n—1) = 2o -1 + 22 -
T3+ -+ XTap—2 + Tap—1 that is sensible to the variable ordering, i.e. the size of
its OBDD varies between linear and exponential. In this example we consider a
benchmark function g : B® — B*, where the four outputs are variants of Bryant’s
function:

go(zo,...,T5) =To -1 + T2 T3+ Tg - X5
g1(zo,...,o5) =To-xo+x1 - T3+ Tg - X5
gg(xo,...,x5):x0~x3+x1-x4—|—x2~x5
93(x0, ..., T5) = o - x5 + X1 - Ty + T2 - X3

Note that for each output function there is a different order leading to the op-
timal OBDD size, thus there is no global order for which all partial OBDDs
are optimal. The size of the optimal shared OBDD is 31. The evolutionary ap-
proach is applied with the following settings: the initial population consists of
100 correct OBDDs. OutputXover and CombRestucturing are applied each with
a rate of 0.3, TautoReduction and SplitReduction are applied with a respec-
tive rate of 0.1. Selection and replacement are the same as in Example 4. After
41 generations, an individual emerged that represents the target function with
17 nodes.

Table 2 shows additional results. Besides the name of the circuit and the numer
of inputs and outputs the size of the minimal OBDD is given. The last column
shows the size of the smallest BDD that could be found by our approach. The
algorithm has been run 50 times with a limit of 200 generations and a population
size of 100. Only for the largest benchmarks with 7 inputs a population size of

Table 2. Benchmark circuits

circuit i/o OBDD GA circuit i/o OBDD GA
md33a 3/3 9 7 hwh4 4/1 7 6
md33b 3/3 7 7 hwbb 5/1 14 12
md33c 3/3 8 7 hwb6 6/1 21 20
rmd 33d 3/3 9 8 isa2 5/1 10 8
rmd42a 4/2 10 11 isa3 10/1 26 20
md42b 4/2 12 11 £51m.49 3/1 4 4
md 4 2c 4/2 11 12 cm82a.f 3/1 5 5
rmd42d 4/2 12 11 bl 3/4 8 8
md51a 5/1 11 11 f51m.48 4/1 6 6
md51b 5/1 11 11 cm42a.ef 4/2 5 5
md51c 5/1 12 11 cu.pq 4/2 10 10
md51d 5/1 12 12 cm82a.h  5/1 7 7
md 54a 5/4 37 35 C17 5/2 7 7
md54b 5/4 35 34 cml38a.m 6/1 6 6
md 54c¢ 5/4 34 32 pcl3.3 7/1 8 8
md 54d 5/4 39 38 cu.rs 7/2 8 8
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200 and a generation limit of 300 have been used. As can be seen, in many cases
smaller representations could be found. Especially the HWB and ISA functions
for which there is an exponential gap between their OBDD- and BDD-size show
good results. But also for randomly generated functions the graph size could be
improved. For other benchmarks no improvements could be made, but it should
be noted that for numerous common functions there are OBDDs of linear size
and thus no improvements can be expected by using BDDs instead.

5 Conclusions and Future Work

In this paper it has been shown that it is possible to construct compact BDDs
using genetic programming. First experiments have yielded some promising re-
sults. However, there are still some problems to be solved. For large functions
that depend on many variables, it takes too long to evolve a correct solution
from a randomly initialized population. This can be avoided, if correct OBDDs
are used as initial population. Unfortunately, the regular structure of the OB-
DDs seems to be very stable, and the algorithm will hardly escape from the local
optima induced by the OBDDs. Certainly there is still capability for improve-
ments. Possibly new operators that act less locally than Restructuring could
help to “break” the OBDDs.

