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Preface

Evolutionary computation (EC) techniques are efficient nature-inspired planning
and optimization methods based on the principles of natural evolution and genet-
ics. Due to their efficiency and the simple underlying principles, these methods
can be used for a large number of problems in the context of problem solving,
optimization, and machine learning. A large and continuously increasing number
of researchers and practitioners make use of EC techniques in many application
domains. This book presents a careful selection of relevant EC applications com-
bined with thorough examinations of techniques for a successful application of
EC. The presented papers illustrate the current state of the art in the applica-
tion of EC and should help and inspire researchers and practitioners to develop
efficient EC methods for design and problem solving.

All the papers in this book were presented during EvoWorkshops 2006, which
consisted of a varying collection of workshops on application-oriented aspects of
EC. Since 1998, the format of the EvoWorkshops has proved to be very successful
and to represent significant advances in the application areas of EC. As a result,
over the last few years, EvoWorkshops has become one of the major events
to focus solely on applicational aspects of EC, constituting an important link
between EC research and the application of EC in a variety of domains.

EvoWorkshops is co-located with EuroGP, the main European event dedi-
cated to genetic programming, and EvoCOP, which has become the main Eu-
ropean conference on evolutionary computation in combinatorial optimization.
The proceedings for both of these events, EuroGP 2006 and EvoCOP 2006, are
also available in the LNCS series (number 3905 and 3906).

EvoWorkshops 2006, of which this volume contains the proceedings, was
held in Budapest, Hungary, on April 10–12, 2006, jointly with EuroGP 2006
and EvoCOP 2006. EvoWorkshops 2006 consisted of the following i ndividual
workshops:

– EvoBIO, the Fourth European Workshop on Evolutionary Bioinformatics,

– EvoCOMNET, the Third European Workshop on Evolutionary Computation
in Communications, Networks, and Connected Systems,

– EvoHOT, the Third European Workshop on Evolutionary Computation in
Hardware Optimization,

– EvoIASP, the Eighth European Workshop on Evolutionary Computation in
Image Analysis and Signal Processing,

– EvoINTERACTION, the First European Workshop on Interactive Evolution
and Humanized Computational Intelligence,

– EvoMUSART, the Fourth European Workshop on Evolutionary Music and
Art, and
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– EvoSTOC, the Third European Workshop on Evolutionary Algorithms in
Stochastic and Dynamic Environments.

EvoBIO is concerned with the exploitation of EC and related techniques
in bioinformatics and computational biology. For analyzing and understanding
biological data, EC plays an increasingly important role in the pharmaceutical
industry, in biotechnology, and in associated industries, as well as in scientific
discovery.

EvoCOMNET addresses the application of EC techniques to problems in
communications, networks, and connected systems. New communication tech-
nologies, the creation of interconnected communication and information net-
works such as the Internet, new types of interpersonal and interorganizational
communication, and the integration and interconnection of production centers
and industries are the driving forces on the road towards a connected, networked
society. EC techniques are important tools for facing these challenges.

EvoHOT highlights the latest developments in the field of EC applications to
hardware and design optimization. This includes various aspects like the design
of electrical and digital circuits or the solving of classical hardware optimization
problems.

EvoIASP, which was the first international event solely dedicated to the
applications of EC to image analysis and signal processing, addressed this year
topics ranging from fingerprinting to classification problems and artificial ants.

EvoInteraction deals with various aspects of interactive evolution, and more
broadly of computational intelligence in interaction with human intelligence,
including methodology, theoretical issues, and new applications.Interaction with
humans raises several problems, mainly linked to what has been called the user
bottleneck, i.e. human fatigue.

EvoMUSART focuses on the use of EC techniques for the development of cre-
ative systems. There is a growing interest in the application of these techniques
in fields such as art, music, architecture, and design. The goal of EvoMUSART
is to bring together researchers that use EC in this context, providing an oppor-
tunity to promote, present and discuss the latest work in the area, fostering its
further developments and collaboration among researchers.

EvoSTOC addresses the application of EC in stochastic environments. This
includes optimization problems with noisy and approximated fitness functions
that are changing over time, the treatment of noise, and the search for robust
solutions. These topics recently gained increasing attention in the EC community
and EvoSTOC was the first workshop that provided a platform to present and
discuss the latest research in this field.

EvoWorkshops 2006 continued the tradition of providing researchers in these
fields, as well as people from industry, students, and interested newcomers, with
an opportunity to present new results, discuss current developments and appli-
cations, or just become acquainted with the world of EC, besides fostering closer
future interaction between members of all scientific communities that may ben-
efit from EC techniques.
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This year, the EvoWorkshops had the highest number of submissions ever.
The number of submissions increased from 123 in 2004 to 143 in 2005 to 149
in 2006. EvoWorkshops 2006 accepted full papers with twelve pages and short
papers with a reduced number of five pages. The acceptance rate of 43.6% for
EvoWorkshops 2006 is an indicator for the high quality of the papers presented at
the workshops and included in these proceedings. The following table gives some
details on the number of submissions, the number of accepted papers, and the
acceptance ratios for EvoWorkshops 2005 and EvoWorkshops 2006 (accepted
short papers are in brackets). Of further importance for the statistics is the
acceptance rate of EvoWorkshops 2004 which was 44.7%.

year 2006 2005
submissions accept ratio submissions accept ratio

EvoBIO 40 21 52.5% 32 13 40.6%
EvoCOMNET 16 5 31.2% 22 5 22.7%
EvoHOT 9 5 55.6% 11 7 63.6%
EvoIASP 35 12(7) 34.3% 37 17 45.9%
EvoInteraction 8 6 75% - - -
EvoMUSART 29 10(4) 34.5% 29 10(6) 34.5%
EvoSTOC 12 6(2) 50.0% 12 4(4) 33.3%
Total 149 65(13) 43.6% 143 56(10) 39.1%

We would like to thank all the members of the program committees for
their quick and thorough work. We thank the Artpool Art Research Center
of Budapest, and especially György Galántai, for offering space and expertise
without which the wonderful evolutionary art and music exhibition associated
with the conference would not have been possible. Furthermore, we would like
to acknowledge the support from Napier University, Edinburgh.

Finally, we would like to say a special thanks to everybody who was involved
in the preparation of the event. Special thanks are due to Jennifer Willies, whose
work is a great and invaluable help. Without her support, running such a type
of conference with a large number of different organizers and different opinions
would be impossible. Further thanks go to the local organizer, Aniko Ekart, and
her group, who made it possible to run such a conference in such a nice place.

April 2006 Franz Rothlauf Jürgen Branke Stefano Cagnoni
Ernesto Costa Carlos Cotta Rolf Drechsler

Evelyne Lutton Penousal Machado Jason H. Moore
Juan Romero George D. Smith Giovanni Squillero

Hideyuki Takagi



Organization

EvoWorkshops 2006 was jointly organized with EuroGP 2006 and EvoCOP 2006.

Organizing Committee

EvoWorkshops chair: Franz Rothlauf, University of Mannheim, Germany

Local chair: Aniko Ekart, Hungarian Academy of Sciences,
Hungary

Publicity chair: Steven Gustafson, University of Nottingham, UK

EvoBIO co-chairs: Carlos Cotta, Universidad de Málaga, Spain
Jason H. Moore, Darthmouth Medical School, USA

EvoCOMNET co-chairs: Franz Rothlauf, University of Mannheim, Germany
George D. Smith, University of East Anglia, UK

EvoHOT co-chairs: Giovanni Squillero, Politecnico di Torino, Italy
Rolf Drechsler, University of Bremen, Germany

EvoIASP chair: Stefano Cagnoni, University of Parma, Italy

EvoInteraction co-chairs: Evelyne Lutton, INRIA, France
Hideyuki Takagi, Kyushu University, Japan

EvoMUSART co-chairs: Juan Romero, University of A Coruña, Spain,
Penousal Machado, University of Coimbra, Portugal

EvoSTOC co-chairs: Jürgen Branke, University of Karlsruhe, Germany
Ernesto Costa, University of Coimbra, Portugal

Program Committees

EvoBIO Program Committee:
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Johan H.C. Reiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

The Honeybee Search Algorithm for Three-Dimensional Reconstruction
Gustavo Olague, Cesar Puente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Improving the Segmentation Stage of a Pedestrian Tracking
Video-Based System by Means of Evolution Strategies
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Functional Classification of G-Protein Coupled

Receptors, Based on Their Specific Ligand
Coupling Patterns

Burcu Bakir1 and Osman Ugur Sezerman2

1 School of Biology, Georgia Institute of Technology, Atlanta, USA
2 Sabanci University, Istanbul, Turkey

Abstract. Functional identification of G-Protein Coupled Receptors
(GPCRs) is one of the current focus areas of pharmaceutical research.
Although thousands of GPCR sequences are known, many of them re-
main as orphan sequences (the activating ligand is unknown). Therefore,
classification methods for automated characterization of orphan GPCRs
are imperative. In this study, for predicting Level 2 subfamilies of Amine
GPCRs, a novel method for obtaining fixed-length feature vectors, based
on the existence of activating ligand specific patterns, has been developed
and utilized for a Support Vector Machine (SVM)-based classification.
Exploiting the fact that there is a non-promiscuous relationship between
the specific binding of GPCRs into their ligands and their functional
classification, our method classifies Level 2 subfamilies of Amine GPCRs
with a high predictive accuracy of 97.02% in a ten-fold cross validation
test. The presented machine learning approach, bridges the gulf between
the excess amount of GPCR sequence data and their poor functional
characterization.

1 Introduction

G-Protein Coupled Receptors (GPCRs) are vital protein bundles with their key
role in cellular signaling and regulation of various basic physiological processes.
With their versatile functions in a wide range of physiological cellular condi-
tions, they constitute one of the vastest families of eukaryotic transmembrane
proteins [29]. In addition to the biological importance of their functional roles,
their interaction with more than 50% of prescription drugs have lead GPCRs
to be an excellent potential therapeutic target class for drug design and cur-
rent pharmaceutical research. Over the last 20 years, several hundred new drugs
have been registered which are directed towards modulating more than 20 dif-
ferent GPCRs, and approximately 40% of the top 200 synthetic drugs act on
GPCRs [6]. Therefore, many pharmaceutical companies are involved in carrying
out research aimed towards understanding the structure and function of these
GPCR proteins. Even though thousands of GPCR sequences are known as a
result of ongoing genomics projects [10], the crystal structure has been solved
only for one GPCR sequence using electron diffraction at medium resolution (2.8
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A) to date [15] and for many of the GPCRs the activating ligand is unknown,
which are called orphan GPCRs [25]. Hence, based on sequence information,
a functional classification method of those orphan GPCRs and new upcoming
GPCR sequences is of great practical use in facilitating the identification and
characterization of novel GPCRs.

Albeit laboratory experiments are the most reliable methods, they are not
cost and labour effective. To automate the process, computational methods such
as decision trees, discriminant analysis, neural networks and support vector ma-
chines (SVMs), have been extensively used in the fields of classification of biolog-
ical data [21]. Among these methods, SVMs give best prediction performance,
when applied to many real-life classification problems, including biological issues
[30]. One of the most critical issues in classification is the minimization of the
probability of error on test data using the trained classifier, which is also known
as structural risk minimization. It has been demonstrated that SVMs are able
to minimize the structural risk through finding a unique hyper-plane with max-
imum margin to separate data from two classes [27]. Therefore, compared with
the other classification methods, SVM classifiers supply the best generalization
ability on unseen data [30].

In the current literature, to classify GPCRs in different levels of families,
there exist different attempts, such as using primary database search tools, e.g.,
BLAST [1], FASTA [20]. However, these methods require the query protein to
be significantly similar to the database sequences in order to work properly.
In addition to these database search tools, the same problem is addressed by
using secondary database methods (profiles and patterns for classification), e.g.,
Attwood et al. have worked in particular on GPCRs in the PRINTS database
[2] (whose data appeared in INTERPRO database [17]). Hidden Markov Models
[24], bagging classification trees [32] and SVMs [13], [31] are other methods that
have been used to classify GPCRs in different levels of families. Karchin et al.
conducted the most comprehensive controlled experiments for sequence based
prediction of GPCRs in [13] and showed that SVMs gave the highest accuracy
in recognizing GPCR families. Whereas, in SVMs, an initial step to transform
each protein sequence into a fixed-length vector is required and the predictive
accuracy of SVMs significantly depends on this particular fixed-length vector. In
[13], it is also pointed out that the SVM performance could be further increased
by using feature vectors that encode only the most relevant features, since SVMs
do not identify the features most responsible for class discrimination. Therefore,
for an accurate SVM classification, feature vectors should reflect the unique
biological information contained in sequences, which is specific to the type of
classification problem.

In this paper, we address Level 2 subfamily classification of Amine GPCRs
problem by applying Support Vector Machine (SVM) technique, using a novel
fixed-length feature vector, based on the existence of activating ligand specific
patterns. We obtain discriminative feature vectors by utilizing biological knowl-
edge of the Level 2 subfamilies’ transmembrane topology and identifying specific
patterns for each Level 2 subfamily. Since these specific patterns carry ligand
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binding information, the features obtained from these patterns are more relevant
features than amino acid and dipeptide composition of GPCR sequences, which
in turn improves the accuracy of GPCR Level 2 subfamily classification. Apply-
ing our method on Amine Level 1 subfamily of GPCRs [10], we have shown that
the classification accuracy is increased compared to the previous studies at the
same level of classification.

2 Background

G-Protein Coupled Receptor Database (GPCRDB) information system orga-
nizes the GPCRs into a hierarchy of classes, Level 1 subfamilies (sub-families),
Level 2 subfamilies (sub-sub-families), and types, based on the pharmacological
classification of receptors [10]. A simplified view of GPCR family tree is pre-
sented in Figure 1. Since the binding of GPCRs into their specified ligands is
important for drug design purposes, GPCRDB defines the classifications chemi-
cally (according to which ligands the receptor binds, based on the experimental
data), rather than by sequence homology [13]. For class discrimination, gen-
eralization of the features shared by a diverse group of examples is required.
Whereas, for subfamily discrimination, only the examples, that differ slightly,
should be grouped together. Therefore, for GPCR subfamily classification prob-
lem, which is also related to GPCR function prediction, the ligand type that
GPCR binds is more crucial than it is for GPCR class discrimination.

Fig. 1. Portion of GPCR family tree showing the five main classes of GPCRs and some
subfamily members, based on the GPCRDB information system [10]

3 Materials and Methods

3.1 Benchmark Data

For GPCR function prediction from sequence information, subfamily recogni-
tion is more important than class recognition [13]. As mentioned before, sub-
family recognition requires the knowledge of ligand coupling information of the
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receptor proteins. It is claimed that according to the binding of GPCRs with
different ligand types, GPCRs are classified into at least six different families
[9]. Among the sub-families in GPCRDB, Amine Level 1 subfamily of class A
GPCRs is classified into seven sub-sub-families: (i) Muscarinic Acetylcholine, (ii)
Adrenoceptors, (iii) Dopamine, (iv) Histamine, (v) Serotonin, (vi) Octopamine,
(vii) Trace amine Level 2 subfamilies, according to the March 2005 release (9.0)
of GPCRDB (Horn et al., 1998). Therefore, the correlation between sub-family
classification and the specific binding of GPCRs to their ligands can be computa-
tionally explored for Level 2 subfamily classification of Amine Level 1 subfamily.
Moreover, compared to the other classes, since Class A dominates by accounting
for more than 80% of sequences as March 2005 release (9.0) of GPCRDB [10],
it is the best studied class among different GPCRs. Thus, we will be able to
compare our work with the previous studies. We use the same dataset, as that
of Elrod and Chau, for Amine Level 1 subfamily GPCR sequences in GPCRDB,
belonging to one of Acetylcholine, Adrenoceptor, Dopamine, Serotonin sub-sub-
families, which have enough entries inside as a statistically significant training
set, as shown in Table 1. The GPCR sequences in this dataset were extracted
through the website http://www.expasy.org (SWISS-PROT database, Release
46.4, 2005) and fixed-length feature vectors are created for each sequence as it
is explained in the next section.

Table 1. Summary of 168 Class A, Amine GPCRs, classified into four Level 2 Sub-
families as shown in [9]

Level 2 Subfamilies Number of Sequences

Acetylcholine 31
Adrenoceptor 44

Dopamine 39
Serotonin 54
TOTAL 168

3.2 Fixed-Length Feature Vector Creation

Since protein sequences are of variable length, for classification, these sequences
should be converted into fixed-length feature vectors. In order to obtain those
fixed-length feature vectors, which also carry ligand specificity information, we
followed a three step procedure as outlined in Figure 2. The first step, i.e., Topol-
ogy Prediction step, aims to extract extracellular loop regions of the GPCR se-
quences since ligands couple to the outer loops of the GPCRs. So as to force
fixed-length feature vectors to encode only biologically relevant features, ac-
tivating ligand specificity information is taken into account. For this purpose,
conserved patterns, which are specific to each sub-sub-family of GPCR sequences
are found in extracellular GPCR sequences in step two, i.e., Pattern Discovery
step. In third step, i.e., Pattern Matching step, the existence of those activating
ligand specific (specific for a sub-sub-family) patterns is checked. So that we in-
tegrate the coupling specificity of GPCRs into their ligands knowledge into our
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Fig. 2. Flow chart for fixed-length feature vector creation

novel fixed-length feature vectors. Details of the three steps (Topology Predic-
tion, Pattern Discovery, and Pattern Matching) for fixed-length feature vector
creation are described below.

Topology Prediction. Since transmembrane (TM) topology pattern is shown
to be well conserved among GPCRs that have the same function [19], for the
168 GPCR sequences in Elrod and Chau’s dataset, TM topology is checked. For
topology prediction, Hidden Markov Model for Topology Prediction (HMMTOP)
server, which accurately predicts the topology of helical TM proteins, is used [26].
In order to segment amino acid sequences into membrane, inside, outside parts,
HMMTOP method utilizes HMMs in a way that the product of the relative
frequencies of the amino acids of these segments along the amino acid sequence
is maximized. This shows that the maximum of the likelihood function on the
space of all possible topologies of a given amino acid sequence, correlates with
the experimentally established topology [25].

Following topology prediction, extracellular loop sequences are extracted for
each 168 GPCR sequences, based on the fact that ligands couple to extracellular
loops of GPCRs and we are interested in the relation between ligand specificity
of GPCRs and GPCR sub-sub-family classification.

Pattern Discovery. In the second step of the fixed-length feature vector cre-
ation, for each sub-sub-family of GPCR sequences, flexible patterns that are
conserved in the extracellular loop of that particular sub-sub-family GPCR se-
quences are found by using Pratt 2.1., flexible pattern discovery program [4].
Due to the flexibility of the Pratt patterns, they include ambiguous compo-
nents, fixed and flexible wildcards, in addition to their identity components [12].
Hence, Pratt patterns are described using PROSITE notation [4].

Pratt finds patterns matching a subset of the input sequences. This subset is
defined by ”Min Percentage Seqs to Match (MPSM)” parameter, which defines
the minimum percentage of the input sequences that should match a pattern.
This threshold is set to 50% and 75% in this study in order not to allow for
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some very specific patterns that are not general to all GPCR sequences in any
sub-sub-family. This can also be thought as a precaution to prevent overfitting
problem. For each class of GPCRs, 50 conserved patterns are identified by two
different MPSM parameters (50 and 75).

Pattern Matching. The final step for creating fixed-length feature vectors is
to check for the existence of every activating ligand specific pattern in each outer
GPCR sequence. In order to check the existence of the flexible Pratt patterns, all
patterns in PROSITE notation are converted into regular expression form and
then they are searched within 168 extracellular GPCR sequences. Consequently,
by taking activating ligand specific pattern existence information into account,
each GPCR sequence is represented with a vector in the 200 dimensional space
(50 patterns multiplied by 4 output classes).

Gk = (Gk,1, Gk,2, . . . , Gk,200) (1)

where Gk,1 , Gk,2 Gk,200 are the 200 components of activating ligand specific
pattern inclusion for the kth extracellular GPCR sequence Gk. Note that if the
kth extracellular GPCR sequence has the pattern j, then Gk,j=1 and if the kth

extracellular GPCR sequence does not have the pattern j, then Gk,j=0, where
j=1, 2, ... 200.

Writing down each fixed-length feature vector, Gk, in a new row, we obtain
a Gk,j matrix, where k=1, 2, ... 168; j=1, 2, ... 200. After insertion of the sub-
sub-family labels for each of the GPCR sequences into the zeroth dimension of
each Gk vector (Gk,0), the matrix corresponds to a training set. So that k=0, 1,
2, ... 168, where Gk,0 is 1, 2, 3 or 4, since four sub-sub-families are defined for
this classification problem. Note that these 4 class output labelling (1, 2, 3, 4)
does not imply any relationship between classes.

We have also created a second fixed-length feature vector, by using the best
10 patterns among the 50 patterns based on significance scores assigned by the
Pratt program from each sub-sub-family. Using a similar representation, Gk is
denoted in 40 dimensional space (10 patterns multiplied by 4 output classes),
where j=1, 2, ... 40. A Gk,j matrix is formed (similar to above), where k=1, 2,
... 168 and j=1, 2, ... 40 corresponding another training set.

As a result, four training sets (two training sets with 50 MPSM parameter,
for j up to 40 or 200; another two with 75 MPSM parameter, for j up to 40
or 200) are created to produce a classifier using Support Vector Machines, as
mentioned in detail below.

3.3 Classification Using Support Vector Machine (SVM)

The efficiency of SVMs for classification problems made them applicable in many
real-world applications, including biological issues such as: protein classification
and gene expression data analysis. SVM-based method for classification of sub-
families of GPCRs, is first developed by Karchin et al. [13]. When applied to
the problem of discriminating both Level 1 and Level 2 subfamilies of GPCRs,
SVMs are shown to make significantly fewer errors of both false positive and
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false negative than WU-BLAST and SAM-T2K profile HMMs [13]. For these
reasons, we selected to use SVMs for GPCRs’ Level 2 subfamily classification
problem.

4 Experiments

Since we are interested in the classification of Amine Level 1 sub-family into
four Level 2 subfamilies, we are facing with a multi-class classification problem.
We use LIBSVM software [7], which deals with multi-class classification problem
implementing ”one-against-one” approach. As suggested in [11], to be able to get
satisfactory results, some preprocesses are performed before building a classifier
using LIBSVM. Preprocesses, that are performed in this study, can be summa-
rized in two headlines: i) Choice of Kernel function, ii) Grid search combined
with cross-validation for parameter tuning.

4.1 Choice of Kernel Function

Among linear, polynomial, radial basis function (RBF) and sigmoid Kernel func-
tions, RBF kernel is a reasonable first choice as stated in [11], [14], [16]. There-
fore, grid search and parameter tuning is done on RBF kernels. However, results
obtained by using those four kernels are compared with parameter tuned RBF
kernel at the end.

4.2 Cross-Validation and Grid Search

In order to get better accuracy using RBF kernel for SVM classification, penalty
parameter of error term, C, and γ parameter, which is specific to RBF ker-
nel, should be tuned. Grid search procedure identifies the best (C, γ) pair, so
that using these parameters the classifier (model) can accurately predict unseen
test data [11]. Since the accuracy on test data also depends on the examples
in the test data, cross validation is a better choice to tune (C, γ) parameters
and select the best model that neither overfits nor underrepresents the training
data. Compared to other advanced methods for parameter tuning, grid-search is
straightforward, easy to implement and its computational time is not much more
than advanced methods. Additionally, since each (C, γ) is independent, it can be
easily parallelized. During grid search, it is recommended to try exponentially
growing sequences of (C, γ) to identify good parameters [11].

To be able to solve our multi-class SVM classification problem, for each of
our four training sets, grid search is performed for C = 2−5, 2−4, . . . , 210 and
γ = 25, 24, . . . , 2−10. Figure 3 shows the grid search with 10-fold cross validation
for the training data with 200 attributes and 50 MPSM parameter. As it is
seen in Figure 3, highest cross-validation accuracy is reached when γ=2−4 and
C=(20, 210). After two preprocessing steps, as mentioned above, we build our
classifiers using RBF kernel with best (C, γ) parameter pair, which is specific to
the training set. Since we do not have a test set, and the number of examples in
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the training set is not big enough to separate into two, 10-fold cross-validation
is done for each of the four training sets. Combining our biologically relevant
fixed-length feature vector definition with a robust kernel, RBF, and parameter
tuning with a grid search technique shows promising results, which is analyzed
more in detail in the next section.

Fig. 3. Coarse grid search on C and with 10-fold cross validation for the training data
with 200 attributes and 50 MPSM parameter. Highest cross-validation accuracy is
obtained when γ=2−4 and C=(20, 210).

5 Results

As mentioned before, in addition to the SVM classification with parameter tuned
RBF kernel, other three standard kernel functions are tested as well (with their
default parameters) on our four training data using 10-fold cross validation.
Results for each experiment are summarized in Table 2.

Classification with RBF kernel with parameter tuning clearly outperforms
other kernel functions in all cases. Since linear kernel is the specialized form of
RBF kernel, results obtained with these two kernels without parameter tuning
are quite close. Although, the classification accuracy with 200 and 40 attributes
are so close, accuracy with 200 attributes are consistently better than with 40
attributes. The probable reason behind this observation is that 40 attributes are
not enough to represent the examples (more attributes are needed to discrimi-
nate between data points), or those chosen 40 attributes do not correctly reflect
the data points. In contrast to the strict domination of 200 attributes over 40
attributes, there is no such a relationship between training data with 50 MPSM
parameter and 75 MPSM parameter. While sometimes one performs better, it
is vice versa (e.g. results of RBF Kernel and RBF* Kernel in Table 2). Lower
accuracy for the training data with 75 MPSM parameter is caused by overfit-
ting, which decreases accuracy at the end whereas with 50 MPSM parameter,
patterns that are conserved in at least 50% of the data can not represent overall
data.
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In this paper, for the classification of Level 2 Subfamily of Amine GPCR’s,
97.02% prediction accuracy is achieved in a ten-fold cross validation. Compared
to the existing GPCR functional classification methods, for the classification of
Level 2 Subfamily of Amine GPCR’s, our result is superior to the SVM method
with a simpler fixed-length feature vector definition and no parameter tuning,
where prediction accuracy is 94.01% [31] and covariant discriminant algorithm,
where prediction accuracy is 83.23% [9]. In another study, Ying et al. performs
classification for both sub-family and sub-sub-family levels of GPCRs using bag-
ging classification tree [32] . For sub-sub-family level, using the same dataset [9],
our prediction accuracy in a ten-fold cross validation (97.02%) is higher than
their prediction accuracy obtained in ten-fold cross validation (82.4%). More
extensive comparison with previous studies is presented in the following section.

Table 2. Results for four different training sets, as explained in the text, using four
different kernel functions and RBF kernel with parameter tuning (RBF*), with 10-fold
cross-validation

# of MPSM Linear Polynomial Sigmoid RBF RBF*
Attributes Parameter Kernel Kernel Kernel Kernel Kernel

200 75 94.0476 48.8095 91.6667 91.6667 95.2381

200 50 96.4286 32.1429 86.3095 90.4762 97.0238

40 75 89.2857 47.0238 84.5238 86.3095 92.8571

40 50 92.8571 32.1479 84.5238 85.7143 93.4524

6 Discussion

The difference of this study from previous studies can be emphasized in two
main points:

i) Fixed-length feature vector creation: We developed a novel method for ob-
taining fixed-length feature vectors of SVM. The naive idea that using direct pro-
tein sequence information as feature vector can not be used in SVM classification
since the sequence length is not fixed. Many studies [9], [32], [31] attempted this
problem by defining a fixed-length feature vector based on the protein’s amino
acid composition. Following the representation in [8], each protein is represented
by a vector, Xk, in 20 dimensional space, where each dimension corresponds
to how many times that particular amino acid, which represents that specific
dimension, occurred in those particular protein.

Xk = (Xk,1, Xk,2, . . . , Xk,20) (2)

where Xk,1 , Xk,2 ... Xk,20 are 20 components of amino acid composition for
the kth protein Xk. In addition to the amino acid composition, in some of the
studies, fixed-length vector is obtained by dipeptide composition [3], which takes
local order of amino acids into account, in addition to the information about the
fraction of amino acids. The dipeptide composition of each protein is shown
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using fractions of all possible dipeptides, where fraction of dipeptide i is the
ratio of the number of dipeptide i in the protein divided by the total number
of all possible dipeptides, namely 400. Alternatively, each protein sequence can
also be transformed into a fixed-length feature vector, in the form of Fischer
score vector [13].

Since in this study, the effect of activating ligand specificity in Level 2 Subfam-
ily classification of Amine GPCRs is emphasized, a new feature vector is built,
based on this observation. In this regard, we have used the existence information
of activating ligand specific patterns, as fixed-length feature vectors, in order to
come up with a biologically meaningful and distinctive measure. Therefore, the
superiority of our feature vector stems from the biological importance of ligand
coupling specificity for Level 2 Subfamily classification of Amine GPCRs. By
combining those feature vectors with a robust kernel function, and parameter
tuning strategy, we come up with an accurate classification method.

ii) Classification level: Apart from the definition of the feature vector for SVM,
the exact classification level that we concentrate on, has been attempted in a few
previous studies. Ying and Yanda and Ying et al. attempted the classification
problem in the same Level 2 Subfamily of Amine GPCRs by using SVMs with
amino acid composition as feature vector [31] and bagging classification tree
[32], respectively. Our difference with their work is based on our novel feature
vector definition as it is mentioned above, which in turn significantly affects the
prediction accuracy (from 82.4% to 97.02% and 94.01% to 97.02% respectively).
Apart from these particular papers, most of the previous studies concentrate
on Superfamily level or Level 1 Subfamily. Although Karchin et al. have done
experiments by using hierarchical multi-class SVMs, on Level 2 Subfamily [13] ,
they combine Class A Level 2 Subfamilies with Class C Level 2 Subfamilies.

Performance results in this study are promising and outperform other com-
petitive techniques that classify GPCRs at the same level, with a very high cross
validation accuracy of 97.02%. This result is mainly due to the definition of our
feature vectors, since compared studies do not take into account such conserved
pattern information for proper functioning of the GPCR. As the importance
of specific ligand binding into GPCRs and the hidden information behind this
binding is pointed out previously [13], we realized the use of ligand specific
coupling patterns for creation of fixed-length feature vectors, which answers the
need for biologically relevant features. Using these vectors for SVM classification
and doing grid search for model selection, the accuracy have further improved
even with very few sequences. With such accurate and automated GPCR func-
tional classification methods, we are hoping to accelerate the pace of identifying
proper GPCRs to facilitate drug discovery especially for schizophrenic and psy-
chiatric diseases. Therefore, one of our future goals is to automate the presented
procedure and come up with an integrated environment to perform GPCR clas-
sification conveniently with many flexible options to the biological users, who
are not experts on the topic.
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Abstract. This paper presents an approach for assessing cluster validity
based on similarity knowledge extracted from the Gene Ontology (GO)
and databases annotated to the GO. A knowledge-driven cluster valid-
ity assessment system for microarray data was implemented. Different
methods were applied to measure similarity between yeast genes prod-
ucts based on the GO. This research proposes two methods for calculat-
ing cluster validity indices using GO-driven similarity. The first approach
processes overall similarity values, which are calculated by taking into
account the combined annotations originating from the three GO hierar-
chies. The second approach is based on the calculation of GO hierarchy-
independent similarity values, which originate from each of these hierar-
chies. A traditional node-counting method and an information content
technique have been implemented to measure knowledge-based similar-
ity between genes products (biological distances). The results contribute
to the evaluation of clustering outcomes and the identification of opti-
mal cluster partitions, which may represent an effective tool to support
biomedical knowledge discovery in gene expression data analysis.

1 Introduction

Over the past few years DNA microarrays have become a key tool in functional
genomics. They allow monitoring the expression of thousands of genes in parallel
over many experimental conditions (e.g. tissue types, growth environments). This
technology enables researchers to collect significant amounts of data, which need
to be analysed to discover functional relationships between genes or samples. The
results from a single experiment are generally presented in the form of a data
matrix in which rows represent genes and columns represent conditions. Each
entry in the data matrix is a measure of the expression level of a particular gene
under a specific condition.

A central step in the analysis of DNA microarray data is the identification of
groups of genes and/or conditions that exhibit similar expression patterns. Clus-
tering is a fundamental approach to classifying expression patterns for biological
and biomedical applications. The main assumption is that genes that are con-
tained in a particular functional pathway should be co-regulated and therefore
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should exhibit similar patterns of expression [1]. A great variety of clustering al-
gorithms have been developed for gene expression data. The next data analysis
step is to integrate these numerical analyses of co-expressed genes with biolog-
ical function information. Many approaches and tools have been proposed to
address this problem at different processing levels. Some methods, for example,
score whole clustering outcomes or specific clusters according to their biological
relevance, other techniques aim to estimate the significance of over-represented
functional annotations, such as those encoded in the Gene Ontology (GO), in
clusters [2], [3], [4], [5]. Some approaches directly incorporate biological knowl-
edge (e.g. functional, curated annotations) into the clustering process to aid in
the detection of relevant clusters of co-expressed genes involved in common pro-
cesses [6], [7]. Several tools have been developed for ontological analysis of gene
expression data (see review by Khatri and Drǎghici [8], for instance) and more
tools are likely to be proposed in the future.

The prediction of the correct number of clusters in a data set is a funda-
mental problem in unsupervised learning. Various cluster validity indices have
been proposed to measure the quality of clustering results [9], [10]. Recent stud-
ies confirm that there is no universal pattern recognition and clustering model
to predict molecular profiles across different datasets. Thus, it is useful not to
rely on one single clustering or validation method, but to apply a variety of
approaches. Therefore, combination of GO-based (knowledge-driven) validation
and microarray data (data-driven) validation methods may be used for the es-
timation of the number of clusters. This estimation approach may represent a
useful tool to support biological and biomedical knowledge discovery.

We implemented a knowledge-driven cluster validity assessment system for
microarray data clustering. Unlike traditional methods that only use (gene ex-
pression) data-derived indices, our method consists of validity indices that incor-
porate similarity knowledge originating from the GO and a GO-driven annota-
tion database. We used annotations from the Saccharomyces Genome Database
(SGD) (October 2005 release of the GO database). A traditional node-counting
method proposed by Wu and Palmer [11] and an information content technique
proposed by Resnik [12] were implemented to measure similarity between genes
products. These similarity measurements have not been implemented for clus-
tering evaluation by other research.

The main objective of this research is to assess the application of knowledge-
driven cluster validity methods to estimate the number of clusters in a known
data set derived from Saccharomyces cerevisiae.

2 The GO and Cluster Validity Assessment

The automated integration of background knowledge is fundamental to support
the generation and validation of hypotheses about the function of gene prod-
ucts. The GO and GO-based annotation databases represent recent examples
of such knowledge resources. The GO is a structured, shared vocabulary that
allows the annotation of gene products across different model organisms. The
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GO comprises three independent hierarchies: molecular function (MF), biological
process (BP) and cellular component (CC). Researchers can represent relation-
ships between gene products and annotation terms encoded in these hierarchies.
Previous research has applied GO information to detect over-represented func-
tional annotations in clusters of genes obtained from expression analyses [13]. It
has also been suggested to assess gene sequence similarity and expression cor-
relation [14]. For a deeper review of the GO and its applications, the reader is
referred to its website (http://www.geneontology.org) and Wang et al. [14].

Topological and statistical information extracted from the GO and databases
annotated to the GO may be used to measure similarity between gene products.
Different GO-driven similarity assessment methods may be then implemented to
perform clustering or to quantify the quality of the resulting clusters. Cluster va-
lidity assessment may consist of data- and knowledge-driven methods, which aim
to estimate the optimal cluster partition from a collection of candidate partitions
[15]. Data-driven methods mainly include statistical tests or validity indices ap-
plied to the data clustered. A data-driven, cluster validity assessment platform
was previously reported by Bolshakova and Azuaje, [9], [10]. We have previously
proposed knowledge-driven methods to enhance the predictive reliability and
potential biological relevance of the results [15].

Traditional GO-based cluster description methods have consisted of statisti-
cal analyses of the enrichment of GO terms in a cluster. Currently, there is a
relatively large number of tools implementing such an approach [8]. At the same
time, this approach is severely limited in certain regards (for detailed review on
ontological analysis see by Khatri and Drǎghici [8]). For instance, overestimation
of probability values describing over-representation of terms. This may be due
to the lack of more complete knowledge or the incorporation of biased datasets
to make statistical adjustments and detect spurious associations. However, the
application of GO-based similarity to perform clustering and validate clustering
outcomes has not been widely investigated. A recent contribution by Speer et
al. [16], [17] presented an algorithm that incorporates GO annotations to clus-
ter genes. They applied data-driven Davies-Bouldin and Silhouette indices to
estimate the quality of the clusters.

This research applies two approaches to calculating cluster validity indices.
The first approach processes overall similarity values, which are calculated by
taking into account the combined annotations originating from the three GO
hierarchies. The second approach is based on the calculation of independent
similarity values, which originate from each of these hierarchies. The second
approach allows one to estimate the effect of each of the GO hierarchies on the
validation process.

3 GO-Based Similarity Measurement Techniques

For a given pair of gene products, g1 and g2, sets of GO terms T1 = ti and T2 = tj
are used to annotate these genes. Before estimating between-gene similarity it
is first necessary to understand how to measure between-term similarity. We
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implemented GO-based between-term similarity using a traditional approach
proposed by Wu and Palmer [11] and an information content technique proposed
by Resnik [12].

3.1 Wu and Palmer-Based Method

Similarity was defined by Wu and Palmer [11] as follows:

sim(ti, tj) =
2N

Ni + Nj + 2N
(1)

where Ni and Nj are the number of links (edges) from ti and tj to their closest
common parent in the GO hierarchy, Tij , and N is the number of links from Tij

to the GO hierarchy root.
This similarity assessment metric may be transformed into a distance, d,

metric:
d(ti, tj) = 1− sim(ti, tj) (2)

then the average inter-set similarity value across each pair of ti and tj is com-
puted [13]:

d(gk, gm) = avg
i,j

(d(tki, tmj)) (3)

This between-term distance aggregation may then be used as an estimate of
the GO-based similarity between two genes products gk and gm, which is defined
as:

d(gk, gm) = avg
i,j

(1− 2N

Nki + Nmj + 2N
) (4)

3.2 Resnik-Based Similarity Measurement

This similarity was defined by Resnik [12] as follows:

sim(ti, tj) = max(−log(p(Tij))) (5)

Tij is defined as above and has the highest information value V defined as
−log(p(Tij)),where p(Tij) is a probability, of finding term Tij (or its descendants)
in the dataset of genes under study, i.e. the SGD in this study.

Such similarity assessment metric may be transformed into a distance metric:

d(ti, tj) =
1

1 + sim(ti, tj)
(6)

Based on the average value across each pair of ti and tj , as computed by
Azuaje and Bodenreider [13], the GO-based similarity between two genes prod-
ucts g1 and g2 is defined as:

d(gk, gm) = avg
i,j

(
1

1 + max(−log(p(Tkmij)))
) (7)

In this research we first study an approach based on the aggregation of sim-
ilarity information originating from all three GO. We also proposed and imple-
mented three hierarchy - specific similarity assessment techniques, each based on
information individually extracted from each GO hierarchy (BP, MF and CC).
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4 Clustering and Cluster Validation Methods

4.1 Clustering

The data analysed in this paper comprised yeast genes described by their ex-
pression values during the cell cycle [18]. Previous research has shown that dis-
joint clusters of genes are significantly associated with each of the five cell cycle
stages: early G1, late G1, S, G2, M. Several cluster partitions (with numbers
of clusters from two to six clusters), obtained with the k -means algorithm, were
analysed to estimate the optimum number of clusters for this dataset. Clustering
was performed with the Machaon CVE tool [10].

4.2 Cluster Validation Methods

Cluster validation was performed using two validity indices: the C-index [19]
and the Goodman-Kruskal index [20], whose data-driven versions have been
shown to be effective cluster validity estimators for different types of clustering
applications. Nevertheless, each of the implemented validation methods has their
advantages and limitations. For example, Goodman-Kruskal index is expected
to be robust against outliers because quadruples of patterns are used for its
computation. However, its drawback is its high computational complexity in
comparison, for example, with the C-index.

C-index. The C-index [19], C, is defined as follows:

C =
S − Smin

Smax − Smin
(8)

where S, Smin, Smax are calculated as follows. Let p be the number of all pairs
of samples (conditions) from the same cluster. Then S is the sum of distances
between samples in those p pairs. Let P be a number of all possible pairs of
samples in the dataset. Ordering those P pairs by distances we can select p pairs
with the smallest and p pairs with the largest distances between samples. The
sum of the p smallest distances is equal to Smin, whilst the sum of the p largest
is equal to Smax. From this formula it follows that the nominator will be small if
pairs of samples with small distances are in the same cluster. Thus, small values
of C correspond to good clusters. We calculated distances using the knowledge-
driven methods described above. The number of clusters that minimize C-index
is taken as the optimal number of clusters, c.

Goodman-Kruskal index. For a given dataset, Xj(j = 1, , k, where k is the
total number of samples (gene products in this application), j, in the dataset,
this method assigns all possible quadruples [20]. Let d be the distance between
any two samples (w and x, or y and z) in Xj . A quadruple is called concordant
if one of the following two conditions is true:

d(w, x) < d(y, z) , w and x are in the same cluster and y and z are in different
clusters.
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d(w, x) > d(y, z), w and x are in different clusters and y and z are in the
same cluster.

By contrast, a quadruple is called disconcordant if one of following two con-
ditions is true:

d(w, x) < d(y, z), w and x are in different clusters and y and z are in the
same cluster.

d(w, x) > d(y, z), w and x are in the same cluster and y and z are in different
clusters.

We adapted this method by calculating distances using the knowledge-driven
methods described above.

A good partition is one with many concordant and few disconcordant quadru-
ples. Let Ncon and Ndis denote the number of concordant and disconcordant
quadruples, respectively. Then the Goodman-Kruskal index, GK, is defined as:

GK =
Ncon −Ndis

Ncon + Ndis
(9)

Large values of GK are associated with good partitions. Thus, the number of
clusters that maximize the GK index is taken as the optimal number of clusters, c.

5 Results

The clustering algorithm was applied to produce different partitions consisting
of 2 to 6 clusters each. Then, the validity indices were computed for each of
these partitioning results. The two GO-based similarity assessment techniques
introduced above were used for all cases to calculate biological distances between
the genes.

Tables 1 to 4 show the predictions made by the validity indices at each number
of clusters. Bold entries represent the optimal number of clusters, c, predicted
by each method. In the tables the first cluster validity index approach processes
overall GO-based similarity values, which are calculated by taking into account
the combined annotations originating from the three GO hierarchies. The other
indices are based on the calculation of independent similarity values, indepen-
dently obtained from each of the GO hierarchies.

The C-indices based on Resnik similarity measurement and similarity informa-
tion from the MF, BP and the combined hierarchies indicated that the optimal

Table 1. C-index predictions based on Wu and Palmer’s GO-based similarity metric
for expression clusters originating from yeast data

Validity indices based on: c=2 c=3 c=4 c=5 c=6

Combined hierarchies 0.51 0.472 0.464 0.453 0.463

Biological process 0.501 0.321 0.259 0.235 0.237

Molecular function 0.501 0.32 0.274 0.243 0.272

Cellular component 0.514 0.586 0.602 0.614 0.615
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Table 2. C-index values predictions based on Resnik’s GO-based similarity estimation
technique for expression clusters originating from yeast data

Validity indices based on: c=2 c=3 c=4 c=5 c=6

Combined hierarchies 0.504 0.395 0.373 0.349 0.369

Biological process 0.503 0.321 0.261 0.234 0.243

Molecular function 0.501 0.32 0.278 0.25 0.29

Cellular component 0.517 0.645 0.69 0.723 0.759

Table 3. Goodman-Kruskal index values used Wu and Palmer’s similarity metric for
expression clusters originating from yeast data

Validity indices based on: c=2 c=3 c=4 c=5 c=6

Combined hierarchies -0.023 -0.01 -0.018 0.004 -0.017

Biological process -0.013 0.005 -0.005 0.034 0.018

Molecular function -0.02 0.009 0.005 0.066 -0.026

Cellular component -0.025 -0.022 -0.032 -0.046 -0.025

Table 4. Goodman-Kruskal index values used Resnik’s similarity metric for expression
clusters originating from yeast data

Validity indices based on: c=2 c=3 c=4 c=5 c=6

Combined hierarchies -0.026 -0.001 -0.02 0.016 -0.01

Biological process -0.018 0.014 -0.012 0.055 0.044

Molecular function -0.02 0.012 0.004 0.087 -0.016

Cellular component -0.025 -0.035 -0.024 -0.037 -0.025

number of clusters is c = 5, which is consistent with the cluster structure ex-
pected [18]. The C-indices based on Wu and Palmer similarity measurement and
similarity information from the MF and BP indicated that the optimal number
of clusters is c = 5. In all cases only the method based on the CC hierarchy
suggested the partition with two clusters as the optimal partition, which con-
firms that cellular localization information does not adequately reflect relevant
functional relationships in this dataset.

For the Goodman-Kruskal method again only the method based on the CC
hierarchy suggested the partition different from c = 5 as the optimal partition.

6 Accompanying Tool

The approaches described in this paper are available as part of the Machaon
CVE (Clustering and Validation Environment) [10]. This software platform has
been designed to support clustering-based analyses of expression patterns in-
cluding several data- and knowledge-driven cluster validity indices. The pro-
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gram and additional information may be found at http://www.cs.tcd.ie/ Na-
dia.Bolshakova/GOtool.html

7 Conclusion

This paper presented an approach to assessing cluster validity based on similar-
ity knowledge extracted from the GO and GO-driven functional databases. A
knowledge-driven cluster validity assessment system for microarray data cluster-
ing was implemented. Edge-counting and information content approaches were
implemented to measure similarity between genes products based on the GO.
Edge-counting approach calculates the distance between the nodes associated
with these terms in a hierarchy. The shorter the distance, the higher the simi-
larity. The limitation is that it heavily relies on the idea that nodes and links in
the GO are uniformly distributed.

The research applies two methods for calculating cluster validity indices. The
first approach process overall similarity values, which are calculated by taking
into account the combined annotations originating from the three GO hierar-
chies. The second approach is based on the calculation of independent similarity
values, which originate from each of these hierarchies. The advantage of our
method compared to other computer-based validity assessment approaches lies
in the application of prior biological knowledge to estimate functional distances
between genes and the quality of the resulting clusters. This study contributes
to the development of techniques for facilitating the statistical and biological
validity assessment of data mining results in functional genomics.

It was shown that the applied GO-based cluster validity indices could be
used to support the discovery of clusters of genes sharing similar functions. Such
clusters may indicate regulatory pathways, which could be significantly relevant
to specific phenotypes or physiological conditions.

Previous research has successfully applied C-index using knowledge-driven
methods (GO-based Resnik similarity measure) [15] to estimate the quality of
the clusters.

Future research will include the comparison and combination of different data-
and knowledge-driven cluster validity indices. Further analyses will comprise,
for instance, the implementation of permutation tests as well as comprehensive
cluster descriptions using significantly over-represented GO terms.

The results contribute to the evaluation of clustering outcomes and the iden-
tification of optimal cluster partitions, which may represent an effective tool to
support biomedical knowledge discovery in gene expression data analysis.
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Abstract. A variety of recent achievements in the field of biology, chemistry and
information technology have made possible the development of DNA chips. They
allow us to analyze the sequences and functions of different genes simultaneously
and detect small differences in those. They are source of tremendous amount of
data in the field of Bioinformatics. Moreover, the engineering process of DNA
chip requires the latest results of information technology, too. In this paper, we
address the mathematical problem of the prediction the hybridization process on
the chip surface. A novel in situ in silico approach is presented and the obtained
results are discussed.

1 Introduction

The rapid development of nanotechnology and computer science led to the emergence
of a new research field, called bioinformatics. One of the most important technique of
this new discipline is DNA–chip or DNA–microarray. It also represents a revolutionary
innovation in the area of applied medical diagnostics. With the help of it the presence of
pathogens and a predominant proportion of genetically based diseases can be detected
parallel very quickly and accurately. In other words, it can extremely accelerate the
precise diagnostics, so the appropriate treatment can be started earlier.

Nevertheless, the more extensive use of the method is nowadays limited by its high
operational costs. For example the production of 80 homogeneous chips with 20,000
DNA fragments costs approximately e 40,000. The largest part of these expenses re-
sults from the production of the so–called masks, which are used to determine the chem-
ical structure of DNA pieces. Obviously, the large manufacturing costs mean substantial
disadvantage. Therefore, the designing process needs special attention. The aim of our
work is to facilitate the engineering process and help to avoid extra charges which are
due to chemicals carrying non–appropriate genetical information.

We proceed as follows: In section 2 a short introduction to DNA–chip technology
and Simulated Annealing method is given. The estimation of the hybridization is sum-
marized in section 3. Our mathematical model is presented together with its optimiza-
tion in section 4. The test results can be found in section 5, and conclusion with future
work plans in section 6.
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2 DNA–Chips

DNA–chip itself is a solid carrier (glass or special plastic plate) with a set of single
stranded DNA fragments, so–called probes on it. The sample is usually a solution which
also contains DNA fragments. According to Watson and Crick a DNA molecule consists
of two helically twisted strands connected together with a series of hydrogen bonds
(double–helix) and each strand has 4 distinct building blocks (nucleotides or bases),
adenine (dA), guanine (dG), cytosine (dC) and thymine (dT). Generally, the different
basis sequences determine different genes, which are large DNA fragments, carry and
transmit genetic information. The smaller DNA pieces are called oligo–nucleotides. En-
ergetically favorable, if dA bonds to dT and dC pairs with dG, which means there exists
a one to one correspondence in the set of DNA fragments. There is another important bi-
jective function f: DNA –> RNA, which is based on similar chemically preferred pairs,
dArU, dTrA, dCrG and dGrC where RNA fragments are variations with repetitive rA,
rU, rC and rG elements. The Central Dogma of Molecular Biology, which is the law
of genetic information storage and transfer in living organisms is based on these spe-
cial relationships (Figure 1). Indeed, if one investigate a sample using a DNA–chip then
only the unique complementary basis sequences ought to form double–helixes. This
process is known as hybridization. Nevertheless, every molecular process observed at
macroscopic level is stochastic. Depending on the basis sequences it is possible to arise
some non exactly complementary distorted double–helix. The energetically less stable
basis pairs are the so called mismatches (MM). MMs and mutations are closely related,
MMs can alter into mutations and with the help of them even a single mutation can be
detected. Since we can select the probe sequences, it is theoretically possible to indicate
all well–known and unknown mutations in the sample. DNA–chip technology takes the
advantages of parallel experiments, even up to 100,000 different oligo–nucleotides can
be applied on a single chip and the investigation takes only a few minutes. Based on the
application area chips can be divided into three major categories:

– Diagnostic chips (oligoDNA–Chips): The length (number of bases) of the used
probe oligo–nucleotides is between 20 and 60. They are mainly used in the di-
agnostics of pathogens and detection of genetically originated disorders.

– Transcriptional chips (cDNA–Chips): The length of the used probe oligo–
nucleotides is typically larger than 100 nucleotides. They are often used in can-
cer research to detect changes and similarities between healthy and tumour cells.

– Chips for sequence analysis: The probe nucleotides are quite short. The goal is to
determine the overlapping frames and substrings of genes. In fact, sequence analy-
sis is an application of the well–known shortest common superstring problem.

All three kinds of DNA–chips serve to detect the presence or absence of certain nu-
cleotide chains in the analyzed sample. Although the philosophy is basically the same,
there are some substantial differences among the groups. In our point of view the most
remarkable one is the role of mutations, which is the most important in the first group.

There are several different DNA–chip manufacturing techniques have been devel-
oped during the last decade. In the case of diagnostic chips, the most frequently applied
procedure is very similar to those used in computer chip fabrication [1]. Photolitho-
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Fig. 1. The flow of genetic information

graphic processes such as photosensitive masks are combined with solid phase chem-
istry to bond DNA fragments onto the surface. With the series of specific masks and
chemical steps high density chips can be constructed. In the development, application
and propagation of DNA–chips S. Fodor played a decisive role [2, 3, 4].

2.1 Sample Analysis Using DNA–Chips

The investigation is a multi–step experiment involving the following processes (Figure
2). (i) Amplification (multiplication) of DNA strands in the sample to obtain appropriate
amount of them. (ii) Labeling of the fragments with flourescent dye to monitor the sam-
ple. (iii) Hybridization between the sample and probe sequences immobilized onto the
chip surface. (iv) Measuring the fluorescence of labeled DNA fragments to determine
where hybridization occured. (v) Data interpretation. Beside the last step, which is also
a time–consuming and computer demanding process chip design is apparently the most
important step which precedes the investigation and determines its success or failure.

2.2 Role of Hybridization – The Nearest Neighbor Method

The computational prediction of the thermodynamics of hybridization plays a pivotal
role in chip design. Accordingly, several methods have already been proposed to es-
timate the melting point or temperature (Tm) of nucleic acid duplexes. At the melting
temperature 50% of the DNA fragment and its perfect complement form duplex, the
other half are in free single stranded state due to molecular thermal motion. In fact, the
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Fig. 2. The simplified scheme of DNA–chip investigation

probability of hybridization and the Tm–point are descriptors of the same thermodynam-
ical property: the stability of the duplex. The higher the Tm the more likely hybridiza-
tion occurs. To calculate Tm the simpler methods use the chemical formula of the chains
(eq.1.) and empirical parameters are accounted for solvation effects (eq. 2.).

Td = 2(#A + #T)+ 4(#C+ #G) (1)

where #X means the number of X bases in the sequence.

T m = 8.15 + 16.6 ∗ log[Na+]+ 41(XG + XC)−500/L−0.62F (2)

where L, F are empirical parameters, XG, XC can be simply calculated from #G and #C.
In the most complicated and flexible case the actual sequence of the chains is also taken
into consideration (eq.3.) [5, 6].

Tm =
ΔH0

ΔS0 + R∗ ln[c/4]
−273.15 + const∗ log[Na+], (3)

where δH0 is the enthalpy, δS0 the entropy and c the oligo concentration. δH0 and δS0

depend on the base–sequences and 12 constants (const) stated by the examination [7, 8].
Although, there is a scientific dispute [9, 10, 11, 12] about the best parameter set the

nearest neighbor (NN) method (eq. 3.) is generally considered to be the most accurate
prediction of Tm. Nevertheless, substantial problems have been left unsolved consid-
ering NN. First of all, the NN parameters are not valid in solid phase, they are based
on fluid phase measurements. Secondly, they originally were developed to describe the
thermodynamics of perfect–matching sequences and their extension to other cases is
painful, there still exist quite a few mismatches without parameter. Lastly, every pa-
rameter defined by experiments has limited scope. Reparametrization can help to solve
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these problems, but it requires a tremendous amount of experimental work regarding the
NN approach. In addition, if one consider carefully the last argument, then this is not
else than only a stone on Sisyphus’s way. A more effective approach will be presented
in the following sections to avoid these difficulties.

2.3 Simulated Annealing

Simulated Annealing (SA, [13]) is a randomized procedure, which supplies good ap-
proximation solutions for combinatorial optimization problems in many practical cases
[14, 15, 16, 17]. This technology was developed at the beginning of the 80’s. As its name
implies, the SA exploits an analogy between the way how a metal cools and freezes into
a minimum energy crystal structure (the annealing process) and the search for a min-
imum in a more general system. The success of the process depends strongly on the
choice of a control parameter, called temperature. In order to be able to provide as good
as possible cooling plan for the Simulated Annealing, the investigation of the proce-
dure’s convergence behavior is necessary.

Simulated Annealing is started with a feasible solution of the combinatorial opti-
mization problem and in every iteration a randomly selected neighbour solution is pro-
duced. The algorithm employs a random search which not only accepts changes that
decrease objective function, but also some changes that increase it. If the change has
a better function value, one turns into it and iterates. Otherwise one accepts the new
solution only with a certain probability. This probability decreases with increasing the
iteration number, because of the decreasing temperature.

3 In situ, in silico Chip Design

As we mentioned earlier, regarding DNA the most stable state if the four bases can form
Watson–Crick basis pairs: dG ≡ dC, dA = dT (where every hyphen means one hydro-
gen bond). If two sequences are exactly complementary then they will hybridize with
each other under appropriate conditions. Since, duplex formation is a stochastic process
hybridization can occur between non perfectly matching sequences and its probability
is in inverse proportion to the number of MMs. Furthermore, one can conclude that dif-
ferent MMs might have different effects on hybridization. Accordingly, the following
parameters are specified in our model:

1. Type–dependent parameters: In the case of DNA, the number of Watson–Crick pairs
and MMs is 2 and 8, respectively. The number of possible combinations are

(4+2−1
2

)
(Table 1. a). There are 4 Watson–Crick pairs and 12 MMs considering DNA–RNA
hybrids, where the order of elements is significant

(4
1

)
×
(4

1

)
(Table 1. b).

Every type–dependent parameter is restricted into the [0.0, 10.0] interval:

0.0≤ dXrY ≤ 10.0, where X ∈ {A,G,C,T} and Y ∈ {A,G,C,U}

Apparently, the positions of MMs in the sequence are not equivalents (Figure 3).
That is why, the following parameter type was introduced:
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Table 1. a) The commutative Cayley table of DNA/DNA–pairs, the off diagonal elements are
MMs and the different ones are in italic; b) The Cayley table of DNA/RNA–pairs, the off diagonal
elements are MMs

dA dC dG dT DNA/DNA
dAdA dCdA dGdA dTdA dA
dAdC dCdC dGdC dTdC dC
dAdG dCdG dGdG dTdG dG
dAdT dCdT dGdT dTdT dT

a)

dA dC dG dT DNA/RNA
dArA dCrA dGrA dTrA rA
dArC dCrC dGrC dTrC rC
dArG dCrG dGrG dTrG rG
dArU dCrU dGrU dTrU rU

b)

2. Position–dependent parameters: they are determined by the length of the sequence
and the position of the mismatch:

– The length of sequences is also important; a mismatch has greater importance,
if the length of the sequence is shorter. The f (x) function for weighting the
position of the mismatch has to be defined according to the length of sequences.

– The importance of the sequence positions follows a maximum curve regarding
MMs. The speed of growth or the decrease depends on the length of the se-
quence and MMs have less influence on the probability of hybridization at both
ends of the chain, as if they were in the center of the sequence (Figure 3).

Fig. 3. The influence of the MM position on hybridization

3. Solution–dependent parameters:
They cover the experimental conditions i.e. salt and sample concentrations and
other environmental factors, which also effect the probability of hybridization. The
experimental conditions are specified by the scientist, who plans and accomplishes
the work. One can assume that these values do not change in a certain laboratory.
Although we do not use these parameters explicitly, they are originally involved in
our approach.

In our basic model, we optimize only the type–dependent parameters, and set the
other parameters to appropriate values (Section 4.2).
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4 Methods

All the above mentioned parameters represent the chemical sense in our model. With
the help of MMs, which are weighted by the appropriate parameters, the mathematical
model for the estimation of hybridization probability can be presented:

P(hybridization) = max

{
0,1−

(
l−1

∑
i=0

wpos(i)∗wmm(m(i))

)}
,

where l is the length of sequence, i is the position number, m(i) is the type of mismatch
at position i, wpos(i) ∈ R is the weight of position i and wmm(m(i)) is the weight of
mismatch type at position i.

If there is no mismatch at the position i, then wpos(i) = wmm(m(i)) = 0. If appropriate
values are assigned to the parameters, experiments can be replaced by computations.

4.1 Optimization of Parameters

The following target function was used in the optimization process.

z = min

(
n,m

∑
i, j

∣∣ai j −bi j
∣∣2)

where the element ai j was derived from the chip experiment (TIFF image processing)
and its value based on the hybridization of the row i and column j DNA fragment, n,
m are the dimensions of the chip. The bi j elements of the B matrix are computed as
follows:

bi j = f (i j) =
l

∑
k=0

wpos(k)wmm(Si jk),

where l is the length of sequence, Si j is the sequence on the chip in row i and column
j, Si jk is the MM at position k in this sequence. Thus the elements of matrix B are
calculated from character strings, which consist of the variations of the four indications
(A, C, G, T).

In a real dataset, the proportions of MMs are usually not balanced. In order to pro-
portionately optimize the MM weights, we need to scale the number of the present MMs
and expand the target function. The percent of every mismatch in the dataset is calcu-
lated as follows:

pm(t) =
Nm(t) ∗ 100

∑12
t=1 Nm(t)

%

where m(t) is the mismatch, Nm(t) is the number of m(t) mismatch in the real dataset.
In order to scale the number of MMs considering DNA-RNA chips, the proportion of
100%

12 = 8.3333% (the evenly distributed MMs) and pm(t) is taken, thus the scale weight
for mismatch m(t) is:

scm(t) =
8.3333
pm(t)

%
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The target function can be extended as follows:

z = min

(
n,m

∑
i, j

∣∣ai j−bi j
∣∣2 l

∏
k=1

scm(k)i j

)
where scm(k)i j

is the scale weight of the mismatch at position k in probe–sequence at
position (i, j) on the chip.

4.2 The Setting of Weight Parameters

The position–dependent parameters were not allowed to change during the optimization
and a general function was used, which means only the length dependence of MMs were
taken into consideration. The function used by us is the following:

f (i) =

√
min

{
distbegin(i),distend(i)

}
l
2

,

where distbegin(i) is the distance of position i from the beginning of sequence, distend(i)
is the distance of position i from the end of sequence and l is the length of the sequence.
Figure 4 shows this function.

 0

 0.2
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 0.6

 0.8

 1

 0  5  10  15  20

Fig. 4. The weight function for calculating the position–dependent parameters

4.3 Optimization with Simulated Annealing

The search space consists of vectors of the 12 MM parameters. The parameters can
have all the values from the [0.0,10.0] interval. At the beginning of the optimization
process, the parameter values are set to 1.0. For the generation of new solutions the
values of current parameters are increased with a random number from the interval
of [−0.1,0.1]. With the changed parameters the difference of the theoretical and the
experimental matrices is computed and compared with the previous result. Based on
the Simulated Annealing method these results are taken or rejected.

In order to determine the initial test temperature and the maximum iteration number,
the efficiency of the optimization was tested in several intervals. In this study, only the
linear cooling schedule was used.
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5 Results

Figure 5 shows the differences between average optimum values in the dependence of
the initial test temperature and the number of iterations. The initial test temperature was
increased from 50 to 140 and number of iterations from 10 to 55. It can be seen that the
optimum values increase, if the temperature is between 50 and 70 and the number of
iterations are between 50 and 70. In contrast if the temperature is between 100 and 140
and the number of iterations is 20, the difference between the model and experiment is
acceptable. Since SA is a stochastic search method, we repeated the samples 100 times
for each case.

Fig. 5. The average optimum values generated by the method using different temperature and
iteration number

5.1 The Comparison of the Optimized Parameter

In Figure 6 and 7 the variation of the parameter values can be observed. Those param-
eters, which are important from the biochemical point of view are represented by grey
columns, the others are in black.

It can be seen that starting form 1.0 at an early stage the values are mixed. How-
ever, with the advance of the optimization process the important and the less notable
parameters separate from each other and the most important ones obtain the highest
weight, eventually. If we take into account the fact that the hybrid RNA/DNA structures
are more stable then the DNA/DNA duplex ones and the base pair cytosine and guanine
stands for a stronger interaction than the double hydrogen–bonded adenine and thymine
(or uracil) the following conclusion can be made:

Regarding DNA/RNA hybrid systems, the RNA–side mismatches should determine
mainly the stability of the hybridization. The theoretical consideration stays in coher-
ence with the parameters resulted from the optimization process. As you can see in
Figure 7, 5 out of the 6 possible mismatches on the RNA–side possess the first 5 posi-
tions based on the weight (dTrC, dArC, dGrG, dArG, dTrG).
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Fig. 6. The values of the type–dependent parameters in the case of goal function 6.10964 and
4.82974

Fig. 7. The values of the type–depended parameters in the case of goal function 2.42093 and
1.86422

6 Conclusion

The prediction of thermodynamical properties of nucleic acids using computer model-
ing has not been solved yet. The main problem sources are (i) the parameters used in
the computation and determined by time consuming and expensive experiments can be
applied only to fluid phase, (ii) the lack of MM parameters, (iii) the parameters strongly
depend on the experimental conditions (e.g. temperature, solvent, etc.).

We presented a novel theoretical model (in situ in silico approach) to estimate the
hybridization process between DNA/DNA and DNA/RNA strands and eliminate the
previously mentioned defects. With the help of this new method, the in silico optimiza-
tion process takes place in situ the DNA–chip laboratory, then using the established
parameters one can model the hybridization, which is the cornerstone of DNA–chip
design.

By the computation done so far the implemented simulated annealing method was
used with linear cooling curve. Beside the experimental test of the method, the exponen-
tial and Boltzmann–sigmoid cooling scheme are in progress as well as the optimization
of the position–dependent parameters.
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Abstract. We propose a Genetic Algorithm (GA) approach combined
with Support Vector Machines (SVM) for the classification of high
dimensional Microarray data. This approach is associated to a fuzzy
logic based pre-filtering technique. The GA is used to evolve gene subsets
whose fitness is evaluated by a SVM classifier. Using archive records
of ”good” gene subsets, a frequency based technique is introduced to
identify the most informative genes. Our approach is assessed on two
well-known cancer datasets and shows competitive results with six
existing methods.

Keywords: Genetic algorithms, Fuzzy logic, Support vector machines,
Feature selection, Classification, Microarray data.

1 Introduction

The DNA Microarray technology allows measuring simultaneously the expres-
sion level of a great number of genes in tissue samples. A number of works have
studied classification methods in order to recognize cancerous and normal tissues
by analyzing Microarray data [1, 8, 2]. The Microarray technology typically pro-
duces large datasets with expression values for thousands of genes (2000∼20000)
in a cell mixture, but only few samples are available (20∼80).

From the classification point of view, it is well known that, when the number
of samples is much smaller than the number of features, classification methods
may lead to data overfitting, meaning that one can easily find a decision func-
tion that correctly classifies the training data but this function may behave very
poorly on the test data. Moreover, data with a high number of features require
inevitably large processing time. So, for analyzing Microarray data, it is neces-
sary to reduce the data dimensionality by selecting a subset of genes that are
relevant for classification.

In the last years, many approaches, in particular various Genetic Algorithms
(GAs) and Support Vector Machines (SVMs), have been successfully applied
to Microarray data analysis [6, 19, 16, 10, 15, 17, 18, 13]. In Section 3, we review
some of the most popular approaches.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 34–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we are interested in gene selection and classification of DNA
Microarray data in order to distinguish tumor samples from normal ones. For
this purpose, we propose a hybrid model that uses several complementary tech-
niques: fuzzy logic, a Genetic algorithm (GA) combined with a Support Vector
Machine (SVM) and an archive-based gene selection technique. Comparing with
previous studies, our approach has several particular features. First, to cope
with the difficulty related to high dimensional data, we introduce a fuzzy logic
based pre-processing tool which allows to reduce largely the data dimensionality
by grouping similar genes. Second, our GA uses archives to record high quality
solutions. These archives are then analyzed to identify the most frequently ap-
pearing genes which would correspond to the most predictive genes. Third, the
GA combined with a SVM classifier is used both for selecting predictive genes
and for final gene selection and classification.

The proposed approach is experimentally assessed on two well-known cancer
datasets (Leukemia [8] and Colon [1]). Comparisons with six state-of-the-art
methods show competitive results according to the conventional criteria.

The remainder of this paper is organized as follows. In Section 2, we describe
briefly the two Microarray datasets used in this study. In Section 3, we review
some popular gene selection approaches for the classification of Microarray data.
In Section 4, we introduce the general scheme of our hybrid model. In Section
5, we describe our GA/SVM approach. Experimental results are presented in
Section 6. Finally conclusions are given in Section 7.

2 Datasets

In this study, we use two well-known public datasets, the Leukemia dataset
and the Colon cancer dataset. All samples were measured using high-density
oligonucleotide arrays [2].

The Leukemia dataset1 consists of 72 Microarray experiments (samples) with
7129 gene expression levels. The problem is to distinguish between two types of
Leukemia, Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia
(ALL). The complete dataset contains 25 AML samples of and 47 ALL samples.
As in other experiments [8], 38 out of 72 samples are used as training data (27
ALL samples and 11 AML samples) and the remaining samples (20 ALL samples
and 14 AML samples) are used as test data.

The Colon cancer dataset2 contains the expression of 6000 genes with 62 cell
samples taken from colon cancer patients, but only 2000 genes were selected
based on the confidence in the measured expression levels [1]. 40 of 62 samples
are tumor samples and the remaining samples (22 of 62) are normal ones. In
this paper, the first 31 out of 62 samples were used as training data and the
remainder samples as test data.

1 Available at: http://www.broad.mit.edu/cgi-bin/cancer/publications/.
2 Available at: http://microarray.princeton.edu/oncology/affydata/index.html.
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3 Review of Feature Selection Approaches

Feature selection for classification is a very active research topic since many ap-
plication areas involve data with tens of thousands of variables [9]. This section
concerns more specifically a literature review of previous studies on feature selec-
tion and classification of Microarray Data, with a special focus on the Leukemia
and the Colon datasets presented in Section 2.

Feature selection can be seen as a typical combinatorial problem. Informally,
given a dataset described by a large number of features, the aim is to find out,
within the space of feature subsets, the smallest subset that leads to the highest
rate of correct classification. Given the importance of feature selection, many
solution methods have been developed. Roughly speaking, existing methods for
feature selection belong to three main families [9]: the filter approach, the wrap-
per approach and the embedded approach.

The filter methods separate the feature selection process from the classifica-
tion process. These methods select feature subsets independently of the learning
algorithm that is used for classification. In most cases, the selection relies on
an individual evaluation of each feature [8, 6], therefore the interactions between
features are not taken into account.

In contrast, the wrapper approach relies on a classification algorithm that is
used as a black box to evaluate each candidate subset of features; the quality
of a candidate subset is given by the performance of the classifier obtained on
the training data. Wrapper methods are generally computation intensive since
the classifier must be trained for each candidate subset. Several strategies can
be considered to explore the space of possible subsets. In particular, in [14], evo-
lutionary algorithms are used with a k-nearest neighbor classifier. In [12], the
author develops parallel genetic algorithms using adaptive operators. In [18], one
finds a SVM wrapper with a standard GA. In [20], the selection-classification
problem is treated as a multi-objective optimization problem, minimizing si-
multaneously the number of genes (features) and the number of misclassified
examples.

Finally, in embedded methods, the process of selection is performed during the
training of a specific learning machine. A representative work of this approach is
the method that uses support vector machines with recursive feature elimination
(SVM/RFE) [10]. The selection is based on a ranking of the genes and, at each
step, the gene with the smallest ranking criterion is eliminated. The ranking
criterion is obtained from the weights of a SVM trained on the current set of
genes. In this sense, embedded methods are an extension of the wrapper models.
There are other variants of these approaches, see [21, 7] for two examples.

4 General Model for Gene Selection and Classification

The work reported in this paper is based on a hybrid approach combining fuzzy
logic, GA and SVM. Our general model may be characterized as a three-stage
sequential process, using complementary techniques to shrink (or reduce) grad-
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ually the search space. The rest of this section gives a brief description of these
three stages.

Stage 1 Pre-processing by fuzzy logic. This stage aims to reduce the di-
mension of the initial problem by eliminating gene redundancy. This stage is ba-
sically composed of four steps. First, the gene expression levels are transformed
into fuzzy subsets with Gaussian representations. Second, the Cosine amplitude
method is employed to assess fuzzy similarities between genes. We build a simi-
larity matrix that is then transformed to a matrix of fuzzy equivalence relations
by different compositions. Third, using α−cuts [23] with decreasing values of α,
we obtain groups of similar genes that correspond to fuzzy equivalence classes of
genes. Fourth, for each group, one gene is randomly taken as the representative
of the group and other genes of the group are ignored. Applying this dimension
reduction technique to the datasets presented in Section 2, the set of 7129 genes
for Leukemia (2000 genes for Colon respectively) is reduced to 1360 genes (943
genes respectively). Therefore, the search space is dramatically reduced. As we
show later in Section 6, with this reduced set of genes, we will be able to ob-
tain high quality classification results. A detailed description of this stage goes
beyond the scope of this paper and can be found in [3].

Stage 2 Gene subset selection by GA/SVM. From the reduced set of genes
obtained in the previous pre-processing stage, this second stage uses a wrapper
approach that combines a GA and a SVM to accomplish the feature (gene)
subset selection. The basic idea here consists in using a GA to discover ”good”
subsets of genes, the goodness of a subset being evaluated by a SVM classifier
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Fig. 1. The general process for gene subset selection and classification using GA/SVM:
Gene subset selection (Stage 2 - top); Gene selection and classification (Stage 3 -
bottom)
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on a set of training data (see Section 2). During this stage, high quality gene
subsets are recorded to an archive in order to be further analyzed.

At the end of the GA, the analysis of the archived gene subsets is performed:
gene subsets are compared among them and the most frequently appearing genes
are identified. This process typically leads to a further reduced set of genes (<100
genes for the Leukemia and Colon dataset). Fig.1 (top) shows a general picture
of this stage.

Stage 3 Classification. Stage 2 has identified a reduced set of relevant genes
which is now used in the final step of gene selection and classification. From this
set of genes, a new round of search is carried out using the previous GA/SVM,
this time to classify the test data (see Section 2). This stage will thus select the
most predictive genes to classify the test data. Fig.1 (bottom) shows a general
picture of this stage.

5 Gene Selection and Classification by GA/SVM

We describe now the hybrid GA/SVM algorithm for carrying out Stages 2 and 3
of the general model for gene selection and classification. As explained previously,
the GA is designed both for discovering good gene subsets and for final gene
selection and classification. The SVM-based classifier is used to ensure the fitness
evaluation of each candidate gene subset. One important feature of the GA
developed in this work is the use of an archive to record quality gene subsets
discovered during the gene subset selection stage. This archive is then analyzed to
identify a small number of highly frequently appearing genes that are used in the
final classification stage. Notice that the idea of archiving good solutions is not
really a new one because it is already used in some multiobjective evolutionary
algorithms [26]. However, as we will see later in Section 5.3, our way of exploiting
the information of the archive to identify predictive genes is original and useful.

From these retained genes obtained from archive analysis, the same GA/-
SVM algorithm is applied to the test data to perform the final gene selection
and classification tasks.

5.1 The Genetic Algorithm

General Schema. The basic components of our GA are presented later in this
section. Here we show the general algorithm. The GA follows a generational
schema with a form of elitism. To obtain a new population from the current
population P, the top E% of the population P are recorded, E being fixed to
10% or 15% in our experiments (see Section 6). Then, the following two actions
are taken: 1) select two parents and apply (with a given probability) the crossover
to create two new solutions which are muted (with a given probability), and 2)
replace the parents by their offspring. These two actions are repeated for a pre-
fixed number of times. Finally, the recorded elite chromosomes are copied backed
to the population P to replace the worst rated chromosomes. At this point, one
generation is accomplished.
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Chromosome and initial population. The chromosomes are binary-encoded,
each allele (bit) of the chromosome represents a gene. If an allele is ’1’ it means
that this gene is kept in the gene subset and ’0’ indicates that the gene is not
included in the subset. Each chromosome represents thus a gene subset. For Stage
2 of the general model, the chromosome length is equal to the number of genes
pre-selected by the fuzzy pre-processing (i.e. 1360 for the Leukemia dataset and
943 genes for the Colon dataset). For Stage 3, the chromosome length depends
on the size of the gene subset retained after analyzing the solution archive (see
section 5.3). In both cases, the initial population of the GA is randomly generated
according to a uniform distribution.

Fitness function. The fitness of a chromosome, i.e. a subset of genes, is assessed
by the classification rate on the initial datasets. In other words, a subset of genes
leading to a high classification rate is considered to be better than a subset
leading to a low classification rate. In our case, a SVM classifier (see Section 5.2)
ensures this classification task.

Selection, crossover, mutation, and replacement. We use the roulette
wheel selection and random one-point crossover and multi-uniform mutation
operators. Offspring replaces always their parents. An elitism mechanism is also
applied to conserve the top 10% or 15% chromosomes of the population between
two successive generations.

Archives of high quality gene subsets. Given a chromosome (a candidate
subset of genes), the SVM classifier gives its fitness in terms of classification
rate on the training data set. If the classification rate is high enough (defined
by a threshold theta, see Fig. 1.a), the subset of genes is recorded in an archive.
In this paper, the threshold theta is set to 0.90 and 0.91 respectively for the
Leukemia and Colon dataset.

Stopping criterion. The evolution process ends when a pre-defined number of
generations is reached or a fitness value of 100% is obtained.

5.2 The SVM Classifier

Support Vector Machines [24] are basically binary classification algorithms.
When the data are linearly separable, SVM computes the hyperplane that max-
imizes the margin between the training examples and the class boundary. When
the data are not linearly separable, the examples are mapped to a high dimen-
sional space where such a separating hyperplane can be found. The mechanism
that defines this mapping process is called the kernel function. SVM are powerful
classifiers with good performance in the domain of Microarray data [10, 17]. They
can be applied to data with a great number of genes, but it has been showed
that their performance is increased by reducing the number of genes [6, 2].

In our wrapper GA/SVM algorithm, we use a SVM classifier to assess the
quality of a gene subset. For a chromosome x that represents a gene subset,
we apply a Leave-One-Out Cross-Validation (LOOCV) method to calculate the
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average accuracy (rate of correct classification) of a SVM trained with this gene
subset [11]. The LOOCV procedure means that one sample from the dataset
is considered as a test case while a SVM is trained on all the other samples,
and this evaluation is repeated for each sample. So for each chromosome x,
Fitness(x) = accuracySV M (x).

One of the key elements of a SVM classifier concerns the choice of its kernel.
In our study, we have chosen to use the RBF kernel. We also experimented
Gaussian and polynomial kernels. For polynomial kernels, the main difficulty is
to determine an appropriate polynomial degree while the results we obtained
with the Gaussian kernel are not satisfactory. Notice that RBF has been used
in several previous studies for Microarray data classification [4, 18, 5].

5.3 Archive Analysis

At the end of stage 2 and prior to the final classification (Stage 3), the archive
is analyzed and the most frequently appearing genes in the archive are retained
for the final gene selection and classification (stage 3). Typically, this analysis
will lead to a limited number of genes (between 50 to 100). From these genes,
the GA/SVM algorithm will then determine the final set of genes relevant to
classify the data.

6 Experimental Results and Comparisons

6.1 Parameters Settings

For our GA/SVM algorithm, the GA is implemented in Matlab (Version 5.3.1
for Windows). The SVM classifier is based on the SVM Toolbox developed by
Gavin Cawley3.

Table 1. GA parameters for the stage of gene subset selection (Stage 2)

Parameters Leukemia Colon

Size of population 500 500
Length of chromosome 1360 943
Number of generations 2500 2500

Crossover rate 0.95 0.98
Mutation rate 0.02 0.01
Elitism rate E 10% 15%

The GA parameters used in our model of gene subset selection for the
Leukemia and Colon datasets are shown in Tables 1 and 2. For the SVM clas-
sifier, the same parameters settings are used in the two stages of gene subset
selection and classification. The normalization parameter C is fixed at 100 and
the control parameter γ for the RBF kernel of SVM is fixed to 0.5. Notice that
3 http://theoval.sys.eua.uk/˜gcc/svm/toolbox
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Table 2. GA parameters for the stage of classification (Stage 3)

Parameters Leukemia Colon

Size of population 50 50
Length of chromosome 100 50
Number of generations 500 500

Crossover rate 0.985 0.985
Mutation rate 0.02 0.01
Elitism rate E 15% 15%

given the input data used by the GA/SVM are already normalized during the
Fuzzy Logic pre-processing, the normalization parameter C has in fact little
influence in our case.

6.2 Results and Comparisons

To carry out our experiments, our GA/SVM algorithm is run 5 times on each of
the Leukemia and Colon datasets. To calculate the average classification rate of
a given gene subset, the LOOCV procedure [11] is employed.

Table 3 summarizes our results (Column 2) for the Leukemia and Colon
datasets together with the results of six state-of-the-art methods from the liter-
ature (Columns 3-8). The conventional criteria are used to compare the results:
the classification accuracy in terms of the rate of correct classification (first num-
ber) and the number of used genes (the number in parenthesis, ”-” indicating
that the number of genes is not available). For AG/SVM, the classification rate
that we present is the average classification rate obtained from the 5 independent
runs and the number of selected genes is the minimum number obtained from
these runs. Detailed results can be found in Table 4.

As it can be observed, for the Leukemia dataset, we obtain a classification
rate of 100% using 25 gens, which is much better than that reported in [6, 5].
This same performance is achieved by [25, 18, 20, 10], with fewer genes selected.
[20] and [10] reports the minimal number of genes. However, in [20] the evolu-
tionary method begins with a largely reduced set of 50 genes, published in [8]
as interesting genes.

The most interesting results that we obtained with our model concern the
Colon dataset since our approach offers the highest (averaged) correct classifica-
tion rate (99.41%); the number of selected genes is greater than the one obtained
by [20] or by [25, 10], but it is smaller than the one reported in [18]. An analysis

Table 3. Comparison of GA/SVM with six state of the art methods

Methods
Dataset GA&SVM [6] [25] [18] [5] [20] [10]

Leukemia 100(25) 94.10(-) 100(8) 100(6) 95.0(-) 100(4) 100(2)

Colon 99.41(10) 90.30(-) 91.9(3) 93.55(12) 91.0(-) 97.0(7) 98.0(4)
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Table 4. GA/SVM performance on 5 runs

Runs Run 1 Run 2 Run 3 Run 4 Run5 Average class. rate

Leukemia 100(25) 100(28) 100(30) 100(46) 100(35) 100

Colon 99.64(10) 99.83(15) 97.88(10) 99.83(15) 99.83(15) 99.41

of our results shows that several biologically significant genes reported in [8] are
found by our approach.

Table 4 shows the detailed results of 5 independent runs of our GA/SVM
algorithm. As it can be observed, these results are quite stable. For the Leukemia
dataset, each of the 5 runs obtains a classification rate of 100% while for the
Colon dataset, the best run gives a classification rate of 99.64. Even the worst
obtains a classification rate of 97.88.

7 Conclusions

In this paper, we presented a general approach for gene selection and classifi-
cation of high dimensional DNA Microarray data. This approach begins with a
fuzzy logic based pre-processing technique that aims to cope with the imprecise
nature of the expression levels and to reduce the initial dimension of the input
dataset. Following this pre-processing stage, a hybrid wrapper system combin-
ing a Genetic Algorithm with a SVM classifier is used to identify potentially
predictive gene subsets that are then used to carry out the final gene selection
and classification tasks. Another important feature of our approach concerns the
introduction of an archive of high quality solutions, which allows limiting the
GA/SVM exploration to a set of frequently appearing genes.

This approach was experimentally evaluated on the widely studied Leukemia
and Colon cancer datasets and compared with six previous methods. The re-
sults show that our approach is able to obtain very high classification accuracy.
In particular, to our knowledge, this is the first time that a averaged correct
classification rate of 99.41% (with 10 genes) is reached for the Colon dataset.

This approach can be further improved on several aspects. First, we notice
that our method does not provide the smallest number of genes on the Leukemia
data. This is due to the fact that the GA is only guided by the criterion of
classification accuracy. Therefore, the criterion of the number of genes should be
integrated into the fitness function. This can be achieved by an aggregated fitness
function or a bi-criteria evaluation. Second, the high computation time required
in stage 2 can be reduced by the use of a faster classifier (or an approximate
fitness function). For example, the m-features operator reported in [22] may
be considered. Also, a fine-tuning of SVM parameters in stage 3 may lead to
improved results. Finally, we intend to apply our approach to other DNA chip
data and to study the behavior of our model.
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Abstract. With the availability of the time series data from the high-throughput 
technologies, diverse approaches have been proposed to model gene regulatory 
networks. Compared with others, S-system has the advantage for these tasks in 
the sense that it can provide both quantitative (structural) and qualitative (dy-
namical) modeling in one framework. However, it is not easy to identify the 
structure of the true network since the number of parameters to be estimated is 
much larger than that of the available data. Moreover, conventional parameter 
estimation requires the time-consuming numerical integration to reproduce dy-
namic profiles for the S-system. In this paper, we propose multi-stage evolu-
tionary algorithms to identify gene regulatory networks efficiently. With the 
symbolic regression by genetic programming (GP), we can evade the numerical 
integration steps. This is because the estimation of slopes for each time-course 
data can be obtained from the results of GP. We also develop hybrid evolution-
ary algorithms and modified fitness evaluation function to identify the structure 
of gene regulatory networks and to estimate the corresponding parameters at the 
same time. By applying the proposed method to the identification of an artificial 
genetic network, we verify its capability of finding the true S-system. 

1   Introduction 

Although mathematical modeling for the biochemical networks can be achieved at 
different level of detail (see [1] and [2] for the reviews of metabolic and genetic regu-
latory networks modeling), we can cluster them into three dominant approaches [3]. 
One extreme case is mainly intended to describe the pattern of interactions between 
the components. Graph-based representation gives us the insight for large architec-
tural features within a cell and allows us to discovery principles of cellular organiza-
tion [4]. However, it is difficult to handle the dynamics of the whole system since 
these models are very abstract. The other extreme primarily focuses on describing the 
dynamics of the systems by some kinds of equations which can explain the biochemi-
cal interactions with stochastic kinetics [5, 6]. While these approaches lead to realis-
tic, quantitative modeling on cellular dynamics, the application is limited to the small 
systems due to their computational complexities. 

One of the appropriate approaches for the pathway structure and dynamics identifi-
cation is S-system [7]. It is represented as a system of ordinary differential equations 
which have a particular form, where each component process is characterized by 
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power-law functions. S-system is not only general enough to represent any nonlinear 
relationship among the components but also able to be mapped onto the network 
structure directly. In spite of these advantages, there is a serious drawback which 
prevents the S-system from wildly spreading over the systems biology communities. 
Its large number of parameters should be estimated for the small number of observed 
dynamic trends. Provided that n components such as genes and proteins are involved 
in a certain living system, we must optimize at least 2n(n+1) parameters for the S-
system. 

Evolutionary computation has been used from its inception for automatic identifica-
tion of a given system or process [8]. For the S-system models, some evolutionary 
search techniques have been proposed [9-12]. However, they require the time-
consuming numerical integrations to reproduce dynamic profiles for the fitness 
evaluations. To avoid this problem, Almeida and Voit have employed an artificial 
neural network (ANN) to smooth the measured data for obtaining slopes of gene ex-
pression level curves [13]. By comparing the slope of each S-system in the population 
with the estimated one from ANN, we can evaluate the fitness values of the individu-
als without the computationally expensive numerical integrations of differential equa-
tions. This method also provides the opportunity for a parallel implementation of the 
identification task since a tightly coupled system of non-linear differential equations 
can be separated. Hence, they are able to reduce the time complexity drastically. 
While collocation method [14] can save the computational cost by approximating 
dynamic profiles, their estimated systems tend to be invalid since the number of 
measured data is usually insufficient. This lack of data problem can be resolved by 
sampling new points from the fitted curves. For the well-estimated profiles, however, 
we should determine the optimal topology of the artificial neural network such as the 
number of hidden units and layers. 

In this paper, we propose multi-stage evolutionary algorithms to identify gene regu-
latory networks efficiently. With the symbolic regression by genetic programming 
(GP), we could evade the numerical integration steps. Here, we have no need to pre-
determine the topology of the model for the expression profiles since genetic pro-
gramming can optimized the topology automatically. We also develop hybrid evolu-
tionary algorithms to identify the structure of gene regulatory networks and to esti-
mate the corresponding parameters at the same time. Most previous evolutionary 
approaches for the S-system identification have used the structural simplification 
procedure in which some parameters whose values are less than a given threshold are 
reset to zero. Although this method is able to make the network structure sparse, the 
true connections which represent somewhat small effect can be deleted during the 
procedures. That is, it is not easy to set the suitable value for the threshold. In our 
scheme, Binary matrices for a network structure and real vectors and matrices for 
parameter values of S-system are combined into a chromosome and co-evolved to 
find the best descriptive model for the given data. Hence we can identify the S-system 
without specifying the threshold values for the structural simplification. By applying 
the proposed method to the artificial gene expression profiles, we successfully identi-
fied the true structure and estimated the reasonable parameter values with the smaller 
number of data than the previous study. 
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2   Materials and Methods  

2.1   S-System 

The S-system [7, 15] is a set of nonlinear differential equations described as follows: 
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where n is the number of dependent variables whose concentrations Xi change dy-
namically according to above equations and m is the number of independent variables 
whose concentrations remain constant during the processes. The non-negative pa-
rameters i and i are called rate constants. The real-value exponents gij and hij are 
kinetic orders to represent the interactive effect of Xj to Xi. These differential equa-
tions can be divided into two components. The first term represents influences that 
increase Xi and the second term represents influences that decrease Xi. Thus, Xj in-
duces the synthesis of Xi in case gij > 0, whereas Xj inhibits the increase of Xi if gij < 0. 
Similarly, a positive (negative) value of hij indicates that Xj expedites (restrains) the 
decline of Xi. 

We should estimate at least 2n(n+1) parameters even if the values related to the in-
dependent variables are assumed to be known. That is, i, i, gij, and hij are parameters 
that must be estimated by evolutionary algorithms (EAs). The generally adopted fit-
ness function for EAs is the sum of relative squared errors: 
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where T is the number of sampling points for fitness evaluation, X is the measured 

data points from the biological experiments and X̂  is the values obtained by the nu-
merical integration step of  the S-system in the population. 

2.2   Symbolic Regression by Genetic Programming 

As we mentioned in the introduction, numerical integration steps for the fitness 
evaluations are very time-consuming. To circumvent these processes, we propose 2-
stage evolutionary algorithms for finding the structures and parameters of S-systems. 
As a preprocessing step, genetic programming (GP) [16] performs symbolic regres-
sion for the given time-course data. Through this step, we can predict the dynamic 
profiles of the given S-system and obtain more data points as well as the derivations 
of the point for the second stage of our algorithm. This allows us to get rid of the 
numerical integrations in the fitness evaluations. Compared with the study which 
employed the artificial neural networks [13], genetic programming has the following 
advantages for the curve fitting tasks. First, there is no necessity for adjusting the 
number of hidden layers and units. Second, the results of GPs are more understand-
able than those of neural networks since GPs return some mathematical functions 
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instead of the illegible graph and a set of weights. Hence, we can easily obtain deriva-
tions of each time point if the result functions of GPs are differentiable. 

2.3   Hybrid Evolutionary Algorithms 

At the second stage of our evolutionary algorithm, we use a hybrid evolutionary algo-
rithm for searching the structures and parameters of S-system. The whole procedure 
of our algorithm is summarized in Fig. 1. 

 
 

Fig. 1. The whole proposed multi-stage evolutionary algorithm for the identification of  
S-system 

In biochemical experiment step, the dynamic profiles of the involved genes can be 
obtained by the periodic measurement. We are also able to predict slopes at each time 
point from the regression line of the measured data by genetic programming. Then, 
we can evaluate and optimize the chromosomes of evolutionary algorithms by com-
paring the estimated slopes which came from the data substitution into the S-system 
with the predicted slopes of the GP regression lines. Hence, the fitness values of each 
S-system can be evaluated without the time-consuming numerical integrations as 
follows: 
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(a) graph representation 
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Fig. 2. (a) The true structure of the artificial gene regulatory network (b) S-system representa-
tion (c) The structure of the chromosome in our hybrid evolutionary algorithms 

where T is the number of sampling points, X  is the gradient of the regression line 
obtained by the genetic programming and X′  is the calculated value of each equation 
in the S-system. 

We develop hybrid evolutionary algorithms to identify the structure of gene regula-
tory networks and to estimate the corresponding parameters at the same time. In this 
scheme, Binary matrices for a network structure and real vectors and matrices for 
parameter values of S-system are combined into a chromosome (Fig. 2) and co-
evolved to find the best descriptive model for the given data. While crossover opera-
tor is applied to binary matrices for searching the structure of the system, their corre-
sponding parameter values also exchanges. This kind of crossover can inherit the 
good structures as well as the parameter values in the parents to the offspring. That is, 
we use a row exchange crossover which simply selects the row of the matrix g or h 
(or both) on the parents, and swaps each other with the parameter values in the real 
vectors and matrices. For example, Fig. 3(a) shows the case in which we select the 
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second row of g on parents. Mutation operator randomly selects an equation of a par-
ent, and then inserts or deletes a component at the selected parent as shown in Fig. 
3(b) and (c). These operators perform the local searches in the structure space. In this 
case, the parameter values are randomly generated for the insertion and reset to zero 
for the deletion. 
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Fig. 3. Crossover and mutation operators for the binary matrices 

We also give some variety to the fitness function in equation (3). In conventional 
scheme, all points of data have the same weights on the fitness values. However, it is 
difficult to fit the data points which have large second-order differentiation. More-
over, this makes the parameter values of the chromosomes different from the true one 
even if they have good fitness values. Thus we multiply the second-order differentia-
tion to each term of evaluation function. The modified fitness function in our algo-
rithm described as follows: 

2

1 1 )(

)()(
)(

= =

′−
=

n

i

T

t i

ii
i

tX

tXtX
tXE

,                                        (4) 

where X  is the gradient of the GP regression line, X  is second-order differentiation 
and X′  is the calculated value of the each equation in the S-system. By introducing X  
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to fitness function, we can obtain better fitness value of true structure than those of 
other structures. After the fitness values of the offspring created by the crossover and 
mutation according to their probabilities are evaluated by equation (4), parameters in 
the real vectors and matrices are adjusted through the (1+1) evolutionary strategy 
[17]. 

We employ the restricted tournament selection (RTS) proposed originally in [18] 
to prevent the premature convergence on a local-optimum structure and to find multi-
ple topology candidates. In RTS, a subset of the current population is selected for 
each newly created offspring. The size of these subsets is fixed to some constant 
called the window size. Then, the new offspring competes with the most similar 
member of the subset. Since the window size is set to the population size in our im-
plementation, each offspring is compared with all S-system in the current population. 
If the new one is better, it replaces the corresponding individual; otherwise, the new 
one is discarded. For the similarity measure, we calculate the structural hamming 
distances between the new offspring and all individuals in the population by using the 
binary matrices. 

3   Experimental Results  

3.1   Data 

To evaluate the performance of the proposed algorithms, we consider the artificial 
gene regulatory network which came from [13]. This gene regulatory network mod-
eled 4 reactants influenced with one another and all reactants are auto-regulated. The 
S-system model for the used gene regulatory network is represented in Fig. 2(a) and 
(b) and the time-course graph of the given gene regulatory network is represented in 
Fig. 4(a). To create artificial time-course profiles, we solve this true S-system with the 
initial values, X1(0)=1.4, X2(0)=2.7, X3(0)=1.2, and X4(0)=0.4 by using the 4th-order 
Runge-Kutta method. The size of sampled data point is 25 and their time intervals are 
0.2 seconds as shown in Fig. 4(b). We set 4 times smaller number of time points than 
that of the previous study [13] since it is very difficult to obtain a lot of time-course 
data from the real biological measurements. 

3.2   Results of the Genetic Programming 

We use Frayn’s GPLib library [18] for the symbolic regression with GP. To evolve 
the mathematical models for the given data, we use the function set F = {+, -, ×, /, ^, 
sin, exp, log, sqrt} and terminal set T = {t, ℜ, π}, where ℜ is real constant and t is the 
time point. The population size is 3,000 and the maximum number of generations is 
2,000. Tournament selection is used and its size is 4. Crossover rate is 0.35 and muta-
tion rate is 0.5. We set the length penalty of the genetic program as zero for the accu-
rate curve fitting. We generate 100 points and derivations from the obtained models 
for the input of the next stage, that is, the hybrid evolutionary algorithms. 
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(a) original graph 

 
(b) sample data points and regression results by GP 

Fig. 4. The true (a) simulated (b) time-series data for the artificial genetic network 
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Results of the genetic programming step are as follows: 
 
f1(t)=(sqrt((((sqrt(((sqrt(2.957153))-((sin(sqrt(t)))+((sin((1.854912)-(((sqrt((3)*(t))) 
*(sqrt(t)))+(4.435898))))+(-2.355442))))*(t)))+((40.675830)/(exp((t)*((sqrt(t))-
((sin(((sin((((sqrt((3.756391)*(t)))*(sqrt(t)))+(log(86)))+(7)))+(3))+(sin(sin((1.654737
)*(t))))))+(-2.355442)))))))/(sqrt(54.598150)))/(sqrt(7.931547)))), 
 
f2(t)=(sqrt(((3.777992)-((((((4.190957)-((t)-((sin((((t)*((t)^(t)))-((((t)*((2.883554) 
/((4)-(log(t)))))+(2.791190))-((exp((t)-(2.226704)))^(sqrt(9.642561)))))/((t)^(t)))) 
*(2.678347))))/(3.462360))+(3.792098))-(4.796861))/(4)))+(((((3.792098)-((exp(t)) 
/(3.462360)))-((t)*((t)^(t)))) /((t)^(t)))/((t)^(t))))), 
 

f3(t)=((log(log(exp(log(log(exp(exp(((log(exp(π)))-((sin((9)+(((t)+(8.000000)) 
^(sqrt(1.420245)))))/(((exp(t))*(379.000000))/(84.000000))))-((sin((8)+(((t) 
+(((log(109))-(1.258803))/(6.620476)))^(sqrt(log(4.059461)))))) 
/(((exp(((8.337047)*((log(log(sqrt(3.021610))))+(2.000000)))-(5.912041)))*(exp(t))) 
/(85.000000)))))))))))^(5.933873)), 
 

f4(t)=((((log(6.249382))^((sqrt(6))*(((sqrt(10.000000))^((1.172486)-(t))) 
/(6.981835))))^((1.161464)-((1.161464)/(((((sqrt(6.249382))*((log(7.008566)) 
*((((((exp((6.980522)/((sqrt(6.288201))^(1.344547))))^((1.735082)-(t))) 
/(0.290257))*(sqrt(6.000000)))^(((9.704760)^((-0.050358)-(t)))-(t)))/(0)))) 
^((1.634223)+((7.277223)^((0.290257)-(t)))))^(0.161464))/(t)))))/(6.980522)). 

Fig. 4 shows the true profiles and estimated curves and sampled data points from the 
genetic programming and we confirm that the GP recover the true dynamics of the S-
system 

3.3   Results of the Hybrid Evolutionary Algorithms 

Using 100 points obtained from the GP step, we search the S-system by the hybrid 
evolutionary algorithms. This step is composed with steady-state evolutionary algo-
rithms with local optimization procedure - (1+1) evolutionary strategy. For the sparse 
network structures, we adopt a structural constraint which the evolved networks 
should satisfy. That is, each gene is assumed to be related to one or two other genes in 
the system. Hence, the randomly generated initial individuals and offspring by cross-
over and mutation operators should have one or two non-zeros elements in g and h. 
Crossover rate is 0.8 and mutation rate is 0.3. As a local optimization for the parame-
ter values, (1+1) evolutionary strategy is performed for 80 fitness evaluations. The 
search ranges of the parameters are [0.0, 15.0] for i and i, and [-1.0, 1.0] for gij and 
hij. With the population size of 104, the proposed algorithm successfully identified the 
true structure after 106 generation. As shown in Fig. 5, we can also recover the dy-
namic profiles with the estimated parameters. 
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(a) the S-system obtained by our hybrid EAs 

 
(b) time course profiles of the identified system 

Fig. 5. The results of the proposed hybrid evolutionary algorithms 

4   Conclusion 

We propose multi-stage evolutionary algorithms to identify gene regulatory networks 
efficiently with the S-system representation. We adopt the pre-processing symbolic 
regression step by genetic programming for avoiding the time-consuming numerical 
integration. We also develop hybrid genetic algorithms and modify the fitness func-
tion to identify the structure of gene regulatory networks and to estimate the corre-
sponding parameters simultaneously without the threshold values for the sparse net-
work structures. By applying the proposed method to the identification of an artificial 
genetic network, we verify its capability of finding the true S-system. 

One important future work is to demonstrate the usefulness of the proposed algo-
rithm for real experimental biological data such as the gene expression profiles from 
the microarrays and NMR measurements of some metabolites. As the by-product of 
the population diversity maintenance of our evolutionary algorithms, we will be able 
to attain the different plausible topologies for the network very efficiently. These can 
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be reliable candidates to the biologists who want to discover unknown interactions 
among some components in the genetic networks. 
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Abstract. Infection by the human papillomavirus (HPV) is associated
with the development of cervical cancer. HPV can be classified to high-
and low-risk type according to its malignant potential, and detection of
the risk type is important to understand the mechanisms and diagnose
potential patients. In this paper, we classify the HPV protein sequences
by support vector machines. A string kernel is introduced to discriminate
HPV protein sequences. The kernel emphasizes amino acids pairs with
a distance. In the experiments, our approach is compared with previous
methods in accuracy and F1-score, and it has showed better performance.
Also, the prediction results for unknown HPV types are presented.

1 Introduction

The cervical cancer is a leading cause of cancer death among women worldwide.
Epidemiologic studies have shown that the association of genital human papillo-
mavirus (HPV) with cervical cancer is strong, independent of other risk factors
[1]. HPV infection causes virtually all cases of cervical cancer because certain
high-risk HPVs develop cancer even though most cases of HPV are low-risk and
rarely develop into cancer. Especially, high-risk HPV types could induce more
than 95% of cervical cancer in woman.

The HPV is a relatively small, double-strand DNA tumor virus that belongs
to the papovavirus family (papilloma, polyoma, and simian vacuolating viruses).
More than 100 human types are specific for epithelial cells including skin, respira-
tory mucosa, or the genital tract. And the genital tract HPV types are classified
into two or three types such as low-, intermediate-, and high-risk types by their
relative malignant potential [2]. The common, unifying oncogenic feature of the
vast majority of cervical cancers is the presence of HPV, especially high-risk type
HPV [3]. Thus the risk type detection of HPVs have become one of the most
essential procedures in cervical cancer remedy. Currently, the HPV risk types
are still manually classified by experts, and there is no deterministic method to
expect the risk type for unknown or new HPVs.

Since the HPV classification is important in medical judgments, there have
been many epidemiological and experimental studies to identify HPV risk types

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 57–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[3]. Polymerase chain reaction (PCR) is a sensitive technique for the detection of
very small amounts of HPV’s nucleic acids in clinical specimens. It has been used
in most epidemiological studies that have evaluated the role of these viruses in
cervical cancer causation [4]. Bosch et al. [1] investigated epidemiological charac-
teristic that whether the association between HPV infection and cervical cancer
is consistent worldwide in the context of geographic variation. Burk et al. [5] in-
spected the risk factors for HPV infection in 604 young college women through
examining social relationship and detected various factors of HPV infection with
L1 consensus primer PCR and Southern blot hybridization. Muñoz et al. [6] clas-
sified the HPV risk types with epidemiological experiments based on risk factor
analysis. They pooled real data from 1,918 cervical cancer patients and analyzed
it by PCR based assays.

Detection of HPV risk types can be a protein function prediction even though
functions are described at many levels, ranging from biochemical function to bio-
logical processes and pathways, all the way up to the organ or organism level [7].
Many approaches for protein function prediction are based on similarity search
between proteins with known function. The similarity among proteins can be
defined in a multitude of ways [8]: sequence alignment, structure match by com-
mon surface clefts or binding sites, common chemical features, or certain motifs
comparison. However, none of the existing prediction systems can guarantee gen-
erally good performance. Thus it is required to develop classification methods
for HPV risk types. Eom et al. [9] presented a sequence comparison method for
HPV classification. They use DNA sequences to discriminate risk types based
on genetic algorithms. Joung et al. [10] combined with several methods for the
risk type prediction from protein sequences. Protein sequences are first aligned,
and the subsequences in high-risk HPVs against low-risk HPVs are selected by
hidden Markov models. Then a support vector machine is used to determine the
risk types. The main drawback of this paper is that the method is biased by
one sequence pattern. Alternatively, biomedical literature can be used to predict
HPV risk types [11]. But, text mining approaches have the limitation for predic-
tion capability because they only depend on texts to capture the classification
evidence, and the obvious keywords such as ‘high’ tend to be appeared in the
literature explicitly.

In this paper, we propose a method to classify HPV risk types using pro-
tein sequences. Our approach is based on support vector machines (SVM) to
discriminate low- and high-risk types and a string kernel is introduced to deal
with protein sequences. The string kernel first maps to the space consisting of
all subsequences of amino acids pair. A RBF kernel is then used for nonlinear
mapping into a higher dimensional space and similarity calculation. Especially,
the proposed kernel only uses amino acids of both ends in k-length subsequences
to improve the classification performance. It is motivated by the assumption
that amino acids pairs with certain distance affects the HPV’s biological func-
tion, i.e. risk type, more than consecutive amino acids. The experimental results
show that our approach provides better performance than previous approaches
in accuracy and F1-score.
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Our work addresses how to classify HPV risk types from protein sequences
by SVM approaches, which can provide a guide to determine unknown or new
HPVs. The paper is organized as follows. In Section 2, we explain the SVM
method for classification. Then the string kernel for HPV protein sequence is
presented in Section 3. In Section 4, we present the experimental results and
draw conclusions in Section 5.

2 Support Vector Machine Classifiers

We use support vector machines to classify HPV risk types. A string kernel-based
SVM is trained on HPV protein sequences and tested on unknown sequences.
Support vector machines have been developed by Vapnik to give robust perfor-
mance for classification and regression problems in noisy, complex data [12]. It
has been widely used from text categorization to bioinformatics in recent days.
When it is used for classification problem, a kernel and a set of labeled vectors,
which is marked to positive or negative class are given. The kernel functions in-
troduce nonlinear features in hypothesis space without explicitly requiring non-
linear algorithms. SVMs learn a linear decision boundary in the feature space
mapped by the kernel in order to separate the data into two classes.

For a feature mapping φ, the training data S = {xi, yi}n
i=1, is mapped into

the feature space Φ(S) = {Φ(xi), yi}n
i=1. In the feature space, SVMs learn the

hyperplane f = 〈w, Φ(x)〉 + b,w ∈ R
N , b ∈ R, and the decision is made by

sgn(〈w, Φ(x)〉 + b). The decision boundary is the hyperplane f = 0 and its
margin is 1/‖w‖. SVMs find a hyperplane that has the maximal margin from
each class among normalized hyperplanes.

To find the optimal hyperplane, it can be formulated as the following problem:

minimize
1
2
‖w‖2 (1)

subject to yi(〈w, Φ(xi)〉+ b) ≥ 1, i = 1, . . . , n. (2)

By introducing Lagrange multipliers αi ≥ 0, i = 1, . . . , n, we get the following
dual optimization problem:

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj〈Φ(xi), Φ(xj)〉 (3)

subject to αi ≥ 0, i = 1, . . . , n, (4)
n∑

i=1

αiyi = 0. (5)

By solving this dual problem, one obtains optimal solution αi, 1 ≤ i ≤ n,
which needs to determine the parameters (w, b). For the solution αi, . . . , αn, the
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nonlinear decision function f(x) is expressed in terms of the following
parameters:

f(x) = sgn

(
n∑

i=1

αiyi〈Φ(x), Φ(xi)〉+ b

)
(6)

= sgn

(
n∑

i=1

αiyiK(x,xi) + b

)
. (7)

We can work on the feature space by using kernel functions, and any kernel
function K satisfying Mercer’s condition can be used.

3 Kernel Function

For HPV protein classification, we introduce a string kernel based on the spec-
trum kernel method. The spectrum kernel was used to detect remote homology
detection [13][14]. The input space X consists of all finite length sequences of
characters from an alphabet A of size |A| = l (l = 20 for amino acids). Given
a number k ≥ 1, the k-spectrum of a protein sequence is the set of all possible
k-length subsequences (k-mers) that it contains. The feature map is indexed by
all possible subsequences a of length k from A. The k-spectrum feature map
Φk(x) from X to R

lk can be defined as:

Φk(x) = (φa(x))a∈Ak . (8)

where φa(x) = number of occurrences of a occurs in x. Thus the k-spectrum
kernel function Ks(xi, xj) for two sequences xi and xj is obtained by taking the
inner product in feature space:

Ks
k(xi, xj) = 〈Φk(xi), Φk(xj)〉. (9)

To fit in with HPV risk type classification, we want to modify the spectrum
kernel. Proteins are linear chains of amino acids, which are made during the
process of translation, and it is called primary structure. The natural shape of
proteins are not such as straight lines, rather 3-dimensional structures formed by
protein folding, which is a consequence of the primary structure. The structure
of a similar homologous sequence can be helpful to identify the tertiary structure
of the given sequence. Here, we assume that the amino acids pair with certain
distance affect HPV’s risk type function more than consecutive amino acids
according to its 3-dimensional structure property, and the HPV risk types can
be identified by the amino acids pair with a fixed distance, which mostly influence
on risk type decision. This assumption is somewhat rough, but it can be useful
for relatively short and α helix-dominant sequences.

Under the assumption, we want to define a string kernel, the gap-spectrum
kernel based on k-spectrum. For a fixed k-mer a = a1a2 . . . ak, ai ∈ A, 2-length
sequence β = a1ak, β ∈ A2. β indicates the amino acids pair with (k-2) gap.
The feature map Ψk(x) is defined as:



Human Papillomavirus Risk Type Classification from Protein Sequences 61

Table 1. The manually classified risk types of 72 HPVs

Type Class Type Class Type Class Type Class

HPV1 Low HPV20 Low HPV38 Low HPV57 ?
HPV2 Low HPV21 Low HPV39 High HPV58 High
HPV3 Low HPV22 Low HPV40 Low HPV59 High
HPV4 Low HPV23 Low HPV41 Low HPV60 Low
HPV5 Low HPV24 Low HPV42 Low HPV61 High
HPV6 Low HPV25 Low HPV43 Low HPV63 Low
HPV7 Low HPV26 ? HPV44 Low HPV65 Low
HPV8 Low HPV27 Low HPV45 High HPV66 High
HPV9 Low HPV28 Low HPV47 Low HPV67 High
HPV10 Low HPV29 Low HPV48 Low HPV68 High
HPV11 Low HPV30 Low HPV49 Low HPV70 ?
HPV12 Low HPV31 High HPV50 Low HPV72 High
HPV13 Low HPV32 Low HPV51 High HPV73 Low
HPV15 Low HPV33 High HPV52 High HPV74 Low
HPV16 High HPV34 Low HPV53 Low HPV75 Low
HPV17 Low HPV35 High HPV54 ? HPV76 Low
HPV18 High HPV36 Low HPV55 Low HPV77 Low
HPV19 Low HPV37 Low HPV56 High HPV80 Low

Ψk(x) = (φβ(x))β∈A2 . (10)

where φβ(x) = number of occurrences of β occurs in x. Furthermore a nonlinear
kernel function, RBF kernel is appended to increase the discrimination ability
between HPV risk types. By closure properties of kernels [15], the gap-spectrum
kernel is defined as follows:

Kk(xi, xj) = K ′(Ψk(xi), Ψk(xj)) (11)
= exp

(
−γ‖Ψk(xi)− Ψk(xj)‖2

)
. (12)

where γ > 0. This string kernel is used in combination with the SVM explained
in Section 2.

4 Experimental Results

4.1 Data Set

In this paper, we use the HPV sequence database in Los Alamos National Lab-
oratory (LANL) [16], and total 72 types of HPV are used for experiments. The
risk types of HPVs were determined based on the HPV compendium (1997). If
a HPV belongs to skin-related or cutaneous groups, the HPV is classified into
low-risk type. On the other hand, a HPV is classified as a high-risk if it is known
to be high-risk type for cervical cancer. The comments in LANL database are
used to decide risk types for some HPVs, which are difficult to be classified.
Seventeen sequences out of 72 HPVs were classified as high-risk types (16, 18,
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Fig. 1. SVM classification performance by window size

31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 61, 66, 67, 68, and 72), and others were
classified as low-risk types. Table 1 shows the HPV types and their classified
risk type. The symbol ‘?’ in the table denotes unknown risk type that cannot be
determined.

Since several proteins can be applied to discriminate HPVs, we have evalu-
ated the classification accuracy using the SVM with RBF kernel to determine the
gene products to be used for the experiments. The input data is the normalized
frequency vector by sliding window method. It has been performed to decide the
most informative protein among gene products for HPV risk type classification.
Figure 1 depicts the accuracy changes by window size for E6, E7, and L1 pro-
teins. The accuracy is the result of leave-one-out cross-validation. It indicates
that the accuracy using E6 protein is mostly higher than using E7 and L1 pro-
teins. However, the overall accuracy gets high by increasing window size for all
proteins because the HPV sequences are relatively short and unique patterns are
more generated when window size is long. That is, the learners overfit protein
sequences for long window size. Viral early proteins E6 and E7 are known for
inducing immortalization and transformation in rodent and human cell types.
E6 proteins produced by the high-risk HPV types can bind to and inactivate
the tumor suppressor protein, thus facilitating tumor progression [16][17]. This
process plays an important role in the development of cervical cancer. For these
reasons, we have chosen E6 protein sequences corresponding to the 72 HPVs.

4.2 Evaluation Measure

For the HPV prediction, it is important to get high-risk HPVs as many as
possible, although a few low-risk HPVs are misclassified, hence we evaluate the
system performance using F1-score rather than Matthews correlation coefficient.
F1-score is a performance measure usually used for information retrieval systems,
and it is effective to evaluate how well the classifier did when it assigned classes
such as high-risk type.
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Table 2. The contingency table to evaluate the classification performance

Risk type answer
High Low

Prediction High a b
result Low c d

When binary scales are used for both answer and prediction, a contingency
table is established showing how the data set is divided by these two measures
(Table 2). By the table, the classification performance is measured as follows:

precision =
a

a + b
· 100%

recall =
a

a + c
· 100%

F1− score =
2 · precision · recall

precision + recall
.

4.3 HPV Classification

We have tested the gap-spectrum SVM method using E6 protein sequences.
Leave-one-out cross-validation is used to determine the classification perfor-
mance. Figure 2 shows the accuracy changes according to k given in Equation
(12). The graph shows the accuracy has the highest performance (97.22%) when
k = 4, and the performance is decreases as it gets more or less k. k = 4 means
that we only use the amino acids pairs which have two gaps between them for
HPV classification. k = 2 is exactly same as the SVM using RBF kernel with
2-spectrum method, and the accuracy is 94.44% for k = 2. Even though it gives
higher score than other methods as shown in Figure 3, the kernel methods with
k > 2 still gives better performance. As a result, the amino acids pair with a
distance can provide more evidence than consecutive amino acids to discriminate
low- and high-risk HPV proteins.

The final classification performance in accuracy and F1-score is given in Figure
3. It compares with previous results using SVM approaches based on sequence
alignment and text mining approaches. The SVM method which utilizes align-
ment information has been reported in [10]. AdaCost and näıve Bayes are text
mining methods using HPV literature data, which have been reported in [11].
Our approach shows 97.22% of accuracy and 95.00% of F1-score, while previous
SVM method shows 93.15% of accuracy and 85.71% of F1-score. For text-based
classification, the AdaCost method shows 93.05% of accuracy and 86.49% of
F1-score, and the näıve Bayes method shows 81.94% of accuracy and 63.64%
of F1-score. Additionally, the accuracy obtained from the DNA sequence-based
method [9] is 85.64%. It is interesting that it gets relatively higher score in F1-
score than in accuracy. F1-score is related with the number of high-risk HPVs
found by classifiers, while accuracy is related with the number of HPVs which is
correctly classified. Therefore, F1-score is more important than accuracy in this
task.
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methods

Text mining approaches only depend on the clues from text sentences. If the
text documents are unavailable for unknown HPVs, there is no way to clas-
sify them, whereas the sequence-based classification does not need to use any
additional information except sequence itself.

Table 3 shows the risk type prediction for HPVs marked as unknown in Ta-
ble 1. HPV26, HPV54, HPV57, and HPV70 are predicted as high-, low-, low-,
and high-risk, respectively. The prediction results for HPV26 and HPV54 are
identical to the one in Muñoz et al. [6], and we assume that their results are cor-
rect because it is based on epidemiologic classification from over 1,900 patients.
For HPV70, there are different decisions for the risk type according to previous
research [6][18][19], and the risk type of HPV57 cannot be decided yet because
of insufficient previous works. By the prediction results, we can conclude our
approach provides certain probability for whether unknown HPVs are high-risk
or not.



Human Papillomavirus Risk Type Classification from Protein Sequences 65

Table 3. Predicted risk type for unknown HPVs

Type HPV26 HPV54 HPV57 HPV70

Risk High Low Low High

5 Conclusion

We have presented a machine learning approach to classify HPV risk types.
Our method uses the SVM classifier with the gap-spectrum kernel based on k-
spectrum methods. The proposed kernel is designed to emphasize amino acids
pair with a fixed distance, which can be suitable for relatively short and α
helix-dominant sequences. For the experiments, the performance has been mea-
sured based on leave-one-out cross-validation. According to experimental results,
amino acids pair with a fixed distance provides good performance to discriminate
HPV proteins by its risk. Especially, it is important not to have false negatives
as many as possible in this task. Therefore F1-score is important because it con-
siders both precision and recall based on high-risk type. Our approach shows
significant improvement in F1-score as compared with previous methods, and
the prediction for unknown HPV types has given promising results. We can con-
clude that the relationship between amino acids with k = 4 supports important
role to divide low- and high-risk function in HPV E6 proteins.

In this paper, we consider all protein subsequences equally. Even though SVMs
naturally detect the important factors in a high-dimensional space, it is necessary
to analyze what components are more informative for HPV risk types. Also,
protein structure or biological literature information can be combined with this
method for more accurate prediction. Thus, study on exploring efficient analysis
method remains as future works.
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Abstract. In this paper, we introduce a novel objective function for the
hierarchical clustering of data from distance matrices, a very relevant
task in Bioinformatics. To test the robustness of the method, we test it
in two areas: (a) the problem of deriving a phylogeny of languages and
(b) subtype cancer classification from microarray data. For comparison
purposes, we also consider both the use of ultrametric trees (generated
via a two-phase evolutionary approach that creates a large number of
hypothesis trees, and then takes a consensus), and the best-known results
from the literature.

We used a dataset of measured ’separation time’ among 84 Indo-
European languages. The hierarchy we produce agrees very well with
existing data about these languages across a wide range of levels, and
it helps to clarify and raise new hypothesis about the evolution of these
languages.

Our method also generated a classification tree for the different can-
cers in the NCI60 microarray dataset (comprising gene expression data
for 60 cancer cell lines). In this case, the method seems to support the
current belief about the heterogeneous nature of the ovarian, breast and
non-small-lung cancer, as opposed to the relative homogeneity of other
types of cancer. However, our method reveals a close relationship of the
melanoma and CNS cell-lines. This is in correspondence with the fact
that metastatic melanoma first appears in central nervous system (CNS).

1 Introduction

A large number of articles in bioinformatics use single-objective unsupervised
hierarchical clustering algorithms to identify “subtypes”. Biologically-oriented
journals, in general, have low requirements in terms of algorithmic reproducibil-
ity. The validation of the algorithms used in different problem scenarios is either
poor or non-existing. Working on a dataset of measured separation times be-
tween 84 Indo-European languages we started to notice the deficiencies of a
large number of hierarchical clustering schemes. The same problems occur when
analyzing datasets derived from mitochondrial DNA distances among species [1].

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 67–78, 2006.
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In this paper, we pose the clustering problem as a graph optimization problem
and propose a novel objective function which performs very well in diverse types
of datasets. We start with a distance matrix for a set of objects and compute
a weighted graph in which vertices represent objects and edges are weighted by
the distance between the corresponding vertices. Then our objective function
tries to obtain a solution whose fitness is maximal and proportional to the sum
of the weights on the edges between two sets of vertices, and to the sum of
the reciprocals of the weights on the edges inside the sets. We denote this as
arithmetic-harmonic cut . The recursive application of such cuts generates a tree-
based classification of the data. While our primary concern is the classification of
microarray data, we are also interested in testing the robustness of the approach,
validating it in other domains. For this purpose, we show results for two different
datasets: (a) a dataset for 84 Indo-European languages, and (b) a dataset for
60 cancerous cell-lines (NCI60). Next section will provide more details on the
algorithmic methods we have used.

2 Hierarchical Clustering Methods Considered

In addition to the clustering solutions available in the literature for the datasets
considered, we have used two unsupervised techniques for computing alternative
solutions. The first one is based on arithmetic-harmonic cuts, and the second
one relies on the utilization of ultrametric trees. These will be described below.

2.1 Arithmetic-Harmonic Cuts

The method of arithmetic-harmonic cuts approaches the construction of the
hierarchy in a top-down fashion. To be precise, it can be described as a recur-
sive process in which we solve a graph optimization problem at each step. Let
G(E, V, W ) be an undirected, complete weighted graph with no self-loops and
such that the weight of any edge is a positive integer number (i.e., w(e) > 0)
representing distance or some measure of dissimilarity between a pair of objects.
We first find a partition of the set V of vertices into {S, V \S}, which generates a
partition of the set E of edges in two sets Ein and Eout. The set Eout ⊂ E is the
set of edges that link a vertex in S and a vertex in V \S (similarly, Ein = E\Eout

is the set of edges connecting vertices in the same partition). Such a partition is
defined by maximizing the following objective function

F =

( ∑
e∈Eout

w(e)

)( ∑
e∈Ein

1/w(e)

)
(1)

We have implemented an exact backtracking algorithm and also a memetic al-
gorithm (similar to the work of Merz and Freisleben [2] for Graph Biparti-
tioning) as a meta-heuristic to calculate the best partitioning of the vertices
for a given graph. The difference with respect to [2] is that we remove the con-
straint of equal partitioning of the graph in our memetic algorithm. Thus, the
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memetic algorithm uses (a) a differential greedy algorithm (similar to that in [3])
for initialization of a set of solutions for the problem, (b) a differential greedy
crossover (a modification of the algorithm in [2]) for evolution of the population,
and (c) a variable neighborhood local search (see [4]) to improve the newly gen-
erated solutions. Whenever the population stagnates, we keep the best solution
and re-initialize the rest of solutions in the set. We use this memetic algorithm
if the graph contains more than 25 vertices, and a backtracking enumeration
algorithm otherwise. Notice that even though backtracking gives us an optimal
solution, a memetic algorithm may not. However, in the considered datasets, the
memetic algorithm consistently generated the same solution in all runs (thus it
is presumably optimal). By applying this method (backtracking or memetic al-
gorithm depending on the number of vertices) recursively, we have at each step a
graph as input, and the two subgraphs induced by each of the sets of the vertex
partition as output; stopping when we arrive to a graph with just one vertex,
we generate a hierarchical clustering in a top-down fashion.

The rationale of the use of our objective function can be clear if we rearrange
its terms. We can write

F =
Aout

Hin
(|E| − |Eout|)|Eout| (2)

where Aout is the arithmetic mean of the weights that connect vertices of S
with V \ S (the cut); Hin is the harmonic mean of the weights of the edges not
in the cut, and |Eout| is the cardinality of the cut. Informally, maximizing F is
equivalent to try to find a cut that discriminates well the two groups, normalized
by the harmonic mean of the intra-cluster dissimilarity, and multiplied by a
factor that is maximum when the two groups have a similar number of elements.
Normalizing by the harmonic mean allows the denominator being more stable
to the presence of outlier samples when associated to either V or V \S. For this
reason, we denote this partition as arithmetic-harmonic cut.

Notice that maximizing the first part of the objective function, i.e.,∑
e∈Eout

w(e) (the total weights of edges across the two sets) is the same as
solving the Max-Cut problem for graph G, which is a NP -hard problem. How-
ever, it turns out that the hierarchy generated by partitions using Max-Cut
does not corroborate the previous knowledge about the datasets. This is prob-
ably due to the fact that no importance is given in Max-Cut to the similarity
of vertices within the sets. We also considered the objective function

F ′ =
∑

e∈Eout

w(e)−
∑

e∈Ein

w(e) (3)

However, the resulting partition by maximizing F ′ turns out to be no better
than the partition obtained from Max-Cut.

2.2 Ultrametric Trees

Ultrametric trees constitute a very amenable approach for fitting distance ma-
trices to trees. In essence, an ultrametric tree T is a weighted tree in which the
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distance Dij between any two leaves i and j (measured as the sum of the weights
of the edges that have to be traversed to reach i from j inside T ) verifies that
Dij � max{Dik, Djk}, 1 � i, j, k � n, where n is the number of leaves. This
equation implies that given any internal node h in T , it holds that Dhi = Dhj

for any leaves i, j having h as ancestor.
The use of ultrametric trees has several advantages in hierarchical classifica-

tion. First of all, edge weights are very easy to compute: given a distance matrix
M containing dissimilarity values for a collection of objects, and a candidate
tree T , the minimum weights such that Dij � Mij and T is ultrametric can be
computed in O(n2) [5]. Secondly, they adapt very well to dynamical processes
evolving at a more or less constant rate. Finally, even if the latter is not the case,
they provide a very good approximation to more relaxed criteria such as mere
additivity, that would be much more computationally expensive to calculate.
Notice also that finding the optimal topology T for a given distance matrix M
under the ultrametric assumption is NP-hard [5].

Ultrametric trees have been computed using an evolutionary two-phase pro-
cedure: firstly, a collection of high quality tentative trees are generated; subse-
quently, a consensus method is used to summarize this collection into a single
tree. Beginning with the former, the generation of high quality (i.e., minimum
weight) ultrametric trees has been approached using an evolutionary algorithm
based on the scatter search template. Starting from the solution provided by the
complete-link agglomerative algorithm, an initial population of trees is produced
by perturbation (internal exchanges of branches). Then, an evolutionary cycle
is performed using tree-based path relinking for recombination [6], and internal
rotations for local search (no mutation is used). Whenever the system stagnates,
the population is restarted by keeping the best solution and generating new trees
by exchanging branches among existing trees.

Once a collection of high quality trees has been found, the consensus method
is used to amalgamate them. This is done using the TreeRank measure [7] as
similarity metric among trees. This measure is based on counting the number of
times we have to traverse an edge upwards or downwards in order to go from a
certain leaf to another one. By computing how different these figures are for two
trees, we obtain a dissimilarity value. The TreeRank measure is currently being
used in TreeBASE1 –one of the most widely used phylogenetic databases– for
the purposes of handling queries for similar trees.

The consensus algorithm we have used is an evolutionary metaheuristic that
evolves tentative trees following [8]. Given the collection of trees we want to
summarize, the sum of dissimilarities to the tentative tree is used as the fitness
function (to be minimized). Evolution is performed using the prune-delete-graft
operator [9, 10] for recombination, no mutation, binary tournament selection,
and elitist replacement. In our experiments, we have considered all different
trees generated by the scatter search method in one hundred runs, and then
running the consensus algorithm one hundred times on this collection. The best
solution out of these latter 100 runs is kept as the final consensus tree.

1 http://www.treebase.org
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3 Classifying Indo-European Languages

Two major hypotheses exist about the origin of Indo-European languages: the
‘Kurgan expansion’ and the ‘Anatolian farming’ hypotheses. Based on archae-
ological evidences, the Kurgan theory [11] says that Kurgan horsemen (near
current Russia) went to Europe and the Near East around 6000 years B.C.
On the other hand, the Anatolian theory [12] claims that Indo-European lan-
guages expanded with the spread of agriculture from Anatolia (present Turkey)
around 8000-9500 years B.C. Scientists have used genetic [13, 14, 15] and numer-
ical [16, 17] methods to complete the linguistic phylogeny of the Indo-European
languages. However, there are still some doubts about its exact topology.

The dataset we analyse is the distance-matrix for 84 Indo-European languages
generated by Dyen et al. [18]. They used a list of basic vocabulary and estimated
historical relationships (similarity) between two languages by computing the ra-
tio of number of words (cognates) shared by them and the total number of words.
Furthermore, one also considers the replacement rates of each word in the vocab-
ulary. By considering the above ratio and replacement rates, they generated the
so-called “separation time” between pairs of languages, which they provided as
a distance-matrix of 84 languages. This dataset is the same that was used in [17]
where the neighbor-net analysis method provided some hints on possible lat-
eral information transfer while still provide an overall hierarchical relationships
among the languages.

Gray and Atkinson used a Bayesian Markov chain Monte Carlo method to
generate and analyze a large number of (10000) tentative trees [16]. Although
their method is in remarkable agreement with the timing of the Anatolian hy-
pothesis, the method also shows how much uncertainty still exists to validate
some subtrees. The posterior probability of some subtrees can be as low as 0.36
in some cases, e.g., in dividing a sub-tree into Indo-Iranian and Albanian lan-
guages, and 0.4 in dividing the Greek and Armenian groups from the most of the
languages (with the exception of the Tocharian and the Hittite, extinct languages
introduced by authors to the original dataset by Dyer et al.) [18].

We have applied our method of arithmetic-harmonic cut to Dyen et al.’s
dataset. The language tree we have obtained using this cut is shown in Fig. 1(a).
As it can be seen, this method separates the relatively older languages (a Greco-
Armenian-Albanian-Indo-Iranian group) from the relatively newer languages
(a Celtic-Slavic-Germanic-Romanic group). Unlike our tree, the tree in [16]
(see Fig. 1(b)) first separated the extinct Tocharians, Hittite, and the Greco-
Armenian group languages from the rest. Their tree had the Albanian branch
together with the Indo-Iranian group. We note that the resulting subtree of Indo-
Iranian-Albanian languages are divided with only 0.36 bayesian posterior prob-
ability. This raises a concern, as it may be the case that Indo-Iranian-Albanian
languages are older than what was claimed in [16] and they are more suited to
be temporally closer to the Greco-Armenian languages. In fact, the work in [17]
with neighbor-net analysis has produced a network with Albanians very close
to the Greco-Armenian languages. Thus, our topology for the main divisions
seem reasonable and is in closer relationship with the spread of farming from



72 P. Mahata et al.

NEPALI LIST

KHASKURA

BENGALI

MARATHI

GUJARATI

LAHNDA

PANJABIST

HINDI

GYPSY GK

SINGHALESE

KASHMIRI

ARMENIAN MOD

ARMENIAN LIST

GREEK ML

GREEK MD

GREEK MOD

GREEK D

GREEK K

ALBANIAN T

ALBANIAN TOP

ALBANIAN G

ALBANIAN K

ALBANIAN C

AFGHAN

WAZIRI

OSSETIC

PERSIAN LIST

TADZIK

BALUCHI

WAKHI

ENGLISH ST

TAKITAKI

AFRIKAANS

FLEMISH

DUTCH LIST

FRISIAN

PENN DUTCH

GERMAN ST

SWEDISH UP

SWEDISH VL

SWEDISH LIST

DANISH

RIKSMAL

ICELANDIC ST

FAROESE

IRISH A

IRISH B

BRETON SE

BRETON LIST

BRETON ST

WELSH N

WELSH C

MACEDONIAN

BULGARIAN

SERBOCROATIAN

SLOVENIAN

UKRAINIAN

BYELORUSSIAN

POLISH

RUSSIAN

LUSATIAN L

LUSATIAN U

CZECH

SLOVAK

CZECHE

LITHUANIAN ST

LITHUANIAN O

LATVIAN

SARDINIAN L

SARDINIAN N

SARDINIAN C

RUMANIAN LIST

VLACH

PORTUGUESE ST

BRAZILIAN

SPANISH

LADIN

ITALIAN

CATALAN

WALLOON

FRENCH

PROVENCAL

FRENCH CREOLE D

FRENCH CREOLE C

(A)

SPANISH

ITALIAN

CATALAN

IRISH A

IRISH B

WELSH N

WELSH C

BRETON LIST

BRETON SE

BRETON ST

RUMANIAN LIST

VLACH

LADIN

PROVENCAL

FRENCH

WALLOON

FRENCH CREOLE C

FRENCH CREOLE D

PORTUGUESE ST

BRAZILIAN

SARDINIAN N

SARDINIAN C

SARDINIAN L

GERMAN ST

PENN DUTCH

DUTCH LIST

AFRIKAANS

FLEMISH

FRISIAN

ENGLISH ST

TAKITAKI

SWEDISH UP

SWEDISH VL
SWEDISH LIST

RIKSMAL

ICELANDIC ST

FAROESE

DANISH

LITHUANIAN O

LITHUANIAN ST

LATVIAN

SLOVENIAN

MACEDONIAN

BULGARIAN

SERBOCROATIAN

LUSATIAN L

LUSATIAN U

CZECH

CZECH E

SLOVAK

UKRAINIAN

BYELORUSSIAN

RUSSIAN

POLISH

GYPSY GK

SINGHALESE

MARATHI

GUJARATI

PANJABI ST

LAHNDA

HINDI

BENGALI

NEPALILIST

KHASKURA

ARMENIAN LIST

ARMENIAN MOD

GREEK K

GREEK D

GREEK MOD

GREEK MD

GREEK ML

ALBANIAN C

ALBANIAN K

ALBANIAN TOP

ALBANIAN G

ALBANIAN T

WAZIRI

AFGHAN

BALUCHI

TADZIK

PERSIAN LIST

WAKHI

OSSETIC

KASHMIRI

TOCHARIAN A

TOCHARIAN B

HITTITE

GREEK

ARMENIAN

ALBANIAN

IRANIAN

INDIC

WEST GERMANIC

NORTH GERMANIC

FRENCH/IBERIAN

CELTIC 

ARMENIAN

ALBANIAN

IRANIAN

INDIC

GREEK

NORTH GERMANIC

WEST GERMANIC

CELTIC 

IRISH B

WELSH N

BRETON ST

BRETON SE

BRETON LIST
BYELORUSSIAN

UKRAINIAN

POLISH

RUSSIAN

LUSATIAN U

LUSATIAN L

SLOVAK

CZECH

CZECH E

BULGARIAN

MACEDONIAN

SERBOCROATIAN

SLOVENIAN

LITHUANIAN ST

LITHUANIAN O

LATVIAN

PENN DUTCH

GERMAN ST
FLEMISH

FAROESE

DANISH

RIKSMAL
SWEDISH LIST

SWEDISH UP

SWEDISH VL

TAKITAKI

ENGLISH ST

FRISIAN

DUTCH LIST

AFRIKAANS

ICELANDIC ST

VLACH

RUMANIAN LIST

LADIN

ITALIAN

BRAZILIAN

PORTUGUESE ST

SPANISH

CATALAN

FRENCH

PROVENCAL

WALLOON

FRENCH CREOLE D

FRENCH CREOLE C

SARDINIAN C

SARDINIAN L

SARDINIAN N

GREEK MD

GREEK ML

GREEK D

GREEK MOD

GREEK K

ARMENIAN MOD

ARMENIAN LIST

ALBANIAN TOP

ALBANIAN T

ALBANIAN G

ALBANIAN K

ALBANIAN C

GUJARATI

MARATHI

BENGALI

PANJABI ST

LAHNDA

HINDI

KHASKURA

NEPALILIST

KASHMIRI

GYPSY GK

SINGHALESE

PERSIAN LIST

TADZIK

BALUCHI

WAKHI

AFGHAN

WAZIRI

OSSETIC

IRISH A

WELSH C

NORTH GERMANIC

CELTIC 

WEST GERMANIC

GREEK

ARMENIAN

ALBANIAN

INDIC

IRANIAN

(B)

ITALIC

FRENCH/IBERIAN

ITALIC

FRENCH/IBERIAN

ITALIC

ITALIC

(C)

ITALIC

FRENCH/IBERIAN

ITALIC

ANATOLIAN

TOCHARIAN

SLAVIC

BALTIC

BALTIC

SLAVIC

BALTIC

SLAVIC

Fig. 1. Three proposed language-Trees: (a) tree using arithmetic-harmonic cuts, (b)
Gray-Atkinson’s tree [16], (c) consensus ultrametric tree

the Middle East between 10,000 and 6,000 years ago, which also correlates well
with the first principal component of the genetic variation of 95 polymorphisms
[19], which solely accounts for 28 % of the total variation.
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In addition to this fact, there are certain strange relations between languages
at the leaves of Gray’s tree. After checking the distance matrix, we find several
cases in which our tree seems to produce a more reasonable branching than Gray
and Atkinson’s. First of all, the closest neighbor of Czech and Slovak languages
are Lusatian languages. It is probably natural to have Czech, CzechE and Slo-
vak placed in a subtree closer to Lusatian languages. In the trees generated from
both arithmetic-harmonic cut (Fig. 1(a)) and the ultrametric trees (Fig. 1(c)),
we see that these languages are placed next to each other. However in Fig. 1(b)
generated by [16], Czech and Slovak are placed closer to Ukrainian, Byelorussian
and Russian. Secondly, Catalan is a language evolved from Latin, with strong
influences from French and Spanish. As a consequence of its Latin origin, Italian
is the closest language of Catalan in the dataset. The position of Catalan with
Italian and Ladin in our tree seems very natural, as hybridizations with French
and Spanish occurred later (note that the bayesian posterior probability is 0.83
for its link with the Spanish-Portuguese group). See [16] for the details of proba-
bilities in the Figure 1(b). Although Italian’s closest language is Ladin, the latter
was placed closer to RomanianList and Vlach with the posterior probability of
0.88. Also, notice the position of the Italian with 0.59 posterior probability. Fi-
nally, there are also small differences in the topology of small subtrees between
our hierarchy and Gray’s, namely, those regarding Dutchlist-Afrikaans-Flemish,
Greek languages, Albanian languages and the position of Bengali in the Aryan
languages among others. The differences seem to occur mainly where the poste-
rior probability of one or several branchings is low.

An important difference is that in our classification the Celtic languages are
considered closer to Baltic-Slavic languages. This goes against the current be-
lief of Celtic’s closeness to Romanic and Germanic languages. Note that in
Gray and Atkinson’s classification, the branchings of (Germanic,Romance) and
(Celtic,(Germanic,Romance)) have low posterior probabilities (0.46 and 0.67, re-
spectively). The minimum-weight ultrametric tree (see Fig. 1(c)) for this dataset
also considers Celtic and Slavic languages to be the closest ones as groups. How-
ever, this tree disagrees with our tree in the primary branches. For instance, it
first takes out Indo-Afghan languages as outliers, then considers Albanian and
Greco-Armenian languages as outliers successively. In the tree obtained by the
arithmetic-harmonic cut, all these outliers are grouped together. Notice that
even at the successive branchings, the consensus ultrametric tree often produces
a large number of outliers (see e.g., Indic and Iranian branches of Figure 1(c)).

4 A Molecular Classification of 60 Tumors

Validation of our methodology on the languages dataset has allowed us to have
confidence in applying it in our primary problem domain, classification of cancer
samples. In this section, we show how our partitioning algorithm finds subtypes
of human cancers. We study a dataset from 60 tumor cell-lines used in National
Cancer Institute’s (NCI) screen for anti-cancer drugs. We use the gene expression
of these cell lines given as a cDNA microarray with 6,830 genes for each cell-line.
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Fig. 2. (a) Classification of NCI60 dataset using arithmetic-harmonic cuts. Genetic
signatures with (b) 1101 genes for the first partition into Node 1 and Node 2, (c) 695
genes for the second partition into Node 3 and Node 4, and (d) 696 genes for the third
partition into Node 5 and Node 6.

The analysis of this dataset was done by Ross et al. in 2000 [20], where a result
of a hierarchical clustering for this dataset was first discussed. Their result shows
that the cell lines from same origin were grouped together in case of leukaemia,
melanoma, colon, renal and ovarian cancers, with a few exceptions. However, cell-
lines derived from non-small lung carcinoma and breast tumors were distributed
in multiple places suggesting a heterogeneous nature.

Fig. 2(a) shows the result of applying arithmetic-harmonic cut on this dataset.
In Fig. 2(b),(c) and (d), we show the genetic signatures (most differentially
expressed genes in the two sides of the partition) of the first three partitions
using the cut with 1,101, 696 and 695 genes respectively. In the genetic signatures
(computed with the method described in [21] and [22]), each row corresponds to
a gene and each column corresponds to a tumor sample.
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We will now compare the hierarchy generated by arithmetic-harmonic cuts
to Ross et al.’s classification tree and the consensus ultrametric tree, shown in
Fig. 3. All clustering methods agree in the fact that some of the tumors, (e.g.,
leukaemia, renal, melanoma, central nervous system) are relatively homogeneous,
i.e., most samples of these tumors are grouped together with a few exceptions.
However, in Ross et al.’s solution and in the ultrametric tree, all melanoma
samples except LOXIMVI are grouped with colon and leukaemia tumors (see the
lower branches of both trees in Figure 3), whereas arithmetic-harmonic cut shows
a marked difference in the first division. It groups all melanoma tumor samples
(including LOXIMVI) with CNS (Central Nervous System), renal, ovarian and
some of the breast and lung tumor samples (see Node 2 in Fig. 2(a)). Since
CNS is the closest group to the melanoma samples in this figure, we may infer
that this clustering supports the hypothesis that central nervous system (CNS)
and melanoma may share important genetic pathways with similar expression.
We note that CNS is a favorite site of metastasis in patients with advanced
melanoma and that it is the first site of relapse in 15− 20% of melanoma cases
[23, 24]. Also notice that CNS metastases from melanoma and renal tumors are
also often misdiagnosed as primary brain tumors [25]. However, our literature
survey did not reveal a close relationship of melanoma with colon or leukaemia,
as compared to its relation with CNS.

The three methods, however, behave slightly differently in clustering non-
small-lung, breast and ovarian tumors. First of all, all clustering methods applied
on NCI60 group together ovarian tumor samples OVCAR-3, OVCAR04 and
IGROV1. However, the positions of OVCAR-5, SK-OV-3 and OVCAR-8 differ
in the outcomes of the different methods suggesting a possible heterogeneity of
ovarian tumors. Also, it was suggested by Perou et al. [26] that there are 6 types
of breast-cancers. All clustering methods more or less agree with the fact that the
breast tumors (HS-578T, BT-549, MDA-MB-231, MCF7, T-47D, MDA-MB435,
MDAN) are scattered in 4-5 places. In all methods, breast tumors HS-578T,
BT-549 and MDA-MB231 are together with CNS/renal tumor samples; MCF7
and T-47D tumors are clustered with colon tumors; MDA-N and MDA-MB435
tumors are grouped with melanoma tumor samples. This is a definite indication
that the breast cancer is a heterogeneous disease. Similarly, small-lung-cancer
samples are distributed in all the three methods.

In the above comparison, we need to remember that ultrametric trees are
largely used in cladistics, and assume that all species evolve at a constant rate
(cf. Sect. 2). Such an assumption suits rather well the universe of languages
(they evolve according to mutual contact between sub-populations, assimilating
the words or phonemes from each other). However, unlike biological beings like
bacteria or more complex life forms, the tumor cell-lines do not have a common
ancestor. Tumors are defects in DNA, which cause malignant cell proliferation.
Thus, the ultrametric approach may be susceptible to errors in the classifica-
tion of cancer samples. Therefore, the position of melanoma samples in the tree
produced by the arithmetic-harmonic cut should not be considered incorrect.
Actually, the position of melanoma with CNS suggests an interesting quest, that
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Fig. 3. Classification of NCI60 Dataset from (a) Ross et al. and (b) ultrametric tree

of finding common activated genetic pathways, as it is known that the brain is a
primary point of metastasis to an individual with melanoma condition [23, 24].

5 Conclusions

We proposed two new approaches for hierarchical clustering and showed the
result of applying these methods on two very diverse datasets. The hierarchies
we produce for both languages and cancer samples in this method agree very well
with existing data about these datasets. It also raises some interesting questions.
The arithmetic-harmonic cut seems to correlate well with the results of the
first component of the genetic variation provided by Cavalli-Sforza and his co-
authors [19]. It indicates a branching in two major groups, with an earlier group
“moving” towards Europe (actually, the advanced farming hypothesis at work),
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later followed by another group moving in the same direction (evolving in Greek
and Albanian and Armenian languages) while another group “moved” south-
east and later differentiated in Iranian and Indic languages. It also suggest a
commonality of Celtic, Baltic and Slavic (a hypothesis also raised in the past,
and also supported by the consensus of the ultrametric trees). These differences,
as well as small others, with the solution provided by Gray and Atkinson’s
seem to be in branchings where the bayesian posterior probability is low, and
our methods agree where the posterior probability is high. The consensus of
the ultrametric trees seem to suggest a single wave towards Europe, but a first
branching in an Albanian group, followed by a second branching with the Greek
and Armenian in one subgroup seems less plausible to us.

Overall, our results seem to indicate that it is important to use several hier-
archical clustering algorithms and to analyze common subgroupings. In the case
of tumor samples, it is indeed the case that this is the most relevant outcome as
we do not have any guarantee that the samples “share” a common “ancestor”.
The question: “Which tree is the best one ?” might actually be highly irrele-
vant to the the real problem at hand, as it seems to be the consensus of these
trees the most important outcome. Results on a number of other clustering al-
gorithms on these datasets (which we were unable to show here for reasons of
space), indicates that more research in robust algorithm methods needs to be
done for molecular subtype classification in cancer and that validation of the
methodology with different problem settings is highly beneficial to develop it.
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Abstract. Computational analysis of mass spectrometric (MS) pro-
teomic data from sera is of potential relevance for diagnosis, progno-
sis, choice of therapy, and study of disease activity. To this aim, feature
selection techniques based on machine learning can be applied for de-
tecting potential biomarkes and biomaker patterns. A key issue concerns
the interpretability and robustness of the output results given by such
techniques. In this paper we propose a robust method for feature se-
lection with MS proteomic data. The method consists of the sequentail
application of a filter feature selection algorithm, RELIEF, followed by
multiple runs of a wrapper feature selection technique based on support
vector machines (SVM), where each run is obtained by changing the
class label of one support vector. Frequencies of features selected over
the runs are used to identify features which are robust with respect to
perturbations of the data. This method is tested on a dataset produced
by a specific MS technique, called MALDI-TOF MS. Two classes have
been artificially generated by spiking. Moreover, the samples have been
collected at different storage durations. Leave-one-out cross validation
(LOOCV) applied to the resulting dataset, indicates that the proposed
feature selection method is capable of identifying highly discriminatory
proteomic patterns.

1 Introduction

Feature selection (FS) for classification can be formulated as a combinatorial
optimization problem: finding the feature set maximizing the predictive perfor-
mance of the classifier trained from these features. FS is a major research topic
in supervised learning and data mining [10, 16, 12]. For the sake of the learning
performance, it is highly desirable to discard irrelevant features prior to learn-
ing, especially when the number of available features significantly outnumbers
the number of samples, like in biomedical studies. Because of its computational
intractability, the FS problem has been tackled by means of heuristic algorithms
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based on statistics and machine learning [10, 20, 22]. Biological experiments from
laboratory technologies like microarray and mass spectrometry techniques, gen-
erate data with a very high number of variables (features), in general much
larger than the number of samples. Therefore FS provides a fundamental step in
the analysis of such type of data [27]. Ideally one would like to detect potential
biomarkers and biomarker patterns, that both highly discriminate diseased from
healthy samples and are biological interpretable. However, as substantiated in
recent publications like [19, 3, 21], reliability and reproducibility of results de-
pend on the particular way samples are handled [26], on the instability of the
laboratory technology, as well as on the specific techniques employed in the
computational analysis.

In this paper we consider FS for classification with MS proteomic data from
sera. Various machine learning and statistical techniques for feature selection
have been applied to proteomic data, like [15, 17, 8, 13, 5, 6, 7], in order to detect
potential tumor biomarkers for (early) cancer diagnosis (clinical proteomics). A
summary of actual challenges and critical assessment of clinical proteomics can
be found, e.g., in [21].

Here we propose a new method for FS with MS proteomic data. The goal is to
identify potential biomarker patterns that not only highly discriminate diseased
and healthy samples, but also are robust with respect to perturbation of the data.
The method consists of three main steps. First, a popular filter feature selection
algorithm, RELIEF, is used as pre-processing in order to reduce the number of
considered features. Next, multiple runs of linear SVM are considered, where at
each run a perturbed training set is used, obtained by changing the class label
of one support vector. Each run generates a large subset of selected features.
The frequency (over the runs) of selection of the features is used to choose the
most robust ones, namely those with highest frequency. Finally, the resulting
features are transformed into feature intervals, by considering the ordering of
the features, where neighbour features refer to peptides of similar masses.

The method generates a subset of feature intervals, where both the number
of intervals and features are automatically selected. These intervals describe
potential biomarker patterns.

We analyze experimentally the performance of the method on a real-life
dataset with controlled insertion of noisy samples (long storage time samples)
and “relevant” features (spiked molecules) [26]. The results indicate that the
method performs robust feature selection, by selecting features corresponding
to m/z measurements near to the (average of m/z values of the peak of the)
spiked molecules, and by misclassifying only 1 noisy sample (with long storage
time).

2 Background

This section describes in brief the Machine Learning techniques we use in the
proposed feature selection method.
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2.1 Linear Support Vector Machines

In linear SVM-based binary classification [25, 2], samples of two classes are lin-
early separated by means of a maximum margin hyperplane, that is, the hy-
perplane that maximizes the sum of the distances between the hyperplane and
its closest points of each of the two classes (the margin). When the classes are
not linearly separable, a variant of SVM, called soft-margin SVM, is used. This
SVM variant penalizes misclassification errors and employs a parameter (the
soft-margin constant C) to control the cost of misclassification.

Training a linear SVM classifier amounts to solving the following constrained
optimization problem:

minw,b,ξk

1
2
||w||2 + C

m∑
i=1

ξi s.t. w · xi + b ≥ 1− ξi

with one constraint for each training sample xi. Usually the dual form of the
optimization problem is solved:

minαi

1
2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj −
m∑

i=1

αi

such that 0 ≤ αi ≤ C,
∑m

i=1 αiyi = 0. SVM requires O(m2) storage and O(m3)
to solve.

The resulting decision function f(x) = w · x + b has weight vector w =∑m
k=1 αkykxk. Samples xi for which αi > 0 are called support vectors, since

they uniquely define the maximum margin hyperplane. Samples with αi−C are
misclassified.

Maximizing the margin allows one to minimize bounds on generalization error.
Because the size of the margin does not depend on the input dimension, SVM
are robust with respect to data with high number of features. However, SVM
are sensitive to the presence of (potential) outliers, (cf. [11] for an illustrative
example) due to the regularization term for penalizing misclassification (which
depends on the choice of C).

2.2 Variable Selection Techniques

One can distinguish three main approaches for feature ranking/selection: wrap-
per, filter and embedded.

– In the wrapper approach features are selected/ranked by taking into account
their contribution to the performance of a given type of classifier (e.g., SVM).

– In the filter approach the selection/ranking of features is not (directly) biased
towards the performance of a specific type of classifier, but is based on an
evaluation criterion for quantifying how well feature (subsets) discriminate
the two classes.

– Finally, in the embedded approach feature selection/ranking is part of the
training procedure of a classifier, like in decision trees.
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The effectiveness of these approaches depends on the application domain.
The wrapper approach is favoured in many works since the selection of the
features is directly linked to the performance of a chosen type of classifier. On
the other hand, algorithms based on the filter approach, like RELIEF, are in
general more efficient and have been successfully applied to real life domains [28].
Techniques based on the embedded approach provide a global approach, where
feature selection is a by-product of the training algorithm for classification.

SVM Feature Selection (SVMFS)

The weights wi of a linear SVM classifier provide information about feature
relevance, where a bigger weight value implies higher feature relevance. In this
paper a feature xi is scored by means of w2

i [11]. Feature weights, obtained by
training a linear SVM on the training set, are used in a scoring function for
ranking features as described above. The algorithm for feature selection based
on SVM is illustrated below (in pseudo-code).

SVMFS
%input: training set X, number of features

to be selected M
%output: subset Selected of M features
train linear classifier with SVM on X;
score features using the squared value of

the weights of the classifier;
Selected = M features with highest score;
return Selected;

RELIEF

RELIEF [23, 14] is a filter-based feature ranking algorithm that assigns a score
to features based on how well the features separate training samples from their
nearest neighbours from the same and from the opposite class.

The algorithm constructs iteratively a weight vector, which is initially equal
to zero. At each iteration, RELIEF selects one sample, adds to the weight the
difference between that sample and its nearest sample from the opposite class
(called nearest miss), and subtracts the difference between that sample and its
nearest neighbour from the same class (called nearest hit). The iterative process
terminates when all training samples have been considered. The resulting weight
of a feature is divided by its range of values (computed using only the training
set). Subsampling can be used to improve efficiency in case of a large training
set. The pseudo-code of the RELIEF algorithm used in our experiments is given
below.

RELIEF
%input: training set X
%output: Ranking of features
nr_feat = total number of features;
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weights = zero vector of size nr_feat;
for all samples exa in training set do

hit(exa) = nearest neighbour of exa
from same class;

miss(exa) = nearest neighbour of exa
from opposite class;

weights = weights-abs(exa-hit(exa))+
abs(exa - miss(exa));

end;
scale each weight using range of corresponding m/z
value intensity over the training set;
Ranking = obtained by sorting weights

in decreasing order;
return Ranking;

3 Mass Spectrometric Proteomic Data

The MS proteomic dataset here considered is obtained by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), a
recent laboratory technology which offers protein profiling at high resolution and
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Fig. 1. A MALDI-TOF MS spiked sample for one person at storage duration time t=0
(top) and t=48 (bottom): x-axis contains (identifiers of) the m/z values of peptides
and the y-axis their concentration
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throughput. It measures the relative abundance of ionisable low molecular weight
peptides in complex mixtures, like serum (cf. e.g. [4]). Because it is relatively
inexpensive and noninvasive, it is considered a promising new technology for
classifying disease status and for tumor biomarker detection.

MALDI-TOF MS technology produces a graph of the relative abundance of
ionized peptides (y-axis) versus their mass-to-charge (m/z) ratios (x-axis). (see
Figure 1) The m/z ratios are proportional to the peptide masses, but the tech-
nique is not able to identify individual peptides, because different peptides may
have the same mass and because of limitations in the m/z resolution.

Given proteomic profiles from healthy and diseased individuals, the goal is to
build a classifier for tumor diagnostics and to identify those proteins that are
potentially involved in the disease.

The dataset considered in this study consists of 96 samples obtained from
human sera of 8 adult persons. Spiking has been used to produce two classes,
and 6 different storage durations (t=0, 1, 4, 8, 24, 48 hours) have been used to
produce noisy data. Each profile contains 22572 m/z measurements. Adjacent
m/z measurements correspond to peptides with similar mass versus charge. Thus
the ordering on the x-axis has a biological meaning. This ordering will be used
in the FS method described in the next section.

The complete procedure for generating such data is described in detail in [26],
where this and other datasets have been analyzed for the first time. Calibration
standards containing seven peptides and four proteins were used as artificial
markers (Bruker Daltonik) and consisted of the following molecules with aver-
age molecular masses given in parentheses: angiotensin II (1047.20), angiotensin I
(1297.51), substance P (1348.66), bombesin (1620.88), ACTH clip 1-17 (2094.46),
ACTH clip 18-39 (2466.73), somatostatin 28 (3149.61), insulin (5734.56), ubiqui-
tin I (8565.89), and cytochrome c (6181.05) and myoglobin (8476.77). However,
no signal was recovered for the following four spiked molecules, possibly due to
losses during the laboratory sample processing procedure: substance P (1348.6),
ACTH clip 1-17 (2094.46), cytochrome c (6181.05), and myoglobin (8476.77) [26].

In [18], we used this dataset for comparing the performance of two popular
feature selection techniques, RELIEF and Recursive Feature Selection with linear
SVM, and the performance of two classification techniques, SVM and K nearest
neighbours. The results indicated that, in general, better predictive performance
does not correspond to better biological interpretability of the selected features
(m/z values).

4 The Method

We propose a FS method, consisting of three steps, called Filter, Wrapper, and
Interval step (FWI). The method is illustrated below in pseudo-code.

FWI
%input: training set X
%number M of features to be selected by RELIEF
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%number N (N<M) of features to be selected by SVMFS
%SVM parameter C
%output: Set Int of feature intervals

%FILTER step:
F = M features selected with RELIEF;

%WRAPPER step:
SV = set of support vectors obtained by training

SVM on X;
for x in SV
T = X with label of x changed;
F(x) = N features selected by SVMFS applied to T;
end;
count = maximum number of times that a feature

occurs in the sequence of F(x), x in SV;
W = features occurring count times in the sequence

of F(x), x in SV;

%INTERVAL step:
Cl = {C1, .., Cn} clustering of W, with

Ci = (w(1),.., w(ni))
w(1)<..< w(ni)
s.t. idx(w(j+1))-idx(w(j)) <= 2
for all j in [1..ni];

Int = {Int_1, .., Int_n} intervals from Cl, with
Int_i= {w in Features s.t. w >= min(Ci)

and w<= max(Ci)} for i in [1,n];
return Int;

Let us explain a bit in more detail the steps performed by FWI.

– FWI starts by skimming the number of features, by applying the Filter
(F) step. Here RELIEF is employed in order to select M features. In the F
step one typically retains about M=5000 m/z measurements from the initial
22572.

– In the Wrapper (W) step, robust wrapper based feature selection is per-
formed using the features that passed the Filter selection. In the Wrapper
(W) step, the support vectors of SVM trained on all the features are used for
perturbing the data. More precisely, multiple runs of SVMFS are performed,
where at each run the class label of one support vector is changed. Each run
generates a set of N features (typical value N=1000). The resulting sequence
of feature sets is then considered. The maximum number count of times a
feature occurs in the sequence is computed, and all features occurring count
times in the sequence are selected.

– Finally, in the Interval (I) step, the selected m/z features are segmented as
follows. The sequence of features in W, ordered by m/z values, is segmented
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in such a way that each pair of consecutive features in one segment Ci is
at most two positions apart in the sequence of all features ordered by m/z
values (in the above pseudo-code idx(w) gives the position of feature w in
the ordered sequence of all features). Finally each sequence Ci generates
one interval Ii containing all m/z measurements between the first and last
element of Ci.

The F step can be viewed as a kind of preprocessing, while steps W and I
are heuristics for overcoming the problem of variability due to perturbations of
the data that can possibly originate from noise. The method requires the user
to specify 3 parameters, in particular the sizes M and N of the feature subsets
selected by RELIEF and SVMFS, respectively. However, note that the values of
M and N can be chosen to be fairly big, and the final smaller size of the feature
subset selected by FWI is determined automatically by the algorithm.

5 Numerical Experiments

In order to assess the effectiveness of the modules of FWI, we consider the
following four algorithms:

1. Wrapper feature selection (W), obtained by applying the W step of the FWI.
2. Wrapper Interval (WI), obtained by applying steps W followed by I.
3. Feature Wrapper (FW), obtained by applying steps F followed by W.
4. The complete Feature Wrapper Interval algorithm FWI.

Because of the small size of the data, LOOCV is used for comparing the per-
formance of the four algorithms (cf., e.g., [9]). At each leave-one-out run, all but
one element of the data is used as training set, and the left-out element is used
for testing the predictive performance of the resulting classifier. Observe that the
96 samples of the considered dataset are not independent one of the other, as
required for a correct application of LOOCV, because they are generated from 8
persons, and neither the 6 different storage times nor the spiking guarantee the
production of independent samples. Nevertheless, the corresponding bias intro-
duced in the LOOCV procedure affects the results of each algorithm, hence the
results can be used for comparing the performance of the algorithms. However,
such bias possibly affects the estimation of the generalization error.

Table 1 summarizes LOOCV performance results of the experiments. We use
accuracy, sensitivity and specificity as quality measures for comparing the algo-
rithms. Other measures, like AUC (Area Under the ROC Curve), can be used.
As illustrated e.g. in [1], there is a good agreement between accuracy and AUC
as to the ranking of the performance of the classification algorithms.

The results indicate that there is an improvement in predictive performance
of the four algorithms, with best accuracy achieved by FWI.

The misclassified samples over all the LOOCV runs have storage time equal
to 24 or 48 hours, indicating that longer storage time affects negatively classifi-
cation of proteomic samples. Algorithm W misclassifies a total of 5 samples, of
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Table 1. Results: LOOCV sensitivity, specificity and accuracy (with standard devia-
tion between brackets)

Method Accuracy Sensitivity Specificity

W 0.9479 (0.2234) 0.9375 (0.2446) 0.9583 (0.2019)

WI 0.9583 (0.2019) 0.9583 (0.2019) 0.9583 (0.2019)

FW 1.0000 (0.0000) 0.9583 (0.2019) 0.9792 ( 0.1436)

FWI 1.0000 (0.0000) 0.9792 ( 0.1443) 0.9896 (0.1021)
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Fig. 2. Number of m/z measurements selected over LOOCV runs

which 2 spiked at t= 48, 1 spiked at t=24, and 2 normal at t=24. WI improves
by correcly classifying the one spiked sample with t=24. Furthermore, FW mis-
classifies a total of 2 samples, the normal sample at t=24 like W and WI, and one
normal at t=48, while it correctly classifies all spiked samples. Finally, FWI only
misclassifies a total of 1 sample, the normal one at t=24, like W, WI, and FW.

Each algorithm selects about 120 features at each run, which are distributed
(in the Interval step) in about 15 clusters.

We further analyze the results of FWI. Figure 2 shows m/z measurements ver-
sus the number of times they are selected over all LOOCV. On the x-axis the lo-
cation of the spiked molecules is indicated by circles. The plot indicates that m/z
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Fig. 3. A typical m/z selection generated by FWI, the corresponding values of the
mean spiked and normal profile at the selected m/z values, and the spiked molecules

measurements in proximity of spiked molecules are more often selected over the
LOOCV runs, except for m/z measurements in the neighbourhood of 4000 and
5000, which do not correspond to m/z measurements of spiked molecules. In the
absence of additional information (e.g. tandem mass spectra yielding sequence
tags) it is difficult to know what these peak values represent. One possibility
is that the higher molecular weight spiked molecules are partially degraded in
serum, and these peaks are proteolytically cleaved peptides from larger proteins
(due to large storage time at room temperature) in the sample itself. However,
this possibility has not yet been examined in depth. Figure 3 shows a typical set
of m/z measurements generated by FWI, and the mean value of the intensities
of spiked and normal samples for the selected m/z measurements.

In conclusion, results indicate that FWI performs robust m/z selection, where
the selected features are close to the spiked molecules, and the misclassification
error is close to zero, with misclassification of only noisy (that is high storage
temperature) samples.

6 Conclusion

We have proposed a method for robust feature selection with MS proteomic
data. The method can be considered as a small step towards the development of
a feature selection methodology addressing the specific issues of the underlying
laboratory technology. In particular, in this paper we addressed the issue of per-
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forming robust feature selection in the presence of noisy samples which perturb
the data and negatively affect sample classification. The W and I steps of the
proposed FWI method provide heuristics for tackling this problem.

This issue is related to broader questions about reproducibility and validity
of results in the discovery-based “omics” research [21, 24]. In a special session on
genomics of a recent issue of Science an essay entitled “Getting the noise out of
gene arrays” noted that “[t]housands of papers have reported results obtained
using gene array ... But are these results reproducible?” [19]. A controversy about
reprodicibility and validity of results from MS proteomic data is ongoing [3, 21]
and the path for achieving such ambitious goals appears still long.
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Abstract. The paper presents an original filter approach for effective
feature selection in classification tasks with a very large number of input
variables. The approach is based on the use of a new information theo-
retic selection criterion: the double input symmetrical relevance (DISR).
The rationale of the criterion is that a set of variables can return an
information on the output class that is higher than the sum of the infor-
mations of each variable taken individually. This property will be made
explicit by defining the measure of variable complementarity. A feature
selection filter based on the DISR criterion is compared in theoretical
and experimental terms to recently proposed information theoretic cri-
teria. Experimental results on a set of eleven microarray classification
tasks show that the proposed technique is competitive with existing fil-
ter selection methods.

1 Introduction

Statisticians and data-miners are used to build predictive models and infer de-
pendencies between variables on the basis of observed data. However, in a lot
of emerging domains, like bioinformatics, they are facing datasets characterized
by a very large number of features (up to several thousands), a large amount of
noise, non-linear dependencies and, often, only several hundreds of samples. In
this context, the detection of functional relationships as well as the design of ef-
fective classifiers appears to be a major challenge. Recent technological advances,
like microarray technology, have made it possible to simultaneously interrogate
thousands of genes in a biological specimen. It follows that two classification
problems commonly encountered in bioinformatics are how to distinguish be-
tween tumor classes and how to predict the effects of medical treatments on
the basis of microarray gene expression profiles. If we formalize this prediction
task as a supervised classification problem, we realize that we are facing a prob-
lem where the number of input variables, represented by the number of genes,
is huge (around several thousands) and the number of samples, represented by
the clinical trials, is very limited (around several tens). Because of well-known
numerical and statistical accuracy issues, it is typically necessary to reduce the
number of variables before starting a learning procedure. Furthermore, select-
ing features (i.e. genes) can increase the intelligibility of a model while at the

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 91–102, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



92 P.E. Meyer and G. Bontempi

same time decreasing measurements and storage requirements [1]. A number
of experimental studies [2, 3, 4] have shown that irrelevant and redundant fea-
tures can dramatically reduce the predictive accuracy of models builded from
data.

Feature selection is a topic of machine learning whose objective is selecting,
among a set of input variables, the ones that will lead to the best predictive
model. Two well-known approaches in feature selection combine a search strat-
egy with a stochastic evaluation function: the filter approach and the wrapper
approach (see [3, 2]). In the wrapper approach, the evaluation function is the
validation outcome (e.g. by leave-one-out) of the learning algorithm itself. In
the filter approach, examples of evaluation functions are probabilistic distance,
interclass distance, information theoretic or probabilistic dependence measures.
These measures are often considered as intrinsic properties of the data, because
they are calculated directly on the raw data instead of requiring a learning model
that smoothes distributions or reduces the noise.

This paper will focus on the use of filter techniques for feature selection in su-
pervised classification tasks. In particular, we present an original filter approach
based on a new information theoretic selection criterion, called the double input
symmetrical relevance (DISR). This criterion combines two well known intuitions
of feature selection: first, a combination of variables can return more informa-
tion on the output class than the sum of the information returned by each of
the variables taken individually. This property will be made explicit by defin-
ing the notion of variable complementarity. Secondly, in absence of any further
knowledge on how subsets of d variables should combine, it is intuitive to as-
sume a combination of the best performing subsets of d − 1 variables as the
most promising set. This intuition will be made formal by the computation of a
lower-bound on the information of a subset of variables expressed as the average
of information of all its sub-subsets.

The DISR criterion can be used to select among a finite number of alternative
subsets the one expected to return the maximum amount of information on the
output class. As we intend to benchmark its performance with respect to state-
of-the-art information theoretic criteria we define an experimental session where
several filter algorithms with different selection criteria but the same search
strategy are compared. In our experiments we compare the filter based on DISR
with four state-of the art approaches: a Ranking algorithm [5] and three filters
based on the same search strategỹ: the forward selection. The three state-of-the-
art criteria are the Relevance criterion [6], the Minimum Redudancy Maximum
Relevance criterion [7] and the Conditional Mutual Information Maximization
criterion [8]. The assessment of the different filters is obtained by measuring
the classification accuracy of several learning algorithms which adopt as inputs
the set of variables returned by each of the filter methods. For our benchmark
purposes, we use eleven public-domain multi-class microarray gene expression
datasets. The experimental results show that the proposed technique is compet-
itive with existing filter selection methods.
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2 Information Theoretic Notions for Feature Selection

This paper deals with supervised multi-class classification. We will assume ei-
ther that all the variables are discrete or that they can be made discrete by a
quantization step. Hereafter, we will denote by Y the discrete output random
variable representing the class and by X the multi-dimensional discrete input
random variable.

In qualitative terms, feature selection boils down to select, among a set of po-
tential variables, the most relevant ones. At the same time it would be appealing
that these selected variables are not redundant. The notions of relevance and re-
dundancy can be made more formal thanks to the use of dependency measures
[2, 9].

Let us first introduce some concepts of information theory:

Definition 1. [10] The conditional entropy of Y given Z, denoted by H(Y |Z)
is defined as:

H(Y |Z) = −
∑
y∈Y

∑
z∈Z

p(y, z) log p(y|z) (1)

and the I(X ; Y |Z) is the conditional mutual information.

Definition 2. [10] The conditional mutual information of the random variables
X and Y given Z is defined as:

I(X ; Y |Z) = H(X |Z)−H(X |Z, Y ) (2)

These definitions allow us to introduce the following measure of relevance pro-
posed by [6]:

Definition 3. Relevance.
Consider three random variables X,Y and Z and their joint probability distri-
bution pX,Y,Z(x, y, z). If H(Y |Z) = 0, then the variable relevance of X to Y
given Z, denoted by r(X ; Y |Z), is zero. Else if H(Y |Z) �= 0, then the variable
relevance of X to Y given Z is defined as:

r(X ; Y |Z) =
I(X ; Y |Z)
H(Y |Z)

(3)

According to this definition the relevance is a function 0 ≤ r(X ; Y |Z) ≤ 1 that
measures the relative reduction of uncertainty of Y provided by X once the value
of Z is given.

In the following, we rather consider as measure of relevance the classical (non-
normalized) mutual information, i.e. I(Xi; Y |XS), where Xi denotes an input
variable and XS a subset of variables not containing Xi.

The formalization of the notion of relevance makes explicit one of the major
challenges in feature selection: the mutual information between an input variable
Xi and the output class Y is conditionally dependent. This means that an input
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variable Xi having a significative relevance to Y given XS , can return a null
relevance conditioned on an other variable. The following two examples may
serve to better illustrate this idea.

Example 1. Consider the four random variables Y, Xi, XS and XM such that
Y = Xi + XS and XM = Xi

2 .

Given XS , Xi has a large relevance (I(Xi; Y |XS) = H(Y |XS)), while its rele-
vance goes to zero in the case where it is conditioned to XM (i.e. I(Xi; Y |XM ) =
0). In this example, Xi and XM have both a high mutual information with the
output Y but a low conditional mutual information when conditioned to the
other variable.

The next example shows that the relevance can also increase by conditioning.

Example 2. Consider the three random variables Y, Xi and XS such that Y and
Xi are independent and Y = Xi + XS .

In this case the mutual information of Xi with Y is zero (I(Xi; Y ) = 0) whereas
the conditional mutual informatione increases up when conditioned to XS (i.e.
I(Xi; Y |XS) = H(Y |XS)).

These examples show that it is hard to predict, in terms of relevance, the joint
effect of several input variables on an output variable Y .

As shown in Example 1 the mutual information I(Xi,j ; Y ) of a set {Xi, Xj}
(aka joint mutual information [11]) can be smaller than the sum of each rele-
vance taken separately. In generic terms, we could describe these two variables
as redundant for the task of classifying Y . For a formal definition of redundancy
we refer the reader to [9, 7]. Also, as shown in Example 2, it could happen that
two variables have jointly a larger mutual information with Y than when they
are considered separately. In this case we say that the two variables are comple-
mentary. Note that variable complementarity should warn us against eliminating
variables with null mutual information with the output (i.e. I(Xi; Y ) = 0) since
the joint information of two random variables I(Xi,j ; Y ) can be higher than the
sum of their individual informations I(Xi; Y ) and I(Xj ; Y ).

Variable complementarity was underlined experimentally in [1] and explained
in [12] as a second order term of the Möbius representation of the mutual
information. It can be useful to define the notion of complementarity between
two variables with respect to an output Y as the difference between the joint
mutual information and the sum of the ”individual” mutual informations. We
introduce then the following measure:

Definition 4. The complementarity of two random variables Xi and Xj with
respect to an output Y is defined as,

CY (Xi, Xj) = I(Xi,j ; Y )− I(Xi; Y )− I(Xj ; Y ) (4)

where Xi,j = {Xi, Xj}.
We define two variables as complementary if their measure of complementarity
with respect to Y is positive. Note that if the complementarity is zero, the
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two variables are independent. We remark also that a negative value of the
complementarity can be taken as a measure of the redundancy of a pair of
variables for the task of predicting Y .

The example 2 is an illustration of complementarity between Xi and XS since
in that case:

I(Xi,S ; Y ) > I(Xi; Y )︸ ︷︷ ︸
0

+I(XS ; Y ) (5)

Another illustration of complementarity is given by the well-known XOR
problem [2, 1]:

Example 3. Xor problem:
X1 1 1 0 0
X2 1 0 1 0

Y = X1 ⊕X2 0 1 1 0

We see that X1 and X2 have a null mutual information with the output, once
they are taken individually (i.e. I(X1; Y ) = 0, I(X2; Y ) = 0). However, when
they are taken together the mutual information I(X1,2; Y ) = H(Y ) > 0 of the
subset is positive.

Complementarity explains why an apparently irrelevant combination of vari-
ables can eventually perform efficiently in a learning task. In the following sec-
tion, we will proceed to a critical survey of information theoretic approaches
existing in literature, by stressing when and where the notion of complementar-
ity is taken into account.

3 State of the Art

As mutual information can measure relevance, this quantity is currently used in
literature for performing feature selection. One of the main reasons for adopting
it is its low complexity computational cost (O(d×N) where d is the number of
variables and N is the number of samples) in the case of discrete variables. The
following sections will sketch four state-of-the-art filter approaches that use this
quantity.

3.1 Variable Ranking (Rank)

The ranking method returns a ranking of variables on the basis of their individual
mutual information with the output. This means that, given n input variables,
the method first computes n times the quantity I(Xi, Y ), i = 1, . . . , n, then
ranks the variables according to this quantity and eventually discards the least
relevant ones [5].

The main advantage of the method is its rapidity of execution. Indeed, only
n computations of mutual information are required for a resulting complexity
O(n×2×N). The main drawback derives from the fact that possible redundancies
between variables is not taken into account. Indeed, two redundant variables,
yet highly relevant taken individually, will be both well ranked. As a result, a
model that uses these two variables is dangerously prone to an increased variance
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without any gain in terms of bias reduction. On the contrary, two variables can
be complementary to the output (i.e. highly relevant together) while each of
them appears to be poorly relevant once taken individually (see Example 2 or
Example 3). As a consequence, these variables could be badly ranked, or worse
eliminated, by the ranking filter.

3.2 Filters Combining Relevance and Redundancy Analysis

Although the variable ranking algorithm is reputed to be fast, it may be poorly
efficient as it only relies on individual relevance. Recently, new algorithms that
combine relevance and redundancy analysis offer a good trade-off between ac-
curacy and computational load as the Fast Correlation Based Filter [9]. Also,
some heuristic search methods such as the best first search (also known as the
forward selection) can be combined efficiently with information theoretic criteria
in order to select the best variable given a previously selected subset.

Forward Selection is a search method that starts with an empty set of vari-
ables. At each step, it selects the variable that brings the best improvement
(according to the selection criterion). As a consequence, each selected variable
does influence the evaluations of the following steps. This hill-climbing search
selects a subset of d < n variables in d steps and explores only

∑d
i=0(n − i)

evaluations.
In the following sections, several information theoretic criteria existing in

the literature and that can be easily combined with the forward selection, are
presented.

Relevance Criterion (REL). The relevance criterion is a well-known crite-
rion which is used together with the forward selection search strategy [6]. The
approach consists in updating a set of selected variables XS with the variable
Xi featuring the maximum relevance I(Xi; Y |XS). This strategy prevents from
selecting a variable which, though relevant to Y , is redundant with respect to a
previously selected one.

In analytical terms, the variable XREL returned by the relevance criterion is,

XREL = arg max
Xi∈X−S

{I(Xi; Y |XS)} (6)

where X−S = X \XS is the set difference between the original set of inputs X
and the set of variables XS selected so far1.

Although this method is appealing, it presents some major drawbacks. The
estimation of the relevance requires the estimation of several multivariate densi-
ties, a problem known to be ill-posed. For instance, at the dth step of the forward
search, the search algorithm asks for n − d evaluations where each evaluation
requires the computation of a (d+1)-variate density. It is known that, for a large
d, the estimations are poorly accurate and computationally expensive. For these
two reasons we recently assisted to the adoption of selection criteria based on
bi- and tri-variate densities only.
1 Note that in [6] a normalized version of relevance (Eq. 3) is used.
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Minimum Redundancy - Maximum Relevance criterion (MRMR).
The minimum redundancy - maximum relevance criterion [7] consists in selecting
the variable Xi among the not yet selected features X−S that maximizes ui−zi,
where ui is a relevance term and zi is a redundancy term. More precisely, ui is
the relevance of Xi to the output Y alone, and zi is the mean redundancy of Xi

to each variables Xj ∈ XS already selected.

ui = I(Xi; Y ) (7)

zi =
1
d

∑
Xj∈XS

I(Xi; Xj) (8)

XMRMR = arg max
Xi∈X−S

{ui − zi} (9)

At each step, this method selects the variable which has the best trade-off
relevance-redundancy. This selection criterion is fast and efficient. At step d of
the forward search, the search algorithm computes n− d evaluations where each
evaluation requires the estimation of (d + 1) bi-variate densities (one for each
already selected variables plus one with the output). It has been shown in [7] that
the MRMR criterion is an optimal first order approximation of the conditional
relevance criterion. Furthermore, MRMR avoids the estimation of multivariate
densities by using multiple bivariate densities.

Note that, although the method aims to address the issue of redundancy
between variables through the term zi, it is not able to take into account the
complementarities between variables. This could be ineffective in situations like
the one of Example 2 where, although the set {Xi, XS} has a large relevance to
Y , we observe that

1. the redundancy term zi is large due to the redundancy of Xi and XS

2. the relevance term ui is small since Xi is not relevant to Y .

Conditional Mutual Information Maximization Criterion (CMIM).
This approach [8] proposes to select the feature Xi ∈ X−S whose minimal con-
ditional relevance I(Xi; Y |Xj) among the selected features Xj ∈ XS , is maximal.
This requires the computation of the mutual information of Xi and the output
Y , conditional on each feature Xj ∈ XS previously selected. Then, the mini-
mal value is retained and the feature that has a maximal minimal conditional
relevance is selected.

In formal notation, the variable returned according to the CMIM 2 criterion
is,

XCMIM = arg max
Xi∈X−S

{ min
Xj∈XS

I(Xi; Y |Xj)} (10)

This selection criterion is powerful. It selects relevant variables, it avoids re-
dundancy, it avoids estimating high dimensional multivariate densities and un-
like the previous method, it does not ignore variable complementarity. However,
2 Note that in [8] this method was applied to select binary features in a pattern

recognition task.
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it will not necessary select a variable complementary with the already selected
variables. Indeed, a variable that has a high complementarity with an already
selected variable will be characterized by a high conditional mutual information
with that variable but not necessarily by a high minimal conditional information
(see example 3).

In terms of complexity, note that at the dth step of the forward search, the
algorithm computes n − d evaluations where each evaluation following CMIM
requires the estimation of d tri-variate densities (one for each previously selected
variable).

In the following chapter, we propose a new criterion that deals more explicitly
with complementary variables.

4 Double Input Symmetrical Relevance (DISR) Criterion

A lower bound on mutual information. In this section, we derive a lower
bound on the the mutual information between a subset XS and a target variable
Y . It is shown [13] that this quantity is lower bounded by the average of the
same quantity computed for all the sub-subsets XS−i = XS \Xi of XS .

Theorem 1. Let XS = {X1, ..., Xd} be a subset of d variables of X and XS−i =
XS \ Xi , i ∈ 1, . . . , d a subset of XS that does not contain the variable Xi.
Then,

I(XS ; Y ) ≥ 1
d

∑
i∈S

I(XS−i; Y ) (11)

The theorem expresses that the mutual information of a subset S and a target
variable Y is lower bounded by the quantity L (I(XS ; Y )), that is the average of
the same quantity computed for all the sub-subsets XS−i of XS .

In the following, we will use this theorem as a theoretical support to the
following heuristic: without any additional knowledge on how subsets of d vari-
ables should combine, the most promising subset is a combination of the best
performing subsets of (d− 1 variables).

Criterion. Given a fixed number d of variables, we can write the problem of
feature selection in the following form:

Sbest = arg max
S : |S|=d

I(XS ; Y ) (12)

In other words, the goal of feature selection is to find the subset of d variables
which maximizes the mutual information with the output Y .

Our idea consists in replacing the maximization of the quantity I(XS ; Y ) by
the maximization of its lower bound L (I(XS ; Y )):

arg max
S : |S|=d

I(XS ; Y ) ≥ arg max
S : |S|=d

∑
i∈S

I(XS−i; Y ) (13)
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Replacing again the right-hand term by its lower bound and recursively until we
have subsets of two variables:

≥ argmax
S

∑
i∈S

∑
j∈S

I(XS−(i,j); Y ) ≥ arg max
S

∑
i∈S

∑
j∈S

I(Xi,j ; Y ) (14)

In other words, without any information on how to combine subsets made
of more than two variables, the most promising subset (the best bound) is the
one with the highest sum of mutual information on all the combinations of
two variables. We choose to stop the recursivity at two variables because it
is the minimal size of subset that can capture variable complementarity (i.e.
I(Xi,j ; Y ) = I(Xi; Y ) + I(Xj ; Y ) + CY (Xi; Xj)). Note that this strategy, when
we stop the recursion at one variable, boils down to the ranking approach.

A similar approach has been developped in [12] based on the Möbius rep-
resentation of mutual information. However, in order to improve the selection
procedure we use here a normalized measure of mutual information very close
to the symmetrical uncertainty presented in [9]: the symmetrical relevance.

Definition 5. Given two random variables X,Y a joint probability distribution
p(x, y), the symmetrical relevance SR(X, Y ) is defined as:

SR(X ; Y ) =
I(X, Y )
H(X, Y )

(15)

This definition expresses that symmetrical relevance is a function 0 ≤ SR(X ; Y )
≤ 1 that indicates the “concentration” of mutual information “contained” in
p(x, y).

As a consequence, our resulting criterion is the following:

XDISR = arg max
Xi∈X−S

{
∑

Xj∈XS

SR(Xi,j ; Y )} (16)

The main advantage in using this criterion for selecting variables is that a
complementary variable of an already selected one has a much higher probability
to be selected than with other criteria. As this criterion measures symmetrical
relevance on all the combination of two variables (double input) of a subset, we
have called the criterion: the double input symmetrical relevance (DISR). At the

Table 1. Qualitative comparison of different information theoretic filters, according to
different aspects: relevance selection, redundancy avoidance, complementarity selection
and multivariate densities avoidance

criterion rank REL MRMR CMIM DISR

relevance selection V V V V V

redundancy avoidance − V V V V

complementarity selection − V − − V

multivariate density avoidance V − V V V
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dth step of the forward search, the search algorithm computes n− d evaluations
where each evaluation requires the estimation of d tri-variate densities (one for
each previously selected variable). In the next section, the DISR criterion is
assessed and compared with the other heuristic search filters discussed in the
Section 3.

Table 1 summarizes the methods discussed so far in terms of some peculiar
aspects: the capacity of selecting relevant variables, of avoiding redundancy, of
selecting complementary features and of avoiding the computation of multivari-
ate densities.

5 Experiments

A major topic in bioinformatics is how to build accurate classifiers for cancer di-
agnostic and prognostic purposes on the basis of microarray genomic signatures.
This task can be considered as a challenging benchmark for feature selection
algorithms [7] given the high feature to sample ratio.

We use eleven public domain multi-class datasets from [14] (Table 2) in order
to assess and compare our technique with the state-of-the-art approaches.

In our experimental framework, each continuous variable has been discretized
in equal sized interval. The number of intervals of each input is based on the Scott
criterion, see [15]. All the datasets are partitioned into two parts: a selection set
and a test set (each having size equal to N/2). We compare the filter based
on DISR with the four state-of the art approaches discussed above: a Ranking
algorithm and three filters based on the Relevance criterion, the Minimum Re-
dudancy Maximum Relevance criterion and the Conditional Mutual Information

Table 2. The 11 datasets of microarray cancer from http://www.tech.plym.ac.uk.
The column n represents the number of probes in the microarray, the column N the
number of samples and the column c the number of classes. The remaining columns
contain the average accuracy of each selection method averaged over the three classifiers
(SVM, 3-NN, naive Bayes). The accuracy of the two best methods for each dataset is
typed in bold face.

Dataset (DN) n N c Rank REL CMIM MRMR DISR

11 Tumors 12534 87 11 49% 46% 48% 42% 49%

14 Tumors 15010 308 26 22% 25% 20% 26% 19%

9 Tumors 5727 60 9 19% 36% 20% 23% 28%

Leukemia1 5328 72 3 71% 74% 71% 69% 78%

Leukemia2 11226 72 3 68% 57% 62% 65% 67%

Prostate Tumor 10510 102 2 76% 66% 62% 78% 73%

Brain Tumor1 5921 90 5 73% 70% 70% 70% 71%

Brain Tumor2 10368 50 4 47% 47% 49% 59% 60%

Lung Cancer 12601 203 5 84% 74% 82% 77% 74%

SRBCT 2309 83 4 70% 53% 75% 75% 67%

DLBCL 5470 77 2 77% 88% 70% 71% 88%
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Table 3. Statistically (0.1 level and 0.2 level of a paired two-tailed t-test) significant
wins, ties or losses over best first search combined with DISR criterion

W/T/L VS DISR Rank REL CMIM MRMR Rank REL CMIM MRMR

3-NN 0/9/2 1/8/2 1/7/3 2/7/2 1/5/5 1/7/3 1/7/3 2/7/2

Naive Bayes 3/8/0 2/7/2 1/8/2 1/9/1 4/7/0 3/6/2 1/8/2 1/9/1

SVM 2/9/0 2/6/3 2/6/3 2/8/1 2/6/3 3/4/4 2/5/4 3/5/3

Maximization criterion, respectively. Each selection method stops after that 15
variables have been selected. Then, the evaluation of the selection is done on
the test set, by using a ten-fold cross validation with a 3-nearest neighbor, a
naive Bayes and a SVM learning algorithm with a radial kernel. Each learning
technique led to the choice of a different number of variables in a range from 2
to 15. Then for each of the eleven datasets and for each selection method, the
best number of variables and the classification accuracy is computed. A set of
statistical paired t-test on the set of classification errors are reported in Table 3.

As far as the implementation of the three learning methods is concerned, we
used the algorithms made available by the R statistical language [16].

According to Table 2, the DISR criterion outperforms slightely all the other
methods in terms of average accuracy. Furthermore, our method is one of the
two best methods for 7 out of 11 datasets.

Table 3 reports the significant wins, ties or losses (at 0.1 and 0.2 significance
levels of a paired two-tailed t-test, respectively) of the DISR criterion against all
the other. We remark that in the case a 3-Nearest Neighbor, the DISR criterion
is equivalent to MRMR and better than all the other methods. For a naive
Bayes classifier, the performances of the DISR are slightly lower. This is not
surprising because the benefits of the DISR criterion are related to variable
complementarity whereas the success of a naive Bayes classifier typically relies
on the opposite, that is variable independence. As far as the SVM classifier is
concerned, at the 0.1 significance level, DISR appears to be slightly better than
both REL and CMIM, and slightly worse than RANK and MRMR. However, at
0.2 significance level the DISR outperforms all the other methods except MRMR.