References

1. Drechsler, R., Giinther, W.: Towards One-Path Synthesis. Kluwer Academic Pub-
lishers (2002)

2. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. 35 (1986) 677—691

3. Ajtai, M., Babai, L., Hajnal, P., Komlos, J., Pudlak, P., Rédl, V., Szemeredi, E.,
Turan, G.: Two lower bounds for branching programs. In: Symp. on Theory of
Computing. (1986) 30-38

4. Bryant, R.: On the complexity of VLSI implementations and graph representations
of Boolean functions with application to integer multiplication. IEEE Trans. on
Comp. 40 (1991) 205-213

5. Becker, B., Drechsler, R., Werchner, R.: On the relation between BDDs and
FDDs. Technical Report 12/93, Universitiat Frankfurt, 12/93, Fachbereich Infor-
matik (1993)

6. Kebschull, U., Schubert, E., Rosenstiel, W.: Multilevel logic synthesis based on
functional decision diagrams. In: European Conf. on Design Automation. (1992)
43-47

7. Drechsler, R., Sarabi, A., Theobald, M., Becker, B., Perkowski, M.: Efficient rep-
resentation and manipulation of switching functions based on ordered Kronecker
functional decision diagrams. Technical Report 14/93, J.W.Goethe-University,
Frankfurt (1993)

8. Ashar, P., Ghosh, A., Devadas, S., Newton, A.: Combinational and sequential logic
verification using general binary decision diagrams. In: Int’l Workshop on Logic
Synth. (1991)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Finding Compact BDDs Using Genetic Programming 319

R.Rudell: Dynamic variable ordering for ordered binary decision diagrams. In:
Int’l Workshop on Logic Synth. (1993) 3a-1-3a-12

Drechsler, R., Becker, B., Gockel, N.: A genetic algorithm for variable ordering of
OBDDs. IEE Proceedings 143 (1996) 364-368

Sakanashi, H., Higuchi, T., Iba, H., Kakazu, Y.: Evolution of binary decision
diagrams for digital circuit design using genetic programming. In: ICES. (1996)
470481

Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. on Comp. 45 (1996) 993-1002

Wegener, I.: Bdds — design, analysis, complexity, and applications. Discrete Applied
Mathematics 138 (2004) 229-251

Friedman, S., Supowit, K.: Finding the optimal variable ordering for binary deci-
sion diagrams. In: Design Automation Conf. (1987) 348-356

Buch, P., Narayan, A., Newton, A., Sangiovanni-Vincentelli, A.: On synthesizing
pass transistor networks. In: Int’l Workshop on Logic Synth. (1997)

Ferrandi, F., Macii, A., Macii, E., Poncino, M., Scarsi, R., Somenzi, F.: Layout-
oriented synthesis of PTL circuits based on BDDs. In: Int’l Workshop on Logic
Synth. (1998) 514-519

Koza, J.: Genetic Programming - On the Programming of Computers by means of
Natural Selection. MIT Press (1992)

M. Keijzer, J.J. Merelo, G.R., Schoenauer, M.: Evolving objects: a general purpose
evolutionary computation library. In: Evolution Artificielle. (2001)

Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.0. University of
Colorado at Boulder (2004)



Efficient Evolutionary Approaches for the Data Ordering
Problem with Inversion

Doina Logofatu and Rolf Drechsler

Institute of Computer Science, University of Bremen,
Bremen 28359, Germany
{doina, drechsle}@informatik.uni-bremen.de

Abstract. An important aim of circuit design is the reduction of the power dis-
sipation. Power consumption of digital circuits is closely related to switching
activity. Due to the increase in the usage of battery driven devices (e.g. PDAs,
laptops), the low power aspect became one of the main issues in circuit design
in recent years. In this context, the Data Ordering Problem with and without In-
version is very important. Data words have to be ordered and (eventually) ne-
gated in order to minimize the total number of bit transitions. These problems
have several applications, like instruction scheduling, compiler optimization,
sequencing of test patterns, or cache write-back. This paper describes two evo-
lutionary algorithms for the Data Ordering Problem with Inversion (DOPI). The
first one sensibly improves the Greedy Min solution (the best known related
polynomial heuristic) by a small amount of time, by successively applying mu-
tation operators. The second one is a hybrid genetic algorithm, where a part of
the population is initialized using greedy techniques. Greedy Min and Lower
Bound algorithms are used for verifying the performance of the presented Evo-
lutionary Algorithms (EAs) on a large set of experiments. A comparison of our
results to previous approaches proves the efficiency of our second approach. It
is able to cope with data sets which are much larger than those handled by the
best known EAs. This improvement comes from the synchronized strategy of
applying the genetic operators (algorithm design) as well as from the compact
representation of the data (algorithm implementation).