6 Conclusion and Future Work

This paper formalized an original notion in feature selection: variable comple-
mentarity. Also, a lower bound on the mutual information of a subset of variables
with the output was demonstrated. On the basis of these considerations, we pro-
posed a new selection criterion: the double input symmetrical relevance (DISR).
The experimental session shows that this criterion is promising in high feature-
to-sample ratio classifaction tasks like gene expression microarray datasets. Note
that in gene selection, variable complementarity can be biologically meaningful
since it is common to observe combination of genes acting together.

Further experiments will focus on (i) datasets with more samples and/or less
features, (ii) other search strategies than the forward selection in order to validate
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the criterion in a wider range of domains, (iii) the impact of the discretization
method to the efficiency of the feature selection algorithms.
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Abstract. A major goal of human genetics is the identification of susceptibility 
genes associated with common, complex diseases. The preponderance of gene-
gene and gene-environment interactions comprising the genetic architecture of 
common diseases presents a difficult challenge. To address this, novel 
computational approaches have been applied to studies of human disease.   
These novel approaches seek to capture the complexity inherent in common 
diseases. Previously, we developed a genetic programming neural network 
(GPNN) to optimize network architecture for the detection of disease 
susceptibility genes in association studies. While GPNN was a successful 
endeavor, we wanted to address the limitations in its flexibility and ease of 
development. To this end, we developed a grammatical evolution neural 
network (GENN) approach that accounts for the drawbacks of GPNN. In this 
study we show that this new method has high power to detect gene-gene 
interactions in simulated data. We also compare the performance of GENN to 
GPNN, a traditional back-propagation neural network (BPNN) and a random 
search algorithm.  GENN outperforms both BPNN and the random search, and 
performs at least as well as GPNN.  This study demonstrates the utility of using 
GE to evolve NN in studies of complex human disease.  

1   Introduction 

The identification and characterization of susceptibility genes for common complex 
human diseases, such as hypertension, is a difficult challenge[1,2]. This is largely due 
to the complexity of these diseases, and the likelihood that many disease susceptibility 
genes exhibit effects that are dependent partially or solely on interactions with other 
genes and the environment. These interactions, known as epistasis, are difficult to 
detect using traditional statistical methods[3].  Thus, a number of novel statistical and 
computational methods have been developed[4-11]. Neural networks (NN) are a 
supervised pattern recognition method commonly used in many fields for data 
mining. The back propagation NN (BPNN) is one of the most commonly used 
NN[12] and is the NN chosen for most genetic epidemiology studies [13-21]. 
Successful use of NN for data mining requires defining an optimal NN architecture 
for the problem at hand. However, it is not always intuitive what the optimal 



104 A.A. Motsinger et al. 

architecture should be for a given dataset and, as a result, a cumbersome trial and 
error approach is often taken. 

Previously, we implemented a neural network optimized via genetic programming 
(GPNN)[22]. Optimizing neural network architecture with genetic programming was 
first proposed by Koza and Rice[23]. We implemented and extended the GPNN 
approach for use in association studies of human disease. The goal of GPNN was to 
improve upon the trial-and-error process of choosing an optimal architecture for a 
pure feed-forward back propagation neural network[22].  GPNN optimizes the inputs 
from a large pool of variables, the weights, and the connectivity of the network - 
including the number of hidden layers and the number of nodes in the hidden layer.  
Thus, the algorithm automatically generates optimal neural network architecture for a 
given dataset. This gives it an advantage over the traditional back propagation NN, in 
which the inputs and architecture are pre-specified and only the weights are 
optimized. 

GPNN was a successful endeavor – it has shown high power to detect gene-gene 
interactions in both simulated and real data[24].  Still, there are limitations to evolving 
NN using this type of machine learning algorithm.  First, the GP implementation that 
was used for GPNN involves building binary expression trees.  Therefore, each node 
is connected to exactly two nodes at the level below it in the network.  This did not 
seem to hinder the power of GPNN in smaller datasets[22,24-26]; however, we 
hypothesize that for more complex data, more complicated NN will be required, and 
two connections per node may not be sufficient.  Second, changes to GPNN require 
altering and recompiling source code, which hinders flexibility and increases 
development time. For example, GPNN is limited in the depth of the network.  This 
means there is a limit to the number of levels the network can contain.  Again, this 
was not a hindrance for GPNN in the previous power studies[22,24-26], but this may 
not scale well for more complex datasets.   

In response to these concerns, we developed a NN approach for detecting gene-
gene interactions that uses grammatical evolution (GE) as a strategy for the 
optimization of the NN architecture. Grammatical evolution (GE) is a variation on 
genetic programming that addresses some of the drawbacks of GP[27,28]. GE has 
been shown to be effective in evolving Petri Nets, which are discrete dynamical 
systems that look structurally similar to neural networks, used to model biochemical 
systems[29].  By using a grammar, substantial changes can be made to the way that 
NN are constructed through simple manipulations to the text file where the grammar 
is specified. No changes in source code are required and thus, there is no 
recompiling. The end result is a decrease in development time and an increase in 
flexibility.  These two features are important improvements over GPNN.   

Preliminary studies with GPNN show that an evolutionary optimization is more 
powerful than traditional approaches for detecting gene-gene interactions. We have 
shown that the GPNN strategy is able to model and detect gene-gene interactions in 
the absence of main effects in many epistasis models with higher power than back 
propagation NN[22], stepwise logistic regression[26], and a stand alone GP[25].  
GPNN has also detected interactions in a real data analysis of Parkinson’s 
disease[24]. Similarly to GPNN, the grammatical evolution optimized neural 
network (GENN) optimizes the inputs from a pool of variables, the synaptic weights, 
and the architecture of the network. The algorithm automatically selects the 
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appropriate network architecture for a particular dataset.  Thus, if GE allows for 
more flexible evolution of NN, can it perform as well or better than GPNN? 

Because GENN retains the beneficial properties of GPNN and offers substantial 
improvements in terms of flexibility and development, we hypothesize that NN 
optimized by GE will exhibit power equal to and even exceeding GPNN.  In this 
study, we compare the performance of GENN to a more traditional back-propagation 
NN, a random search algorithm, and GPNN.  We find that both GENN and GPNN 
outperform the random search and the BPNN.  We also show that GENN is equal in 
power to GPNN in detecting gene-gene interactions in our simulated disease models. 

2   Methods 

2.1   Grammatical Evolution Neural Network (GENN) 

Grammatical Evolution (GE) is a form of evolutionary computation that allows the 
generation of computer programs using grammars[27,28].  GE uses populations 
made of linear genomes that are translated by the grammar.  Each individual consists 
of a binary genome divided into codons.  Mutation can occur on individual bits along 
the genome, but crossover only occurs between codons.  These codons are translated 
according to the grammar into a resulting phenotype (in this case, a functional NN).  
The resulting individual/phenotype can be tested for fitness and evolutionary 
operators are applied to create subsequent generations.  By using the grammar to 
map a NN, GE separates genotype from phenotype.  This allows for greater genetic 
diversity within a population than offered by other evolutionary algorithms, like GP. 
Since GENN uses a grammar to define the structure of the resulting NN, we can 
easily vary the behavior of the program with changes to the grammar. 

GE differs from GP in several ways.  First, unlike GP, GE uses a linear genome -
similar to a genetic algorithm.  Second, GE performs mapping from genotype to 
phenotype using the rules of a grammar, much like the “rules” of the biological 
process of DNA transcription into mRNA. Finally, all evolutionary processes take 
place at the chromosomal level (binary strings) rather than the phenotypic level 
(binary expression tree). Ultimately, the goal of GP and GE is synonymous: to 
evolve computer programs using evolutionary processes[27,28]. 

A detailed description of GE can be found in O’Neill and Ryan[28].  Briefly, a 
Backus-Naur Form (BNF) grammar must be defined for the process of genotype-to-
phenotype mapping.  A variable-length binary string genome is used in a genetic 
algorithm, with a set of 8 bits constituting a codon. Each binary codon represents an 
integer value used to select a rule in the grammar. One non-terminal element is 
designated by the grammar as the start element. The mapping process proceeds as the 
first codon maps the start symbol of the solution to a rule by generating an integer 
value from the 8 bits.  To select a rule, the operator used is {(codon integer value) 
MOD (number of rules)}.  The start element is replaced by the elements of the rule 
selected and this process proceeds until only terminal elements remain.  A wrapping 
process can be used if the program has non-terminals at the point at which the end of 
the chromosome has been reached so that the algorithm returns to the start of the 
chromosome to obtain the next codon. This wrapping process can be allowed to 
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occur N times as necessary, where N is defined in the configuration file.  The 
resulting phenotype is a NN, which can then be evaluated for fitness. 

The steps of GENN are similar to GPNN[22].  First, GENN has a set of 
parameters that must be initialized in the configuration file.  Second, the data are 
divided into 10 equal parts for 10-fold cross-validation.  Here, we train GENN on 
9/10 of the data to develop a NN model.  Later, we test this model on the other 1/10 
of the data to evaluate the predictive ability of the model. This approach has been 
described in detail for GPNN[22]. Third, training of GENN begins by generating an 
initial population of random solutions. Each solution is generated via sensible 
initialization[28]. Using sensible initialization, an initial population is generated that 
creates functioning NN. In the sensible initialization step an expression tree is 
created using the grammar. The software assigns a minimum depth to each rule that 
describes the depth required for the rule to be completed. As each tree is built, the 
algorithm randomly selects only rules that can fit within the remaining depth of the 
tree. Half of the individual NN are built to the maximum depth by only selecting 
recursive rules until a non-recursive rule must be chosen to complete the tree and 
half are generated to a random depth no greater than the maximum by selecting any 
rule that can fit in the remaining depth of the tree. The final step in initialization is to 
convert nodes of the tree into corresponding codons. Fourth, each NN is evaluated on 
the training set and its fitness recorded. Fifth, the best solutions are selected for 
crossover and reproduction using a selection technique. The selection method can be 
specified in the configuration file, where the options are uniform, rank, roulette, and 
tournament[30]. A proportion of the best solutions will be directly copied 
(reproduced) into the new generation. Another proportion of solutions will be used 
for crossover with other best solutions. The crossover is performed at the 
chromosomal level, not at the level of the expression tree. The new generation, 
which is equal in size to the original population, begins the cycle again. This 
continues until some criterion is met, after which GENN stops. This criterion is 
either a classification error of zero or a limit on the number of generations. An 
optimal solution is identified after each generation. At the end of GENN evolution, 
the overall best solution is selected as the optimal NN. Sixth, this best GENN model 
is tested on the 1/10 of the data left out to estimate the prediction error of the model.  
Steps two through six are performed ten times with the same parameters settings, 
each time using a different 9/10 of the data for training and 1/10 of the data for 
testing.  An overview of the GENN algorithm is shown in Figure 1. 

We have implemented GE to optimize inputs, architecture, and weights of a NN.  
The grammar used is available from the authors upon request.  The GA used to 
evolve the binary string that is transcribed into a NN has the following parameters in 
the current implementation: crossover rate = 0.9, mutation = 0.01, population = 200, 
max generations = 50, codon size = 8, GE wrapping count = 2, min chromosome size 
(in terms of codons) = 50, max chromosome size = 1000, selection = roulette (can 
also be uniform, rank, or tournament), and sensible initialization depth = 10.  To 
prevent stalling in local minima, the island model of parallelization is used, where 
the best individual is passed to each of the other processes after every 25 
generations[31].  The genome is derived from GAlib (version 2.4.5) which is freely 
available at http://lancet.mit.edu/ga/dist/, and a typical GA one-point crossover of 
linear chromosomes is used.  
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Fig. 1. An overview of the GENN method. The steps correspond to the description of the 
method in Section 2.1.  

Classification error is calculated on the set of training data as the fitness metric. 
As mentioned earlier, the dataset is divided into cross-validation subsets.  GENN is 
optimized using a training set of data, and a subset of the data is left out as a test set 
to evaluate the final solution and prevent over-fitting. Classification error refers to 
the number of samples in the training dataset that are incorrectly classified by the 
network.  Prediction error, which refers to the number of samples in the test dataset 
that are incorrectly classified using the GENN model generated during training, is 
used for final model selection. The overall goal of the learning process is to find 
genetic models that accurately classify the data. Cross-validation is used in 
conjunction with this learning process to produce a model that not only can 
accurately classify the data at hand, but can predict on future, unseen data. 

2.2   Genetic Programming Neural Networks (GPNN) 

GPNN uses genetic programming to determine the optimal architecture for neural 
networks. Both the method and the software have previously been described[22]. 
GPNN was applied as presented in the references. Like GENN, models are trained on 
classification error, and a cross validation consistency and prediction error are 
determined for the final model. Unlike GENN, previous studies have shown cross 
validation consistency as the best criterion for final model selection. However for this 
study, the results are identical whether you use cross-validation consistency or 
prediction error for final model selection. All configuration parameters are identical to 
those in GENN. This will allow for a direct comparison of GPNN and GENN.  
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2.3   Random Search Algorithm 

As a negative control, a random-search algorithm was implemented. The random 
search algorithm uses the same fitness metric as both GENN and GPNN. The random 
search generates the initial chromosome population as described above for GENN, 
using sensible initialization, but this new random population occurs at every 
generation instead of only at the beginning of the run. Genotype-to-phenotype 
mapping is performed just as it is for GENN. The algorithm stores the single best 
network over all generations and returns that as the final model.  All other networks 
are discarded. 

2.4   Back Propagation Neural Network 

In this study, we used a traditional fully-connected, feed-forward network comprised 
of one input layer, zero, one or two hidden layers, and one output layer, trained by 
back-propagation. The software used, the NICO toolkit, was developed at the Royal 
Institute of Technology, (http://www.speech.kth.se/NICO/index.html).   

Defining the network architecture is an important decision that can greatly affect 
the results of the analysis[32]. There are several strategies utilized for architecture 
selection, including a prediction error fitness measure such that an architecture is 
selected by its generalization to new observations[32], or a classification (training) 
error metric[33].  Because we use cross-validation to verify the generalizability of our 
models, and to make a more fair comparison to the other methods in this study, we 
used classification error as a basis for evaluating and making changes to the BPNN 
architecture.  We began with a very small network, and several parameters were 
varied to obtain an appropriate architecture for each dataset, including:  the number of 
hidden layers, the number of nodes in the hidden layer, and the learning momentum 
(the fraction of the previous change in a weight that is added to the next change).  
This trial and error approach is typically employed for optimization of BPNN 
architecture[33,34]. BPNN was implemented as described in [22]. Final model 
selection was performed based on lowest prediction error, as with GENN. 

2.5   Data Simulation 

Epistasis, or gene-gene interaction, occurs when the phenotype under study cannot be 
predicted from the independent effects of any single gene, but is the result of 
combined effects of two or more genes[34]. It is increasingly accepted that epistasis 
plays an important role in the genetic architecture of common genetic diseases[35]. 
Penetrance functions are used to represent epistatic genetic models in this simulation 
study. Penetrance defines the probability of disease given a particular genotype 
combination by modeling the relationship between genetic variations and disease risk. 

For our power studies, we simulated case-control data using two different epistasis 
models exhibiting interaction effects in the absence of main effects.  Models that lack 
main effects are desirable because they challenge the method to find gene-gene 
interactions in a complex dataset.  Also, a method able to detect purely interactive 
terms will be likely to identify main effects as well. 
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Table 1. Multilocus penetrance functions used to simulate case-control data exhibiting gene-
gene interactions in the absence of main effects. Penetrance is calculated as 
p(disease|genotype). Marginal penetrance values (not shown) are all equal for each model. 

a. Model 1 
BB Bb bb

AA 0 .10 0
Aa .10 0 .10
aa 0 .10 0

b. Model 2 
BB Bb bb

AA 0 0 .10
Aa 0 .50 0
Aa .10 0 0

 

To evaluate the power of the above methods for detecting gene-gene interactions, 
we simulated case-control data using two different two-locus epistasis models in which 
the functional loci are single nucleotide polymorphisms (SNPs).  The first model was 
initially described by Li and Reich[36], and later by Moore [37]. This model is based 
on the nonlinear XOR function[38] that generates an interaction effect in which high 
risk of disease is dependent on inheriting a heterozygous genotype (Aa) from one locus 
or a heterozygous genotype (Bb) from a second locus, but not both.  The high risk 
genotypes are AaBB, Aabb, AABb, and aaBb, all with penetrance of 0.1 (Table 1a). 
The proportion of the trait variance that is due to genetics, or heritability, of this model 
is low. Specifically, as calculated according to Culverhouse et al[39], the heritability is 
0.053. The second model was initially described by Frankel and Schork[40], and  
later by Moore[37]. In this second model, high risk of disease is dependent on 
inheriting exactly two high risk alleles (A and/or B) from two different loci.  In this 
model, the high risk genotypes were AAbb, AaBb, and aaBB, with penetrance of 0.1, 
0.5, and 0.1 respectively (Table 1b). The heritability of this model is 0.051. 

These models were selected because they exhibit interaction effects in the absence 
of any main effects when genotypes were generated according to Hardy-Weinberg 
proportions (in both models, p=q=0.5). For both models, we simulated 100 datasets 
consisting of 200 cases and 200 controls, each with 10 SNPs, 2 of which were 
functional. The data were generated using the software package described by Moore 
et al[37]. Dummy variable encoding was used for each dataset, where n-1 dummy 
variables were used for n levels[19]. Data were formatted with rows representing 
individuals and columns representing dummy-encoded genotypes with the final 
column representing disease status. Though biological relevance of these models is 
uncertain, they do represent a “worst case scenario” in the detection of epistasis. If a 
method performs well under such minimal effects, it is predicted it will also perform 
well in identifying gene-gene interactions in models with greater effect sizes. 

2.6   Data Analysis 

We used all four methods (GENN, GPNN, BPNN and random search) to analyze both 
epistasis models. The configuration parameter settings were identical for GENN, 
GPNN and the random search (without evolutionary operators for random search): 10 
demes, migration every 25 generations, population size of 200 per deme, 50 
generations, crossover rate of 0.9, and a reproduction rate of 0.1.  For GENN and the 
random search, prediction error was used for final model selection as described in 
Section 2.1. For GPNN, cross-validation consistency was calculated for each model 



110 A.A. Motsinger et al. 

and the final model was selected based on this metric (as described in [22]). Sensible 
initialization was used in all three algorithms.   

For our traditional BPNN analysis, all possible inputs were used and the 
significance of each input was calculated from its input relevance R_I, where R_I is 
the sum of squared weights for the ith input divided by the sum of squared weights 
for all inputs[38]. Next, we performed 1000 permutations of the data to determine 
what input relevance was required to consider a SNP significant in the BPNN model 
(data not shown). This empirical range of critical relevance values for determining 
significance was 10.43% - 11.83% based on the permutation testing experiments.  
Cross validation consistency was also calculated and an empirical cutoff for the cross 
validation consistency was determined through permutation testing (using 1000 
randomized datasets). This cutoff was used to select SNPs that were functional in the 
epistasis model for each dataset.  A cross validation consistency of greater than 5 was 
required to be statistically significant. 

Power for all analyses is reported under each epistatic model as the number of 
times the algorithm correctly identified the correct functional loci (both with and 
without any false positive loci) over 100 datasets. Final model selection was 
performed for each method based on optimum performance in previous studies[22].  
If either one or both of the dummy variables representing a single SNP was selected, 
that locus was considered present in the model. 

3   Results 

Table 2 lists the power results from all four algorithms.  Because of the small size of 
the dataset, all four algorithms performed reasonably well.  With a limited number of 
SNPs, these learning algorithms can effectively become exhaustive searches.  As 
hypothesized, GENN and GPNN both out-performed the traditional BPNN and the 
random search. The performance of GENN and GPNN were consistent, as expected.  
This demonstrates that GENN will work at least as well as GPNN, while allowing for 
faster development and more flexible use. Because the number of variables included 
in the dataset was small, the random search performed reasonably well, as the trial 
and error approach had a limited number of variables to search through. As Table 2 
shows, there is a large gap in the performance of the random search between Model 1 
and Model 2. This is probably due to the difference in the difficulty inherent in the 
two models.  The power of BPNN to detect Model 2 was also lower than for Model 1, 
indicating a difference in the challenge of modeling the different models.  
Additionally, the stochastic nature of a random algorithm can lead to erratic results, as 
shown here. These erratic power results further demonstrate the utility of an 
evolutionary approach to optimizing NN architecture. The random search even 
outperformed BPNN for Model 1, probably because the random search was able to 
search through more possible NN architectures than BPNN so was able to find the 
correct model more often in these simulations. 

Table 3 summarizes the average classification error (training error) and prediction 
error (testing error) for the four algorithms evaluated using the 100 datasets for each 
model. Due to the probabilistic nature of the functions used in the data simulation, 
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Table 2.  Power (%) for each method on both gene-gene interaction models (with no false 
positive loci) 

Epistasis Model GENN GPNN BPNN Random Search 
1 100 100 53 87 
2 100 100 42 10 

 
Table 3.  Results for all four algorithms, demonstrating average classification error (CE) and 
prediction error (PE) for each epistasis model. The range of observed observations is listed 
below the average. 

GENN GPNN BPNN Random Search Model 
CE PE CE PE CE PE CE PE 

1 0.237 
(.212-
.254) 

0.237 
(.210-
.255) 

0.237 
(.200-
.284) 

0.237 
(.208-
.279) 

0.008 
(.000-
.183) 

0.340 
(.201-
.410) 

0.236 
(.088-
.483) 

0.237 
(.075-
.400) 

2 0.243 
(.212-
.260) 

0.243 
(.209-
.271) 

0.242 
(.212-
.261) 

0.243 
(.210-
.269) 

0.008 
(.000-
.181) 

0.303 
(.240-
.410) 

0.242 
(.080-
.494) 

0.245 
(.075-
.400) 

 
Table 4.  Power (%) for each method to detect functional SNPs in both gene-gene interaction 
models (with or without false positive loci) 

GENN GPNN BPNN Random Search Model 

SNP 1 SNP 2 SNP 1 SNP 2 SNP 1 SNP 2 SNP 1 SNP 2 
1 100 100 100 100 88 90 100 100 
2 100 100 100 100 80 82 100 100 

 
there is some degree of noise present in the data. The average error inherent in the 
100 Model 1 datasets is 24%, and the error in the Model 2 datasets is 18%.  As the 
table shows, GENN, GPNN and the random search all had error rates closely 
reflecting the real amount of noise in the data.  Those three algorithms had lower 
prediction errors than BPNN, while BPNN had lower classification errors for both 
models.  The lower classification error is due to model over-fitting.  The other three 
algorithms, including even the random search, are better able to model gene-gene 
interaction and develop NN models that can generalize to unseen data.  While the 
random search did not demonstrate the same degree of over-fitting experienced with 
BPNN, the averages reported here disguise the fact that the range of errors across 
datasets was very high. While the average errors for the random search look similar 
to those for GPNN and GENN, the range of observed values was much larger, 
implying that the random search also tends to over-fit. We speculate that GENN and 
GPNN are not over-fitting because, while these methods are theoretically able to 
build a tree with all variables included, neither method is  building a fully connected 
NN using all variables. 

To further understand the behavior of the algorithms, and in particular the 
seemingly inconsistent results of the random search’s average errors and low relative 
power, we calculated power for each functional locus as the proportion of times a 
SNP was included in the final model (regardless of what other SNPs are present in 
the model) for all datasets. Table 4 lists the results of this power calculation for all 
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four methods. The tendency of the random search algorithm to over-fit models 
becomes clear in the comparisons of Tables 2-4. The random search finds the 
functional SNPs, but includes many false positive loci, which is highly undesirable 
since the end goal of association analysis is variable selection. The same false 
positive trend holds true for BPNN.  

4   Discussion 

We have demonstrated that grammatical evolution is a valid approach for optimizing 
the architecture of NN. We have shown that GENN outperforms both a random 
search and traditional BPNN for analysis of simulated epistasis genetic models.  
Because of the small number of SNPs in this study, both BPNN and the random 
search NN had modest power, as one would expect. With a small number of 
variables to test, examining low-order combinations is relatively easy. As the number 
of variables increases, the resultant combinatorial explosion limits the feasibility of 
trial and error approaches. Moody[33] demonstrates that enumeration of all possible 
NN architectures is impossible, and there is no way to know if a globally optimal 
architecture is selected. The performance gap between the evolutionarily optimized 
algorithms and the trial and error approaches is expected to widen as the number of 
variables increases.  

Additionally, we show that GENN performs at least as well as GPNN. Because of 
the limited number of noise variables, and the fact that these two methods reached 
the upper limit of power, a more extensive comparison between GENN and GPNN 
needs to be performed. Power will need to be studied in a range of datasets, 
demonstrating a wide range of heritability values and number of noise variables.  
Because of the greater flexibility of GE compared to GP, we predict that GENN will 
out-perform GPNN on more complex datasets.   

Because the end-goal of these methods is variable selection, performance has been 
evaluated according to this metric in this study.  In future studies, it would be 
interesting to evaluate the architectures of the NN that are constructed by these 
different methods to further evaluate the differences in their performance.  Other 
measures of model fitness, such as sensitivity and specificity could also be dissected 
in evaluating the performance of GENN. 

Also, while simulated data are necessary in method development, the eventual 
purpose of this method is for the analysis of real data.  GENN will need to be tested 
on real case-control genetic data. 

This study introduces a novel computational method and demonstrates that GENN 
has the potential to mature into a useful software tool for the analysis of gene-gene 
interactions associated with complex clinical endpoints.  The ease of flexibility and 
ease of development of utilizing a grammar will aid in additional studies with this 
method. 
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Abstract. In this article, we shall analyze the behavior of population-
based heuristics for obtaining biclusters from DNA microarray data.
More specifically, we shall propose an evolutionary algorithm, an esti-
mation of distribution algorithm, and several memetic algorithms that
differ in the local search used.

In order to analyze the effectiveness of the proposed algorithms, the
freely available yeast microarray dataset has been used. The results ob-
tained have been compared with the algorithm proposed by Cheng and
Church.

Both in terms of the computation time and the quality of the solu-
tions, the comparison reveals that a standard evolutionary algorithm and
the estimation of distribution algorithm offer an efficient alternative for
obtaining biclusters.

1 Introduction

One of the research fields which has aroused the greatest interest towards the
end of the 20th century and whose future is expected to be as equally promising
in the 21st century is the study of an organism’s genome or genomics.

By way of a brief history, it was Gregor Mendel who defined the gene concept
in his research as the element where information about hereditary characteristics
is to be found. At a later stage, Avery, McCleod and McCarty demonstrated that
an organism’s genetic information stems from a macromolecule called deoxyri-
bonucleic acid (DNA); it was later discovered that genetic information located
in specific areas of the DNA (the genes) enabled protein synthesis; this was fol-
lowed by the sequencing of the genome of certain organisms (including humans).
This and future consequences awakened a great deal of interest among scientists.

Since proteins are responsible for carrying out cellular functions, cellular func-
tioning therefore depends on the proteins synthesized by the genes, and is de-
termined by regulation of protein synthesis (gene expression) and control of its
activity.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 115–126, 2006.
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The process whereby the approximately 30,000 genes in the human genome
are expressed as proteins involves two steps: 1) the DNA sequence is transcribed
in messenger RNA sequences (mRNA); and 2) the mRNA sequences are in turn
translated into amino acid sequences which comprise the proteins.

Measuring the mRNA levels provides a detailed vision of the subset of genes
which are expressed in different types of cells under different conditions. Mea-
suring these levels of gene expression under different conditions helps explore the
following aspects (among others) in greater depth: a) The function of the genes,
b) How several genes interact and c) How different experimental treatments
affect cell function.

Recent advances in array-based methods enable expression levels of thou-
sands of genes to be measured simultaneously. These measurements are obtained
by quantizing the mRNA hybridization with a cDNA array, or oligonucleotide
probes fixed in a solid substance.

Technological advances in the development of cDNA arrays simultaneously
produce an amazingly large quantity of data relating to the transcription levels of
thousands of genes and in specific conditions. For knowledge extraction (function
of the genes, implication of certain genes in specific illnesses, etc.), researchers
use consolidated methodologies and specific ones are being developed. However,
although the results obtained so far are getting better, there is still room for
improvement.

2 Gene Expression Matrices

In a gene expression matrix, the rows represent genes and the columns represent
samples, and each cell contains a number which characterizes the expression level
of a particular gene in a particular sample.

Like most experimental techniques, microarrays measure the final objective
indirectly through another physical quantity, for example the relative abundance
of mRNA through the fluorescence intensity of the spots in an array.

Microarray-based techniques are still a long way from providing the exact
quantity of mRNA in a cell. The measurements are naturally relative: essen-
tially we can compare the expression levels of one gene in different samples or
different genes in one sample, so that it is necessary to apply a suitable nor-
malization to enable comparisons between data. Moreover, as the value of the
microarray-based gene expression can be considerably greater according to the
reliability and limitations of a particular microarray technique for certain types
of measurements, data normalization is a key issue to consider.

Once we have constructed the gene expression matrix, the second step is to
analyze it and attempt to obtain information from it.

In this work we shall use the biclustering concept introduced by Hartigan [6]
to capture the degree of similarity between a subset of elements within a subset
of attributes. Church applied this technique on DNA microarrays [3].

The advantage of biclustering as opposed to traditional clustering when ap-
plied to the field of microarrays lies in its ability to identify groups of genes
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that show similar activity patterns under a specific subset of the experimental
conditions. Therefore, biclustering approaches are the key technique to use when
one or more of the following situations applies [7]:

1. Only a small set of the genes participates in a cellular process of interest.
2. An interesting cellular process is active only in a subset of the conditions.
3. A single gene may participate in multiple pathways that may or not be

coactive under all conditions.

Besides, the biclusters should not be exclusive and/or exhaustive: A gene /
condition should be able to belong to more than one cluster or to no cluster at
all and be grouped using a subset of conditions/genes.

2.1 Biclustering Techniques

In this section, we briefly present some representative strategies in literature for
obtaining biclusters.

Cheng and Church in [3], proposed a set of heuristic algorithms whose func-
tion, beginning with the complete matrix, is based on the execution of iterative
stages: deletion and addition of rows in order to obtain biclusters.

The FLOC algorithm (Flexible Overlapped Clustering) [16], is a variant of
previous work, which performs an iterative process from an initial set of biclusters
in an attempt to improve their overall quality. In each iteration, a row or column
is added or deleted from each bicluster in order to produce the ideal set of
biclusters in terms of having the greatest similarity. The algorithm finishes when
there is no improvement in the overall quality of the previous set of biclusters.

The CLICK algorithm is based on the construction of bipartite graphs [13].
This algorithm uses the following three stages to obtain biclusters: a) Identify
regions which may contain biclusters; b) Identify the biclusters and c) Refine
biclusters to their minimum size.

The double conjugated clustering algorithm [2], where the search for biclusters
is performed on two different search spaces: one comprising the genes, and the
other the experiments. In this way, a clustering algorithm is applied to each
space independently. In order to join the clusters induced in both processes, two
functions are defined which enable one node from one space to be converted into
the conjugated node of the other space, and vice versa. The final adjustment
between both search spaces is obtained by means of a new clustering process to
correct the clusters conjugated in the other space.

The pCluster algorithm [14] uses a more general similarity type. Two objects
therefore belong to the same cluster if they display a similar pattern for a subset
of dimensions. This enables biclusters to be discovered with elements which com-
ply with the same pattern although they are not close to each other. Discovering
these biclusters is essential when revealing gene behavior.

Finally, the pMafia algorithm [10] consists of a parallel implementation of
a grid algorithm [12, 15] adapted for biclusters. Each dimension is divided into
small intervals of a fixed size called "windows". During the clustering process,
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when two adjacent windows are similar, they merge and a new one is created.
The algorithm uses the parallelism to reduce the computation time.

The last years have shown an increasing interest in this field. We suggest the
interested reader to check out the excellent survey by Madeira and Oliveira [7].

2.2 Measuring the Quality of a Bicluster

Below, we shall define the main concepts which form the basis of the residue-
based bicluster induction methods towards which we have directed our research.

Definition: Let D be a gene expression matrix, of the size n × m (Dn×m),
where the set of rows F = {G1, G2, ..., Gn} represents the genes and the set
of columns R = {E1, E2, ..., Em} represents the conditions or experiments.
Each element dij in the matrix matches the expression level (absolute or
relative) of gene Gi in experiment Ej .

Definition: Given a gene expression matrix Dn×m, a bicluster is a pair (I, J),
where I ⊆ {1, ..., n} is a subset of rows of F and J ⊆ {1, ..., m} is a sub-
set of columns of R, in which the genes Gi with i ∈ I behave in a similar way.

Definition: Given a bicluster (I, J), the residue (rij) of an element dij of the
bicluster is calculated according to Equation 1.

rij = dij − diJ − dIj + dIJ (1)

where

diJ =

∑
j∈Ji

dij

|Ji|
(2)

dIj =

∑
i∈Ij

dij

|Ij |
(3)

dIJ =

∑
i∈I,j∈J dij

|I| · |J | (4)

The residue is an indicator of the degree of coherence of an element in relation
to the remaining elements in the bicluster, additionally providing the bias of
the objects and the relevant attributes. Therefore, the smaller the value of the
residue, the greater the coherence.

Definition: Given a bicluster (I, J), the residue (rIJ ) of the bicluster can be
obtained from Equation 5, where rij is the residue of the element dij and
vIJ is the volume of the bicluster.

rIJ =

∑
i∈I,j∈J |rij |

vIJ
(5)

In order to determine the overall quality of a bicluster, its residue is defined
as the mean of the residues of all its elements. This mean could be arithmetic,
geometric, etc. Here, we applied the arithmetic mean.
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3 Proposed Population Based Techniques

In this section, we shall describe the particular characteristics of the genetic al-
gorithm (GA), the memetic algorithms (MA), and the estimation of distribution
algorithm (EDA) which have been implemented.

3.1 Genetic Algorithm

As the simplest population based technique, we shall implement a classical ge-
netic algorithm, with elitism. The main characteristics are described next.

Codification: The solution’s representation is as follows: given a data matrix
D of size n × m, the biclusters are encoded in a vector of size n + m, where
the first n positions represent the rows and the last m positions represent the
columns of the bicluster. Each position of the vector can have one of two values
(1 or 0) indicating whether the corresponding row or column is to be found (1)
or not (0) in the bicluster.

Selection: Baker’s stochastic universal sampling was chosen as the selection
method. This is a roulette wheel method with slots which are sized according to
the fitness of each chromosome.

Crossover: the uniform operator is used: given two parents, the offspring keep
the values common to both of them, while every other value is randomly taken
from any of the parents.

Mutation: a BitFlip mechanism was chosen: given an individual in the popu-
lation, one of its bit values is changed for its complementary one.

Fitness: is measured as the residue associated to the bicluster represented by a
given individual.

Restart: For the restart strategy, we have chosen to move the best individual
to the new population. In addition, 20 % of the new population will be the best
individual in the current mutated generation and the rest shall be generated
randomly. This restart shall be applied when 10 % of the generations to be
made have taken place with no change in the best element in the population.

3.2 Memetic Algorithms

Memetic algorithms have been studied from practical and theoretical points of
view since 15 years ago [5] and, while very complex strategies are being devel-
oped, in their simplest form they can still be considered as a genetic algorithm
hybridized with a local search operator.

Here, and departing from the genetic algorithm described before we imple-
mented several basic memetic algorithms using two different local search tech-
niques, namely:

– K-opt: the chromosomes can also be seen as a permutation of the rows
and columns of the bicluster so that we could apply k-opt movements on
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them, which in particular would consist in exchanging with each other k bits
of a given solution. If this exchange leads to an improvement, a new k-opt
movement would be undertaken and this process would be continued until
no improvement is made in certain number of trials.
We constructed 4 different memetic schemes for values of k ∈ {2, 3, 4, 5}.

– Taboo Search (TS): a very basic TS strategy is used. The neighborhood
is sampled using the mutation operator described for the GA.

3.3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) were described for the first time
by H. Muehlenbein and G. Paab [8]. In EDAs, the solution space is represented
by means of a probability distribution associated with the individuals selected
in each generation and not with a population. This probability distribution is
calculated from a set of individuals selected from the previous generation. Once
obtained, it is sampled in order to generate descendants so that neither the
mutation nor the crossover is applied in the EDAs.

The easiest way to calculate the probability distribution consists in consider-
ing all the variables of interest to be independent. So, the probability estimation
is converted into the product of the marginal probabilities of n variables as:

p(x) = Πn
i=1 p(xi) (6)

Different approximations to the methodology can be found, including: the uni-
variate marginal distribution algorithm [9], population-based incremental learn-
ing [1] and the compact genetic algorithm [4].

In this work we shall focus on the Univariate Marginal Distribution Algorithm
(UMDA, in what follows). UMDA maintains a population of N individuals, to
which a selection method is applied in order to create a new population. From
this new population, the frequencies of each gene are obtained and used to
generate a new population of N individuals. This mechanism for generating the
population is a type of crossover operator which replaces the traditional GA
crossover operator.

The process in detail is as follows:

1. Choose the M best individuals in the current population which are in the
set DSe

l−1.
2. Estimate the probability distribution of the current population using Eq. 7.
3. Generate a new population of N individuals from the probability distribution

which is stored in the set DSE

l .

The probability distribution is expressed as the product of invariable marginal
probabilities, which is estimated from the marginal frequencies:

pl(xi) =

∑M
j=1 δj(Xi = xi|DSe

l−1)
M

(7)
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where δj(Xi = xi|DSe

l−1) is 1 for the jth individual in M if the value of gene Xi

is equal to xi, in any other case it will be 0.
The outline of our UMDA-based algorithm can be seen in Algorithm 1.

Algorithm 1. Proposed Estimation of Distribution Algorithm
1. Generate initial population of size N
2. Do itersNow = 0
3. While itersNow < maxIters

(a) Choose N
2

individuals
(b) Estimate the probability distribution of the M individuals
(c) Sample the distribution in order to obtain new individuals
(d) Replace the old population with the new one

4. End While
5. Return best individual
6. End

4 Experiments

In order to evaluate and analyze the implemented algorithms, the yeast expres-
sion data set has been used, comprising 17 experiments (columns) on 2900 genes
(rows). This gene expression data set was chosen since it is one of the most used
in literature by the majority of experts in this field, thereby enabling our results
to be compared.

The results obtained with the proposed tools have been compared using the
algorithm proposed by Church in [3] as a reference algorithm.

Following an empirical study, the following parameters were fixed: a popula-
tion of 200 individuals and 200 generations. The crossover and mutation proba-
bilities were fixed at 0.8 and 0.6, respectively.

Each algorithm was executed 30 times, and the seed of the random number
generator was changed in each execution. At the end of each execution, the best
bicluster found was recorded.

4.1 Results

This section includes the results obtained by the proposed algorithms and the
reference algorithm. We also performed a random sampling of biclusters in order
to check the expected residue value for a random bicluster.

Table 1 shows the corresponding residues for the best and worst biclusters,
the mean and typical deviation on 30 executions, and also an indication of the
time taken for each execution. The average size of the resulting biclusters are
also displayed. Results for Reference algorithm were taken over 100 bicluster
while 104 random solutions were generated.
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Figure 1 shows the histograms of residue (a), rows (b) and columns (c) of
the best biclusters found by every algorithm. Results for k-opt for k ≥ 3 were
omitted for visualization purposes (although they were extremely similar to those
of 2-opt). These figures give us a global view of the whole set of best biclusters
available, enabling to quickly check out the region of the search space covered
by every strategy.

Several aspects can be highlighted from the table and the histograms. First
one is that the GA achieves very good residue values despite the simplicity of its
components’ definitions. On average, the biclusters generated are quite big (825
rows and 8 columns).

The joint use of GA with local search, leading to different memetic schemes,
does not seem to be useful. The simpler local search schemes (k-opt) increase
the residue while the average number of rows in the bicluster is significantly
reduced. In this case, and given the standard deviation values, it is clear that
there is a problem of convergence which is independent of the k value. Moreover,
no statistical differences were detected for different values of k.

As the complexity of the local search is increased, from 2-opt to TS, the
residue values also increase. This becomes clear if we look at the corresponding
histogram. In turn, the sizes of the biclusters obtained are slightly higher than
those obtained by k-opt.

The EDA strategy achieves the lowest average residue value, while the corre-
sponding bicluster sizes are about 200 rows and 8 columns. The average residue
for the reference algorithm is almost three times higher than that of EDA, while
the biclusters are smaller on average(although the number of columns is in-
creased from 8 to 12). The reference algorithm presents the highest variability
in residue, number of rows and columns (this is clearly seen in the histograms).

In order to determine what differences in terms of residue are significant, a
Kruskal-Wallis test was performed. The test reveals significant differences among
the median of the residues of the algorithms. Then, pairwise U Man-Witney non
parametrical test were performed and they confirm that the differences among
the algorithms were significant.

Another element to analyze is the computational time used. The faster al-
gorithm, and the best one on bicluster quality, is EDA, followed by the GA.
The addition of local search to GA increases the computational time consider-
ably while not having the same counterpart in biclusters quality. The Church’s
algorithm has quite acceptable running times.

In Fig. 2 we plot the volume of the best solutions (calculated as rows ×
columns) against residue for algorithms GA, EDA and Reference). This plot re-
veals several things. First one is the existence of many alternative solutions with
similar residue. See for example the vertical range for residue between 5-10. This
fact is most notably for GA and EDA. In second place we can see that the Refer-
ence algorithm is able to obtain very similar solutions in size while very different
in residue. Both facts clearly encourage the use of population based techniques
that allow to simply manage a set of solutions of diverse characteristics.
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Table 1. Statistical Values of residue and size of the biclusters found by every algo-
rithm. Time is in minutes per run.

Residue Average Size
Algorithm Avg (sd) Best Worst Rows (sd) Cols (sd) Time
GA 8.83 (0.81) 7.30 11.82 825.19 (488.32) 7.94 (4.11) 5
EDA 5.72 (1.45) 4.81 9.87 213.28 (109.74) 8.28 (0.70) 3
GA+2-opt 10.46 (0.04) 10.35 10.50 235.62 (9.95) 8.07 (0.26) 10
GA+3-opt 10.45 (0.05) 10.36 10.50 241.59 (10.14) 8.07 (0.26) 14
GA+4-opt 10.45 (0.05) 10.37 10.49 243.48 (11.71) 8.14 (0.35) 15
GA+5-opt 10.47 (0.04) 10.33 10.50 240.83 (15.67) 8.04 (0.21) 17
GA+TS 17.07 (1.94) 13.90 20.68 280.20 (10.99) 8.00 (0.12) 14
Church 14.19 (3.59) 7.77 29.78 166.70 (226.37) 12.09 (4.40) 5-10
Random 23.51 (2.60) 5.75 34.26 1407.30 (841.16) 9.48 (4.60) –

(a) (b)

(c)

Fig. 1. Histograms of residue (a) , row (b) and column’s (c) values of the best biclusters
obtained by every algorithm. Results for k-opt for k ≥ 3 were omitted. TS and 2-opt
stands for the memetic algorithm using such local search scheme.
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Fig. 2. Volume (row × column) vs Residue of the best biclusters found by EDA, GA
and Reference Algorithm

0 50 100 150 200
Iterations

0

5

10

15

20

25

A
ve

ra
ge

 R
es

id
ue

0 50 100 150 200
0

5

10

15

20

25

EDA
GA
GA + Tabu
GA + 2-opt
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Finally, Fig. 3 shows the evolution of the average residue over the time for
typical runs of EDA, GA, GA+TS and GA + 2-opt. The faster convergence is
achieved by EDA; given that no restart mechanism is included, EDA becomes
stagnated during the last half of the time available. The curves for GA and
GA+2-opt are pretty similar: both algorithms show a continuous but very slow
convergence. Also, GA+TS is the worst method: it seems like the algorithm
can not made the population to converge. We have two hypothesis for these
behaviors: first one there may be a problem in the local search parameters;
second one may be related with the fact that a small change in the genotype
can give raise to a big change in the phenotype and, when this fact occurs, the
use of local search is not recommendable. Both situations are under study but
we suspect the second reason may be more relevant.



Obtaining Biclusters in Microarrays with Population-Based Heuristics 125

5 Conclusions and Future Research

The population based techniques tested here showed as robust and efficient
strategies for coping with the obtention of biclustering in microarray matrices.

More specifically, the simple EDA implemented was able to obtain better
solutions than the other algorithms (including the reference one) while using
less computational time.

We are aware that the analysis of biclustering results is somehow controversial
because it is not clear what makes a bicluster “good” or not. In principle, it seems
desirable for the biclusters to be as large as possible and to maintain low residue
levels. This would indicate that a high number of genes have been identified with
a similar expression profile in a large number of conditions.

Also, Aguilar [11] proved that the mean squared residue is not precise enough,
from the mathematical point of view, to discover shifting and scaling patterns
simultaneously and he pointed out that the characterization of an objective
function H that allows to detect both patterns simultaneously would be very
beneficial. To the best of our knowledge, such function is still not available.

A byproduct of using these population-based techniques is that, at the end
of each run, we have available a set of high quality solutions. This is extremely
important because the ultimate goal is to obtain a set of genes “biologically”
related, so the optimization point is somehow secondary. In this context, the
use of more complex strategies like memetic algorithms without having problem
specific operators seems not to be recommendable.
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Abstract. We introduce a new heuristic for the multiple alignment of
a set of sequences. The heuristic is based on a set cover of the residue
alphabet of the sequences, and also on the determination of a significant
set of blocks comprising subsequences of the sequences to be aligned.
These blocks are obtained with the aid of a new data structure, called
a suffix-set tree, which is constructed from the input sequences with
the guidance of the residue-alphabet set cover and generalizes the well-
known suffix tree of the sequence set. We provide performance results on
selected BAliBASE amino-acid sequences and compare them with those
yielded by some prominent approaches.

Keywords: Multiple sequence alignment; Set covers.

1 Introduction

The multiple alignment of biological sequences is one of the most important
problems in computational molecular biology. It has applications in many differ-
ent important domains, such as the analysis of protein structure and function,
the detection of conserved patterns and domain organization of a protein family,
evolutionary studies based on phylogenetic analysis, and database searching for
new members of a protein family.

The problem of multiple sequence alignment can be stated in the following
manner. Let s1, . . . , sk, with k ≥ 2, be sequences of lengths n1, . . . , nk, respec-
tively, over a residue alphabet R. An alignment A of these sequences is a k × l
matrix such that A[i, j], for 1 ≤ i ≤ k and 1 ≤ j ≤ l, is either a character in R
or the special character that we call a gap character. In A, fixing i and varying j
from 1 through l must reproduce si exactly if gap characters are skipped. Fixing
j, in turn, yields k characters that are said to be aligned in A, of which at least
one must be in R. Note, then, that max{n1, . . . , nk} ≤ l ≤ n1 + · · ·+ nk.

The goal of the multiple sequence alignment problem is to determine the most
biologically significant alignment of s1, . . . , sk. Finding this alignment requires an
objective function to associate a score with each possible alignment, and in this
� Corresponding author.
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case the multiple sequence alignment problem is to find an alignment, known as
the optimal alignment, that maximizes the objective function. There exist many
different objective functions that can be used, but none of them guarantees
that the corresponding optimal alignment is the most biologically significant
alignment of the sequences. It follows from the definition of an alignment that
the number of different alignments of a given set of sequences is exponentially
large; in fact, the multiple sequence alignment problem is known to be at least
NP-hard [1]. Feasible approaches to solve the problem are then all of a heuristic
nature.

In this paper we describe a new heuristic that is based on set covers of the
residue alphabet R. Such a set cover is a collection of subsets of R whose union
yields R precisely. The idea behind the use of a set cover is that each subset can
be made to contain all the residues from R that possess certain structural or
physicochemical properties in common. The most familiar scenario for the use of
set covers is the case of R as a set of amino acids, so henceforth we concentrate
mainly on multiple protein alignments. Set covers of an amino-acid alphabet
have been studied extensively (e.g., [2]).

Set covers lie at the heart of the new heuristic. In essence, what they do is
to allow the introduction of a new data structure, called a suffix-set tree, that
generalizes the well-known suffix tree of a set of sequences and can be used in
the determination of subsequence blocks that ultimately give rise to the desired
alignment. In general terms, this is the same approach as some others in the
literature, but our use of set covers as its basis provides a fundamentally more
direct link between relevant properties shared by groups of residues and the
resulting alignment.

The following is how the remainder of the paper is organized. In Section 2 we
introduce our new data structure and in Section 3 describe our new approach to
multiple sequence alignment. Then we proceed in Section 4 to the presentation
of computational results of the new method as compared to some of its most
prominent competitors, and finalize with conclusions in Section 5.

2 Suffix-Set Trees

In this section we describe our new data structure. It is a generalization of the
well-known suffix tree of a set of sequences, which is one of the most important
data structures in the field of pattern recognition. Such a suffix tree has O(n1 +
· · ·+ nk) nodes and can be constructed in O(n1 + · · ·+ nk) time [3].

Suffix trees can be applied to many problems, but their principal application
in computational molecular biology is to assist the algorithms that try to obtain
blocks comprising biologically significant subsequences of a set of sequences,
known as the motifs of that set. These motifs, in the case of proteins, encode
structural or functional similarities; in the case of nucleic acids, they encode
mainly the promoter regions.

Let C = {C1, . . . , Cp} be a set cover of R, and let ΣC = {α1, . . . , αp, α$} be
a new alphabet having a character αi for each Ci ∈ C and a further character
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α$ possessing a function similar to the terminator used in suffix trees. Like the
suffix tree, our new data structure is also a rooted tree; it has edges labeled
by sequences of characters from ΣC and nodes labeled by indices into some of
s1, . . . , sk to mark suffix beginnings. We call it a suffix-set tree and it has the
following properties:

– The first character of the label on an edge connecting a node to one of its
children is a different character of ΣC for each child.

– Each nonempty suffix of every one of the k sequences is associated with at
least one leaf of the tree; conversely, each leaf of the tree is associated with
at least one nonempty suffix of some sequence (if more that one, then all
suffixes associated with the leaf have the same length). Thus, each leaf is
labeled by a set like {(i1, j1), . . . , (iq, jq)} for some q ≥ 1, where (ia, ja),
for 1 ≤ a ≤ q, 1 ≤ ia ≤ k, and 1 ≤ ja ≤ nia , indicates that the suffix
sia [ja . . nia ] of sia is associated with the leaf.

– Let v be a node of the tree. The label of v is the set {(i1, j1), . . . , (iq, jq)} that
represents the q suffixes collectively associated with the leaves of the subtree
rooted at v. If αc1 · · ·αcr is the concatenation of the labels on the path from
the root of the tree to v, excluding if necessary the terminal character α$,
then αc1 · · ·αcr is a common representation of all prefixes of length r of the
suffixes associated with the leaves of the subtree rooted at v. If sia [ja . . nia ]
is one of these suffixes, then for 1 ≤ b ≤ r we have sia [ja + b− 1] ∈ Ccb

(that
is, the bth character of the suffix is a member of Ccb

).

Note that, when C is a partition of R into singletons, the suffix-set tree be-
comes the familiar suffix tree of s1, . . . , sk. In order to see this, it suffices to
identify for each character in each sequence the member Ci of C to which it be-
longs, and then substitute αi for that character. We show in Figure 1 a suffix-set
tree for R = {A, C, G, T}, C1 = {A, G, T }, C2 = {C, T}, s1 = AGCTAG, and
s2 = GGGATCGA.

In the strategy to be described in Section 3 we do not construct the suffix-set
tree to completion, but rather only the portion of the tree that is needed to
represent all suffix prefixes of length at most M (a fixed parameter). Clearly, the
number of nodes in the tree is O(pM ), therefore polynomial in p given the fixed
parameter M . It is relatively simple to see that the tree can be constructed in
O
(
pM+1(n1 + · · ·+ nk) + pM+2|R|2

)
time.

3 Alignments from Set Covers

For 2 ≤ k′ ≤ k, let t1, . . . , tk′ be subsequences of s1, . . . , sk such that each ta
is a subsequence of a different sia , with 1 ≤ a ≤ k′ and 1 ≤ ia ≤ k. We call
{t1, . . . , tk′} a block. If A′ is an alignment of t1, . . . , tk′ having l′ columns, then
the score of A′, denoted by S(A′), is a function, to be introduced shortly, of

T (A′) =
l′∑

c=1

k′−1∑
a=1

k′∑
b=a+1

Q (pc
a, pc

b,A′[a, c],A′[b, c]) , (1)



130 A.H.L. Porto and V.C. Barbosa

where pc
a is the position in sia of the rightmost character of ta whose column

in A′ is no greater than c (pc
a = 0, if none exists), and similarly for pc

b. In
(1), Q (pc

a, pc
b,A′[a, c],A′[b, c]) is the contribution to T (A′) of aligning the two

characters A′[a, c] and A′[b, c] given pc
a and pc

b. If both A′[a, c] and A′[b, c] are
gap characters, then we let Q (pc

a, pc
b,A′[a, c],A′[b, c]) = 0. Otherwise, the value

of Q (pc
a, pc

b,A′[a, c],A′[b, c]) is determined through a sequence of two steps.
The first step is the determination of the combined number of optimal global

and local pairwise alignments of sia and sib
that go through the pc

a,pc
b cell of the

dynamic-programming matrix. In what follows, we split this number into three
others, and let each of U1(pc

a, pc
b), . . . , U3(pc

a, pc
b) be either a linearly normalized

version of the corresponding number within the interval [1, L] for L a parameter,
if that number is strictly positive, or 0, otherwise. We use U1(pc

a, pc
b) in reference

to the case of optimal alignments through the pc
a,pc

b cell that align sia [pc
a] to

sib
[pc

b], U2(pc
a, pc

b) for alignments of sia [pc
a] to a gap character, and U3(pc

a, pc
b) for

alignments of sib
[pc

b] to a gap character.
The second step is the determination of Q (pc

a, pc
b,A′[a, c],A′[b, c]) itself from

the quantities U1(pc
a, pc

b), . . . , U3(pc
a, pc

b). If U1(pc
a, pc

b) = · · · = U3(pc
a, pc

b) = 0 (no
optimal alignments through the pc

a,pc
b cell), then Q (pc

a, pc
b,A′[a, c],A′[b, c]) = −L.

Otherwise, we have the following cases to consider, where z ∈ {1, 2, 3} selects
among U1, U2, and U3 depending, as explained above, on A′[a, c] and A′[b, c]:

– If Uz(pc
a, pc

b) > 0, then Q (pc
a, pc

b,A′[a, c],A′[b, c]) = Uz(pc
a, pc

b).
– If Uz(pc

a, pc
b) = 0, then

Q (pc
a, pc

b,A′[a, c],A′[b, c]) = −min+ {U1(pc
a, pc

b), U2(pc
a, pc

b), U3(pc
a, pc

b)} ,

where we use min+ to denote the minimum of the strictly positive arguments
only.

What this second step is doing is to favor the alignment of A′[a, c] to A′[b, c] in
proportion to its popularity in optimal pairwise alignments of sia and sib

, and
similarly to penalize it—heavily when cell pc

a, pc
b is part of no optimal pairwise

alignment, less so if it is but not aligning A′[a, c] to A′[b, c].
Finally, the function that yields S(A′) from T (A′) is designed to differentiate

two alignments of different blocks for which T might yield the same value. We do
so by subtracting off T (A′) the fraction of |T (A′)| obtained from the average of
two numbers in [0, 1]. The first number is 1−k′/k and seeks to privilege (decrease
T by a smaller value) the block with the greater number of subsequences. The
second number is a function of the so-called identity score of an alignment,
that is, the fraction of the number of aligned residue pairs that corresponds to
identical residues. If we denote the identity score of A′ by I(A′), then the second
number is 1− I(A′) and aims at privileging alignments whose identity scores are
comparatively greater. We then have

S(A′) = T (A′)−
(

2− k′

k
− I(A′)

)
|T (A′)|

2
. (2)

The remainder of this section is devoted to describing our heuristic to obtain
a k × l alignment A of the sequences s1, . . . , sk, given the set cover C of the
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Fig. 1. An example suffix-set tree, node labels shown only for the leaves. Each node
label is expressed more compactly than in the text; for example, “I2,II4” stands for
the label {(1, 2), (2, 4)}.

residue alphabet R. The suffix-set tree T of s1, . . . , sk plays a central role. We
first describe how to obtain a suitable set B of blocks from s1, . . . , sk, and then
how to obtain A from B.

3.1 Blocks from Set Covers

We start by creating a set B of blocks that is initialized to ∅ and is augmented
by the inclusion of new blocks as they are generated. The size of B is at all times
bounded by yet another parameter, denoted by N .

Every node v of T that is not the root may contribute blocks to B. If
nv ≤ k is the number of distinct sequences with suffixes associated with v
and lv ≤ M is the common prefix length of all those suffixes, then each block
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contributed by v is formed exclusively by some of the length-lv prefixes as its
subsequences, totaling at least two and including at most one from each of the
nv sequences.

Let AB denote an alignment of block B’s subsequences. Block formation for
node v proceeds as follows. First the nv sequences are sorted in nonincreasing
order of their numbers of suffixes associated with v and a new block is created
for each prefix of the first-ranking sequence. An attempt is then made to add
more prefixes to each such block B by visiting the remaining nv − 1 sequences
in order and selecting for each one the prefix, if any, that increases S(AB) the
most when AB acquires another row by the addition of that prefix. It is worthy
of mention that, as prefixes coalesce into the final form of B, AB never contains
any gap characters, in which case Q is seen to revert to a simpler form. But
notice that the functional form in (2) continues to be effective, not only because
of the identity scores, but also because the expansion of B involves comparing
alignments that may differ in numbers of rows (a unit difference, to be specific).
At the end, all blocks still having one single sequence are discarded.

Once v’s contribution to B is available, it is sorted and then merged into B (we
may think of B as being internally organized as a sorted list). Both operations
seek to retain inside B those blocks whose alignments’ scores are greater. If
needed, additional tie-breaking criteria are employed, including those that are
already reflected in (2): greater numbers of subsequences and identity scores are
preferred.

Now say that two blocks B and B′ are such that B is contained in B′ if every
subsequence of B is itself a subsequence of the corresponding subsequence of B′.
Once every non-root node of T has been considered for contributing to B, the
resulting B is further pruned by the removal of every block that is contained in
another of at least the same score. After this, B undergoes another fix, which is
to extend its blocks by the addition of new subsequences so that at the end they
all contain exactly one subsequence from each of s1, . . . , sk.

The following is how we achieve this extension for block B ∈ B. We consider
the unrepresented sequences one by one in nonincreasing order of their lengths.
Then we use a semi-global algorithm to align the current AB to a subsequence of
the unrepresented sequence under consideration. This algorithm employs the Q
function in place of a substitution matrix and gap costs. As B is thus extended,
its alignment AB changes as well, and may now acquire gap characters for the
first time.

The final step in this setup process of B is to once again examine all its
blocks and remove every block B such that either S(AB) < 0 or AB is contained
in AB′ for some other B′ ∈ B for which S(AB) ≤ S(AB′). The containment
of one alignment in another is a notion completely analogous to that of block
containment introduced above.

3.2 Alignments from Blocks

The B that we now have contains k-subsequence blocks exclusively, all having
nonnegative-score alignments that are not contained in one another (except when
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the container has a lower score). In this new phase of the heuristic we build a
weighted acyclic directed graph D from B. Manipulating this graph appropriately
eventually yields the desired alignment A of s1, . . . , sk.

The node set of D is B ∪ {s, t}, where s and t are two special nodes. In D,
an edge exists directed from s to each B ∈ B, and also from each B ∈ B to
t. No other edges are incident to s or t, which are then a source and a sink
in D, respectively (i.e., s only has outgoing edges, t only incoming edges). The
additional edges of D are deployed among the members of B in the following
manner. For B, B′ ∈ B, an edge exists directed from B to B′ if every subsequence
of B starts to the left of the corresponding subsequence of B′ in the appropriate
sequence of s1, . . . , sk. In addition, if B and B′ overlap, then AB and AB′ are
also required to be identical in all the overlapping columns. Edges deployed in
this manner lead, clearly, to an acyclic directed graph.

In D, both edges and nodes have weights. Edge weights depend on how the
blocks intersect the sequences s1, . . . , sk. Specifically, if an edge exists from B
to B′ and the two blocks are nonoverlapping, then its weight is −x, where x
is the standard deviation of the intervening sequence-segment lengths. Edges
outgoing from s or incoming to t are weighted in the trivially analogous
manner.

Weights for edges between overlapping blocks and node weights are computed
similarly to each other (except for s and t, whose weights are equal to 0). If x
is the number of residues in node B, then its weight is x/

√
k. In the case of

an edge between the overlapping B and B′, we let x be the number of common
residues and set the edge’s weight to −x/

√
k. We remark, finally, that this weight-

assignment methodology is very similar to the one in [4], the main difference
being that we count residues instead of alignment sizes.

Having built D, we are then two further steps away from the final alignment
A. The first step is to find an s-to-t directed path in D whose weighted length
is greatest. Since D is acyclic, this can be achieved efficiently. Every block B
appearing on this optimal path immediately contributes AB as part of A, but
there still remain unaligned sequence segments.

The second step and final action of the heuristic is then to complete the miss-
ing positions of A. We describe what is done between nonoverlapping successive
blocks, but clearly the same has to be applied to the left of the first block on
the optimal path and to the right of the last block. Let B and B′ be nonover-
lapping blocks appearing in succession on the optimal path. Let t1, . . . , tk be
the intervening subsequences of s1, . . . , sk that are still unaligned. We select the
largest of t1, . . . , tk and use it to initialize a new alignment along with as many
gap characters as needed for every one of t1, . . . , tk that is empty. We then visit
each of the remaining subsequences in nonincreasing length order and align it
to the current, partially built new alignment. The method used here is totally
analogous to the one used in Section 3.1 for providing every block with exactly k
subsequences, the only difference being that a global (as opposed to semi-global)
procedure is used.
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4 Computational Results

We have conducted extensive experimentation in order to evaluate the perfor-
mance of the heuristic of Section 3. Our strategy has been to employ the BAl-
iBASE suite [5] as the source of sequence sets, and to seek comparative results
vis-à-vis some prominent approaches, namely CLUSTAL W [6], PRRN [7], DI-
ALIGN [8, 9], T-COFFEE [10], and MAFFT [11]. The BAliBASE suite comprises
167 families of amino-acid sequences divided into eight reference sets, each of
which especially constructed to emphasize some of the most common scenarios
related to multiple sequence alignment. The suite contains a reference alignment
for each of its families, in most cases along with motif annotations given the
reference alignment. We have concentrated our experiments on the families for
which such annotations are available, namely the first five reference sets.

The metrics we use to evaluate a certain alignment A are motif-constrained
versions of those originally introduced along with the BAliBASE suite: the sum-
of-pairs score (SPS), denoted by SPS(A), and the column score (CS), denoted
by CS(A). If we let pabc be a 0-1 variable such that pabc = 1 if and only if the
residues A[a, c] and A[b, c] share the same column in the BAliBASE reference
alignment for the same sequences, then the version of SPS(A) we use is the
average value of pabc over the residue pairs that are annotated as belonging
to motifs in the reference alignment. Similarly, if Cc is the 0-1 variable having
value 1 if and only if all the residues in column c of A also share a column in
the reference alignment, then we use CS(A) as the average value of Cc over the
columns of motifs in the reference alignment.

All the experiments with the heuristic of Section 3 were carried out with
M = 1, . . . , 4, L = 20, and N = 200. Combining the numbers of optimal global
and local pairwise alignments as indicated in the introduction to Section 3 was
achieved via convex combinations with proportions that varied from one BAl-
iBASE reference set to another.1 The set covers we used are the one introduced
in [12], here denoted by I, and the one from [13], here denoted by S. In both
cases, R is the set of amino acids. We used the substitution matrices BLOSUM62
[14], PAM250 [15], and VTML160 [16], together with gap costs as given in [17] for
BLOSUM62 and PAM250 or as in [18] for VTML160.

We have found M = 2 to be the best choice nearly always, and found also
that the VTML160-S pair for the combination of a substitution matrix and a set
cover appears as a first choice most often, with the only noteworthy exception
of Reference Set 4, in which case it seems best to use the pair BLOSUM62-I. The
results we present next refer to comparing the heuristic of Section 3 given these
choices to the five competing approaches mentioned earlier. The approaches
that predate the introduction of the BAliBASE suite were run with default
parameters (this is the case of CLUSTAL W, PRRN, and DIALIGN), while
the others, having appeared with computational results on the BAliBASE suite

1 Following initial tuning experiments, weights for the numbers of optimal global pair-
wise alignments were as follows: 0.10 (Reference Set 1.1), 0.20 (Set 1.2), 0.05 (Set
1.3), 0.55 (Set 2), 0.50 (Set 3), 1.00 (Set 4), and 0.15 (Set 5).
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Fig. 2. Average scores for our best choices and the five competing approaches

when first published, were run with their best parameter choices (this applies to
T-COFFEE and to MAFFT).

Comparative results are given in Figure 2, where we show average SPS and
CS values inside each of the BAliBASE reference sets we considered. It is clear
from Figure 2 that no absolute best can be identified throughout all the reference
sets. As we examine the reference sets individually, though, we see that at least
one of the two substitution-matrix, set-cover pairs used with our heuristic is
in general competitive with the best contender. Noteworthy situations are the
superior performance of our heuristic on Reference Set 5, and also its weak
performance on Reference Set 3. As for the corresponding running times, our
current implementation performs competitively as well when compared to the
others: on an Intel Pentium 4 processor running at 1.8 GHz with 1 Gbytes of
main memory, ours has taken from 1843.74 to 2010.81 seconds to complete, so
it is slower than the fastest performer (MAFFT, 95.59 seconds) but faster than
the slowest one (T-COFFEE, 4922.50 seconds).

5 Concluding Remarks

Many of our heuristic’s details can still undergo improvements that go beyond
the mere search for a more efficient implementation. One possibility is clearly
the use of potentially better pairwise alignments, both global and local, when
they are needed as described in Section 3. This possibility is already exploited by
T-COFFEE, which not only employs a position-specific score matrix, but also
uses CLUSTAL W to obtain global pairwise alignments, among other things.
We also see improvement possibilities in the block- and alignment-extension
methods described at the ends of Sections 3.1 and 3.2, respectively. In these two
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occasions, sequences or subsequences are considered in nonincreasing order of
their lengths, which of course is an approach simple to the point of in no way
taking into account the biological significance of the sequences or subsequences.

It is also apparent from our presentation of the heuristic in Section 3 that sev-
eral options exist for many of its building parts. This refers not only to choosing
parameter values but also to selecting auxiliary algorithms at several points.
Whether better choices exist in terms of yielding even more significant align-
ments, and doing it perhaps faster as well, remains to be verified.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, and a FAPERJ
BBP grant.

References

1. Manthey, B.: Non-approximability of weighted multiple sequence alignment. The-
oretical Computer Science 296 (2003) 179–192

2. Li, T.P., Fan, K., Wang, J., Wang, W.: Reduction of protein sequence complexity
by residue grouping. Protein Engineering 16 (2003) 323–330

3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge, UK (1997)

4. Zhao, P., Jiang, T.: A heuristic algorithm for multiple sequence alignment based
on blocks. Journal of Combinatorial Optimization 5 (2001) 95–115

5. Bahr, A., Thompson, J.D., Thierry, J.C., Poch, O.: BAliBASE (Benchmark Align-
ment dataBASE): enhancements for repeats, transmembrane sequences and circu-
lar permutations. Nucleic Acids Research 29 (2001) 323–326

6. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties, and weight matrix choice. Nucleic Acids Research
22 (1994) 4673–4680

7. Gotoh, O.: Significant improvement in accuracy of multiple protein sequence align-
ments by iterative refinement as assessed by reference to structural alignments.
Journal of Molecular Biology 264 (1996) 823–838

8. Morgenstern, B., Frech, K., Dress, A., Werner, T.: DIALIGN: finding local simi-
larities by multiple sequence alignment. Bioinformatics 14 (1998) 290–294

9. Morgenstern, B.: DIALIGN 2: improvement of the segment-to-segment approach
to multiple sequence alignment. Bioinformatics 15 (1999) 211–218

10. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology 302 (2000)
205–217

11. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Research 30 (2002) 3059–3066

12. Ioerger, T.R.: The context-dependence of amino acid properties. In: Proceedings
of the Fifth International Conference on Intelligent Systems for Molecular Biology.
(1997) 157–166



Multiple Sequence Alignment Based on Set Covers 137

13. Smith, R.F., Smith, T.F.: Automatic generation of primary sequence patterns from
sets of related protein sequences. Proceedings of the National Academy of Sciences
USA 87 (1990) 118–122

14. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences USA 89 (1992) 10915–10919

15. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in
proteins. In Dayhoff, M.O., ed.: Atlas of Protein Sequence and Structure. Volume 5,
supplement 3. National Biomedical Research Foundation, Washington, DC (1978)
345–352

16. Müller, T., Spang, R., Vingron, M.: Estimating amino acid substitution mod-
els: a comparison of Dayhoff’s estimator, the resolvent approach and a maximum
likelihood method. Molecular Biology and Evolution 19 (2002) 8–13

17. Vogt, G., Etzold, T., Argos, P.: An assessment of amino acid exchange matrices
in aligning protein sequences: the twilight zone revisited. Journal of Molecular
Biology 249 (1995) 816–831

18. Green, R.E., Brenner, S.E.: Bootstrapping and normalization for enhanced eval-
uations of pairwise sequence comparison. Proceedings of the IEEE 90 (2002)
1834–1847



A Methodology for Determining Amino-Acid

Substitution Matrices from Set Covers

Alexandre H.L. Porto and Valmir C. Barbosa�

Universidade Federal do Rio de Janeiro,
Programa de Engenharia de Sistemas e Computação, COPPE,

Caixa Postal 68511, Rio de Janeiro - RJ 21941-972, Brazil
valmir@cos.ufrj.br

Abstract. We introduce a new methodology for the determination of
amino-acid substitution matrices for use in the alignment of proteins.
The new methodology is based on a pre-existing set cover on the set of
residues and on the undirected graph that describes residue exchange-
ability given the set cover. For fixed functional forms indicating how
to obtain edge weights from the set cover and, after that, substitution-
matrix elements from weighted distances on the graph, the resulting sub-
stitution matrix can be checked for performance against some known set
of reference alignments and for given gap costs. Finding the appropriate
functional forms and gap costs can then be formulated as an optimiza-
tion problem that seeks to maximize the performance of the substitution
matrix on the reference alignment set. We give computational results on
the BAliBASE suite using a genetic algorithm for optimization. Initial
results indicate that it is possible to obtain substitution matrices whose
performance is either comparable to or surpasses that of several others.

Keywords: Sequence alignment; Substitution matrix; Residue set cover.

1 Introduction

One of the most central problems of computational molecular biology is to align
two sequences of residues, a residue being generically understood as a nucleotide
or an amino acid, depending respectively on whether the sequences under con-
sideration are nucleic acids or proteins. This problem lies at the heart of several
higher-level applications, such as heuristically searching sequence bases or align-
ing a larger number of sequences concomitantly for the identification of special
common substructures (the so-called motifs, cf. [1]) that encode structural or
functional similarities of the sequences or yet the sequences’ promoter regions in
the case of nucleic acids, for example.

Finding the best alignment between two sequences is based on maximizing
a scoring function that quantifies the overall similarity between the sequences.
Normally this similarity function has two main components. The first one is
a symmetric matrix, known as the substitution matrix for the set of residues
� Corresponding author.
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under consideration, which gives the contribution the function is to incur when
two residues are aligned to each other. The second component represents the cost
of aligning a residue in a sequence to a gap in the other, and gives the negative
contribution to be incurred by the similarity function when this happens. There is
no consensually accepted, general-purpose criterion for selecting a substitution
matrix or a gap-cost function. Common criteria here include those that stem
from structural or physicochemical characteristics of the residues and those that
somehow seek to reproduce well-known alignments as faithfully as possible [2].

We then see that, even though an optimal alignment between two sequences
is algorithmically well understood and amenable to being computed efficiently,
the inherent difficulty of selecting appropriate scoring parameters suggests that
the problem is still challenging in a number of ways. This is especially true of the
case of protein alignment, owing primarily to the fact that the set of residues is
significantly larger than in the case of nucleic acids, and also to the existence of
a multitude of criteria whereby amino acids can be structurally or functionally
exchanged by one another.

For a given structural or physicochemical property (or set of properties) of
amino acids, this exchangeability may be expressed by a set cover of the set
of all amino acids, that is, by a collection of subsets of that set that includes
every amino acid in at least one subset. Each of these subsets represents the
possibility of exchanging any of its amino acids by any other. Set covers in this
context have been studied extensively [3] and constitute our departing point in
this paper. As we describe in Section 2, we introduce a new methodology for
discovering both an appropriate substitution matrix and gap-cost parameters
that starts by considering an amino-acid set cover. It then builds a graph from
the set cover and sets up an optimization problem whose solution is the desired
substitution matrix and gap costs.

The resulting optimization problem is defined on a set of target sequence
pairs, preferably one that embodies as great a variety of situations as possible.
The target pairs are assumed to have known alignments, so the optimal solution
to the problem of finding parameters comprises the substitution matrix and the
gap costs whose use in a predefined alignment algorithm yields alignments of the
target pairs that in some sense come nearest the known alignments of the same
pairs. Our optimization problem is set up as a problem of combinatorial search,
being therefore highly unstructured and devoid of any facilitating differentiabil-
ity properties. Reasonable ways to approach its solution are then all heuristic in
nature. In Section 3, we present the results of extensive computational experi-
ments that employ an evolutionary algorithm and targets the BAliBASE pairs
of amino-acid sequences [4].

Notice, in the context of the methodology categorization we mentioned earlier
in passing, that our new methodology is of a dual character: it both relies on
structural and physicochemical similarities among amino acids and depends on
a given set of aligned sequences in order to arrive at a substitution matrix and
gap costs.

We close in Section 4 with conclusions.
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2 The Methodology

We describe our methodology for sequences on a generic set R of residues and
only specialize it to the case of proteins in Section 3. Given two residue sequences
X and Y of lengths x and y, respectively, a global alignment of X and Y can
be expressed by the 2× z matrix A having the property that its first line, when
read from left to right, is X possibly augmented by interspersed gaps, the same
holding for the second line and Y , so long as no column of A comprises gaps only.
It follows that max{x, y} ≤ z ≤ x + y. In the case of a local alignment, that is,
an alignment of a subsequence of X and another of Y , this matrix representation
remains essentially unchanged, provided of course that x and y are set to indicate
the sizes of the two subsequences.

For a given substitution matrix S and a pair (h, g) of gap costs,1 the similarity
score of alignment A, denoted by Fh,g

S (A), is given by

Fh,g
S (A) =

z∑
j=1

fh,g
S (A(1, j), A(2, j)), (1)

where fh,g
S (A(1, j), A(2, j)) gives the contribution of aligning A(1, j) to A(2, j)

as either S(A(1, j), A(2, j)), if neither A(1, j) nor A(2, j) is a gap; or −(h + g),
if either A(1, j) or A(2, j) is the first gap in a contiguous group of gaps; or yet
−g, if either A(1, j) or A(2, j) is the kth gap in a contiguous group of gaps for
k > 1. An optimal global alignment of X and Y is one that maximizes the sim-
ilarity score of (1) over all possible global alignments of the two sequences. An
optimal local alignment of X and Y , in turn, is the optimal global alignment of
the subsequences of X and Y for which the similarity score is maximum over all
pairs of subsequences of the two sequences. The set of all optimal alignments of
X and Y may be exponentially large in x and y, but it does nonetheless admit
a concise representation as a matrix or directed graph that can be computed ef-
ficiently by well-known dynamic programming techniques, regardless of whether
a global alignment of the two sequences is desired or a local one. We refer to this
representation as A∗

X,Y .
Our strategy for the determination of a suitable substitution matrix starts

with a set cover C = {C1, . . . , Cc} of the residue set R, that is, C is such that
C1 ∪ · · · ∪ Cc = R. Next we define G to be an undirected graph of node set R
having an edge between two nodes (residues) u and v if and only if at least one
of C1, . . . , Cc contains both u and v. Graph G provides a natural association
between how exchangeable a node is by another and the distance between them
in the graph. Intuitively, the closer two nodes are to each other in G the more
exchangeable they are and we expect an alignment of the two to contribute rel-
atively more positively to the overall similarity score. Quantifying this intuition
involves crucial decisions, so we approach the problem in two careful steps, each
1 For k > 0, we assume the customary affine function p(k) = h + gk with h, g > 0 to

express the cost of aligning the kth gap of a contiguous group of gaps in a line of A
to a residue in the other line as p(k) − p(k − 1), assuming p(0) = 0 [5].
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leaving considerable room for flexibility. The first step consists of turning G into
a weighted graph, that is, assigning nonnegative weights to its edges, and then
computing the weighted distance between all pairs of nodes. The second step
addresses the turning of these weighted distances into elements of a substitution
matrix so that larger distances signify ever more restricted exchangeability.

Let us begin with the first step. For (u, v) an edge of G, let w(u, v) denote its
weight. We define the value of w(u, v) on the premise that, if the exchangeability
of u and v comes from their concomitant membership in a large set of C, then it
should eventually result in a smaller contribution to the overall similarity score
than if they were members of a smaller set. In other words, the former situation
bespeaks an intuitive “weakness” of the property that makes the two residues
exchangeable. In broad terms, then, we should let w(u, v) be determined by the
smallest of the sets of C to which both u and v belong, and should also let it be
a nondecreasing function of the size of this smallest set.

Let c− be the size of the smallest set of C and c+ the size of its largest set. Let
c−u,v be the size of the smallest set of C of which both u and v are members. We
consider two functional forms according to which w(u, v) may depend on c−u,v as
a nondecreasing function. Both forms force w(u, v) to be constrained within the
interval [w−, w+] with w− ≥ 0. For λ ≥ 1, the first form is the convex function

w1(u, v) = w− + (w+ − w−)
(

c−u,v − c−

c+ − c−

)λ

, (2)

while the second is the concave function

w2(u, v) = w+ − (w+ − w−)
(

c+ − c−u,v

c+ − c−

)λ

. (3)

Having established weights for all the edges of G, let du,v denote the weighted
distance between nodes u and v. Clearly, du,u = 0 and, if no path exists in
G between u and v (i.e., G is not connected and the two nodes belong to two
different connected components), then du,v = ∞.

Carrying out the second step, which is obtaining the elements of the substitu-
tion matrix from the weighted distances on G, involves difficult choices as well.
While, intuitively, it is clear that residues separated by larger weighted distances
in G are to be less exchangeable for each other than residues that are closer to
each other (in weighted terms) in G, the functional form that the transforma-
tion of weighted distances into substitution-matrix elements is to take is once
again subject to somewhat arbitrary decisions. What we do is to set S(u, v) = 0 if
du,v = ∞, and to consider two candidate functional forms for the transformation
in the case of finite distances.

Let us initially set [S−, S+] as the interval within which each element of the
substitution matrix S is to be constrained (we assume S− > 0 for consistency
with the substitution-matrix element that goes with an infinite distance, whose
value we have just set to 0). Let us also denote by d+ the largest (finite) weighted
distance occurring in G for the choice of weights at hand. We then consider two
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functional forms for expressing the dependency of S(u, v), as a nonincreasing
function, upon a finite du,v. For μ ≥ 1, we once again consider a convex function,

S1(u, v) = S− + (S+ − S−)
(

d+ − du,v

d+

)μ

, (4)

and a concave one,

S2(u, v) = S+ − (S+ − S−)
(

du,v

d+

)μ

. (5)

Once we decide on one of the two functional forms (2) or (3), and similarly
on one of (4) or (5), and also choose values for w−, w+, λ, S−, S+, and μ,
then the substitution matrix S as obtained from C is well-defined and, together
with the gap-cost parameters h and g, can be used to find the representation
A∗

X,Y of the set of all optimal (global or local) alignments between the two
sequences X and Y . The quality of our choices regarding functional forms and
parameters, and hence the quality of the resulting S, h, and g, can be assessed
if a reference alignment, call it Ar

X,Y , is available for the two sequences. When
this is the case, we let ρh,g

S (Ar
X,Y ,A∗

X,Y ) be the fraction of the columns of Ar
X,Y

that also appear in at least one of the alignments that are represented in A∗
X,Y .

The substitution matrix S, and also h and g, are then taken to be as good for
Ar

X,Y as ρh,g
S (Ar

X,Y ,A∗
X,Y ) is close to 1.

Thus, given a residue set cover C and a set Ar of reference alignments (each
alignment on a different pair of sequences over the same residue set R), obtaining
the best possible substitution matrix S and gap-cost parameters h and g can be
formulated as the following optimization problem: find functional forms and pa-
rameters that maximize some (for now unspecified) average of ρh,g

S (Ar
X,Y ,A∗

X,Y )
over all pairs (X, Y ) of sequences such that Ar

X,Y ∈ Ar. In the next section, we
make this definition precise when residues are amino acids and proceed to the
description of computational results.

3 Computational Results

Let bw be a two-valued variable indicating which of (2) or (3) is to be taken as the
functional form for the edge weights, and similarly let bS indicate which of (4)
or (5) is to give the functional form for the elements of S. These new parameters
defined, we begin by establishing bounds on the domains from which each of the
other eight parameters involved in the optimization problem may take values,
and also make those domains discrete inside such bounds by taking equally
spaced delimiters. For the purposes of our study in this section, this results in
what is shown in Table 1.

The parameter domains shown in Table 1 make up for over 3.7 trillion possible
combinations, yielding about 1.6 billion different substitution matrices. The set
of all such combinations seems to be structured in no usable way, so finding the
best combination with respect to some set of reference alignments as discussed in
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Table 1. Parameters and their domains

Parameter Description Domain

bw Selects between (2) and (3) {1, 2}
w− Least possible edge weight {0.5, 0.55, . . . , 1}
w+ Greatest possible edge weight {1, 1.125, . . . , 5}
λ Exponent for use in (2) or (3) {1, 1.125, . . . , 5}
bS Selects between (4) and (5) {1, 2}
S− Least possible element of S {0.5, 0.55, . . . , 1}
S+ Greatest possible element of S {1, 1.25, . . . , 25}
μ Exponent for use in (4) or (5) {1, 1.125, . . . , 5}
h Initialization gap cost {2, 2.5, . . . , 30}
g Extension gap cost {0.25, 0.375, . . . , 5}

Section 2 must not depend on any technique of explicit enumeration but rather
on some heuristic approach.

The approach we use in this section is to employ an evolutionary algorithm
for finding the best possible combination within reasonable time bounds. Each
individual for this algorithm is a 10-tuple indicating one of the possible combina-
tion of parameter values. Our evolutionary algorithm is a standard generational
genetic algorithm. It produces a sequence of 100-individual generations, the first
of which is obtained by randomly choosing a value for each of the 10 parameters
in order to produce each of its individuals. Each of the subsequent generations is
obtained from the current generation by a combination of crossover and muta-
tion operations, following an initial elitist step whereby the 5 fittest individuals
of the current generation are copied to the new one.

While the new generation is not full, either a pair of individuals is selected
from the current generation to undergo crossover (with probability 0.5) or one
individual is selected to undergo a single-locus mutation (with probability 0.5).2

The pair of individuals resulting from the crossover, or the single mutated indi-
vidual, is added to the new generation, unless an individual that is being added
is identical to an individual that already exists in the population. When this
happens, the duplicating individual is substituted for by a randomly generated
individual. Selection is performed in proportion to the individuals’ linearly nor-
malized fitnesses.3

The crux of this genetic algorithm is of course how to assess an individual’s
fitness, and this is where an extant set of reference alignmentsAr comes in. In our

2 Both the crossover point and the locus for mutation are chosen at random, essentially
with the parameters’ domains in mind, so that the probability that such a choice
singles out a parameter whose domain has size a is proportional to log a. Mutating
the parameter’s value is achieved straightforwardly, while breaking the 10-tuples for
crossover requires the further step of interpreting the parameter as a binary number.

3 This means that, for 1 ≤ k ≤ 100, the kth fittest individual in the generation is
selected with probability proportional to L − (L − 1)(k − 1)/99, where L is chosen
so that the expression yields a value L times larger for the fittest individual than it
does for the least fit (for which it yields value 1). We use L = 10 throughout.
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study we take Ar to be the set of alignments present in the BAliBASE suite. It
contains 167 families of amino-acid sequences arranged into eight reference sets.
For each family of the first five reference sets two pieces of reference information
are provided: a multiple alignment of all the sequences in the family and a
demarcation of the relevant motifs given the multiple alignment. Families in the
remaining three reference sets are not provided with motif demarcations, so we
refrain from using them in our experiments, since the fitness function that we
use relies on reference motifs as well. Note that, even though the BAliBASE
suite is targeted at multiple sequence alignments, each such alignment trivially
implies a pairwise alignment for all sequence pairs in each family and also motif
fragments for each pair. Our set Ar then comprises every sequence pair from
the BAliBASE suite for which a reference alignment exists with accompanying
motif demarcation.

The organization of the BAliBASE suite suggests a host of possibilities for
evaluating the efficacy of a substitution matrix S and of gap-cost parameters h
and g. For a pair of sequences (X, Y ), whose reference alignment is Ar

X,Y ∈ Ar,
and recalling that A∗

X,Y represents the set of all optimal alignments of X and
Y given S, h, and g, we use four variants of the ρh,g

S (Ar
X,Y ,A∗

X,Y ) of Section 2
as the bases of the fitness function to be used by the genetic algorithm. These
are denoted by ρh,g

S,1(A
r
X,Y ,A∗

X,Y ) through ρh,g
S,4(A

r
X,Y ,A∗

X,Y ) and differ among
themselves as to which of the columns of the reference alignment are checked to
be present in at least one of the optimal alignments. We let them be as follows:

– ρh,g
S,1(A

r
X,Y ,A∗

X,Y ) is based on all the columns of Ar
X,Y ;

– ρh,g
S,2(A

r
X,Y ,A∗

X,Y ) is based on all the columns of Ar
X,Y that contain no gaps;

– ρh,g
S,3(A

r
X,Y ,A∗

X,Y ) is based on all the columns of Ar
X,Y that lie within motifs;

– ρh,g
S,4(A

r
X,Y ,A∗

X,Y ) is based on all the columns of Ar
X,Y that lie within motifs

and contain no gaps.

These defined, we first average each one of them over Ar before combining
them into a fitness function. The average that we take is computed in the in-
directly weighted style of [6], which aims at preventing any family with overly
many pairs, or any pair on which S, h, and g are particularly effective, from
influencing the average too strongly.

The weighting takes place on an array having 10 lines, one for each of the
nonoverlapping 0.1-wide intervals within [0, 1], and one column for each of the
BAliBASE families. Initially each pair (X, Y ) having a reference alignment Ar

X,Y

in Ar is associated with the array cell whose column corresponds to its family
and whose line is given by the interval within which the identity score of the
reference alignment Ar

X,Y falls. This score is the ratio of the number of columns
of Ar

X,Y whose two amino acids are identical to the number of columns that have
no gaps (when averaging ρh,g

S,3(A
r
X,Y ,A∗

X,Y ) or ρh,g
S,4(A

r
X,Y ,A∗

X,Y ), only columns
that lie within motifs are taken into account).

For 1 ≤ k ≤ 4, we then let ρh,g
S,k(Ar) be the average of ρh,g

S,k(Ar
X,Y ,A∗

X,Y )
over Ar obtained as follows. First take the average of ρh,g

S,k(Ar
X,Y ,A∗

X,Y ) for each
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array cell over the sequence pairs (X, Y ) that are associated with it (cells with no
pairs are ignored). Then ρh,g

S,k(Ar) is computed by first averaging those averages
that correspond to the same line of the array and finally averaging the resulting
numbers (note that lines whose cells were all ignored for having no sequence
pairs associated with them do not participate in this final average).

We are then in position to state the definition of our fitness function. We
denote it by ϕh,g

S (Ar) to emphasize its dependency on how well S, h, and g
lead to alignments that are in good accord with the alignments of Ar. It is
given by the standard Euclidean norm of the four-dimensional vector whose kth
component is ρh,g

S,k(Ar), that is,

ϕh,g
S (Ar) =

√[
ρh,g

S,1(Ar)
]2

+ · · ·+
[
ρh,g

S,4(Ar)
]2

. (6)

Clearly, 0 ≤ ϕh,g
S (Ar) ≤ 2 always.

We found through initial experiments that carrying over with our algorithm
for each single generation requires roughly 13 to 14 hours on an Intel Pentium 4
processor running at 2.26 GHz and equipped with 512 Mbytes of main memory.
Practically all of this effort is related to computing ϕh,g

S (Ar) for each individual
in the current population, and because this is done in a manner that is fully
independent from any other individual, we can speed the overall computation
up nearly optimally by simply bringing more processors into the effort.

The results we describe next were obtained on four processors running in
parallel and for the following simplifications. We concentrated solely on evolving
individuals under global alignments for the set cover of [7], and considered, in
addition, only the subset of Ar, denoted by Ar,1, comprising sequence pairs that
are relative to the BAliBASE reference set 1. In this case, the fitness function to
be maximized is ϕh,g

S (Ar,1), defined as in (6) when Ar,1 substitutes for Ar . Given
these simplifications, computing through each generation has taken roughly 20
minutes.

The substitution matrices we have used for the sake of comparison are BC0030
[8], BENNER74 [9], BLOSUM62 [10], FENG [11], GONNET [12], MCLACH [13], NWSGAPPEP
[14], PAM250 [15], RAO [16], RUSSELL-RH [17], and VTML160 [18]. The gap-cost
parameters h and g we used with them are the ones from [8] for BC0030 and
RUSSELL-RH, from [19] for VTML160, and from [6] for all others.

Our results are summarized in the four plots of Figure 1, each giving the
evolution of one of ρh,g

S,1(Ar,1), . . . , ρh,g
S,4(Ar,1) for the fittest individuals along the

generations. We show this evolution against dashed lines that delimit the inter-
vals within which the corresponding figures for the matrices used for comparison
are located. Clearly, the genetic algorithm very quickly produces a substitution
matrix, with associated gap costs, that surpasses this interval as far as the fitness
components ρh,g

S,3(Ar,1) and ρh,g
S,4(Ar,1) are concerned, even though it lags behind

in terms of ρh,g
S,1(Ar,1) and ρh,g

S,2(Ar,1). This substitution matrix, it turns out, is
then superior to all those other matrices when it comes to stressing alignment
columns that lie within motifs.
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Fig. 1. Evolution of the fitness components ρh,g
S,1(Ar,1), . . . , ρh,g

S,4(Ar,1), shown respec-
tively in (a) through (d)

4 Concluding Remarks

We have introduced a new methodology for the determination of amino-acid
substitution matrices. The new methodology starts with a set cover of the residue
alphabet under consideration and builds an undirected graph in which node
vicinity is taken to represent residue exchangeability. The desired substitution
matrix arises as a function of weighted distances in this graph. Determining
the edge weights, and also how to convert the resulting weighted distances into
substitution-matrix elements, constitute the outcome of an optimization process
that runs on a set of reference sequence alignments and also outputs gap costs for
use with the substitution matrix. Our methodology is then of a hybrid nature:
it relies both on the structural and physicochemical properties that underlie the
set cover in use and on an extant set of reference sequence alignments.

The optimization problem to be solved is well-defined: given parameterized
functional forms for turning cover sets into edge weights and weighted distances
into substitution-matrix elements, the problem asks for parameter values and
gap costs that maximize a certain objective function on the reference set of
alignments. We have reported on computational experiments that use a genetic
algorithm as optimization method and the BAliBASE suite as the source of the
required reference alignments.
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Our results so far indicate that the new methodology is capable of producing
substitution matrices whose performance falls within the same range of a number
of known matrices’ even before any optimization is actually performed (i.e., based
on the random parameter instantiation that precedes the genetic algorithm); this
alone, we believe, singles out our methodology as a principled way of determining
substitution matrices that concentrates all the effort related to the structure and
physicochemical properties of amino acids on the discovery of an appropriate set
cover. They also indicate, in a restricted setting, that the methodology can yield
substitution matrices that surpass all the others against which they were tested.

We have also found that strengthening this latter conclusion so that it holds
in a wider variety of scenarios depends on how efficiently we can run the genetic
algorithm. Fortunately, it appears that it is all a matter of how many processors
can be amassed for the effort, since the genetic procedure is inherently amenable
to parallel processing and highly scalable, too. There is, of course, also the issue
of investigating alternative functional forms and parameter ranges to set up
the optimization problem, and in fact the issue of considering other objective
functions as well. Together with the search for faster optimization, these issues
make for a very rich array of possibilities for further study.
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Abstract. Multi-Objective Evolutionary Algorithms (MOEA) use Genetic Al-
gorithms (GA) to find a set of potential solutions, which are reached by com-
promising trade-offs between the multiple objectives. This paper presents a 
novel approach using MOEA to search for a motif which can unravel rules gov-
erning peptide binding to medically important receptors with applications to 
drugs and vaccines target discovery.  However, the degeneracy of motifs due to 
the varying physicochemical properties at the binding sites across large number 
of active peptides poses a challenge for the detection of motifs of specific mole-
cules such as MHC Class II molecule I-Ag7 of the non-obese diabetic (NOD) 
mouse. Several motifs have been experimentally derived for I-Ag7 molecule, but 
they differ from each other significantly. We have formulated the problem of 
finding a consensus motif for I-Ag7 by using MOEA as an outcome that satisfies 
two objectives: extract prior information by minimizing the distance between 
the experimentally derived motifs and the resulting matrix by MOEA; minimize 
the overall number of false positives and negatives resulting by using the puta-
tive MOEA-derived motif. The MOEA results in a Pareto optimal set of motifs 
from which the best motif is chosen by the Area under the Receiver Operator 
Characteristics (AROC) performance on an independent test dataset. We com-
pared the MOEA-derived motif with the experimentally derived motifs and mo-
tifs derived by computational techniques such as MEME, RANKPEP, and 
Gibbs Motif Sampler. The overall predictive performance of the MOEA derived 
motif is comparable or better than the experimentally derived motifs and is bet-
ter than the computationally derived motifs. 

1   Introduction 

Multi-Objective Evolutionary Algorithms (MOEA) have been effectively used in 
various domains to solve real-world complex search problems. Multi-objective prob-
lems need simultaneous optimization of number of competing objectives and result in 
a set of solutions called Pareto optimal set. These can be solved as a single objective 
optimization problem by combining all objectives into a single objective. Solving 
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multi-objective problems as a single objective problem requires many simulation runs 
before achieving a set of Pareto optimal solutions. Another way of optimizing multi-
objective problems is to use MOEAs that are able to find Pareto-optimal solutions in a 
single simulation run. A number of MOEAs has been suggested in the literature 
[1][2][3][4]. In a single objective GA a fitness function is used to asses the solution 
population, while MOEAs measure the dominance of individuals in the population 
and rank the solutions. A solution is said to be dominant if it is as good as or better 
than all the other solutions for all objectives [1]. Often, there is more than one domi-
nant solution, which is known as the Pareto-front, representing the best solutions from 
a single iteration. A recently introduced MOEA known as non-dominated sorting 
genetic algorithm II (NSGA-II) by Deb et al. has been effectively applied for many 
real-world problems and has shown to be computationally efficient due to the incor-
poration of two new mechanisms: elitism and diversity-preservation [5]. Our study of 
motif discovery by using MOEA was carried out with NSGA-II that allows using 
multiple constraints [1].  

In this paper, we describe the use of MOEAs in discovering peptide motifs associ-
ated with binding to I-AAgg77  molecule, which is involved in insulin-dependent diabetes 
mellitus (IDDM) in the non obese diabetic (NOD) mice [6-16]. A consensus motif 
that can describe peptide binding interactions to NOD mouse I-AAgg77  molecule has not 
been accurately defined by experimental or by computational means [25]. The motifs 
derived for this MHC Class II molecule are purely by experimental methods and ma-
jority of these experimentally derived motifs are mutually inconsistent thereby mak-
ing it difficult to generalize across available datasets [26]. Moreover, no comparative 
study has been carried out to decipher the composition of amino acids in these bind-
ing peptides using computational methods. 

A peptide motif is a representation of a conserved region of protein sequences that 
is linked to a specific biological function, for example peptide binding to a particular 
receptor. Multiple binding peptides normally contain a consensus motif that defines 
the binding rules to a particular receptor. A widely used representation of a motif is 
the quantitative matrix that contains k×20 coefficients where k corresponds to the 
length of the motif and 20 to the number of different amino acids in a protein se-
quence. The score for the prediction to a binder is calculated by summing or multiply-
ing the matrix coefficients. Several experimental approaches have been attempted in 
finding motifs [6-12].  Popular computational tools available for finding motifs in 
protein sequences are: MEME [21], Gibbs motif sampler [22] and Rankpep [23].  

In this study, a motif is expressed as a quantitative scoring matrix representing 
many possible interactions among amino acids, and the positions of binding to pep-
tides. To derive a MOEA solution, two objectives were defined and the validity of the 
objectives is controlled by two constraints imposes on the effects of the objectives 
under the evaluation. 

2   Materials and Methods 

The motif discovery for I-AAgg77 dataset is performed with MOEA (NSGA-II). The ap-
proach for the discovery of a consensus motif is described in the subsequent sections. 
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2.1   I-AAgg77  Datasets  

Ten different I-AAgg77  datasets were extracted from several independent studies [9-18]. 
Each experimental dataset provides peptides which are classified as binders or non-
binders with a label which have been assigned according to their experimental bind-
ing affinities. The dataset available can be expressed as D = {D i: i=1,2,….d } where d 
denotes the number of datasets. Let i th data set, Di = {(xij, vij): j = 1, 2,…., ni } where 
xij is the jth sequence in the i th dataset and the label vij ∈  {b, nb} indicates whether the 
sequence xij is a binder (b), or a non-binder (nb).  

2.2   Experimental Motifs 

Seven different reported k-mer motifs (MHC binging motifs are of k=9 amino acid 
length) [6-12] have been derived for predicting peptide binders to I-AAgg77  molecule. The 
residues, which contribute significantly to peptide binding, are called primary anchor 
residues and the positions they occur are called anchor positions. Anchor positions 
may be occupied by so called preferred residues which are tolerated, but alone con-
tribute little to peptide binding strength. In [6-12] each motif describes amino acids at 
primary and secondary anchor positions, as well as “forbidden” amino acids at spe-
cific positions. We interpret these as anchor, tolerated, and non-tolerated amino acids. 
These experimental motifs can be expressed as R = {Ri: i=1,2,….r } where r denotes 
the number of experimentally found motifs.  The Table 1 below illustrates an example 
of an experimentally derived Reizis peptide binding motif to I-AAgg77. 

 
Table 1. An illustration of a representative peptide binding motif to I-AAgg77  molecule (Reizis 
motif, [9]). The positions P4, P6 and P9 are primary anchor positions where binding is highly 
likely to occur.  

Position Anchor Tolerated Not tolerated 
P1 VEQMHLPD - R 
P2 - - - 
P3 - - - 
P4 ILPV HY QEK 
P5 - - - 
P6 ATSNV - LYQK 
P7 QVYLHINRF - - 
P8 - - - 
P9 ED SM LYTQK 

 

2.3   Binding Score Matrix Representation of a Motif 

In this section we give a formal definition of the target model as a quantitative matrix. 
A k-mer motif in an amino acid sequence is usually characterized by a binding score 
matrix Q = {qia }kx20 where qia denotes the binding score of the site i of the motif 
when it occupies by the amino-acid a ∈ ∑  where ∑ denotes the set of 20 amino-
acid residues. A binding score computed by adding the scores assigned for each amino 
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acid in the respective positions of a k-mer motif not only indicates the likelihood of 
the presence of a particular motif but also determines the likelihood that a sequence 
containing the motif that binds to another sequence. Therefore, a binding score matrix 
can be viewed as a quantification of a real biological functioning or binding of the 
motif to other peptides. Given a binding score matrix Q of size k×20 we define the 
binding score, s for a k–mer motif, m*, starting at the position j* in a sequence 

1 2x=( , ) nx x xL of length n as:  

 

{1,..., 1}
max j

j n k
s s

∈ − +
=  (1) 

   
0,..., 1

where
i jj ix

i k

s q
+

= −

= ∑  
(2) 

And the location of the motif is given by 

*

{1, , 1}
arg max j

j n k
j s

∈ − +
=

L

 (3) 

We denote s(xj* : m
*) to indicate the binding score of the motif m* present at j* posi-

tion of the peptide sequence x. 

2.4   Multi-Objective Evolutionary Algorithm: NSGA-II 

NSGA-II incorporates several mechanisms that facilitate faster and better conver-
gence of a solution population for multi-objective problems. These mechanisms in-
clude non-dominated sorting, elitism, diversity preservation, and constrained han-
dling. A solution is said to be dominant if it is as good as or better than the other solu-
tions with respect to all objectives. Non-dominated sorting refers to sorting of indi-
viduals that are not dominated by any other individual in the population with respect 
to every objective. All the non-dominated individuals are assigned the same fitness 
value. The same procedure is then carried out on the remaining population until a new 
set of non-dominated solutions is found. The solutions found in the subsequent rounds 
are assigned a fitness value lower than in the previous round and the process contin-
ues on until the whole population is partitioned into non-dominated fronts with di-
verse fitness values.  The elitism prevents loosing fit individuals encountered in ear-
lier generations by allowing parents to compete with offspring. In NSGA-II, the di-
versity of Pareto-optimal solutions is maintained by imposing a measure known as 
crowding distance measure. More details on these mechanisms can be found in 
[1][24]. 
 
Chromosome representation: Each individual (binding score matrix) in the popula-
tion is represented by an ensemble of kn real numbers representing elements in the k x 
n matrix, where k represents motif length and n represents number of residues. These 
real numbers are bound by a lower and upper limit. 
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Objectives: The objectives are defined to realize a motif that can best represent the 
characteristics of the I-AAgg77 binding motif. The dataset of each experiment in the litera-
ture gives the information whether the particular sequence is a binder or non-binder. 
Using this information, the numbers of true positives (TP) and true negatives (TN) 
determined by solutions in the population is computed. By incorporating the TPs and 
TNs resulting from the evaluation and by taking into the account the cumulative dis-
tance between a putative motif, m, representing a binding score matrix Q and the 
score matrix representation of the experimental motifs set, Q(R), we can define two 
objective functions f1 and f2 as follows: 

1min (FP FN)f = +  (4) 

  2
1

min Q Q( )
r

i
i

f R
=

= −∑  (5) 

where FP and FN denotes false positives and false negatives, respectively. And  

Q( )iR  represents the score matrix representation of an experimental motif, Ri.   
 
Constraints: Two constraints are defined as follows:  

* F P ) / N B ) 01 1= 1 .0 - ((c α ≥  (6) 

* F N ) / B ) 02 2= 1 .0 - ((c α ≥  (7) 

The 1α and 1α are the two control parameters preventing all binders and non-binders 

being recognized as binders and vice versa. NB and B correspond to the number of 
true non-binders and binders in the training dataset. 

3   Experiments and Results 

3.1   Datasets 

Ten datasets [9-18] consisting of short peptides ranging from 9-30 amino acids per 
sequence were extracted. The datasets [9-14] together with the unpublished dataset 
[17] were combined and used as the training dataset after the removal of duplicates. 
The training set consists of 351 binding peptides and 140 non-binding peptides. Two 
remaining datasets, Suri [15] and Stratmann [16] were used as the testing dataset. The 
Stratmann test set contains only 118 binders and three non binders while Suri dataset 
contains 20 binders and two non binders. Due to the small number of experimentally 
determined non-binders, we extended the number of non-binders in this set to 1000 by 
generating random peptides. The generation of random peptides involved adding 
correct proportions of amino acids to each peptide so that the generated peptide mim-
ics real protein peptides [20]. Of 1000 random peptides generated, at most five per-
cent are presumed to be binders and this error estimate was taken into consideration 
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for the performance analysis. This percentage was estimated based on the analysis of 
I-AAgg77 binding data given in [20]. 

3.2   Score Matrix Representation of the Experimental Motifs 

The following scoring scheme is used to represent each experimental motif in [8-12] 
as a quantitative matrix. Two experimental motifs [6,7] were excluded as they do not 
describe many of the k-mer positions, or have assigned fewer residues for the de-
scribed positions. For all the other motifs, all non tolerated positions were given a 
score of 0. Well tolerated residues were assigned a maximum score of 127. The pre-
ferred residues at the primary anchor positions were assigned half the maximum 
score. And the positions that do not carry any predefined residues were assigned one 
third of the maximum score. The distance to each of these score matrices is calculated 
and the sum of all the distances is used to optimize the objective function, f2. 

3.3   Multi-Objective Evolutionary Algorithm: NSGA-II Parameters 

For the MOEA optimization runs, we used a population of 500, where each individual 
representing 180 real numbers bound by the limits 0 and 127. A crossover probability 
for the real variables is set to 1.0, and the mutation probability of 0.006, distribution 
index for crossover and mutation are set to 15 and 30, respectively. After 300 genera-
tions, the evolutionary process was terminated. The convergence of the algorithm to 
the final population is illustrated in Figure 1. Having a number of Pareto solutions 
allows the user to choose a best solution. Of the motif solution set, we chose the motif 
that gives the highest AROC for the test dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Final population after 300 iterations, with the mutation probability=0.006 and cross-over 
probability=1.0.  Fitness1 depicts the sum of FP and FN with respect to the best individuals in 
the population whereas Fitness2 indicates the cumulative sum of the distances to the experi-
mental motifs and the best individuals (score matrices) in the population. 
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3.4   Performance Comparison 

Computationally derived motifs: MEME, Gibbs Motif Sampler and Rankpep. 
All binders in the training set are used to derive a motif by the computational methods 
MEME, Rankpep, and Gibbs motif sampler. Three motifs were derived from the 
MEME, and the motif that performed the best was used for our experiments M-K-R-
H-G-L-D-N-Y. With the Gibbs motif sampler, the residues at each position that con-
veyed the highest mutual information content were retained and the motif was com-
posed N(MP)-K(V)-A(RI)-T(H)-G(A)-E(FL)-D(Q)-N(YL)-K(YV). For Rankpep, the 
consensus motif was W-Y-A-H-A-F-K-Y-V. Using these motifs and scoring matrices 
we measured the predictive performance on the Stratmann and Suri datasets combined 
with randomly generated non-binders. The performance (Figure 2a) was measured by 
the Area under the Receiver Operating Characteristics (AROC) curves (see [26]). 

 
Experimentally derived motifs. The performance of the experimentally derived 
motifs was estimated by assigning a scoring scheme: anchor residues have weight 4, 
tolerated 2, and non-tolerated -4. Primary anchor positions were assigned weight 4 
and secondary anchor positions have weight 2. The primary and secondary anchor 
positions were defined according to the motif descriptions by the authors. The AROC 
plots for the experimental motifs and the MOEA derived motif are shown in Figure 
2(b).  Of seven experimentally derived motifs the AROC curves of only five motifs are 
shown in Figure 2(b) for clarity. The AROC calculations for all motifs are given in the 
Table 2. Overall, the motif derived from MOEA performed better on the test dataset-
than the other motifs described in literature and the computationally derived motifs by 
MEME, Gibbs Motif Sampler and Rankpep (Figure 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. a) AROC plots between theoretically derived motifs (a). b) Performance comparison 
between five experimentally derived motifs and MOEA-motif.  
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Table 2. The AROC values from predictions using each motif on the independent test dataset. 
AROC>0.9 correspond to excellent, 0.8<AROC<0.9 to good, 0.7<AROC<0.8 to marginal prediction 
accuracy. AROC=0.5 corresponds to random guessing, and 0.5<AROC<0.7 to poor predictions.  

Motif AROC
Reizis 0.81
Harrison 0.81
Gregori 0.78
Latek 0.79
Rammensee 0.78
Reich 0.74
Amor 0.78
MEME 0.72
Gibbs 0.81
Rankpep 0.75
MOEA 0.87

 

Table 3. The AROC values estimated on the individual datasets used in deriving the experimen-
tal motifs by the best performing motifs in Table 2 

Motif
Dataset Reizis Harrison Gibbs MOEA
Reizis 0.95 0.75 0.33 0.77
Harrison 0.68 0.88 0.79 0.76
Gregori 0.74 0.69 0.77 0.84
Latek 0.95 0.64 0.81 0.89
Corper 0.50 0.53 0.39 0.70
MHCPEP 0.59 0.72 0.64 0.85
Yu 0.48 0.33 0.58 0.61  

The performance of the Multi-objective motif on the individual datasets used in the 
derivation of the experimental motifs show similar or better results (greater than 0.7 
AROC value) compared to the performance of other motifs across datasets (Table 3). 
The performance of the motifs on their respective datasets indicated their bias towards 
their own datasets. Overall MOEA-derived matrix performed well across all datasets 
except in the case of Yu dataset, for which it gave the AROC=0.61. Other experimental 
motifs on the same dataset performed poorly with AROC<0.61 except for the Latek 
motif (AROC>0.7). The MOEA-derived matrix reconciles significant variances in the 
experimental motifs and minimizes the number of false predictions in the test dataset 
as compared to the performance of previously determined experimental motif. 

4   Conclusions 

We have proposed MOEA for deriving a consensus motif from a number of experi-
mentally derived motifs. One of the objectives of our approach is to optimize the 
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number of true predictions across all I-Ag7 datasets, which was not the case with the 
experimentally derived motifs. The experimental motifs formulated from each inde-
pendent study show biases to their own datasets - they perform well on the respective 
dataset, but poorly on the other datasets. The other objective is to capture the signifi-
cance of each motif and combine them together so that the resulting motif can act as a 
consensus motif characterizing all the experimental motifs. As we can see from the 
results, the derived motif performed comparatively well on all the datasets. Further-
more, the MOEA evolved solution outperformed all the other computationally derived 
motifs demonstrating its suitability for discovery of highly accurate motifs. 
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Abstract. The increased availability of biological databases contain-
ing representations of complex objects permits access to vast amounts of
data. In spite of the recent renewed interest in knowledge-discovery tech-
niques (or data mining), there is a dearth of data analysis methods in-
tended to facilitate understanding of the represented objects and related
systems by their most representative features and those relationship de-
rived from these features (i.e., structural data). In this paper we propose
a conceptual clustering methodology termed EMO-CC for Evolution-
ary Multi-Objective Conceptual Clustering that uses multi-objective and
multi-modal optimization techniques based on Evolutionary Algorithms
that uncover representative substructures from structural databases. Be-
sides, EMO-CC provides annotations of the uncovered substructures,
and based on them, applies an unsupervised classification approach to
retrieve new members of previously discovered substructures. We apply
EMO-CC to the Gene Ontology database to recover interesting sub-
structures that describes problems from different points of view and use
them to explain inmuno-inflammatory responses measured in terms of
gene expression profiles derived from the analysis of longitudinal blood
expression profiles of human volunteers treated with intravenous endo-
toxin compared to placebo.

1 Introduction

The increased availability of biological databases containing representations of
complex objects such as microarray time series, regulatory networks or metabolic
pathways permits access to vast amounts of data where these objects may be
found, observed, or developed [1, 2, 3]. In spite of the recent renewed interest
in knowledge-discovery techniques (or data mining), there is a dearth of data
analysis methods intended to facilitate understanding of the represented objects
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and related systems by their most representative features and those relationship
derived from these features (i.e., structural data).

Structural data can be viewed as a graph containing nodes representing ob-
jects, which have features linked to other nodes by edges corresponding to their
relationships. Interesting objects in structural data are represented as substruc-
tures, which consists of subgraph partitions of the datasets [4]. Conceptual clus-
tering techniques have been successfully applied to structural data to uncover
objects or concepts that relates objects, by searching through a predefined space
of potential hypothesis (i.e., subgraphs that represent associations of features)
for the hypothesis that best fits the training examples [5]. However, the for-
mulation of the search problem in a graph-based structure would result in the
generation of many substructures with small extent as it is easier to explain or
model match smaller data subsets than those that constitute a significant portion
of the dataset. For this reason, any successful methodology should also consider
additional criteria to extract better defined concepts based on the size of the
substructure being explained, the number of retrieved substructures, and their
diversity [4, 6]. The former are conflicting criteria that can be approached as
an optimization problem. Multi-objective optimization techniques can evaluate
concepts or substructures based on the conflicting criteria, and thus, to retrieve
meaningful substructures from structural databases.

In this paper we propose a conceptual clustering methodology termed EMO-
CC for Evolutionary Multi-Objective Conceptual Clustering that uses multi-
objective and multi-modal optimization techniques. The EMO-CC methodology
uses an efficient search process based on Evolutionary Algorithms [7, 8, 9], which
inspects large data spaces that otherwise would be intractable. Besides, EMO-CC
provides annotations of the uncovered substructures, and based on them, applies
an unsupervised classification approach to retrieve new members of previously
discovered substructures. We apply EMO-CC to the Gene Ontology database
(i.e., the GO Project [3]) to recover interesting substructures containing genes
sharing a common set of terms, which are defined at different levels of specificity
and correspond to different ontologies, producing novel annotations based on
them. Particularly, we use these substructures to explain inmuno-inflammatory
responses measured in terms of gene expression profiles derived from the analy-
sis of longitudinal blood expression profiles of human volunteers treated with
intravenous endotoxin compared to placebo [10].

This work is organized as follows. Section 2 reviews the conceptual clustering
problem. Section 3 describes the EMO-CC methodology. Section 4 shows the
customization and results of applying EMO-CC to the GO database to explain
gene expression profiles from the inflammatory problem. Section 5 introduces
the discussion.

2 Conceptual Clustering

Cluster analysis –or simply clustering– is a data mining technique often used to
identify various groupings or taxonomies in real-world databases [11]. Most ex-
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isting methods for clustering are designed for linear feature-value data. However,
sometimes we need to represent structural data that do not only contains de-
scriptions of individual observations in databases, but also relationships among
these observations. Therefore, mining into structural databases entails address-
ing both the uncertainty of which observations should be placed together, and
also which distinct relationships among features best characterize different sets
of observations, having in mind that, a priori, we do not know which feature is
meaningful for a given relationship.

Conceptual clustering, in contrast to most typical clustering techniques [12],
have been successfully applied to structural databases to uncover concepts that
are embedded in subsets of structural data or substructures [4]. While most
machine learning techniques applied directly or indirectly to structural data-
bases exhibit methodological differences, they do share the same framework
even though they employ distinct metrics, heuristics or probability interpre-
tations [13, 4]: (1) Database representation. Structural data can be viewed as a
graph containing nodes representing objects, which have features linked to other
nodes by edges corresponding to their relations. A substructure consists of a
subgraph of structural data [4]; (2) Structure Learning. This process consists of
searching through the space for potential substructures, and either returning the
best one found or an optimal sample of them; (3)Cluster evaluation. The sub-
structure quality is measured by optimizing several criteria, including specificity,
where harboring more features always increases the inferential power; sensitivity,
where a large coverage of the dataset produces good generality; and diversity,
where minimally overlapping between clusters generates more distinct clusters
and descriptions from different angles; (4) Database compression. The database
compression provides simpler representations of the objects in a database; and
(5) Inference. New observations can be predicted from previously learned sub-
structures by using classifiers that optimize their matching based on distance
[14] or probabilistic metrics [5]).

3 An Evolutionary Multi-Objective Conceptual
Clustering Methodology (EMO-CC)

We explicitly propose a method for each of the conceptual clustering steps men-
tioned:

(1) Database representation by using structures as graphs, where nodes cor-
respond to database features and edges to the relationships among these
features.

(2) Structure learning by searching in the feature space to obtain optimal
substructures using an efficient multi-objective evolutionary algorithm, as
well as appropriate objective definitions to guide the search relying on the
NSGA-II algorithm [15]. Basic configuration of this algorithm is explained
below:
Chromosome representation. EMO-CC encodes feasible substructures in the
chromosomes of the algorithm population. Each chromosome is implemented
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as a tree, where this representation in GAs is known as Genetic Programming
(GP) [16]. This chromosome representation encodes each node and edge of
the tree with a label, describing the type of feature, and an associated tag
that indicates the value of such feature. The initial population consists of a
set of chromosomes, each one built by choosing a random observation from
the input database and extracting a subtree from its tree representation. The
set of all non-dominated chromosomes of the final population represents a
clustering of the given data.
Genetic operators. EMO-CC applies crossover and mutation operators with
a given probability over the chromosomes composing the population of the
GP. The crossover operator is performed by swapping two random subtrees,
which is a classical choice in GP. The mutation operators used in our GP im-
plementation are also classical and straightforward: (1) Delete a leaf, where
a random leaf of the tree is selected and deleted along with the edge that
connects it to the tree; (2) Change a node, where a random node is selected
and replaced by another node belonging to the set of nodes constrained to
have the same tag; and, (3) Add a leaf, where a random leaf is created and
connected to the tree by a new edge.
Selection. EMO-CC uses a classical binary tournament selection method [17],
which chooses two parent chromosomes and selects the one with the higher
fitness value.
Multi-objective optimization. We consider that good substructures are those
ones that maximize the specificity and sensitivity objectives. On the one
hand, the specificity of a substructure is associated with its size (i.e., the
number of objects and features that compose the substructure), which cor-
responds to the size of the tree represented in the chromosome. On the
other hand, the sensitivity of a substructure is calculated as the number
of instances that occur in the substructure, where an instance occur in a
substructure if its tree representation is a subtree of the substructure tree.
These are opposing objectives since the more specific the substructure, the
less sensitive it becomes to detect new instances.
Non-dominance relationship. We select substructures that satisfy a trade-
off between their specificity and sensitivity by selecting a set of solutions
that are non-dominated, in the sense that there is no other solution that
is superior to them in all objectives (i.e., Pareto optimal front [8, 6]). An-
other objective that is indirectly considered is the substructure diversity,
which consists of maintaining a distributed set of solutions in the Pareto
front. Therefore, to address all of these objectives our approach applies the
non-dominance relationship locally, that is, it identifies all non-dominated
optimal substructures that have no better solution in a neighborhood [8, 6].
We consider that two substructures are in the same neighborhood if they
have at least a 50% of instances occurring in both of them calculated based
on the Jaccard’s coefficient [18].

(3) Clustering evaluation applying the non-dominance relationship between
conflicting criteria in a neighborhood to achieve cohesive, well supported,
and diverse substructures.
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(4) Compression of substructures based on an circumstantial query, thus
allowing flexible and adaptive substructures to different contexts.

(5) Inference by using an unsupervised fuzzy k -nearest prototype classifier that
characterizes new instances based on available knowledge. It calculates the
membership of a query observation xq in a set of I previously identified
substructures.

4 Application of the EMO-CC Methodology to the Gene
Ontology Structural Database

Massive microarray experiments provide a wide view of the gene regulation prob-
lem; however, most of the biological knowledge extracted from these experiments
include few relevant genes, some of which are difficult to be identified because
of their low expression levels. Moreover, it is also difficult to distinguish among
expressed genes that behave differentially between treatments, time, patients
and other factors that are always hidden in typical microarray protocols (e.g.,
gender or age). Here we focus on the challenge of explaining these profiles and
re-discover them based on independent biological information.

We therefore apply EMO-CC to discover interesting substructures in the
Gene Ontology database that can explain classes composed of microarray gene
profiles having similar behaviors of their expression over time, treatment, and
patient. The Gene Ontology (GO) network stores one of the most powerful char-
acterization of genes, containing three structured vocabularies (i.e., ontologies)
that describe gene products in terms of their associated biological processes, cel-
lular components and molecular functions in a species-independent manner [3].
The GO terms are organized as hierarchical networks, where each level corre-
sponds to a different specificity definition of such terms (i.e., higher level terms
are more general than lower level terms). Particularly, from the computational
point of view, these networks are organized as structures called directed acyclic
graphs (DAGs), which are one way routed graphs that can be represented as
trees. Therefore, identifying which distinct relationships among features best
characterize different sets of observations does not only have to consider the
process of grouping distinct type of features, but also defining at which level of
specificity they have to be represented.

4.1 EMO-CC Customization for the GO Domain

We used the GO database and compatibilized the terms with descriptions pro-
vided by Affymetrix, where each observation of the database has the following
features: (1) Name: Affymetrix identifier for each gene in HG-U133A v2.0 set
of arrays; (2) Biological process: List of the biological processes where a gene
product is involved (e.g., mitosis or purine metabolism); (3) Molecular function:
List of the biological functions of the gene product (e.g., carbohydrate binding
and ATPase activity), which is indexed by a list of integer GO codes; and (3)
Cellular component: List of the cellular components indicating location of gene
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GO:0003673 (0)

GO:0008150 (1)

· · ·

GO:0008152 (3)

GO:0005575 (1)

GO:0005623 (2)

207929 at
202442 at
213475 s at
214467 at
219889 at
203508 at
201087 at
209864 at
200625 s at

Specificity = 0.6769
Sensitivity = 0.0051

(a) Chromosome (b) Genes (c) Objectives

Fig. 1. An example of a chromosome representing a cluster. (a) The tree representation,
gray boxes represent the most specific GO terms of the concept of the cluster, the level
of each term is shown between parenthesis. (b) The list of genes that correspond to
the cluster. (c) The values corresponding to the sensitivity and specificity objective
functions.

products (e.g., nucleus, telomere, and origin recognition complex), which are
indexed by a list of integer GO codes.

An instance for the GO domain is redefined as the particular subset of values
that constitutes a prefix tree1 of a database observation in contrast to a subtree
as in the general case. Then, an instance occurs in a substructure if a subgraph
of the prefix tree that represent that instance matches with the substructure
tree, where this tree contains tagged nodes with the type of feature (e.g., bio-
logical process), and the corresponding values (e.g., GO:0007165), and the edges
represent relationship between features (i.e., tagged nodes).

Good substructures are those ones that result in a trade-off between sensi-
tivity and specificity. Although, the sensitivity can be calculated based on the
number of instances in a substructure, the specificity of the substructure is not
linearly dependent to its size, as it was previously defined based on the number
of nodes and edges because of the level component included in the GO domain.
Thus, we redefine the specificity as the distance among all most specific nodes
of an instance i and the closest leaf-node in the substructure S:

Specificity(S) =

∑K
i

∑U
u

dist(nodeu,nodei)
level(nodei)

K
(1)

where the distance is calculated as the number of edges between two nodes, the
level of a node is calculated as the length of the shortest path to the root node, U
is the number of leaf-nodes in substructure S, and K is the number of instances
occurring in substructure S. An example of a chormosome representing a cluster
concept is shown in Figure 1.

4.2 Experiments and Analysis of Results

The structural database used for the GO domain is composed of 1770 instances
of genes and their GO associated terms. The population of the evolutionary
1 Tree T ′ is a prefix tree of T if T can be obtained from T ′ by appending zero or more

subtrees to some of the nodes in T ′. Notice that any tree T is a prefix of itself.
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algorithm is initialized by 50% of randomly chosen subtrees of the database and
by another 50% of random instances. The parameters of the algorithms used for
this domain are shown in Table 1. The EMO-CC approach was run ten times
with different seeds and the average of these runs is reported.

Table 1. Parameters for the GO domain

Parameter Value

Population Size 200
Number of Objective Evaluations 20000
Crossover probability 0.6
Mutation probability 0.2

4.3 Computational Analysis

We compare EMO-CC with two other methods, APRIORI and SUBDUE, all of
which satisfy in some extent those features shared by machine learning meth-
ods introduced in Section 3. Although APRIORI and SUBDUE are not MO
algorithms, we illustrate the obtained Pareto fronts in Figure 2 to perform fair
comparisons with EMO-CC. In addition, we verify the performance of the former
methods by applying some multi-objective comparison metrics, namely C and
ND [19, 20]. The metric C(X ′, X ′′) measures the dominance relationship between
the set of non-dominated solutions X ′ over other set of non-dominated solutions
X ′′. The value C(X ′, X ′′) = 1 means that all points in X ′′ are dominated by
points in X ′. The opposite, C(X ′, X ′′) = 0, represents the situation where none
of the points in X ′′ are covered by the set X ′. The metric ND(X ′, X ′′) compares
two sets of non-dominated solutions and gives the number of solutions of X ′ not
equal and not dominated by any member of X ′′. The values obtained by the
methods are shown in Table 2,
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Fig. 2. Pareto fronts for the GO domain by using two conflicting objectives: specificity
and sensitivity. (a) Non-dominated solutions reported by the APRIORI method. (b)
Solutions recovered by the SUBDUE method. (c) Substructures recovered by the EMO-
CC methodology, where more than one solution for the same specificity level indicates
that they correspond to different neighborhoods.
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The obtained results of applying the former metrics reveal that there is no
solution obtained by EMO-CC that is dominated by APRIORI, and only one so-
lution obtained by SUBDUE dominates solutions belonging to the Pareto front
found by EMO-CC (Table 2(a)), as described by metric C, while there is no
solution of the latter method that dominates any solution from the other two
approaches. Moreover, the EMO-CC method discovers more non-dominated so-
lutions, as evaluated by metric ND (Table 2(b)), than both APRIORI and SUB-
DUE methods. The difference between the values reported by the ND metric
from EMO- CC and those ones from APRIORI and SUBDUE (i.e., 181.89 and
171.80 vs. 1.20 and 1.60 from Table 2(b)) suggests that EMO-CC retrieves al-
most all solutions identified by the other methods and covers a wide set of all of
optimal solutions that can be obtained in the GO domain. This is in contrast to
the few solutions that are identified by the APRIORI and SUBDUE methods,
but remain undetected by the EMO-CC method (i.e., 1.20 and 1.60 in average
from Table 2(b)).

In addition, the EMO-CC method recovers most and more diverse solutions
than those found by the APRIORI and SUBDUE methods. Particularly, our
approach retrieves substructures of the Pareto optimal front containing few in-
stances harboring several features (i.e., cohesive substructures), which were un-
detected by the other methods.

Table 2. Comparative evaluation of the solutions identified by APRIORI, SUBDUE
and EMO-CC for the GO domain by using different metrics

(a) C metric

C(X′, X′′) APRIORI SUBDUE EMO-CC average (stdev)

APRIORI - 0.00000 0.00000 (0 .00000)
SUBDUE 0.00000 - 0.00050 (0 .00160)
EMO-CC average (stdev) 0.00000 (0 .00000) 0.08421 (0 .04438) -

(b) ND metric

ND(X′, X′′) APRIORI SUBDUE EMO-CC average (stdev)

APRIORI - 1 1.20 (0 .42)
SUBDUE 13 - 1.60 (1 .17)
EMO-CC average (stdev) 181.80 (11 .99) 171.80 (11 .62) -

Biological results analysis using gene expression profiles. We consider 24
independent classes containing gene expression profiles derived from the analy-
sis of 48 GeneChips R© HG-U133A v2.0 from Affymetrix Inc., corresponding to
an inflammatory response study performed on human volunteers treated with
intravenous endotoxin compared to placebo [10]. The data has been acquired
from samples taken from human blood to eight patients over time at 0, 2, 4, 6,
9 and 24 hours, where four had been treated with intravenous endotoxin (i.e.,
patients 1 to 4) and four with placebo (i.e., patients 5 to 8). We will use these
gene expression profiles for validating the substructures detected by EMO-CC,
or, in other words, which are explained by these substructures.
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Table 3. Clusters derived from the GO information by EMO-CC intersecting signifi-
cantly with class #13 from the gene expression information. Solid lines separate groups
of clusters which GO information is not related, while dashed lines separate clusters
within these groups, as shown in Figure 3.

#Substr. Biological process Molecular function Cellular component

179 GO:0006915 GO:0005887
apoptosis integral to plasma membrane
(level: 6) (level: 4)

536 GO:0007165 GO:0016021
signal transduction integral to membrane

(level: 4) (level: 3)

759 GO:0007165 GO:0005887
signal transduction integral to plasma membrane

(level: 4) (level: 4)

89 GO:0007154 GO:0016021
cell communication integral to membrane

(level: 3) (level: 3)

256 GO:0007154 GO:0016021
cell communication integral to membrane

(level: 3) (level: 3)
GO:0050875

cellular physiological process
(level: 3)

380 GO:0007165 GO:0016021
signal transduction integral to membrane

(level: 4) (level: 3)
GO:0050875

cellular physiological process
(level: 3)

607 GO:0004871 GO:0016021
signal transducer activity integral to membrane

(level: 2) (level: 3)

For example class #13 is described by several substructures (Table 3). Sig-
nificantly, these descriptions are based on different types of descriptions (e.g.,
process and cellular components) that belong to different levels of the GO struc-
ture (e.g., level 6 or level 4). These diverse substructures are optimal in the sense
that belong to the Pareto optimal front (Figure 2) between specific and sensitive
descriptions. The effect of the substructures on the explained class #13 can be
visualized in (Figure 3).

EMO-CC, as a machine learning method (see Section 3 (4)), compresses those
substructures that explain an expression profile from the same point of view to
provide a summarized explanation of this phenomena (Table 3). For example,
substructures #89 and #216 are compressed because they are indistinguishable
for the class corresponding to the expression profile #13, while substructure
#179 describes it from a very different point of view and is preserved as a diverse
solution. This compression is dynamic because substructures are re-grouped in a
context-dependent fashion, where the context corresponds to an explained class
and a different classification can produce a distinct substructure association (e.g.,
substructures #89 and #216 are indistinguishable for class #13, while may be
not the case for other class of microarray or clinical experiments). Notably, this
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Fig. 3. The effects of the explanation of the expression class #13 based on the GO
substructures identified by EMO-CC. The dashed rectangle illustrated the local ap-
plication of the non-dominance relationship within a class, and the summarization of
two indistinguishable substructures for this class. Grey filled graphs correspond to the
compressed substructures of Table 3.

classification is performed based on completely external information provided by
GO database, instead of the levels of expression.

In addition, EMO-CC applies an unsupervised inferential approach (see Sec-
tion 3 (5)) which calculates the membership of a query observation xq in a set
of I previously identified substructures, to classify new instances. Since the ob-
tained substructures are not disjoint, a given observation may belong to more
than one cluster.

The unsupervised inferential mechanism of EMO-CC allows to identify new
genes belonging to a particular expression profile. This is exemplified by the gene
212659_s_at, which was recovered by its proximity to substructure #824 and
shows a similar expression pattern to the genes of class #17 (Figure 4), but was
ignored by the statistical methods used to recover differentially expressed genes
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Fig. 4. Expression of Substructure B #824 where gene product 212659 s at is classi-
fied. The observation classified is highlighted.

[10]. It is noteworthy that this gene was not identified by its similarity with
the centroid of the expression class #17, but from an independent substructure
provided by EMO-CC.

5 Discussion

Unlike typical clustering techniques, conceptual clustering methods have been
successfully applied to structural information in order to reveal hidden concepts
by searching through a predefined space of potential hypothesis. However, the
formulation of the search problem in a biological network would often result in a
conflicting paradigm. On the one hand, generating a large number of substruc-
tures, each containing a very small number of genes that share all considered
features, makes it hard to find commonalities among similarly regulated genes.
On the other hand, generating a small number of groups in which their members
share a limited number of features, would fail to discriminate between members
of a molecular pathway.

In order to tackle these problems, we proposed the EMO-CC methodology
that identifies conceptual clusters and classifies co-regulated genes based on mul-
tiple features that characterizes them, including functional descriptions, molec-
ular processes and cellular components, at different levels of specificity.

EMO-CC allows gene membership to more than one substructure by using a
flexible classifier [14, 21], thus, explicitly treating the substructures as hypothe-
ses, that can be tested and refined [5]. Moreover, these hypotheses can produce
novel annotations among different types of features at multiple specificity levels,
which explain co-regulation phenotypes and can be used to conduct gene-wide
searches.

Also, EMO-CC considers gene expression as one independent feature, thereby
allowing classification of genes even in the absence of its expression. Moreover,
EMO-CC minimizes the number of substructures by using a flexible compression
strategy that groups similar substructures based on their ability to describe
gene profiles derived from different experimental conditions (e.g., microarray
expression, or Chip-on-Chip binding occupancy).
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Our proposed methodology is applicable to a wide set of domains, being
easily to customize to particular problem, and may be an appropriate white-
box technique to uncover rear and unknown patterns in structural databases.
Particularly, this guideline can be easily extended to more complex networks
comprising protein-protein or different regulatory interactions [1, 2].
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Abstract. The rapid development of methods that select over/under expressed 
genes from microarray experiments have not yet matched the need for tools that 
identify informational profiles that differentiate between experimental condi-
tions such as time, treatment and phenotype. Uncertainty arises when methods 
devoted to identify significantly expressed genes are evaluated: do all microar-
ray analysis methods yield similar results from the same input dataset? do dif-
ferent microarray datasets require distinct analysis methods?. We performed a 
detailed evaluation of several microarray analysis methods, finding that none of 
these methods alone identifies all observable differential profiles, nor subsumes 
the results obtained by the other methods. Consequently, we propose a proce-
dure that, given certain user-defined preferences, generates an optimal suite of 
statistical methods. These solutions are optimal in the sense that they constitute 
partial ordered subsets of all possible method-associations bounded by both, the 
most specific and the most sensitive available solution.  

1   Introduction 

Advances in molecular biology and computational techniques permit the systematical 
study of molecular processes that underlie biological systems [1]. Particularly, mi-
croarray technology has revolutionized modern biomedical research by its capacity to 
monitor changes in RNA abundance for thousands of genes simultaneously [2].  

To address the statistical challenge of analyzing these large data sets, new methods 
have emerged ([3], [4], [5], [6], [7] and many others). However, there is a dearth of 
computational methods to facilitate understanding of differential gene expression pro-
files (e.g., profiles that change over time and/or over treatments and/or over patient) 
and to decide which is the most reliable method to identify differences across profiles.  

We investigated the performance of several commonly used statistical methods, in-
cluding T-Tests [4], Permutation Tests [5], Analysis of Variance [6] and Repeated 
Measures ANOVA [7], in identifying differential expression profiles that change over 
time, treatments and phenotype. We found that these methods do not identify all ob-
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servable distinct profiles. Moreover, none of them subsumes the results obtained by 
the other methods.  

In view of these results, we propose a conceptual clustering method [8], [9], [10], 
devoted to discover optimal associations of microarray analysis methods in an effort 
to identify differential gene expression profiles.  

2   Methods 

We propose a conceptual clustering approach [8], [9], [10] devoted to identify optimal 
associations among microarray analysis methods in an effort to identify differential 
expression profiles (Fig. 1). This approach consists of six phases: (1) preprocessing of 
the dataset; (2) identification of differentially expressed genes by application of sev-
eral statistical methods; (3) arrangement of a lattice structure containing all possible 
associations of the statistical methods applied; (4) association of differentially ex-
pressed genes into differential profiles by clustering genes that change their expres-
sion over time, patient and/or treatment; (5) evaluation of the performance of the 
method-associations based on their specificity and sensitivity in the identification of 
previously detected differential profiles, using multiobjective optimization techniques 
[11], [12]. We create a set of method association rules based on the learned mappings 
of differential profiles into method-associations, [13];  (6) finally, we are able to pre-
dict optimal method-associations to identify differential profiles in new microarray 
datasets by use of the method association rules.  

2.1   Identification of Differentially Expressed Genes  

We perform the retrieval of differentially expressed genes from one experimental 
condition to the other/s by application of several statistical techniques [3], [14], har-
boring Student’s T-Test proposed in [4], including some of the variants the method 
poses to distinguish changes in the abundance of RNA occurring over both treatment 
and time; Permutation Test described in [5], also including a time approach; Analysis 
of Variance described in [6]; and Longitudinal Data approach by using Repeated 
Measures Analysis of Variance described in [7]. 
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Fig. 1. Graphical representation of the methodology. The squared boxes represent the phases of 
the methodology, the round cornered boxes correspond to the input/output data at each step, 
and the ellipses the operations performed at each phase. 
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2.2   Detection of Method-Associations  

We arrange a lattice containing all potential associations of the statistical methods 
used to retrieve differentially expressed genes (Fig. 2). The methods are associated as: 

}...,...,,,,,{ 21312121 nn MMMMMMMMMMM ⊕⊕⊕⊕⊕= , (1) 

where ⊕  is a classical set operator (e.g., the union (U ) or the intersection (I )) ap-
plied to the sets of genes retrieved by each method, and 1M corresponds to T-Test, 

2M  to T-Test considering time, 3M  Permutation Test, 4M  Permutation Test con 
sidering time, 5M  ANOVA over treatment, 6M  ANOVA over time, 7M  ANOVA 
over treatment and time, 8M  RMANOVA over treatment, 9M  RMANOVA over 
time and 10M  RMANOVA over treatment and time.  

The lattice containing all potential method-associations, M, is structured from top 
(i.e., intersection of all methods) to bottom (i.e., union of all methods) [15]. Each 
node in the lattice ( MM i ∈ ) is applied to the microarray dataset (D) retrieving the 
set of differentially expressed genes that are recognized by the method or method-
associations in such node D))M i (( .  

M3
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Fig. 2. Lattice structure containing all statistical methods potential associations 

2.3   Identification of Differential Profiles  

The set of genes previously identified in Section 2.2 serves as a means to create dif-
ferential expression profiles (i.e., sets of genes with coordinate changes in RNA 
abundance) between treatment TP , control CP  and subject. The applied representation 

(Fig. 3) allows us to identify different pattern behavior among patients inside the 
same experimental group, since this information may be missed if patients in the same 
experimental group were not plotted individually. 

We clustered separately genes in treatment and control groups. Therefore, genes 
belonging to a cluster in treatment, TP , can fit in more than one cluster in control, CP , 

and vice versa. We apply the K-means clustering algorithm [16] and identify differen-
tial profiles denoted as )( CT PP , which are pairwise relationships between profiles, TP   
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 Treatment - 6  Control - 3 

TREATMENT CONTROL

HOUR      0 2 4  6 9 24 0 2 4 6 9 24 0 2 4 6 9 24  0 2 4 6 9 24 

PATIENT      1                    2                 3                  4 

HOUR   0 2 4 6 9 24 0 2 4 6 9 24  0 2 4 6 9 24 0 2 4 6 9 24

PATIENT      5                    6                 7                  8  

Fig. 3. The expression profiles have been represented separately for each experimental group 
and patients arranged individually  

and CP , from treatment and control experiments, respectively. This relationship is de-
fined as the significant intersection of genes between TP  and CP , which is constrained 
by a threshold based on the typical statistical power of 80%. 

2.4   Creation of Method Association Rule 

We create a set of method association rules that, given a set of differential  
profiles queried by the user, suggests the most appropriate method-associations  
capable to retrieve them. The method association rules are created based on the  
lattice structure from Section 2.2, containing all potential method-associations, and 
the set of all possible differential profiles P from Section 2.4 defined as 

})(,....,){( 1 lCTCT PPPPP = where PPP jCT ∈)(  represents each of the differential pro-
files present in P. 

2.4.1   Method-Association Performance Evaluation 
We evaluate the performance of the method-associations MM i ∈  for the query pro-
files ),,..,( 1 s

S xxX =  over two objectives: specificity and sensitivity 

)/( FNTPTNySpecificit +=       )/( FNTPTPySensitivit += , (2) 

where TP stands for True Positives (i.e., genes exhibiting profile S
u Xx ∈ , which 

have been successfully retrieved by the applied method-association iM ), TN stands 
for True Negatives (i.e., genes exhibiting profile S

u Xx ∉  and not retrieved by iM ), 
FP stands for False Positives (i.e., genes exhibiting profile S

u Xx ∉ and retrieved by 
iM ) and FN  stands for False Negatives (i.e., genes exhibiting profile S

u Xx ∈ and 
not retrieved by iM ). These four factors are calculated as: 
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where uϕ  represents the genes in the microarray set D that exhibit the queried profile 
S

u Xx ∈ , and (D)M ii =η , the genes from D retrieved by the method-association iM .  

2.4.2   Method-Association Selection 
We evaluate the method-associations in M based on their specificity and sensitivity. 
These two objectives are always conflicting, so we use a multiobjective optimization 
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technique to maximize them, allowing us to detect all optimal methods-associations in 
M for the query profiles SX  [11], [12]. We define objectives )( 2,1 OO  corresponding 
to specificity and sensitivity respectively. 

2.4.3   Creation of a Set of Method Association Rules 
We use the non-dominated method-associations described in Section 2.4.2 to create 
the method association rules R },...,{ 1 kRR=  where RR f ∈ is defined as: 

fR : IF 1x IS f
CT PP 1)( AND , . . . , AND sx  IS 

f
sCT PP )(  THEN 

fz  IS  
iM WITH 

fC , (4) 

where )xx s,...,( 1  are the profiles SX  queried by the user; f
CT PP 1)( ,…, PPP f

sCT ∈)( ; 
Mz f ∈  is the appropriate method-association to retrieve SX  according to rule fR ; 

and fC  denotes a measure of the specificity/sensitivity levels for fz , defined as:  

21

2211 ))(*())(*(

ww

MOwMOw
C

ii
f

+
+= , 

(5) 

where 1w  and 2w  are the weights associated to ),( 21 OO  respectively. These values 
are provided by the user based on the relevance of each of these objectives for the 
particular study. If no values are given, the standard (0.5, 0.5) are used. 

2.5   Prediction Using Method Association Rules 

The prediction phase works at two levels depending on the given input. If the input is 
a microarray data set D’, our methodology will provide the differential expression 
profiles P’ in the data set along with the optimal method-associations to retrieve such 
profiles. It might be the case that some of the differential profiles P’ uncovered from 
D’ were not included in the set of differential profiles P already learned by the meth-
odology. Consequently, the information provided as input will be used to update P 
and R. If the input is a set of query profiles SX , the output will consist of the optimal 
method-association hM  for SX  at a certain fC  value. To obtain these outputs, we 
apply matching and inference operations to the method association rule set [17].  

Given an association rule set },...,{ 1 kRRR = , for the differential profiles pro-
vided as the query set ),...,( 1 s

S xxX = , we define the matching degree Q of 
S

u Xx ∈ with the if-part of the association rule fR  as:  

f
uCTu

f
uCTu PPxPPxQ )(1))(( , −−= , (6) 

with being the Euclidean distance, and )( CT PP  the centroids of the profiles.  
Therefore, given a set of query profiles SX , we define the strength of activation of 

the if-part of the rule fR as: 

)))(,(,...,))(,(min()( 11
f
sCTs

f
CT

Sf PPxQPPxQXR = . (7) 

Let )),(( fSff CXRh denote the degree of association of the query profiles SX  
with the method-association iM according to rule fR and the specificity/sensitivity 
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level fC . This degree is obtained by applying a product operator between )( Sf XR  
and fC . The optimal method-association for the queried profiles SX  is defined as: 

iM / (ih
kf

iSi CXR
∈

= max)),( (fh )),( fSf CXR . (8) 

3   Results 

We apply our procedure to a data set derived from longitudinal blood expression pro-
files of human volunteers treated with intravenous endotoxin compared to placebo. 
We expect to identify molecular pathways that provide insight into the host response 
over time to systemic inflammatory insults, as part of a Large-scale Collaborative Re-
search Project sponsored by the National Institute of General Medical Sciences 
(www.gluegrant.org) [18]. 

The data were acquired from blood samples collected from eight normal human 
volunteers, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with 
placebo (i.e., patients 5 to 8) [18]. Complementary RNA was generated from circulat-
ing leukocytes at 0, 2, 4, 6, 9 and 24 hours after the i.v. infusion and hybridized with 
GeneChips® HG-U133A v2.0 from Affymetryx Inc., containing a set of 22283 genes.  

3.1   Identification of Differentially Expressed Genes  

The statistical methods harbored have been applied using the standard p-value 
05.0= . The number of differentially expressed genes retrieved by each of the 

methods from the original set of genes is 1M -10942 genes, 2M -7841, 3M -3904, 
4M -8023, 5M -13151, 6M -4588, 7M -6070, 8M -8557, 9M -3995, 10M -3367. 

These values show the number of significant genes retrieved by each of the statistical 
methods ranges in a wide rank. Moreover, the concordance rates also vary widely, in- 
 
Table 1. Coincidence between methods in the retrieval of genes. The number in each cell 
represents a ratio of coincidence between genes retrieved by the statistical method in  that col-
umn and the genes retrieved by the statistical method in that row relative to the total number of 
genes retrieved by the method in the row ( RowColumnRow /)( I ). 

% 1M  2M  3M  4M  5M  6M  7M  8M  9M  10M  
1M  -- 92.20 52.29 75.05 96.48 69.23 85.55 70.06 61.33 50.52 

2M  56.06 -- 34.07 57.84 85.27 59.54 71.11 62.64 50.57 42.98 

3M  82.19 88.07 -- 96.24 94.77 57.35 78.75 72.87 56.86 46.73 

4M  67.22 85.19 54.84 -- 95.16 55.49 73.65 70.20 51.49 42.83 

5M  55.20 77.80 33.45 58.94 -- 50.28 66.72 66.38 46.42 38.93 

6M  59.04 83.51 31.11 52.84 77.30 -- 89.63 56.56 60.64 49.38 

7M  58.36 79.79 34.18 56.10 82.05 71.70 -- 62.34 57.23 49.07 

8M  57.36 84.34 37.96 64.17 95.96 54.30 74.80 -- 49.62 40.51 

9M  62.10 84.21 36.63 58.21 84.74 72.00 84.95 61.36 -- 72.31 

10M  59.56 83.34 35.05 56.37 82.72 68.26 84.80 58.34 84.19 -- 
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dicating that none of the methods subsumes the others (Table 1)(e.g., from the genes 
retrieved by 3M , only 31.11% are also retrieved by 5M , and 52.29% by 1M ).  

3.2   Association of Statistical Methods  

The lattice arranged in this particular work contains all potential combinations of un-
ion and intersection of the ten statistical methods applied. Thus, M’ is defined as 

}...,...,,...,
,...,,,.,,..,{

10932132132

31211021

MMMMMMMMMM
MMMMMMMM

⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕=  

We found that there is a relationship between the statistical methods and the differ-
ential profiles they are able to identify (see Section 2.2), having differential profiles 
identified by some methods and not by others. For example, the differential profile in 
(Fig. 4(a)) harbors 29 genes in our dataset D and is only retrieved by those statistical 
methods that take into account the time factor (e.g., 2M , which retrieves more than 
90% of these genes). This happens because the statistical methods that consider the 
treatment vs. control factor make an average of the expression values from patients 1 
and 2 with those of patients 3 and 4 by considering them as replicas. Consequently, 
the differential behavior between them is lost.  

 Treatment - 8 

 Treatment - 21  Control - 9 

 Control - 7 

TREATMENT CONTROL 

a)

b)

 

Fig. 4. Examples of differential profiles only identified by some of the statistical methods 

3.3   Identification of Differential Profiles  

The expression profiles have been represented separately for each experimental group 
(Section 2.3), and patients arranged individually. In our current problem, with eight 
patients, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with 
placebo (i.e., patients 5 to 8), and data retrieved over time at hours 0, 2, 4, 6, 9 and 24, 
each profile is represented by 24 consecutive time points (see Fig. 5). 

The differential profiles extracted from the treatment group show different levels of 
expression change. For example, there are sets of genes sharing very high variations 
in the levels of expression (e.g., profiles 15, 19, 21, and 22 in Fig. 5). In addition, 
some other profiles show differential characteristics for the patients (e.g., profiles 8 
and 16 in Fig. 5). In the control group, the profiles are more homogeneous than in the 
treatment group. 

Typically, testing the coincidence among different data sources and clustering 
methods serves as a tool to investigate the validity of the identified groupings [19]. 
We follow this guideline to increase the confidence in the obtained differential pro-
files. Therefore, we calculate the coincidence between our retrieved differential profi- 
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Fig. 5. Representation of the differential profiles obtained separately for the treatment and con-
trol groups using the statistical methods applied in the current work   

 
les and external information provided by the Gene Ontology database [20]. To ad-
dress this problem we developed an evolutionary multiobjective conceptual clustering 
methodology (R.R.Z., C.R.E., O.C., J.P.C., and I.Z., manuscript in preparation) that 
extracts clusters composed of features such as biological processes, molecular func-
tions and cellular components defined at different specificity levels, and compare 
these clusters with our differential profiles by using a coincidence index test based on 
the hypergeometric distribution [9], [10], [19].  

3.4   Creation of Method Association Rules  

We have arbitrarily selected six profiles (i.e., 1)( CT PP ,…, 6)( CT PP ) identifying a total 
of 1395 genes in our dataset D and plotted as treatment clusters 2, 3, 4, 5, 10 and 12 in 
Fig. 5. These profiles represent genes exhibiting non-uniform behavior for distinct pa-
tients in the treatment group, and genes with changes in a level of expression smaller 
than 5000. We applied our methodology to find the optimal method-associations iM  
to retrieve them.  

3.4.1   Method Association Performance Evaluation 
The results of the evaluation of the method-associations contained in the lattice M’ for 
the differential profiles are shown in Table 2, where the information relative to the 
sensitivity and specificity levels for the application of the most representative method-
associations over D is also specified. On the one hand, we observe that the union set 
of the genes obtained by seven of the statistical methods evaluated (i.e., methods 

10876532 ,,,,,, MMMMMMM ) contains the 1395 genes desired (i.e., sensitivity 
value of 1) but with a low level of specificity (i.e., value of 0.369). On the other hand, 
the intersection set of genes obtained by the same seven statistical methods has a very 
low level of sensitivity (i.e., only 95 out of the 1395 genes were retrieved), whereas 
the value for specificity is very high. In between these two extremes we see some 
other method-associations which evaluation reveal trade-off solutions between the 
specificity and sensitivity objectives (Table 2).  
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3.4.2   Method Association Selection 
Once the method-associations M have been evaluated, we search for the non-
dominance relations in their applications to the microarray dataset D. The decision is 
based on the levels of specificity and sensitivity in Table 2. The Pareto optimal front 
conformed by this set of non-dominated method-associations is represented in Fig. 6.  

Table 2. Specificity and sensitivity values for the method-associations. The non-dominated so-
lutions are pointed out with a star. 

Methods Specificity Sensitivity 

                               2M  0.611 0.707 

                               3M  0.826 0.205 

                               5M  0.448 0.785 

*                                  6M  0.813 0.447 

*                                  7M  0.747 0.587 

                              8M  0.625 0.537 

*                                 10M  0.859 0.322 

                      2M ∩ 3M  0.803 0.432 

*                         2M ∪ 3M  0.618 0.866 

*   Union of ( ),,,,,, 10876532 MMMMMMM  0.3690 1 

* Intersection  of ( ),,,,,, 10876532 MMMMMMM 0.983 0.066 
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Fig. 6. Results of the evaluation of the method-associations contained in the lattice M’ for the 
six selected differential profiles 

3.4.3   Creation of Method Association Rules 
The set of method association rules is created based on the evaluated profiles (i.e., 

1)( CT PP ,…, 6)( CT PP ), and the method-associations iM present in the Pareto optimal 
front of non-dominated solutions. The weights ),( 21 ww associated to the objectives 

),( 21 OO  are set to (0.5, 0.5) to calculate the specificity/sensitivity measure fC . We il-
lustrate two association rules extracted from the evaluation of M’ over the former pro-
files, which have the following form:  

1R : IF 1x  IS 1
1)( CT PP   AND ,…, AND 6x  IS 1

6)( CT PP  THEN 1Z  IS 6M WITH 1C  

where fC is calculated based on the specificity/sensitivity levels obtained on the ap-
plication of such method over 1)( CT PP  ,…, 6)( CT PP  profiles (Table 2):  
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631.0)5.05.0/()447.0*5.0()813.0*5.0(1 =++=C  

and: 2R : IF 1x IS 2
1)( CT PP AND,…,AND 6x IS 2

6)( CT PP THEN 2Z IS 32 MM U WITH 2C  

where 2C  is defined as: 742.0)5.05.0/()866.0*5.0()618.0*5.0(2 =++=C  

3.5   Prediction Using Method Association Rules 

To evaluate the ability of our computational approach to retrieve differential profiles, 
we have randomly selected 100 query sets SX  containing a random number of dif-
ferential profiles from the 24 actually available. Using the method association rules 
created, and averaging the results, we obtained an 86.92% of overall performance 
measurement [21] as a particular correlation coefficient implementation.5   Prediction 
using method association rules 

4   Discussion  

The emergence of microarray technology as a standard tool for biomedical research 
has necessarily led to the rapid development of specific analytical methods to handle 
these large data sets. Despite the multiplicity of methods devoted to identify differen-
tially expressed genes, there is a dearth of computational methods intended to opti-
mize use of a particular method or suite of methods. Our motivation was to address 
two frequently asked questions: 1) do all methods retrieve the same results with the 
same set of input data, and 2) are the results from methods which retrieve a smaller 
amount of genes subsumed in the results of methods retrieving a larger amount of 
genes? We have shown herein how commonly used statistical methods yield different 
results for the same data input: each statistical method applied neither identifies all 
observable differential profiles, nor subsumes the results obtained by the other meth-
ods (see Tables 1 and 2). Our method also addresses another common conundrum, 
specifically the need for computational methods to facilitate understanding of differ-
ential gene expression profiles, to establish comparisons among them, and to decide 
which the most reliable method to identify informational profiles is. In this context we 
propose a procedure that generates optimal associations of microarray analysis meth-
ods for the set of data being analyzed, based on the differential expression profiles 
exhibited by the genes in the dataset.  

The generation of the optimal method-associations is based on a set of previously 
obtained method association rules between differential profiles and the optimal 
method-associations to identify them. The methodology proposed is valid for either 
providing the optimal method-associations for a set of query profiles, or identifying 
all differential profiles in a given set of microarray data, suggesting the optimal 
method-associations for them and updating the set of possible profiles used for pre-
diction. Although we have applied our procedure to a time-course structured experi-
ment, we have to take into account that time-course experiments constitute more gen-
eral cases than simpler microarray problems where time is not a factor and microarray 
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samples are taken as single data points. Therefore, the methodology presented is also 
useful for simpler microarray experiments with single data points. 

This approach presents various advantages over the standard analytical methods 
usually applied to microarray experiments. First, it permits combining the results of 
independent analytical methods for microarray experiments. Our proposal consists of 
a conceptual clustering technique that combines the advantages of the methods ap-
plied. The combination of the union and intersection operators also provides the pos-
sibility of querying negative samples (i.e., genes which exhibit a given profiles but 
not others). Second, it permits interaction with the user in the selection of differen-
tially expressed profiles, where the user provides the differential profiles queried from 
the set of microarray data and receives the optimal combination of statistical methods 
to retrieve the genes exhibiting those profiles. Third, the representation used for the 
profiles is optimal, as plotting the patients sequentially presents advantages over the 
traditional one, where all biological replicates (i.e., patients in the same experimental 
group) are combined in just one set of values. The main advantage of this representa-
tion is that we can examine the behavior of the genes independently in each patient, 
making it possible for us to recognize different behaviors of genes across the patients 
in the same experimental group. These differences can help us to discover the influ-
ence of biological conditions not previously considered in the experiment such as 
gender or age. Finally, the system provides solutions based on a trade-off of specific-
ity vs. sensitivity, whereas other methods evaluate their solutions over one measure, 
usually a ratio of False Positives and the total number of genes retrieved [4], [5]. As a 
result of this trade-off, the procedure provides as output all non-dominated solutions 
in terms of specificity and sensitivity by application of multiobjective techniques.  

The computational procedure we propose solves many of the problems actually 
present in the process of analyzing a microarray experiment, such as the decision of 
analytical methodology to follow, extraction of results biologically significant for the 
experts, proper management of complex experiments harboring experimental condi-
tions, time-series and patients. Therefore, it sets up a robust platform for the analysis 
of all types of microarray experiments, from the simplest experimental design to the 
most complex, providing accurate and reliable results.  
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Abstract. As DNA microarrays have been widely used for gene expres-
sion profiling and other fields, the importance of reliable probe design for
microarray has been highlighted. First, the probe design for DNA mi-
croarray was formulated as a constrained multi-objective optimization
task by investigating the characteristics of probe design. Then the probe
set for human paillomavrius (HPV) was found using ε-multi-objective
evolutionary algorithm with thermodynamic fitness calculation. The evo-
lutionary optimization of probe set showed better results than the com-
mercial microarray probe set made by Biomedlab Co. Korea.

1 Introduction

DNA microarray, especially oligonucleotide array, consists of the DNA sequences
called probes, which are DNA complementaries to the genes of interest, on a solid
surface. When the molecules of a cell is put to the microarray, if there exists a
complementary oligonucleotide to one of the probes, it would hybridize to the
probe so that a user can detect it using various methods. In this way, DNA
microarray can provide the information on whether a gene is expressed or not
for hundreds of genes simultaneously. Therefore, DNA microarray is widely used
to study cell cycle, gene expression profiling, and other DNA-related phenomena
in a cell; and has become the method of choice to monitor the expression level
of a large number of genes.

By the way, microarray depends on the quality of probe sets that used. If a
probe hybridizes to not only its target gene but also other genes, the microarray
may produce misleading data. Thus, one needs to design the probe set care-
fully to get precise data. Till now, lots of probe design methods and strategies
are suggested reflecting its importance [16]. Gordon and Sensen proposed a Os-
prey system based on various well-defined criteria [5]. Zuker group implemented
OlgioArray 2.0 using thermodynamic data to predict secondary structures and
to calculate the specificity of targets on chips [10]. Wang and Seed suggested
OligoPicker which uses BLAST search for sequence specificity decision [18].

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 184–195, 2006.
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Though they have shown the good results, the main algorithm of most pre-
vious system is a simple generate and filter-out approach. Recently, a method
based on machine learning algorithms such as näıve Bayes, decision trees, and
neural networks has been proposed for aiding probe selection [15]. And in our
previous work [8], we used a multi-objective evolutionary algorithm for probe
selection of DNA microarray. We designed 19 probes for human papillomaviruses
using non-dominated sorting genetic algorithm-II (NSGA-II). In this paper, we
improved our previous approach in many ways. First, we reformulated the probe
design problem by investigating the characteristics of the probe design. Sec-
ond, we adopted ε-multi-objective evolutionary algorithm (ε-MOEA) instead of
NSGA-II. In a related field, DNA sequence design for DNA computing, we no-
ticed that ε-MOEA outperforms NSGA-II for DNA sequence design problem [12].
Based on these results, we improved the main algorithms to ε-MOEA. Third, we
changed the fitness criteria of probe design by combining thermodynamic data
and sequence similarity search.

In the following sections, we explain the suggested probe design method in
detail. In section 2, we briefly introduce the multi-objective optimization prob-
lem and formulate the probe design problem as multi-objective optimization
problem. Section 3 and 4 describe our probe design method and provide the
experimental results. In Section 5, the conclusion will be followed.

2 Multi-Objective Probe Design

2.1 Multi-Objective Optimization Problem

A multi-objective optimization problem (MOP) has a number of conflicting objec-
tives which are to be optimized [1]. For non-conflicting objectives, the optimiza-
tion of one objective implies the optimization of the other and both objectives can
be treated as one objective. And if there exists priority between objectives, one can
optimize objectives according to the priority by optimizing single objective which
is the weighted sum of objectives. Therefore, for both cases, the given problem
becomes a single objective optimization problem. However, in MOP, objectives
conflict each other and there is no given priority between objectives, which makes
the optimization more difficult than in single objective case.

The general form of multi-objective optimization problem is like the following:

Optimize fm(X), m = 1, · · · , M,

subject to gj(X) ≥ 0, j = 1, · · · , N,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, · · · , n (1)

where, X is a vector of n decision variable [x1, · · · , xn]T , f represents objective,
g is constraint, M denotes the number of objectives, and N the number of
constraints. x(L) is lower value of decision variable and x(U) is upper value of
decision variable.

Given an optimization problem, one’s goal is to find optimal solution(s). For
a single objective case, the optimality of a solution is determined by simply
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comparing its objective function value to others. In multi-objective case, the
optimality of a solution is determined by domination relation between solutions.
A solution X is said to dominate other solution Y in the case of maximization
when the following two conditions are satisfied and denoted by X � Y :

∀i ∈ {i, · · · , M}, fi((X)) ≥ fi((Y )),
∃i ∈ {i, · · · , M}, fi((X)) > fi((Y )). (2)

Therefore, the optimal solutions for a MOP are those that are not dominated by
any other solutions. Thus, one’s goal in MOP is to find such a non-dominated
set of solutions.

2.2 Probe Design as Multi-Objective Optimization

There exist several criteria to evaluate the set of probes [5]. We list the generally
used conditions for good probes:

1. The probe sequence for each gene should not appear other genes except its
target gene.

2. The probe sequence for each gene should be different from each other as
much as possible.

3. The non-specific interaction between probe and target should be minimized.
4. The probe sequence for each gene should not have secondary structure such

as hairpin.
5. The melting temperatures of the probes should be uniform.

The first three conditions concern with the specificity of the probes. And the
secondary structure of a probe can disturb the hybridization with its target gene.
Lastly, the probes on a oligonucleotide chip are exposed to the same experimental
condition. If the melting temperatures of the probes are not uniform, some probes
can not hybridize with its target.

We formulated the above conditions for clear definition of microarray probe
design problem. The first condition regarded as a constraint, since it is the basic
requirement for probes. And the fifth condition was not considered as one of
objectives but was used as the final decision criterion to choose the best solution
among diverse Pareto optimal solutions which are the results of the MOEA run.

Therefore, we formulated the microarray probe design using three fitness
functions and one constraint. Before going on the formulation of the prob-
lem, let us introduce the basic notations. We denote a set of n probes by
P = {p1, p2, · · · , pn}, where pi = {A, C, G, T}l for i = 1, 2, · · · , n, l is the length
of each probe. And we denote the set of target genes by T = {t1, · · · , tn}.

The constraint is the basic requirement for probes.

g(P ) =
∑
i�=j

subseq(pi, tj), (3)

subseq(pi, tj) =
{

1 if pi occurs in tj at least once
0 otherwise
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Since the probe sequences should not be the subsequence of the non-target gene
sequences (condition 1), this constraint is the basic requirement. And from its
definition, this constraint should be zero. Other conditions are implemented
as three fitness functions. First one is to prevent hybridization between probe
and non-target genes (condition 2). Second is to prevent hybridization between
probe and improper position of target genes (condition 3). Even though probe
hybridized to the undesired site of its target gene, this can give the right infor-
mation. Therefore, this seems to be unnecessary fitness functions. However, for
more specific probe design, we add this fitness function in our design criteria.
Last one is to prohibit forming unwanted secondary structures which can dis-
turb the hybridization between probe and target (condition 4). They could be
abstracted as follows:

f1(P ) =
∑
i�=j

hybridize(pi, tj), (4)

f2(P ) =
∑

i

hybridizetarget(pi, ti), (5)

f3(P ) =
∑

i

secondary(pi). (6)

where, hybridize(pi, tj) has non-zero value in proportion to the hybridiza-
tion likelihood between pi and tj . hybridizetarget(pi, ti) is similar with
hybridize(pi, tj). It increases its value when pi and ti hybridize in the non-
designed positions which are not the chosen site for pi in ti. secondary(pi) has
non-zero value in accordance with the probability that pi can form the unwanted
secondary structures.

The relationship between three objectives are shown in Fig. 1. The graphs
were plotted using 420 20-mer DNA sequences and their Watson-Crick comple-
mentary combinations. f1 or f2 has the some conflict relation with f3. Though,
in precise, the relation should be treated as random, these objectives could be
solved by MOEAs. And f1 and f2 has a linear relation as we expected.

From above, the probe design problem is formulated as an MOP with 3 min-
imization objectives and 1 equality constraints.

Minimize fi(P ), i = 1, 2, 3;
subject to g(P ) = 0. (7)

3 Multi-Objective Evolutionary Probe Optimization

To design probe set that satisfies above condition, we used ε-multi-objective
evolutionary algorithm (ε-MOEA). There exist several methods to find such non-
dominated set of solutions for a MOP. Among them, evolutionary method is one
of the most popular and actively studied methods. It has the advantage that it
can provide a set of non-dominated solutions by one run due to a population-
based method [1]. And among various multi-objective evolutionary algorithms,
ε-MOEA has shown the best performance [7, 2, 3].
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within
target gene

non-target gene

secondary
structures

Fig. 1. The relationship between objectives for probe design. The data are generated
using 20 mer DNA sequences and Watson-Crick complement.

3.1 ε-Multi-Objective Evolutionary Algorithm

ε-multi-objective evolutionary algorithm (ε-MOEA) is a steady-state genetic al-
gorithm using elite archive and ε-dominance relation [7, 3]. The most important
characteristic of ε-MOEA is the ε-dominance relation. In ε-dominance relation,
x ε-dominates y if the difference between x and y is greater than or equal to a
certain amount ε in all objectives and is strictly better than y by ε in at least
one objective. The mathematical definition is

X ε− dominates Y ⇐⇒ (1 + ε)f(X) ≥ f(Y ). (8)

The ε-dominance is introduced to maintain a representative subset of non-
dominated individuals. The ε-non-dominated set is smaller than the usual non-
dominated set, for the non-dominated solutions which can be ε-dominated by
others are removed in ε-non-dominated set. Therefore, ε-Pareto set is a subset
of the Pareto-optimal set which ε-dominates all Pareto-optimal solutions. And
the minimum distance between nearest solutions can be guaranteed by dividing
whole search space into many grides. The density of the approximate set can be
adjusted by controlling the value of ε [7]. Utilizing the ε-dominance in selecting
representative subset of non-dominated set and maintaining them in the archive



Microarray Probe Design Using ε-MOEA 189

1. Randomly generate initial pool.
2. Sort by domination, and set first front as archive.
3. Generate one new individual by choosing the parents from population and archive.

(a) Choose two individuals from population.
(b) Choose dominating solution, if dominates; choose random one, otherwise.
(c) Choose one individuals from archive.
(d) Perform crossover and mutation.

4. Update archive.
(a) Replace ε-dominated individual(s) in the archive with new individual, if new

individual ε-dominates archive member(s).
(b) Leave dominating member, if there are more than one archive members in

the same grid.
(c) Add new individual, if archive members do not dominate new individual.

5. Update population.
(a) Replace dominating individual(s) with new individual.
(b) Replace randomly selected population member with new individual, if there

is no population member which dominates the new individual.
6. Check termination.

Fig. 2. The psedocode of ε-MOEA

throughout generations, ε-MOEA showed good convergence and diversity per-
formance [2, 3, 7].

The procedure of ε-MOEA for probe optimization is explained in Fig. 2. We
slightly modified ε-MOEA proposed by Deb [2]. At each generation, parents for
new offspring are chosen from the population and the archive respectively. The
parent from the population is chosen by tournament selection and the parent
from the archive is selected randomly. Then, an offspring is produced from these
parents and evaluated. The offspring replaces an individual of the population if
there exists one dominated by it in usual sense. If the offspring ε-dominates one
or more members of the archive, it replaces the ε-dominated members. Or, the
offspring is added to the archive if no archive member ε-dominates it and it ε-
dominates no archive member. Otherwise, the offspring is discarded. Therefore,
the ε-non-dominated individuals are always the member of the archive. This
process is repeated until termination [7].

3.2 Thermodynamic Fitness Calculation

The previous microarray probe design tools can be classified into two groups
by their probe specificity evaluation methods: thermodynamic approach [10, 9]
and sequence similarity search approach [18, 4]. In thermodynamic approach, the
optimum probes are picked based on having free energy for the correct target, and
maximizing the difference in free energy to other mismatched target sequences.
A sequence similarity search methods used BLAST or BLAT [6] to check cross-
hybridization. Since thermodynamic approach is more accurate method between
them [10, 9], we calculate the fitness objectives in 2.2 using thermodynamic data.
The thermodynamic fitness functions are implemented by the modified Mfold
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eMOEA for Candidate Selection 

BLAT Search / Hybridization Simulation / Others

Many Possible Solutions

Fig. 3. The steps for probe design

[19] for OligoArray problem [10]. We downloaded the stand-alone program source
code and slightly modified for fitness functions.

3.3 Probe Selection Procedure

The multi-objective evolutionary algorithm has the advantage that one can get
the Pareto optimal solutions at a time. However the users usually need one
promising solution, not the set of whole Pareto optimal solutions. Therefore, we
incorporated the decision makers to select the most promising solution among
Pareto solutions. First, the Pareto optimal solutions can be found by ε-MOEA.
Then, BLAT search [6], hybridization simulation [13], and melting temperature
calculation choose one candidate solution. BLAT is a BLAST-like sequence align-
ment tool, but much faster than BLAST [6]. NACST/Sim [13] is a hybridization
simulation tool to check cross-hybridization based on nearest neighbor model of
DNA [11]. Melting temperature is also calculated by nearest neighbor model.

Through these steps, user could be recommended the most promising probe
set while maintaining the flexibility to select among various solutions. Using
the characteristics of MOEA, we can improve the reliability of the optimized
probe set by combining the diverse criteria such thermodynamic fitness calcula-
tion, sequence similarity search, and other user-define criteriaThis procedure is
summarized in Fig. 3.

4 Experimental Results

4.1 Human Papillomavirus

The proposed constrained multi-objective approach was used to find probe set of
human papillomavirus (HPV). HPV is known to be the cause of cervical cancer
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[17]. HPV types can be divided into two classes: ones that are very likely to cause
the cervical cancer and the others that are not. 19 genotypes of HPV belong to
the first class are selected as target genes. The goal is to discriminate each
of 19 genotypes among themselves. The selected 19 genes are HPV6, HPV11,
HPV16, HPV18, HPV31, HPV33, HPV34, HPV35, HPV39, HPV40, HPV42,
HPV44, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59, and HPV66. And
to improve the accuracy, L1 region of each gene sequences is chosen. Each gene
and L1 region are selected by Biomedlab Co., Korea with experts’ laborious
works.

4.2 Parameter Settings

Based on the experimental data from Biomedlab, the length of each probe was
set to 30 nucleotides long. For ε-MOEA, we used the various parameters. The
size of population was set as 100 and the maximum generation number as 1,
1,000, 5,000, and 100,000. The crossover and mutation rates were set as 0.9 and
0.01 respectively. The ε was set as 1 for better convergence. For BLAT, we use
default parameter settings. For NACST/Sim, we set hybridization temperature
as 40◦C, where the concentration of sodium ion and oligomers were set to 1M
and 1μM respectively. The hybridization temperature was decided based on the
experimental data from Biomedlab.

4.3 Probe Design Results

Our method is based on evolutionary approach, not a simple generate-filter ap-
proach which is used by most previous probe design tools. To check the merits of
evolutionary approach, we compared the results by varying maximum generation
from 1 to 100,000. Evolutionary algorithm with generation 1 would be the same
as generate-filter method. The comparison results are shown in Table 1. As we
expected, design with more generation can find better probe set. In the aspect
of the number of average cross-hybridization which is checked by NACST/Sim,
probe set with more generation produces the less cross-hybridization. A cross-
hybridization means the undesirable hybridization between probes and genes.
Especially, the comparison result between generation 1 and 1,000 showed the
remarkable improvement. This means evolutionary approach can design more
reliable probe set compared to the simple method. In addition, more than 1,000
generation did not show the impressive improvement. This result implies one
does not need a quite large number of generation to find better probe set.

Table 1. The comparison result for various generation. As generation goes on, the
probes show the less cross-hybridizations.

Generation 1 1,000 5,000 100,000

Number of average cross-hybridization 41.33 13.45 13 10.64

Number of Pareto-optimal probe sets 12 11 4 38
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Table 2. in silico hybridization results for Pareto set with generation 1000

Set Number of cross-hybridization

0 16

1 15

2 15

3 12

4 23

5 11

6 9

7 10

8 7

9 11

10 19

Table 3. The comparison result between probes in commercial chip (Biomedlab),
selected probes using NSGA-II [8], and selected probes with ε-MOEA. First row means
the undesirable hybridization between probes and genes calculated by NACST/Sim.
Second raw represent the similar sequences appear in the wrong position. Therefore, 0
means the probe sequence appear only in its original position. The proposed method
(ε-MOEA showed best performance for all aspects.

ε-MOEA NSGA-II Biomedlab. Probes

# cross-hybridization 7 21 17

BLAT search 0 0 (1 for whole) 0

Melting temperature (oC) 72.58 ± 3.55 74.87 ± 2.34 77.52 ± 5.03

As shown in Table 1, there are various candidate probe sets (4 ∼ 38) as re-
sults of ε-MOEA. To choose best probe set among candidate probe sets, we used
BLAT with HPV gene sequences first. However, we could not find any cross-
hybridization using BLAT unfortunately. Since L1 region of HPV sequences is
very well discriminated parts of HPV sequences, there is no similar sequences.
Even when we compared L1 region sequences with whole HPV sequences using
BLAT, we can find only few similar sequences. Second, we use in silico hybridiza-
tion using NACST/Sim. The results are shown in Table 2. We used NACST/Sim
for Pareto set found by 1000 generation. As explained previously, 1000 genera-
tion showed the most significant result and other runs required too much run
times. As a result, we chose set no. 8 for final probe set, since that set showed
the smallest number of cross-hybridization.

To verify the reliability of final probe set, we compared the probe set by ε-
MOEA with the probes in commercial chip made by Biomedlab and the probe set
by NSGA-II [8]. Table 3 showed the comparison results. ε-MOEA found the best
probe set. Probe set by NSGA-II has three times more cross-hybridizations and
Biomedlab probes has 2.5 times more cross-hybridizations. We ran BLAT for L1
region and whole HPV sequence respectively. BLAT found one similar sequences
for whole HPV sequences in NSGA-II probe set, and could not find any more
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Table 4. The final set of probes chosen by the proposed method for HPV

HPV Type Probe Sequence

HPV6 CATGTACTCTTTATAATCAGAATTGGTGTA
HPV11 TCTGAATTAGTGTATGTAGCAGATTTAGAC
HPV16 TCCTTAAAGTTAGTATTTTTATATGTAGTT
HPV18 ATGTCTGCTATACTGCTTAAATTTGGTAGC
HPV31 CTTAAATACTCTTTAAAATTACTACTTTTA
HPV33 CTGTCACTAGTTACTTGTGTGCATAAAGTC
HPV34 GTGCAGTTGTACTTGTGGATTGTGTACCTA
HPV35 TTTATATGTACTGTCACTAGAAGACACAGC
HPV39 AAGGTATGGAAGACTCTATAGAGGTAGATA
HPV40 CTTGAAATTACTGTTATTATATGGGGTTGG
HPV42 AAATTAGCAGCTGTATATGTATCACCAGAT
HPV44 TTGCTTATATTGTTCACTAGTATATGTAGA
HPV45 CATGTCTACTATACTGCTTAAACTTAGTAG
HPV51 AAAGTTACTTGGAGTAAATGTTGGGGAAAC
HPV52 TTTATATGTGCTTTCCTTTTTAACCTCAGC
HPV56 ATTAATTTTTCGTGCATCATATTTACTTAA
HPV58 TTTATATGTACCTTCCTTAGTTACTTCAGT
HPV59 TAGGTGTGTATACATTAGGAATAGAAGAAG
HPV66 GAAGGTATTGATTGATTTCACGGGCATCAT

similar sequences. Probe set by ε-MOEA has also the lowest melting temperature
among three probe sets. Though NSGA-II has the smallest melting temperature
variation, the difference is not so significant compared to ε-MOEA. The reason
why NSGA-II found the near uniform melting temperature probe set is NSGA-
II used the melting temperature variation as one of objectives [8]. Even though
we did not use that objective, our approach can find the comparable results.
The probes practically used in Biomedlab showed the poorest results in melting
temperature, even though the melting temperature variation is important for the
microarray experiment protocols. The final probe set generated by the proposed
approach is shown in Table 4.

5 Conclusion

We formulated the probe design problem as a constrained multi-objective opti-
mization problem and presented a multi-objective evolutionary method for the
problem. Because our method is based on multi-objective evolutionary algo-
rithm, it has the advantage to provide multiple choices to users. And to make
it easy to choose among candidates, we suggested the criteria as an assistant
to the decision maker. It is shown that the proposed method could be useful to
design good probes by applying it to real-world problem and comparing them
to currently used probes.

Though the previous works focused on finding the moderate probe set in short
time, we focused on improving the quality of probe set. Therefore, our approach
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need more computational time compared to the previous approaches. However,
we showed the small iterations can improve the probe set quality significantly. In
addition, MOEA can combine thermodynamic methods and sequence similarity
search. Since these results are the preliminary results, it is necessary to optimize
several time consuming stages.
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Abstract. Genome sequencing has achieved tremendous progress over
the last few years. However, along with the speedup of the process and an
ever increasing volume of data there are continuing concerns about the
quality of the assembled sequence. Many genomes have been sequenced
only to a draft, leaving the data in a series of more–or–less organized
scaffolds, and many feature a small, but not negligible number of mis-
assembled pieces. In this paper we present a new method for automated
flagging of potential trouble spots in large assembled supercontigs. It
can be incorporated into existing quality control pipelines and lead to a
considerable improvement in the sensitivity to certain types of errors.

1 Introduction

Despite the advances in the genome sequencing technology, quality of the as-
sembled products remains a major concern. A recent study done by the Genome
Sciences Centre in Vancouver, Canada, in collaboration with several sequencing
centers in the United States has identified an average of 4.19 to 4.57 assem-
bly problems per one million bases including an average of 0.3 to 0.4 wrong and
misassembled clones (Rene Warren, personal communication). While these num-
bers are reasonably low for such complex operation as the assembly of vertebrate
genomes, they are sufficiently high to warrant continued attention.

The first vertebrate genome assembled was that of human. This task was
preceded by the construction of detailed maps and the establishment of a large
number of markers along chromosomes [5]. Only after this task has been sub-
stantially completed the sequencing of many large insert clones (Yeast Artifi-
cial Chromosomes, YACs, at first, followed by more stable Bacterial Artificial
Chromosomes, BACs) could begin. At first, the Human Genome Project centers
intended to perform the sequencing in a structured way, following the maps and
progressively expanding the tiling path of large insert clones (further referred to
as LICs), finishing them to full accuracy (initially set to less than one error in
every ten thousand bases) in the process. While the groups outside the United
States continued pursuing this strategy, which resulted in the early completion
of chromosomes 21 [2] and 22[1], the emergence of the whole–genome shotgun
strategy [15] and subsequent challenge to the public effort by a private company,
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Celera Genomics, led to the change of course for the consortium members lo-
cated in the US. The human genome has been first released as draft sequence [6]
covering about 90% of its euchromatic part, mostly as a collection of unordered
and unoriented contigs featuring 147,821 gaps. The finished sequence followed
almost three years later [7].

While Celera constructed its scaffolds of the human genome using the whole–
genome shotgun approach and mixing clones of different lengths [14], the public
HGP was completed using LICs, mostly BACs from CalTech and RPC-11 li-
braries. Initially there were about 600,000 of these clones, of average length of
150Kb, and only a part of these were selected for further breaking into sequenc-
ing clones (M13 or plasmid, each of about 2Kb in length). The remainder has
been end sequenced, generating paired reads of about 500 to 1,000 bases long,
and used as an aid in the final assembly of chromosomes. BAC clones have been
created by partial digestion of DNA with restriction enzymes, EcoRI and HindIII
at CalTech, and EcoRI and MboI for RPC-11. In order to generate the desired
range of LIC sizes the enzymes have been appropriately diluted.

After the HGP switch to the rapid generation of draft sequence the goals
of clone selection have changed from the orderly generation of tiling paths of
finished LICs to the identification of non-overlapping clones, in order to assure
the production of the maximal possible amount of new sequence (Ken Dewar,
personal communication). In consequence, after generating the draft the public
consortium was left with a daunting task of organizing thousands of contigs in
which more than 50% of the bases lied in assembled regions of less than 100Kb.
This process was prone to laboratory errors in clone handling, which we have
addressed in an earlier paper [13], and to the incorrect placement of LICs in
tiling paths. In this manuscript we address a new computational method whose
original development was done in order to address the latter issue.

The efforts of generating the complete human sequence could be broadly clas-
sified in two categories: finishing of individual LICs and their arrangement along
chromosomes. While the challenges concerning the former mostly lied in labora-
tory work, the latter primarily involved computation. The first arrangement have
been produced by W. James Kent at the University of California, Santa Cruz [9],
who used the information contained in the initial sequence contigs, linkage and
fingerprint maps, mRNA and Expressed Sequence Tags (EST) data, and BAC
end sequences. The Institute for Genomic Research (TIGR) in Rockville, Mary-
land, provided end sequences for about 500,000 BACs from the human libraries,
out of which about 300,000 were sequenced from both ends (generating around
600,000 paired reads) and the remaining 200,000 were unpaired. In addition,
about 750,000 fosmid clones (similar to BACs, but much shorter — about 40Kb
in size, on average) have been created and end–sequenced for the verification of
the assembly. These clones provided another 8× coverage of the human genome,
bringing the total to almost 30–fold redundancy [7].

After the completion of the Human Genome Project, the sequencing com-
munity has been steadily moving towards the whole–genome shotgun assembly
method. The mouse [10] and rat [12] genomes have been assembled using a hy-
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Fig. 1. Coverage of genomic sequence by large insert clones. These actually sequenced,
represented by solid lines form a tiling path, while these only end-sequenced (repre-
sented by solid ends with reads pointing towards each other) are shown as dotted lines.
If the paired end–reads were placed on the path in the right orientation and at about
right distance, this was considered as additional coverage of the enclosed bases. The
thick line at the bottom represents the assembled chromosomal region.

brid approach, and the subsequent vertebrate genomes were assembled by new
mega–assemblers [8, 11, 4]. However, large insert clones still play a role in the
assembly of genomic scaffolds [3, 14], which use both BAC and fosmid end reads
in addition to shorter fragments.

2 Distribution of Large Insert Clones in the Genome

The finished human genome, and the other ones subsequently sequenced, have
been verified for correctness using several methods, however an early signal that
there might be a problem with an assembled scaffold comes from the depth of
its coverage. At the level of LIC assembly this would be the coverage by BACs
and similar clones, and the method used by the sequencing centers involved the
detection of areas where the coverage differed from the expected by more than
3.5 standard deviations (σ). While it is almost certain that coverage deviating
more than 3.5σ (and thus less than 0.0005 likely to occur by chance) indicates an
error, this criterion may miss quite a few better hidden problems. More reason-
able boundary would be at 99% or even 95% significance (about two standard
deviations from the mean), however the number of clones flagged by such screen
would be very large, especially in the light of the properties of LIC coverage.

The development of the method described in this paper originated in the late
days of the HGP. The genome closure group at the Whitehead Institute Center
for Genome Research (further referred to as WICGR) was in charge of finishing
human chromosomes 8, 11p, 15, 17 and 18q. The selection of clones and the
subsequent verification of the correctness of the assembly were done through
hybridizations done at the laboratory bench, comparison of finished sequences
with maps and checking of the placement of BAC end reads. Since only a subset
of available human BACs have been actually sequenced, the consistent placement
of ends of unsequenced clones, at the right distance and orientation, provided
additional virtual coverage and helped ensure that the assembly was correct.
The placement of such clones is illustrated in Figure 1.

A large fraction of BAC end reads (paired and unpaired) provided by TIGR
have not been mapped on the draft assembly of the human genome, due to its
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Fig. 2. Coverage of RefSeq supercontig NT 000765 with BAC clones. Positions within
the supercontig are plotted on the X-axis (0–3173457). Fold coverage over the sampled
positions is represented along the Y-axis.

greatly repetitive structure and the fact that TIGR has used the draft masked
for known repeats. Using unmasked sequence, the WICGR group succeeded to
place about 25% more reads, and assure LIC coverage of almost 15× through-
out the part of the genome it was in charge of, not counting the additional 8×
from fosmid libraries (Nathaniel Strauss, WICGR closure group, personal com-
munication). The expectation was that every DNA base would be covered by a
relatively stable number of clones, roughly around the mean, and a missassembly
would be indicated by anomalies. However, it was somewhat surprising to see
that the actual coverage could show large variations, as illustrated in Figure 2.

The first suspect for this apparent paradox was an uneven distribution of
the restriction enzyme target sites in parts of the genome. While this is gener-
ally true, in particular for heterochromatic and other satellite regions, in most
chromosomal DNA these sites are distributed in agreement with Poisson ex-
pectation. However, although random, the particular placement layout in any
sequence dictates a certain coverage pattern, with well defined positions of un-
usually high or unusually low coverage, i.e. the number of LICs selected from
that region. This has been verified by simulating the clone library construction
in silico and selecting the number of clones to provide several hundred, and even
several thousand–fold virtual coverage of the target regions. Even at numbers
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Fig. 3. Coverage curves for a 3Mb genomic region. The top part of the figure plots the
curve achieved at virtual coverage up to 3000× (average ∼ 2500×). The bottom part
shows the coverage up to 2000× (average ∼ 1600×). At such high coverages the peaks
and dips of the curve tend to stabilize at fixed locations, although minor variations can
still be detected.

as low as 100×, the limiting curve (to which we shall further refer by L) would
converge to a pattern characteristic for that region, with well defined peaks and
bottoms, as illustrated in Figure 3.

This observation led to an idea to compare the actual coverage of a genomic
region not with an a priori determined mean coverage, but with its own charac-
teristic limiting curve L. Given a long supercontig, our software would be trained
to learn L, then compare the actual coverage (whose curve will be referred to by
C, or Ck for k× coverage) with it. If C would feature peaks and dips at the posi-
tions consistent with L that would indicate a correct assembly almost regardless
of the number of mapped clones.

3 Coverage Simulation and Comparison Algorithm

Although L stabilizes at high values, the practical coverage redundancies are
usually low, and for what amounts to a small sample one can expect considerable
random variation. We have thus decided to apply our algorithm only to outliers
showing a difference from the mean greater than two standard deviations.

Our algorithm starts by reading the sequence of the assembled supercontig,
and a file describing the conditions under which the clone libraries covering this
region have been created. This file contains the percentages of the LICs created
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by each restriction enzyme, as well as the enzyme target site, percent dilution
(for partial digest) and the permissible clone size range. In addition, this file
can contain the information about the other clones used (fosmids or plasmids),
whether they are digested by restriction enzymes or randomly sheared, and what
percentage of each has been included in the libraries. In the training phase, the
software mimics the process done in the laboratory, constructs the clone libraries
covering the segment and outputs the file containing the virtual libraries.