Keywords: Evolutionary Algorithms, Digital Circuit Design, Low Power, Data
Ordering Problem, Transition Minimization, Optimization, Graph Theory,
Complexity.

1 Introduction

The power consumption became a barrier during the design of embedded systems, as
soon as the limits of the paradigm “the smaller the device, the faster it is” were
reached. Due to the ever increasing demand for electronic devices with bigger storage
capacity and quicker access time (see e.g. [5]), the low-power techniques have to be
taken into account already in the first phases of the design process. Thus, various
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methods for decreasing the power dissipation have been developed (see e.g. [1], [15],
[21], [26D).

The challenges in the design of embedded systems can be split into two major
categories: hardware-related and software-related. The hardware designers try to find
methods to optimize the switching activity and the voltage in the circuit ([6], [25]).
The software component is also very important for the power consumption of the
circuit ([23], [24]). In this area an efficient design can provide significant improve-
ments. Power consumption often is directly determined by the design complexity. For
this reason, power consumption has grown in the past years with increasing design
complexities. Therefore, power management is a critical design priority. As such,
lower power consumption has a positive effect on battery life, packaging, cooling
costs and reliability. A new direction of the design methodologies is necessary to
handle the power management issue in a successful way.

The power consumption on the software level depends on the switching activity
and the capacitance. The switching activity, as an important design metric, character-
izes the quality of an embedded system-on-chip design. It is implicitly related to the
orderng of the data sequences. The first problem engaged with this topic is the order-
ing of data words to minimize the total number of transitions Data Ordering Problem
(DOP). In [18] it is demonstrated that this problem is NP-complete. Recently, some
algorithms were proposed for optimizing the number of transitions. In [22], Stan and
Burleson introduced the bus-invert method. The main idea is to use an extra bus line
with bits, called invert, which contains the information regarded as the phase-
assignment for all transmitted words. For every word there is a bit flag that signals if
the transmitted word is complemented (inverted), flag = 1, or left as initial, flag = 0.
Adding this new paradigm which applies to DOP an extra degree of freedom, the total
number of transitions can be lower than the number provided with DOP. The resulting
problem is the so-called Data Ordering Problem with Inversion (DOPI) (see also [11,
19]). A formal definition, related terms, and examples are given in Section 2.

As a general method for solving optimization problems, EAs are getting more and
more popular. Recently, EAs have been successfully applied to several problems in
VLSI CAD (see e.g. [8], [9], [11], [16]). In [10] an efficient genetic approach for the
DOP is proposed and in [11] an evolutionary algorithm for DOPI. This EA approach
provides high-quality results (better than polynomial heuristics), but they need also a
large amount of runtime.

In this paper, we propose two evolutionary algorithms for DOPI: one which per-
forms quick small improvements and the other one, which is a hybrid genetic algo-
rithm that performs significant improvements in a larger amount of run time. For
smaller-sized instances we applied the optimal exact algorithms (both DOP and
DOPI) for comparing the behavior of the two problems as well as the results provided
by other related algorithms. In [19] a lower bound algorithm for DOPI is introduced.
In our study, we will use it to check the deviation from the optimum of the results
provided with the proposed EAs. There are three categories of input data: small, me-
dium and large data sizes. The focus is on optimizing the DOPI approach, which adds
the paradigm of phase-assignment to DOP and thereby improves the performance of
the results.
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2 DOP and DOPI Problems Domain

Definition 2.1. Hamming distance. If a word w, is transmitted immediately followed
by w;, the total number of transitions is given by the number of bits that change. This
is

k
d(w,,w)=> w, ®w, .
Jj=1
also known as the Hamming distance between w, and w,. Here, the w,; denotes the j’h
bit of w,, and @ the XOR operation. For instance, d(1010, 0100) = 3. Word reordering
can change the number of transitions significantly.