The creation of the virtual libraries is the most time–consuming step of the
analysis. In order to faithfully reproduce the laboratory procedure, the soft-
ware must search the sequence for the target sites of the restriction enzymes
(GAATTC for EcoRI, AAGCTT for HindIII and GATC for MboI, for instance).
It does not need to scan both strands, since these enzymes cut at palindromic
sequences, but it needs to make a random decision whether to cut or not every
time a site is found, in accordance with the specified dilution. Thus, for instance,
a 2.5% dilution of a six–cutter enzyme would dictate a cut with only 0.025 prob-
ability — since under the assumption of equal nucleotide representations in the
genome the likelihood of finding a target is 1

46 , the probability of a cut at any
particular position would be about p ≈ 6× 10−6, i.e. about every 164Kb. Since
the occurrence of the cuts is a Poisson process, one can find the probability of
the next cut within the permissible clone size range using the exponential dis-
tribution, giving P{a ≤ X ≤ b} = e−pa − e−pb. If a = 120, 000 and b = 180, 000
this would be P{120,000 ≤ X ≤ 180,000} ≈ 0.15 . Virtual clones whose size
falls outside of this range must be discarded. On a Unix workstation this may
take several minutes per megabase, for higher coverages, so we have limited it to
500× or less in practical runs. Consequently, the scanning of the entire human
genome would take several days on a single workstation, and several hours on
a supercomputing system such as the UTA Distributed and Parallel Computing
Cluster.

After the virtual LIC library covering the sequence in the input has been
constructed, another module takes it over to map the ends of these clones to
the right positions. This step is not necessary when constructing L, but it is
essential for testing. The clone ends mapping introduces errors at rates specified
as parameters, including the percentage of clones for which only one end would
be sequenced (thus mimicking the discarding of poor quality reads during the
actual sequencing), and the percentage of clones where one or both ends cannot
be unambiguously mapped to the genome. By manipulating these parameters it
is possible to test the behavior of the software under various scenarios.

The most common error during the construction of large supercontigs, span-
ning millions of base pairs, is in the collapsing of regions of large segmental
duplications. If the sequences of two copies are very similar (so that the differ-
ences can be attributed to genetic variation between the individuals whose DNA
has been used for the libraries, or, in a very small number of cases, sequencing
errors), the assembly may lay two copies on the top of each other, causing the
omission of DNA between the duplicate loci. As shown in Figure 4, in terms of
the coverage of the region by clones, such situation may lead to either reduced or
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(d)

(a)

(b)

(c)

Fig. 4. Two possible interleaving sequence deletion scenarios: (a) Line represents chro-
mosomal DNA, with two narrow boxes indicating a large (> 200Kb) segmental dupli-
cation. LICs covering the area are shown on the top. Bottom line connects spots where
an incorrect link has been established. The area between the duplicates is presumed
to be longer than a single clone; (b) Collapsed segments with the area between them
deleted. Spanning clones from the left copy are shown at the top, and these from the
right copy at the bottom. Clone end sequences whose matching other end now fails
to map in the region are circled; (c) On a line representing chromosomal DNA, two
narrow boxes indicate shorter (< 100Kb) duplicated segment. LICs covering the area
are shown on the top. Bottom line connects spots where an incorrect link has been
established. The area between the duplicated segments is presumed to be longer than
a single clone; (d) Collapsed segments with the area between them deleted. Spanning
clones from the left copy are shown at the top, and these from the right copy at the
bottom. Clone end sequences whose matching other end now fails to map in the region
are circled. Both deletions are characterized by anomalous coverage, with spikes in the
number of unpaired clone ends along the edges of the collapsed duplications.

increased coverage in conjunction with the increase in the number of errors, i.e.
clone ends mapping to the region at unlikely distance, or as unpaired matches.
In both cases it is unlikely that the limiting curve L for the region would confirm
such spike, and indeed for suitable lengths of duplicated sequences (see the re-
sults below) we have not seen a case where a combination of standard deviation
measure and the comparison of L and C has not identified the problem spot.

The core of our method is the comparison module. It uses the constructed L
and scans the region (supercontig) in sliding windows of pre-set size, which can
be adjusted in accordance with the conditions of the assembly. In our runs we
have used windows of size 100Kb, since we were looking primarily at the deletions
due to missassemblies at the LIC level. If the length d of the duplicated area
is less than one clone size L and k is the overall redundancy of coverage, then
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the coverage over the collapsed duplicates would be reduced to about kd
L with

areas up to L in length on each side of the collapsed duplicates with error rates
increased above the background to approximately k(L−d)

L . If d > L then the
collapsed area would feature an increase in coverage of about min(2k, kd

L ) over
the midpoint of the collapsed segments with coverage gradually falling to k over
the min(L, d

2 ) bases on both flanks of the collapsed region in addition to the
error rate of ∼ k for up to L bases around the flanks. In all cases, the signs of
trouble should be present over at least 100Kb. This number would be different
depending on the mixture of LIC sizes used in different sequencing projects.

The calculation of the mean expected coverage μL and the standard devia-
tion σL for L and μC and σC for C are done at the supercontig level, but the
comparisons are done locally in each window. The number of sampling points
n within a window is automatically determined based on the actual coverage k
of the examined region, and set to 1.5 the expected number of clone starts and
ends. If, for instance, the coverage is 20× in clones of 150Kb, it is expected that
a region of 100Kb would feature about 27 points where the coverage changes (a
new clone starting or an old one ending), so we would chose 40 sampling points.
However, the coverage values for the limiting curve (expressed in hundreds, if
not thousands) and the actual data (10× – 30×) need to be put on a uniform
scale. If the clones layout were completely random, then the amount of coverage
over any point would be normally distributed, so we convert both the limiting
and actual values at sampling points xi (we denote them by L(xi) and Ck(xi))
to the standard normal curve as zLi = L(xi)−μL

σL
and zCk

i = Ck(xi)−μCk

σCk

. We then

compare zLi and zCk

i — if both are within two standard deviations from the 0
mean (indicating that a deviation was neither expected nor has happened) for
all i = 1, n we accept the coverage over the window as correct. However, if this
condition is not satisfied for any point xi additional constraints are examined:

1. It must be that | zLi − zCk

i |< 3.5 ∀i ∈ [1, n], and
2. The Pearson correlation coefficient r calculated over all zLi and zCk

i must not
reject non–correlation of L and Ck using r

√
n−2√

1−r2 as a Student–t variable with
n− 2 degrees of freedom, at 95% significance.

Only if both 1 and 2 above are satisfied the window is considered correct, oth-
erwise it is reported as a potential problem spot.

4 Algorithm Performance

Even after many adjustments of our software it was rejecting the assembly of the
RefSeq supercontig NT 000765, whose coverage is shown in Figure 2, as incor-
rect at two loci, around 1.2Mb and around 2.3Mb. Further examination of that
supercontig has indeed established a missassembly, and NT 000765 has been
subsequently withdrawn from the GenBank. However, although this software
has been used on several genomic regions, it has not been incorporated into the
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Table 1. The results of the analysis of 27 windows within a 3Mb genomic region under
various simulated coverages. Each simulation has been repeated 10 times with error
rates ranging between 0% and 10%. For each coverage the comparison has been made
with the limiting curve L constructed from virtual coverage of 500×.

Coverage Total Windows Percentage Windows flagged False positive
windows outside ±2σ outside ±2σ problematic percentage

300× 270 14 5.19% 0 0%
100× 270 28 10.37% 2 0.74%
30× 270 48 17.78% 24 8.89%
20× 270 44 16.3% 30 11.11%
10× 270 52 19.26% 34 12.59%

genome closure pipeline (due to the departure from WICGR and HGP of both
the author and the closure group leader1 who requested this work).

In order to gain a systematic perspective on the performance of our algorithm
we have done a series of simulations using several supercontigs of 2Mb to 5Mb,
downloaded from the RefSeq division of the GenBank. Actual coverages have
been simulated at various levels, and the BAC ends mapping error rate has
been varied between 0 and 35%. The results obtained at < 10% error rate on
a 3Mb long sequence are shown in Table 1. As it can be seen from the table,
the number of widows failing the two standard deviations test at coverage 300×
is about 5%, which corresponds well with the number of windows expected to
have coverage outside ±2σ bound, by chance. Since at 300× the coverage curve
is mostly stable, it indicates that the number of outliers is not unusual, and
that it is consistent with the Poisson distribution of the recognition sites for
the restriction enzymes. However, the particular locations of these outliers are
characteristic of the genomic region in question, as demonstrated by excellent
correlation of C300 curve with L. At C100 and further down to more practical
coverages of C30, C20 and C10 the number of violations becomes progressively
larger, up to almost 20%. This is partially because the chance outliers are more
dispersed at smaller sample sizes, and for a window to fail the ±2σ test it is
enough that one of its sample points fall outside these bounds, in either L or C.
In these cases, the number of outliers is still higher than expected, perhaps due
to the difference in global versus local variance.

At low coverages the false positive ratio can be high (up to 12.59% of windows
for 10× at error rate ≤ 10%, and higher in the presence of more errors, when it
starts behaving as a random sequence — Table 2), but it still cuts the number
of windows that need further checking to about half of these failing the ±2σ
test. As mentioned above, the two standard deviations threshold is much better
than 3.5 used in the HGP, and our software has still successfully flagged every
missassembled region of the right size which we were aware of (and, in particular,
the errors deliberately introduced for testing).

1 Dr. Ken Dewar, now at McGill University and Genome Quebec Innovation Centre
in Montreal, Canada.
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For LIC sizes of ∼150Kb, when the segmental duplications are over less than
100Kb, the coverage at the collapsed area would concentrate around the mean
of 2

3k or less and when the duplicated areas are longer than 200Kb it would peak
at around 4

3k or more, up to 2k. In both cases our software was successful in
identifying the introduced problem spots, due to a low probability of correlating
outliers in both L and C. This does not mean that our algorithm has zero prob-
ability of a false negative, only that in these cases its false negative ratio is low
and that it has not happened in our tests. However, when the duplicated area
is between 100Kb and 200Kb the expected coverage over the collapsed part is
about the same as normal, so the algorithm is more vulnerable to errors. In fact,
its incorrect assumption of correlation between L and C is similar to when C is
constructed on a sequence different than that used to construct L. The results
of the comparisons of unrelated L and C are shown in Table 2.

Table 2. The results of the analysis of 27 windows within two unrelated 3Mb genomic
regions under various simulated coverages. Each simulation has been repeated 10 times
with no introduced errors. For each coverage the comparison has been made with the
unrelated limiting curve L constructed from virtual coverage of 500×.

Coverage Total Windows Percentage Windows flagged Problematic
windows outside ±2σ outside ±2σ problematic percentage

300× 270 97 35.93% 70 25.93%
100× 270 69 25.56% 50 18.52%
30× 270 90 33.33% 65 24.07%
20× 270 81 30.0% 60 22.22%
10× 270 80 29.63% 61 22.59%

From Table 2 it can be seen that many windows never get into testing for
the correlation with L. Since both L and C are correctly constructed for their
respective regions, there is a large proportion of windows in which no points
violate the ±2σ rule. However, since L and C are not related, their outliers
are uncorrelated, and thus a larger percentage of their windows (25.56–35.93
versus normal 5.19–19.26) has a ±2σ outlier in either L or C. Because of the
random arrangement of these outliers the decrease in coverage for C has only
marginal effect on their number. While more than two thirds of the outliers have
been identified as problematic, there was still a chance of a sufficient correlation
between L and C, leading to a considerable false negative rate.

In consequence, while this algorithm performs reasonably well for the mis-
sassemblies resulting from collapsing duplications less than 2L

3 and greater than
4L
3 (although with a substantial false positive ratio), it is not appropriate for

detecting these of about 2L
3 through 4L

3 . These should be checked for by other
methods, but the task is now easier as the approximate size of the duplications
can be targeted.
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5 Discussion

No single sequence assembly quality check works best, and a sequencing facility
should apply multiple methods in order to assure the correctness of their data.
In particular, when the duplicated genome sequences are adjacent, the analy-
sis should rely on the sizes of clones and the orientation of their end reads in
addition to the techniques described in this paper. However, the algorithm we
have described provides a considerable improvement in sensitivity when com-
pared with the simple 3.5σ test, and reduces the need for checking the outliers
of two standard deviations for about 50%. Most of the regions which are labeled
suspicious by our software can be relatively quickly checked for the presence
of flanking spikes in the error rates, thus reducing the need for more detailed
examination to only a handful of serious suspects.

A new tool, SEMBLANCE, is currently under development at the Washington
University Genome Sequencing Center (David Messina, personal communica-
tion). This software is designed for the comprehensive assessment of the quality
of whole–genome sequence assemblies, assessment of the impact of physical maps
on the assembly quality and the comparison of assemblies done at different levels
of coverage redundancy. So far, SEMBLANCE has been applied to the analysis
of whole–genome assemblies of the chimpanzee genome, at very low coverages,
comparing them with chimpanzee BAC clones not used in the assemblies. Since
the whole–genome strategies generally include a significant proportion of LICs
(BACs and fosmids) the algorithm we have described here would be useful as a
part of a quality control toolkit such as SEMBLANCE.

Shearing of the DNA, as opposed to the digestion by restriction enzymes, has
been the method of choice for the construction of small sequencing clones for
a long time, and recently the genomic library construction efforts have moved
towards the application of this technology to fosmids, as well. Once the assem-
blies start being done based exclusively on sheared clones, we expect that the
algorithm described here would lose much of its relevance — since the bound-
aries of sheared clones are not associated with any particular sequence motif and
are theoretically uniformly distributed throughout the genome, one can expect
that L would be flat, and that no particular “signature” limiting curve could be
associated with a supercontig. However, many already assembled genomes still
need to be refined, and some even partially reassembled, and many LIC libraries
exist for the genomes which have not been fully sequenced yet. In consequence,
we expect that in the near future at least some parts of genome assembles will
be done using clones whose nature lends itself to the analysis by this algorithm
[3, 16], and to the extent they are present our approach would prove to be a
valuable addition to any assembly quality assessment software toolkit.
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Abstract. Prediction of the coordination number (CN) of residues in
proteins based solely on protein sequence has recently received renewed
attention. At the same time, simplified protein models such as the HP
model have been used to understand protein folding and protein structure
prediction. These models represent the sequence of a protein using two
residue types: hydrophobic and polar, and restrict the residue locations
to those of a lattice. The aim of this paper is to compare CN prediction
at three levels of abstraction a) 3D Cubic lattice HP model proteins,
b) Real proteins represented by their HP sequence and c) Real proteins
using residue sequence alone. For the 3D HP lattice model proteins the
CN of each residue is simply the number of neighboring residues on the
lattice. For the real proteins, we use a recent real-valued definition of CN
proposed by Kinjo et al. To perform the predictions we use GAssist, a re-
cent evolutionary computation based machine learning method belonging
to the Learning Classifier System (LCS) family. Its performance was com-
pared against some alternative learning techniques. Predictions using the
HP sequence representation with only two residue types were only a little
worse than those using a full 20 letter amino acid alphabet (64% vs 68%
for two state prediction, 45% vs 50% for three state prediction and 30%
vs 33% for five state prediction). That HP sequence information alone
can result in predictions accuracies that are within 5% of those obtained
using full residue type information indicates that hydrophobicity is a key
determinant of CN and further justifies studies of simplified models.

1 Introduction

The prediction of the 3D structures of proteins is both a fundamental and dif-
ficult problem in computational biology. A popular approach to this problem is

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 208–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to predict some specific attributes of a protein, such as the secondary structure,
the solvent accessibility or the coordination number. The coordination number
(CN) problem is defined as the prediction, for a given residue, of the number of
residues from the same protein that are in contact with it. Two residues are said
to be in contact when the distance between the two is below a certain threshold.
This problem is closely related to contact map (CM) prediction. It is generally
believed that functional sites in proteins are formed from a pocket of residues
termed an active site. Active site residues consist of a number of buried (high
CN) residues hence studies of CN are of relevance to understanding protein
function.

While protein structure prediction remains unsolved, researchers have re-
sorted to simplified protein models to try to gain understanding of both the pro-
cess of folding and the algorithms needed to predict it [1, 2, 3, 4, 5]. Approaches
have included fuzzy sets, cellular automata, L-systems and memetic algorithms
[6, 7, 8, 9, 10, 11]. One common simplification is to focus only on the residues
(C-alpha or C-beta atoms) rather than all the atoms in the protein. A further
simplification is to reduce the number of residue types to less than twenty by
using residue sequence representations based, for instance, on physical proper-
ties such as hydrophobicity, as in the so called hydrophobic/polar (HP) models.
Another simplification is to reduce the number of spatial degrees of freedom
by restricting the atom or residue locations to those of a lattice [3, 5]. Lattices
of various geometries have been explored, e.g., two-dimensional triangular and
square geometries or three-dimensional diamond and face centered cubic [9].

The aim of this paper is to compare CN prediction for simplified HP lattice
model proteins (Lattice-HP) with the prediction of the same feature for real pro-
teins using either all twenty amino acid types (Real-AA) or using only the HP
representation (Real-HP). This was done for several levels of class assignment
(two state, three state and five state) and for a range of machine learning algo-
rithms (LCS, C4.5 and NaiveBayes). The CN definition we use for real proteins
was proposed recently by Kinjo et al.[12]. This is a continuous valued function,
rather than the more frequently used discrete formulation [13].

The machine learning algorithm we focus on belongs to the family of Learning
Classifier Systems (LCS) [14, 15], which are rule-based machine learning systems
using evolutionary computation [16] as the search mechanism. Specifically, we
have used a recent system called GAssist, which generates accurate, compact and
highly interpretable solutions [17]. The performance of GAssist will be tested
against some alternative learning mechanisms, and the performance of all these
machine learning paradigms will be discussed.

2 Problem Definition

There is a large literature in CN/CM prediction, in which a variety of machine
learning paradigms have been used, such as linear regression [12], neural networks
[13], a combination of self-organizing maps and genetic programming [18] or
support vector machines [19]. Several kinds of input information have been used
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in CN prediction besides the residue type of the residues in the chain, such
as global information of the protein chain [12], data from multiple sequences
alignments [13, 19, 18, 12] (mainly from PSI-BLAST [20]), predicted secondary
structure [13, 19], predicted solvent accessibility [13] or sequence conservation
[19].

There are also two main definitions of the distance used to determine whether
there is contact between two residues. Some methods use the Euclidean distance
between the Cα atoms of the two residues, while others use the Cβ atom (Cα

for glycine). Also, several methods discard the contacts between consecutive
residues in the chain, and define a minimum chain separation as well as useing
many different distance thresholds. Figure 1 shows a graphical representation of
a non-local contact between two residues of a protein chain.

Native
stateContact

Primary structure

Fig. 1. Graphical representation of a non-local residue contact in a protein

Finally, there are two approaches to classification. Some methods predict the
absolute CN, assigning a class to each possible value of CN. Other methods
group instances 1 with close CN, for example, separating the instances with
CNs lower or higher than the average of the training set, or defining classes in a
way that guarantees uniform class distribution. We employ the latter approach
as explained in section 2.3

2.1 HP Models

In the HP model (and its variants) the 20 residue types are reduced to two
classes: non-polar or hydrophobic (H) and polar (P) or hydrophilic. An n residue
protein is represented by a sequence s ∈ {H, P}+ with |s| = n. The sequence s
is mapped to a lattice, where each residue in s occupies a different lattice cell
and the mapping is required to be self-avoiding. The energy potential in the
HP model reflects the propensity of hydrophobic residues to form a hydrophobic
core.

In the HP model, optimal (i.e. native) structures minimize the following en-
ergy potential:

E(s) =
∑

i<j ; 1≤i,j≤n

(Δi,jεi,j) (1)

1 For the rest of the paper the machine learning definition of instance is used: individ-
ual independent example of the concept to be learned [21]. That is, a set of features
and the associated output (a class) that is to be predicted.
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where

Δi,j =
{

1 if i, j are in contact and |i− j| > 1
0 otherwise (2)

In the standard HP model, contacts that are HP and PP are assigned an
energy of 0 and an HH contact is assigned an energy of -1.

2.2 Definition of CN

The distance used to determine contact by Kinjo et al. is defined using the Cβ

atom (Cα for glycine) of the residues. The boundary of the sphere defined by
the distance cutoff dc ∈ �+ is made smooth by using a sigmoid function. Also,
a minimum chain separation of two residues is required. Formally, the CN (Op

i )
of the residue i of protein chain p is computed as:

Op
i =

∑
j:|j−i|>2

1
1 + exp(w(rij − dc))

(3)

where rij is the distance between the Cβ atoms of the ith and jth residues. The
constant w determines the sharpness of the boundary of the sphere. A value of
three for w was used for all the experiments.

2.3 Conversion of the Real-Valued CN Definition into a
Classification Domain

In order to convert the real-valued CN definition into a set of discrete states,
so that it can be used as a classification dataset, Kinjo et al. propose a method
to determine systematically some CN partitions resulting in an N class dataset.
They choose the boundaries between classes in such a way as to generate classes
with a uniform number of instances. They test two versions of this method.
Defining the class boundaries separately for each residue type or defining them
globally for all 20 residue types. In this study the later definition was adopted
for simplicity and because it is more widely used.

3 The GAssist Learning Classifier System

GAssist [17] is a Pittsburgh Genetic–Based Machine Learning system descendant
of GABIL [15]. The system applies a near-standard generational GA that evolves
individuals that represent complete problem solutions. An individual consists of
an ordered, variable–length rule set. A special fitness function based on the
Minimum Description Length (MDL) principle [22] is used. The MDL principle
is a metric applied in general to a theory (being a rule set here) which balances
the complexity and accuracy of the rule set. The details and rationale of this
fitness formula are explained in [17]. The system also uses a windowing scheme
called ILAS (incremental learning with alternating strata) [23] to reduce the
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run-time of the system, especially for dataset with hundreds of thousands of
instances as in this paper. We have used the GABIL [15] rule-based knowledge
representation for nominal attributes and the adaptive discretization intervals
(ADI) rule representation [17] for real-valued ones.

4 Experimental Framework

4.1 HP Lattice-Based Datasets

Two datasets were employed in this study, a 3D HP lattice model protein
dataset and a data set of real proteins. Table 1 summarizes both datasets,
which are available at http://www.cs.nott.ac.uk/~nxk/hppdb.html. For the
Lattice-HP study, a set of structures from Hart’s Tortilla Benchmark Col-
lection (http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-
benchmarks.html) was used. This consisted of 15 structures on the simple cubic
lattice (CN=6). Windows were generated for one, two and three residues at each
side of a central residue and the CN class of the central residue assigned as the
class of the instance. The instances was divided randomly into ten pairs of train-
ing and test sets These sets act in a similar way to a ten-fold cross-validation.
The process was repeated ten times to create ten pairs of training and test sets.
Each reported accuracy will be, therefore, the average of one hundred values.

Table 1. Details of the data sets used in these experiments

Name Lattice-HP K1050
Type 3D Cubic Lattice Real Proteins
Number of Sequences 15 1050
Minimum Sequence Length 27 80
Maximum Sequence Length 48 2329
Total Hydrophobic 316 170493
Total Polar 309 84850
Total Residues 625 255343

4.2 Real Proteins Dataset

We have used the same dataset and training/test partitions used by Kinjo et al.
[12]. The real protein dataset (Real-AA) was selected from PDB-REPRDB [24]
with the following conditions: less than 30% sequence identity, sequence length
greater than 50, no membrane proteins, no nonstandard residues, no chain breaks,
resolution better than 2 Å and having a crystallographicR factor better than 20%.
Chains that had no entry in the HSSP [25] database were discarded. The final
data set contains 1050 protein chains. CN was computed using a distance cutoff
of 10 Å. Windows were generated for one, two and three residues at each side of a
central residue and the CN class of the central residue assigned as the class of the
instance. The set was divided randomly into ten pairs of training and test set using
950 proteins for training and 100 for testing in each set. These sets act in a similar
way to a ten-fold cross-validation. The proteins included in each partition are re-
ported in http://maccl01.genes.nig.ac.jp/~akinjo/sippre/suppl/list/.
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We have placed a copy of the dataset used in this paper at http://www.asap.
cs.nott.ac.uk/~jqb/EvoBIO_dataset.tar.gz(approx.85MB). This same
dataset was used to generate a real protein HP sequence dataset (Real-HP) by
assigning each residue a value of Hydrophobic or Polar as shown in Table 2,
following Broome and Hecht [26].

Table 2. Assignment of residues as Hydrophobic or Polar

Residue (one letter code) Assignment
ACFGILMPSTVWY Hydrophobic
DEHKRQN Polar

4.3 Attribute Distributions

For the Lattice-HP dataset, Figure 2 shows the distribution of hydrophobic/polar
residues. Distributions are shown for a range of class assignments, two state,
three state and five state. A higher proportion of hydrophobic residues are ob-
served in the high CN classes, corresponding to a core of buried hydrophobic
residues. A higher proportion of polar residues are found in the low CN (ex-
posed) classes. This is not surprising, since these model protein structures have
been optimized on the basis of hydrophobicity to group the hydrophobic residues
together.
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Fig. 2. Distribution of hydrophobic/polar residues in the Lattice-HP dataset:
h=hydrophobic, p=polar

For the Real-HP dataset, Figure 3 shows the distribution of hydropho-
bic/polar residues two state, three state and five state class assignments. In
these distributions hydrophobic residues are significantly more prevalent in the
high CN classes, corresponding to a core of buried hydrophobic residues. The ap-
proximately equal distribution of hydrophobic and polar residues observed in the
low CN classes (corresponding to exposed/surface residues) may stem from the
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approximately two hydrophobic to one polar assignment ratio in Table 2. These
distributions provide a baseline against which the performance of the prediction
algorithms can be gauged.
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Fig. 3. Distribution of hydrophobic/polar residues in the Real-HP dataset:
h=hydrophobic, p=polar

5 Results

The performance of GAssist was compared to two other machine learning sys-
tems: C4.5 [27], a rule induction system and Naive Bayes [28], a Bayesian learn-
ing algorithm. The WEKA [21] implementation of these algorithms was used.
Student t-tests were applied to the mean prediction accuracies (rather than indi-
vidual experimental data points) to determine, for each dataset, those algorithms
that significantly outperformed other methods using a confidence interval of 95%
and Bonferroni correction [29] for multiple pair-wise comparisons was used.

5.1 Lattice-HP Datasets

Table 3 compares the results of two, three and five state CN predictions for
a range of window sizes for the GAssist LCS, Naive Bayes and C4.5 using the
Lattice-HP dataset. A window size of three means three residues either side of the
central residue, i.e. a seven residue peptide. As the number of states is increased
the accuracy decreases from around 80% to around 51% for all algorithms. For
each state as the window size is increased the accuracy increases by around
0.1-0.2%. With the exception of the C4.5 algorithm which shows a decrease in
accuracy with increasing window size in two and three state predictions. There
were no significant differences detected in these tests.

For two states, the best prediction was given by C4.5 with window size of
one (80%±4.9). For three states the best prediction was given by GAssist with
window size of two (67%±4.1). For five states GAssist again gave the best pre-
dictions for a window size of three (52.7%±5.3).
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Table 3. Lattice-HP Prediction Accuracies

Number of States Algorithm
Window Size

1 2 3

2
GAssist 79.8 ±4.9 80.2 ±5.0 80.0 ±5.3
C4.5 80.2 ±4.9 79.9 ±5.0 79.7 ±5.1
NaiveBayes 79.8 ±4.9 80.0 ±4.9 80.2 ±5.0

3
GAssist 67.4 ±4.9 67.8 ±4.1 67.3 ±5.0
C4.5 67.5 ±4.8 67.6 ±4.2 66.6 ±5.0
NaiveBayes 67.2 ±4.6 67.3 ±4.4 67.5 ±4.8

5
GAssist 51.4 ±4.6 51.3 ±4.2 52.7 ±5.3
C4.5 51.7 ±4.5 51.0 ±4.1 52.2 ±5.1
NaiveBayes 51.7 ±4.6 52.3 ±4.3 51.9 ±5.6

5.2 Real Proteins

Table 4 compares the results of two, three and five state CN predictions on real
proteins for the GAssist LCS, Naive Bayes and C4.5 for the Real-HP dataset.
When an HP sequence representation was used, an increase in the number of
states is accompanied by a decrease in accuracy from around 63-64% to around
29-30% for all algorithms. For each state, as the window size is increased the
accuracy increases by around 1%. For two states, the best predictions were
given by GAssist and C4.5 with window size of three (64.4%±0.5). For three
states the best prediction was given by C4.5 with window size of two (45%±0.4).
For five states C4.5 again gave the best predictions for a window size of three
(30.4%±0.5).

Table 4. CN Prediction Accuracies for the Real-HP and Real-AA datasets. A • means
that GAssist outperformed the Algorithm to the left (5% t-test significance). A ◦ label
means that the Algorithm on the left outperformed GAssist (5% t-test significance)

State Algorithm
HP Based Residue Based

Window Size Window Size
1 2 3 1 2 3

2
GAssist 63.6±0.6 63.9±0.6 64.4±0.5 67.5±0.4 67.9±0.4 68.2±0.4

C4.5 63.6±0.6 63.9±0.6 64.4±0.5 67.3±0.4 67.5±0.3 67.8±0.3
NaiveBayes 63.6±0.6 63.9±0.6 64.3±0.5 67.6±0.4 68.0±0.4 68.8±0.3◦

3
GAssist 44.9±0.5 45.1±0.5 45.6±0.4 48.8±0.4 49.0±0.4 49.3±0.4

C4.5 44.9±0.5 45.1±0.5 45.8±0.4 48.8±0.3 48.7±0.3 49.1±0.3
NaiveBayes 44.7±0.5 45.2±0.5 45.7±0.4 49.0±0.4 49.6±0.5◦ 50.7±0.3◦

5
GAssist 29.0±0.3 29.6±0.5 30.1±0.5 32.2±0.3 32.5±0.3 32.7±0.4

C4.5 29.0±0.3 29.7±0.4 30.4±0.5 31.9±0.4 31.4±0.4• 31.0±0.5•
NaiveBayes 29.0±0.3 29.7±0.4 30.1±0.5 33.0±0.2◦ 33.9±0.3◦ 34.7±0.4◦

Using full residue information, an increase in the number of states is accom-
panied by a decrease in accuracy from around 68% to around 34% for all algo-
rithms. For each state, as the window size is increased, the accuracy increases by
around 0.5%, with the exception of the C4.5 algorithm which shows a decrease
in accuracy with increasing window size in five state predictions. The LCS out-
performed C4.5 two times and was outperformed by Naive Bayes six times. For
two, three and five state predictions the best results were given by Naive Bayes

.
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with window size of three (68.8%±0.3, 50.7%±0.3 and 34.7%±0.4 respectively).
Most interestingly, moving from HP sequence representation to full residue type
sequence information only results in a 4% increase for two and three state and
1-2% increase for, the more informative, five state prediction.

5.3 Brief Estimation of Information Loss

In order to understand the effect of using a lower-dimensionality profile of a
protein chain such as the HP model, we have computed some simple statistics
on the datasets. Two measures are computed:

redundancy = 1− #unique instances
#total instances

(4)

inconsistency =

( #unique instances
#unique antecedents

)
− 1

#states− 1
(5)

Equation 4 shows the effect of reducing the alphabet and the window size:
creating many copies of the same instances. Equation 5 shows how this reduction
creates inconsistent instances: instances with equal input attributes (antecedent)
but different class. For the sake of clarity this measure has been normalized for
the different number of target states. Table 5 shows these ratios. For two-states
and window size of one, the Real-HP dataset shows the most extreme case: any
possible antecedent appears in the data set associated to both classes. Fortu-
nately, the proportions of the two classes for each antecedent are different, and
the system can still learn. We see how the Real-HP dataset is highly redun-
dant and how the Real-AA dataset of window size two and three presents low
redundancy and inconsistency rate.

Table 5. Redundancy and inconsistency rate of the tested real-proteins datasets

HP representation AA representation
States Window Size Redundancy Inconsistency Redundancy Inconsistency

1 99.99% 100.000% 93.69% 90.02%
2 2 99.94% 92.50% 6.14% 3.85%

3 99.75% 81.71% 0.21% 0.05%
1 99.98% 96.88% 90.90% 87.01%

3 2 99.92% 86.25% 4.50% 2.84%
3 99.66% 76.00% 0.17% 0.04%
1 99.97% 93.75% 85.84% 81.52%

5 2 99.86% 86.25% 2.97% 1.84%
3 99.46% 74.36% 0.14% 0.03%

6 Discussion

The LCS and other machine learning algorithms preformed at similar levels for
these CN prediction tasks. Generally, increasing the number of classes (number
of states) leads to a reduction in prediction accuracy which can be partly offset
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by using a larger window size. Reduction of input information from full residue
type to HP sequence reduces the accuracy of prediction. The algorithms were,
however, all capable of predictions using HP sequence that were within 5% of
the accuracies obtained using full residue type sequences.

For all of the algorithms studied, in the case of the most informative five
state predictions, moving from HP lattice to real protein HP sequences leads to
a reduction of CN prediction accuracy from levels of around 50% to levels of
around 30%. The significant reduction in the spatial degrees of freedom in the
Lattice-HP models leads to an improvement in prediction accuracy of around
20%.

In contrast, moving from the real protein HP sequences to real protein full
residue type sequences (for the same five state CN predictions) only a 3-5%
improvement in prediction accuracy results from inclusion of this additional
residue type information. This seems to indicate that hydrophobicity information
is a key determinant of CN and that algorithmic studies of HP models are
relevant. The rules that result from a reduced two letter alphabet are simpler and
easier to understand than those from the full residue type studies. For example,
for the HP representation a rule set giving 62.9% accuracy is shown below (an
X symbol is used to represent positions at the end of the chains, that is beyond
the central residue being studied).

1. If AA−1 /∈ {x} and AA ∈ {h} and AA1 ∈ {p} then class is 1
2. If AA−1 ∈ {h} and AA ∈ {h} and AA1 /∈ {x} then class is 1
3. If AA−1 ∈ {p} and AA ∈ {h} and AA1 ∈ {h} then class is 1
4. Default class is 0

In these rules, a class assignment of high is represented by 1 and low by 0.
For the full residue type representation a rule set giving 67.7% accuracy is:

1. If AA−1 /∈ {D, E, K, N, P, Q, R, S, X} and AA /∈ {D, E, K, N, P, Q, R, S, T}
and AA1 /∈ {D, E, K, Q, X} then class is 1

2. If AA−1 /∈ {X} and AA ∈ {A, C, F, I, L, M, V, W, Y } and AA1 /∈
{D, E, H, Q, S, X} then class is 1

3. If AA−1 /∈ {P, X, Y } and AA ∈ {A, C, F, I, L, M, V, W, Y } and AA1 /∈
{K, M, T, W, X, Y } then class is 1

4. If AA−1 /∈ {H, I, K, M, X} and AA ∈ {C, F, I, L, M, V, W, Y } and AA1 /∈
{M, X} then class is 1

5. Default class is 0

Recently, Kinjo et al [12] reported two, three and ten state CN prediction
at accuracies of 72.1%, 53.7%, and 18.8% respectively, which is higher than our
results. However, they use a non-standard accuracy measure that usually gives
slightly higher results than the one used in this paper. Also, they use more input
information than was used in the experiments reported in this paper.

The aim of this paper was to compare the performance difference between the
Real-AA and Real-HP representations, not to obtain the best CN results. We
have undertaken more detailed studies on both the HP model dataset for CN
and Residue Burial prediction and the real protein datasets for CN prediction
in comparison to the Kinjo work (papers submitted).
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7 Conclusions and Further Work

This paper has shown that it is possible to predict residue CN for HP Lattice
model proteins at a level of around 52% for five state prediction using a window
of three residues either side of the prediced residue. For real proteins, five state
CN prediction using a window size of three can be performed at a level of 30%
using HP residue profiles. This can be increased to 32% using full sequence
information. This is perhaps understandable since reducing the sequence to an
HP sequence discards useful information. However, the representation with only
two residue types is only a little worse than that with a full twenty letter alphabet
(64% vs 68% for two state prediction, 45% vs 50% for three state prediction and
30% vs 33% for five state prediction). Thus, most of the information is contained
in the HP representation, indicating that hydrophobicity is a key determinant
of CN. This is consistent with earlier studies [30].

Initial estimates of information inconsistency (ambiguous antecedent to con-
sequent assignments) in the reduced two letter alphabet dataset indicate that
considerable inconsistency is present even for five state assignments using larger
window sizes. The algorithms presumably learn from the various distributions
of these inconsistencies during their learning stage. Li et al. [31] have investi-
gated whether there is a minimal residue type alphabet by which proteins can
be folded. They conclude that a ten letter alphabet may be sufficient to charac-
terize the complexity of proteins. We are performing studies to investigate such
reduced letter alphabets and to quantify the information loss in each. In future,
we will extend these studies to prediction of other structural attributes, such
as secondary structure and relative solvent accessibility. These studies will help
determine the relative utility of CN for designing prediction heuristics for HP
models and Real proteins.
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Abstract. Eukaryotic genomes are packaged by the wrapping of DNA
around histone octamers to form nucleosomes. Nucleosome occupan-
cies together with their acetylation and methylation are important
modification factors on all nuclear processes involving DNA. There
have been recently many studies of mapping these modifications in
DNA sequences and of relationship between them and various genetic
activities, such as transcription, DNA repair, and DNA remodeling.
However, most of these studies are experimental approaches. In this
paper, we introduce a computational approach to both predicting and
analyzing nucleosome occupancy, acetylation, and methylation areas
in DNA sequences. Our method employs conditional random fields
(CRFs) to discriminate between DNA areas with high and low relative
occupancy, acetylation, or methylation; and rank features of DNA
sequences based on their weight in the CRFs model trained from the
datasets of these DNA modifications. The results from our method on
the yeast genome reveal genetic area preferences of nucleosome occu-
pancy, acetylation, and methylation are consistent with previous studies.

Keywords: Histone proteins, acetylation, methylation, conditional
random fields.

1 Introduction

Eukaryotic genomes are packaged into nucleosomes that consist of 145–147 base
pairs of DNA wrapped around a histone octamer [9]. The histone components of
nucleosomes and their modification state (of which acetylation and methylation
are the most important ones) can profoundly influence many genetic activities,
including transcription [2, 4, 5, 16], DNA repair, and DNA remodeling [13].

There have been recently many studies of mapping histone occupancies to-
gether with their modifications in DNA sequences and of relationship between
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them and various genetic activities concerning DNAs [1, 2, 5, 7, 16, 18, 19]. But
most of these studies were experimentally conducted by the combination of chro-
matin immunoprecipitation and whole-genome DNA microarrays, or ChIP-Chip
protocol.

The nucleosome occupancy as well as its modifications such as acetylation
and methylation mainly depend on the DNA sequence area they incorporate
in. The majority of acetylation and methylation occurs at specific highly con-
served residues in the histone components of nucleosomes: acetylation sites in-
clude at least nine lysines in histone H3 and H4 (H3K9, H3K14, H3K18, H3K23,
H3K27, H4K5, H4K8, H4K12, and H4K16); methylation sites include H3K4,
H3K9, H3K27, H3K36, H3K79, H3R17, H4K20, H4K59, H4R3 [14]. When a nu-
cleosome appears in a specific DNA sequence area, these potentially sites can
have a certain acetylation or methylation level [5, 16].

Recently we have introduced a support vector machine (SVM)-based method
to qualitatively predict histone occupancy, acetylation and methylation areas in
DNA sequences [15]. In this paper, we present a different computational method
for this prediction problem. We employ conditional random fields (CRF) [6], a
novel machine learning technique, to discriminate between DNA areas with high
and low relative occupancy, acetylation, or methylation. Our experiments showed
that CRF-based method has competitive performance with SVM method. More-
over, similar to SVMs, our CRF method can extract informative k-gram features
based on their weight in the CRFs model trained from the datasets of these DNA
modifications. The results from our CRF-method on the yeast genome are con-
sistent with those from the SVM method and reveal genetic area preferences
of nucleosome occupancy, acetylation, and methylation that are consistent with
previous studies.

2 Materials and Methods

2.1 Datasets

From the genome-wide map of nucleosome acetylation and methylation reported
in [16], we extracted 14 datasets and used to illustrate the performance of our
method. These datasets are described in detail in Table 1. Each example in the
datasets corresponds to a DNA sequence area (segment) with a fixed length L
(in our experiments, we selected L = 200, 500, 1000, 1500). A DNA sequence
area is assigned to the positive class if the relative occupancy, acetylation, or
methylation [16] measured at its middle position is greater than 1.2, and to the
negative class if the relative occupancy, acetylation, or methylation is lesser than
0.8. Sequences with value in between 0.8 and 1.2 are ignored.

2.2 Conditional Random Fields

The sequential classification problem is well known in several scientific fields,
especially computational linguistics, and computational biology [6]. There are
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Table 1. Datasets of histone occupancy, acetylation, and methylation by ChIP-Chip
protocol in vivo [16]

Dataset #positives #negatives Description

H3.YPD 7667 7298 H3 occupancy
H4.YPD 6480 8121 H4 occupancy
H3.H2O2 17971 15516 H3.H202 occupancy
H3K9acvsH3.YPD 15415 12367 H3K9 acetylation relative to H3
H3K14acvsH3.YPD 18771 14277 H3K14 acetylation relative to H3
H3K14acvsWCE.YPD 17672 16290 H3K14 acetylation relative to WCE
H3K14acvsH3.H2O2 18410 15685 H3K14 acetylation relative to H3.H2O2
H4acvsH3.YPD 18410 15685 H4 acetylation relative to H3
H4acvsH3.H2O2 18143 12540 H4 acetylation relative to H3.H2O2
H3K4me1vsH3.YPD 17266 14411 H3K4 monomethylation relative to H3
H3K4me2vsH3.YPD 18143 12540 H3K4 dimethylation relative to H3
H3K4me3vsH3.YPD 19604 17195 H3K4 trimethylation relative to H3
H3K36me3vsH3.YPD 18892 15988 H3K36 trimethylation relative to H3
H3K79me3vsH3.YPD 15337 13500 H3K79 trimethylation relative to H3

two kinds of model for solving this problem, generative models and conditional
models. While generative models define a joint probability distribution of the
observation and labelling sequences p(X, Y ), the conditional models specify the
probability of a label given an observation sequence p(Y |X). The main draw-
back in generative models is that, in order to define a joint probability distri-
bution, they must enumerate all possible observation sequences, which may be
not feasible in practice [6, 12, 21]. Our work employs conditional models, spe-
cially conditional random fields, which can overcome the drawbacks of generative
models.

CRF [6] is a probabilistic framework for segmenting and labelling sequential
data using conditional model [6]. It has the form of a undirected graph that
defines a log-linear distribution over label sequences given a particular obser-
vation sequence. CRFs have several advantages over other models (e.g., HMMs
and MEMMs) such as relaxing strong independence Markov assumptions and
avoiding weakness called the label bias problem [6, 11, 12, 21].

Definition. CRFs can be represented by an undirected graphical model. Ac-
cording to [6], we define G = (V, E) to be an undirected graph, with v ∈ V
corresponds to each of the random variables representing a label sequence Yv

from Y, and e ∈ E corresponds to the definition of conditional independence for
undirected graphical models. In other words, two vertices vi and vj are condi-
tionally independent given all other random variables in the graph.

In theory, CRFs can be represented by arbitrarily structure graph, although
in this work, we focus on linear-chain structure graph. Let X = (x1, x2, ..., xT ) be
an observed data sequence; S be a set of finite state machines, each is associated
with a label l ∈ L; and Y = (y1, y2, ..., yT ) be the state sequence. The linear-
chain CRFs [20, 12] then define the conditional probability of a state sequence
given an input sequence as follows
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pθ(Y |X) = 1
Z(X)exp(

∑T
i=1

∑
k λkfk(yi−1, yi, X, i))

where Z(X) =
∑

s∈S exp(
∑T

i=1

∑
k λkfk(yi−1, yi, X, i)) is a normalization factor

over all state sequences, and fk(yi−1, yi, X, i) are feature functions, each of them
is either a state feature function or a transition function [20, 12, 21]. A state
feature captures a particular property of the observation sequence X at current
state yi. A transition feature represents sequential dependencies by combining
the label l′ of the previous state yi−1 and the label l of the current state yi.
As [6], we assume that the feature functions is fixed, and denote λ = {λk} as a
weight vector which to be learned through training.

Inference in CRFs. Inference in CRFs is to find a state sequence y∗ which is
the most likely given the observation sequence x

y∗ = argmaxypθ(y|x) = argmaxy

{
exp(

∑T
i=1

∑
k λkfk(yi−1, yi, x, i))

}
Similarly to HMMs, CRFs use a dynamic programming method for finding
y∗ [6, 21, 12]. In fact, we choose the most well-known method being the Vieterbi
algorithm [17]. Viterbi stores the probability of the most likely path up to time
t which accounts for the first t observations and ends in state yt. We define this
probability to be αt(yi) (0 ≤ t ≤ T − 1). We set α0(yi) to be the probability of
starting in state yi. The recursion is given by

αt+1 = maxyj {αt(yj)exp (
∑

k λkfk(yj , yi, x, t))}

At the end time (i.e., t = T − 1), we can backtrack through the stored infor-
mation to find the most likely sequence y∗.

Training CRFs. Let D =
{
(xk, yk)

}N

k=1
be the training data set. CRFs are

trained by finding the weight vector θ = {λ1, λ2, ...} to maximize the log-
likelihood

L =
∑N

j=1 log
(
pθ(y(j)|x(j))

)
−
∑

k
λ2

2σ2

where the second sum is a Gaussian prior over parameters (with variance σ2)
that provides smoothing to help coping with sparsity in the training data [3].

Since the likelihood function in exponential models of CRFs is convex, the
above optimization problem always has the global optimum solution, which can
be found by an iterated estimation procedure. The traditional method for train-
ing in CRFs is iterative scaling algorithms [6, 21]. Sine those methods are very
slow for classification [20], therefore we use quasi-Newton methods, such as L-
BFGS [8], which are significantly more efficient [10, 20].

L-BFGS is a limited-memory quasi-Newton procedure for unconstrained op-
timization that requires the value and gradient vector of a function to be opti-
mized. Assuming that the training labels on instance j make its state path unam-
biguous, let y(j) denote that path, then the first-derivative of the log-likelihood is
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δL
δλk

=
(∑N

j=1 Ck(y(j), x(j)
)
−
(∑N

j=1

∑
y pθ(y|x(j))Ck(y, x(j))

)
− λk

σ2

where Ck(y, x), the count of feature fk given y and x, equal to∑T
t=1 fk(yi−1, yi, x, i), i.e., the sum of fk(yi−1, yi, x, i) values for all posi-

tions i in the training sequence. The first two terms correspond to the difference
between the empirical and the model expected values of feature fk. The last
term is the first-derivative of the Gaussian prior.

2.3 Features of a DNA Sequence Area

The most important issue in CRFs learning is to select a set of features that
hopefully capture the relevant relationships among observations and label se-
quences. CRFs have two kinds of features, state features and transition features.
However, in this work we focus only on state features. Also, each observation
sequence in the datasets has only one observation (L-DNA sequence area) and
the label sequence is a sequence of 0 (negative class) and 1 (positive class).
Our feature set to input to CRF systems is built by two steps. First, we use
a k-sliding window along a DNA sequence to get binary k-grams (patterns of
k consecutive nucleotide symbols). Each DNA sequence is thus represented by
a binary 4k-dimensional vector of all possible k-grams. Second, we define the
unigram function for each k-gram as follows:

ut(x) =

⎧⎨⎩1 if the tth k-gram appear in the sequence x

0 otherwise

Therefore, the relationship between the observation and two classes, positive
and negative, is described in the following features:

ftP (y, x) =

⎧⎨⎩ut(x) if y belong to positive class

0 otherwise

ftN(y, x) =

⎧⎨⎩ut(x) if y belong to negative class

0 otherwise

3 Results and Discussion

3.1 Prediction of Histone Occupancy, Acetylation, and Methylation

We used CRFs with the limited-memory quasi-Newton method (Section 2.2) to
perform threefold cross-validation on 14 datasets of histone occupancy, acety-
lation and methylation areas (Table 1). Three criteria of precision, recall and
F1-measure are used to report the results:
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Precisionpositive = TP
TP+FP ; Precisionnegative = TN

TN+FN

Recallpositive = TP
TP+FN ; Recallnegative = TN

TN+FP

Precision = Precisionpositive+Precisionnegative

2

Recall = Recallpositive+Recallnegative

2

F1−measure = 2∗(Precision∗Recall)
Precision+Recall

where TP, TN, FP, FN are the number of true positive, true negative, false
positive and false negative examples, respectively.

Through various experiments we found that our method gave the best results
when predicting nucleosome occupancy, acetylation, and methylation for DNA
sequence areas of length L = 500 (data not shown). Due to the computational
complexity, we have only tried with k ≤ 6 and report here the results from sets
of k-grams with k=5, k=6, k=4,5, and k=5,6.(Table 2).

The highest performance of our CRF method (at 18th L-BFGS it-
eration) for relative histone occupancy predictions (H3, H4, H3.H2O2),
and acetylation predictions (H3K9acvsH3, H3K14acvsH3, H3K14acvsWCE,
H3K14acvsH3.H2O2, H4acvsH3, H4acvsH3.H2O2), as well as methylation
predictions (H3K4me1vsH3, H3K4me2vsH3, H3K4me3vsH3, H3K36me3vsH3,
H3K79me3vsH3.YPD) achieved when we use features of both 5-grams and 6-
grams (Table 2). The numbers in the brackets are the performance of the sup-
port vector machine (SVM)-based method (which was used in [15] to address the
same problem) when using the same binary k-gram features. As it can be seen,
CRF method is competitive with SVM-based method. In some cases, CRFs gave
better performance, but in others performance was worse. SVM method can take
into account the number of k-gram occurrences that represents DNA sequence
better than binary k-gram features, hence SVM method can achive better per-
formance [15]. However, CRFs have some advantages over SVMs such as they
can easily incorporate knowledge into their prediction, and in the future we will
take account annotated information concerning DNA sequence into our CRF
method to improve the prediction results.

3.2 Genetic Area Preferences of Histone Occupancy, Acetylation,
and Methylation

During the training CRFs model, we reported the weight of features (i.e. weight
vector, see Section 2.2). In a CRF model, features with the larger weight would
be more relevant than those with lower weight. We ranked the features based on
their weight supporting for either positive or negative classes in CRF models,
which were trained on 14 datasets. Table 3 and Table 4 show the most informative
features from a set of 4-grams and 5-grams at 18th L-BFGS iteration (which did
though give the best performance (Table 2), but to make later interpretation
easily) for histone occupancy, acetylation, and methylation.

Informative features ranked by our CRF-based method agree with those from
the previous SVM-based method [15]. They can be useful to analyze the genetic
area preferences of histone occupancy, acetylation, and methylation. For exam-
ple, CG (CpG) is a dinuceotide that appears very often in the most informative
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Table 3. Most informative features selected from CRFs model for positive class with
k-grams=4 and k-grams=5

Dataset Feature Weight Feature Weight Feature Weight Feature Weight
H3.YPD CTTCA 0.16 CTTTA 0.15 TGCAG 0.14 ACAGC 0.14

CGGC 0.13 TGAAG 0.13 GTTTG 0.13 GCGA 0.13
GTGAT 0.13 TCATC 0.13 TGGC 0.13 CAGC 0.13

H4.YPD TAAT 0.26 CTTCA 0.23 CAAAT 0.22 GCCAC 0.20
GGATC 0.20 CTGGT 0.19 TTGGG 0.19 ATTTG 0.18
ATCAG 0.18 GCAG 0.18 TATA 0.18 TTTA 0.17

H3.H2O2 CCGC 0.21 GCGC 0.21 CGGC 0.20 CGGG 0.19
GCCG 0.18 CGCG 0.18 GGCC 0.18 CATGG 0.17
CCGG 0.16 CCCT 0.15 CGCC 0.15 CCACC 0.15

H3K9acvsH3.YPD CATGC 0.11 CAGGG 0.10 GTTCG 0.10 GCGAG 0.10
CTTAG 0.09 TCTCG 0.09 TACC 0.09 GATAC 0.09
CCCCG 0.09 AGGCG 0.09 GCCGG 0.09 CACCG 0.09

H3K14acvsH3.YPD GCGTG 0.12 TTTTT 0.10 TAGTC 0.09 CTCGC 0.09
CTCAT 0.09 CACC 0.08 TCTCT 0.08 ATATA 0.08
CTTTT 0.08 AAAAA 0.08 AGCGG 0.08 TTTTC 0.08

H3K14acvsWCE.YPD ACGGT 0.10 TCTCT 0.10 AGCCT 0.09 CTCAT 0.09
CGGA 0.09 CGGC 0.09 CACC 0.09 TCCG 0.09
AGTCG 0.08 TTGCT 0.08 ATGCG 0.08 GGAGT 0.08

H3K14acvsH3.H2O2 AGGGG 0.12 CCCCT 0.11 TAGTC 0.10 CACC 0.10
CGAGG 0.09 CACAC 0.09 CGTAC 0.09 CCCGG 0.08
ATGCG 0.08 TTAGT 0.08 TCTCT 0.08 CGTGC 0.08

H4acvsH3.YPD CTCAT 0.12 AGCAA 0.10 CACAC 0.10 CACC 0.09
GAAAA 0.09 GATAC 0.08 CATGC 0.08 TACCC 0.08
TAGTC 0.08 TTAT 0.08 TCTCT 0.07 CAAGT 0.07

H4acvsH3.H2O2 AGGGG 0.18 GGGGG 0.14 AAAAG 0.13 CCCCT 0.12
GTGGC 0.11 AAGGG 0.10 CTCCC 0.09 CTTGT 0.09
ACACG 0.09 GATAC 0.09 GGGAG 0.09 CCTCG 0.08

H3K4me1vsH3.YPD GGCA 0.08 TATC 0.08 CCAG 0.08 CTTGA 0.08
TTAA 0.08 TGCGG 0.08 TGCAT 0.07 CCTCA 0.07
TCCAA 0.07 AACCC 0.07 AGTT 0.07 GGTTG 0.07

H3K4me2vsH3.YPD CTCAT 0.06 ATGAG 0.06 GGGAA 0.06 CTTGT 0.06
AGACA 0.06 GATCT 0.05 CACTT 0.05 ACCAC 0.05
AGTCC 0.05 GCTTA 0.05 AAAGA 0.05 GTCCA 0.05

H3K4me3vsH3.YPD CACC 0.10 ACCCG 0.09 AGCCA 0.09 CAAGT 0.08
GTCCA 0.08 GTCAA 0.08 TCTCT 0.08 GAAAA 0.07
GCGTG 0.07 CTCAT 0.07 TAGTC 0.07 TCACT 0.07

H3K36me3vsH3.YPD AAAA 0.14 TACT 0.12 ATAT 0.10 TTTT 0.10
GTGA 0.10 CCTCC 0.09 TAAT 0.09 CGTCC 0.09
CATCA 0.09 AGTT 0.09 AACA 0.09 GGACG 0.09

H3K79me3vsH3.YPD TATA 0.22 TAAT 0.22 TAAA 0.16 ATAT 0.16
TATT 0.14 ATTA 0.14 CATCA 0.14 TTAGA 0.14
TGCA 0.13 TACT 0.13 TTTA 0.13 GATTT 0.11

negative features (Table 4). In other words, CG-rich DNA sequence areas are
often free of histone occupancy, acetylation, or methylation. We all knew that
CpG islands are usually near to gene starts. So we can infer from our results
that promoter regions are often not occupied by nucleosomes. This is consistent
with previous results by experimental approaches in vivo [16].

4 Conclusion

We have introduced a conditional model based method to predict qualitative
histone occupancy, acetylation, and methylation areas in DNA sequences. We
have selected a basic set of features based on DNA-sequence. Moreover, our
model can evaluate the informative features to discriminate between DNA areas
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Table 4. Most informative features selected from CRFs model for negative class with
k-grams=4 and k-grams=5

Dataset Feature Weight Feature Weight Feature Weight Feature Weight
H3.YPD CGCGC 0.15 TTTTT 0.13 AAAAA 0.12 GCGCG 0.11

CGCGG 0.09 CCGCG 0.09 CGGGC 0.09 CGTGC 0.08
GCGGG 0.08 TTATA 0.08 TTTTA 0.07 GGCCG 0.07

H4.YPD AAAAA 0.38 TTTTT 0.29 AGAAA 0.27 GCGCG 0.27
CGGAC 0.26 TTATA 0.26 TATAT 0.25 CGTGC 0.23
CGCGC 0.23 CCCGG 0.22 GGCT 0.22 CGCGG 0.21

H3.H2O2 CGCGC 0.35 GCGCG 0.27 GCGGG 0.23 CGCGG 0.22
CCGCG 0.22 TTTTT 0.20 AGGT 0.18 CTTC 0.16
CCCCC 0.16 GGGCG 0.15 CCGGG 0.15 ACCA 0.14

H3K9acvsH3.YPD GCCGC 0.13 GCAC 0.10 TCCAA 0.10 CCTCC 0.10
ATTTG 0.09 AAAG 0.09 TTCTG 0.09 CAAAT 0.09
TCTT 0.09 ATATT 0.09 GCAG 0.09 GCTG 0.09

H3K14acvsH3.YPD GCCGC 0.11 CCAAT 0.09 TTATC 0.08 CTCGT 0.08
ATTTG 0.08 ATTCA 0.08 TGATG 0.08 AAATT 0.08
CCAAA 0.07 TCTAA 0.07 CATCA 0.07 TCAG 0.07

H3K14acvsWCE.YPD CGCGG 0.14 GCCGC 0.12 AAGC 0.12 GCGGC 0.11
CTTA 0.11 TCTT 0.10 CGCGC 0.10 TCAG 0.10
AACA 0.10 CAAG 0.09 CTCT 0.09 GTCC 0.09

H3K14acvsH3.H2O2 AAATT 0.12 TAGT 0.11 TACG 0.08 GTGGG 0.08
CTTA 0.08 TATTA 0.08 GCGTC 0.08 GTGA 0.08
AAGC 0.08 CATA 0.08 TCCC 0.07 AATCA 0.07

H4acvsH3.YPD GCCGC 0.15 TATTA 0.11 CTCT 0.11 GCGGC 0.10
CAAG 0.09 TCGGA 0.09 TTATC 0.09 ATATT 0.08
TTTGA 0.08 AACA 0.08 TTCTT 0.08 CCAAA 0.08

H4acvsH3.H2O2 TATTA 0.10 TCGT 0.09 TGGAT 0.09 ATATT 0.09
TTTTG 0.09 TAATT 0.08 AATTT 0.08 ACAG 0.08
AAGC 0.08 TACG 0.08 CCATA 0.08 TAAAA 0.08

H3K4me1vsH3.YPD GAAG 0.10 TACAC 0.10 CCGAG 0.09 TATGT 0.08
CAATT 0.08 ATAGT 0.08 CCGGC 0.08 CGAGG 0.08
ACCCG 0.07 GCGTG 0.07 TGGG 0.07 TCCTA 0.07

H3K4me2vsH3.YPD ATATT 0.09 TATTA 0.08 TGAAG 0.07 AATAT 0.06
TAATA 0.06 TAATT 0.05 TTAAT 0.05 GTAAT 0.05
CTAAA 0.05 GCCGC 0.05 AACAT 0.05 ATCAT 0.05

H3K4me3vsH3.YPD GCCGC 0.14 CGCGG 0.09 CAAG 0.09 TCAG 0.09
ACCCC 0.09 GCGGC 0.09 CTTA 0.09 AAGC 0.08
GCGCG 0.08 CTCT 0.08 AACA 0.07 GCGTC 0.07

H3K36me3vsH3.YPD GAAG 0.18 ATAGT 0.12 TATAT 0.12 AAAAG 0.11
TAGGA 0.10 CTTAA 0.10 CTCGA 0.09 CACC 0.09
CTCAT 0.09 GTACT 0.09 ACCCG 0.09 ACATA 0.09

H3K79me3vsH3.YPD TATAT 0.22 ATATA 0.20 ACATA 0.19 AAAAA 0.17
TTGT 0.16 TTATA 0.16 TATAA 0.16 GCCGC 0.15
ACGTA 0.13 GAAG 0.13 GCCCG 0.13 CTTC 0.12

with high and low occupancy, acetylation, or methylation. In the near future,
we plan to incorporate features related to sequence motifs into our method in
order to capture more faithfully the constrains on the model.
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Abstract. This paper presents the use of an ant colony system (ACS)
algorithm in DNA fragment assembly. The assembly problem generally
arises during the sequencing of large strands of DNA where the strands
are needed to be shotgun-replicated and broken into fragments that are
small enough for sequencing. The assembly problem can thus be classi-
fied as a combinatorial optimisation problem where the aim is to find
the right order of each fragment in the ordering sequence that leads
to the formation of a consensus sequence that truly reflects the origi-
nal DNA strands. The assembly procedure proposed is composed of two
stages: fragment assembly and contiguous sequence (contig) assembly.
In the fragment assembly stage, a possible alignment between fragments
is determined with the use of a Smith-Waterman algorithm where the
fragment ordering sequence is created using the ACS algorithm. The re-
sulting contigs are then assembled together using a nearest neighbour
heuristic (NNH) rule. The results indicate that in overall the perfor-
mance of the combined ACS/NNH technique is superior to that of the
NNH search and a CAP3 program. The results also reveal that the solu-
tions produced by the CAP3 program contain a higher number of contigs
than the solutions produced by the proposed technique. In addition, the
quality of the combined ACS/NNH solutions is higher than that of the
CAP3 solutions when the problem size is large.

1 Introduction

In order to understand the whole genetic makeup of an organism, the informa-
tion regarding the entire DNA (deoxyribonucleic acid) sequence is required. The
most famous research project that attempts to attain such information is the
Human Genome Project [1] where the entire DNA sequence of a human genome,
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covering over three billion genetic codes, is investigated. To achieve the goal, the
project has to be divided into many components. One of major components is
DNA fragment assembly. DNA is a double helix comprised of two complementary
strands of polynucleotides. Each strand of DNA can be viewed as a character
string over an alphabet of four letters: A, G, C and T. The four letters represent
four bases, which are adenine (A), guanine (G), cytosine (C) and thymine (T).
The two strands are complementary in the sense that at corresponding positions
A’s are always paired with T’s and C’s with G’s. These pairs of complementary
bases are referred to as “base pairs”. At present, strands of DNA that are longer
than 600 base pairs cannot routinely be sequenced accurately [2]. The sequenc-
ing technique that involves fragmentation of a DNA strand is called a shotgun
sequencing technique. Basically, DNA is first replicated many times and then in-
dividual strands of the double helix are broken randomly into smaller fragments.
This produces a set of out of order fragments short enough for sequencing.

A DNA fragment assembly problem involves finding the right order of each
fragment in the fragment ordering sequence, which leads to the formation of a
consensus sequence that truly reflects the parent DNA strands. In other words,
the DNA fragment assembly problem can be treated as a combinatorial opti-
misation problem. A number of deterministic and stochastic search techniques
have been used to solve DNA fragment assembly problems [3]. For instance,
Huang and Madan [4] and Green [5] have used a greedy search algorithm to
solve the problem. However, a manual manipulation on the computer-generated
result is required to obtain a biologically plausible final result. Other determin-
istic search algorithms that have been investigated include a branch-and-cut
algorithm [6] and a graph-theoretic algorithm where DNA fragments are either
represented by graph nodes [7, 8] or graph edges [9]. The capability of stochas-
tic search algorithms such as a simulated annealing algorithm [10], a genetic
algorithm [11, 12, 13] and a neural network based prediction technique [14] has
also been investigated. The best DNA fragment assembly results obtained from
stochastic searches have been reported in Parsons and Johnson [12], and Kim and
Mohan [13] where genetic algorithms have proven to outperform greedy search
techniques in relatively small-sized problems. In addition, the need for manual
intervention is also eliminated in this case. Although a significant improvement
over the greedy search result has been achieved, the search efficiency could be
further improved if the redundancy in the solution representation could be elim-
inated from the search algorithms [11]. Similar to a number of combinatorial
optimisation techniques, the use of a permutation representation is required to
represent a DNA fragment ordering solution in a genetic algorithm search. With
such representation, different ordering solutions can produce the same DNA con-
sensus sequence. Due to the nature of a genetic algorithm as a parallel search
technique, the representation redundancy mentioned would inevitably reduce
the algorithm efficiency. A stochastic search algorithm that does not suffer from
such effect is an ant colony system (ACS) algorithm [15].

The natural metaphor on which ant algorithms are based is that of ant
colonies. Real ants are capable of finding the shortest path between a food
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source and their nest without using visual clues by exploiting pheromone in-
formation. While walking, ants deposit pheromone on the ground, and proba-
bilistically follow pheromone previously deposited by other ants. The way ants
exploit pheromone to find the shortest path between two points can be described
as follows. Consider a situation where ants arrive at a decision point in which
they have to decide between two possible paths for both getting to and returning
from their destination. Since they have no clue about which is the best choice,
they have to pick the path randomly. It can be expected that on average half
of the ants will decide to go on one path and the rest choose to travel on the
other path. Suppose that all ants walk at approximately the same speed, the
pheromone deposited will accumulate faster on the shorter path. After a short
transitory period the difference between the amounts of pheromone on the two
paths is sufficiently large so as to influence the decision of other ants arriving at
the decision point. New ants will thus prefer to choose the shorter path since at
the decision point they perceive more pheromone. At the end, all ants will use
the shorter path. If the ants have to complete a circular tour covering n different
destinations without visiting order preference, the emerged shortest path will be
a solution to the n-city travelling salesman problem (TSP). Although the ACS
algorithm also exploits stochastic parallel search mechanisms, the algorithm per-
formance does not depend upon the solution representation. This is because the
optimal solution found by the ACS algorithm will emerge as a single “shortest
path”. In other words, the problem regarding the redundancy in the solution
representation mentioned early would be completely irrelevant to the context of
the ACS algorithm search.

The organisation of this paper is as follows. In section 2, the overview of a
DNA fragment assembly problem will be given. In section 3, the background on
the ACS algorithm will be discussed. The application of the ACS algorithm on
the DNA fragment assembly problem will be explained in section 4. Next, the
case studies are explained in section 5. The results obtained after applying the
ACS algorithm to the problem and the result discussions are given in section 6.
Finally, the conclusions are drawn in section 7.

2 DNA Fragment Assembly Problem

In order to create a DNA map, the original complementary strands of DNA
are first replicated many times. Then individual strands of the double helix are
broken randomly into small fragments. Base ordering in each fragment can sub-
sequently be identified by applying a base calling procedure on the fluorescent
trace-data [16]. After the bases on each fragment have been sequenced, the frag-
ments are then aligned in order to create a consensus sequence that represents
the original or parent DNA strands. An alignment between two fragments can
be created if there is a portion from each fragment that together can produce a
match between either the same-base ordering sequences or the complementary-
base ordering sequences. This is because the fragments can come from the same
strand or different complementary strands. The alignments of fragments are
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Parent Strands
TTAGCACAGGAACTCTA

|||||||||||||||||

AATCGTGTCCTTGAGAT

Original Fragment Set DNA Fragment Assembly Consensus Sequence
AGCAC TTTGC-C TTAGCACAGGAACTCTA

ATCAAGGAAC AGCAC

GACTC ATCA-AGGAAC

TTCTA GA-CTC

TTTGCC TTCTA

Fig. 1. Schematic diagram of the fragment assembly process

schematically displayed in Fig. 1. From Fig. 1, the consensus sequence truly
represents a strand from the parent DNA strands because there is an overlap
portion between each pair of aligned fragments. The number of matching bases
between two aligned fragments together with penalties from mismatches and
gaps are generally referred to as the overlap score. In order to obtain an over-
lap score, the alignment are chosen to maximise the number of matching bases
between the two fragments and minimise mismatches and gaps. If the search
for a possible alignment between a given fragment and other fragments returns
either a relatively low or a zero overlap score, there will be gaps in the consensus
sequence. In such a case, the consensus sequence will contain multiple disjoint
sequences called contiguous sequences or contigs. In other words, it is desirable
to have only one contig in the consensus sequence. Notice that each base on
the consensus sequence is determined by applying a majority vote rule to each
column of bases in the aligned fragments.

3 Ant Colony System Algorithm

The ant colony system (ACS) algorithm is a search algorithm, which has its root
from the study of insect collective behaviour [15]. The search algorithm is suit-
able to a combinatorial optimisation problem, which has a characteristic similar
to that of a TSP. In the context of a TSP, an ant will choose to make a transition
from one city to the next city using the information regarding the distance and
the pheromone deposited between the cities. Pheromone is a substance left on
the path by other ants that have previously made a transition between the two
cities of interest. The level of pheromone is directly correlated to the number
of ants that have travelled between the cities and hence inversely proportional
to the distance between the cities. The more pheromone being deposited on the
path, the higher the number of ants that will choose to make the transition
through that path. After all ants have completed the circular tour that covers
all cities, the paths on the shortest global tour will receive additional pheromone
deposition. This will encourage more ants to make a tour that utilises paths,
which make up the shortest global tour in the future. By reinforcing the deci-
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sion that leads to the construction of the shortest global tour using pheromone
deposition, an optimal solution to the TSP would be co-operatively created by
all ants in the colony.

Based on the overview of the algorithm, three main components that make up
the algorithm are a state transition rule, a local pheromone-updating rule and
a global pheromone-updating rule. In addition, Dorigo and Gambardella [15]
have also introduced the use of a data set called a candidate list that creates a
limitation on the city chosen by an ant for a state transition. The explanation
on these three rules and the candidate list can be found in Dorigo and Gam-
bardella [15]. Although the explanation of the ACS algorithm is given in the
context of a TSP, the ACS algorithm can be easily applied to a DNA fragment
assembly problem. This is because the overlap score, which provides information
regarding how well two fragments can fit together, can be directly viewed as the
inverse of the distance between two cities.

4 Application of the ACS Algorithm to the DNA
Fragment Assembly Problem

A DNA fragment assembly problem can generally be viewed as a combinatorial
optimisation problem that is closely related to a TSP [11]. Detailed comparison
between the two problems and how the ACS algorithm can be applied to the
DNA fragment assembly problem are discussed as follows.

4.1 Comparison Between a DNA Fragment Assembly Problem and
a TSP

By making an analogy between cities in a TSP and fragments in an assembly
problem, it can be easily seen that the overlap score can be viewed as the inverse
of the distance between cities. However, a DNA fragment assembly problem is
a special kind of symmetric TSPs. In brief, distances between cities r and s in
the forward and backward journeys are equal in a symmetric TSP. A factor that
makes a DNA fragment assembly problem a special form of symmetric TSPs
is the consideration on the original parent DNA strand at which the fragment
came. Each fragment used in the assembly process has an equal probability of
coming from one of the two parent DNA strands. With different assumptions on
the origin of the fragment, the resulting overlap score would also be different.
With this factor, there are four possible configurations for obtaining the overlap
score between two fragments. The summary of four alignment configurations is
given in Table 1. From Table 1, during the use of the ACS algorithm if an ant
is at fragment r where the fragment is assumed to come from the forward DNA
strand, the only possible configurations for an alignment with fragment s are
configurations 1 and 2. On the other hand, if the fragment r comes from the
complementary strand where the order of base reads must always be in reverse,
the feasible configurations for an alignment with fragment s are configurations
3 and 4.
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Table 1. Four alignment configurations between two fragments

Configuration Assumption about the Strand of Origin

Fragment r Fragment s

1 Forward Forward
2 Forward Reverse complement
3 Reverse complement Forward
4 Reverse complement Reverse complement

4.2 Evaluation of an Overlap Score

From the previous sub-section, there are four possible configurations at which
two fragments can be aligned. An overlap score for an alignment between two
fragments can be calculated using a Smith-Waterman algorithm [17]. In brief,
the algorithm computes the locally best alignment between two fragments using
a dynamic programming approach. The only parameter settings required for the
Smith-Waterman algorithm are the similarity score matrix and the affine gap
penalty. In this paper, the similarity score matrix and the affine gap penalty
settings are based on the default settings of a PHRAP assembly program [5].
Basically, the scores +1 and −9 are used for a match and a mismatch involving
A, C, G or T, respectively while the score 0 is used for a match or a mismatch
involving N—no base calling character. In addition, the score −11 is used for
the gap opening penalty (the first residue in a gap) and the score −10 is used
for the gap extension penalty (each subsequent residue). In this paper the SIM
program [18], which is an implementation of the Smith-Waterman algorithm in
a C programming language, is used to obtain the overlap score between two
fragments. With the use of the Smith-Waterman algorithm, the configurations
1 and 4 in Table 1 will have the same overlap score since both fragments are
assumed to come from the same parent strand. Similarly, the configurations 2
and 3 in Table 1 will have the same overlap score since the fragments are assumed
to come from different strands. After the overlap score has been calculated in
this manner, the fragment ordering sequence that leads to the formation of
a consensus sequence can be constructed by adding fragments to the existing
ordering sequence by one fragment at a time. In a schematic display, the fragment
ordering sequence would look similar to a ladder. This results from the way the
relative position of the fragment in the alignment is dictated by the overlap score
calculation procedure.

4.3 ACS Search Objective

The objective function investigated is a minimisation function, which is a com-
bination between the number of contigs and the difference in length between
the longest and the shortest contigs. With the use of this objective function, the
solution that has the lesser number of contigs will be regarded as the better so-
lution. The locations of the beginning and the end of each contig in the fragment
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ordering sequence are the locations where the overlap score between two consec-
utive fragments is lower than a threshold value, which in this investigation is set
to 95. However, more than one solution generated may have the same number
of contigs. If this is the case, the solution that is the better solution is the one
where the difference between the length of the longest and the shortest contigs
is minimal. This part of the objective function is derived from the desire that
the ultimate goal solution is the one with either only one contig or the fewest
possible number of contigs where each contig is reasonably long.

4.4 ACS State Transition and Pheromone-Updating Rules

In order to use an ACS algorithm in a DNA fragment assembly process, the
terms in the ACS rules that are required to change are the inverse of distance
term and the pheromone-updating factors. In the ACS state transition rule, a
decision is made using guidance from a pheromone-closeness product. The inverse
of distance terms can thus change to the overlap score between two fragments.
Similarly, in the ACS pheromone-updating rules, the tour length used in the
pheromone-updating factor (Δτ) will be substituted by the sum of inverse of
overlap scores obtained for the fragment ordering sequence generated. In the
ACS local pheromone updating rule, the pheromone updating factor Δτ(r, s) will
be set to Δτ(r, s) = τ0 = (n ISnn)−1 where ISnn is the sum of inverse of overlap
scores obtained using a nearest neighbour heuristic (NNH) rule. On the other
hand, the pheromone-updating factor Δτ(r, s) in the ACS global pheromone
updating rule will be set to Δτ(r, s) = (ISgb)−1 for (r, s) ∈ global-best-solution
where IS gb is the sum of inverse of overlap scores for the globally best solution.
The final ACS consensus sequence will be obtained by splitting the circular
fragment ordering sequence at the location where the overlap score between two
fragments is minimal.

5 Case Studies

The capability of the ACS algorithm in DNA fragment assembly will be tested
using data sets obtained from a GenBank database at the National Center
for Biotechnology Information or NCBI (http://www.ncbi.nlm.nih.gov). The
parent DNA strands in this case are extracted from the human chromosome 3
where the strands with the sequence length ranging from 21K to 83K base pairs
are utilised. It is noted that each complementary pair of parent DNA strands can
be referred from the database using its accession number. The fragments used
to construct the consensus sequence are also obtained from the same database
where each fragment is unclipped (low quality base reads are retained) and has
the total number of bases between 700 and 900. This means that the fragments
used in the case studies contain sequencing errors generally found in any ex-
periments. In addition, no base quality information is used during the assembly
investigation. In order for a consensus sequence to accurately represent the par-
ent DNA strands, there must be more than one fragment covering any base pairs
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Table 2. Information on the data set

Accession Number AC023501 AC023159 AC005903 AC026318
Base Pair 20,824 34,680 63,949 83,181

Case Study 1 2 3 4 5 6 7 8
Coverage 10 10 5 5 7 6 7 7
Number of Fragments 368 367 279 269 611 591 709 708
Gaps 0 1 0 6 0 1 0 1

of the parent strands. The average number of fragments covering each base pair
on the parent strands is generally referred to as coverage. In addition, for a con-
sensus sequence to be made up from one contig, there must be no gaps in the
fragment ordering sequence. In this paper, the data set is prepared such that the
consensus sequence contains either one contig or multiple contigs. The summary
of the data set descriptions is given in Table 2.

In order to benchmark the performance of the ACS algorithm, its search per-
formance will be compared with that of the NNH rule and a CAP3 program [4],
which is one of the most widely used programs in bioinformatics research com-
munity. Since the base quality information is not used during the assembly, the
solutions produced by the CAP3 program would be similar to the results from
a PHRAP program [5], which is also a standard program [13]. The parameter
setting for the ACS algorithm is the recommended setting for solving symmetric
travelling salesman problems given in Dorigo and Gambardella [15].

6 Results and Discussions

The ACS algorithm, the NNH rule and the CAP3 program have been applied to
all eight case studies. In the case of the NNH search, all possible n solutions with
different starting fragments are generated where n is the number of fragments.
The solutions are obtained using the sum of overlap scores as the maximisa-
tion objective. The best solution is then picked where contigs are produced by
assembling aligned fragments together and applying a majority-vote rule, as il-
lustrated in Fig. 1, for the base calling purpose. Next, an attempt on DNA contig
assembly is made where the overlap score between each contig is obtained using
a Smith-Waterman algorithm and the NNH rule is subsequently applied. Similar
to the early assembly procedure, all possible l solutions are generated this time
where l is the number of contigs from the primary assembly stage and the best
solution among l solutions are chosen as the final solution. In contrast, the ACS
algorithm runs are repeated ten times in each case study using the optimisation
objective explained in sub-section 4.3. During each run, the initial solution used
is randomly chosen from all n solutions produced by the NNH rule. Similar to
the case of the NNH rule, after all ACS runs are finished, the best solution in
terms of the search objective employed is picked and contigs are obtained by
assembling fragments together. The contig assembly is then commenced where
the NNH rule is applied using the sum of overlap scores as the maximisation
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objective. It is noted that since the CAP3 program is deterministic in nature,
the program is executed only one time for each case study. From the assembly
results obtained, two discussion topics can be given: the number of contigs in
the final assembly solutions and the quality of the final solutions. These issues
are discussed as follows.

6.1 Number of Contigs in the Final Assembly Solutions

As mentioned earlier, after the primary DNA fragment assembly stage where
either the NNH rule or the ACS algorithm is applied to the problem, the resulting
DNA contigs are subsequently assembled together using the NNH rule. The final
numbers of contigs obtained from both approaches—the NNH+NNH approach
and the ACS+NNH approach—together with the number of contigs from the
solution generated by the CAP3 program, are reported in Table 3. From Table 3,
the CAP3 program outperforms the ACS+NNH approach in cases 4 and 5 while
the ACS+NNH approach is the best technique in the remaining cases. The results
also indicate that as the problem size increases, the number of contigs produced
by the ACS+NNH approach also increases. On the other hand, it appears that
there is no correlation between the problem size and the number of contigs in the
case of the CAP3 program. Based upon the above observation, it is sufficed to
say that the overall performance of the ACS+NNH approach is higher than that
of the CAP3 program. The comparison between the performances of NNH+NNH
and ACS+NNH approaches is now considered. Both techniques have the same
performance in cases 1, 2, 7 and 8 while the ACS+NNH approach has a higher
performance in cases 3, 4, 5 and 6. In overall, it can be concluded that there
is a range on the problem size at which the ACS+NNH approach is capable of
producing a better result than the NNH+NNH approach.

Table 3. Number of contigs from the solutions produced by the NNH+NNH approach,
the ACS+NNH approach and the CAP3 program

Problem Number of Contigs

Parent Strand NNH+NNH ACS+NNH CAP3

AC023501 (21K bases)
No gaps 1 1 1 3
With gaps 2 2 2 4

AC023159 (35K bases)
No gaps 1 11 5 10
With gaps 7 18 11 9

AC005903 (64K bases)
No gaps 1 14 11 3
With gaps 2 14 2 3

AC026318 (83K bases)
No gaps 1 15 15 25
With gaps 2 15 15 25
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6.2 Quality of the Assembly Solutions

In the previous sub-section, the numbers of contigs in the final assembly solutions
from all three techniques are compared. In this part of the discussion, the quality
of these contigs is examined. The quality of a contig is measured in terms of the
base difference between the parent DNA sequence and the contig of interest using
a Smith-Waterman algorithm with the setting described in sub-section 4.2. This
difference can be expressed in terms of an assembly error, which can be further
divided into three components: a substitution error, an insertion/deletion (indel)
error and a coverage error. A substitution error appears when a base in one of two
aligned sequences—a parent DNA sequence and a contig in this case—does not
match its counterpart in the other sequence. When a base in one aligned sequence
seems to have been deleted as the result of a divergence of the sequence from its
counterpart, such absence is labelled as a deletion error in the derived sequence.
On the other hand, when a base appears to have been inserted to produce a longer
sequence, an insertion error is labelled in the augmented sequence. A deletion in
one sequence can thus be viewed as an insertion in the other sequence. Hence,
these two types of error are generally referred to together as an indel error.
In contrast to substitution and indel errors, a coverage error is detected when
there are bases in the parent DNA sequence, which are located outside the part
of contig that best matches the parent sequence and thus not covered by any
contigs. The assembly errors in the contigs produced by all three techniques,
expressed in terms of the percentage of errors out of the total number of bases
in the parent sequence, are compared in Table 4.

Basically, the sum of substitution and insertion/deletion errors from the
ACS+NNH approach is higher than that of the CAP3 program in all case stud-
ies. However, in the first four case studies the coverage errors from the CAP3
program are either lower than or equal to that from the ACS+NNH approach
while the solutions that have lower coverage errors in the last four case studies
are produced by the ACS+NNH approach. It is also noticeable that the errors
from the NNH+NNH and ACS+NNH approaches are very similar in all case
studies except for the last two cases where the coverage errors of the solutions
from the ACS+NNH approach are lower. Based upon the results in terms of so-
lution quality, the right combination between the ACS algorithm and the CAP3
program may yield contigs that have even lower assembly errors. Since the core
search algorithm of the CAP3 program is a greedy search algorithm [4], the re-
placement of the CAP3 core algorithm with the ACS algorithm would be one
possible step towards the goal.

7 Conclusions

In this paper, a DNA fragment assembly problem, which is a complex combina-
torial optimisation problem that can be treated as a travelling salesman problem
(TSP), has been discussed. In the context of a TSP, a fragment ordering sequence
would represent a tour that covers all cities while the overlap score between two
aligned fragments in the ordering sequence can be viewed as the inverse of the
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Table 4. Assembly errors expressed in terms of the sum of substitution and inser-
tion/deletion errors, and the coverage error

Problem Substitution & Indel Errors (%) Coverage Error (%)

NNH+NNHACS+NNH CAP3 NNH+NNHACS+NNHCAP3

AC023501 (21K bases)
No gaps 1.63 1.89 0.13 0.00 0.00 0.00
With gaps 1.62 1.43 0.10 0.00 0.19 0.00

AC023159 (35K bases)
No gaps 1.17 1.57 0.21 8.48 8.22 6.98
With gaps N/A N/A 0.22 N/A N/A 1.10

AC005903 (64K bases)
No gaps 1.08 1.01 0.10 0.45 0.45 2.38
With gaps 1.02 0.97 0.11 0.47 1.22 2.06

AC026318 (83K bases)
No gaps 1.19 1.11 0.39 12.42 7.44 11.08
With gaps 1.19 1.09 0.40 12.23 7.49 10.87

distance between two cities. The assembly procedure proposed consists of two
stages: fragment assembly and contig assembly stages. In the fragment assembly
stage, a search for the best alignment between fragments is carried out using an
ant colony system (ACS) algorithm. The resulting contigs are then assembled
together using a nearest neighbour heuristic (NNH) rule in the contig assembly
stage. The assembly procedure proposed has been benchmarked against a CAP3
program [4]. The results suggest that the solutions produced by the CAP3 pro-
gram contain a higher number of contigs than the solutions generated by the
proposed technique. In addition, the quality of the combined ACS/NNH solu-
tions is higher than that of the CAP3 solutions when the problem size is large.
Since the core algorithm of the CAP3 program is a greedy search algorithm,
a replacement of the core algorithm with the ACS algorithm may yield an im-
provement on the final assembly solution.
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Abstract. Nature inspired routing protocols for fixed and mobile net-
works are becoming an active area of research. However, analyzing their
security threats and countering them have received little attention. In
this paper we discuss the security threats of a state-of-the-art rout-
ing protocol, BeeHive, and then extend the algorithm with our security
model to counter them. We further conclude from our extensive exper-
iments that standard cryptography techniques can not be utilized due
to their large processing and communication costs, if Nature inspired
routing protocols are to be deployed in real world networks.

1 Introduction

Nature inspired routing protocols are becoming an active area of research because
they do not require an a priori global system model of the network rather they
utilize a local system model as observed by the agents. The agents gather the
network state in a decentralized fashion and leave the corresponding information
on visited nodes. This information enables them to make routing decisions in a
decentralized fashion without the need of having access to complete network
topology. The algorithms can adapt autonomously to changes in the network, or
in traffic patterns. AntNet [1], BeeHive [15] and Distributed Genetic Algorithm
(DGA) [7] are state-of-the-art Nature inspired routing algorithms.

In all of the above-mentioned algorithms, the authors always implicitly trusted
the identity of the agents and their routing information. However, this assump-
tion is not valid for real world networks, where malicious intruders or compro-
mised nodes can wreak havoc. To our knowledge, little attention has been paid
to analyzing the security threats of Nature inspired routing protocols and effi-
ciently countering them. The router vendors are not willing to deploy Nature
inspired routing protocols in real networks because their security threats are not
properly investigated. We believe that a scalable security framework, which has
acceptable processing and communication costs, is an important step toward
deployment of such protocols in real world routers. This observation provided
the motivation for our current work in which we try to take the first step in this
direction by doing a comprehensive analysis of the security threats of the Bee-
Hive algorithm. We provide the important features of our security framework,
BeeHiveGuard, and measure its processing and communication costs.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 243–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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According to Perlman [9], a routing protocol can have anomalous behavior
because of two types of failures: simple and Byzantine. Simple failures occur
once a node crashes or a link goes down while Byzantine failures happen due
to the malicious nodes that launch agents into the networks. Such agents can
significantly alter the routing behavior of a routing protocol. In this work, we
focus on Byzantine failures because BeeHive is resilient to simple failures [15].

The rest of the paper is organized as follows. In Section 2, we provide a
brief overview of Byzantine failures/attacks that are relevant to Nature inspired
routing protocols. We then outline important features of considered BeeHive al-
gorithm in Section 3 and our security enhancements to it are discussed in Section
4. In Section 5, we discuss the simulated threat scenarios and then provide re-
sults from the extensive simulations in Section 6. Finally we conclude the paper
with an outlook to our future research.

2 Security Challenges in Nature Inspired Routing
Algorithms

In [6], the authors listed a number of attacks that the malicious nodes can launch
in Mobile Ad Hoc Networks (MANETs). We briefly describe only those attacks
that are relevant to Nature inspired routing protocols within the context of fixed
networks.

– Fabrication attacks are launched by a router to change the normal route of a
data packet. This is accomplished by retransmitting old agents or by modi-
fying the information of agents or by launching bogus agents. A fabrication
attack can be further classified as:
• An update storm or malicious flooding. In this attack a malicious router

injects a large number of agents in a short interval of time into the
network. As a result, the information (mostly bogus) carried by its agents
spreads faster in the network than the true information of other routers.
Consequently, the malicious router can divert data packets towards itself.

• A replay attack. In this attack a router retransmits old agents that carry
outdated information in the network.

• A rushing attack. This attack in only possible in those routing protocols
in which the agents are identified with a unique sequence number. An
attacker launches the agents whose source address is of some other node.
Moreover, it assigns them a significantly high sequence number. In this
way it forces other routers to accept its bogus agents and drop the real
ones.

– Dropping attacks are powerful because they can divide a network into several
partitions. They are of two types: blackhole attack and network partition.
• Blackhole attack. In this attack, an attacker diverts data packets towards

itself and simply drops them.
• Network partition. An attacker tries to separate a network into k (k ≥ 2)

partitions. As a result, the nodes in one partition can not communicate
with the nodes in the other partitions.
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– Tampering attack. In this attack, a malicious node simply modifies the rout-
ing information carried by an agent to its own benefits.
• Identity impersonating or spoofing. In this attack, a router impersonates

another router by launching bogus agents. As a result, the malicious
router can force data packets not to follow a path over another router
or it can divert them towards itself.

• Detour attack. An attacker forces its neighbors to route all their network
traffic over it.

Related Work. In [8, 11, 13, 5, 4], the authors have developed techniques to
counter some of the above-mentioned security threats in classical routing algo-
rithms. They utilized standard cryptography techniques i.e. digital signatures or
Hashed Message Authentication Code (HMAC) to avert fabrication and tam-
pering attacks. In these techniques, a router verifies that the originator of a
control message is the node that is indicated in the header. In [11], the authors
have secured distance vector routing protocols by incorporating the information
about a node and its predecessor node in the control packet. Sequence numbers
are used to identify an old or obsolete control packet. However, none of these
approaches try to analyze and counter the security threats related to the specific
features of Nature inspired routing algorithms with the exception of the prelim-
inary work of Zhong and Evans [16]. They studied the anomalous behavior of
AntNet [1] under three types of attacks: fabrication, dropping and tampering.
Their experiments clearly demonstrate that the malicious nodes can disrupt the
normal routing behavior of AntNet by launching these attacks.

3 BeeHive Algorithm

This algorithm was proposed by Wedde, Farooq and Zhang in [15]. The algorithm
is inspired by the communication language of honey bees. Each node periodically
sends a bee agent by broadcasting the replicas of it to each neighbor. The replicas
explore the network using priority queues and they use an estimation model
to estimate the propagation and queuing delay from a node, where they are
received, to their launching node. Once the replicas of the same agent arrive at
a node via different neighbors of the node, they exchange routing information to
model the network state at this node. Through this exchange of information by
the replicas at a node, the node is able to maintain a quality metric for reaching
destinations via its neighbors. The algorithm utilizes just forward moving agents
and no statistical parameters are stored in the routing tables. In BeeHive a
network is divided into Foraging Regions and Foraging Zones. Each node belongs
to only one Foraging Region. Each Foraging Region has a representative node.
A Foraging Zone of a node consists of all the nodes from which a replica of an
agent could reach this node in 7 hops. This approach significantly reduces the size
of the routing table because each node maintains detailed routing information
only about reaching the nodes within its Foraging Zone and for reaching the
representative nodes of the Foraging Regions. In this way, a data packet, whose
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destination is beyond the Foraging Zone of a node, is forwarded in the direction of
the representative node of the Foraging Region containing the destination node.
The next hop for a data packet at a node is selected in a probabilistic fashion
depending upon the goodness of each neighbor for reaching the destination.
BeeHive is also fault-tolerant to crashing of routers. The interested reader will
find more details in [15].

4 BeeHiveGuard

In our work, the basic motivation is to analyze the security threats of deploying
Nature inspired routing protocols and then to design and develop a comprehen-
sive security framework that can counter these threats. As a first step, we take
the BeeHive algorithm, introduced in the previous section, and extend it with
our security model that can counter these threats. We applied standard RSA
algorithm [10] for doing cryptography functions like encryption and decryption.
We name the new algorithm as BeeHiveGuard and discuss its relevant security
features. We assume that a secure key distribution infrastructure exists in the
network.

Agent integrity. The purpose of this extension is that the management infor-
mation related to a bee agent can not be modified/impersonated by an interme-
diate router. The values of relevant information fields of a bee agent that must
be protected are: its identifier and identifier of its replicas, its source address, its
time to live timer (TTL) and the address of its Foraging Region. The source node
signs these fields with its private key and puts the corresponding signature sig1
in the bee agent. If a traitorous router tries to change these fields or impersonate
someone else then other nodes can easily detect and discard the corresponding
bogus bee agents.

Routing information integrity. The purpose of this extension is to secure
the routing information i.e. the propagation delay or the queuing delay of a bee
agent. The delays are used to estimate the quality of a visited path. The routers
calculate the delay values and then modify them accordingly in the bee agents,
therefore, it becomes a challenging task to differentiate a valid modification
from a fake one. We can do it if we assume that no two subsequent routers on
a route fake their routing information. The basic idea is that a bee agent carries
the signed routing information of a node and its predecessor node. sig2 is the
signature obtained by signing the queuing and propagation delays of a visited
node and sig3 is the signature for its predecessor node. Figure 1 shows how
digital signatures are used to secure the routing information.

Node 1 launches two replicas of its bee agent towards Node 0 and Node 2
respectively. Node 1 has no predecessor, therefore, sig2 represents the signed
delays of the Node 1 and sig3 is obtained by signing a 0 value for both delays.
Once the replica arrives at Node 2 then sig3 is set to sig2 and the delays of this
node are signed in sign2. This process continues until the replica reaches Node
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Fig. 1. Securing routing information in BeeHiveGuard

4. Then Node 4 estimates its delays to Node 1 by adding its delay values with
the ones of Node 3 and Node 2. As a result, Node 3 can only manipulate its
own delays but not the cumulative delays from Node 1 to Node 3. Moreover, a
node also compares the delay values in sig2 with the ones in sig3. If the delay
values in sig2 are lesser or equal to the ones in sig3 then the predecessor node has
provided fake delay values. As a result, sig2 value at this node is calculated with
the help of the delay values in sig3 and the bee agent continues its exploration.
Since a node utilizes the information of its predecessor node and the predecessor
node of its predecessor node, therefore, a predecessor node can not significantly
influence the routing behavior by faking its own routing information above.

5 Experiments

We designed a series of experiments, which simulate different types of threats in
the networks. The results of the experiments clearly demonstrate that BeeHive
algorithm is susceptible to a number of such attacks. We utilized a standard
cryptography library, OpenSSL [2], to implement our security model in the Bee-
HiveGuard algorithm. The library supports relevant cryptography techniques
like digital signatures, symmetric and asymmetric cryptography, and cryptog-
raphy hash functions. A profiling framework, which measures the processing
complexity of a function in cycles, is incorporated in the performance evaluation
framework presented in [14]. The empirical validation of our security model is
necessary because it is not a trivial task to formally model the emergent behavior
of Nature inspired routing protocols. BeeHiveGuard is realized in OMNeT++
simulator [12]. The experiments were conducted on Fujitsu Siemens PC, which
has a Pentium 4 3.0 GHz processor and 1 Gigabyte of RAM. The reported values
are an average of the values obtained from ten independent runs.

Tampering control messages. We simulated in topology Net1 a malicious
node, which alters the queuing delay and propagation delay fields of the bee
agents passing through it. In Net1, a traffic session is started between Node 4
and Node 1. Node 3 modifies the queuing and propagation delays of the bee
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Fig. 2. Net1: Node 3 is tampering the queuing and the propagation delay
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Fig. 4. Net3: Rushing and dropping Attacks

agents launched by Node 1. As a result, it artificially increases the quality of the
path 4-3-2-1 as compared to 4-0-1.

Impersonating, Detour and Flooding attacks. In topology Net2, we cre-
ated a scenario which can simulate impersonating, detour and flooding attacks.
A traffic session is started between Node 3 and Node 0. In a normal mode, data
packets take the path 3-2-1-0. However, Node 4 launches the three attacks by
injecting a large number of bee agents, which have Node 0 as their source node
instead of Node 4. In this way, data packets also take the path 3-2-4-2-1-0.

Rushing and Dropping attacks. In topology Net3, we created a traffic session
between Node 5 and Node 0. In this scenario, Node 1 retransmits the bee agents
from Node 0 by increasing their agent id and changing their replica id to that
of the replicas of the path 0-2-*. As a result, Node 2 always drops the new bee
agents, which arrive directly from Node 0 because their agent id is smaller than
the ones which arrive over the path 0-1-2. Consequently, if the route 5-4-2-0
initially had a poor quality then its quality could never improve because Node
5 would always get the bogus bee agents through the path 0-1-2-4-5.
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6 Results

Tampering control messages. In Figure 5, one can see that in a normal mode
the path 4-0-1 is rated higher than the path 4-3-2-1 because of its smaller delays.
As a result, more data packets are routed on the path 4-0-1 as compared with the
path 4-3-2-1. However, the situation is drastically changed once Node 3 launches
its attack at 300 seconds by tampering the information in the bee agents (see
Figure 6). The impact of the attack is significantly reduced in BeeHiveGuard
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Fig. 5. Net 1: Normal mode (measurements are made at Node 4)
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Fig. 6. Net 1: Under attack (measurements are made at Node 4)
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Fig. 7. Net 1: Secure mode (measurements are made at Node 4)
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(see Figure 7) because Node 3 can now just manipulate its own queuing and
propagation delays. Remember in BeeHive it can manipulate the delays of the
complete path 3-2-1.

Impersonating, Detour and Flooding attacks. One can see in Figure 8
that in a normal mode all data packets are routed on the path 3-2-1-0. Node 4
launches its attacks by transmitting bogus bee agents at 300 seconds. As a result,
it has successfully detoured a significantly large number of data packets towards
itself (see Figure 9). Please remember that the left subfigure of Figure 9 shows
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Fig. 8. Net 2: Normal mode (measurements are made at Node 2)
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Fig. 9. Net 2: Under attack (measurements are made at Node 2)
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Fig. 10. Net 2: Secure mode (measurements are made at Node 2)
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the number of packets that followed either the path 3-2-1 or 3-2-4. Consequently,
the number of data packets that followed the path 3-2-4-2-1 is not counted for
neighbor 1. Figure 10 shows that in BeeHiveGuard Node 4 is not able to influence
the routing decisions by propagating its bogus bee agents.

Rushing and Dropping attacks. It is obvious from Figure 11 that in a normal
mode BeeHive is able to achieve excellent load balancing in the steady state by
distributing the packets on the paths 5-3-1-* and 5-4-2-*. However, once Node
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Fig. 11. Net 3: Normal mode (measurements are made at Node 5)
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Fig. 12. Net 3: Under attack (measurements are made at Node 5)
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Fig. 13. Net 3: Secure mode (measurements are made at Node 5)
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1 launches its attack by retransmitting the bee agents of Node 0 with modified
agent and replica ids then the quality of the paths 5-4-2-* does not improve. As
a result, Node 1 is able to divert the network traffic towards itself through the
path 5-3-1. However, the impact in this attack is less significant as compared
with the previous ones (see Figure 12). Figure 13 shows that BeeHiveGuard has
successfully countered even these attacks because Node 1 could not modify the
bee agents launched by Node 0.

7 Costs of BeeHiveGuard

We have collected relevant cost and performance values in Table 1. Aa is the
average number of processor cycles required to process a bee agent, Ro models
the bandwidth consumed by the bee agents, So models the additional bandwidth
consumed by data packets if they do not follow the shortest hop path, Tav

is the average throughput (Mbits/sec) and td is the average delay (in milli-
seconds). It is easy to conclude from Table 1 that BeeHiveGuard is able to
counter the threats and provide the same throughput and packet delay (the two
important performance values) than that of BeeHive in a normal mode. However,
the security is achieved at a considerable processing and communication costs. In
Net1, the average processing complexity and the communication overhead of bee
agents increased to 98600% and 750% respecitvely as compared to the bee agents
in BeeHive. A similar tendency is observed in case of Net2 and Net3 (see Table
1). The significant increase in processing cost is due to complex mathematical
operations that are performed in classical cryptography. The bee agents now
carry additional fields like digital signatures and this results in a substantial
increase in their size. As a result, the communication overhead is also significantly
increased.

Table 1. Costs of BeeHiveGuard

Topology Algorithm Aa Ro So Tav td

Net1 BeeHive 16699 0.022 0.473 0.79 0.004

Net1 BeeHive - Attack (1) 16547 0.022 0.73 0.79 0.004

Net1 BeeHiveGuard (2) 16341381 0.187 0.587 0.79 0.004

Difference (1) and (2) in % 98600 750 19.5 0 0

Net2 BeeHive 13924 0.018 0 0.79 0.004

Net2 BeeHive - Attack (3) 14703 0.057 1.443 0.79 0.008

Net2 BeeHiveGuard (4) 23603742 0.133 0 0.79 0.004

Difference (3) and (4) in % 160400 133.3 100 0 50

Net3 BeeHive 21219 0.029 0.133 0.79 0.005

Net3 BeeHive - Attack (5) 25353 0.017 0.29 0.788 0.007

Net3 BeeHiveGuard (6) 13247990 0.254 0.132 0.79 0.005

Difference (5) and (6) in % 52100 1390 54.4 0.2 28.5
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8 Conclusion and Future Work

We analyzed the security threats of a Nature inspired routing protocol, Bee-
Hive. However, the analysis can be easily extended to any Nature inspired rout-
ing protocol. The results of our extensive experiments reveal that the algorithm
is susceptible to a number of Byzantine attacks like tampering, impersonating,
detour, flooding, rushing and dropping that a malicious node can launch in the
network. The results of the experiments confirm that BeeHiveGuard can success-
fully counter all of these attacks. BeeHiveGuard utilizes standard cryptography
techniques for secure routing.

We extended an existing performance evaluation framework to measure the
processing complexity and communication costs of our security model. Our re-
sults indicate that the standard cryptography techniques are not feasible for
Nature inspired routing algorithms because the average agent complexity and
communication costs of a bee agent in BeeHiveGuard lies in the range from
52100% to 160400% and from 133% to 1390% respectively, as compared to Bee-
Hive. This overhead of providing security will hinder the normal packet switching
task of a real world router. The important conclusion of our current work is: if
Nature inspired routing protocols are to be deployed in real world networks then
a novel security architecture is to be developed whose processing and communi-
cation overheads are significantly smaller as compared with the existing cryptog-
raphy techniques. We believe that Artificial Immune Systems (AIS) [3] is one
such alternative paradigm. Our objective is to design and develop a comprehen-
sive and scalable security framework that does not use complex cryptography
techniques but provides the same security level. This will be the subject of our
forthcoming publications.

References

1. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communi-
cation networks. Journal of Artificial Intelligence Research, 9:317–365, December
1998.

2. M. Cox, R. Engelschall, S. Henson, and B. Laurie. The openssl project.
http://www.openssl.org.

3. Dipankar Dasgupta, editor. Artificial Immune Systems and their Applications.
Springer-Verlag, 1998.

4. R. Hauser, T. Przygienda, and G. Tsudik. Reducing the cost of security in link-
state routing. In SNDSS ’97: Proceedings of the 1997 Symposium on Network
and Distributed System Security, page 93, Washington, DC, USA, 1997. IEEE
Computer Society.

5. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Efficient security mechanisms
for routing protocolsa. In Proceedings of the Network and Distributed System Se-
curity Symposium, NDSS 2003, San Diego, California, USA. The Internet Society,
2003.

6. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. Wireless Networks, 11(1-2):21–38, 2005.



254 H.F. Wedde, C. Timm, and M. Farooq

7. S. Liang, A. N. Zincir-Heywood, and M. I. Heywood. Intelligent packets for dy-
namic network routing using distributed genetic algorithm. In Proceedings of Ge-
netic and Evolutionary Computation Conference. GECCO, July 2002.

8. S. L. Murphy and M. R. Badger. Digital signature protection of the ospf routing
protocol. In SNDSS ’96: Proceedings of the 1996 Symposium on Network and
Distributed System Security (SNDSS ’96), page 93, Washington, DC, USA, 1996.
IEEE Computer Society.

9. R. Perlman. Network layer protocols with byzantine robustness. phd thesis. Tech-
nical report, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technolog, 1998.

10. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

11. Bradley R. Smith, Shree Murthy, and J. J. Garcia-Luna-Aceves. Securing distance-
vector routing protocols. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 1997, San Diego, California, USA. IEEE Computer
Society, 1997.

12. A. Varga. OMNeT++: Discrete event simulation system: User manual.
http://www.omnetpp.org.

13. B. Vetter, F. Wang, and S. F. Wu. An experimental study of insider attacks for ospf
routing protocol. In ICNP ’97: Proceedings of the 1997 International Conference
on Network Protocols (ICNP ’97), page 293, Washington, DC, USA, 1997. IEEE
Computer Society.

14. H. F. Wedde and M. Farooq. A performance evaluation framework for nature
inspired routing algorithms. In Applications of Evolutionary Computing, LNCS
3449, pages 136–146. Springer Verlag, March 2005.

15. H. F. Wedde, M. Farooq, and Y. Zhang. BeeHive: An efficient fault-tolerant routing
algorithm inspired by honey bee behavior. In Ant Colony Optimization and Swarm
Intelligence, LNCS 3172, pages 83–94. Springer Verlag, Sept 2004.

16. W. Zhong and D. Evans. When ants attack: Security issues for stigmergic systems.
Technical report, Department of Computer Science, University of Virginina, CS-
2002-3, 2002.



Optimal Broadcasting in Metropolitan MANETs

Using Multiobjective Scatter Search�

F. Luna1, A.J. Nebro1, B. Dorronsoro1, E. Alba1, P. Bouvry2, and L. Hogie2

1 Department of Computer Science, University of Málaga, Spain
{flv, antonio, dorronsoro, eat}@lcc.uma.es

2 Faculty of Sciences, Technology and Communications, University of Luxembourg
{pascal.bouvry, luc.hogie}@uni.lu

Abstract. Mobile Ad-hoc Networks (MANETs) are composed of a set
of communicating devices which are able to spontaneously interconnect
without any pre-existing infrastructure. In such scenario, broadcasting
becomes an operation of capital importance for the own existence and op-
eration of the network. Optimizing a broadcasting strategy in MANETs
is a multiobjective problem accounting for three goals: reaching as many
stations as possible, minimizing the network utilization, and reducing
the makespan. In this paper, we face this multiobjective problem with
a state-of-the-art multiobjective scatter search algorithm called AbSS
(Archive-based Scatter Search) that computes a Pareto front of solu-
tions to empower a human designer with the ability of choosing the
preferred configuration for the network. Results are compared against
those obtained with the previous proposal used for solving the problem,
a cellular multiobjective genetic algorithm (cMOGA). We conclude that
AbSS outperforms cMOGA with respect to three different metrics.

1 Introduction

Mobile Ad-hoc Networks (MANETs) are fluctuating networks populated by a set
of communicating devices called stations (they are also called terminals) which
can spontaneously interconnect each other without a pre-existing infrastructure.
This means that no carrier is present in such networks as it is usual in many
other types of communication networks. Stations in MANETs are usually lap-
tops, PDAs, or mobile phones, equipped with network cards featuring wireless
technologies such as Bluetooth and/or IEEE802.11 (WiFi). In this scenario, a)
stations communicate within a limited range, and b) stations can move while
communicating. A consequence of mobility is that the topology of such networks
may change quickly and in unpredictable ways. This dynamical behavior consti-
tutes one of the main obstacles for performing efficient communications on such
networks.

Broadcasting is a common operation at the application level and is also widely
used for solving many network layer problems being, for example, the basis
� This work has been partially funded by the Ministry of Science and Technology and
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mechanism for many routing protocols. In a given MANET, due to host mobility,
broadcasting is expected to be performed very frequently (e.g., for paging a
particular host, sending an alarm signal, and/or finding a route to a given target
terminal). Broadcasting may also serve as a last resort to provide multicast
services in networks with such rapidly changing topologies and stems for the
organization of terminals in groups. Hence, having a well-tuned broadcasting
strategy will result in a major impact in network performance.

In this paper we are considering the problem of broadcasting on a particular
sub-class of MANETs called Metropolitan MANETs, which cover from shopping
malls to metropolitan areas. Instead of providing a generic protocol performing
well on average situations, our proposal consists of optimally tuning the broad-
casting service for a set of networks and for a particular category of broadcast
messages. Optimizing a broadcasting strategy is a multiobjective problem where
multiple functions have to be satisfied at the same time: maximizing the number
of stations reached, minimizing the network use, and minimizing the makespan
are three examples of the potential objectives. In this work, the broadcasting
strategy considered for optimization is DFCN [1], and the target networks are
metropolitan MANETs. Since manipulating such networks is difficult, we must
rely on software simulators for evaluating the scenarios from the designer point-
of-view.

Contrary to single objective optimization, multiobjective optimization is not
restricted to find a unique solution of a given multiobjective problem, but a set
of solutions known as the Pareto optimal set. For instance, taking as an example
the problem we are dealing with, one solution can represent the best result
concerning the number of reached stations, while another solution could be the
best one concerning the makespan. These solutions are said to be nondominated.
The result provided by a multiobjective optimization algorithm is then a set of
nondominated solutions (the Pareto optima) which are collectively known as the
Pareto front when plotted in the objective space. The mission of the decision
maker is to choose the most adequate solution from the Pareto front.

This multiobjective problem of broadcasting in MANETs, which has been
previously addressed with a cellular genetic algorithm (cMOGA) in [2], is now
tackled with a state-of-the-art multiobjective scatter search algorithm called
AbSS (Archive-based Scatter Search) [3]. Scatter search [4, 5, 6] has been suc-
cessfully applied to a wide variety of optimization problems [5], but it has not
been extended to deal with MOPs until recently [3, 7, 8, 9]. This metaheuristic
technique starts from an initial set of diverse solutions from which a subset,
known as the reference set (RefSet), is built by including both high quality
solutions and highly diverse solutions. Then, an iterative procedure systemati-
cally combines the solutions in RefSet somehow for generating new (hopefully
better) solutions that may be used for updating the reference set and even the
initial population. After that, an iterative procedure is used to locate an optimal
solution.

The contributions of this work are summarized in the following. Firstly, we
solve the broadcasting problem on MANETs using a multiobjective scatter
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search, and compare the results with those obtained with cMOGA. Secondly,
we are dealing in this work with a more realistic problem than the one faced
in [2] because we are using an interesting real world scenario (a shopping mall)
never tackled before.

The rest of the paper is structured as follows. In the next section, we detail
the multiobjective problem of broadcasting in MANETs. Section 3 includes the
description of the multiobjective scatter search algorithm. Metrics, parameter-
ization, and results are presented in Sect. 4. Finally, conclusions and lines of
future work are given in Sect. 5.

2 Problem Definition

The problem we study in this paper consists of, given an input MANET, deter-
mining the most adequate parameters for a broadcasting strategy in it. We first
describe in Sect. 2.1 the target networks we have used. Section 2.2 is devoted to
the presentation of DFCN, the broadcasting strategy to be tuned. Finally, the
MOP we define for this work is presented in Sect. 2.3.

2.1 Metropolitan Mobile Ad-Hoc Networks

Metropolitan mobile ad-hoc networks are MANETs with some particular prop-
erties. Firstly, they have one or more areas where the node density is higher than
the average. These points are called VHS, standing for Virtual Hot Spots, that
can be statistically detected. A VHS may be, for example, a shopping center, an
airport, or an office. Secondly, virtual hot spots do not remain active full time,
i.e., they can appear and disappear from the network (e.g., supermarkets are
open, roughly, from 9 a.m. to 9 p.m., and outside this period of time, the node
density within the corresponding area is close to zero).

To deal with such kind of networks, we have to rely on software simulators.
In this work we have used Madhoc 1, a metropolitan MANET simulator. It
aims at providing a tool for simulating different level services based on different
technologies on MANETs for different environments, ranging from open areas to
metropolitan ones. In order to make more realistic the simulations, Madhoc has
been endowed with an observation window such that only the devices located
inside this window are taken into account for measurements. Hence, we allow
the existence of a changing number of devices in the network as it happens in
real MANETs. This recent feature of Madhoc is displayed in Fig. 1, where both
an example of a metropolitan MANET (a) and the effects of introducing an
observation window on it (b) are shown. We highlight as well a typical action of
devices going in and leaving the window in the right part of the figure. In all the
tests in this work, this observation window is 70% of the total simulation area.
The main parameters of Madhoc used for defining the network characteristics
are the following:

1 http://www-lih.univ-lehavre.fr/∼hogie/madhoc/
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Fig. 1. (a) Metropolitan MANET, and (b) the effect of the observation window

size: defines the network simulation area in terms of square meters.
density : is the average density of nodes per square kilometer (i.e., the number

of devices per square kilometer).
environment : determines the mobility model for the stations and the radio

wave propagation model. That is, this feature defines how the stations are
moving as well as the area within which they are moving (open areas, build-
ings, streets, etc.), thus determining how radio waves are propagated.

2.2 Delayed Flooding with Cumulative Neighborhood

Broadcasting strategies in MANETs can be classified into four categories: sim-
ple flooding, probability-based methods, area-based methods, and neighbor-
knowledge-based methods (a survey can be found in [10]). This categorization is
based on the way that protocols select re-broadcasting stations.

Broadcasting protocols can also be classified depending on whether they deal
with mobility or not. The vast majority of present protocols do not consider any
active management of station mobility. The Delayed Flooding with Cumulative
Neighborhood (DFCN) protocol belongs to the neighbor-knowledge-based class,
and it features an active management of station mobility so it is able to make
new broadcasting decisions on new neighbor discovery. For being able to run the
DFCN protocol, the following assumptions must be met:

– Like many other neighbor-knowledge-based broadcasting protocols (FWSP,
SBA, etc.), DFCN requires the knowledge of 1-hop neighborhood, which can
be obtained by using “hello” packets at a lower network layer. The set of
neighbors of station s is named N(s).

– Each message m carries —embedded in its header— the set of IDs of the
1-hop neighbors of its most recent sender.

– Each station maintains local information about all the messages received.
Each instance of this local information consists of the following items:
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• the ID of the message received;
• the set of IDs of the stations that are known to have received the message;
• the decision of whether the message should be forwarded or not.

– DFCN requires the use of a random delay before possibly re-emitting a
broadcast message m. This delay, called Random Assessment Delay (RAD),
is intended to preventing collisions. More precisely, when a station s emits
a message m, all the stations in N(s) receive it at the same time. It is then
likely that all of them forward m simultaneously, and this simultaneity entails
network collisions. The RAD aims at randomly delaying the retransmission
of m. As every station in N(s) waits for the expiration of a different RAD
before forwarding m, the risk of collisions is hugely reduced.

DFCN is an event driven algorithm which can be divided into three main
parts: the two first ones deal with the station handling of outcoming events,
which are (1) new message reception and (2) detection of a new neighbor. The
third part (3) consists of the decision making of the station for emission as a
follow-up of one of the two previous events. The behavior resulting from message
reception is referred to as reactive behavior; when a new neighbor is discovered,
the behavior is referred as proactive behavior.

Let s1 and s2 be two stations in the neighborhood of one another. When
s1 sends a packet to s2, it attaches the set N(s1) to the packet. At reception,
s2 hence knows that each station in N(s1) has received the packet. The set of
stations which have potentially not yet received the packet is then N(s2) −
N(s1). If s2 re-emits the packet, the effective number of stations newly reached
is maximized by the heuristic function: h(s2, s1) = |N(s2) − N(s1)|.

In order to minimize the network overload caused by a possible packet re-
emission, this re-emission occurs only if the number of newly reached stations
is greater than a given threshold. This threshold is a function of the number of
stations in the neighborhood (the local network density) of the recipient station
s2. It is written threshold(|N(s)|). The decision made by s2 to re-emit the packet
received from s1 is defined by the boolean function:

Re-emit (s2, s1) =
true h (s2, s1) ≥ threshold (|N (s2)|)

false otherwise .
(1)

If the threshold is exceeded, the recipient station s2 becomes an emitter after a
random delay defined by RAD. The threshold function, which allows DFCN to
facilitate the message re-broadcasting when the connectivity is low, depends on
the size of the neighborhood n, as given by:

threshold(n) =
1 n ≤ safeDensity

minGain ∗ n otherwise .
(2)

where safeDensity is the maximum safe density below which DFCN always
rebroadcasts and minGain is the minimum gain for rebroadcasting, i.e., the
ratio between the number of neighbors which have not received the message and
the total number of neighbors.
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Each time a station s gets a new neighbor, the RAD for all messages is set
to zero and, therefore, messages are immediately candidate to emission. If N(s)
is greater than a given threshold, which we have called proD, this behavior is
disabled, so no action is undertaken on new neighbor discovery. proD is used for
avoiding massive packet rebroadcasting when a new station appears in highly
dense areas, that is, avoiding network congestions on the proactive behavior.

2.3 MOP Definition: DFCNT

From the description of the previous section, the following DFCN parameters
are to be tuned:

minGain is the minimum gain for rebroadcasting. This is the most impor-
tant parameter for tuning DFCN, since minimizing the bandwidth should
be highly dependent on the network density. It ranges from 0.0 to 1.0.

[lowerBoundRAD,upperBoundRAD] defines the RAD value (random de-
lay for rebroadcasting in milliseconds). Both parameters take values in the
interval [0.0, 10.0] milliseconds.

proD is the maximal density (proD ∈ [0, 100]) for which it is still needed using
proactive behavior (i.e., reacting on new neighbors) for complementing the
reactive behavior.

safeDensity defines a maximum safe density of the threshold which ranges
from 0 to 100 devices.

These parameters, i.e., a DFCN configuration, characterize the search space.
Here, the objectives to be optimized are: minimizing the makespan (in seconds),
maximizing the network coverage (percentage of devices having received the
broadcasting message), and minimizing the bandwidth used (in number of trans-
missions). Thus, we have defined a triple objective MOP, which has been called
DFCNT (standing for DFCN Tuning). For obtaining the values of these objective
functions we have used Madhoc because it implements the DFCN broadcasting
protocol. Then, our goal is to obtain the Pareto front of DFCNT (and the cor-
responding DFCN configurations) in terms of these three objectives.

3 Multiobjective Scatter Search

In this section, we first give a brief overview of the scatter search technique and,
second, we describe the modifications on this standard scatter search for dealing
with MOPs to explain our proposed AbSS.

3.1 Scatter Search

Most implementations of scatter search use the template proposed by Glover
in [4]. As depicted in Fig. 2, this metaheuristic consists of five methods: diver-
sification generation, improvement, reference set update, subset generation, and
solution combination.
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Fig. 2. Outline of the standard scatter search algorithm

The scatter search technique starts by creating an initial set of diverse indi-
viduals in the initialization phase. This phase consists of iteratively generating
new solutions by invoking the diversification generation method; each solution
is passed to the improvement method, which usually applies a local search pro-
cedure in an iterative manner, and the resulting individual is included into the
initial set P. After the initial phase, the scatter search main loop starts.

The main loop begins building the reference set from the initial set by invok-
ing the reference set update method. The reference set is a collection of both
high quality solutions and diverse solutions that are used for generating new
individuals. Solutions in this set are systematically grouped into subsets of two
or more individuals by means of the subset generation method. In the next step,
solutions in each subset are combined to create a new individual, according to
the solution combination method. Then, the improvement method is applied to
every new individual. The final step consists of deciding whether the resulting
solution is inserted into the reference set or not. This loop is executed until a
termination condition is met (for example, a given number of iterations has been
performed, or the subset generation method does not produce new subsets).

Optionally, there is a re-start process invoked when the subset generation
method does not produce new subsets of solutions. The idea is to obtain a new
initial set, which will now include the current individuals in the reference set.
The rest of individuals is generated by using the diversification generation and
improvement methods, as in the initial phase.

3.2 AbSS

AbSS (Archive-based Scatter Search) [3] is based on the aforementioned scatter
search template and its application to solve bounded continuous single objective
optimization problems [6]. It uses an external archive for storing nondominated
solutions and combines ideas of three state-of-the-art evolutionary algorithms
for solving MOPs. In concrete, the archive management follows the scheme of
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PAES [11], but using the crowding distance of NSGA-II [12] as a niching measure
instead of the PAES adaptive grid; additionally, the density estimation found in
SPEA2 [13] is adopted for selecting the solutions from the initial set that will
build the reference set. Once described the overall view of the technique, we now
detail the five methods to engineer AbSS:

– Diversification Generation Method: Its goal is to generate an initial
set P of diverse solutions. The method consists of dividing, for every new
solution, the range of each variable into a number of subranges of equal
size; then, each solution is created in two steps. Firstly, a subrange is ran-
domly chosen, with the probability of selecting a subrange being inversely
proportional to its frequency count (the number of times the subrange has
been previously selected); secondly, a value is uniformly randomly generated
within the selected range.

– Improvement Method: It is a local search method based on a mutation
operator (Polynomial mutation [14]) and a Pareto dominance test. It oper-
ates by iteratively mutating an individual with the aim of improving it. Since
we are dealing with MOPs, it may occur that the newly generated individual
and the current one are nondominated each other (Pareto dominance test).
In this case, the original individual is inserted into the external archive and
the mutated individual becomes the new current one.

– Reference Set Update Method: A similar issue rises when building the
RefSet in this method, i.e., how to pick up the best among a set of nondom-
inated solutions. RefSet is composed of two subsets, RefSet1 and RefSet2
so that the first one contains the best quality solutions in the initial set of
solutions, while the second subset should be filled with solutions promoting
diversity. While RefSet2 is constructed by choosing those individuals whose
minimum Euclidean distance to the reference set is the highest, RefSet1 is
built by using the concepts of strength raw fitness and a density estimation
of SPEA2 [13] when choosing the best individuals.

– Subset Generation Method: It generates all pairwise combinations of
solutions in RefSet1 and, separately, in RefSet2.

– Solution Combination Method: The simulated binary crossover
(SBX) [14] is used for combining solutions in AbSS.

4 Experiments

This section is devoted to presenting the experiments performed for this work.
We first describe the metrics used for measuring the performance of the result-
ing Pareto fronts. Next, the parameterization of AbSS and Madhoc is detailed.
Finally, we show the results for DFCNT and compare them against cMOGA [2].

4.1 Metrics

We have used three metrics for assessing the performance of both AbSS and
cMOGA: the number of Pareto optima that the optimizers are able to find, Set
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Coverage [15] which allows two algorithms to be compared in terms of Pareto
dominance, and Hypervolume [16] which measures both convergence and diver-
sity at the same time in the resulting Pareto fronts. They are defined as:

– Number of Pareto optima: Given that DFCNT is a difficult problem,
finding a high number of nondominated solutions could be itself a hard chal-
lenge for any multiobjective optimizer. In this sense, the number of Pareto
optima can be considered as a measure of the ability of the algorithm for
exploring difficult search spaces defined by hard MOPs like DFCNT.

– Set Coverage: The set coverage metric C(A, B) calculates the pro-
portion of solutions in B which are dominated by solutions of A:
C(A, B) = |{b∈B | ∃a∈A:a�b}|

|B| .
A metric value C(A, B) = 1 means that all members of B are dominated

by A, whereas C(A, B) = 0 means that no member of B is dominated by
A. This way, the larger the C(A, B), the better the Pareto front A with
respect to B. Since the dominance operator is not symmetric, C(A, B) is not
necessarily equal to 1 − C(B, A), and both C(A, B) and C(B, A) have to be
computed for understanding how many solutions of A are covered by B and
vice versa.

– Hypervolume: This metric calculates the volume (in the objective space)
covered by members of a nondominated set of solutions Q. Let vi be the
volume enclosed by solution i ∈ Q. Then, a union of all hypercubes is found
and its hypervolume (HV ) is calculated: HV = volume

(⋃|Q|
i=1 vi

)
.

Algorithms with larger values of HV are desirable. Since this metric is
not free from arbitrary scaling of objectives, we have evaluated the metric
by using normalized objective function values.

4.2 Parameterization

As we stated in Sect. 2.1, the behavior of Madhoc has been defined based on three
parameters mainly: the size of the simulation area, the density of mobile stations,
and the type of environment. For our experiments, we have used a simulation
area of 40,000 square meters, a density of 2,000 stations per square kilometer,
and, from the available environments of Madhoc, the mall environment has been
used. This environment is intended to model a commercial shopping center, in
which stores are usually located together one each other in corridors. People go
from one store to another by these corridors, occasionally stopping for looking at
some shopwindows. Both the mobility of devices and their signal propagation are
restricted due to the walls of the building. A metropolitan MANET with such a
configuration has been shown in Fig. 1. Due to the stochastic nature of Madhoc,
five simulations (i.e., five different network instances) per function evaluation
have been performed so that the fitness values of the functions are computed as
the average resulting values of these five different network instances.

The configuration used for cMOGA is the same as that used in [2]: a popula-
tion of 100 individuals arranged in a 10× 10 square toroidal grid, the neighbor-
hood is NEWS, binary tournament selection, simulated binary crossover (SBX)
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Table 1. Performance metrics for AbSS and cMOGA when solving DFCNT

AbSS cMOGA
Metric average std average std t-test

Number of Pareto Optima 98.7586 2.8119 98.1053 2.9000 –
Set Coverage 0.9865 0.0103 0.9793 0.0076 +
Hypervolume 0.8989 0.0695 0.8199 0.0854 +

with pc = 1.0, polynomial mutation (pm = 1.0/L, L = individual length), archive
size of 100 individuals, and the adaptive grid of PAES [11] has been used as
crowding method (see [2] for further the details). Regarding AbSS, we have uti-
lized the parameterization proposed in [3]: external archive maximum size of 100
nondominated solutions, the size of the initial set P is 20, the number of itera-
tions in the improvement method is 5 (polynomial mutation with a distribution
index equal to 10), SBX crossover (solution combination method) also with a
distribution index equal to 10, and the size of RefSet1 and RefSet2 as well is
10. Both cMOGA and AbSS stop when 25,000 function evaluations have been
computed. It is important to note that 25,000 evals × 5 simulations/eval means
that DFCN has been optimized over 125,000 different network instances.

4.3 Results

Let us now begin with the analysis of the results, which are presented in Table 1.
Since both AbSS and cMOGA are stochastic algorithms and we want to provide
the results with statistical confidence, 30 independent runs of each multiobjective
optimizer have been performed, as well as t-tests at 95% of significance level (last
column of Table 1). The t-test assesses whether the means of two samples are
statistically different from each other.

If we consider that the two algorithms are configured for obtaining 100 non-
dominated solutions at most (maximum archive size), values shown in Table 1
point out that most executions of the optimizers fill up the whole archive. Though
AbSS returns a slightly higher number of Pareto optima on average than cMOGA
does, the difference is negligible and no statistical confidence exists (“–” symbol
in t-test column), thus showing that both optimizers have a similar ability for
exploring the search space of DFCNT.

As regards to the Set Coverage metric, we want to clarify that results shown
in column “AbSS” correspond to C(AbSS, cMOGA) whereas those presented in
column “cMOGA” are C(cMOGA, AbSS). As it can be seen in Table 1, AbSS
gets larger values for this metric than cMOGA and there exists statistical con-
fidence for this claim (see “+” symbol in the last column). This fact points out
that AbSS can find solutions that dominate more solutions of cMOGA than vice
versa. However, Set Coverage values are similar in both the cases, what indi-
cates that each algorithm computes high quality solutions that dominate most
solutions of the other, but those high quality solutions are in turn nondominated.

Last row in Table 1 presents the results of the Hypervolume metric. They
clearly show now that AbSS overcomes cMOGA when considering at the same
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Fig. 3. Two DFCNT fronts from both AbSS and cMOGA

time both convergence and diversity in the resulting Pareto fronts (all this sup-
ported with statistical confidence). Since the Set Coverage metric showed that
both optimizers were similar in terms of convergence, we can conclude that AbSS
is reaching this Hypervolume value because of the diversity in the found Pareto
front. That is, the set of nondominated solutions computed by AbSS covers a
larger region of the objective space, what is an important feature for actual de-
signs of MANETs. We show an example Pareto front that capture the previous
claims in Fig. 3. Regarding coverage, the AbSS front (“+” symbols) is behind
(on the right) cMOGA solutions (“×” symbols). With respect to diversity, it
also can be seen that there are nondominated solutions from AbSS that reach
DFCN configurations where message coverage is around 40% of the stations
while cMOGA is not able to get solutions in this region of the objective space.
Therefore, using AbSS provides the network designer (decision maker) with a
wider set of DFCN parameter settings which ranges from configurations that get
a high coverage in a short makespan but using a high bandwidth to those cheap
solutions in terms of time and bandwidth being suitable if coverage is not a hard
constraint in the network.

5 Conclusions and Future Work

This paper investigated the usage of AbSS, a multiobjective scatter search
method, for optimally tuning the DFCN broadcasting strategy for MANETs.
The multiobjective problem to be solved is called DFCNT and has three goals:
minimizing makespan, maximizing network coverage, and minimizing the net-
work usage. DFCNT has been previously tackled with a cellular multiobjective
genetic algorithm called cMOGA.

Three metrics have been used for comparing the optimizers: Number of Pareto
optima, Set Coverage, and Hypervolume. Regarding the number of nondomi-
nated solutions found, AbSS got a slightly higher number of configurations for
DFCN on average than cMOGA, but differences are negligible. Regarding Set
Coverage and Hypervolume, resulting values from the metrics claim that solu-
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tions from the scatter search approach dominated those obtained with cMOGA
(convergence) as well as covered a larger region of the objective space (diver-
sity). From these results, a clear conclusion can be drawn: AbSS is a promising
approach for solving DFCNT with advantages over the existing one.

As a future work, we plan to perform more in depth analysis on using AbSS
for solving real world MOPs. On the one hand, we also intend to use different
scenarios where DFCN has to be tuned and, on the other hand, enlarge the
simulation area to a still larger metropolitan network for large cities.
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Abstract. Since chip multiprocessors are quickly penetrating new application 
areas in network and media processing, their interconnection architectures be-
come a subject of sophisticated optimization. One-to-All Broadcast (OAB) and 
All-to-All Broadcast (AAB) [2] group communications are frequently used in 
many parallel algorithms and if their overhead cost is excessive, performance 
degrades rapidly with a processor count. This paper deals with the design of a 
new application-specific standard genetic algorithm (SGA) and the use of Hy-
brid parallel Genetic Simulated Annealing (HGSA) to design optimal commu-
nication algorithms for an arbitrary topology of the interconnection network. 
Each of these algorithms is targeted for a different switching technique. The 
OAB and AAB communication schedules were designed mainly for an asym-
metrical AMP [15] network and for the benchmark hypercube network [16] us-
ing Store-and-Forward (SF) and Wormhole (WH) switching. 

1   Introduction 

With parallel and distributed computing coming of age, multiprocessor systems are 
more frequently found not only in high-end servers and workstations, but also in 
small-scale parallel systems for high performance control, data acquisition and analy-
sis, image processing, networking processors, wireless communication, and game 
computers. The design and optimization of hardware and software architectures for 
these parallel embedded applications have been an active research area in recent 
years. For many cases it is better to use several small processing nodes rather than a 
single big and complex CPU. Nowadays, it is feasible to place large CPU clusters on 
a single chip (multiprocessor SoCs, MSoCs), allowing both large local memories and 
the high bandwidth of on-chip interconnect. 

One of the greatest challenges faced by designers of digital systems is optimizing 
the communication and interconnection between system components. As more and 
more processor cores and other large reusable components have been integrated on 
single silicon die, a need for a systematic approach to the design of communication 
part has become acute. One reason is that buses, the former main means to connect 
the components, could not scale to higher numbers of communication partners. Re-
cently the research opened up in Network on Chip (NoC) area, encompassing the 
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interconnection/communication problem at all levels, from physical to the architec-
tural to the OS and application level [1].  

Presently, there are many different interconnection network topologies for general 
purpose multiprocessors, but new networks for specific parallel applications can still 
be created. Whereas the lower bounds on the time complexity of various group com-
munications (in terms of required number of communication steps) can be mathemati-
cally derived for any network topology and the given communication pattern, finding 
a corresponding schedule of communication is more difficult and in some cases it is 
not known as yet. The rest of the paper addresses the quest for an optimal communi-
cation schedule based on evolutionary algorithms, provided that network topology 
and a communication pattern are given. 

2   Models of Communications 

Communications between two partners (p2p) or among all (or a subset) of partners 
engaged in parallel processing have a dramatic impact on the speedup of parallel 
applications. Performance modelling of p2p and group communications is therefore 
important in design of application-specific systems. A p2p communication may be 
random (input data dependent) as far as source-destination pair or a message length is 
concerned. However, in many parallel algorithms we often find certain communica-
tion patterns, which are regular in time, in space, or in both time and space; by space 
we understand spatial distribution of processes on processors. Communications taking 
place among a subset or among all processors are called group or collective commu-
nications. Examples of these may serve One-to-All Broadcast (OAB), All-to-All 
Broadcast (AAB), One-to-All Scatter (OAS, a private message to each partner), All-
to-One Gather (AOG), All-to-All Scatter (AAS), permutation, scan, reduction and 
others [2]. Provided that the amount of computation is known, as is usually true in 
case of application-specific systems, the only thing that matters in obtaining the high-
est performance are group communication times.  

The simplest time model of communication uses a number of communication steps 
(rounds): point-to-point communication takes one step between adjacent nodes and 
a number of steps if the nodes are not directly connected.  

Two types of switching are used in this article. The first one is distance-sensitive 
Store-and-Forward (SF). Each intermediate node on the path firstly receives the 
whole message and then sends it to adjacent node in the next possible communication 
step. The second type of switching is called wormhole (WH) switching. Here several 
p2p messages between source-destination pairs, not necessarily neighbours can pro-
ceed concurrently and can be combined into a single step if their paths are disjoint. Of 
course, for simplicity, we assume no contention for channels and no resulting delays. 
An example of these switching techniques is shown in Fig. 1. 

Further, we have to distinguish between unidirectional (simplex) channels and bi-
directional (half-duplex, full-duplex) channels. The number of ports that can be en-
gaged in communication simultaneously (1-port or all-port models of routers) has also 
an impact on the number of communication steps and communication time, as well as 
if nodes can combine/extract partial messages with negligible overhead (combining 
model) or can only retransmit/consume original messages (non-combining model).  
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We use all-port non-combining model in our experiments. The goal was to find 
communication algorithms whose time complexity is as close as possible to mathe-
matically derived lower bounds on number of communication steps. 

 

   

    Fig. 1. Basic type of switching techniques 

In our experimental runs mostly the well known hypercube [16] and AMP network 
[15] topologies were tested, see Fig. 2. Optimal schedules for the former topology are 
known and can therefore be used to evaluate quality of used algorithms; the feature of 
the latter topology (for which optimal schedules are unknown) is that the number of 
nodes with degree d that can be connected in a network is maximum.  

 

      

Fig. 2. 32 processors AMP topology and 16 processors hypercube topology 

3   Discrete Optimization Algorithms 

Combinatorial search and optimization techniques in general are characterized by 
quest for a solution to a problem from among many potential solutions. For many 
search and optimization problems, exhaustive search is infeasible and some form of 
guided search is undertaken instead. In addition, rather than only the best (optimal) 
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3.1   Standard Genetic Algorithm (SGA) 

A genetic algorithm [3] is a powerful, domain-independent search technique. SGA is 
a population-based computational model that uses selection and recombination opera-
tors to generate new samples in the search space. A chromosome, consisting of genes, 
represents one encoded solution from the search space. The values of genes are re-
ferred to as alleles. The chromosomes form population, which changes through the 
evolution process. The reproduction process is performed in such a way that chromo-
somes, which represent better solutions, are given more chances to reproduce than 
those chromosomes, which represent poorer solutions. The fitness function (a meas-
ure of quality) of chromosomes is defined in the frame of the population. The fitness 
function is applied to genotype (chromosomes) for evaluating phenotype (decoded 
form of the chromosome).  

One point crossover and integer bound mutation were used as recombination op-
erators and tournament selection as selection operator. 

3.2   Hybrid Parallel Genetic Simulated Annealing (HGSA) 

HGSA [7] is a hybrid method that uses parallel Simulated Annealing (SA) [10] with 
the operations used in standard genetic algorithms [8]. In the proposed algorithm, 
several SA processes run in parallel. After a number of steps (after every ten iterations 
of Metropolis algorithm), the crossover is used to produce new solutions. 

During communication, which is activated each 10th iteration of Metropolis algo-
rithm, all processes sends their solution to a master. The master keeps one solution for 
himself and sends one randomly chosen solution to each slave. The selection is based 
on the roulette wheel, where the individual with the best value of the fitness function 
has the highest probability of selection. 

After communication phase, all processes have two individuals. Now the phase of 
genetic crossover starts. Two additional children solutions are generated from two 
parent solutions using double-point crossover. The solution with the best value of the 
fitness function is selected and mutation is performed: always in case of the parent 
solution, otherwise with a predefined probability. Mutation is performed by randomly 
selecting genes and by randomly changing their values. A new solution of each proc-
ess is selected from the actual solution provided by SA process and from the solution, 
which was obtained after genetic mutation. The selection is controlled by well-known 
Metropolis criterion. 

4   OAB and AAB Communication Patterns 

OAB (One-to-All Broadcast) [4, 5] is a collective communication pattern. In this case, 
one node (initiator) distributes the same message to all other nodes in the interconnec-
tion network. If only node subset takes part in communication, we talk about multi-
cast communication pattern (MC). This communication (as well as OAS [11, 12] with 
distinct messages to receiving nodes) can be performed by sequentially sending the 
message to particular nodes. This way is very inefficient because only one node sends 
the message in each communication step. However we can use a better technique 
using a broadcast tree when every node that received the message in previous com-
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munication step becomes an initiator of new multicast communication. Consequently, 
the number of informed nodes increases by dk instead by d, where d is the node degree 
and k is number of communication steps.  

The goal of the proposed evolutionary algorithm is to find such a broadcast tree 
(communication schedule) that it will be possible to inform all nodes in the minimal 
number of communication steps. A resulting communication schedule has to be con-
flict-free, i.e. only one message can be transmitted via the same link in the same step 
and the same direction. 

Optimal communication schedules for OAB communication pattern using store 
and forward and wormhole switching technique on eight nodes ring topology are 
shown on the left side of Fig. 3. Broadcast trees are shown on the right side. 

 

 

Fig. 3. The optimal OAB schedules for 8 nodes ring topology and the relevant broadcast trees 

The lower bounds on the number of communication steps for the all-port hyper-
cube and AMP topology are shown in Table 1. Parameters of the interconnection 
network in Table 1 are: processors count P, network diameter D, node degree d, bi-
section width BC, and average distance da. 

Table 1. Lower bounds on number of communication steps (all-port models) [13] 

 SF hypercube  WH hypercube SF AMP WH AMP 

OAB D (= d) d/log ( d+1)  D log d+1 P  

AAB (P – 1)/d  (P – 1)/d  (P – 1)/d  (P – 1)/d  

5   Design of Algorithms 

The goal of proposed algorithms is to find a schedule of a group communication with 
the number of steps as close as possible to the above lower bounds. The solution of 
this optimization problem by means of evolutionary algorithms may be decomposed 
into several phases. In the first phase, it is necessary to choose a suitable encoding of 

1st step 

2nd step 

3rd step 

4th step 

0

   1 
 
 
   2 
 
 
   3 
 
 
   4 

   7 
 
 
   6 
 
 
   5 

0 1 2 3 

7 6 5 4 

0 1 2 3 

7 6 5 4 

0

1 5 

3

2

6 

4 7 

OAB - SF

OAB - WH

WH broadcast tree SF broadcast tree



272 M. Ohlídal et al. 

the problem into a chromosome. The second step is a definition of the fitness func-
tion, which determines quality of a chromosome. The next phase is design of the input 
data structure for the evolutionary algorithm. The last phase includes experimental 
runs of the evolutionary algorithm and search for the best set of its parameters. The 
choice of parameters should speed-up the convergence of the algorithm and simulta-
neously minimizes a probability of getting stuck in local minima. 

5.1   Solution Encoding 

Different encodings were used for each optimization algorithm according to the 
switching technique. We used an indirect encoding for OAB with wormhole switch-
ing optimized by SGA algorithm. Thus a chromosome does not include a decision 
tree, but only instructions how to create it from chromosome. Any chromosome con-
sists of P genes. Every gene corresponds to one destination node. Individual genes 
include three integer values. The first one is a source node index. The second one 
determines the shortest path along which the message will by transmitted. The last 
one is a communication step number when the communication will be performed. 

The main disadvantage of this encoding is formation of inadmissible solutions dur-
ing process of genetic manipulation. We say that a solution is inadmissible if it is not 
possible to construct correct broadcast tree from it. An example of inadmissible solu-
tion can be a case when some node receives a message in a given step from a node 
that has not received the message yet. That is why admissibility verification has to be 
carried out for every solution before every fitness function evaluation and if the need 
be, the restoration will be accomplished. In Fig. 4, a chromosome for wormhole OAB 
communication patter for the 8-node ring topology is presented. 

 

Fig. 4. Encoding of broadcast tree in chromosome for SGA case 

Very simply encoding of SF OAB communication pattern has been chosen for 
HGSA. Every chromosome consists of P genes, where P is a number of processors in 
a given topology. The gene’s index represents the destination processor for a mes-
sage. The gene consists of two integer components. The first component is an index 
of one of the shortest path from source to destination. The second component is a 
sequence of communication links on the path. Fig. 5 illustrates an example of this 
encoding. The source processor has index 0. For completeness the chromosome in-
cludes also communication from source to source processor, but this communication 
is not realized. This gene is included only for the easier evaluation of the fitness  
function. 

 Gene 

0 0 0 0 0 2 3 0 2 0 0 1 3 0 2 6 0 2 0 0 1 0 0 2 

0 1 2 3 4 5 6 7 

Destination Communication step number 

         Source  The shortest paths index 
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The main advantage of this encoding is a short chromosome and the absence of in-
admissible solutions (every message is transmitted from the source to a destination). 
The main disadvantage is a large number of possible values of the first gene compo-
nent. The number of the values rapidly increases with the distance from source to 
destination as there are more shortest paths between them.  

 

      Destination 

Gene 

0 1 2 3 

0 0,0,.. 4 1,2,4, 6 1,3,5,.. 92,4,5,..

List of communi-
cation steps  

The shortest path 
index from source to 
destination 

0 00 0

Source 

 

Fig. 5. The structure of chromosome of HGSA in case of OAB 

The AAB chromosome is an extension of a vector to matrix for both optimization 
algorithms SGA and HGSA. An AAB chromosome is composed of P OAB chromo-
somes as every processor performs OAB. 

5.2   The Fitness Function 

The fitness function evaluation is the same for both proposed algorithms. It is based 
on testing of conflict-freedom. We say that two communication paths are in conflict if 
and only if they use the same communication link in the same time and in the same 
direction (see Fig. 6). The fitness function is based on conflict counting. The optimal 
communication schedule for the given number of communication steps must be con-
flict-free. If the conflict occurs, the schedule can not be used in real application. 

 
 

  

Conflict 
 Conflict-free 

 

Fig. 6. Conflict in a communication schedule 
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5.3   The Shortest Paths Algorithm 

This algorithm generates all shortest paths and saves them in the operating memory 
into a specific data structure. The generating algorithm [6] is inspired by the breadth-
first search algorithms BFS. BFS is based on the searching a graph, where the source 
processor is chosen as a root. The edges create a tree used in searching process. A tree 
is gradually constructed, one level at a time, from the root that is assigned an index of 
a source node. When a new level of the tree is generated, every node at the lowest 
level (leaf) is expanded. When a node is expanded, its successors are determined as 
all its direct neighbours except those, which are already located at higher levels of the 
tree (it is necessary to avoid cycles). Construction of the tree is finished when a value 
of at least one leaf is equal to the index of a destination node. Destination leaves’ 
indices confirm the existence of searched paths, which are then stored as sequences of 
incident node indices. 

5.4   Heuristics 

In SGA a new heuristic for chromosome restoration was used. The restoration (cor-
rection of the broadcast tree) proceeds subsequently in particular communication 
steps. For every node we check if it receives the message from the node that has al-
ready received it in some previous communication step. As far as this condition is not 
satisfied, the source node of this communication is randomly replaced by a node that 
already has the message. Further, it is necessary to check already used shortest paths. 
There is a finite number of the shortest paths from every source to every destination 
node. If the second gene component (the index path) exceeds this value, the modulo 
operation will be applied to this gene component. 

In HGSA two heuristics are used to speed up the convergence to a sub-optimal so-
lution. They decrease the probability of being trapped in local optima during the exe-
cution. The idea is a simple reduction of the path length. The first heuristics is used 
after the initialization of HGSA and then after each application of Metropolis algo-
rithm. The length of the path from the source to the destination node has some value. 
If the end node occurs in another gene with a smaller length, than the length and the 
path in the original gene are changed accordingly.  
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6                         7 
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3 2 

4      5 
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 0                          1
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4                        5

6                         7 

0 
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Fig. 7.  Reduction of shorter path according to longer path 

The second heuristics is used in all surveyed collective communications. It re-
moves using proper setting of the communication step for several nodes incident with 
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the examined path. It means really to endeavour after suspending message in the node 
during the usage of the same link by another message. However, this changing must 
not increase the number of the communication steps of the optimal schedule. 

In the case that above presented way doesn’t lead to improvement, it tries other 
way and it is endeavor after the fastest sending message from source to destination. 

6   Experimental Results 

Both sequential SGA and parallel HGSA have been implemented in C/C++. They use 
only standard C and C++ libraries to ensure good portability. HGSA implementation 
uses MPI [9] routines for message passing and can therefore be compiled and run on 
any architecture (clusters of workstations, MPPs, SMPs, etc.) for which an implemen-
tation of MPI standard is available. 

The proposed algorithms were verified on some multiprocessor topologies (e.g. 
Midimew, K-Ring...). Two topologies were examined most intensively, namely five 
cases of hypercubes and five cases of AMP network topologies were used. Other 
topologies were tested only in 8-node configuration.  

The theoretical time complexity in terms of a minimal number of communication 
steps can be derived for all examined topologies. Theoretical lower bounds of tested 
topologies are shown in Table 2.  

Table 2. Theoretical lower bounds of tested topologies 

Lower bounds Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 
OAB 2 2 2 3 3 
AAB 3 4 5 6 7 
 AMP-8 AMP-23 AMP-32 AMP-42 AMP-53 
OAB 2 2 3 3 3 
AAB 2 6 8 11 13 

 K-ring Midimew Moore Octagon Ladder 
OAB 2 2 2 2 4 

AAB 2 2 3 3 4 

 
Parameters of SGA were set to the same values for all runs, i.e. probability of 

crossover 70%, probability of mutation 5%. 10 runs of SGA were performed for each 
topology, whereas the size of population was set on the value, in which success rate 
was better than 50%. 

Parameters of HGSA were set to the same values for all runs too, i.e. 10 computers 
in the master slave architecture, the length of communication interval between master 
and slave was each 10’s iterations of Metropolis algorithm 10/10 (OAB/AAB), start 
temperature 100, number of iterations in each temperature phases was 10, gradient of 
cooling 0.9/0.99 (OAB/AAB). 15 runs of HGSA were performed for each topology. 

We counted only the successful completions, i.e. those reaching the global opti-
mum. The success rate of both algorithms (SGA and HSGA) was measured and com-
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pared. If we compare success rate (Table 3) of AMP-23 and AMP-32 topology, we 
see that the success rate is better for more complex topology. While for AMP-23 not 
rounded time complexity is 1.94 steps, for AMP-32 it is 2.15 steps. The time com-
plexity of optimal communication schedule can not exceed two communication steps 
in the first case whereas it can be split into three steps in the second case. By compar-
ing not rounded and rounded time complexities we can make a conclusion, that in the 
case of AMP-32 topology, much more interconnection links remain unused and the 
evolutionary algorithm has more space to find the optimal schedule. The same ab-
normality can be seen in some other topologies (hyper-32 and hyper-64). The success 
rate 100% was achieved for all other examined topologies. 

The presented data of HGSA deserves some comments. Firstly, OAB (SF) is quite 
a simple operation and therefore the algorithm is likely to find an optimal solution 
even for larger architectures. Optimal solutions have already been found for topolo-
gies with up to 32 processors and acceptable results have been attained for AAB. 
A further improvement of these results can be expected in the future, because number 
of experiments, which could be carried out so far, was limited by the overall run time 
required for optimization (many hours if optimal solutions are sought). On the other 
hand, if we need an acceptable solution quickly, the proposed algorithms allow to 
accept a larger number of communication steps and the solution is found in much 
shorter time. 

Table 3. Success rate in achieving the optimum schedule 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 
SGA – OAB 100% 100% 50% 60% 50% 
HGSA - OAB 100% 100% 100% 100% 100% 
SGA – AAB 70% 20% - - - 
HGSA - AAB 100% 80% - - - 
 AMP-8 AMP-23 AMP-32 AMP-42 AMP-53 
SGA – OAB 100% 50% 100% 60% 50% 
HGSA - OAB 100% 100% 100% 100% 100% 
SGA – AAB 70% 30% 10% - - 
HGSA - AAB 100% 80% 10% - - 

7   Conclusions 

Optimization of communication schedules by means of the proposed evolutionary 
algorithms has been successful. Optimal communication schedules achieve the lower 
bounds of communication steps derived from graph-theoretical properties of intercon-
nection networks. It is evident that optimum schedules can speed-up execution of 
many parallel programs that use collective communication as a part of their algorithm.  

We have tested two types of evolutionary algorithms. The first one is standard ge-
netic algorithm SGA and the second one HGSA is a composition of parallel simulated 
annealing and the standard genetic algorithm. Both presented algorithms are able to 
find an optimal schedule of the given communication pattern for arbitrary network 
topology, each one with sufficient efficiency.  
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The future work will be focused on the communication patterns OAS and AAS in 
case of HGSA and OAB, AAB in case of Estimation of Distribution Algorithms 
(EDA) [14]. We will implement multi-criteria optimization in EDA algorithms (with-
out the need to enter the number of communication steps) and to design and imple-
ment more efficient heuristics for HGSA.  

Importance and novelty of above goals should be emphasized. Algorithms, which 
would be able to find all types of collective communication on any regular or irregu-
lar topology, were not published so far in spite of a growing importance especially for 
multiprocessors on chips. 
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Abstract. The k-cut problem is an NP-complete problem which con-
sists of finding a partition of a graph into k balanced parts such that the
number of cut edges is minimized. Different algorithms have been pro-
posed for this problem based on heuristic, geometrical and evolutionary
methods. In this paper we present a new simple multiagent algorithm,
ants, and we test its performance with standard graph benchmarks. The
results show that this method can outperform several current methods
while it is very simple to implement.

1 Introduction

Graph partitioning is a problem which appears in many different applications
such as VLSI design, data-mining, finite elements and communication in par-
allel computing. In the latter case, for example, the subdomains are mapped
to processors and to avoid bottlenecks, the assignment should be as uniform
as possible and the data exchange between processors minimized. In terms of
graphs, the goal is to find a balanced k-partition of a graph G = G(V, E) with
a minimal number of cut edges separating the sets from each other (k-cut). As
this is an NP-complete problem [5], for graphs with a large order we cannot be
sure we can find an optimal solution in a reasonable computation time: when
the size of the graph increases, the execution time of an algorithm capable of
solving the problem can be assumed to grow exponentially. Therefore the prob-
lem is practically unsolvable for most networks and for this reason heuristic and
probabilistic methods are implemented to obtain solutions close to the optimal
in a reasonable time. The only way to guarantee the optimal solution is an ex-
haustive search. Nevertheless, this is only applicable to very simple problems in
which the number of nodes is small.

Given the importance of the k-cut problem, there is a large literature propos-
ing different algorithms. For example, in [6] an heuristic method is introduced
which can find, for the general problem, approximate solutions in time O(|V |k2

)
and in [9] the algorithm proposed can find solutions within a factor of (2−2/k)
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of the optimal k-cut requiring |V | − 1 max-flow computations. Recent more effi-
cient methods are based on multilevel paradigms [1, 12], in some cases combined
with evolutionary algorithms [10, 8].

In this paper we use a multiagent algorithm, ants, for the k-cut problem. This
algorithm has proved useful in coloring and frequency assignment problems [3, 2].
The method is simple to understand and to implement and the results obtained
with standard benchmarks show that it can outperform current algorithms.

2 Graph Partitioning

Let G = G(V, E) be an undirected graph where V is the vertex set and E the
edge set. Although in the general partitioning problem both vertices and edges
can be weighted, here as in most of the literature, they are given unit weights.
A partition of the graph is a mapping of V into k disjoint subdomains Si such
that the union of all subdomains is V , i.e.

⋃k
i=1 Si = V . The cardinality of a

subdomain is the number of vertices in the subdomain Si, and the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) is denoted by Ec and
referred to as the k-cut. The objective of graph partitioning is to find a partition
which evenly balances the cardinalities of each subdomain whilst minimizing the
total number of cut edges or cut-weight, |Ec|. To evenly balance the partition,
the cardinality of the optimal subdomain is given by |Sopt| =

⌈
|V |
k

⌉
. The graph

partitioning problem can then be specified as: find a partition of G such that
|Ec| is minimised subject to the constraint that |Sopt| − 1 ≤ |Si| ≤ |Sopt| for
1 ≤ i ≤ k. In this paper we find partitions with perfect balance.

3 The ants Algorithm

The partitioning or k-cut problem described in the previous section, as many
other problems in graph theory, is an NP-complete problem [5]. Efficient algo-
rithms for this problem are known only for very particular classes of graphs.
When exact methods are not possible, sometimes it is sufficient to obtain an ap-
proximate solution with a fast and easy to implement method. This is the case
of simulated annealing, genetic algorithms, neural networks, ant colony based
systems, or multiagent methods like the one described here.

To implement any of these optimization methods we need a way to encode
the problem which has to be solved, and a system to quantify how “good” a
solution is. In our case a possible solution may be described using a list such
that each position is associated to a vertex of the graph and its value to a color
which represents the subdomain to which it belongs. The global cost function
simply counts the number of times that an edge joins vertices of different colors.
We use also a local cost function associated to each vertex defined as the ratio
between the number of neighbors that have different colors to the total number
of neighbors.
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Fig. 1. Movement of an ant towards the worst local node

The ants algorithm is a multiagent system based on the idea of parallel search.
Unlike other algorithms with a similar name which are generically known as ant-
colony optimization, our algorithm does not use “pheromones” or local memory.
Thus it is faster and easier to implement. A generic version of the algorithm
was proposed in [3]. The mechanism of the algorithm is as follows: Initially the
graph is k vertex colored at random keeping the number of vertices for each
color balanced. A given number of agents, which we call ants, is placed on the
vertices also at random. Then the ants move around the graph and change the
coloring according to a local optimization criterion: At a given iteration each
ant moves from the current position to the adjacent vertex with the lowest local
cost, i.e. the vertex with the greatest number of constraints (neighbors of a
different color) and replaces its color with a new color which increases the local
cost. At the same time, and to keep the balance, the algorithm chooses, from
a set of s random vertices, one with the lowest value of the local cost function
-from those which have the new color- and changes its color to the old color.
After these color changes, the local cost function is updated for the two chosen
vertices and their neighhors. The value of s is not critical, and for our tests we
considered s = 100. The actions are randomly repeated for each ant. An essential
characteristic of the algorithm comes precisely from the stochastic nature of the
changes performed. The agent or ant moves to the worst adjacent vertex with a
probability pm (it moves randomly to any other adjacent vertex with probability
1 − pm), and assigns the best color, under probability pc (otherwise it assigns
any color at random). Both probabilities are adjustable parameters and allow the
algorithm to escape from local minima and obtain partitions with k-cuts close to
the optimal. The process is repeated until a solution fulfilling all the constraints is
found or the algorithm converges. The number of ants in the algorithm is another
adjustable parameter that should increase with the diameter of the graph (the
maximum of the distances between pairs of vertices).

In the same way as in an insect colony the action of different agents with
simple behaviors gives rise to a structure capable of carrying out complicated
tasks, the algorithm presented here, which is based on a series of simple local
actions that might even be carried out in parallel, can obtain restrictive graph
partitions. Note that our algorithm is not a simple sum of local searches, as
they would quickly lead to a local solution. The probabilities pm and pc play an
important role in avoiding these minima, however their values are not critical
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and affect mainly the convergence time of the algorithm which is shorter for
larger values of pm and pc as the index of local improvement at each iteration
increases.

An outline of the ants algorithm is shown here in pseudocode.

ANTS algorithm:

Initialize
n (number of ants), k, pm, pc

Color each vertex of the graph at random forming k balanced sets
Put each ant on a randomly chosen vertex
For all vertices

Initialize local cost function
End for
Initialize global cost function
best cost := global cost function

While (best cost > 0) do
For all ants

If (random < pm)
Move the ant to the worst adjacent vertex

Else
Move randomly to any adjacent vertex

End if
If (random < pc)

Change vertex color to the best possible color
Else

Change to a randomly chosen color
End if
Keep balance (Change a randomly chosen vertex with low local cost

from the new to the old color )
For the chosen vertices and all adjacent vertices

Update local cost function
Update global cost function

End for
If (global cost function < best cost )

best cost = global cost function
End if

End for
End while

4 Results

We tested the algorithm using a set of benchmark graphs which are available
from the Graph Partitioning Archive, a website maintained by Chris Walshaw
[13]. The graphs can also be downloaded from Michael Trick’s website [11]. Many
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Table 1. Best partitions found with ants corresponding to perfect balance for 16 sub-
domains using benchmark graphs[13]. We provide for the graphs of reference the total
of vertices and edges, optimal subdomain size, cut size, new cut size and the algorithm
used to find the old cut size. Boldface denotes those values for which the ants al-
gorithm has outperformed the known result. Algorithms: Ch2.0, CHACO, multilevel
Kernighan-Lin (recursive bisection), version 2.0 (October 1995) [7]. J2.2, JOSTLE,
multilevel Kernighan-Lin (k-way), version 2.2 (March 2000) [14]. iJ, iterated JOSTLE,
iterated multilevel Kernighan-Lin (k-way) [12]. JE, JOSTLE Evolutionary, combined
evolutionary/multilevel scheme [10].

Graph vertices edges domain size cut size [13] new cut size algorithm

C2000.5 2000 999836 125 923294 922706 Ch2.0
C4000.5 4000 4000268 250 3709887 3708532 Ch2.0
DSJC125.1 125 736 8 524 522 iJ
DSJC1000.1 1000 40629 63 43078 43001 Ch2.0
DSJC1000.5 1000 249826 63 229362 228850 Ch2.0
jean 80 254 5 161 161 Ch2.0
flat1000 50 0 1000 245000 63 224403 224378 Ch2.0
flat1000 60 0 1000 245830 63 225546 225183 Ch2.0
flat1000 76 0 1000 246708 63 226371 225962 Ch2.0
le450 5a 450 5714 29 4063 4030 JE
le450 5b 450 5734 29 4065 4055 iJ
le450 5c 450 9803 29 7667 7656 iJ
le450 15a 450 8168 29 5636 5619 iJ
le450 15b 450 8169 29 5675 5641 iJ
le450 15c 450 16680 29 13512 13509 iJ
le450 15d 450 16750 29 13556 13550 iJ
le450 25a 450 8260 29 5325 5302 J2.2
le450 25b 450 8263 29 5041 5037 JE
le450 25c 450 13343 29 13457 13456 iJ
le450 25d 450 17425 29 13584 13539 iJ
miles500 128 1170 8 771 770 JE
miles750 128 2113 8 1676 1673 iJ
miles1000 128 3216 8 2770 2768 iJ
miles1500 128 5198 8 4750 4750 J2.2
mulsol.i.1 197 3925 13 3275 3270 Ch2.0
mulsol.i.5 185 3973 12 3371 3368 Ch2.0
myciel4 23 71 2 64 64 J2.2
myciel5 47 236 3 205 205 J2.2
myciel7 191 2360 12 1921 1920 iJ
queen5 5 25 160 2 151 151 J2.2
queen8 8 64 728 4 632 632 Ch2.0
queen8 12 96 1368 6 1128 1128 Ch2.0
queen12 12 144 2596 9 2040 2020 iJ
queen16 16 256 6320 16 4400 4400 J2.2
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of these graphs were collected together for the second DIMACS implementation
challenge “NP Hard Problems: Maximum Clique, Graph Coloring, and Satis-
fiability”, see [4]. For the test we considered the most difficult case of perfect
balance and choose a partition into 16 sets.

The number of ants ranged from 3 to 9 depending on the order of the graph.
The probabilities pm and pc were 0.9 and 0.85, respectively. We repeated the
algorithm 20 times for each graph (80 times for small graphs) and recorded the
best solutions. Each algorithm run takes around one minute, for a C program
(400 lines) compiled on a PC Pentium IV 2.8 GHz under Windows XP using
Dev-C++.

Most of the improvements were on results obtained previously with CHACO
(Ch2.0), a multilevel Kernighan-Lin (recursive bisection) [7] and iterated JOS-
TLE (iJ), an iterated multilevel Kernighan-Lin (k-way)[12]. In three cases we
improved on results obtained with JOSTLE Evolutionary (JE), a combined
evolutionary/multilevel scheme [10], and in six more cases we matched or out-
performed results obtained with JOSTLE (J2.2), a multilevel Kernighan-Lin
(k-way)[14]. In our experiments, the algorithm ants obtains better solutions for
the coloring test suite (16 subdomains, perfect balance) of graphs considered
in [12] in 27 cases and an equivalent solution in 7 cases (out of the 89 graph
instances).

5 Conclusion

The results show that our implementation of the multiagent algorithm ants for
the graph partitioning problem provides, for the balanced case, a new method
which complements, and even outperforms, known techniques. Given the sim-
plicity of the algorithm and its performance in the difficult case of balanced sets,
it is a promising method for graph partioning in the non-balanced cases. Note
also that adapting the algorithm for graphs with weighted vertices and edges
would be straightforward.
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Abstract. Denial-of-Service (DoS) attacks with fake source IP addresses have 
become a major threat to the Internet. Intrusion detection systems are often used 
to detect DoS attacks. However, DoS attack packets attempt to exhaust 
resources, degrading network performance or, even worse, causing network 
breakdown. The proposed proactive approach is allocating the original attack 
host(s) issuing the attacks and stopping the malicious traffic, instead of wasting 
resources on the attack traffic. 

Ant colony based traceback approach is presented in this study to identify 
the DoS attack original source IP address. Instead of creating a new function or 
processing a high volume of fine-grained data, the proposed IP address 
traceback approach uses flow level information to identify the origin of a DoS 
attack. 

The proposed method is evaluated through simulation on various network 
environments. The simulation results show that the proposed method can 
successfully and efficiently find the DoS attack path in various simulated 
network environments. 

Keywords: IP traceback, NetFlow, DoS, Ant algorithm. 

1   Introduction 

According to a study conducted by the Computer Security Institute in 2003 [1], 90 
percent of the 530 surveyed companies had detected computer security breaches in 
2003. The same study found that 74 percent acknowledged financial losses due to 
these security breaches. Although only 47 percent were able to quantify their losses, 
the financial losses reported by 251 respondents totaled more than $202 million US 
dollars. However, it is just a proverbial tip of the iceberg. Furthermore, according to 
the statistics of Dollar Amount of Losses by Type [1], the denial of service (DoS) 
attack is the second most expensive computer crime among survey respondents with 
the cost of more than 65 million US dollars. 

Nowadays, many organizations use firewall and Intrusion Detection Systems (IDS) 
to secure their network. If the attacker conducts a DoS attack with a large amount of 
traffic, the network would still be tied up. Most work in this area has focused on 
tolerating attacks by mitigation their effects on the victim. Such a passive approach 
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can provide an effective stopgap measure, but does not eliminate the problem nor 
does it discourage the attackers. 

The proactive approach is to find the source of the DoS attack and to cooperate 
with the internet service provider (ISP) or the network administrators stopping the 
traffic from the origin. Hence, it can restore normal network functionality, preventing 
reoccurrences and, ultimately, holding the attackers accountable. However, many 
network-based DoS attacks use the flaw of TCP/IP to manipulate and falsify the 
source address in the IP header. Conventional trace methods might not be able to 
identify the origin as the source address could be spoofed. 

The goal of this work is to propose an IP traceback approach to finding out the 
origin of the DoS attack using the existing traffic flow information, without extra 
support from the routers. Furthermore, some previous work needs to process a large 
amount of packets, which may be too costly for detecting DoS attacks. An ant colony 
based traceback algorithm is proposed, using the traffic flow information as the trace 
for ants to discover the attack path. 

2   Related Work 

Savage et al. [2] described and implemented probabilistic packet marking (PPM). 
When a packet passes through a router, the router determines if marking this packet 
according to a predefined probability to the IP fragment identification field is 
facilitated to store the IP Traceback information.  

Song and Perrig [3] proposed modifications on Savage’s method to further reduce 
storage requirements by storing a hash of each IP address, instead of the address 
itself. It assumes that the victim possesses a complete network map of all upstream 
routers. After edge-fragment reassembly, the method compares the resulting IP 
address hashes with the router IP address hashes derived from the network map to 
facilitate attack path reconstruction.  

One disadvantage of packet marking approach is that all routers on the attack path 
are required to support packet marking. In addition, the IP header encoding may have 
practical restrictions. It negatively impacts users that use fragmented IP datagrams 
and such encoding might have compatibility issues with the current TCP/IP 
framework. 

Snoeren et al. [4] proposed a hash-based IP traceback scheme, Source Path 
Isolation Engine (SPIE). As packets traverse the network, digests of the packets get 
stored in the router. The hash-based IP traceback is predicated on the deployment of 
SPIE-enhanced routers in place of existing routers in the network infrastructure. But 
this deployment path was impractical, a SPIE system must be incrementally 
deployable in the existing network infrastructure without retrofit or ‘forklift’ upgrade. 
So the following research focuses on how to implement SPIE on current network 
infrastructure. Strayer et al. [5] propose the concept of a SPIE Tap Box which is a 
small, special purpose device that implements the full functionality of the SPIE but 
without the benefit of access to the router’s forwarding engine and internal data 
structure. Rather, the Tap Box must rely only on the information it can glean by 
passively tapping the lines into and out the router.  
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Processing overhead is a drawback of hash-based IP traceback, incurred in every 
packet when the router to store its digest in the bloom filter. Another drawback is that 
all the routers must support SPIE. 

2.1   Ant Algorithm 

Ant algorithms [7] are inspired by the behavior of natural ants and applied to many 
different discrete optimization problems, such as vehicle routing and resource 
scheduling. In an Ant algorithm, multiple agents, represented by ants, cooperate with 
each other using indirect communication mediated by pheromone. The Ant colony 
algorithm was first introduced to solve the Traveling Salesman Problem (TSP) [6]. 

A moving ant lays some pheromone (in varying quantities) on the ground, thus 
marking the path it follows by a trail of this substance. While an isolated ant moves 
essentially at random, an ant encountering a previously laid trail can detect it and 
decide with a high probability to follow it, then reinforcing the trail with its own 
pheromone. 

A major characteristic of ant algorithms are the viability of autocatalytic processes. 
A "single-ant" autocatalytic process usually converges very quickly to a bad 
suboptimal solution. Luckily, the interaction of many autocatalytic processes can lead 
to rapid convergence to a subspace of the solution space that contains many good 
solutions, causing the search activity to find quickly a very good solution, without 
getting stuck in it. In other words, all the ants converge not to a single solution, but to 
a subspace of solutions; thereafter they go on searching for improvements of the best 
found solution. Therefore, we believe this feature will be helpful for finding a DoS 
path. 

3   Ant-Colony Approach to DoS Traceback 

While an isolated ant moves essentially at random, an ant encountering a previously 
laid pheromone trail can detect it and decide with high probability to follow it, thus 
reinforcing the trail with its own pheromone. The collective behavior that emerges is 
a form of autocatalytic behavior where the more the ants are following a trail, the 
more attractive that trail becomes for being followed. In the proposed IP traceback 
scheme, we use the average amount of the octets belonging to a DoS attack as the 
pheromone. Therefore, a router with heavy traffic and more DoS attack flows; more 
ants will choose it as the next node to move. This will form a positive feedback loop, 
and finally most ants will follow the same path. 

In the initialization phase, ants are positioned on the victim and initial values for 
pheromone trail intensity are set on each router. When an ant starts from the victim, it 
will use the topology information to find out all the neighbor routers, and then read 
the flow information and the pheromone trail of neighbor nodes to compute the 
probability. Then choose the next router to move to with the probability; this 
procedure is repeated recursively until it reaches the boundary routers of the 
monitored network.  

When all the ants complete their travels, we use the information gathered by ants to 
recompute the pheromone trail intensity. Then the next cycle starts with new 
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pheromone trail intensity, until we find most of ants converge to the same path. In the 
following section, we will describe the details of the proposed IP traceback scheme. 

When the IDS on the victim’s network detects a DoS attack with spoofed 
source(s), it could further analyze the packets of the DoS attack and find out the 
suspected spoofed source IP address list. The proposed solution could take the victim 
host as the starting point and perform the IP traceback. The detail of the ant colony 
based DoS path traceback is described as follows.  

At the initial stage, each network node uses the amount of total octets sent in 

duration as if  and an initial value )(tiτ . The flow information is selected to 

determine the probability when an ant chooses a path.  

where 
i

f  is the total octets sent in duration of router j, and 
i

iτ (t) is the intensity of 

pheromone trail on router i at time t. 
Figure 1(a) illustrates the case that the ants arrive at Router4, the probability of 

their next move is determined based on the flow information of the neighbor routers. 
We assume that the total octet sent from Router5 is 2000, Router6 is 5000 and 
Router7 is 3000. Therefore, the probability of choosing Router5 is 20%, Router6 is 
50% and Router7 is 30%. Figure 1(b) shows the probabililty of the next move to each 
neighbor router. More ants would choose the path with more flow, as a DoS attack 
generates lots of flows. 

 

 
Fig. 1. (a) the flow of Router 4; (b) the probability of selecting the next step 
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k
iτΔ  = 

k

k

L

Q
, 

where Qk is the total amount of the octets belonging to the DoS attack on the k-th 
ant’s path and Lk is the length of the k-th ant’s path. Δτi(t,t+1) is the summation of the 
pheromone laid by all the ants, expressed below. 

−

+Δ=+Δ
m

k

k
ii tttt

1

)1,()1,( ττ , 

where )1,( +Δ ttk
iτ  is the quantity per unit of length of pheromone laid on router i 

by the k-th ant between time t and t+1, so the more ants pass through the edge, the 
more pheromone will be laid on edge. The change of pheromone results in positive 
feedback -- the more ants are following a path, the more attractive that path becomes 
for being follow. 

The intensity of pheromone on router i can be revised once Δτi(t,t+1) is obtained 
and is formulated as below.  

( ) ( ) ( )1,1 +Δ+⋅=+ tttt
iii

ττρτ , 

where ρ  is a coefficient such that (1- ρ ) represents the evaporation of pheromone. 
Each time all ants complete one iteration (cycle), the intensity of pheromone on 

each router will be recalculated based on the above equation. Following the above 
illustration shown in Figure 1, there would be more pheromone accumulated on 
Router 7 which results in attracting more ants on Router 4 to choose Router 7 in the 
following iterations, as Router 7 is on the DoS attack path. 

The ant traceback process iterates until the tour counter reaches the user-defined 
number of cycles or all ants make the same tour. The DoS attack path is constructed by 
following the biggest probability of the upstream upstream router. In other words, the 
proposed traceback follows the path chosen by most ants to find the DoS attack path. 

3.1   NetFlow 

NetFlow is a traffic profile monitoring technology [8] and could provide vital 
information for DoS traceback. If the packet belongs to an existent flow, traffic 
statistics of the corresponding flow will be increased, otherwise a new flow entry will 
be created. 

 

Fig. 2. DoS NetFlow records 
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A conceptual diagram of DoS NetFlow records is shown in Figure 2. The NetFlow 
records exported by the routers along the DoS attack path will contain the DoS flows 
whose source IP addresses are the spoofed ones. Such a feature is used to determine if 
a router is on the DoS attack path and a traceback task can be initiated to find the 
source of the DoS attack. 

4   Performance Evaluation 

We verify the proposed solution by implementing the proposed system and evaluating 
the performance by simulation. A simulated network with NetFlow-enable routers is 
deployed, as the proposed DoS traceback solution uses the flow-level information to 
perform the traceback. 

4.1   System Architecture 

The proposed system architecture contains two major components in a monitored 
network: the flow management component and traceback module, as shown in Figure 
3. The flow management component collects the flow information of the routers in 
the monitored network in support of the traceback module querying the related flow 
information. The traceback module performs the traceback based on the flow 
information. 

 

Fig. 3. The proposed system architecture 
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The flow management component collects the flow based attributes. The open-
source tools, Scientific Linux [9], flow-tools [10], STREAM [11], are adopted in this 
research to achieve the above NetFlow management purpose.  

The proposed IP traceback scheme is based on ant algorithm and use NetFlow logs 
to simulate the IP traceback process. Using artificial ants to explore the network and 
collect information about the denial-of-service attacks to forecast the possible attack 
path and traceback to the origin of the DoS attack. 

4.2   Experimental Results 

A simulated network environment is illustrated in Figure 4, deployed by VMware 
Workstation [12]. Zebra [13], a routing freeware managing TCP/IP based routing 
protocol, is adopted to simulate the routers in the experimental environment running 
on FreeBSD. 

 

Fig. 4. The simulated network environment 

In order to simulate the NetFlow function on Cisco equipments, we use fprobe 
[14] 1  to monitor the traffic and periodically export NetFlow record to proposed 
NetFlow management. In the simulated network environment, we use Harpoon [14] to 
generate realistic network traffic which can generate TCP and UDP packet flows and 
simulates the temporal and spatial characteristics as measured at the routers in a live 
 

                                                           
1  A libpcap-based tool collects network traffic data and emits it as NetFlow flows to the 

specified collector. 
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environment. Hping [15] is selected to simulate SYN Flood attack with IP spoofing. 
Hping, a complex ping-based program, can send the customized pings to the remote 
hosts and networks. The simulated attack scenario is illustrated in Figure 5.  

 

Fig. 5. DoS attack scenario 

Once the DoS flows are identified, the flow management component can find out 
the octets sent by the DoS flows with the source address in the suspected source 
address list. The finding then will be fed to the traceback component to find the DoS 
attack path.  

The results of the traceback are shown in the following figures presented in three 
dimensional graphs, where the x-axis represents the path discovered by ants, the y-
axis represents the number of iterations, and the z-axis represents the number of ants 
in y-th cycle found x-th path. The attack path found by the proposed ant colony based 
traceback method is the one with the most ants. 

Figure 6 shows the results of the traceback with full flow information provided by 
the network. The proposed traceback method explores all the possible attack paths in 
the initial stage of traceback and the ants would tend to converge to the attack path in 
the following iterations. After about half of the simulation, most ants will converge on 
the DoS attack path. 

According to the results of the preliminary experiment, we verify that the proposed 
solution can find out the DoS attack path in case all the routers in the network provide 
flow information. However, in real environments, some flow information might be 
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lost, especially at the router on the DoS attack path. Other experimental results are 
eliminated due to the length of the paper, but they all conclude that the proposed 
solution can find the DoS path efficiently and correctly. 

 

�

Fig. 6. The results of the traceback 

5   Conclusion 

DoS attacks have become one of the major threats in the Internet and cause massive 
revenue loss for many companies. However, DoS attacks are often associated with 
spoofed source addresses, making them hard to identify the attacker. A proactive 
approach to DoS attacks is to find the original machine which issues the attack and 
stop the malicious traffic.  

In this research, the traceback based on ant colony is proposed to identify the DoS 
attack origin. Unlike the previous traceback schemes, such as packet marketing and 
logging, which use packet level information, the proposed traceback approach uses 
flow level information. Although the packet level information provides detailed 
information about the network, the high processing cost is a challenge for deploying 
those IP traceback methods in the real networks.  

Ant colony algorithms have been successfully applied to various routing and 
optimization problems. Based on our observation, the proposed traceback problem is 
a variation of a routing problem and hence an ant colony based algorithm could be 
used to find the DoS attack path.  

The proposed method is verified and evaluated through simulation. The simulation 
results show that the proposed method can successfully and efficiently find the DoS 
attack path in various simulated network environments. Hence, we conclude that the 
proposed solution is an efficient method to find the DoS attack origin in the networks.  
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The proposed DoS traceback method can identify the DoS attack path in case of 
the spoofed source addresses. However, there are other attacks with spoofed source 
addresses which need to be identified. Ant algorithms or other artificial intelligent 
approaches could be further investigated for more generalized IP traceback problems. 
A distributed flow management might be more scaleable for large networks. Further 
study on the practical implementation and deployment on a large network can be done 
to evaluate the scalability of the proposed solution. 
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Abstract. The efficient design of multiplierless implementations of con-
stant matrix multipliers is challenged by the huge solution search spaces
even for small scale problems. Previous approaches tend to use hill-
climbing algorithms risking sub-optimal results. The three-stage algo-
rithm proposed in this paper partitions the global constant matrix mul-
tiplier into its constituent dot products, and all possible solutions are
derived for each dot product in the first two stages. The third stage
leverages the effective search capability of genetic programming to search
for global solutions created by combining dot product partial solutions.
A bonus feature of the algorithm is that the modelling is amenable to
hardware acceleration. Another bonus feature is a search space reduc-
tion early exit mechanism, made possible by the way the algorithm is
modelled. Results show an improvement on state of the art algorithms
with future potential for even greater savings.

1 Introduction

Applications involving the multiplication of variable data by constant values
are prevalent throughout signal processing. Some common tasks that involve
these operations are Finite Impulse Response filters (FIRs), the Discrete Fourier
Transform (DFT) and the Discrete Cosine Transform (DCT). Optimisation of
these kinds of constant multiplications will significantly impact the performance
of such tasks and the global system that uses them. The examples listed are
instances of a more generalised problem – that of a linear transform involving a
constant matrix multiplication (CMM). The problem is summarised as follows:
substitute all multiplications by constants with a minimum number of shifts and
additions/subtractions (we refer to both as ‘additions’) [1]. The optimisation
criterion may be extended beyond adder count to include factors like routability,
glitching etc. but is restricted to adder count in this paper.

2 Problem Statement

A CMM equation y = Ax (where y, x are N-point 1D data vectors and A is an
N × N matrix of M-bit fixed-point constants) may be thought of as a collection
of N dot products with each dot product yi expressed as follows:

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 296–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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yi =

N−1

j=0

aijxj , i = 0, . . . , N − 1. (1)

Each constant may be represented in signed digit (SD) form:

aij =

M−1

k=0

bijk2k, bijk ∈ 1, 0, 1 , 1 ≡ −1. (2)

Combining Eqns. 1 and 2 yields a multiplierless dot product implementation
requiring only adders and shifters:

yi =

N−1

j=0

M−1

k=0

bijk2kxj, i = 0, . . . , N − 1. (3)

The goal is to find the optimal sub-expressions across all N dot products in
Eqn. 3 that require fewest adder resources. As reviewed below, three properties
can be used in the classification of approaches to this problem: SD permutation,
pattern search strategy and problem subdivision.

SD Permutation. Consider that each of the N ×N M-bit fixed point constants
aij have a finite set of possible SD representations. For example with M = 4

the constant (−3)10 can be represented as either (0011)2, (0101)2, (1101)2, (0111)2 or
(1111)2. To find the optimal number of adders, all SD representations of aij should
be considered since for a CMM problem Canonic Signed Digit (CSD) represen-
tation is not guaranteed to be optimal (as shown in Section 5). The difficulty
is that the solution space is very large [2], hence SD permutation has thus far
been applied only to simpler problems [2, 3]. Potkonjak et. al. acknowledge the
potential of SD permutation but choose a single SD representation for each aij

using a greedy heuristic. Neither of the recent CMM-specific algorithms in the
literature apply SD permutation [4, 5], but the algorithm proposed in this paper
does apply it.

Pattern Search. The goal of pattern searching is to find the sub-expressions
in the 3D bit matrix bijk resulting in fewest adders. Usually bijk is divided into
N 2D slices along the i plane (i.e. taking each CMM dot product in isolation).
Patterns are searched for in the 2D slices independently before combining the
results for 3D. An example 2D slice is shown in Eqn. 4, a 4-point dot product
with random 8-bit SD constants.

yi =

0.9375

0.921875

0.6013625

0.1328125

T

aij at A row i

x0

x1

x2

x3

=

2−7

2−6

2−5

2−4

2−3

2−2

2−1

20

T
0 0 1 1

0 1 0 0

0 0 1 1

1 1 0 0

0 1 1 1

0 1 0 1

0 0 1 0

1 1 0 0

2D slice of bijk

x0

x1

x2

x3

(4)
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Algorithms may search for horizontal/vertical patterns (P1D) or diagonal pat-
terns (P2D) in the 2D slice. The P1D strategy implies a two-layer architecture
of a network of adders (with no shifting of addends) to generate distributed
weights for each row followed by a fast partial product summation tree (PPST)
to carry out the shift accumulate (Fig. 1). The P2D strategy implies a one-layer
architecture (Fig. 2) of a network of adders that in general may have shifted
addends (essentially merging the two layers of the P1D strategy).

Potkonjak et. al. use the P1D strategy and search for horizontal patterns
while others use the P2D strategy [4, 5]. However, these approaches select sub-
expressions iteratively based on some heuristic criteria that may preclude an
optimal realisation of the global problem. This is because the order of sub-
expression elimination affects the results [6]. The proposed algorithm sidesteps
this issue by building parallel solutions using the P1D strategy.

Problem Sub-Division. As in any hardware optimisation problem, synthesis
issues should be considered when choosing sub-expressions for an N-point dot
product (a 2D slice). If N is large (e.g. 1024-point FFT) then poor layout regular-
ity may result from complex wiring of sub-expressions from taps large distances
apart in the data vector. Indeed a recent paper has shown that choosing such
sub-expressions can result in a speed reduction and greater power consumption
[7]. It is therefore sensible to divide each N-point dot product into N/r sub r-
point dot product chunks, where r < N and r ∈ ZZ, and optimise each chunk
independently. The CMM problem hence becomes N/r independent sub prob-
lems, each with N dot products of length r (Fig. 3). The optimal choice of r is
problem dependent, but the proposed algorithm currently uses r = 4 for reasons
outlined subsequently. Eqn. 4 is an example of a sub dot product with r = 4.
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Fig. 3. CMML Divide and Conquer
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3 Proposed Efficient Modelling Solution

The CMM problem is a difficult discrete combinatorial problem and currently
requires a shift to a higher class of algorithms for more robust near-optimal solu-
tions. This is because the current approaches are greedy hill-climbing algorithms
and the associated results are very problem dependent [6]. The challenge is in the
modelling of the problem to make it amenable to efficient computation. The al-
gorithm proposed here models the problem in such a way as to make it amenable
to so-called near-optimal algorithms (genetic algorithms (GAs), simulated an-
nealing, tabu-search) and also hardware acceleration. The proposed approach
incorporates SD permutation of the matrix constants and avoids hill-climbing
by evaluating parallel solutions for each permutation. Such an approach is com-
putationally demanding but the algorithm has been modelled with this in mind
and incorporates innovative fast search techniques to reduce this burden.

The proposed algorithm permutes the SD representations of the constants in
A. For each permutation, parallel solution options are built based on different
sub-expression choices. These parallel implementations are expressed as a sum
of products (SOP), where each product term in the SOP represents a particular
solution (with an associated adder count). The SD permutation is done on each
CMM dot product in isolation (Section 4.1), and the results are subsequently
combined (Section 4.2). The algorithm searches for the combined SOP that rep-
resents the overall best (in terms of adder count) sub-expression configuration to
implement the CMM equation. Previous approaches derive one implementation
option (akin to a single term SOP) whereas the proposed approach derives par-
allel implementations (a multi-term SOP). It is this multi-term SOP approach
and its manipulation (Section 4) that make the algorithm suitable for GAs and
hardware acceleration.

The proposed algorithm currently uses the P1D strategy, so it searches for
horizontal sub-expression patterns of {±1} digits in a 2D slice. The proposed SOP
modelling idea can be extended to cover the P2D strategy by simply extending
the digit set from {±1} to ±1,±2,± 1

2
,±4,± 1

4
, . . . . To save space, the reasoning

for this idea is not elaborated upon in this paper, but is targeted as future
work.

4 The Proposed CMM Optimisation Algorithm

The proposed approach is a three stage algorithm as depicted in Fig. 4. Firstly
all SD representations of the M-bit fixed point constants are evaluated using
an M-bit radix-2 SD counter (digit set 1, 0, 1 ). Then, each dot product in the
CMM is processed independently by the dot product level (DPL) algorithm.
Finally the DPL results are merged by the CMM level (CMML) algorithm. The
three steps may execute in a pipelined manner with dynamic feedback between
stages. This offers search space reduction potential as outlined subsequently.
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initPop();
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}

Option 1 - Exhaustive Option 2 - Genetic Algorithm

Merges DPL results

Ordered search space increases
permutation reduction potential

Pipelined implementation
facilitates dynamic feedback to
DPL stage for complex CMM

Fig. 4. Summary of the CMM Optimisation Algorithm

4.1 Dot Product Level (DPL) Stage

The DPL algorithm iteratively builds a SOP, and the final SOP terms are the
unique sub-expression selection options after considering all SD permutations of
the dot product constants in question. The final SOP terms are listed in increas-
ing order of the number of adders required by the underlying sub-expressions.

Each SOP term is represented internally as a data structure with elements
p vec (a bit vector where each set bit represents a specific adder to be resource
allocated) and hw (the Hamming weight of p vec that records the total adder
requirement). The number of possible two input additions is equivalent to the
combinatorial problem of leaf-labelled complete rooted binary trees [8]. With r =

4, the number of possibilities is 180 (proof omitted to save space) and the general
series in r increases quickly for r > 4. We are currently researching an automated
method for configuring the DPL algorithm for any r. Currently, however, each
p vec is a 180-bit vector with a hw equal to the number of required adders.

The DPL algorithm executes for each SD permutation of the dot product
constants in question, and builds a ‘permutation SOP’ at each iteration. This
process is described in detail in [9]. The permutation SOP for Eqn. 4 is given by
Eqn. 5 where pv means bit v is set in the 180-bit p vec for that SOP term.

((p11)(p6)(p3)(p51)(p10)(p0)) OR

((p11)(p6)(p10)(p52)(p0)) OR

((p11)(p6)(p53)(p10)(p0))

(5)

The first term in Eqn. 5 has hw = 6 so it requires 6 unique additions (+PPST)
to implement Eqn. 4 whereas the latter two options only require 5 unique ad-
ditions (+PPST). Obviously one of the latter two options is more efficient if
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Fig. 5. DPL Skip List Arrangement

implementing this dot product in isolation. However, when targeting a CMM
problem one must consider the CMM level, and it may be that permuting the
first option at CMML gives a better overall result since it may overlap better
with requirements for the other dot products. Hence it is necessary to store the
entire SOP for each permutation at DPL and then permute these at CMML to
get the guaranteed optimal.

The algorithm checks each term in the permutation SOP produced at each
DPL iteration to see if it has already been found with a previous permutation.
If so it is discarded – only unique implementations are added to the global list.
This global list is implemented using a 2D skip list to minimise the overhead
of searching it with a new term from the current permutation SOP (Fig. 5) [9].
In the horizontal direction there are ‘skip nodes’ ordered from left to right in
order of increasing hw in the skip node list (SNL). In the vertical direction there
are ‘product nodes’ and each skip node points to a product node list (PNL)
of ordered product nodes where each product node in the PNL has the same
number of bits set (i.e. hw) in its p vec bit vector. When inserting a new term
into the list, a unique permutation ID (pid) is added to the node along with
p vec so that the SD permutation that generated it can be reconstructed.