Definition 2.2. Total number of transitions. The total number of transitions is the sum
of the Hamming distance needed for the transmission of all the words. It is denoted
with Nr. If ois a permutation of the bit strings w;, wy, ..., w,, than the total number of

n—1
transitions will be: N, = Zd(wg(j), Wo(jﬂ)) .

J=1

Definition 2.3. Adjacency matrix. For a given problem instance (where n is the num-
ber of words and k their length) we define the adjacency matrix A, ., where A(i, j) =
d(wi: W])'

Definition 2.4. Phase-assignment. The inversion of a data word w; is also called the

negation (complementation) and is denotedWi . The polarity (phase-assignment) 9 is

a function defined on the set of words with values in a set of words and qw) is w
(case w may be complemented) or w (case w may be not complemented).

Proposition 1.1. For adjacency matrix and inversion holds Vi, j € {1, .., n}:
a. d(w,w;)=d(w;,w)=a; =a,
b. d(w,w,)=0= a, =0
c. d(wi,wj)zd(;,-,w_j)

d dw,w)=dw,w,)=k—dw,w,)=k-a,
Formalized, the definitions of the DOP and DOPI will be:

Definition 2.5. DOP: Find a permutation o of the bit strings w;, w,, ..., w, such that
the total number of transitions:

n-l (1)
Ny = Z dWg(j)s Woja1))

J=1

is minimized.
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Definition 2.6. DOPI: Find a permutation o of the bit strings w;, w, ..., w, and a
phase-assignment d'such that the total number of transitions:
n—1 (2)

Ny = 2 d( 30wy ;)), 6 (Wo(111)

Jj=1

1S minimized.

3 Previous Approaches

The DOP and DOPI are very similar to the Traveling Salesman Problem (TSP). For
all three problems a good ordering of elements with respect to a given weight between
each two elements has to be determined. Since the DOP and DOPI are NP-Complete,
the exact algorithms can only handle very small instances. In the past few years some
heuristics were developed for both DOP and DOPI (most of them in relation with the
TSP problem):

1. Double Spanning Tree (DST) [12]

2.  Spanning Tree/Minimum Matching (ST-MM) [12]
3. Greedy Min (GM) [18]

4. Greedy Simple (GS) [10]

5. Evolutionary Heuristics [11]

The most powerful polynomial heuristic known so far is Greedy Min and it can be
applied to both DOP/DOPI:

1) Computes the Hamming distance for all (distinct) pairs of given words and se-
lects the pair with a minimum cost.

2) Chooses the most convenient pair of words. The beginning sequence will con-
tain these two words.

3) Builds progressively the sequence, adding in every step of the most conven-
ient word (that was not yet added). This word can be added either at the beginning or
at the end of the sequence, depending where the Hamming distance is minimal.

The EAs are the best algorithms regarding the quality of results. Such evolutionary
approaches provide better results than the above-presented Greedy Min, but with
significantly more time resources. EAs which perform high-quality optimizations are
presented in [10], [11]. In [11] are presented evolutionary algorithms for both DOP
and DOPI. For DOPI the mutation and crossover operators are applied in parallel for
creating new individuals. This is also a hybrid EA, since the initial individuals are
preprocessed using greedy methods. The results provided by the EA are better than
the Greedy Min results, but the maximal number of words is 100.