The DPL algorithm is dominated by low level operations such as comparisons,
Boolean logic and bit counting. Indeed profiling shows that on average 60% of
the computation time is consumed by bit counting (50%) and bitwise OR (10%).
Such tasks can readily be accelerated in hardware by mapping the multi-term
SOP to a FIFO structure and the logic OR operations to OR gates.

4.2 Constant Matrix Multiplication Level (CMML) Stage

Once the DPL algorithm has run for each of the dot products in the CMM, there
will be N 2D skip lists – one for each of the N dot products examined. The task
now is to find the best set of overlapping product nodes for all of the CMM dot
products, with one node for each dot product. Overlapping nodes have similar
p vec set bits, and this results in adder resource sharing when implementing
the CMM. It is expected (though not guaranteed) that since the skip lists are
ordered with the lowest hw PNL first, the optimal result will be converged upon
quickly saving needless searching of large areas of the permutation space. The
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CMML algorithm searches for the optimal overlapping nodes from each of the
DPL lists.

Exhaustive Approach. An exhaustive CMML algorithm permutes the terms
in each skip list with terms from others, starting from the top of each. For each
permutation, N product nodes (one from each list) are combined using bitwise
OR and bit counting similar to the techniques used in the DPL algorithm. The
value of hw of the combined node represents the number of adders necessary to
implement the CMM for the current permutation. The potential exists to use the
lowest hw value found thus far to rule out areas of the search space – hence the
early exit mechanism referred to previously. For example if an improved value
of hw = 5 is found for a CMML solution, there is no point in searching DPL
PNLs with hw > 5 since they are guaranteed not to overlap with other DPL
PNLs and give a better result than 5. The current best value of hw at CMML
level could also be fed back to the DPL algorithm to reduce the size of the skip
lists generated by DPL (and hence permutation space) without compromising
optimality. However, despite the DPL skip list ordering, the huge permutation
space means that the exhaustive CMML approach is not tractable, especially as
N increases.

Genetic Programming Approach. The proposed modelling of the CMM
problem and bit vector representation of candidate solutions means that the
CMML algorithm is very amenable to GAs. The bit vectors can be interpreted
as chromosomes and the value of hw can be used to build an empirical fitness
function (the less adders required the fitter the candidate). A proposed GA to
implement the CMML algorithm is summarised in Algorithm 1.

Algorithm 1: GA-based CMML Algorithm
init pop();
while !termination condition do

eval pop fitness();
selection();
recombination();
mutation();

end

A candidate solution c is represented by a set of N pointers slp[i ][c ], where
each pointer addresses a product node in dot product skip list i (i= 0, 1, . . . , N −
1). The N product nodes are combined using bitwise OR and bit counting as
described in [9]. The task of the GA is to find the DPL component product
nodes that overlap as much as possible resulting in the fewest adders necessary
to implement the CMM with a P1D architecture (Fig. 1). The individual steps
of Algorithm 1 are described in the following sections.

Step 0 – Initialise Population. The size of the population is determined by
the parameter pop size. Since the DPL stage results are ordered as described
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in Section 4.1, the population is initialised with candidates (sets of pointers)
near the top of the DPL lists. This is achieved by weighting the selection of the
initial candidates. Let z represent the address each of the N component pointers
slp[i][c ] can assume for any candidate c . For each pointer, z is in the range
0 ≤ z ≤ NPi, where NPi is the number of product nodes in skip list i . The
algorithm randomly sets the pointer address z for all N pointers for each of the
initial pop size candidates according to an exponential probability mass function
Eqn. 6.

p(z) =
1

μ
exp(−z/μ) (6)

According to Eqn. 6, the lower the value of parameter μ, the more likely a
candidate is to have DPL component pointers nearer the top of the respective
DPL skip lists (i.e. z tends to zero for each of the N pointers).

Step 1 – Population Fitness Evaluation. The fitness of a candidate solution
is obtained by doing a bitwise OR of all of the component pointees followed by
bit counting. The lower the resultant bit count the better, as it means less adder
resources are required to implement the CMM problem with a P1D hardware
architecture. In future work we intend extending the fitness function to include
factors like fanout and logic depth, e.g. Eqn. 7. Currently Eqn. 7 is restricted to
adder count only.

f = α(Adder Count) + β(Fanout) + γ(Logic Depth) + . . . (7)

Step 2 – Selection. A good selection method should maintain an appropri-
ate balance between selective pressure and population diversity. The proposed
method is a variation of Goldberg’s Boltzmann Tournament Selection algorithm
[10]. Tournament selection involves a pure random selection of t individuals
(t ≤ pop size) that compete in terms of fitness against each other and the winner
is selected. This process is repeated pop size times. However, we propose to use
a strategy with a ‘fuzzy’ selection decision with t = 2. Goldberg’s algorithm is
based upon simulated annealing, i.e. at high ‘temperatures’ there is a greater
chance that weak candidates may be selected, which enhances population diver-
sity and makes it less likely that the algorithm will get stuck in local optima. As
the temperature cools, the strong candidates begin to dominate selection since
the algorithm should be converging on the true optimum.

The proposed approach uses Eqn. 8 which is plotted along with the exponent
of X = f(j)−f(k)

T
in Fig. 6 where f(j) and f(k) are the fitness values of candidates

j and k respectively.
W =

1

1 + e
f(j)−f(k)

T

=
1

1 + eX
(8)

As is clear from Fig. 6, as the temperature T decreases, the value of the expo-
nential term X moves further from the central vertical axis for a fixed f(j) and
f(k). As T decreases W → 1 when f(j) < f(k) and W → 0 when f(k) < f(j).

The original Boltzmann tournament selection algorithm proposed by Gold-
berg uses t = 3, and lets W equal the probability that j wins the tournament and
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(1−W ) be the probability that k wins the tournament [10]. We propose a variation
on Goldberg’s algorithm by introducing a fuzzy select threshold S to enhance
the population diversity. Using S, the selection algorithm can be programmed to
have a higher probability of selecting a weak candidate as a tournament victor
when the temperature T is high in the early generations. As the temperature
decreases and the algorithm converges on the optimum, the stronger candidate
has a greater chance of victory. The approach is summarised in Algorithm 2.

Algorithm 2: Fuzzy Boltzmann Tournament Selection Algorithm
if f(j) < f(k) then

if W > (0.5 + S) then j wins (strong victory);
else k Wins (weak victory)

end
else if f(j) > f(k) then

if W < (0.5 - S) then k wins (strong victory);
else j Wins (weak victory)

end
else

Choose pure random winner
end

To summarise, the proposed selection method maintains a balance between
population diversity and selection strength. The selection decision depends on
the relative fitness of competing individuals, the temperature T and the fuzzy
select threshold S. Since the GA should converge on globally optimal solutions as
the generations iterate, the parameters T and S should decay over the generations
to select the strong candidates with higher probability.

Step 3 – Recombination. After pop size individuals have been selected, a pro-
portion of these are further selected for uniform crossover based on a probability
pc. Since each candidate is represented by N pointers, the uniform crossover
process generates a random N-bit binary mask. Each bit location in the mask
determines the mixture of genetic material from the parents each offspring is cre-
ated with. Consider Fig. 7. If a bit location in the mask is ‘0’, the corresponding
pointer component for offspring ‘0’ is created respectively from parent ‘0’, and
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Fig. 7. Uniform Crossover Example

the corresponding component for offspring ‘1’ is created from parent ‘1’. The
opposite creation process occurs if the bit is ‘1’.

Step 4 – Mutation. After selection and crossover, the DPL component point-
ers of each candidate undergo mutation based on a probability pmut. If mutation
is applied, the degree of mutation is determined by a value M , where M ∈ ZZ.
A pointer selected for mutation moves M pointer locations up (M < 0) or down
(M > 0) its associated DPL skip list. The range of mutations possible depends
on the value of a parameter Mmax. The value for M is determined based on a
binomial probability density function p(M) Eqn. 9. This distribution means that
if mutation is applied, smaller mutations are more likely than large mutations.

p(M) =
(2Mmax − 1)!

M !((2Mmax − 1) − M)!
0.5M (0.5)((2Mmax−1)−M) (9)

To allow positive or negative mutations, the binomial distribution is re-aligned
about M = 0 (where p(0) = 0 because M = 0 means no mutation).

After this step, the new population forming the next generation is ready and
the process loops back to step 1. The process continues iterating steps 1-4 until a
termination condition is met (a fixed number of generations or a time constraint).

4.3 Genetic Algorithm Parameter Selection

Choosing values for the parameters that steer a GA is a difficult problem in
itself. The parameter values in Table 1 have been obtained empirically by trial
and error, and future work will investigate a more sophisticated method. Based
on empirical observations, the tuned parameter values in Table 1 imply that the
CMML GA produces better results when there is weak selective pressure (strong
diversity). The reason for this is likely to be because the variance of the solution

Table 1. CMML Genetic Algorithm Parameters

Parameter Name Value

pop size Population Size 3000

μ Initialisation Weight 10.0

T Selection Temperature 0.001

S Selection Threshold 0.4

pc Crossover Probability 0.98

pmut Mutation Probability 0.08

Mmax Max Mutation Size 6
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space fitness values is quite low, according to the current fitness function, relative
to the size of the solution space. Hence the current search is almost a ”needle in a
haystack” search, so a healthy diversity is needed. Future work on this algorithm
aims to increase the dimensionality of the fitness function to include other factors
like logic depth and fanout as well as adder count. Extending the fitness function
should increase the granularity of the fitness values in the solution space. Hence
the tuned genetic algorithm parameters are likely to change in future so that
the selective pressure will increase.

5 Experimental Results

For a fair comparison with other approaches, the number of 1-bit full adders
(FAs) allocated in each optimised architecture should be used as opposed to
‘adder units’, since the bitwidth for each unit is unspecified in other publications
apart from in [5]. FA count more accurately represents circuit area requirements.
Using the 8-point 1D DCT (N = 8 with various M) as a benchmarking CMM
problem, Table 2 compares results with other approaches based on adder units
and FAs where possible. Our approach compares favourably with [5] in terms of
FAs (see FA% savings in Table 2), even though this gain is not reflected by the
number of adder units required.

Our previous results were based on running the proposed CMML GA with
untuned parameters for 100000 generations [9]. Using the tuned parameters of
Table 1, our results clearly improve as is evident from Table 2. The tuned pa-
rameters also find these improved solutions after fewer generations (1000). For
each of the benchmarks in Table 2, the tuned parameters cause the proposed
algorithm to invoke its search space reduction mechanism (Section 4.2). This
reduces the search space from the order of 1020 to 1017 without compromising the
quality of the results , representing a reduction of more than 99%. The hypoth-
esis of achieving extra saving by permuting the SD representations is validated
by the fact that the best SD permutation corresponding to our results in Table 2
are not the CSD permutation.

Even given the savings illustrated in Table 2, there exists significant potential
for improvement:

1. Investigation of an optimal value for r, that is the optimal sub division
of large CMM problems into independent chunks. This can only be truly

Table 2. 1D 8-point DCT Adder Unit / Full Adder Requirements

CMM
Initial [1] [4] [5] Ours

+ + + + FA
Untuned GA [9] Tuned GA
+ FA FA% + FA FA%

DCT 8bit 300 94 65 56 739 78 730 1.2 77 712 3.7

DCT 12bit 368 100 76 70 1202 109 1056 12.1 108 1048 12.8

DCT 16bit 521 129 94 89 2009 150 1482 26.2 141 1290 35.8
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evaluated if synthesis parameters such as fanout and routability are included
in the fitness function as well as FA count.

2. The integration of the P2D strategy mentioned earlier. It is likely that there
exists an upper bound on the number of rows apart within the bijk slice
between which useful sub-expressions will be found. This is because if sub-
expression addends come from rows far apart in bijk, the adders inferred have
a large bitwidth.

3. Extension of the fitness function as indicated, and subsequent tuning of the
GA parameters.

6 Conclusions

The general multiplierless CMM design problem has a huge search space, espe-
cially if different SD representations of the matrix constants are considered. The
proposed algorithm addresses this by organising the search space effectively, and
by using a GA to quickly search for near optimal solutions. Experimental results
validate the approach, and show an improvement on the current state of the art.
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Abstract. Binary Decision Diagrams (BDDs) can be used to design
multiplexor based circuits. Unfortunately, the most commonly used kind
of BDDs – ordered BDDs – has exponential size in the number of vari-
ables for many functions. In some cases, more general forms of BDDs
are more compact. In constrast to the minimization of OBDDs, which is
well understood, there are no heuristics for the construction of compact
BDDs up to today. In this paper we show that compact BDDs can be
constructed using Genetic Programming.

1 Introduction

Decision Diagrams (DDs) are used for the representation of Boolean functions
in many applications of VLSI CAD, e.g. in the area of logic synthesis [1] and
verification [2]. In the meantime DD-based approaches have also been integrated
in commercial tools.

The state-of-the-art data structure are Ordered Binary Decision Diagrams
(OBDDs) [2]. Since OBDDs are often not able to represent Boolean functions
efficiently due to the ordering restriction [3],[4],[5] many researchers have ex-
tended the OBDD concept mainly in two directions:

1. Consider different decomposition, e.g. ordered functional decision diagrams
(OFDDs) [6] and ordered Kronecker functional decision diagrams (OKFDDs)
[7] make use of AND/EXOR based decompositions.

2. Loosen the ordering restriction, e.g. general BDDs (GBDDs) [8] allow vari-
ables to occur several times.

Following the second approach, of course, the most powerful technique is to have
no restriction on the ordering at all, i.e. to use BDDs without any restrictions
on ordering or variable repetition. BDDs are often exponentially more succinct
than OBDDs and also for the applications mentioned above the ordering restric-
tions are often not needed. The main reason why OBDDs have been used more
frequently is that efficient minimization procedures exist, like e.g. sifting [9]. For
BDDs similar techniques are not available.

Evolutionary approaches have also been applied successfully to OBDDs, but
there the problem reduces to finding a good variable ordering, i.e. a permutation
of the input variables [10]. In [11] Genetic Programming has been applied to a
tree-like form of BDDs with some additional constraints.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 308–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper we present an approach to BDD minimization based on Genetic
Programming. In contrast to the minimization of OBDDs we carry out all op-
erations directly on the graph structure of the BDD. By this, we present the
first heuristic approach to BDD minimization. Experimental results are given to
demonstrate the efficiency of the approach.

2 Preliminaries

2.1 Binary Decision Diagrams

A BDD is a directed acyclic and rooted graph Gf = (V, E) representing a
Boolean Function f : B

n −→ B
m. Each internal node v is labeled with a

Variable label(v) = xi ∈ Xn = {x1, . . . , xn}, and has two successors then(v)
and else(v). The terminal nodes are labeled with 1 or 0 corresponding to the
constant Boolean functions. In each internal node the Shannon decomposition
g = xig|xi=1 +xig|xi=0 is carried out. The m root nodes represent the respective
output functions.

By restricting the structure of the BDD, special classes of BDDs can be
derived:

– A BDD is complete, if on each path from a root to a terminal node each
variable is encountered exactly once.

– A BDD is free (FBDD), if each variable is encountered at most once on each
path from a root to a terminal node.

– A BDD is ordered (OBDD), if it is free and the variables appear in the same
order on each path from a root to a terminal node.

OBDDs are a widely used data structure in hardware design and verification be-
cause they are a canonical representation of Boolean Functions and they provide
efficient synthesis algorithms. However, for many functions the size of the OBDD
depends on the variable ordering. It may vary between linear and exponential in
the number of variables [2]. A lot of research has focused on the so-called vari-
able ordering problem, which is NP-hard [12]. Furthermore, there are functions
for which all variable orderings lead to an OBDD with exponential size. In turn,
for some of these functions there exist FBDDs or BDDs of polynomial size [13].
This means that releasing the read-once restriction and the ordering of variables
can be advantageous. But in constrast to the minimization of OBDDs by finding
a good or optimal variable ordering – which is well understood [14],[9] – there
are no heuristics for the construction of small BDDs up to today.

2.2 BDD Circuits

BDDs can be directly mapped to a circuit based on multiplexors. If realized
with pass transistor logic, multiplexor cells can be used for synthesis at low cost
[15],[16],[1]. In the mapping, each internal node v of the BDD is replaced by a
MUX cell. Then the 1-input (the 0-input) is connected to the MUX cell corre-
spondig to then(v) (else(v)). The select line is connected to the primary input
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Fig. 1. Example for a BDD circuit

index(v). An example for the transformation is shown in Figure 11. Obviously,
the size of the BDD has direct influence on the chip area of the derived BDD
circuit. For this reason, it is important to find a BDD representation as small as
possible to minimize chip area.

3 Evolutionary Algorithm

The approach presented in this paper is based on Genetic Programming (GP)
[17]. Originally, GP was used to evolve LISP programs. The method at hand does
not consider programs, but works directly on the graph structure of the BDDs.
Several operators are provided to customize the algorithm for a specific problem.
The algorithm has been implemented on top of the evolving objects library [18],
an open source C++ library for evolutionary algorithms. The target function is
kept in memory as OBDD. For this the BDD package CUDD [19] is used. The
aim of the evolutionary algorithm is formulated as follows:

The objective is to evolve BDDs that are a correct and compact repre-
sentation of a given target function.

3.1 Flow of the Algorithm

The general structure of the evolutionary algorithm is based on the cycle given by
the EO library. The flow is depicted in Figure 2. The algorithm is parameterized
via command line switches in most of its parts. All of the operators described
below can be selected and the ratios can be adjusted individually. Furthermore
the algorithm provides different methods for selection, replacement and different
termination criterions. This high flexibility should enable the user to customize
the flow according to the respective problem.

3.2 Representation

The individuals are directed acyclic graphs with multiple root nodes, each cor-
responding to an output of the represented function. By adopting some popular
1 In the figures, solid lines denote then edges and dashed lines denote else edges.
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Fig. 2. The flow of the algorithm

techniques used in BDD packages, the graphs are always reduced, i.e. isomorphic
subgraphs exist only once and there are no nodes with then(v) and else(v) being
identical.

3.3 Evaluation Function

As mentioned above, there are two objectives – correctness and compactness.
The two dimensions of fitness are ordered lexicographically, with correctness
being the more important one. Initially there is no limitation for the structure
of the represented BDDs. This means that there will be many individuals that
do not represent the target function correctly. Such invalid individuals are given
a worse fitness than the correct ones.

For the first dimension – correctness – it would be easy to test, if an indi-
vidual represents the target function correctly or not. But this would draw no
distinction between individuals that are “almost correct” and totally degener-
ated individuals. For this reason, a more sophisticated measure of correctness
is used. The evaluation function calculates the ratio of assignments a ∈ B

n for
which the function represented by the individual evaluates equivalently to the
target function, i.e. the correlation between the individual’s function and the
target function. The computation of the correlation is realised by computing
the XOR-BDD of the target function and the individual’s function and then
computing its ratio of satisfying assignments. For the latter step, the underlying
BDD package provides an efficient implementation without considering each of
the 2n possible assignments.

The second dimension of fitness is the sum of the number of internal nodes of
the individual and of the XOR-BDD already computed in the previous step of
evaluation. The XOR-BDD is considered again in order to punish degenerated
individuals that have few minterms in common with the target function. For a
correct individual, the XOR-BDD is the zero function, and only the individual’s
nodes are counted.



312 U. Kühne and N. Drechsler

3.4 Evolutionary Operators

Table 1 gives an overview of the genetic operators. Beyond the standard classes –
initialization, recombination and mutation – there are some special operators,
functionally conserving ones, which do not change the functional semantics of
the individuals but the structure of the graphs.

Table 1. Genetic operators

initialization Init

CuddInit

recombination NodeXover

OutputXover

mutation VariableMut

EdgeSwapMut

EraseNodeMut

AddMinterm

functionally conserving Restructuring

VariableDuplication

CombinedRestructuring

TautoReduction

SplitReduction

Resize

Initialization. There are two types of initialization, Init and CuddInit. The
first one generates random graphs with a given maximum depth. The second one
creates OBDDs with a randomized variable ordering which represent the target
function correctly. The name is derived from the underlying BDD package which
is used for the synthesis of the OBDDs.

Crossover. NodeXover is basically a standard GP crossover, i.e. a node is se-
lected from each parent, and the corresponding subgraphs are exchanged. As
the individuals are rather DAGs than trees, it has to be assured that no cyclic
subgraphs appear during the operation. The second crossover – OutputXover –
performs a uniform crossover on the output nodes of the parent individuals.
Thus it can only be applied to functions with multiple outputs. OutputXover is
supposed to combine individuals that already provide good solutions for single
output functions.

Mutation. Among the mutation operators there are three simple ones and
the customized AddMinterm operator. VariableMut exchanges the variable of
one randomly selected node. EdgeSwapMut selects one node and swaps its then
and else egdes. EraseNodeMut removes one node from the graph by replacing
it with one of its successors. This may be useful to eliminate redundant nodes.
AddMinterm works as follows: first an assignment a ∈ B

n is generated. If the
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Fig. 3. Example for the AddMinterm operator

individual and the target function evaluate to different values under this assign-
ment, a OBDD-like subgraph is added to the individual so that it will evaluate to
the correct value afterwards. In order to create the subgraph, the target function
is restricted in all variables that have been read on the path in the individual
that corresponds to the assignment a. Then the new subgraph is appended to
the end of this path. The operator can be used to speed up the algorithm, if
the target function is relatively complex and so it would take too long to find a
correct solution at all. It is a drawback that always OBDD-like subgraphs are
created. This may lead to local optima that are hard to escape from.

Example 1. Figure 3 shows an example for the AddMinterm operator. Let the
target function be the 3 bit parity function given by f(x0, x1, x2) = x0⊕x1⊕x2.
Consider the individual in Figure 3(a) and the randomly chosen assignment
a = x0 x1 x2. The corresponding path is highlighted in the figure. As on this
path only x0 is evaluated, the remaining function to be added is frest = f |x0=1 =
x1 ·x2 +x1 ·x2. The OBDD for this function (see Figure 3(b)) is added to the end
of the path, obtaining the new indiviual in Figure 3(c). Note that the correlation
has increased from 5/8 to 7/8, i.e. only one of eight minterms is wrong after the
application of AddMinterm.

Functionally Conserving Operators. Among the functionally conserving op-
erators there are two operators that perform a local restructuring of the graphs.
Restructuring searches for subgraphs that are isomorphic to one of the graphs
shown in Figure 4 on the right and on the left. Then this subgraph is reduced to
the one shown in Figure 4 in the middle. Note that the three graphs are func-
tionally equivalent. The operator VariableDuplication duplicates a variable
on a randomly selected path. The transformation is shown in Figure 5. In this
way redundancy is added to the graph. In some cases this can lead to better so-
lutions if the redundancy is removed elsewhere in the graph (this can be done by
TautoReduction or SplitReduction which are described below). Furthermore
the operator increases the diversity of the population. CombinedRestructuring
is a combination of the two operators described above. Both are applied several
times in random order.
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Fig. 5. The VariableDuplication operator

curr lvl = TOP LEV EL;
done = false;
while (¬done) do

for (i = TOP LEV EL downto curr lvl) do
for (each node in level i) do

update path infos of child nodes;
od

od
for (each node in level curr lvl + 1) do

if node is redundant then remove node;
od
curr lvl = curr lvl − 1;
if curr lvl ≤ 1 then done = true;

od

Fig. 6. Pseudocode for TautoReduction

Finally there are two operators that try to reduce the number of nodes with-
out changing the function of an individual. Algorithmically they are very sim-
ilar. Figure 6 shows the TautoReduction operator in pseudocode. It searches
for redundant nodes from top to bottom. A node v is identified redundant,
if the variable index(v) has already been evaluated to the same value on all
paths reaching v. A redundant node can then be replaced by the appropriate
successor.
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Fig. 7. Example for the TautoReduction operator

Example 2. Consider the individual shown in Figure 7. The marked node is
redundant because x has already been evaluated to 0 above and it can be replaced
by its else successor. In the next step, another node is identified redundant. In
this case x has been evaluated to 1 before and the node is replaced by its then
successor. The node marked in the third graph may not be removed because it
can be reached on two paths on which x is evaluated to different values.

SplitReduction works similar, except that it does not remove redundant nodes
but redirects edges instead. If in a node v the variable of one of its successor
nodes has always been evaluated to a certain value and never to its complement,
the edge to this node can be redirected to the appropriate successor node.

Example 3. Consider the individual in Figure 8. The else edge of the marked node
can be redirected to the terminal 1-node. Furthermore the then edge can be redi-
rected to the z node below because x has always been evaluated to 1 before.

By redirecting edges, SplitReduction will possibly “relieve” a node of redun-
dant edges and make it in turn a candidate for TautoReduction. It could be
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Fig. 8. Example for the SplitReduction operator
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observed that the two operators work together quite well. Thus, there is a com-
bination of these two operators, called Resize. Resize can be called at the end
of every generation. It tries to reduce all individuals of the population using
TautoReduction and SplitReduction, so that the number of nodes does not
exceed a given bound. This can be used to keep the individuals relatively small
in order to save run time.

4 Experimental Results

Experiments have been carried out to show the effectiveness of the approach. The
runs presented in the following are supposed to exemplify the different working
methods of the evolutionary algorithm. The first one starts with a population of
randomly initialized graphs, the second one starts with correct OBDDs.

Example 4. Consider the hidden weighted bit (HWB) function given by the fol-
lowing equation:

HWB(x0, . . . , xn−1) =
{

0 if w = 0
xw−1 else where w = |x0, . . . , xn−1|.

HWB is known to have only OBDD representations of exponential size in the
number of variables, but FBDDs of quadratic size [13]. In this example the pre-
sented approach is used to evolve a BDD that represents the 4 bit HWB function.
The OBDD is shown in Figure 9 on the left. The parameters are set up as follows:
a deterministic tournament selection of size 2 and a comma replacement com-
bined with weak elitism are used. The population contains 100 individuals which
are initialized randomly with an initial depth of 6. The following genetic oper-
ators are applied: OutputXover with a rate of 0.2, VariableMut, EdgeSwapMut
and EraseNodeMut each with a rate of 0.05 and CombRestucturing with a rate
of 0.2. The optimal BDD shown in Figure 9 on the right could be evolved after
90 generations.

0 1
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x0

x1 x1

x3

x2

x3

x2 x2

0 1

f0

x3

x2 x0

x0 x1 x2

Fig. 9. OBDD and BDD for the 4 bit hidden weighted bit function
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Example 5. In [2] Bryant introduced a function f(x0, . . . , x2n−1) = x0 · x1 + x2 ·
x3 + · · ·+ x2n−2 + x2n−1 that is sensible to the variable ordering, i.e. the size of
its OBDD varies between linear and exponential. In this example we consider a
benchmark function g : B

6 → B
4, where the four outputs are variants of Bryant’s

function:

g0(x0, . . . , x5) = x0 · x1 + x2 · x3 + x4 · x5

g1(x0, . . . , x5) = x0 · x2 + x1 · x3 + x4 · x5

g2(x0, . . . , x5) = x0 · x3 + x1 · x4 + x2 · x5

g3(x0, . . . , x5) = x0 · x5 + x1 · x4 + x2 · x3

Note that for each output function there is a different order leading to the op-
timal OBDD size, thus there is no global order for which all partial OBDDs
are optimal. The size of the optimal shared OBDD is 31. The evolutionary ap-
proach is applied with the following settings: the initial population consists of
100 correct OBDDs. OutputXover and CombRestucturing are applied each with
a rate of 0.3, TautoReduction and SplitReduction are applied with a respec-
tive rate of 0.1. Selection and replacement are the same as in Example 4. After
41 generations, an individual emerged that represents the target function with
17 nodes.

Table 2 shows additional results. Besides the name of the circuit and the numer
of inputs and outputs the size of the minimal OBDD is given. The last column
shows the size of the smallest BDD that could be found by our approach. The
algorithm has been run 50 times with a limit of 200 generations and a population
size of 100. Only for the largest benchmarks with 7 inputs a population size of

Table 2. Benchmark circuits

circuit i/o OBDD GA

rnd 3 3 a 3/3 9 7
rnd 3 3 b 3/3 7 7
rnd 3 3 c 3/3 8 7
rnd 3 3 d 3/3 9 8
rnd 4 2 a 4/2 10 11
rnd 4 2 b 4/2 12 11
rnd 4 2 c 4/2 11 12
rnd 4 2 d 4/2 12 11
rnd 5 1 a 5/1 11 11
rnd 5 1 b 5/1 11 11
rnd 5 1 c 5/1 12 11
rnd 5 1 d 5/1 12 12
rnd 5 4 a 5/4 37 35
rnd 5 4 b 5/4 35 34
rnd 5 4 c 5/4 34 32
rnd 5 4 d 5/4 39 38

circuit i/o OBDD GA

hwb4 4/1 7 6
hwb5 5/1 14 12
hwb6 6/1 21 20
isa2 5/1 10 8
isa3 10/1 26 20
f51m.49 3/1 4 4
cm82a.f 3/1 5 5
b1 3/4 8 8
f51m.48 4/1 6 6
cm42a.e,f 4/2 5 5
cu.pq 4/2 10 10
cm82a.h 5/1 7 7
C17 5/2 7 7
cm138a.m 6/1 6 6
pcl3.3 7/1 8 8
cu.rs 7/2 8 8
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200 and a generation limit of 300 have been used. As can be seen, in many cases
smaller representations could be found. Especially the HWB and ISA functions
for which there is an exponential gap between their OBDD- and BDD-size show
good results. But also for randomly generated functions the graph size could be
improved. For other benchmarks no improvements could be made, but it should
be noted that for numerous common functions there are OBDDs of linear size
and thus no improvements can be expected by using BDDs instead.

5 Conclusions and Future Work

In this paper it has been shown that it is possible to construct compact BDDs
using genetic programming. First experiments have yielded some promising re-
sults. However, there are still some problems to be solved. For large functions
that depend on many variables, it takes too long to evolve a correct solution
from a randomly initialized population. This can be avoided, if correct OBDDs
are used as initial population. Unfortunately, the regular structure of the OB-
DDs seems to be very stable, and the algorithm will hardly escape from the local
optima induced by the OBDDs. Certainly there is still capability for improve-
ments. Possibly new operators that act less locally than Restructuring could
help to “break” the OBDDs.
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Abstract. An important aim of circuit design is the reduction of the power dis-
sipation. Power consumption of digital circuits is closely related to switching 
activity. Due to the increase in the usage of battery driven devices (e.g. PDAs, 
laptops), the low power aspect became one of the main issues in circuit design 
in recent years. In this context, the Data Ordering Problem with and without In-
version is very important. Data words have to be ordered and (eventually) ne-
gated in order to minimize the total number of bit transitions. These problems 
have several applications, like instruction scheduling, compiler optimization, 
sequencing of test patterns, or cache write-back. This paper describes two evo-
lutionary algorithms for the Data Ordering Problem with Inversion (DOPI). The 
first one sensibly improves the Greedy Min solution (the best known related 
polynomial heuristic) by a small amount of time, by successively applying mu-
tation operators. The second one is a hybrid genetic algorithm, where a part of 
the population is initialized using greedy techniques. Greedy Min and Lower 
Bound algorithms are used for verifying the performance of the presented Evo-
lutionary Algorithms (EAs) on a large set of experiments. A comparison of our 
results to previous approaches proves the efficiency of our second approach. It 
is able to cope with data sets which are much larger than those handled by the 
best known EAs. This improvement comes from the synchronized strategy of 
applying the genetic operators (algorithm design) as well as from the compact 
representation of the data (algorithm implementation). 

Keywords: Evolutionary Algorithms, Digital Circuit Design, Low Power, Data 
Ordering Problem, Transition Minimization, Optimization, Graph Theory, 
Complexity. 

1   Introduction 

The power consumption became a barrier during the design of embedded systems, as 
soon as the limits of the paradigm “the smaller the device, the faster it is” were 
reached. Due to the ever increasing demand for electronic devices with bigger storage 
capacity and quicker access time (see e.g. [5]), the low-power techniques have to be 
taken into account already in the first phases of the design process. Thus, various 
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methods for decreasing the power dissipation have been developed (see e.g. [1], [15], 
[21], [26]). 

The challenges in the design of embedded systems can be split into two major 
categories: hardware-related and software-related. The hardware designers try to find 
methods to optimize the switching activity and the voltage in the circuit ([6], [25]). 
The software component is also very important for the power consumption of the 
circuit ([23], [24]). In this area an efficient design can provide significant improve-
ments. Power consumption often is directly determined by the design complexity. For 
this reason, power consumption has grown in the past years with increasing design 
complexities. Therefore, power management is a critical design priority.  As such, 
lower power consumption has a positive effect on battery life, packaging, cooling 
costs and reliability. A new direction of the design methodologies is necessary to 
handle the power management issue in a successful way.  

The power consumption on the software level depends on the switching activity 
and the capacitance. The switching activity, as an important design metric, character-
izes the quality of an embedded system-on-chip design. It is implicitly related to the 
orderng of the data sequences. The first problem engaged with this topic is the order-
ing of data words to minimize the total number of transitions Data Ordering Problem 
(DOP). In [18] it is demonstrated that this problem is NP-complete. Recently, some 
algorithms were proposed for optimizing the number of transitions. In [22], Stan and 
Burleson introduced the bus-invert method. The main idea is to use an extra bus line 
with bits, called invert, which contains the information regarded as the phase-
assignment for all transmitted words. For every word there is a bit flag that signals if 
the transmitted word is complemented (inverted), flag = 1, or left as initial, flag = 0. 
Adding this new paradigm which applies to DOP an extra degree of freedom, the total 
number of transitions can be lower than the number provided with DOP. The resulting 
problem is the so-called Data Ordering Problem with Inversion (DOPI) (see also [11, 
19]). A formal definition, related terms, and examples are given in Section 2. 

As a general method for solving optimization problems, EAs are getting more and 
more popular. Recently, EAs have been successfully applied to several problems in 
VLSI CAD (see e.g. [8], [9], [11], [16]).  In [10] an efficient genetic approach for the 
DOP is proposed and in [11] an evolutionary algorithm for DOPI. This EA approach 
provides high-quality results (better than polynomial heuristics), but they need also a 
large amount of runtime.  

In this paper, we propose two evolutionary algorithms for DOPI: one which per-
forms quick small improvements and the other one, which is a hybrid genetic algo-
rithm that performs significant improvements in a larger amount of run time. For 
smaller-sized instances we applied the optimal exact algorithms (both DOP and 
DOPI) for comparing the behavior of the two problems as well as the results provided 
by other related algorithms. In [19] a lower bound algorithm for DOPI is introduced. 
In our study, we will use it to check the deviation from the optimum of the results 
provided with the proposed EAs. There are three categories of input data: small, me-
dium and large data sizes. The focus is on optimizing the DOPI approach, which adds 
the paradigm of phase-assignment to DOP and thereby improves the performance of 
the results. 
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2   DOP and DOPI Problems Domain 

Definition 2.1. Hamming distance. If a word wr is transmitted immediately followed 
by ws, the total number of transitions is given by the number of bits that change. This 
is  

∑
=

⊕=
k

j
sjrjsr wwwwd

1

),( , 

also known as the Hamming distance between wr and ws. Here, the wrj denotes the jth 
bit of wr, and ⊕ the XOR operation. For instance, d(1010, 0100) = 3. Word reordering 
can change the number of transitions significantly. 

 
Definition 2.2. Total number of transitions. The total number of transitions is the sum 
of the Hamming distance needed for the transmission of all the words. It is denoted 
with NT. If σ is a permutation of the bit strings w1, w2, ..., wn, than the total number of 

transitions will be: ),(
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Definition 2.3. Adjacency matrix. For a given problem instance (where n is the num-
ber of words and k their length) we define the adjacency matrix An x n where A(i, j)  = 
d(wi, wj). 

  
Definition 2.4. Phase-assignment. The inversion of a data word wi is also called the 

negation (complementation) and is denoted iw . The polarity (phase-assignment) δ is 

a function defined on the set of words with values in a set of words and δ(w) is w  
(case w may be complemented) or w (case w may be not complemented). 

 
Proposition 1.1. For adjacency matrix and inversion holds ∀ i, j ∈ {1, .., n}: 

a. jiijijji aawwdwwd =⇒= ),(),(             

b. 00),( =⇒= iiii awwd     

c. ),(),( jiji wwdwwd =  

d. ijjijiji akwwdkwwdwwd −=−== ),(),(),(  

 
Formalized, the definitions of the DOP and DOPI will be: 
 

Definition 2.5. DOP: Find a permutation σ of the bit strings w1, w2, …, wn such that 
the total number of transitions:     
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is minimized. 
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Definition 2.6. DOPI: Find a permutation σ of the bit strings w1, w2, …, wn and a 
phase-assignment δ such that the total number of transitions:    

))(),((
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n

j
jjT wwdN σσ δδ  

(2) 

is minimized. 

3   Previous Approaches 

The DOP and DOPI are very similar to the Traveling Salesman Problem (TSP). For 
all three problems a good ordering of elements with respect to a given weight between 
each two elements has to be determined. Since the DOP and DOPI are NP-Complete, 
the exact algorithms can only handle very small instances. In the past few years some 
heuristics were developed for both DOP and DOPI (most of them in relation with the 
TSP problem): 

1. Double Spanning Tree (DST) [12] 
2. Spanning Tree/Minimum Matching (ST-MM) [12] 
3. Greedy Min (GM) [18] 
4. Greedy Simple (GS) [10] 
5. Evolutionary Heuristics [11] 

The most powerful polynomial heuristic known so far is Greedy Min and it can be 
applied to both DOP/DOPI:  

1) Computes the Hamming distance for all (distinct) pairs of given words and se-
lects the pair with a minimum cost.  

2)  Chooses the most convenient pair of words. The beginning sequence will con-
tain these two words. 

3)  Builds progressively the sequence, adding in every step of the most conven-
ient word (that was not yet added). This word can be added either at the beginning or 
at the end of the sequence, depending where the Hamming distance is minimal. 

The EAs are the best algorithms regarding the quality of results. Such evolutionary 
approaches provide better results than the above-presented Greedy Min, but with 
significantly more time resources. EAs which perform high-quality optimizations are 
presented in [10], [11]. In [11] are presented evolutionary algorithms for both DOP 
and DOPI. For DOPI the mutation and crossover operators are applied in parallel for 
creating new individuals. This is also a hybrid EA, since the initial individuals are 
preprocessed using greedy methods. The results provided by the EA are better than 
the Greedy Min results, but the maximal number of words is 100.  

In [19] a graph theory related model for DOPI is introduced, together with a rele-
vant graph theoretic background. For a DOPI instance with n words, each of length k, 
a multigraph can be created accordingly. The vertices are the words and the edges are 
labeled with the distance between the words. According to Proposition 1.1.  c) and d), 
if the words are in the same phase-assignment (both 0 or both 1), then the distance 
between them is the same. Also, if they are in different phase-assignment, the distance 
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remains the same. There are two edges between two vertices (one if the words are in 
the same phase, one for the case if they are transmitted in different phases). In this 
manner DOPI is transformed in the equivalent NP-complete problem of finding the 
Hamiltonian path with the minimum length. As shown in [19], a lower bound for the 
length of this path is the weight of the minimal spanning tree of the multigraph. To 
determine the minimal spanning tree there are two classical greedy algorithms: Prim 
(uses the vertex connections) and Kruskal (uses the edges). In the experimental tests 
from Section 5, we use the Kruskal approach to check the deviation to the optimum 
for the provided EA results. 

4   Evolutionary Algorithms 

In this section the two evolutionary approaches for DOPI will be presented: the first is 
a simple one which operates on a single individual (the Greedy Min resulted one) with 
the Simple Inversion Mutation (SIM) operator and the Simple Cycle Inversion Muta-
tion (SCIM) operator. This performs improvements of the greedy solution in a small 
amount of time. The second one is based on the classical genetic algorithm model. 
The genetic operators are applied synchronized for ordering and phase-assignment, in 
order to preserve the good subsequences. As can be seen later in the result tables, the 
results are much better than the previous mutation algorithm, but the time needed 
increased significantly. follow these instructions closely in order to make the volume 
look as uniform as possible. 

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to. 
This is to ensure that the end product is as homogeneous as possible. 

4.1   Overview of Genetic Algorithms 

A Genetic Algorithm (GA) is an optimization method with simple operations based 
on the natural selection model [17]. Genetic algorithms have been applied to hard 
optimization problems including VLSI layout optimization, boolean satisfiability, and 
the Hamiltonian circuit problem ([13], [16], [20]). There are four main distinctions 
between GA-based approaches and traditional problem-solving methods: 

a) GAs operate with a genetic representation of potential solutions, not the solu-
tions themselves. 

b) GAs search for optima of a population of potential solutions and not a single 
solution (the genetic operators alter the composition of children). 

c) GAs use evaluation functions (fitness), no other auxiliary knowledge such as 
derivative information used in the conventional methods. 

d) GAs use probabilistic transition rules (not deterministic rules) and various 
parameters (population size, probabilities of applying the genetic operators, 
etc.) 

For a specific problem, it is very important to use related genetic operators, which 
preserve the good traits from the parents, but are also able to bring improvements in 
the resulting children. The initialization step and the parameter settings are also very 
significant. 



 Efficient Evolutionary Approaches for the Data Ordering Problem with Inversion 325 

4.2   A Simple Mutation Algorithm for DOPI 

The EV_MUT_ALGORITHM (MUT) is an evolutionary algorithm, which operates 
successively on an individual. The Greedy Min algorithm generates the beginning 
individual. The pair (Permutation, BitString) is a potential solution. The Permutation 
denotes the ordering and BitString denotes the phase-assignment. The mutation will 
be applied for two random cut points to the both components (Permutation and Bit-
String). The new individual will substitute the current best, if it is better. The used 
mutation operators are the classical SIM and a derivative thereof, denoted with Simple 
Cycle Inversion Operator (SCIM). 

4.2.1   Simple Inversion Mutation (SIM)  
SIM was introduced in 1975 by Holland [14]: 2 cut points are randomly selected and 
the subsequence between them is mirrored. For example, for the permutation (1, 2, 3, 
4, 5, 6, 7, 8) and the cut points 3 and 5 the result will be the permutation (1, 2, 5, 4, 3, 
6, 7, 8).  The same will be applied also to the bit string, with the same cut points. 

This operator can improve the current solution, which was constructed on a local 
optimum (greedy) basis. In the DOPI case the same cut points are considered, as well 
as for the permutation. Using this operator the sequences inside the cut points for the 
current individual are preserved. As a consequence, the improvement will come from 
the sum of the distances in the two interior cut points regions, which can be reduced. 

4.2.2   Simple Cycle Inversion Mutation (SCIM) 
This operator additionally includes the possibility to change the extremities of the 
potential solution. A potential solution is seen as a circular structure, in which the last 
element, had it been in a linear structure, it would not have had a successor. As such, 
by turning the linear structure into a circular one, the last element is tied to the first 
element, the latter becoming the successor of the former. This way, the last element 
obtains a successor - namely the first element of the former linear structure. 

This potential solution is a circular structure, where the next for the last element is 
the first one. Then, if the cut points are (i, j) with i > j, we will invert the sequence 
from the places i, i+1, …, n, 1, ..., j. The elements from the positions j+1, j+2,…, i-1  
will remain untouched. 

 
 
 
 
 
 
 
 
 

Fig. 1. The mutation operator SCIM for a Permutation and Bit String and the cut points (7, 3) 
 

 
( 1  2  3  4  5  6  7  8 )  ( 1  0  1  1  0  1  0  0 ) 

 
 
 

( 1  8  7  4  5  6  3  2 )                      ( 1  0  0  1  1  1  1  0 ) 
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Note: in case of the permutation, the sequence (7, 8, 1, 2, 3) is transformed in the 
sequence (3, 2, 1, 8, 7) and the places are preserved. The same happens in the case of 
the bit string. The use of the operator yields improvements to the permutation due to 
the transformation in the cut points as well as to the change of the end points. Because 
there are n(n-1)/2 different pairs of words, the total number of performed operations is 
also n(n-1)/2. The cut points are chosen randomly. If the total number of performed 
operations grows, the provided result is expected to be better. 

4.3   A Genetic Algorithm for DOPI 

The GENETIC_ALGORITHM (GA) is based on the classical sketch of a genetic 
algorithm, in which a part of the initial population is initialized using the two greedy 
methods and another part is formed from random individuals. On the current popula-
tion, mutation and crossover operators are applied with a given probability, and the 
best populationSize (the population individuals’ count) individuals are kept in the 
selection phase. 

4.3.1   Representation 
A potential solution is a pair (Permutation, BitString). The Permutation object is the 
representation of the word ordering. The BitString object is the representation of the 
phase-assignment (value 1/0 means that the corresponding data word has/not to be 
inverted).  A population is a set of such pair-elements. The genetic operators can be 
applied on these elements. 

The adjacency matrix is symmetric and its main diagonal is always filled with 0s 
(zeros). We will only keep its elements from the upper main region in a vector with 
(n-1) + (n-2) + …+1 = n(n-1)/2 elements (instead of the whole matrix with n2 ele-
ments). This representation will minimize the space needed for its representation and 
assures a higher speed for the application. 

4.3.2   Objective Function and Selection 
The value given in formula (2) is used as an objective function that measures the 
fitness of an element. 

The selection is performed by roulette wheel selection. The best populationSize 
elements are chosen for the next generation. This strategy guarantees that the best 
element never gets lost and a fast convergence is obtained. 

4.3.3   Initialization 
Often it is helpful to combine EAs with problem-specific heuristics (see e.g. [4], [8], 
[9], [11]). The resulting EAs are called Hybrid EAs. In our case, we will use Greedy 
specific techniques for initialization. Some of the initial individuals will be initialized 
using the Greedy Min method, some of them with a different Greedy technique - with 
comparable results. The rest will be random individuals. The initialization using the 
greedy methods guarantees that the starting point is not completely random and 
thereby the convergence is speeded up. Because the complexity of the Greedy algo-
rithms is polynomial O(n2), this initialization step uses little time, but helps signifi-
cantly for a faster convergence. The number of initial Greedy Min generated indi-
viduals is n, the same as the number of individuals generated with the second Greedy 
method (like Greedy Min, with the difference that it is restricted on one end). 
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4.3.4   Genetic Operators 
The used crossover operators are the classical PMX [13] and OX [3] and two derived 
ones: Cycle PMX (CPMX) and Cycle OX (COX). 
 
PMX: Constructs the children by choosing the part between the cut positions from one 
parent and preserve the absolute position and order of as many variables as possible 
from the second parent. The PMX can be corresponding applied to a bit string, pre-
serving the inner sequence from a parent and the lateral ones from the other one. 
CPMX: Constructs the children exactly like in PMX with the difference that the next 
element for the last one is the first one, like in the SCIM. The PMX is applied to the 
sequence from the places (i, j) with i>j: i, i+1, …, n, 1, …j.  The CPMX can be also 
applied to a bit string with the preservation of this sequence from a parent and the 
inner one from the other parent. 
OX: Construct the children by choosing the part between the cut positions from one 
parent and preserve the relative position and order of as many variables as possible 
from the second parent.  
COX: It is similar with SCIM and CPMX, the sequence is considered circular and the 
OX will be applied to the pairs (i, j) with i>j, for the elements from places i, i+1, …, 
n, 1, …j.  It can be applied also to bit strings. 

The used mutation operators are the SIM and SCIM, which are presented in the above 
section.  

4.3.5   Algorithm 
The algorithm is based on the classical sketch of the genetic algorithms. A very 
important step is the initialization of the first individuals. A refined version of the 
classical genetic algorithm: 

ALGORITHM_GA_DOPI  
 Initialize(populationSize) 
 Initialize(crossoverRate) 
 Initialize(mutationRate) 
 numCrossovers ← populationSize*crossoverRate 
 numMutations  ← populationSize*mutationRate 
 Initialise_GreedyMin_individuals() 

Initialise_Greedy1_individuals() 
Initialise_Random_individuals() 
for( i ← 1;i ≤ numGenerations; step 1) execute 

    Apply_Crossover_operators(numCrossovers); 
  Apply_Mutation_operators(numMutatios); 

Calculate_fitness(allNewIndividuals); 
Remove_WorstInviduals (numCrossovers+numMutations); 

end_for 
   return best_element; 
END_ALGORITHM_GA_DOPI 

 
Fig. 2. Sketch for the DOPI hybrid EA 
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For the Greedy Min initialization step n-1 different pairs of words are chosen and 
a solution is built using the local optima strategy given by Greedy Min. The same will 
be performed for another Greedy individuals’ initialization, with the difference that at 
the beginning there are only different words generated, which are supposed to remain 
the start words for the potential solutions. 

4.3.6   Parameters Settings 
The chosen settings are based on experimental tests. Since the genetic algorithm is 
applied to the different data sizes, from very small to large ones, it becomes necessary 
to adapt these settings to the size of the problem. In [11] the population size is 
constantly 50, since the maximal treated problem size is 100. The stop condition of 
the algorithm [11] is the moment when no improvement occurs for 5000 generations. 
In our case, the necessary time to create and process a new generation for large data 
sets is very high. That’s why the number of generations is also related to the input 
data size.  

For the small data examples (n = 6, 7, 8, 9, 10) the size of the population is set to 
100, the number of generations is 150. For the medium examples (n = 50, 100, 150) 
the population size is 5n and the number of generations is 20n. For the big examples 
(n = 400, 600, 800) the population size is 2n+n/2 and the number of generations is 3n. 
The mutation rate is 0.2; that means that the total number of new individuals obtained 
with mutation is populationSize*0.2. The fertility rate is 0.5; it follows that at every 
generation the number of individuals obtained with crossover operators are popula-
tionSize*0.5. This fertility rate is higher because experiments have shown that the 
crossover operations perform improvements more often than mutation operations. The 
crossover and mutation operators are uniformly considered. 

5   Experimental Results 

All algorithms are implemented in C++, using the Standard Template Library. The 
experimental results are focused on the DOPI problem, which is more efficient than 
DOP (due to the extra degree of freedom in choosing the phase-assignment). The 
extra degree of freedom increases also the complexity of the problem. The DOP com-
plexity is O(n!), since for a given n there are n! different permutations. The complex-
ity for DOPI is O(2nn!), because for every permutation all the bit strings of length n 
have to be checked (there are 2n such bit strings). It follows that the exact solutions 
can be found only for very small dimensions. The test program initializes a random 
instance for the problem with the given (n, k) values: n bit strings (the words), each of 
length k. For these instances, various algorithms are applied. In the first table we per-
form the exact algorithms. For comparing the DOP and DOPI representative results, 
this table contains also the DOP random and exact ones. The sizes are n ∈ {6, .., 10} 
and for every such n value, k ∈ {10, 30, 50}. The performed algorithms are: RAN 
(random), EX (exact), G (Greedy Min), MUT (EV_MUT_ALGORITHM), GA (Ge-
netic Algorithm) and LB (Lower Bound). 
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Table 1. Small examples 

 
Input Data 

 
DOP DOPI 

n k RAN EX RAN EX G MUT GA LB 
6 10 25 18 24 14 15 14 14 13 
6 30 71 61 72 58 59 59 58 58 
6 50 120 103 135 97 99 98 97 96 
7 10 30 17 37 16 18 17 16 16 
7 30 85 72 90 67 71 70 68 66 
7 50 146 129 149 122 124 123 122 120 
8 10 35 19 39 13 15 14 13 12 
8 30 100 85 113 78 80 78 78 75 
8 50 176 150 172 145 148 147 146 143 
9 10 33 25 36 25 27 27 26 24 
9 30 125 93 121 86 90 88 87 84 
9 50 187 159 185 149 152 150 150 146 

10 10 44 36 41 24 29 26 25 22 
10 30 142 109 127 99 102 100 101 95 
10 50 236 197 238 168 173 170 169 165 

 

Table 2. Medium examples 

Input Data DOPI 
n k RAN G MUT GA LB 
50 115 2856 2300 2292 2267 2214 
50 215 5355 4449 4438 4396 4354 
50 315 7766 6787 6773 6728 6655 

100 115 5633 4423 4408 4361 4278 
100 215 10696 8820 8811 8765 8678 
100 315 15604 13479 13470 13398 13286 
150 115 8425 6537 6530 6487 6327 
150 215 15976 13237 13221 13161 12905 
150 315 23425 20176 20158 20095 19884 

 

Table 3. Large examples 

Input Data DOPI 
n k RAN G MUT GA LB 

400 200 40008 31988 31986 31925 31338 
400 600 119862 106269 106265 106171 105066 
400 1000 199609 182551 182534 182371 181147 
600 200 59911 47635 47629 47495 46719 
600 600 180141 158660 158658 158507 157016 
600 1000 299344 273182 273168 272993 271145 
800 200 79973 62948 62940 62795 61757 
800 600 239407 210774 210772 210689 208647 
800 1000 399767 363257 363248 363119 360553 
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As expected, all exact values for DOPI are better than the values for exact DOP 
and the same instances. The lower_bound values for DOPI are lower than the exact 
values, but very close to them. The mutation algorithm, which is not time consuming 
and changes progressively the current individual, often produces improvements. The 
genetic algorithm is in general better than the mutation algorithm and often provides 
the best solution, especially for very small sizes. 

We note that the results for GA are better than the mutation algorithm results. For 
the same n, if the k value is greater, then the difference from this result and the lower 
bound result is greater. 

For these large examples the improvements provided with the MUT algorithm are 
not as significant as with the previous data sets.  The genetic algorithm still provides 
the best solutions and the difference to the lower_bound algorithm remains small 
related to the (n, k) instance sizes. Because the complexity of the problem is exponen-
tial, it is expected that if the size of the population and the number of generations are 
greater, the results for the large examples will be even better. This requires a powerful 
system for running the GA application. 

6   Conclusions 

Two evolutionary approaches for DOPI were presented. Additionally, we described 
algorithms such as: random, exact, lower_bound and greedy which helped to compare 
the results of these approaches. Due to the very high complexity of the problem, it is 
very important that we know how the genetic operators are applied. The pair (Permu-
tation, BitString) to represent a DOPI solution is considered an object and the opera-
tors have to be applied accordingly to both components, in order to preserve the good 
traits from the parents as well as to have the chance to provide better successors. The 
genetic algorithm is a hybrid one, because the initialization step uses greedy tech-
niques. In addition to the known Greedy Min algorithm, another comparable Greedy 
is introduced and used during the initialization phase. The complexity for larger data 
sets comes from two directions: one that is the needed space to store the whole popu-
lation and one is the time to perform the genetic operations. The final results provided 
by both EAs are better than the results provided by the Greedy Algorithm. 
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Abstract. We motivate and describe an analog evolvable hardware de-
sign platform named GRACE (i.e. Generative Robust Analog Circuit Ex-
ploration). GRACE combines coarse-grained, topological circuit search
with intrinsic testing on a Commercial Off-The-Shelf (COTS) field pro-
grammable device, the Anadigm AN221E04. It is suited for adaptive,
fault tolerant system design as well as CAD flow applications.

1 Introduction

With our Generative Robust Analog Ciruit Exploration (GRACE) tool we are
investigating whether it is possible to evolve circuits that can be realized effi-
ciently and in a routine manner. We are focusing upon the domain of analog
circuit design. Our decision is motivated by the lack of automation in analog de-
sign as compared to digital design. We intend to investigate whether evolvable
hardware (EHW) approaches can contribute to the complex, human-intensive
activity domain of analog design.

The goal of this paper is to describe how we arrived at GRACE. By com-
bining the exploitation of coarse grained elements with intrinsic testing, we
think GRACE sits in an interesting and novel space. It allows a distinctive
foray into on-line adaptive and fault tolerant evolvable hardware circuits since
it uses a COTS (Commercial-Off-The-Shelf) device and standard components.
This should make its results more acceptable to industry. It also allows an
economical and time efficient foray into the broad domain of VLSI and CAD
with its use of elements that are conversant with human design. We proceed
thus: In Section 2 we describe how we reached a decision to select the Anadigm
AN221E04 as GRACE’s reconfigurable device. In Section 3 we give an overview
of GRACE. In Section 4 we describe GRACE’s genetic representation of a cir-
cuit and its search algorithms. In Section 5 we design a controller for a plant
using GRACE to demonstrate its ability to evolve circuits. We conclude with a
summary.
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2 Choosing GRACE’s Reconfigurable Device

For GRACE, the choice of its reconfigurable device was driven by three criteria
(see [1] for a related discussion):

1. A desire to work at an abstraction level where the human design principles
are inherent in the building blocks so that GRACE will derive conventional,
human-competent, portable and robust circuits;

2. Availability of a reconfigurable device that matched the project’s budget of
$5K;

3. Flexibility that would allow design elements to be chosen depending upon
the design problem, (i.e. level of hierarchy in the analog design flow).

Among the devices we assessed for our purposes were the class of custom de-
signed Field Programmable Transistor Arrays (FPTA), the Lattice Semicon-
ductor ispPAC10 field programmable analog array (FPAA, e.g. [2]), and the
Anadigm FPAA family ([3]).

With respect to Criterion 1, there are open questions regarding the suitability
of an FPTA for evolving conventional, human-competent circuits:

1. Can an FPTA be configured to respect certain design principles so that in-
terconnections of the transistor-switched cells and inter-cell topology will
constitute circuits that a human engineer will trust? Some of these design
principles such as no floating gates could be encoded in the circuit construc-
tion and circuit modification functions of an evolutionary algorithm. How-
ever, not all expectations/insights (such as parasitic insensitive connections)
can be mapped into rules.

2. Can the non-idealities arising from the switching elements in the FPTAs be
circumvented to avoid reliability, portability and engineering acceptance is-
sues? The FPTAs require electronic switches that are implemented by trans-
mission gates. This adds parasitic non-linear resistance and capacitance,
which results in delay, de-amplification and alteration in frequency domain
properties. While some of the evolved circuits to date use these non-idealities
of switches as an integral feature of the design [4], realistically this makes
the evolved design idiosyncratic (i.e. unportable) and unreliable since the
behavior of its switches is neither characterizable or replicable.

3. Is there sufficient flexibility for sizing? Industry practice is to explore sizing
options as a means of balancing functional goals and specifications. Because
it only has one size of transistor, the FPTA-2 ([1] )is constrained in this
respect.

FPTAs are well suited for the exploration of non-conventional realms of circuit
design such as polymorphic circuits, extreme temperature electronics and fault
tolerant circuits [5, 6, 7]. However, they are not well suited to our desire to explore
robust, novel topologies of interpretable and portable circuits.

Circuit synthesis with opamps has straightforward and methodical design
rules (which can be easily incorporated in the evolutionary algorithm) to ensure
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Fig. 1. Reconfigurable FPAA Architectures: Anadigm(Left), Lattice ispPAC10(right)

that the evolved circuit is interpretable and robust. The IsPAC10 and Anadigm
FPAA have circuit elements based on opamps. The IsPAC10, see Figure 1 right,
consists of 4 programmable analog modules (4 opamps, and 8 input amplifiers
total) interconnected with programmable switching networks. Configuration of
the IsPAC10 is a proprietary process [2] . The Anadigm AN221E04, see Fig-
ure 1 left (and described in more detail in Section 2.1), also provides opamp
based circuits as building blocks. It uses switched-capacitor technology which is
inherently robust and portable.

With respect to Criterion 2, the cost of an FPTA is beyond $5K. The de-
velopment board of an IsPAC10 or Anadigm AN221E04 has a cost in the low
hundreds of dollars. Integrated with a conventional computer and other signal
processing devices, they facilitate a system with cost below $5K.

Wth respect to Criterion 3, each device we assessed offers a different level
of circuit element granularity. The FPTAs are very flexible, fine-grained devices
The U. of Heidelberg’s FPTA ([8], henceforth called FPTA-H) is a switched
network of 256 (16 X 16) programmable CMOS transistors (half NMOS and
half PMOS) arranged in a checkerboard pattern.

The FPTA-1 designed at JPL ( [4, 9]) is composed of 12 cells, where each cell
contains 8 CMOS transistors interconnectable via 24 switches. The transistors
are fixed size and the switches are electronically programmable. The FPTA-1
appears to have been a prototype device for FPTA-2. The FPTA-2 ([1]) contains
an 8X8 matrix of 64 reconfigurable cells, where each cell consists of 14 transistors
interconnectable via 44 switches. The transistors are fixed size. Each cell also
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contains three capacitors, two reconfigurable resistors and photodetectors. It
fits into the Evolution-Oriented Reconfigurable Architecture (EORA) and is
integrated with a DSP processor running the evolutionary algorithm to form the
SABLES (Stand-Alone Board-Level Evolvable System).

FPTA-H is more versatile than FPTA-2 with respect to interconnection and
sizing of transistors. In FPTA-H, in general any transistor can connect to any
other transistor, while in FPTA-2, transistors are arranged in a particular topol-
ogy with switches to realize different circuits. Even though the FPTA-2 cell has
44 switches which creates a large space of possible realizable topologies, there
are human-conceivable designs which cannot be directly synthesized using it. In
FPTA-H, 75 different aspect ratios could be chosen for each transistor, while the
FPTA-2 uses fixed length transistors. This flexibility of FPTA-H comes at the
cost of space (equivalent to the number of transistors that can be fabricated on
the same chip). The FPTA-2 has 3.5 times more transistors on the same chip as
compared to FPTA-H. This difference may also be attributed to the fact that
FPTA-2 uses 0.18μm process, while FPTA-H uses 0.6μm process.

The IsPAC10 and Anadigm AN221E04 exemplify a tradeoff between flexibil-
ity and appropriate building block abstraction. The opamp is a building block
that can be combined with passive components to arrive at variety of human-
designed circuits such as amplifiers, integrators, differentiators, sum-difference
amplifiers, or filters. However, it is not as flexible as a switched transistor array.
On the IsPAC10, there is very limited interconnect between a small quantity of
resources. The Anadigm AN221E04 provides a fixed abstraction level of opamp
based circuits but supports very flexible interconnection.

After our assessment, we chose the Anadigm AN221E04 over the IsPAC10 or
an FPTA. In a nutshell, we have forgone a large degree of flexibility by choosing
a fixed abstraction level (of opamp based circuits) in order to ensure robustness,
portability and reliability. Nonetheless we are content given that there are a
number of analog design problems (such as PID controllers, ADCs and filters)
which can be addressed by the given design abstraction. More details of the
Anadigm AN221E04 are provided in the next section.

2.1 The Anadigm FPAA

For detailed description of the Anadigm Vortex family of devices, see [3].

Resources: The Anadigm AN221E04 is an array of CABs (configurable analog
blocks), each of which contain two opamps, 8 capacitors, a comparator, and a
Successive Approximation Register (SAR) that performs 8-bit analog-to-digital
conversion of signals. The device also contains one programmable lookup table
that can be used to store information about the generation of arbitrary wave-
forms, and is shared amongst the CABs. The architecture is illustrated in the left
hand block diagram of Figure 1. Any signal can be routed to the I/O pins of the
device through 4 programmable I/O interface blocks and two dedicated outputs,
each of which can also act as a filter or amplifier. The option for expanding the
number of resources is to daisy chain multiple devices.



336 M.A. Terry et al.

Table 1. Anadigm AN221E04 CAMs

CAM CAM CAM

Voltage Transfer Function Inverting Differentiator Divider

Half cycle inverting Gain Stage Biquadratic Filter Half Cycle Gain Stage

Half Cycle Sum/Difference Stage DC Voltage Source Inverting Gain Stage

Gain Stage: Switchable inputs Bilinear Filter Integrator

Gain Stage: Polarity Control Half Cycle Rectifier Half Cycle Gain Stage

Gain Stage - Output V Limiting Inverting Sum Stage Multiplier

Rectifier with Low Pass Filter Sample & Hold Sinewave Oscillator

Transimpedance Amplifier Waveform Generator

Configurable Elements: Despite the existence of opamps and switched ca-
pacitors, the Anadigm AN221E04 does not support circuit design at this level
of granularity. Instead, a circuit must be specified at the abstraction of coarser
grained building blocks termed Configurable Analog Modules (CAMs) that are
interconnected by wires. CAMs come predefined by Anadigm. See Table 1 for the
set of available CAMs. Among the broad set is a flexible selection of filters, ampli-
fiers and rectifiers that designers frequently use. Each CAM has programmable
options and parameters. For example, the SumDiff CAM has a set of 4 options
which decide upon clock phase, optional use of inputs 3 and 4, and inversion of
each input. Its parameters are its two or more gains. To insert a CAM, the GUI
must be able to fully allocate its resources from one CAB. To track how many
resources are available as a circuit is defined, we reverse engineered the resource
allocation strategy of the Anadigm software for GRACE.

Configuration Technology: The Anadigm FPAA uses the ’switched capaci-
tor’ technology ([10]). A switched capacitor implements an equivalent resistance
by alternately opening and closing the terminals of a capacitor. Macroscopic
resistance is controlled by the frequency of switching. This frequency, of course,
is limited to the maximum clock frequency. Microscopic resistance is tuned by
changing the capacitance value. The disadvantage of switched capacitor tech-
nology is that it performs the signal processing in discrete time domain. Thus,
it requires anti-aliasing and reconstructions filters. Also, the device can only
handle signals whose frequency is half its switching frequency, which is 16MHz
maximum. For all blocks of the FPAA, the input and output are valid either for
one of the two phases of clock or both phases. This implies a constraint on the
connection of components, since a component whose output is valid on phase
1 cannot be connected to a component whose input is sampled at phase 2 of
the clock and vice versa. Each internal capacitor in the Anadigm AN221E04 is
drawn from a bank of capacitors. Although the software allows for the gener-
ation and routing of signals between CAMs at design time, the software only
allows dynamic reconfiguration of the options and parameters of a circuit, not
the reconfiguration of a circuit topology. The actual configuration process and
mapping of the configuration bitstream is proprietary. The configuration bit-
stream is stored in SRAM, which is more reliable than other FPAAs based on
EEPROM technology.
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Configuration from GRACE: The configuration process of the Anadigm
AN221E04 is proprietary. With the assistance of a colleague [11] and through a
special agreement with Anadigm, we obtained a non-commerical software pack-
age that had been developed to test the GUI during product development. With
this package and a Microsoft C++ compiler, GRACE sends designs from its
EA module to the GUI by translating them to a series of “build commands”
dispatched to the GUI. A subsequent “configure” command downloads the con-
figuration to the device. This takes about a second which is not ideal but not
prohibitive either.

While we are restricted to low to medium frequency range, we nonetheless
are content. An industry segment also works in this domain due to the use of
switched capacitor technology so there an industry target for whom evolutionary
techniques may be useful exists.

3 GRACE: The System

GRACE is depicted in Figure 2 which shows an adaptive controller on the FPAA
that controls a third order plant. The evolutionary algorithm (EA) runs on an
Pentium P4 machine. It reconfigures the Anadigm AN221E04 to build new con-
trollers, evaluate their efficiency in controlling the plant and thus guide the search
to find better controllers. A summary of the components is given in Table 2.

Controller

ConfigurationEvolutionary

Algorithm

-

PLANT

Configured

Controller

FPAA

SRAM

V
in

Vout

Vreft

D
A
Q

serial

Fig. 2. GRACE Architecture

The Anadigm AN221E04 is configured by the EA via the serial port. The EA
sends inputs to the hardware and extract outputs via National Instrument’s PCI-
6221 multifunction data acquisition card (DAQ). (The PCI-6221 DAQ board
provides up to 80 analog inputs and 4 analog outputs giving GRACE scalabil-
ity). The DAQ provides both analog to digital and digital to analog conversion
with 16-bit resolution (for a voltage range of -10V to 10V). The reference signal
to the testbench is specified by the algorithm to the DAQ as a digital waveform.
The DAQ converts it to an analog signal and sends it to the testbench. Simul-
taneously, the DAQ converts the plant’s analog output signal to a digital signal
for the evolutionary algorithm to compare with the reference signal. Our sys-
tem actually duplicates the reference signal sent to the controller to be matched
with the plant output. This yields a time synchronized comparison between the
reference and plant signals.
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Table 2. GRACE: System Components, specifications, sources and cost

Component Specifications Procured From Price

Dell Dimension 8400 3.6GHz P4 CPU, 2GB
RAM

Dell Computers $2200 + cost
of monitor

FPAA Development
Kit

PCB with FPAA and 2
Signal Conditioning Dual-
opamps

Anadigm $200

AnadigmDesigner2 Configuration Software For
Win32 Platform

Anadigm free

AutomationDoc Documentation for
Anadigm GUI Script-
ing

Anadigm Support free

NI 6221 DAQ Multifunction DAQ with
analog output, PCI Card

National Instru-
ments

$430

NI Connect Block and
Cable

Shielded Connection Block
with Cable to Interface to
PCI DAQ card

National Instru-
ments

$350

4 Choosing a Genetic Representation

The genetic representations of the evolvable hardware community have ranged
from directly expressing the configuration bitstream to expressing a circuit com-
ponent representation. A prominent example of the first extreme are the projects
by A. Thompson [12] and his co-authors who used the Xilinx 6216. At the other
is the “circuit constructing tree” which is a developmental encoding, e.g. [13]. In
contrast, in GRACE a subset of the Anadigm CAM’s are the functions in the
sense of genetic programming. All CAMs with valid output for only one of the
clock phases had their outputs connected to a ”Sample and Hold” component.
The GRACE genome is a cyclic graph (see Figure 3) in which each node is an
instance of a CAM and directional links define the topology. A circuit has a
variable number of CAMs but we implement the graph as a fixed length vector.

2

3

-G
I1
I2

I2

C
Type: gain_inv
Parms[1.1,0.4,0.0,0.1]
Options:{0,0,1,1}

Inputs [
2
]

Type: sumDiff2*
Parms: [0.05,0., 0.0, 0.01]

Options:{1,0,1,1}
Inputs [I1,I2]

-G

2

3

Fig. 3. Left: A circuit in GRACE is a graph. Nodes are components and edges are
wires. Right: This graph is stored in a fixed length linear genome. Each object of the
genome is a structure describing component, options, parameters and inputs.
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Each element of the vector is a structure which specifies a CAM, its options,
parameters and input source(s). Each instance of a CAM has a variable number
of programmable options and parameters. For example, the SumDiff CAM has 4
options and 2 gain parameters while the simple “Half cycle Gain Stage” has only
2 options and 1 gain parameter. The genome stores in each structure another
two vectors of data that the genome-to-circuit translation process interprets as
parameters and options. Each vector is a fixed length. If the parameters and
attributes of the CAM are fewer than the vector length, the extra values are
ignored. Like the redundant nodes and links of the circuit which do not connect
input to output, this redundant information is maintained in the genome.

The encoding of coarse grained components in the genome makes GRACE
reminiscent of Koza’s genetic programming tree representation, e.g. in [14]. The
obvious difference is the cyclic graph versus the tree. Another difference is the
genome length – fixed in GRACE’s case and variable in Koza’s. The physical
limitation of resource quantities on the device demand that GRACE not evolve
a genome that requires more resources than on the device. This is ensured by
the fixed length genome and by the decoding algorithm that maps the genome
to a series of build commands. The decoding algorithm makes use of a resource
manager to account for resources that will be used on the device as it translates
the genome into “build” commands. If it ever encounters a CAM (i.e. node)
for which the resources cannot be allocated, it replaces this node with a wire.
GRACE’s genome is also influenced by Miller’s Cartesian Genetic Programming
(CGP), [15]. The CGP genome is also a graph mapped to a matrix of varying
component with links between and among columns.

The search algorithms: We use the standard generation based processing loop
of an EA to conduct topology search. At initialization, a population of random
genomes is created. Each genome is mapped to a circuit topology with each
instance of a CAM specified using its input list, options and parameter values.
Serially each genome is configured on the device and given a test signal. The re-
sulting output signal is captured and evaluated in comparison to a desired output
signal. The error is mapped to a genome fitness. After the entire current gen-
eration is tested, tournament selection supplies parents for the next generation.
Each parent is copied to create an offspring in the next generation. Offspring are
mutated before being added to the population of the next generation. Mutation
can be applied in two ways to the genome: to a CAM instance by changing its
type and, to the input(s) of a CAM by changing a link in the graph.

Given a topology, finding the parameters of the CAM is a numerical optimiza-
tion problem. Recently, Particle Swarm Optimization (PSO) has emerged as an
efficient approach to do fast numerical optimization to find the global optimum
[16]. We use PSO to set the parameters of CAMs rather than evolving it together
with the topology by the EA. We believe that performing the steps of topology
search and component optimization separately makes the problem more tractable
for the EA. These two steps of topology search using an EA and component op-
timization using PSO can be combined in various ways which shall effect the ef-
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ficiency and speed of the algorithm. For the current set of experiments, we run
PSO on each individual in the EA population and assign the best of swarm fit-
ness to the individual. Intuitively, this approach assigns the topology fitness ac-
cording to its best performance given the most suitable parameter values. Other
approaches which trade speed for efficiency and vice-versa are under study.

5 GRACE in Action: Evolving a Controller

We have initially used GRACE to evolve a controller for the simple first order
plant shown in Figure 4 (left). The plant has bandwidth of 338.6Hz and a steady
state gain of 2.5. The CAMs in the primitive set for the given problem can
be found in Table 3 along with their respective parameters and options. These
CAMs are capable of creating any transfer function (realizable given the capacity
of the FPAA) including the ubiquitous Proportional-Integral-Differential control.
The population size was 15 with tournament selection of size 3 and elitism for
3 individuals. A run was 10 generations with the probability of mutating a
CAM 0.45 and a wire 0.45. The PSO ran 6 iterations every generation on every
individual with a swarm size of 4.

Fitness Function: Though a simple step function would seem to be all that is
required to evaluate a controller, we used a more complex signal to ensure that
GRACE did not evolve a signal generator regardless of the input. The signal and
a candidate circuit’s response is shown on the right in Figure 4. The signal has
six voltage levels (-1.5V, -0.75V, -0.375, 0.375, 0.75V. and 1.5V) and changes
state every 4.16ms. We sampled the signal at 125 KHz. The fitness of a circuit
is the weighted sum of squared errors between the circuit’s output signal and
the test signal. The fitness function weights can be tuned to trade-off criteria of
settling time, peak overshoot and steady state error. For instance, more weight
to the error in latter part of the step response shall bias the search towards
controllers with lower steady state error and shall care less for rise time and
peak overshoot. For the current set of experiments, we used the time-weighted
least squares, which increases the weights linearly with time. It is postulated in
[17], such a fitness function is ideal for judging the efficiency of a controller.

Table 3. CAMs used in the GRACE Function Set for Controller Evolution. Asterisk
indicates output is connected to sample and hold block for two clock phase results.

CAM Parameter(s) # In

SumDiff-2* inputs gain value(s) 2

SumDiff-3* inputs gain value(s) 3

Inverting Differentiator diff. constant (us) 1

Integrator gain 1

Gain Inverter gain 1

Gain* gain 1

Wire 0 1
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Evolved Solutions: The system evolved solutions with high fitness value (val-
idated by visual inspection of generated waveforms) that instantiate various
control strategies, for instance, proportional control, integral control or lossy
integral control. Evolution also found interesting ways to build solutions, like
use of a differentiator in feedback to evolve a lossy integrator and using multiple
feedback to realize different gains (including high gain through positive feedback)
for proportional control.

Analysis of one of the best-of-run controller showed how evolution can think
out-of-the-box. Figure 5 shows the controller as seen in the Anadigm GUI on the
left and the equivalent simple block diagram on the right. Simple hand-analysis
shows that the solution is a filter. The summing-integrator filter topology is
a well-known approach to synthesize filters. It is counter-intuitive why a filter
would be a good controller. Evolution exploits the high integration-constant (of
the order of Mega per second) realizable by the integrator. It evolves a high
gain filter with a large bandwidth that has an integrator in both the forward
and feedback paths. This effectively behaves like proportional control with a
large gain. The high gain of the P-control reduces the steady-state error thus
contributing to high fitness. This solution has not been included in discussion for
its usefulness in a real scenario, but due to illustrate the ability of algorithm to

Fig. 4. Left: Plant for evolved controller, Right: Fitness function test signal (square
wave) with example circuit’s output signal for the controller experiment

Fig. 5. Left: An evolved filter solution displayed from GUI , Right: Schematic of same
solution
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synthesize interesting topologies and the capability of evolution to explore realms
of unconventional design even when it uses coarse-grained building blocks.

Work is underway to study the solutions generated and use a carefully crafted
fitness function to better capture the characteristics of the controller. With an
effective fitness function instantiated in the system, we shall determine the use-
fulness of the circuits evolved and compare them with those evolved on other
platforms such as the FPTAs. We also plan to study how variation in the evolu-
tionary algorithm (method/parameters) affects its ability to search for a solution
in the given problem domain.

6 Summary

By combining the exploitation of coarse grained elements with intrinsic testing
on a COTS device, we think GRACE comprises a distinctive approach to analog
EHW. This paper’s goal has been to elucidate our decision process in engineering
GRACE. We feel our decision to use the Anadigm AN221E04 forges GRACE’s
identity. It is a COTS rather than custom device. The proprietary nature of
its configuration process can be circumvented for practicality. It uses SRAM
to hold a configuration. This makes it suited as a component of an adaptive,
fault tolerant system. It exploits switched capacitor technology. This allows its
evolved designs to conform with industry specifications and be realizable. This
will facilitate the ultimate placement of evolved circuits in the field.

Finally, in using the Anadigm AN221E04, it offers coarse grained elements.
Coarse granularity makes GRACE contrast with FPTA approaches by exchang-
ing flexibility with higher level building block abstraction. We think that GRACE
enables a parallel set of investigations that will provide interesting comparisons
between the non-linear design space of the FPTA and the human oriented, con-
ventional design space. We believe our choices additionally provide us with trac-
tion into both adaptive, robust hardware evolution and the more traditional
pursuit of analog CAD. This will be the direction of our future research using
GRACE.
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Abstract. Simple digital FIR filters have recently been evolved directly
in the reconfigurable gate array, ignoring thus a classical method based
on multiply–and–accumulate structures. This work indicates that the
method is very problematic. In this paper, the gate-level approach is
extended to IIR filters, a new approach is proposed to the fitness cal-
culation based on the impulse response evaluation and a comparison is
performed between the evolutionary FIR filter design utilizing a full set
and a reduced set of gates. The objective of these experiments is to show
that the evolutionary design of digital filters at the gate level does not
produce filters that are useful in practice when linearity of filters is not
guaranteed by the evolutionary design method.

1 Introduction

FIR (finite impulse response) filters and IIR (infinite impulse response) filters
represent two important classes of digital filters that are utilized in many ap-
plications. For these filters, a rich theoretical understanding as well as practical
design experience have been gained in the recent decades [6]. Typically, their
implementation is based on multiply–and–accumulate structures (regardless on
software or hardware implementation). Alternative design paradigms (such us
multiplierless designs) have also been formulated [7].

With the development of real-world applications of evolutionary algorithms,
researchers have started to evolve digital filters. Miller has introduced probably
the most radical idea for their design [9, 10, 11]: In evolutionary design process,
target filters are composed from elementary gates, ignoring thus completely the
well-developed techniques based on multiply–and–accumulate structures. The
main practical potential innovation of this approach could be that the evolved
filters are extremely area-efficient in comparison with the standard approach. We
should understand this approach as a demonstration that the evolution is capable
to put some gates together in order to perform a very simple filtering task.
Definitely, the approach is not able to compete against the standard methods. A
similar approach has been adopted for functional level evolution of IIR filters [3].

In contrast to an optimistic view presented in the mentioned papers, this
work indicates that the approach is very problematic. In this paper, Miller’s
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gate-level approach is extended to IIR filters, a new approach to the fitness cal-
culation is proposed based on the impulse response evaluation and a comparison
is performed between the evolutionary FIR filter design utilizing a full set of
gates and reduced set of gates. The objective of these experiments is to support
the following hypothesis: “Evolutionary design of digital filters at the gate level
does not produce filters that are useful in practice when linearity of filters is not
guaranteed.” Two approaches that could ensure the linear behavior of evolved
filters will be discussed.

The rest of the paper is organized as follows. Section 2 introduces the area
of digital filter design and the use of evolutionary techniques in this area. In
Section 3, the proposed approach is described to the evolutionary design of FIR
and IIR filters. Results of experiments are reported in Section 4. Section 5 dis-
cusses the advantages and disadvantages of the proposed approach. Conclusions
are given in Section 6.

2 Conventional and Evolutionary Design of Digital
Filters

A discrete-time system is essentially a mathematical algorithm that takes an
input sequence, x(n), and produces an output sequence, y(n) [6]. A digital filter
is an example of discrete-time system. A discrete-time system may be linear or
nonlinear, time invariant or time varying. Linear time-invariant (LTI) systems
form an important class of systems used in digital signal processing.

A discrete-time system is said to be linear if it obeys the principle of superpo-
sition. Consider that x1(n) and x2(n) are two input signals and y1(n) and y2(n)
are corresponding responses of the filter. The filter is linear if the following holds:

a1x1(n) + a2x2(n) → a1y1(n) + a2y2(n) (1)

where a1 and a2 are arbitrary constants.
A discrete-time system is said to be time-invariant if its output is independent

of the time the input is applied, i.e. a delay in the input causes a delay by the
same amount in the output signal.

The input–output relationship of an LTI system is given by the convolution
sum

y(n) =
+∞∑

k=−∞
h(k)x(n − k) (2)

where h(k) is the impulse response of the system. The values of h(k) completely
define the discrete-time system in the time domain.

A general IIR (infinite impulse response) digital filter is described by equation

y(n) =
N∑

k=0

bkx(n− k)−
M∑

k=1

aky(n− k). (3)

The output samples y(n) are derived from current and past input samples
x(n) as well as from current and past output samples. Designer’s task is to
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propose values of coefficients ak and bk and size of vectors N and M . In FIR
(finite impulse response) filters, the current output sample, y(n), is a function
only of past and present values of the input, i.e.

y(n) =
N∑

k=0

bkx(n− k). (4)

The stability and linear phase are main advantages of FIR filters. On the other
hand, in order to get a really good filter many coefficients have to be considered in
contrast to IIR filters. In general, IIR filters are not stable (because of feedback).
FIR filters are algebraically more difficult to synthesize.

Various methods have been proposed to design digital filters (such as fre-
quency sampling method and window method for FIR filters and pole/zero
placement and bilinear z-transform for IIR filters). These methods are well de-
veloped and represent an approach to digital filter design widely adopted by
industry. Digital filters are usually implemented either on DSPs or as custom
circuits. Their implementation is based on multipliers and adders. The quality
of output signal, speed of operations and cost of hardware implementation are
important factors in the design of digital filters. The multiplier is the primary
performance bottleneck when implementing filters in hardware as it is costly in
terms of area, power and signal delay. Hence multiplierless filters were intro-
duced in which multiplication is reduced to a series of bitshifts, additions and
subtractions [12, 7].

Evolutionary algorithms have been utilized either to optimize filter coefficients
[4] or to design a complete filter from chosen components. In particular, struc-
tures of multiplierless filters were sought by many authors [12, 5, 1]. As these
filters are typically composed of adders, subtracters and shifters (implementing
multiplication/division by the powers of two) they exhibit “linear” behavior for
the required inputs.

Miller has pioneered the evolutionary approach in which FIR filters are con-
structed from logic gates [9, 10, 11]. He has used an array of programmable gates
to evolve simple low-pass, high-pass and band-pass filters that are able to filter
simple sine waves and their compositions. The unique feature of these filters is
that they are composed of a few tens of gates; thus reducing the implementa-
tion costs significantly in comparison with other approaches. The evolved filters
do not work perfectly and they are far from the practical use; however, Miller
has demonstrated that quasi-linear behavior can be obtained for some particular
problems. The gate arrays are carrying out filtering without directly implement-
ing a difference equation – an abstract model utilized for filter design. The fitness
function can be constructed either in the frequency domain or time domain. In
both cases Miller has obtained similar results. However, he mentioned that: “Ex-
perience suggests that gate arrays that are evolved using a fitness function which
looks at the frequency spectrum of the circuit output appear to be more linear
in behavior than using an error based measure of fitness” [10].
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Recently Gwaltney and Dutton have utilized similar approach to evolve IIR
filters at the functional level (for 16bit data samples) [3]. Their filters are com-
posed of adders, multipliers and some logic functions; therefore, they are non-
linear. They have evolved low-pass IIR filters using a couple of components. The
filter fails to function properly when the input is changed to a signal that is
“significantly” different from that used during evolution.

3 Gate-Level Evolution of Digital Filters

Similarly to Miller [9, 10, 11], Cartesian genetic programming (CGP) is utilized
in this paper to evolve simple digital filters at the gate level. Although all internal
data are at 1 bit and gates perform elementary logic operations, the inputs as
well as outputs are interpreted as 8 bit values.

3.1 Cartesian Genetic Programming

CGP models a reconfigurable circuit, in which digital circuits are evolved, as
an array of u (columns) × v (rows) of programmable elements (gates) [8]. The
number of circuit inputs ni and outputs no are fixed. Each gate input can be
connected to the output of some gate placed in the previous columns or to some
of the circuit inputs. L-back parameter defines the level of connectivity and
thus reduces/extends the search space. For example, if L=1 only neighboring
columns may be connected; if L=u, the full connectivity is enabled. A circuit
configuration is defined using 3.u.v +no integers: the three integers describe the
connection and function of a single gate and no integers specify the connection
of outputs. Every gate performs one of functions specified in function set F .
Figure 1 provides an example.

Miller has originally used a very simple variant of evolutionary algorithm to
produce configurations for the programmable circuit [8]. Our algorithm is very
similar. It operates with the population of 5 individuals; every new population
consists of mutants of the best individual. Only the mutation operator has been
utilized that modifies 1–3 randomly selected genes of an individual.
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2

1
31

2
50

2
70

1

41
0

0
60 81

0

Fig. 1. An example of a 3-input circuit. CGP parameters are as follows: L = 3, u = 3,
v = 2, F = {AND (0), OR (1)}. Gates 5 and 7 are not utilized. Chromosome: 1,2,1,
0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 6, 8. The last two integers indicate the outputs of the
circuit.
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3.2 Gate-Level Digital Filters and CGP

Figure 2a shows our modification of CGP to design FIR filters. A delay chain
was created using two registers. We can observe that the three w-bit samples are
processed by the gate array (w = 8). Before simulation is started, delay registers
are cleared. The following operations are repeated N -times (N is the number of
samples): the ith sample is right-shifted by w bits and the (i+1) sample possess
its position. Then the output value is calculated and interpreted as an integer
value.

Figure 2b shows the approach utilized to evolve IIR filters using CGP. In
addition to the previous approach, the output delay registers have to be shifted
to send the obtained output value back to the circuit. Because of the feedback,
the IIR filter simulation is much slower than the FIR filter simulation.

The proposed fitness function works in the time domain. The objective is to
minimize the difference between measured signal y(n) and target signal yref (n),
i.e.

fitnessMSE = −

√√√√N−1∑
i=0

(y(i)− yref (i))2. (5)

The main problem is to determine which signals should be included into the
training set. Ideally, all frequencies and shapes should be testes; however, it is
not tractable.

An alternative approach could be to apply the unit impulse (i.e. the signal that
contains all frequencies) at the input and to measure the impulse response. This
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Fig. 2. CGP utilized to design (a) FIR filters and (b) IIR filters
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Fig. 3. Comparison of 2’s complement encoding (a) and fraction arithmetic (b)
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approach will be utilized to design IIR filters. The role of CGP is to find such
the filter whose impulse response is as close as possible to the required impulse
response. We have to work with real numbers because the values of impulse
responses range from –1 to +1. In our case we will represent real numbers in
the fraction arithmetic (which is based on 2’s complement encoding as shown in
Figure 3).

4 Results

The following CGP parameters represent the basic setup for experiments: u =
15, v = 15, L = 15, ni = 24, no = 8, population size 5, 15 million generations,
function set: F = {c = a, c = a and b, c = a or b, c = a xor b, c = not a, c =
not b, c = a and (not b), c = a nand b, c = a nor b}. CGP was implemented in

C++. The evolved filters were analyzed using Matlab.

4.1 Low-Pass Filter I

The training input signal consists of composition of frequencies f1 and f3 = 3f1.
As the circuit should carry out low-pass filter, the output should contain f1

only (which will be expressed in this paper as: f1 + f3 → f1). In particular,
we utilized N = 128 samples and x1(n) = 127 + 100.sin(2πn/128) and x3(n) =
127 + 100.sin(2π.3n/128).
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Fig. 4. Behavior of the evolved low-pass filter: input signal (left), required output signal
(center), output signal (right); (a) training signal, (b) test signal
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20 40 60 80 100 120
0

50

100

150

200

250

 in
pu

t

 n
20 40 60 80 100 120

0

50

100

150

200

250

   
  d

es
ire

d 
ou

tp
ut

 n

 a)

20 40 60 80 100 120
0

50

100

150

200

250

 o
bt

ai
ne

d 
ou

tp
ut

 n

20 40 60 80 100 120
0

50

100

150

200

250

 in
pu

t

 n
20 40 60 80 100 120

0

50

100

150

200

250

 e
xp

ec
te

d 
ou

tp
ut

 n

 b)

20 40 60 80 100 120
0

50

100

150

200

250

 o
bt

ai
ne

d 
ou

tp
ut

 n

Fig. 5. Behavior of the evolved high-pass filter: input signal (left), required output
signal (center), output signal (right); (a) training signal, (b) test signal

Figure 4 shows the behavior of the best evolved filter. We utilized the signal
with f1 as a test signal and observed that the evolved circuit modifies the signal
although it should transmit the signal without any change. Therefore, the circuit
cannot be understood as a perfect filter.

4.2 High-Pass Filters

Figure 5 shows behavior of an evolved high-pass filter whose function was spec-
ified as f1 + f10 → f10. Although the result for the training signal seems to be
correct, the filter does not work for other signals at all.

4.3 Low-Pass Filter II

In order to evolve more robust filters, we included more requirements to the
fitness function. A low-pass filter was specified as: f1 + f3 → f1, f1 + f5 → f1

and f5 → f0. The evolved filter exhibits an acceptable (but not perfect) behavior
for training signals as well as test signals (see Figure 6). This approach could
eventually be utilized to design an extremely cheap filter which is supposed to
work for a limited amount of input signals.

4.4 The Impulse Response in Fitness Calculation

In this experiment, we defined the required impulse response and were interested
whether CGP is able to find an IIR filter with the same impulse response. Figure
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Fig. 6. Behavior of the evolved low-pass filter II: input signal (left), required output
signal (center), output signal (right)



352 L. Sekanina and Z. Vaš́ıček
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Fig. 7. The impulse response: (a) required (b) evolved

Fig. 8. The input signal (left) and the “filtered” signal obtained using the evolved filter
(right)

7a and 7b show that it is possible and furthermore, the corresponding frequency
characteristic is also very close to the perfect one.

Unfortunately, the evolved circuit is not a filter at all. Figure 8 shows its
response to a simple sine input signal. The output signal should exhibit a very
small amplitude; however, its behavior is completely random.

4.5 A Reduced Set of Gates

In cellular automata and other circuits, a “linear” variant of the model is some-
times introduced (see, for example, linear cellular automata [2]). Then, logic cir-
cuits are composed using the gates xor and not because their analysis is amenable
to algebraic methods. In order to explore whether this type of linearity could be
useful for gate-level filters, we arranged the following experiments. The objec-
tive was to evolve a high-pass FIR filter specified as f1 + f10 → f10, f3 + f10 →
f10, f5 + f10 → f5 + f10, f10 → f10. We utilized CGP with u = 15 and v = 15
and produced 20 millions of generations. The evolved filter was tested using sig-
nals: f10, f1, f3, f4, f5, f0. We have considered two scenarios: (1) a complete set
of gates, F , and (2) a reduced set of gates, F ′, containing {xor, not}. Table 1
summarizes the obtained results. We can observe that the circuits composed of
xor and not gates (scenario 2) are much smaller and more general than those
obtained in case (1). On the other hand, the filter evolved using a complete set
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Table 1. Filters evolved using the complete set of gates and reduced set of gates

Filter MSE (training data) MSE (test data) # of used gates

Complete set (scenario 1) 132,583 738,075 197
Reduced set (scenario 2) 369,275 525,700 44

Fig. 9. Signal f4 = x(n): The outputs of filters evolved with the compelte set of gates
(EvoFilter 1) and reduced set of gates (EvoFilter 2)

of gates is more adapted to training signals. However, Figure 9 shows that the
output response is acceptable neither for scenario 1 nor 2.

5 Discussion

The common result of experiments performed herein, by Miller [9, 10, 11] and by
Gwaltney and Dutton [3] is that the evolved filters do not work when they are
required to filter signals different from training signals. Moreover, the evolved
filters do not generate perfect responses either for training signals. The evolved
circuits are not, in fact, filters. In most cases they are combinational circuits
trained on some data that are not able to generalize. In order to obtain real filters,
the design process must guarantee that the evolved circuits are linear. There are
two ways how to ensure that: (1) The circuit is composed of components that
are linear and the process of composition always ensures a linear behavoir. This
approach is adopted by many researchers (e.g., [1]) but not by the methods
discussed in this paper. (2) Linearity is evaluated in the fitness calculation.
Unfortunately, that is practically impossible because all possible input signals
should be considered, which is intractable. Note that Miller’s fitness function
[11] has promoted the filters exhibiting the quasi-linear behavior; however, it
does not guarantee (in principle) that a candidate filter is linear although the
filter has obtained a maximum fitness score.
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In this paper, we have evolved FIR as well as IIR “filters” and proposed
the approaches based on the impulse response and the reduced set of (linear)
gates. However, none of them have led to satisfactory results. On the basis of
experiments performed in this paper and results presented in [9, 10, 11], we
are claiming that the gate level evolutionary design of digital filters is not able
to produce filters “useful” in practice if the linearity is not guaranteed by the
evolutionary design process. As we do not know now how to ensure the linear
behavior, the approach should be considered as curious if one is going to design
a digital filter.