In [19] a graph theory related model for DOPI is introduced, together with a rele-
vant graph theoretic background. For a DOPI instance with n words, each of length &,
a multigraph can be created accordingly. The vertices are the words and the edges are
labeled with the distance between the words. According to Proposition 1.1. c¢) and d),
if the words are in the same phase-assignment (both 0 or both /), then the distance
between them is the same. Also, if they are in different phase-assignment, the distance
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remains the same. There are two edges between two vertices (one if the words are in
the same phase, one for the case if they are transmitted in different phases). In this
manner DOPI is transformed in the equivalent NP-complete problem of finding the
Hamiltonian path with the minimum length. As shown in [19], a lower bound for the
length of this path is the weight of the minimal spanning tree of the multigraph. To
determine the minimal spanning tree there are two classical greedy algorithms: Prim
(uses the vertex connections) and Kruskal (uses the edges). In the experimental tests
from Section 5, we use the Kruskal approach to check the deviation to the optimum
for the provided EA results.

4 Evolutionary Algorithms

In this section the two evolutionary approaches for DOPI will be presented: the first is
a simple one which operates on a single individual (the Greedy Min resulted one) with
the Simple Inversion Mutation (SIM) operator and the Simple Cycle Inversion Muta-
tion (SCIM) operator. This performs improvements of the greedy solution in a small
amount of time. The second one is based on the classical genetic algorithm model.
The genetic operators are applied synchronized for ordering and phase-assignment, in
order to preserve the good subsequences. As can be seen later in the result tables, the
results are much better than the previous mutation algorithm, but the time needed
increased significantly. follow these instructions closely in order to make the volume
look as uniform as possible.

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to.
This is to ensure that the end product is as homogeneous as possible.

4.1 Overview of Genetic Algorithms

A Genetic Algorithm (GA) is an optimization method with simple operations based
on the natural selection model [17]. Genetic algorithms have been applied to hard
optimization problems including VLSI layout optimization, boolean satisfiability, and
the Hamiltonian circuit problem ([13], [16], [20]). There are four main distinctions
between GA-based approaches and traditional problem-solving methods:

a) GAs operate with a genetic representation of potential solutions, not the solu-
tions themselves.

b) GAs search for optima of a population of potential solutions and not a single
solution (the genetic operators alter the composition of children).

¢) GAs use evaluation functions (fitness), no other auxiliary knowledge such as
derivative information used in the conventional methods.

d) GAs use probabilistic transition rules (not deterministic rules) and various
parameters (population size, probabilities of applying the genetic operators,
etc.)

For a specific problem, it is very important to use related genetic operators, which
preserve the good traits from the parents, but are also able to bring improvements in
the resulting children. The initialization step and the parameter settings are also very
significant.
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4.2 A Simple Mutation Algorithm for DOPI

The EV_MUT_ALGORITHM (MUT) is an evolutionary algorithm, which operates
successively on an individual. The Greedy Min algorithm generates the beginning
individual. The pair (Permutation, BitString) is a potential solution. The Permutation
denotes the ordering and BitString denotes the phase-assignment. The mutation will
be applied for two random cut points to the both components (Permutation and Bit-
String). The new individual will substitute the current best, if it is better. The used
mutation operators are the classical SIM and a derivative thereof, denoted with Simple
Cycle Inversion Operator (SCIM).

4.2.1 Simple Inversion Mutation (SIM)

SIM was introduced in 1975 by Holland [14]: 2 cut points are randomly selected and
the subsequence between them is mirrored. For example, for the permutation (1, 2, 3,
4, 5, 6, 7, 8) and the cut points 3 and 5 the result will be the permutation (7, 2, 5, 4, 3,
6, 7, 8). The same will be applied also to the bit string, with the same cut points.

This operator can improve the current solution, which was constructed on a local
optimum (greedy) basis. In the DOPI case the same cut points are considered, as well
as for the permutation. Using this operator the sequences inside the cut points for the
current individual are preserved. As a consequence, the improvement will come from
the sum of the distances in the two interior cut points regions, which can be reduced.

4.2.2 Simple Cycle Inversion Mutation (SCIM)

This operator additionally includes the possibility to change the extremities of the
potential solution. A potential solution is seen as a circular structure, in which the last
element, had it been in a linear structure, it would not have had a successor. As such,
by turning the linear structure into a circular one, the last element is tied