There could be some benefits coming with this “unconventional” filter design.
It was shown that circuits can be evolved to perform filtering task when sufficient
resources are not available (e.g. a part of chip is damaged) [5] or when some noise
in presented in input signals [10]. Furthermore, as Miller has noted, “The origin
of the quasi-linearity is at present quite mysterious. . . . Currently there is no
known mathematical way of designing filters directly at this level.” Possibly we
could discover novel design principles by analyzing the evolved circuits.

The evolutionary design is very time consuming. In order to produce 20 mil-
lions of generations with a five-member population, the evolutionary design re-
quires 29.5 hours for IIR filter and 6 hours for FIR filter (on a 2.8 GHz processor).

6 Conclusions

In this paper, the gate-level approach to the digital filter design was extended to
IIR filters, a new approach was proposed to the fitness calculation based on the
impulse response evaluation and a comparison was performed between the full
set of gates and reduced set of gates for the evolutionary FIR filter design. On
the basis of experiments performed herein and the results presented in literature
we have recognized that the gate level evolutionary design of digital filters is
not able to produce “real” filters. Therefore, this approach remains a curiosity
rather than a design practice.
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Abstract. This paper describes an image segmentation method based
on an evolutionary approach. Unlike other application of evolutionary
algorithms to this problem, our method does not require the definition
of a global fitness function. Instead a survival probability for each indi-
vidual guides the progress of the algorithm. The evolution involves the
colonization of a bidimensional world by a number of populations. The
individuals, belonging to different populations, compete to occupy all
the available space and adapt to the local environmental characteristics
of the world. We present various sets of experiments on simulated MR
brain images in order to determine the optimal parameter settings. Ex-
perimental results on real image are also reported. Images used in this
work are color camera photographs of beef meat.

1 Introduction

Image segmentation plays an important role in image processing, and it is usually
the starting point for any subsequent analysis. The goal of image segmentation
is to partition an image into homogeneous regions according to various criteria
such as for example gray level, color, or texture. Image segmentation has been
the subject of intensive research, and a wide variety of techniques have been
reported in literature. A good review of these methods can be found in [1].

Alternative approaches to exploit the metaphor of natural evolution in the
context of image segmentation have been proposed. The genetic learning system
proposed by Bhanu et al. [2] allows the segmentation process to adapt to image
characteristics, which are affected by varying environmental factors such as the
time of the day, condition on cloudiness, etc. Bhandarkar and Zhang [3] use
the genetic algorithm to minimize the cost function that is used to evaluate the
segmentation results. Andrey [4] describes a selectionist relaxation algorithm,
whereby the segmentation of an input image is achieved by a population of
elementary units iteratively evolving through a fine-grained distributed genetic
algorithm. Liu and Tang [5] present an autonomous agent-based approach, where
a digital image is viewed as a two-dimensional cellular environment in which the
agents inhabit and attempt to label homogeneous segments. Veenman et al. [6]
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use a similar image segmentation model and propose a cellular coevolutionary
algorithm to optimize the model in a distributed way. Methods based on ant
colonies and artificial life algorithms are also investigated for image segmentation
and clustering problems [7].

The application of heuristic methods on image segmentation looks very
promising, since segmentation can be seen as a clustering and combinatorial
problem. Throughout this paper, we will consider the clustering problem and
the segmentation problem as being similar. Accordingly, we consider solution
methods for both problems interchangeably.

In this paper, a system based on an evolutionary algorithm, which is rem-
iniscent of the well-know ’Life’ game, invented by John Horton Conway [8], is
presented. The evolution involves the colonization of a bidimensional world by a
number of populations, which represent the different regions which are present
in the image. The individuals, belonging to different populations, compete to oc-
cupy all the available space and adapt to the local environmental characteristics
of the world. The details of the algorithm, introduced in a previous work [9] are
reported in Section 2.

In this work we focus on the identification of a set of parameters which is
suitable to solve a given task, pointing out the relationships between the param-
eters and the behavior of the evolving population. In order to better evaluate
the performances of the algorithm, the identification phase has been carried out,
in a first stage, on a set of synthetic, although realistic, images (Section 3). This
allows to know the desired segmentation results, and to give a quantitative eval-
uation, through the analysis of confusion matrices. In a second phase, (Section 4)
the method has been applied to a set of food images.

2 System Architecture

The system is based on an evolutionary algorithm which simulates the coloniza-
tion of a bidimensional world by a number of populations. The world is organized
in a bidimensional array of locations, or cells, where each cell is always occupied
by an individual.

The world is represented by a matrix, associated with a vector of input im-
ages Iz (i.e. RGB components, textural parameters, or whatever), which are
stacked one above the other. Each cell of the matrix corresponds to a pixel of
the image stack, and therefore, the cell having coordinates P = (x, y) is associ-
ated to a vector of features e(x, y) = {Iz(x, y)}. In our simulation, this feature
vector is assumed to represent the environmental conditions at point P of our
world.

During each generation, each individual has a variable probability Sr, de-
pending both on the environmental conditions and on the local neighborhood,
to survive to the next generation. When the individual fails to survive, the empty
cell is immediately occupied by a newly generated individual.
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2.1 Environmental Constraints

The environmental conditions in a cell influence the probability of the individual
surviving in that location. If the population (which the individual belongs to) is
well suited to the proposed environment, the survival chances of that individual
are very high. On the other hand, if the population is suited to an environment
which is very different from the local one, the possibilities for that individual to
survive to the next generation are very low.

This requires us to define an ideal environment which maximizes the chances
of survival of an individual of a given population. This ideal environment has
been obtained by averaging, in each iteration, the environment in all the cells
occupied by individual of the population.

For instance, if the population A is composed of individuals mainly located in
dark zones of the input image, the few individuals belonging to the population
A, which are situated in bright zones of the input image have a low survival rate.
After a few iterations, the percentage of individual situated in dark areas will
be increased.

A second parameter used to increase the selective pressure over the population
is the variance of the feature vector. This is used to normalize the evaluation
of the similarity between the ideal environment and the local environmental
conditions.

The environmental factor described above has been modeled in our system by
means of a survival factor Se which is represented, for an individual belonging
to the population i and situated in the point (x, y), as:

Se =
1

1 + exp ci(x,y)−ct

c0

+ me (1)

The expression above represents a sigmoid-like function, centered in ct. Param-
eters ct and c0 describe the position and the steepness of the sigmoid function,
while the constant me represents a minimal survival rate. The variable ci(x, y)
represents the similarity between the local environment e(x, y) and the ideal
environment ei for the population i, evaluated as:

ci(x, y) =
∣∣∣∣e(x, y)− ei

σi

∣∣∣∣ (2)

where, as described above, ei and σi are, respectively, the mean and the standard
deviation of e(x, y) over all points of the image occupied by individuals belonging
to the population i.

2.2 Neighborhood Constraints

The presence of individuals of the same population in a neighborhood is known
to increase the survival rate of them. In our simulation, this has been taken
into account by including in the model a survival factor Sn which depends on
the number of individuals ni in a 3× 3 neighborhood which belong to the same
population of the individual located in the position (x, y).
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The neighbor factor associated, named Sn, is evaluated as:

Sn =
1

1 + exp nt−ni(x,y)
n0

+ ms (3)

where, as above, parameters nt and n0 describe the position and the steepness of
the sigmoid function, while the constant ms represents a minimal survival rate.
It is worth noting the difference between the two survival rates is in the sign: in
this case the survival rate increases when ni increases, while Se decreases when
ci increases.

2.3 Splitting and Merging

As presented above, the method does not prevent the situation were two popula-
tions are competing to colonize regions having similar environmental constraints.
We overcome this problem by including, once over a predefined number of it-
erations, a split and merge step. In this step, we evaluate how different the
separation are from each other by means of a statistical analysis of the popu-
lations descriptors. For each pair (i, j) of populations we evaluate a separation
coefficient sf as:

sf =
∑

z

(ei − ej)2

σiσj
(4)

when this coefficient is too small, we assume that the two populations are sta-
tistically equivalent, and we merge them in a single one. At the same time, in
order to preserve the total number of populations, the population having the
highest dishomogeneity, measured as the largest value of |σi|, is split in two new
populations.

2.4 Algorithm

The algorithm can be described according to the following steps:

1. On each point in the image is placed a random individual
2. For each generation:

a. The average feature vector ei and its standard deviation σi are computed
for each population

b. For each individual:
i. The survival probability is computed as Sr = Se ∗ Sn .
ii. If the individual does not survive, a new one replaces it. The new

individual is assigned to a population randomly selected with proba-
bilities proportional to the survival factor Se of an individual of each
population.

3. The separation sf among populations is evaluated, and split and merge
operation are performed
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2.5 Evaluation Method

The evaluation of the segmentation results has been carried out by means of
a segmentation cost C. The definition of the segmentation cost has been done,
accordingly to the method proposed by Andrey [4], by introducing an over-
segmentation cost and an under-segmentation one. These two components take
in account the two properties that a segmentation algorithm must satisfy: (a)
each region is homogeneous; and (b) neighboring regions cannot be merged into
a larger homogeneous one.

The over-segmentation cost C+ is an average measure of the extent to which
a region in the target segmentation overlaps with more than one region of the
candidate segmentation, a pattern that violates condition (b) above. Consider a
region r in the target segmentation and a region l of the candidate segmentation
and let pr(l) be the proportion of sites belonging to r that are assigned to l. If
the candidate segmentation is identical to the target, then all frequencies pr(l)
but one are equal to zero. By contrast, if r is segmented into a number of equally
sized regions, then all pr(l) are equal. Hence, the entropy of distribution pr is
a measure of over-segmentation in region r. The total over-segmentation cost is
defined as a weighted sum of individual over-segmentations. The contribution of
each region r is weighted by the proportion αr of sites belonging to r:

C+ = −
∑

r

αr

∑
l

pr(l) log pr(l) (5)

The under-segmentation cost C− is an average measure of the extent to which
a region in the candidate segmentation overlaps with several regions of the target
segmentation, a pattern that violates condition (a) above. Among the sites that
are assigned to a region l in the candidate segmentation, we let ql(r) denote the
proportion of sites that belong to region r in the target segmentation. Ideally,
all ql(r) but one are equal to zero. By contrast, if l overlaps equally with all
regions of the target, then all ql(r) are equal. Therefore, the entropy of the
distribution ql is a measure of the contribution of l to under-segmentation. The
total under-segmentation cost C− is defined as a weighted sum of individual
under-segmentations. The contribution of each candidate region l is weighted by
the proportion βl of sites that have been attributed to l:

C− = −
∑

l

βl

∑
r

ql(r) log ql(r) (6)

For a candidate segmentation, we finally define a global segmentation cost as
the summed under- and over-segmentation costs. The best segmentation cost is
obviously zero.

3 Experiments with Simulated Images

This experiment uses a simulated magnetic resonance (MR) brain image ob-
tained from the BrainWeb Simulated Brain Database [10]. The brain image was
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Fig. 1. Example of simulated MR brain images. Left: original image. Right: ground
truth.

simulated with T1-weighted contrast, 1mm cubic voxels, 3% noise and no inten-
sity inhomogeneity. The simulation is based on an anatomical model of normal
brain, which can serve as the ground truth for any analysis procedure. The vol-
ume contains 181×217×181 voxels and covers the brain completely. A transverse
slice has been extracted from the volume. The non-brain parts of the image such
as bone, cortex and fat tissue has been firstly removed. For our experiments
we considered four classes, corresponding to Grey Matter (GM), White Matter
(WM), CerebroSpinal Fluid (CSF) and background (BG).

The behavior of our algorithm can be evaluated with respect to all parameters,
by comparing the output against the ground truth provided by the BrainWeb
Simulated Brain Database [10].

Figure 1 shows a slice from the simulated data set and the relative ground
truth.

3.1 Parameter Selection

The proposed algorithm depends on several parameters which describe the be-
havior of the survival rates in dependence of environmental and neighboring
constraints. It is therefore of great importance to analyze how the performances
of the method changes with respect to a variation in any of the parameters.

Although a complete analysis requires to explore the whole parameter space,
in this work we describe a set of experiments with deals with the most important
parameters one at a time. Each set of experiments describes the variation of the
segmentation cost in dependence of one of parameters. To improve the statistical
significancy of the test, the cost function has been averaged over a set of 10 runs
for each value of the parameter.

The first group of experiments have been aimed to determine the importance
of environmental parameters in the evolution of the populations.
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Fig. 2. Average segmentation cost as a function of environmental influence, described
through the parameters c0 (left) and ct (right)
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Fig. 3. Average segmentation cost as a function of neighborhood influence, described
through the parameters n0 (left) and nt (right)

The value of ct being fixed (ct = 10), the average cost function has been
determined for c0 ∈ [18, 22]. Reciprocally, the value of c0 being fixed (c0 = 20),
the average cost function has been determined for ct ∈ [8, 12].

Figure 2, on the left, describes the behavior of the average cost function with
the environmental parameter c0. Accordingly to (1), parameter ct represents the
steepness of the sigmoid function which describes Se, where smaller values of
the parameter correspond to an steepest curve. The plot shows that the opti-
mal value is located approximately at c0 = 19. The plot on the right reports
the analysis of the behavior of the segmentation cost when the parameter ct is
varied. Accordingly to (1), the parameter ct represents the value of the weighted
difference ci corresponding to a survival rate Se equal to 0.5. The plot shows
that the optimal value of ct for the given problem is ct = 11

In the second set of experiments, the value of nt being fixed (nt = 4.5), the
average cost function has been determined for n0 ∈ [0.75, 1.25]. Reciprocally, the
value of n0 being fixed (n0 = 1), the average cost function has been determined
for nt ∈ [4, 6].
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Population A

Population B

Population D

Population C

Fig. 4. Segmentation results on simulated MR brain images

Table 1. Confusion matrices corresponding to images in Figure 4

Actual Classified as
class A B C D

A 98 1 0 0
B 2 94 6 3
C 0 4 89 4
D 0 1 5 93

Actual Classified as
class A B C D

A 98 1 0 0
B 2 93 7 4
C 0 5 88 4
D 0 1 5 92

Figure 3 shows the variation of the segmentation cost with respect to the pa-
rameters describing neighborhood influence, namely n0 and nt. Both plots show
how each parameter has an optimal value, which corresponds to a minimum of
the segmentation cost. Comparing Figure 3 with Figure 2, the strongest influ-
ence of the neighborhood constraints over the segmentation cost can be noted,
as indicated by the presence of a deeper minimum in the plots in Figure 3.

This result suggests the high importance for the colonization strategy of the
presence of a neighborhood of individuals of the same type. When the value of
Sn is too low, the individuals tend to group together irrespective of the actual
environment of the image, as the only chance to survive is to form a compact
region of individual of the same type, in order to increase the value of Sn. In the
same way, when the values of Sn are too high, the grouping pressure diminishes,
and the segmentation strategy becomes highly sensitive to noise.

3.2 Experimental Results

Our algorithm has been applied to segment these simulated MR brain images in
four classes: GM, WM, CSF and BG. The number of populations is fixed to 4
and the algorithm is stopped after 200 generations.

Some examples of the segmentation results obtained with the optimal parame-
ter set determined in this study (nt = 4.5, n0 = 1, ct = 11, c0 = 19, min(sf ) = 1,
me = 0.1, ms = 0.5) are shown in Figure 4. Both images show that the obtained
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segmentation is in strong agreement with the ground truth image, reported in
Figure 1, as indicated also from the confusion matrices, which are reported in
Table 1.

4 Application to Food Images

Intramuscular fat content in meat influences some important meat quality pa-
rameters. For example, the quantitative intramuscular fat content has been
shown to influence the palatability characteristics of meat. In addition, the vi-
sual appearance of the fat does influence the consumers overall acceptability
of meat and therefore the choice when selecting meat before buying. Therefore
the aim of the present application was to quantify intramuscular fat content in
beef together with the visual appearance of fat in meat, and to compare the fat
percentage measured by image analysis with chemical and sensory properties.
Moreover the distribution of fat is an important criterion for meat quality eval-
uation and its expected palatability. Segmentation of meat images is the first
step of this study.

The algorithm described in the previous section has been applied to meat
image in order to obtain a proper classification and perform subsequent analysis.

Color images of M. longissimus dorsi were captured by a Sony DCS-D700
camera. The same exposure and focal distance were used for all images. Digital
color photography was carried out with a Hama repro equipment (Germany).
Green color was used as background and photographs were taken on both sides
of the meat. The meat pieces were enlighten with two lamps, with two fluorescent
tubes each (15 W). Polaroid filters were used on the lamps and on the camera.

Fig. 5. Digital camera image of the longissimus dorsi muscle from representative beef
meat (original is in color)
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Fig. 6. Segmentation of the meat image shown in Figure 5

Images were 1344 x 1024 pixel matrices with a resolution of 0.13 x 0.13 mm (see
Figure 5, as an example).

Our algorithm has been applied to segment these images in three classes: fat,
muscle and background. The following parameters has been used: nt = 5, n0 = 1,
ct = 10, c0 = 20, min(sf ) = 1, me = 0.1, ms = 0.5.

Figure 6 shows the results obtained after 200 iterations.
Unfortunately this algorithm is not able to distinguish between fat and con-

nective tissue, as they have exactly the same color. A combination of the present
algorithm with a previous algorithm [11] could provide good results also as con-
cern the separation between fat and connective tissue. The percentage of fat
extracted by the method proposed in this work was compared to the percentage
measured by chemical analysis. We observed that advanced image analysis is
useful for approximate measures of intramuscular fat content, even if the per-
centage of fat is usually overestimated, probably due to that digital photographs
only reflect the meat surface.

5 Conclusions

In this paper, we presented an evolutionary algorithm for image segmentation.
A segmentation cost was used to evaluate results and determine the optimal pa-
rameter combination. The proposed algorithm can be used for the segmentation
of gray-scale, color and textured images. In particular segmentation of textured
images can be obtained either by using a feature vector computed from statis-
tical properties of texture, either combining our method with Markov Random
Fields.

The representation of the environmental constraints as a feature vector allows
us to easily extend the method to any vector-valued parametric images, inde-
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pendently on the number of components. Moreover, the normalization of each
component of the similarity term ci enables to use parametric images having
different ranges of values.

In comparison with other contributions, it is worth to note that our evolution-
ary method does not include crossover and mutation operators, unlike Andrey’s
approach [4]. In common, we have that the population represents a candidate
segmentation, and both methods are generic and can be applied to segmentation
according any criterion.

We are planning to extend the method in order to include local properties
on each population in the evaluation of survival rates. In this way we will en-
able the system to better adapt to slow variations present in the image (for
instance, uneven illumination) which cannot be captured by the overall mean
on the population. This extension could also allow for the introduction of a new
split procedure based on the differentiation between local properties and the
overall mean. In this way, it could be possible to automatically determine the
number of segmentation classes, that now is decided by the user.

As concern the application to meat images, despite the fact that it is very
difficult to achieve exact measures, probably due to digital photographs only
reflect the meat surface, we believe that machine vision technology can provide
an important tool for the food industry by allowing quantification of the visual
appearance of meat, such as number of and size distribution of fat regions that
are impossible to measure by chemical analysis. We also believe, on the basis of
the obtained results, that the combined use of measurements of fat percentage
and distribution can lead to an accurate description of meat quality, which will
be investigated during the next phase of this study.
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Abstract. This paper presents the use of a genetic algorithm and ge-
netic programming for the enhancement of an automatic fingerprint iden-
tification system (AFIS). The recognition engine within the original sys-
tem functions by transforming the input fingerprint into a feature vector
or fingercode using a Gabor filter bank and attempting to create the best
match between the input fingercode and the database fingercodes. A de-
cision to either accept or reject the input fingerprint is then carried out
based upon whether the norm of the difference between the input finger-
code and the best-matching database fingercode is within the threshold
or not. The efficacy of the system is in general determined from the com-
bined true acceptance and true rejection rates. In this investigation, a
genetic algorithm is applied during the pruning of the fingercode while
the search by genetic programming is executed for the purpose of creat-
ing a mathematical function that can be used as an alternative to the
norm operator. The results indicate that with the use of both genetic al-
gorithm and genetic programming the system performance has improved
significantly.

1 Introduction

Biometrics is an automated technique for identifying individuals based upon
their physical or behavioural characteristics. The physical characteristics that
are generally utilised as biometrics cover faces, retinae, irises, fingerprints and
hand geometry while the behavioural characteristics that can be used include
handwritten signatures and voiceprints. Among various biometrics, fingerprint-
based identification is the most mature and proven technique. A fingerprint is
made up from patterns of ridges and furrows on the surface of a finger [1]. The
uniqueness of a fingerprint can be explained via (a) the overall pattern of ridges
and furrows and (b) the local ridge anomalies called minutiae points such as a
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ridge bifurcation and a ridge ending. As fingerprint sensors are nowadays get-
ting smaller and cheaper, automatic fingerprint identification systems (AFISs)
have become popular alternatives or complements to traditional identification
methods. Examples of applications that have adopted an AFIS are ranging from
security control with a relatively small database to criminal identification with
a large database.

Research in the area of fingerprint-based identification can be divided into
two categories: fingerprint classification and fingerprint recognition. The pur-
pose of classification is to cluster a database of fingerprints into sub-categories
where the sub-categories are in general defined according to a Henry sys-
tem [2]. Several techniques including syntactic approaches [3, 4], structural ap-
proaches [5, 6, 7, 8, 9], neural network approaches [4, 10, 11, 12] and statistical ap-
proaches [13] have been successfully used in fingerprint classification. In contrast,
the purpose of recognition is to match the fingerprint of interest to the identity
of an individual. A fingerprint recognition system is widely used in security-
related applications including personnel identification and access control. For
the purpose of access control, the goal of recognition is (a) to identify correctly a
system user from the input fingerprint and grant him or her an appropriate access
and (b) to reject non-users or intruders. Various techniques including conven-
tional minutiae-based approaches [14, 15, 16], evolutionary minutiae-based ap-
proaches [17, 18, 19] and texture-based approaches [20] have been applied to fin-
gerprint recognition. Among these techniques, the approach involving the trans-
formation of a fingerprint into a fingercode [20] has received much attention in
recent years. In brief, a fingerprint is transformed via a Gabor filter-based al-
gorithm where the resulting feature vector or fingercode is a fixed length string
that is capable of capturing both local and global details in a fingerprint. The fin-
gerprint recognition is then achieved by matching the fingercode interested with
that in the database via a vector distance measurement. Since the fingerprint is
now represented by a unique fixed length vector and the matching mechanism is
carried out through a vector operation, this approach has proven to be reliable,
fast and requiring a small database storage.

Although a number of impressive results have been reported in Jain et al. [20],
the recognition capability of the fingercode system can be further enhanced. One
possible approach to improve the system is to modify the fingercode using a fea-
ture pruning technique. In most pattern recognition applications, the original
feature vector is often found to be containing a number of redundant features.
Once these features are removed, the recognition efficacy is in general main-
tained or improved in some cases. The most direct advantage for pruning the
fingercode is the reduction in the database storage requirement. The candidate
technique for pruning the fingercode is a genetic algorithm [21] where the decision
variables indicate the presence and absence of features while the optimisation
objective is the recognition efficacy. In addition to the feature pruning approach,
the recognition system can also be improved by modifying the fingercode match-
ing mechanism. In the original work by Jain et al. [20], a vector distance between
the input fingercode and the database fingercode is used to provide the degree
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of matching. As a result, the distance value from each feature will contribute
equally to the judgment on how well two fingercodes match one another. In this
investigation, the mathematical structure for obtaining the distance and the level
of contribution from each feature will be manipulated and explored using a ge-
netic programming technique [22]. This part of the investigation is carried out
in order to further increase the recognition capability of the system from that
achieved after the feature pruning.

The organisation of this paper is as follows. In section 2, a brief explanation
on the original fingercode system will be given. This also includes the description
of the fingercode, which is the feature vector, and the matching mechanism. The
application of the genetic algorithm on the feature pruning and the results will
be discussed in section 3. Following that, the use of the genetic programming
in matching mechanism modification and the results will be given in sections 4
and 5. Finally, the conclusions are drawn in section 6.

2 Fingercode System

The fingercode system developed by Jain et al. [20] consists of two major stages:
filter-based feature extraction and fingercode matching stages. These two com-
ponents are explained as follows.

2.1 Filter-Based Feature Extraction

There are three main steps in the feature extraction process described in Jain et
al. [20]: (a) determination of a reference frame from the fingerprint image, (b) fil-
tering the image using a Gabor filter bank and (c) computation of the standard
deviation of pixel values in sectors around the reference point in the filtered
image to obtain a feature vector or fingercode. Firstly, the point of maximum
curvature of ridges in the fingerprint image is initially located as the reference
point. The reference axis is then defined as the axis of local symmetry at the
reference point. Next, the region of interest is identified; the region is composed
of n concentric bands around the reference point where each band is segmented
into k sectors. In this paper, eight concentric bands are used and there are 16
sectors in each band. Thus there are a total of 16× 8 = 128 sectors in the region
of interest as shown in Fig. 1. The region of interest is filtered using a Gabor
filter [23] where the standard deviation of filtered pixels within each sector is
subsequently used as a feature in the fingercode. With the use of eight Gabor
filters per one fingerprint image, the total number of features in a fingercode for
this paper is 8× 128 = 1, 024.

2.2 Fingercode Matching

After a feature vector or fingercode has been extracted from the input finger-
print, an attempt to identify the best match between the fingercode obtained
and that in the database is carried out. The best-matching fingercode from the
database will be the one where a norm of the distance between itself and the
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(a) (b)

Fig. 1. (a) The reference axis (b) the reference point (×) and the region of interest,
which consists of 128 sectors

input fingercode is minimal. In this paper, a 1-norm is used in the distance
measurement. It is noted that other norms such as a Euclidean norm and an
infinite-norm can also be used. The fingerprint recognition can then be carried
out via comparing the best-matching norm with a threshold. If the norm is less
than or equal to the threshold, the recognition will identify the input fingerprint
as being a part of the database and hence belongs to one of the system users.
On the other hand, if the norm exceeds the threshold, the system will reject the
input fingerprint and decide that the fingerprint belongs to an intruder.

The efficacy of the fingercode system can be determined from the correctness
of the system output after the matching procedure. False output from the sys-
tem can generally be divided into two categories: a false acceptance and a false
rejection. A false acceptance refers to the situation when the system identifies
an input fingerprint as belonging to one of the users while in fact the fingerprint
belongs to either another user or an intruder. In contrast, a false rejection refers
to the case where the system falsely identifies an input fingerprint as belonging
to an intruder while the fingerprint actually comes from one of the users. Hence,
the system efficacy can be expressed in terms of the combined true acceptance
and true rejection rates, a false acceptance rate (FAR) and a false rejection rate
(FRR). In the following three sections, the improvement of the fingercode system
by means of genetic algorithm and genetic programming searches will be given.

3 Feature Pruning Using a Genetic Algorithm

An attempt on reducing the number of features in a fingercode using a genetic
algorithm is made. The decision variables for the optimisation cover the pres-
ence and absence of features in the fingercode. The decision variables can thus
be represented by a binary chromosome where ‘1’ represents the presence of a
feature whilst ‘0’ signifies the absence of a feature. In this investigation, there
are 1,024 features in the fingercode. As a result, the chromosome length is also
equal to 1,024 bits. Since the size of the reduced feature vector can vary dur-
ing the optimisation process, the value of threshold required for the decision



372 W. Wetcharaporn, N. Chaiyaratana, and S. Huvanandana

made by the recognition system has to also be modified accordingly. In this
paper, a 1-norm is used during the feature matching procedure. The threshold
can thus be set such that it is linearly proportional to the number of remaining
features in the fingercode after pruning. After the matching between all input
fingercodes and the database fingercodes, and the acceptance/rejection decision
has been made, the fitness value of each chromosome can be calculated from
the combined true acceptance and true rejection rates expressed in percent. In
this investigation, 400 fingerprint images are collected from 40 individuals where
each individual contributes ten fingerprints. During a genetic algorithm run, 300
fingerprints from 30 individuals are retained within the user database while the
other 100 fingerprints from the remaining ten individuals are used as fingerprints
from intruders. All 400 fingerprints are transformed into fingercodes using the
feature extraction procedure where the decisions to accept or reject the input
fingercodes are subsequently made. It is noted that the fingerprint database re-
mains unchanged throughout the genetic algorithm run, which in this case is
repeated ten times with different initial populations. The parameter setting for
the genetic algorithm is summarised in Table 1. After all ten algorithm runs are
completed, reduced fingercodes as represented by the best individual among all
runs, and three additional chromosomes, which are resulted from applying an
AND function, an OR function and a majority vote rule to aligned bits of all
ten best individuals from different runs are then tested or validated. The finger-
print databases used for validation also comprise of fingerprints taken from the
original 400 fingerprints. However, all except one fingerprint sets for validation
would be different from that used during the genetic algorithm runs. The origi-
nal database and nine newly created databases, which are obtained by swapping
fingerprints between the original user and intruder databases according to the
scheme displayed in Fig. 2, are utilised during the validation where the results
are illustrated in Tables 2 and 3.

Table 1. Parameter setting for the genetic algorithm

Parameter Setting and Value

Chromosome representation Binary chromosome
Chromosome length 1,024
Fitness scaling method Linear scaling
Selection method Stochastic universal sampling
Crossover method Uniform crossover
Crossover probability 0.8
Mutation method Bit-flip mutation
Mutation probability 0.1
Population size 100
Number of generations 1,000
Number of repeated runs 10
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(Original)
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1 2 3 4 5 6 7 8 919 2017 18 10 11 12 13 1415 16Set 4
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User Database

13 14Set 5

Intruder Database

1 2 3 4 5 6 719 2017 1815 1613 14 8 9 1011 12Set 6

1 2 3 4 519 2017 1815 1613 1411 12 6 7 89 10Set 7

1 2 319 2017 1815 1613 1411 129 10 4 5 67 8Set 8

119 2017 1815 1613 1411 129 107 8 2 3 45 6Set 9

1917 1815 1613 1411 129 107 85 6 120 23 4Set 10

x = 2 individuals (20 fingerprints)

Fig. 2. Ten validation sets for testing the fingercode system

Table 2. Validation results of the fingercode system with and without feature pruning.
The first validation set is also used during all repeated runs of the genetic algorithm.

Recognition Efficacy (%)

Vali- Original Evolutionary Fingercode Fingercode Fingercode
dation Fingercode Fingercode from an from an from a

Set (1,024 Features)(419 Features)AND Function OR Function Majority Vote
(384 Features) (521 Features)(492 Features)

1 88.75 96.00 95.50 95.00 96.25
2 85.25 95.00 94.50 94.25 95.50
3 83.25 91.50 91.25 91.00 92.00
4 83.00 91.00 90.50 90.50 91.00
5 83.25 91.25 91.25 90.25 92.50
6 82.25 90.50 90.25 89.00 91.25
7 76.50 85.00 84.75 83.50 85.75
8 76.75 87.00 86.75 85.50 88.00
9 79.50 87.75 87.75 86.25 88.75
10 85.75 92.00 92.00 90.25 92.50

Average 82.43 90.70 90.45 89.55 91.35
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Table 3. False acceptance and false rejection rates of the fingercode system with and
without feature pruning

False Acceptance and False Rejection Rates (%)

Vali- Original Evolutionary Fingercode Fingercode Fingercode
dation Fingercode Fingercode from an from an from a

Set (1,024 Features)(419 Features)AND Function OR Function Majority Vote
(384 Features) (521 Features)(492 Features)

FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

1 1.50 9.75 0.75 3.25 1.00 3.50 0.75 4.25 0.75 3.00
2 1.50 13.25 0.75 4.25 1.00 4.50 0.75 5.00 0.75 3.75
3 0.25 16.50 0.00 8.50 0.25 8.50 0.00 9.00 0.25 7.75
4 0.25 16.75 0.00 9.00 0.75 8.75 0.00 9.50 1.00 8.00
5 0.25 16.50 0.00 8.75 0.00 8.75 0.00 9.75 0.00 7.50
6 0.25 17.50 0.00 9.50 0.25 9.50 0.00 11.00 0.50 8.25
7 4.25 19.25 5.00 10.00 5.25 10.00 5.00 11.50 5.50 8.75
8 2.25 21.00 2.50 10.50 2.75 10.50 2.50 12.00 2.75 9.25
9 2.25 18.25 2.50 9.75 2.50 9.75 2.50 11.25 2.50 8.75
10 1.25 13.00 2.25 5.75 2.25 5.75 2.50 7.25 2.50 5.00

Average 1.40 16.17 1.38 7.92 1.60 7.95 1.40 9.05 1.65 7.00

From Tables 2 and 3, it can be clearly seen that the use of a pruned or
reduced fingercode leads to an improvement in recognition performance over
the use of a full fingercode for at least 7% in overall. The highest improvement
comes from the case of reduced fingercode obtained after using a majority vote
rule where detailed results indicate that there is a significant improvement in
the false rejection rate. On the other hand, the reduced fingercodes that have
the worst performance are the ones resulted from the use of AND and OR
functions. These results can be interpreted as follows. With the application of
a majority vote rule in deciding whether a feature should be maintained or
removed from the fingercode, the effect of uncertainties due to the stochastic
search nature of genetic algorithms on the overall optimisation result would
be minimised. During each genetic algorithm run, the search is conducted in a
manner that maximises the recognition efficacy. Since the search is a stochastic
one and there may be more than one globally optimal reduced fingercode, the
use of a majority vote rule would help maintaining necessary features detected in
most or all runs while at the same time eliminating possible redundant features.
This reason is supported by the results where AND and OR functions are used,
which indicate that there is no significant gain in recognition performance over
the use of a reduced fingercode obtained from typical genetic algorithm runs.
With the application of an OR function, the resulting fingercode would contain
both necessary features and some redundant features while with the use of an
AND function, some crucial features may be left out since they are not present
in all best individuals. These two phenomena would have caused a reduction in
the recognition performance.
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4 Modification of the Matching Mechanism Using
Genetic Programming

In the original work by Jain et al. [20] and the investigation so far, the deci-
sion to accept or reject input fingercode is based on whether the best-matching
norm is within the threshold or not. In this section, the calculation of 1-norm
will be replaced by the mathematical function or operation evolved by genetic
programming (GP). Nonetheless, the output from the evolved function will still
be compared with the threshold during the decision-making procedure. Since
the use of a reduced fingercode generated by a majority vote rule has proven
to produce the current best result, all features from this reduced fingercode
will be used as a part of terminal set. The terminal set is thus made up from
preset constant values and the absolute differences between the input features
and the corresponding features from a reduced fingercode in the database. It
is noted that the best-matching fingercode in the database is the one that the
GP-evolved function returns the minimum value. The parameter setting for the
genetic programming is summarised in Table 4.

Table 4. Parameter setting for the genetic programming

Parameter Setting and Value

Tree initialisation method Grow method
Maximum tree depth 10
Terminal set {Constants: 0.25, 0.50, 0.75, 1.25, 1.50, 1.75, 2.00

and absolute differences between input and
database features}

Function set {+,−}
Fitness scaling method Linear scaling
Selection method Stochastic universal sampling
Crossover probability 0.8
Mutation probability 0.1
Population size 100
Number of elitist individuals 1
Number of generations 2,000
Number of repeated runs 10

Similar to the approach presented in the previous section, ten databases are
also used during the validation where the results are displayed in Table 5. The
genetic programming results are produced using the best individual among all
ten runs. From Table 5, it can be clearly seen that the replacement of 1-norm by
the GP-generated function leads to a further improvement in terms of the recog-
nition efficacy, false acceptance rate and false rejection rate from that achieved
earlier. This also implies that the use of mathematical functions other than a
norm function may be more suitable to the fingercode system. It is noticeable
that the system performance is highest in the case of the first validation set,
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Table 5. Validation results of the reduced-feature fingercode system with the use of
1-norm and GP-generated function during matching

Validation Matching via 1-Norm Matching via
Set GP-Generated Function

Efficacy (%) FAR (%) FRR (%) Efficacy (%) FAR (%) FRR (%)

1 96.25 0.75 3.00 98.00 0.50 1.50
2 95.50 0.75 3.75 97.00 0.50 2.50
3 92.00 0.25 7.75 93.00 0.25 6.75
4 91.00 1.00 8.00 91.75 1.00 7.25
5 92.50 0.00 7.50 92.50 0.25 7.25
6 91.25 0.50 8.25 92.25 0.25 7.50
7 85.75 5.50 8.75 88.25 3.75 8.00
8 88.00 2.75 9.25 91.25 1.00 7.75
9 88.75 2.50 8.75 91.75 1.25 7.00
10 92.50 2.50 5.00 95.00 2.25 2.75

Average 91.35 1.65 7.00 93.08 1.10 5.82

where it is also the data set used during the evolution of a matching function
using genetic programming.

5 Matching by a Combined 1-Norm and GP-Generated
Operator

In the previous section, the GP-generated function is proven to outperform
1-norm during the recognition evaluation. However, the generated function is
rather complex since the required tree depth is ten and the tree contains a large
number of terminals including constants and 492 inputs from the reduced fin-
gercode, which are the majority vote results of multiple genetic algorithm runs.
Consequently, the tree evolution requires 2,000 generations, which takes reason-
ably large computational effort. One possible approach for reducing both tree
size and computational burden is to create a hybrid matching mechanism that
utilises both 1-norm and GP-generated function. From sub-section 2.1, the fea-
tures contain in a fingercode are obtained after eight Gabor filters have been
applied to a fingerprint image. The fingercode can thus be divided into eight
code-groups where each code-group represents a part of the fingercode, which
is obtained from the same Gabor filter. The features contained in a few code-
groups can be used as parts of GP terminals while the features in the remaining
code-groups are left as inputs to the 1-norm operator. The complete matching
output would be the summation between the outputs from GP tree and 1-norm.
Similar to the early approach, the complete output from the combined function
will be compared with the threshold during the decision making process where
the best-matching fingercode from the database is the one where the combined
function gives the minimum value. In this part of the investigation, the parame-
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Table 6. Validation results of the reduced-feature fingercode system with the use of
GP-generated function and combined function during matching

Validation Matching via Matching via
Set GP-Generated Function Combined Function

Efficacy (%) FAR (%) FRR (%) Efficacy (%) FAR (%) FRR (%)

1 98.00 0.50 1.50 97.50 0.25 2.25
2 97.00 0.50 2.50 96.25 0.50 3.25
3 93.00 0.25 6.75 93.00 0.25 6.75
4 91.75 1.00 7.25 91.25 1.00 7.75
5 92.50 0.25 7.25 92.25 0.50 7.25
6 92.25 0.25 7.50 92.25 0.50 7.25
7 88.25 3.75 8.00 89.00 3.25 7.75
8 91.25 1.00 7.75 90.75 1.00 8.25
9 91.75 1.25 7.00 91.50 0.75 7.75
10 95.00 2.25 2.75 93.50 2.50 4.00

Average 93.08 1.10 5.82 92.73 1.05 6.23

ter setting for the genetic programming is similar to that given in Table 4 except
that the maximum tree depth is reduced to seven and the number of generations
is decreased to 300. Furthermore, the fingercode features, which are parts of GP
terminals, come from only one code-group and are extracted from the reduced
fingercode previously selected by a genetic algorithm together with a majority
vote. The remaining features in the reduced fingercode are thus used as inputs
to the 1-norm operator.

Ten previously described databases are utilised during the validation where
the results are displayed in Table 6. The illustrated results are also produced
using the best individual among all ten runs. From Table 6, it can be clearly
seen that there is a slight drop in the recognition performance after replacing
the original GP-generated function with the combined function. The main cause
for this phenomenon is a slight increase in the false rejection rate in the results
from most databases. Nonetheless, the results from the combined function are
still better than that obtained using the 1-norm function in both false acceptance
and false rejection rates. In addition, the GP tree is now less complex since both
tree size and size of terminal set are significantly reduced.

6 Conclusions

In this paper, an improvement on an automatic fingerprint identification system
(AFIS), which can be referred to as a fingercode system [20] is illustrated. The
original system employed a recognition engine and can be used to identify system
users and reject intruders. The fingercode, which is a fixed length feature vector,
is extracted from a fingerprint using a Gabor filter-based algorithm. The decision
to either reject or accept the input fingercode is subsequently made based on
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whether the norm of the difference between the input fingercode and the best-
matching fingercode from the database exceeds the preset threshold or not. The
efficacy of the fingercode is measured in terms of the combined true acceptance
and true rejection rates. Two approaches for system enhancement have been
proposed. In the first approach, the full feature vector or fingercode is pruned
using a genetic algorithm. After the elimination of redundant features, the use
of reduced fingercode is proven to help improving the system performance. In
the second approach, the calculation of norm during the fingercode matching
procedure is either partially or fully replaced by a mathematical function or
operation evolved by genetic programming (GP). With the use of features from
the reduced fingercode as parts of the terminal set, the GP-evolved function in
the recognition engine is proven to be highly efficient. As a result, the recognition
capability of the system is further increased from that achieved earlier by pruning
the fingercode. This helps to prove that the use of both genetic algorithm and
genetic programming can significantly improve the recognition performance of
the fingercode system.
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Abstract. Singularity is the special feature of fingerprints for identification and 
classification. Since the performance of singularity extraction depends on the 
quality of fingerprint images, image enhancement is required to improve the 
performance. Image enhancement with various image filters might be more 
useful than a filter, but it is very difficult to find a set of appropriate filters. In 
this paper, we propose a method that uses the genetic algorithm to find those 
filters for superior performance of singularity extraction. The performance of 
the proposed method has been verified by the experiment with NIST DB 4. 
Moreover, the proposed method does not need any expert knowledge to find the 
type and order of filters for the target domain, it can be easily applied to other 
applications of image processing. 

1   Introduction 

AFIS (Automatic Fingerprint Identification System) finds out whether an individual’s 
incoming fingerprint image is the same as any of the target templates in the database. 
Classification, which groups fingerprints into predefined several categories based on 
the basis of global ridge pattern, can reduce the number of fingerprints for matching 
in the large database. Singular points are conceptualized as aid for fingerprint 
classification by Henry [1], and used for better identification [2]. The accuracy of 
singularity extraction is subject to the quality of images, so that it is hard to achieve 
good performance. There are lots of methods for singularity extraction but also the 
improvement of the quality [3]. 

Segmentation [4] and enhancement [5] to improve the quality of fingerprint 
images. Segmentation classifies a part of the image into a background or fingerprint 
region, so as to discard the background regions to reduce the number of false features 
extracted. Enhancement improves the clarity of the ridge structures to extract correct 
features. There are many filters for enhancement. For fingerprint images, enhance- 
ment using various filters together might be better than when using only one, but 
usually it requires the expert knowledge to determine the type and order of filters 
[5,6,7,8]. 
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Since it is actually impossible to examine all possible combinations of filters, it 
needs a heuristic algorithm. In this paper, we exploit the genetic algorithm 
[9,10,11,12] to find out a set of proper filters to enhance the fingerprint images. 

2   Related Work 

2.1   Singularity 

Fingerprints contain singularities that are known as core and delta points. The core is 
the topmost point on the innermost recurving ridge, while the delta is the center of a 
triangular region where three different direction flows meet. In the process of 
fingerprint classification, singularity is used directly [13], or with ridge patterns 
[14,15]. It was also used as landmarks for the other features [16,17]. There are other 
applications of singularity such as landmarks for fingerprint matching [18]. 

The Poincare index is a popular method to detect singularity using orientation field 
[3]. Fig. 1 shows the orientation field of core and delta regions. The orientation field is 
estimated for each block, and it is subject to the quality of the image. Image enhance- 
ment to improve the quality is required to calculate the orientation field correctly. 

 

Fig. 1. The orientation field of core and delta regions 

2.2   Image Filter 

The goal of general image processing is to detect objects on image and to classify 
them through the analysis of images. In images, low quality is hard to correctly 
extract features. Filtering, such as reducing image noises, smoothing, removing some 
forms of misfocus and motion blur, is in the front step of image processing. Typically, 
there are histogram-based, mask-based and morphology-based image filters [19]. 
Many methods have used these filters to improve quality of fingerprint image. Since 
Hong [5] introduced the Gabor filter to enhance fingerprint images, it has been 
adopted in many methods for fingerprint enhancement [6,7,8]. Fig. 2 shows example 
images obtained by several filters. 

2.3   Genetic Algorithm 

The genetic algorithm is an evolutionary algorithm, which is based on mechanisms of 
natural selection and the survival of fittest. In each generation, a new set of individuals 
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Fig. 2. Example images after filtering 

is generated by selection, crossover, and mutation of previous ones. An individual 
represents a solution to the problem by a list of parameters, called chromosome or 
genome. The first population, a set of chromosomes, is initialized randomly, while 
population in the next generation is generated from population of the previous genera-
tion. The population is stochastically generated using genetic operators such as selec-
tion, crossover, and mutation with the fitness measures of current population. Gener-
ally the average fitness will have increased by this procedure for the population. The 
genetic algorithm has been successfully applied in many search, optimization, and 
machine learning problems [9,10]. 

3   Image Enhancement Based on Genetic Algorithm 

For the correct feature extraction, the quality of the image should be improved by 
using appropriate image filters. The number of constructing an ordered subset of  
filters from a set of  filters is given by . Trying all cases to find out the best one 
practically impossible when there are lots of filters available. In this paper, a genetic 
algorithm is used to search filters of the proper type and order.  

Fig. 3 shows the procedure of the proposed method which also presents the process 
of evaluating fitness. In each generation, the fitness of chromosome is evaluated by 
using the fitness function, and chromosomes with higher fitness are stochastically 
selected and applied with genetic operators such as crossover and mutation to 
reproduce the population of the next generation. Elitist-strategy [20] that always 
keeps the best chromosome found so far is used. Chromosomes are represented as 
simple numbers corresponding with individual filters, and Table 1 shows the type and 
effect of 71 individual filters. 

Chromosomes with the length of five represent a set of filters. Fig. 4 shows the 
structure of chromosomes and the examples of genetic operators such as crossover 
and mutation. 

The fitness of an individual is estimated by the performance of singularity extraction 
using the Poincare index. The Poincare index extracts singularity using the orientation 
field which is calculated for each block. Singularity is classified into the core and delta, 
and these two points do not lie together in the same location. Let Sd = {sd1, sd2, …, sdn} 
be the set of n singularity points detected by the singularity extraction algorithm, and Se 
= {se1, se2, …, sem} be the set of m singularity points identified by human experts in an 
input fingerprint image. The following sets are defined. 

n
m mn
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Fig. 3. The process of evaluating fitness (fitness function) 

Table 1. The effect of various image filter 

Group Filter Type Effect Number 
Brightness 3 values Brightness value control 1~3 
Contrast 3 values Contrast value control 4~6 
Stretch - Stretching histogram of images 7 

Equalize - Equalization histogram of images 8 
Histogram 

Logarithm - Logarithm histogram of images 9 
Blur 6 masks Smoothing images 10~15 

Sharper 4 masks Sharpen images 16~19 Mask 
Median 10 masks Noise elimination 20~29 

Erosion 10 masks 
Elimination of single-pixel 
bright spots from images 

30~39 

Dilation 10 masks 
Elimination of single-pixel 

dark spots from images 
40~49 

Opening 10 masks Clean up images with noise 50~59 
Morphology 

Closing 10 masks 
Clean up images with object 

holes 
60~69 

Fingerprint Gabor - 
Ridge amplification with ori-

entation field  
70 

None 0 
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Fig. 4. The structure of chromosome and genetic operators

 Paired singularity (p): A set of the singularity points that sd and se are paired if 
sd is located within the tolerance (20 pixels) centered around se. 

 Missing singularity (a): A set of the points that are located within the tolerance 
distance from singularity se but not singularity sd, which means that the singu-
larity extraction algorithm cannot detect the point. 

 Spurious singularity (b): A set of the points that are located within the tolerance 
distance from singularity sd but not singularity se, which is detected by the sin-
gularity extraction algorithm, but not real singularity. 

The missing rate of singularity is estimated by the equation (1), the spurious rate is 
estimated by the equation (2), and the accuracy rate is estimated by the equation (3) 
with  samples. 
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The accuracy of singularity is used as the fitness function of the genetic algorithm, 
where an individual that shows better enhancement performance obtains a higher 
score. 

N
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4   Experiments 

The NIST Special Database 4 was used [21] to verify the proposed method. The NIST 
DB 4 consists of 4000 fingerprint images (2000 pairs). In the experiments, the train-
ing set was composed of the first 2000 images, f0001~f2000, and the test set consisted 
of the other 2000 images, s0001~s2000. In the database, 7308 singularities are manually 
marked by human experts, including 3665 on the training set and 3642 on the test set. 

4.1   Analysis of the Process of Evolution 

Table 2 shows the initial values of parameters in the experiment. The 40th generation 
results in a rise of 0.02 for the maximum fitness and a rise of 0.3 for the average fitness 
of the population which is 30 individuals. Fig. 5 shows the change of maximum and 
average fitnesses in each generation, where the maximum fitness increases steadily and 
the average fitness also shows a rise. 

Table 2. The initial values of parameters 

Parameter Value 
Generation 40 
Population 30 

Chromosome length 5 
Selection rate 0.7 
Crossover rate 0.7 
Mutation rate 0.05 
Elitist-strategy Yes 

 

Fig. 5. The maximum and average fitnesses in each generation 
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Table 3. The number and type of image filters used in constructing a set of filters 

genera-
tion 

Filter #, type 

0 11
Lowpass 
3×3 #2 

25 
Median 
3×3 #3 

0 NULL 30
Erosion 
3×3 #1 

18
Highpass 
3×3 #3 

6 11
Lowpass 
3×3 #2 

25 
Median 
3×3 #3 

70
Gabor 
filter 

11
Lowpass 
3×3 #2 

27
Median 

1×3  

7 19
Highpass 
3×3 #4 

25 
Median 
3×3 #3 

70
Gabor 
filter 

11
Lowpass 
3×3 #2 

27
Median 

1×3  

8 19
Highpass 
3×3 #4 

25 
Median 
3×3 #3 

70
Gabor 
filter 

11
Lowpass 
3×3 #2 

46
Dilation 
5×5 #4 

28 14
Gaussian 

3×3 
25 

Median 
3×3 #3 

70
Gabor 
filter 

70
Gabor 
filter 

68
Closing  

1×3 

30 14
Gaussian 

3×3 
25 

Median 
3×3 #3 

70
Gabor 
filter 

70
Gabor 
filter 

12
Lowpass 

5×5 

35 14
Gaussian 

3×3  
25 

Median 
3×3 #3 

70
Gabor 
filter 

70
Gabor 
filter 

48
Dilation 

3×3 

 

Fig. 6. Results of evolutionary filters 

Table 3 shows filters obtained through the evolution. The Gabor filter is included 
in all the filters except for that of randomly initialized. These obtained filters are 
divided into the front part and rear part by the Gabor filter. The Gabor filter has the 
effect of ridge amplification with the orientation field, and orientation field correctly 
extracted can maximize the performance singularity extraction. Filters of the front 
part usually concern in the orientation field, and filters of the rear part effect an 
improvement for the result image of the Gabor filter. Finally, filter is obtained, which 
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composes of Gaussian filter, median filter, two Gabor filters, and dilation. The input 
image is smoothed by the Gaussian filter, and impulse noise spikes of the image are 
removed by the median filter. The Gabor filter effects to correctly calculate the 
orientation field with ridge amplification. The dilation operation is used to remove 
small anomalies, such as single-pixel holes in objects and single-pixel-wide gaps of 
the image. It also has effect of thinning the ridges of images through the wider valleys 
of image. Fig. 6 shows example images obtained after applying filters. 

4.2   Singularity Extraction 

In the experiments, the error rate of singularity extraction over all individual filters was 
investigated, and we obtained 5 good filters that were ‘median 3×3 rectangle mask 
filter,’ ‘closing 3×3 X mask operator,’ ‘Gaussian 3×3 mask filter,’ ‘Gabor filter,’ and 
‘closing 3×3 diamond mask operator.’ The heuristic filter is composed of these 5 filters, 
and the heuristic filter II has the reverse order of the previous one. Fig. 7 shows the 
comparison of various filters. The error rate of original was 18.2%, whereas individual  
 

 

Fig. 7. The performance comparison with other filters 

Table 4. Type and error rate of other filters 

Filter Filter type 
Error 
rate 

Original NULL 18.2% 
Individual Closing Diamond 3×3 16.6% 

Gabor Gabor Filter 16.7% 

Heuristic 
Median 

Rectangle 
3×3 

Closing 
X 3×3 

Gaussian 
3×3 

Gabor 
Filter 

Closing 
Diamond 

3×3 
18.8% 

Heuristic 
II 

Closing 
Diamond 

3×3 

Gabor 
Filter 

Gaussian 
3×3 

Closing 
X 3×3 

Median 
Rectangle 

3×3 
14.7% 

Proposed 
method 

Gaussian 
3×3 

Median 
X 3×3 

Gabor 
Filter 

Gabor 
Filter 

Dilation 
1×3 

13.9% 
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Fig. 8. Examples of various filters (  = core,  = delta) 

filters and the Gabor filter produced 16.6% and 16.7% error rates, respectively. The 
heuristic II filter yielded 14.7% error rate, while the proposed method obtained an 
error rate of 13.9%. The proposed method shows better performance in singularity 
extraction than the filters designed heuristically (Table 4). 

The fingerprint image in Fig. 8 has one core and one delta. Fig. 8(a) shows the 
original image and singularity is not detected by the extraction algorithm. Individual 
filter that is a closing operation eliminates single-pixel dark spots from the image and 
smoothes it, but the extraction algorithm detects a spurious singularity because of 
unclear orientation on upper right-hand side field (Fig. 8(b)). The image is not en-
hanced well with the Gabor filter because the orientation field is not good (Fig. 8(c)). 
The extraction algorithm detects not all singularity but spurious singularity with the 
heuristic filter because of many blank spaces (Fig. 8(d)). The extraction algorithm 
with the proposed method detects no missing and spurious singularity (Fig. 8(f)). 

5   Conclusions 

It is important to detect singularities, which are special features of fingerprint, but 
limited in quality of fingerprint images. Image enhancement is required for correct 
extraction. In this paper, a genetic algorithm is used to obtain a combination of vari-
ous individual filters for better performance in singularity extraction. In the experi-
ments of NIST DB 4, the filter obtained shows better performance than the other 
filters. 
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In future work, we would like to apply the proposed method to the other fingerprint 
image databases. By changing the fitness function of the genetic algorithm, the 
method for better performance of identification and classification of fingerprints will 
be also investigated. Since the proposed method does not need any expert knowledge, 
we can also apply the method to various fields of image processing. 
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Abstract. An evolutionary computation based algorithm for data clas-
sification is presented. The proposed algorithm refers to the learning
vector quantization paradigm and is able to evolve sets of points in the
feature space in order to find the class prototypes. The more remarkable
feature of the devised approach is its ability to discover the right number
of prototypes needed to perform the classification task without requir-
ing any a priori knowledge on the properties of the data analyzed. The
effectiveness of the approach has been tested on satellite images and the
obtained results have been compared with those obtained by using other
classifiers.

1 Introduction

Classification problems are probably among the most studied ones in the field of
computer science since its beginnings [1]. Classification is a process according to
which an object is attributed to one of a finite set of classes or, in other words,
it is recognized as belonging to a set of equal or similar entities, identified by
a name (label in the classification field jargon). In the last decades, Evolution-
ary Algorithms (EAs) have demonstrated their ability to solve hard non linear
problems characterized by very complex search spaces [2]; they have also been
used to solve classification problems.

Genetic Algorithms (GAs), for example, have been widely applied for evolving
sets of rules that predict the class of a given object. According the GAs-based
approach, referred to as learning classifier systems (LCS) [3], the individuals
in the population encode one or more prediction rules of the form IF-THEN,

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 391–402, 2006.
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where the antecedent part of the rule contains a combination of conditions on
some attributes of the patterns to be classified, while the consequent part rule
expresses the class predicted by the rule. GAs for rule discovery can be divided
into two main classes, depending on how rules are encoded by individuals. The
classes are referred to as Michigan [4, 5] and Pittsburgh [6, 7]. The former ap-
proach employs a single individual for encoding one prediction rule, whereas
in the latter approach each individual encodes a whole set of rules. Both these
approaches were originally devised to solve single–class problems. Successively,
also multi–class problems have been tackled. These kind of problems have been
faced by introducing multiple populations, so that each population evolves the
rule of a specific class. However, in this way it is hard to model the interaction
between the rules representing different classes when new and unknown pat-
terns have to be recognized. Moreover, another problem that affects the LCS
algorithms is due to the difficulty of solving the conflict that comes up when
single pattern is matched by several rules, each predicting a different class. As
regards the GP–based methodologies, only recently they have been proposed to
solve classification problems [8, 9, 10]. In [9], for example, a GP system has been
devised to evolve equations involving simple arithmetic operators and feature
variables, for hyper-spectral image classification. In [8], a GP approach has been
employed for image classification problems, adding exponential functions, con-
ditional functions and constants to the simple arithmetic operators. GP has also
been used to evolve sets of fuzzy rules [11]. In [10], an interesting method, which
considers a n-class problem as a set of two-class problems, has been introduced.
When the expression for a particular class is searched, that class is considered as
target, while the other ones are merged and treated as a single undesired class.
In all approaches mentioned above, the number of prototypes to be used to solve
the classification problem at hand is set exactly equal to the number n of classes
to be dealt. Consequently, these approaches do not consider the existence of
subclasses within one or more of the classes in the analyzed data set: in practice,
each of these subclasses needs a specific prototype to be represented.

We propose a new classification method, based on the concept of Learning
Vector Quantization (LVQ). Given a data set for which the patterns are fea-
ture vectors, this algorithm provides a set of reference vectors, to be used as
prototypes for the classification task to be performed. The effect of any LVQ–
based algorithm is a Voronoi tessellation of the feature space in which the data
are represented. In practice, LVQ allows one to partition the feature space into
a number of regions, each identified by one of the vectors provided after the
training phase. Such regions are bordered by hyperplanes defined as the loci of
points that are equidistant from the two nearest reference vectors. The reference
vectors represent the prototypes of the points inside the regions and each region
represents a cluster. The classification method proposed here uses a specifically
devised evolutionary algorithm for evolving variable size sets of feature vectors.
The remarkable feature of our approach is that it does not require any a priori
knowledge about the actual number of prototypes, i.e. reference vectors, each
class needs to be represented.
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The proposed classification method has been tested on satellite images and the
results obtained have been compared with those obtained by other well known
classification techniques, included a standard LVQ. The data set at hand has
been divided in a training and a test set. The former set was used to train both
our system and the other classifiers taken into account for the comparison. As
regards our system, once a set of prototypes has been obtained, the classification
of an unknown patterns of the test set is performed by assigning to it the label
of the nearest prototype in the feature space. The experiments performed by
using the data taken into account have shown very interesting results and have
confirmed the effectiveness of the proposed approach.

The remainder of the paper is organized as follows: in section 2 a formaliza-
tion of data classification is described; section 3 illustrates the standard LVQ
algorithm, while in section 4 the proposed approach is detailed. In section 5 the
experimental results are presented, while section 6 is devoted to the conclusions.

2 Data Classification

In the data classification context a set of objects to be analyzed is called data
set, and each object is called pattern and represented by X = (x1, . . . , x
) with
X ∈ S, where S is the universe of all possible elements characterized by � features
and xi denotes the i–th feature of the pattern. A data set with cardinality ND

is denoted by D = {X1, . . . ,XND} with D ⊆ S. The set D is said labeled if it
exists a set of integers:

Λ = {λ1, . . . , λND} : λi ∈ [1, c]

The i–th element λi of Λ is said the label of the i–th pattern Xi of D. We will
say that the patterns of D can be grouped into c different classes. Moreover,
given the pattern Xi and the label λi = j, we will say that Xi belongs to the
j–th class.

Given a data set D = {X1, . . . ,XND} containing c classes, a classifier Γ is
defined as a function

Γ : D −→ [0, c]

In other words, a classifier assigns a label γi ∈ [0, c] to each input pattern Xi.
If γi = 0, the corresponding pattern Xi is said rejected. This fact means that the
classifier is unable to trace the pattern back to any class.

The pattern Xi is recognized by Γ if and only if:

γi = λi

otherwise the pattern is said misclassified. If Ncorr is the number of patterns of
D recognized by Γ the ratio Ncorr/ND is defined as the recognition rate of the
classifier Γ obtained on the data set D.



394 L.P. Cordella et al.

begin
initialize the reference vectors ω1, . . . , ωk;
initialize the learning rate a(0);
while stop condition is false do

for i = 0 to Ntr do
find j so that ‖xi − ωj‖ = min;

end for
update the vector ωj as follows:
if λi = Cj then

ωj(new) = ωj(old) + a(xi − ωj(old))
end if
if λi �= Cj then

ωj(new) = ωj(old) − a(xi − ωj(old))
end if

end while
end

Fig. 1. The algorithm used in order to determine the position of the reference vectors
in the feature space. Ntr is the number of patterns in the training set, while λi and Cj

respectively represent the labels of the pattern xi and of the “winner” vector ωj . This
algorithm is often referred in the literature to as “the winner take all” (WTA). Note
that usually the stop condition specifies a certain number of iterations (epochs in the
LVQ jargon).

3 Learning Vector Quantization

The Learning Vector Quantization (LVQ) methodology was introduced by Ko-
honen [12] and in the last years has widely been used to perform classification
tasks. LVQ classifiers have been applied in a variety of practical problems, such
as medical image analysis, classification of satellite spectral data, fault detection
in technical processes, and language recognition [13]. The LVQ approach offers a
method to form a quantized approximation of an input data set D ⊂ Rp using a
finite number k of reference vectors ωi ∈ R, i = 1, . . . , k. After that an LVQ has
been trained, the feature space in which the data are represented, is partitioned
with a Voronoi tessellation. This tessellation partitions the feature space into a
certain number of disjoint regions, each identified by a different reference vector.
These regions are bordered by hyperplanes defined as the loci of points that
are equidistant from the two nearest reference vectors. Hence, a reference vector
represents the prototype of the points inside the corresponding regions.

Given an incoming pattern x to be recognized and a set of reference vectors
{ω1, . . . , ωk}, the classification is performed by computing the Euclidean distance
between x and each of the reference vector ωi. The pattern is then assigned to
the closest reference vector and is recognized as belonging to the same class
of the reference vector to which it has been assigned. In the LVQ method the
reference vectors are a priori labeled and algorithmically determined by using a
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Fig. 2. An example of individual containing 4 prototypes. In this example, the proto-
types are vectors in a 8-dimensional space.

training set of labeled patterns (see figure 1). Note that, usually, the number of
reference vectors for each of the classes have to be provided by the user.

4 Prototype Generation

As mentioned above, the prototypes to be used for classification are represented
by points in the feature space. The method proposed in this paper for finding
a good set of prototypes is based on a particular class of genetic algorithms [2],
namely the Breeder Genetic Algorithms (BGA) [14], in which the individuals are
encoded as real valued vectors. In our case, an individual consists of a variable
length list of feature vectors, each one representing a prototype (see Figure 2).

The system, accordingly to the EA paradigm, starts by generating a popu-
lation of P individuals. The number of prototypes (in the following referred as
length) of these initial individuals is randomly assigned in the range [Nmin, Nmax].
Each prototype is initialized by randomly choosing a pattern in the training set.
Afterwards, the fitness of the individuals generated is evaluated. A new pop-
ulation is generated in two ways: on one side, according to an elitist strategy,
the best E individuals are selected and just copied. On the other side, (P −E)/2
couples of individuals are selected by using a selection mechanism. The crossover
operator is then applied to each of the selected couples, according to a chosen
probability factor pc. The mutation operator is then applied to the individuals
according to a probability factor pm. Finally the obtained individuals are added
to the new population. The process just described is repeated for Ng generations.

The fitness function, the selection mechanism and the operators employed are
described in the following.

4.1 Fitness Function

Each individual is evaluated using a training set Dtr containing Ntr patterns.
This evaluation implies the following steps:

1. Every pattern in the training set is assigned to the nearest prototype (i.e.
reference vector) in the individual to be evaluated. Euclidean distance is
used in the feature space. After this step, ni (ni ≥ 0) patterns will have
been assigned to the i-th prototype. The prototypes for which ni > 0 will
be referred in the following as valid. The prototypes for which ni = 0 will be
ignored in the following steps.



396 L.P. Cordella et al.

Parents

Offspring

Fig. 3. An example of application of the crossover operator

2. Each valid prototype of an individual is labeled with the label most widely
represented in the corresponding cluster.

3. The recognition rate obtained on Dtr is computed and assigned as fitness
value to the individual.

In order to favor the individuals able to obtain good performances with a lesser
number of prototypes, the fitness of each individual is increased by 0.1/Np, where
Np is the number of prototypes in an individual. Moreover, the individuals having
a number of prototypes out of the interval [Nmin, Nmax] are killed, i.e. marked
in such a way that they are not chosen by the selection mechanism.

4.2 Selection Mechanism

The tournament method has been chosen as selection mechanism. In the tourna-
ment selection, a number T of individuals is chosen randomly from the popula-
tion and the best individual from this group is selected as parent. This process is
repeated for as many individuals have to be chosen. Such a mechanism ensures
to control the loss of diversity and the selection intensity [15].

4.3 Genetic Operators

In the approach presented here two genetic operators have been devised:
crossover and mutation. The crossover operator belongs to the wider class of
recombination operators: it accepts in input two individuals and it yields as out-
put two new individuals. This operator acts at list level and gives our system
the important feature of automatically discovering the number of prototypes
actually needed to represent the classes defined in the problem at hand. The
mutation operator, instead, manipulates a single individual. Its effect is that
of “moving” the prototypes (i.e. vectors) of the input individual in the feature
space. These operators are detailed in the following.

Crossover. The crossover operator is applied to two individuals I1 and I2 and
yields two new individuals by swapping parts of the lists of the initial individuals,
without breaking any single prototype. Assuming that the length of I1 and I2
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begin
for j = 0 to NF do

range = rndreal(0.1 * δj)
if flip(pm) then

x[j] = x[j] ± range (+ or - with equal probability);
end if

end for
end

Fig. 4. The mutation operator applied to each of the prototypes, i.e. reference vectors,
in an individual. NF is the number of features of the patterns in the data analyzed. δj

is the range of the j-th feature computed on the training set, while pm represents the
probability of mutation of each single feature value in the prototype.

are respectively l1 and l2, the crossover is applied in the following way: the first
individual is split in two parts by randomly choosing an integer t1 in the interval
[1, l1]. The obtained lists of vectors I

′
1 and I

′′
1 will have length t1 and l1 − t1

respectively. Analogously, by randomly choosing an integer t2 in the interval
[1, l2], two lists of prototypes I

′
2 and I

′′
2 , respectively of length t2 and l2 − t2,

are obtained from I2. At this stage, in order to obtain a new individual, the
lists I

′
1 and I

′′
2 are merged. This operation yields a new individual of length

t1 + l2 − t2. The same operation is applied to the remaining lists I
′
2 and I

′′
1 and

a new individual of length t2 + l1 − t1 is obtained. The number of the swapped
prototypes depends on the integers t1 and t2. An example of application of this
operator is given in figure 3. As mentioned above the implemented crossover
operator allows one to obtain offspring individuals whose length may be quite
different from that of the parents. As a consequence, during the evolution process,
individuals made of a variable number of prototypes can be evolved.

Mutation. Given an individual I, the mutation operator is independently ap-
plied to each prototype of I. In figure 4 the algorithm used to modify each of
the prototypes in an individual is shown.

5 Experimental Results

In order to ascertain its effectiveness, the proposed approach has been tested on
data extracted from two landsat 6 band multispectral images. The first one1 is
2030x1167 pixels large and has been taken in order to distinguish between forest–
non forest areas, while the second one2 is a 1000x1000 pixels large, related to
the land cover mapping for desertification studies. To this images a segmentation
method has been applied in order to obtain regions formed by the same type of
pixel [16]. For each of the region provided by the segmentation, a set of features
have been extracted, related to its geometrical characteristics and to its spectral

1 The image has been provided by courtesy from JRC.
2 This image has been provided by courtesy from ACS spa as part of the Desert Watch

project.
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data. For each region the extracted features have been used to build up a data
record.

From the first image a data set made up of 2500 items, i.e. regions, have been
derived; each item may belong to one of two classes, forest or non–forest. From
the second image 7600 items have been extracted and the items may belong
to 7 classes, representing various land cover types: various vegetation or water.
Although the segmentation process used extracts more than 10 features for each
of the regions identified, for both the images analyzed only six features have
been considered.

Preliminary trials have been performed to set the basic evolutionary param-
eters reported in Table 1. This set of parameters has been used for all the ex-
periments reported in the following. Since our approach is stochastic, as well
as all the EC–based algorithms, 20 runs have been performed for each data set
taken into account. The reported results are those obtained using the individual
having the highest fitness among those obtained during the 20 performed runs.

The results obtained by our method on the data described above have been
compared with those obtained by other three classification algorithms: nearest–
neighbor (NN), k–NN and a standard LVQ. These algorithms are detailed in the
following:

LVQ. The LVQ used for the comparison of our results is an improved version of
that described in section 3, it is called Frequency Sensitive Competitive Learning
(FSCL) [17] and is often used to compare the performances of other algorithms.

Nearest Neighbor. Let Dtr be a training set of Ntr labeled patterns rep-
resented by feature vectors. A nearest neighbor (NN) classifier recognizes an
unknown pattern x by computing the Euclidean distance between x and each of
the patterns in Dtr. Then x is recognized as belonging to the same class of the
nearest pattern in Dtr. It has been shown that a NN classifier does not guarantee
the minimum possible error, i.e. the Bayes rate [1].

k-Nearest Neighbor. A k-Nearest Neighbor (k-NN) classifier is an extension
of the NN classifier described above. In fact, given a training set Dtr, a pattern x
to be recognized is attributed to the most widely represented class among the k
nearest patterns of Dtr. In the experiments reported in the following the number
of neighbors has been varied between 1 and 15.

Table 1. Values of the basic evolutionary parameters used in the experiments

Parameter symbol value

Population size P 300
Tournament size T 6
elithism size E 5
Crossover probability pc 0.4
Mutation probability pm 0.05
Number of Generations Ng 500
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Table 2. Means and standard deviations of recognition rate on the test set for the
forest cover dataset

NN 9-NN LVQ EC-LVQ
Mean 72.69 83.05 72.05 82.50
Std 4.34 0.25 3.36 1.7
NP 2250 2250 80 10.6 (1.7)

Table 3. The recognition rates on the test set obtained for the land cover dataset

NN 6-NN LVQ (700) EC-LVQ
Best 69.2 74.08 76.47 75.6
NP 3800 3800 700 136

5.1 Comparison Findings

In Table 2 the results obtained on the forest cover data set are shown. In all
the runs performed on this data set the minimum length Nmin allowed for an
individual has been set to 2, while the maximum one has been set to 20. In
order to avoid any bias in the comparison, due to the low number of patterns
in the data set, the 10 fold cross validation procedure has been adopted. In this
procedure, the performances of a classifier on a data set D are evaluated by
randomly dividing D into 10 disjoint sets of equal size N/10, where N is the
total number of patterns in D. Then the classifier is trained 10 times, each time
with a different set held out as a test set. In order to evaluate the performance
of the classifier on unknown data, the performance is computed as the mean of
the results obtained on the ten different test sets [1] As a consequence of the
choice of this procedure, 200 runs have been performed.

In Table 2, the mean and the standard deviation obtained on the 10 test sets
are reported together with the number of prototypes employed are reported.
As regards the NN and the k–NN classifiers, the number of prototypes equals
the number of patterns in the training set, while for the LVQ this number has
been set to 80. For our EC–based LVQ method, this number is not provided
by the user, but it has been automatically found by the implemented system.
Particularly, the average number of prototypes, found for the ten considered test
set, equals to 10.6, while the standard deviation is 1.7. Thus the automatism
devised allow the system to strongly reduce the number of prototypes needed
to perform the classification task demanded. The outcome of this reduction is a
strong enhancement of the classifier efficiency. As regards the recognition rate
obtained on test set by the different algorithms, the performance of our system
is significantly better than that of the NN and LVQ classifiers, although that of
the k-NN (obtained setting k equal to 9) are slightly better than that of our
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Fig. 5. Recognition rate on training and test sets for the land cover data set during
the best run

system. However, in our opinion, the huge difference in the number of necessary
prototypes used compensates this little difference in the recognition rate.

In Table 3 the results obtained on the land cover data set are shown. In this
case the original data set has been randomly split in two sets, respectively as
training set and test set. For this data set the total number of executed runs
has been 20. In Table 3 the best results obtained and the number of prototypes
employed are reported. Our results are significantly better than those obtained
form the NN classifier and slightly better than that obtained from the k–NN
(in this case k has been set equal to 6). Only the LVQ classifier has obtained a
performance slightly better than ours, but such performance has been obtained
with a total number of 700 prototypes, while our performance has been obtained
using only 136 prototypes. Also in this case, the difference in the number of
prototypes compensates the little difference in the performance achieved.

In a learning process, in most cases, when the maximum performance is
achieved on training set, the generalization power, i.e. the ability of obtaining
similar performance on unknown data (the test set), may significantly decrease.
In order to investigate such aspect for our system, the recognition rates on train-
ing and test set have been taken into account for the different considered data
sets. In Figure 5 such recognition rates, evaluated every 50 generations, in the
best run for the desert data set, are displayed. It can be observed from the
figure that, in the experiments carried out, the recognition rate increases with
the number of generations both for the training set and for the test set. The
best recognition rates occur in both cases nearby generation 400. Moreover, the
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fact that the difference between the two recognition rates does not tend to in-
crease when that on the training set reaches its maximum, demonstrates the
good generalization power of our system.

6 Conclusions and Feature Work

A new method that uses the evolutionary computation paradigm has been de-
vised for generating prototypes for a LVQ–based classifier. The patterns be-
longing to the different classes, represented as vectors in a feature space, are
represented by prototypes obtained by evolving an initial population of ran-
domly selected feature vectors. The devised approach does not require any a
priori knowledge about the actual number of prototypes needed to represent the
classes defined in the problem at hand. The method has been tested on satellite
images and the results have been compared with those obtained by other clas-
sification methods. The obtained results and the comparisons performed have
confirmed the effectiveness of the approach and outlined the good generalization
power of the proposed method.

The results could be easily improved by applying the mutation operator in a
way that takes into account the performances obtained by the single prototypes.
In practice, the probability of application of the mutation operator to a single
prototype should be computed as a function of its performance. Specifically, the
lower is the recognition rate obtained by the prototype, the lower should be
the probability of applying of the mutation to it. In this way, the research of
prototypes becomes more effective, since the probability of modifying “good”
prototypes is much lower than that of modifying “bad” prototypes, i.e. those
performing worse in recognizing patterns belonging to the same class.
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Abstract. Differential Evolution, a version of an Evolutionary Algo-
rithm, is used to perform automatic classification of handsegmented im-
age parts collected in a seven–class database. Our idea is to exploit it
to find the positions of the class centroids in the search space such that
for any class the average distance of instances belonging to that class
from the relative class centroid is minimized. The performance of the
resulting best individual is computed in terms of error rate on the test-
ing set. Then, such a performance is compared against those of other
ten classification techniques well known in literature. Results show the
effectiveness of the approach in solving the classification task.

Keywords: Differential evolution, classification, centroids, multi–class
database, recognition of image parts.

1 Introduction

Differential Evolution [1] [2] (DE) is a version of an Evolutionary Algorithm [3]
[4] which uses vector differences for perturbing the population. In this paper
we wish to examine its ability to effectively and efficiently perform automatic
classification in a multi–class database.

A classification tool [5] [6] [7] is usually a part of a more general automatic
pattern recognition system and aims at assigning class labels to the observa-
tions previously gathered by some sensor. To fulfil its task, a classifier relies on
some features extracted in numeric or symbolic form by a feature extraction
mechanism.

The classification scheme is usually based on the availability of a set of pat-
terns that have already been classified or described (training set). In such a
situation, termed supervised, starting from these presented data, the system has
to guess a relation between the input patterns and the class labels and to gen-
eralize it to unseen patterns (testing set). Learning can also be unsupervised, in
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the sense that the system is not given an a priori labelling of patterns, instead it
establishes the classes itself based on the statistical regularities of the patterns.

As far as we know, there exist no papers in literature in which DE is directly
employed as a tool for supervised classification of multi–class database instances.
Just one paper [8] analyzes the adaptation of DE and of other techniques in the
fuzzy modelling context for the classification problem, while in [9] DE is used
for proper weighting of similarity measures in the classification of high dimen-
sional and large scale data. Moreover, a few papers deal with DE applied to
unsupervised classification, for example on hard clustering problems [10] and
on images [11]. Therefore, in this paper we aim to evaluate DE efficiency in
performing a centroid–based supervised classification by taking into account a
database composed by handsegmented parts of outdoor images, collected in a
seven–class database. In the following, the term centroid means simply “class
representative” and not necessarily “average point” of a cluster in the multidi-
mensional space defined by the database dimensions. Our idea is to use DE to
find the positions of the class centroids in the search space such that for any
class the average distance of instances belonging to that class from the relative
class centroid is minimized. Error percentage for classification on testing set is
computed on the resulting best individual. Moreover, the results are compared
against those achieved by ten well–known classification techniques.

Paper structure is as follows: Section 2 describes DE basic scheme, while
Section 3 illustrates the application of our system based on DE and centroids
to the classification problem. Section 4 reports on the database faced, the re-
sults achieved by our tool and the comparison against ten typical classification
techniques. Finally Section 5 contains our conclusions and future works.

2 Differential Evolution

Differential Evolution (DE) is a stochastic, population-based optimization algo-
rithm [1] [2]. It was firstly developed to optimize real parameters of a real–valued
function and uses vectors of real numbers as representations of solutions.

The seminal idea of DE is that of using vector differences for perturbing
the genotype of the individuals in the population. Basically, DE generates new
individuals by adding the weighted difference vector between two population
members to a third member. This can be seen as a non–uniform crossover that
can take child vector parameters from one parent more often than it does from
others. If the resulting trial vector yields a better objective function value than
a predetermined population member, the newly generated vector replaces the
vector with which it was compared. By using components of existing population
members to construct trial vectors, recombination efficiently shuffles information
about successful combinations, enabling the search for an optimum to focus on
the most promising area of solution space.

In more detail, given a minimization problem with m real parameters, DE
faces it starting with a randomly initialized population P (t = 0) consisting of n
individuals each made up by m real values. Then, the population is updated from
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a generation to the next one by means of some transformation. Many different
transformation schemes have been defined. The authors [1] [2] tried to come up
with a sensible naming–convention, so they decided to name any DE strategy
with a string like DE/x/y/z. In it DE stands for Differential Evolution, x is a
string which denotes the vector to be perturbed (best = the best individual in
current population, rand = a randomly chosen one, rand–to–best = a random
one, but the current best participates in the perturbation too), y is the number
of difference vectors taken for perturbation of x (either 1 or 2), while z is the
crossover method (exp = exponential, bin = binomial). We have decided to
perturb a random individual by using one difference vector and by applying
binomial crossover, so our strategy can be referenced as DE/rand/1/bin. In it
for the generic i–th individual in the current population three integer numbers
r1, r2 and r3 in [1, n] differing one another and different from i are randomly
generated. Furthermore, another integer number k in the range [1, m] is randomly
chosen. Then, starting from the i–th individual a new trial one i′ is generated
whose generic j–th component is given by:

xi′,j = xr3,j + F · (xr1,j − xr2,j) (1)

provided that either a randomly generated real number ρ in [0.0, 1.0] is lower
than a value CR (parameter of the algorithm, in the same range as ρ) or the
position j under account is exactly k. If neither is verified then a simple copy
takes place: xi′,j = xi,j . F is a real and constant factor in [0.0, 1.0] which controls
the magnitude of the differential variation (xr1,j − xr2,j), and is a parameter of
the algorithm.

This new trial individual i′ is compared against the i–th individual in current
population and, if fitter, replaces it in the next population, otherwise the old one
survives and is copied into the new population. This basic scheme is repeated
for a maximum number of generations g.

DE pseudocode is shown in the following in Algorithm 1.

3 DE Applied to Classification

3.1 Encoding

We have chosen to face the classification task by using a tool in which DE is
coupled with centroids mechanism (we shall hereinafter refer to it as DE–C
system). Specifically, given a database with C classes and N attributes, DE–C
should find the optimal positions of the C centroids in the N -dimensional space,
i.e. it should determine for any centroid its N coordinates, each of which can
take on, in general, real values. With these premises, the i-th individual of the
population is encoded as it follows:

(p 1
i , . . . ,p C

i ) (2)

where the position of the j–th centroid is constituted by N real numbers repre-
senting its N coordinates in the problem space:

p j
i = {pj

1,i, . . . , p
j
N,i} (3)
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Algorithm 1. DE Algorithm
begin

randomly initialize population
evaluate fitness ψ of all individuals
while (maximal number of generations g is not reached) do

begin
for i = 1 to n do

begin
choose three integer numbers r1, r2 and r3 in [1, n]

differing each other and different from i
choose an integer number k in [1, m]
for j = 1 to m do

begin
choose a random real number ρ in [0.0, 1.0]
if

((ρ < CR) OR (j = k))
xi′,j = xr3,j + F · (xr1,j − xr2,j)

else
xi′,j = xi,j

end
if

ψ(xi′,j) < ψ(xi,j)
insert xi′,j in the new population

else
insert xi,j in the new population

end
end

end

Then, any individual in the population consists of C ·N components, each of
which is represented by a real value.

3.2 Fitness

Following the classical approach to supervised classification, also in our case a
database is divided into two sets, a training one and a testing one. The automatic
tool learns on the former, and its performance is evaluated on the latter.

Our fitness function ψ is computed as the sum on all the training set instances
of the euclidean distance in the N -dimensional space between the generic in-
stance xj and the centroid of the class CL it belongs to according to database
(p CLknown(xj)

i ). This sum is divided by DTrain, which is the number of instances
composing the training set. In symbols, the fitness of the i–th individual is given
by:

ψ(i) =
1

DTrain
·

DTrain∑
j=1

d
(
xj , p

CLknown(xj)
i

)
(4)



Automatic Classification of Handsegmented Image Parts with DE 407

When computing distance, any of its components in the N–dimensional space
is normalized with respect to the maximal range in the dimension, and the sum
of distance components is divided by N . With this choice, any distance ranges
within [0.0, 1.0], and so does ψ. Given the chosen fitness function, the problem
becomes a typical minimization problem.

This measure has been preferred to the classical ones such as the percentage
of incorrectly assigned instances in training set because this latter can vary with
steps equal to DTrain only, whereas ours can do it with greater continuity. More-
over, our fitness varies for small variations in centroid positions too, which might
be ininfluent in the other case, where small changes in centroid positions might
not cause the transition of any element from a class to another, thus no variation
in incorrectly classified instances percentage would be obtained. Of course, the
underlying hypothesis, i.e. that reducing these fitness values reduces the num-
ber of incorrectly classified instances in the testing set, should be supported by
experimental evidence.

Performance of a run, instead, is computed as the percentage %err of in-
stances of testing set which are incorrectly classified by the best individual (in
terms of the above fitness) achieved in the run. With this choice DE–C results
can be directly compared to those provided by other classification techniques,
which yield as output classification error percentage.

4 Experiments and Results

4.1 The Image Database

We have used the Image database which we downloaded from the UCI database
repository [12], though actually it was created by the Vision Group at the Uni-
versity of Massachusetts and was donated to UCI in 1990. It was obtained by its
authors starting from a set of seven RGB outdoor images representing exteriors
of houses. One of those images is shown in Fig.1 (taken from [13]). Preliminarily
each image was assigned area segments by hand to give an implicit label to each
pixel. Then each square region composed by 3 · 3 neighboring pixels was taken
into account: if and only if it was homogeneous, i.e. if the nine composing pixels
had the same label, then this region was added as a new instance to an inter-
mediate database, otherwise it was discarded. Finally, some of the items in the
intermediate database were drawn randomly to create the final Image database.

The downloaded database is composed by a training set and a testing one.
The former consists of 210 instances, divided into seven classes, one for each
of seven image components: brickface, sky, foliage, cement, window, path and
grass. Any class is represented in this training set by 30 instances. The testing
set provided, instead, is very large and consists of 2,100 elements. From them we
have chosen for each class its first 20 instances in their order of appearance in
the testing set. Thus, our testing set is composed by 7 · 20 = 140 items and our
whole database is made up by 210+140 = 350 instances. As a result, the training
set is assigned 60% of the database instances, and the testing set the remaining
40%, which are quite usual percentages in classification. The database contains
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Fig. 1. One of the images used to create the database (taken from [13])

19 attributes some represented by integer values and some by real ones. All the
attributes are listed in Table 1 together with their type and their minimal and
maximal values. There are no missing values.

Since DE–C can handle real values while some attributes are of integer type,
care has been posed in dealing with this issue. Namely, attributes with inte-
ger values have been converted to real values, and the reverse conversion with
suitable rounding is carried out in the obtained solutions.

Some database features are displayed in Fig. 2. Its upper part shows the
relationship between attributes 2 and 11, and reveals that in this case the in-
stances are well grouped according to their class, so we might hypothesize that
the database might be easily divided into classes without making many errors.
Unfortunately this conclusion is not true, and a careful analysis of the database
says that in the majority of the cases the relationship between attributes is much
more difficult to deal with. As an example, the lower part of the Figure 2 plots
the attributes 1 and 6: in this case instances belonging to different classes are
really mixed, and any classification tool based on centroids might have serious
problems in correctly classifying instances.

4.2 The Experiments

As concerns the other classification techniques used for the comparison we have
made reference to the Waikato Environment for Knowledge Analysis (WEKA)
system release 3.4 [14] which contains a large number of such techniques, divided
into groups (bayesian, function–based, lazy, meta–techniques, tree-based, rule-
based, other) on the basis of the underlying working mechanism. From each such
group we have chosen some representatives. They are: among the bayesian the
Bayes Net [15], among the function-based the MultiLayer Perceptron Artificial
Neural Network (MLP) [16], among the lazy IB1 [17] and KStar [18], among
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Table 1. Image database attributes and their features

attribute type minimum maximum

region centroid column integer 1 252
region centroid row integer 11 250
region pixel count integer 9 9
short line density 5 real 0.000 0.111
short line density 2 real 0.000 0.222
vertical edge mean real 0.000 25.500
vertical edge standard deviation real 0.000 572.996
horizontal edge mean real 0.000 44.722
horizontal edge standard deviation real 0.000 1386.329
intensity mean real 0.000 143.444
raw red mean real 0.000 136.888
raw blue mean real 0.000 150.888
raw green mean real 0.000 142.555
excess red mean real -48.222 5.777
excess blue mean real -9.666 78.777
excess green mean real -30.555 21.888
value mean real 0.000 150.888
saturation mean real 0.000 1.000
hue mean real -2.530 2.864

the meta-techniques the Bagging [19], among the tree-based ones J48 [20] and
Naive Bayes Tree (NBTree) [21], among the rule-based ones PART [22] and
Ripple Down Rule (Ridor) [23] and among the other the Voting Feature Interval
(VFI) [24].

Parameter values used for any technique are those set as default in WEKA.
On the basis of a preliminary tuning phase carried out on this and other

databases, DE–C parameters have been chosen as follows: n = 200, g = 500,
CR = 0.01 and F = 0.01. It is interesting to note that the values for CR and
F are much lower than the ones classically used according to literature, which
range higher than 0.5. A hypothesis about the reason for this may be that any
chromosome in the population consists in this case of N · C = 19 · 7 = 133
components, so search space is very large and high values for CR and F would
change too many alleles and create individuals too different from the parents.
This would drive the search far from the promising regions already encountered,
thus creating worse individuals than those present in the current population. As
a consequence, given the elitist kind of replacement strategy, only very few new
individuals would be able to enter the next generation. The just hypothesized
scenario seems confirmed by the evolution shown by the system for high values
of CR and F : in this case best individual fitness decrease is not continuous,
rather it takes place in steps, each of which lasts tens of generations. This kind
of evolution appears to be similar to that typical of a random search with elitism.

Results of DE–C technique are averaged over 20 runs differing one another
for the different starting seed provided in input to the random number generator
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Fig. 2. Some examples of analysis of Image database features

only. For the other techniques, instead, some (MLP, Bagging, Ridor, PART and
J48) are based on a starting seed so that also for them 20 runs have been carried
out by varying this value. Other techniques (Bayes Net, KStar, VFI) do not
depend on any starting seed, so 20 runs have been executed as a function of a
parameter typical of the technique (alpha for Bayes Net, globalBlend for KStar
and bias for VFI). NBTree and IB1, finally, depend neither on an initial seed
nor on any parameter, so only one run has been performed for them.

DE–C execution time is around 27 seconds per run on a personal computer
with a 1.6–GHz Centrino processor. Thus times are comparable with those of
the other techniques, which range from 2− 3 seconds up to about 1 minute for
the MLP.

Table 2 shows the results achieved by the 11 techniques on the database.
Namely, for any technique the average values of %err and the related standard
deviations σ are given. Of course σ is meaningless for NBTree and IB1.
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Table 2. Achieved results in terms of %err and σ

DE–C BAYES MLP IB1 KSTAR BAG- J48 NB PART RIDOR VFI
NET ANN GING TREE

%err 7.46 12.85 7.57 10.71 7.42 10.35 10.71 11.42 10.71 9.64 21.21
σ 0.97 1.09 1.05 — 1.51 2.17 0.00 — 0.00 2.35 0.33

As it can be observed from the values in Table 2 DE–C is the second best
technique in terms of %err, very close to KStar which is the best, and closely
followed by MLP. All other techniques are quite far from these three. The stan-
dard deviation σ for DE–C is not too high, meaning that, independently of the
different initial populations, the final classifications achieved have similar cor-
rectness. Some techniques like Bagging and Ridor, instead, show very different
final values of %err, thus sensitivity to different initial conditions. On the con-
trary, other techniques like J48 and PART are able to achieve the same final
value of %err in all the effected runs.

Thus, our idea of exploiting DE to find positions of centroids has proven
effective to face the Image database.

From an evolutionary point of view, in Fig. 3 we report the behavior of a typ-
ical run (the execution shown is the run number 1 carried out on the database).

Its top part shows the evolution in terms of best individual fitness and average
fitness in the population as a function of the number of generations. DE–C
shows a first phase of about 125 generations in which fitness decrease is strong
and almost linear, starting from 0.82 for the best and 0.92 for the average, and
reaching about 0.46 for the best and 0.58 for the average. A second phase follows,
lasting until about generation 350, in which decrease is slower, and the two values
tend to become closer, until they reach 0.23 and 0.26 respectively. From now on
the decrease in fitness is slower and slower, about linear again but with a much
lower slope, and those two values become more and more similar. Finally, at
generation 500 the two values are 0.201 and 0.208 respectively.

The bottom part of Fig. 3, instead, reports the behavior of %err as a function
of the generations. Namely, for any generation its average value, the lowest error
value in the generation %errbe and the value of the individual with the best fit-
ness value %errbf are reported. This figure shows that actually the percentage of
classification error on the testing set decreases as distance–based fitness values
diminish, thus confirming the hypothesis underlying our approach. It should be
remarked here that %errbf does not, in general, coincide with %errbe, and is usu-
ally greater than this latter. This is due to the fact that our fitness does not take
%err into account, so evolution is blind with respect to it, as it should be, and
it does not know which individual has the best performance on the testing set.

As described above for a specific run is actually true for all the runs carried
out, and is probably a consequence of the good parameter setting chosen. This
choice on the one hand allows a fast decrease in the first part of the run and,
on the other hand, avoids the evolution being stuck in premature convergence
as long as generations go by, as it is evidenced by the fact that best and aver-
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Fig. 3. Typical behavior of fitness (top) and %err (bottom) as a function of the number
of generations

age fitness values are different enough during the whole evolution. Preliminary
experiments not reported here showed, instead, that using high values for CR
and F leads to best and average fitness values to rapidly become very close.

5 Conclusions and Future Works

The problem of automatically classifying handsegmented parts of images has
been faced in this paper by use of Differential Evolution. A publicly available
database has been taken into account. A tool has been designed and implemented
in which DE is used to find the positions of the class centroids in the search space
such that for any class the average distance of instances belonging to that class
from the relative class centroid is minimized. The classification performance is
estimated by computing the error percentage on the testing set for the resulting
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best individual. The experimental results have proven that the tool is successful
in tackling the task and is very competitive in terms of error percentage on
the testing set when compared with other ten classification tools widely used in
literature. In fact, only KStar has shown slightly better performance. Execution
times are of the same order of magnitude as those of the ten techniques used.

Results seem to imply that our method based on the simple concept of centroid
can be fruitfully exploited in the Image database. It may be hypothesized that
DE coupled with centroids might be suitably used in general to face classification
of instances in databases. This shall be one of our future issues of investigation.

Future works will aim to shed light on the effectiveness of our system in this
field, and on its limitations as well. To this aim, we plan to endow DE with nich-
ing, aiming to investigate whether this helps in further improving performance.
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Abstract. This paper discusses Mixed-Integer Evolution Strategies and
their application to an automatic image analysis system for IntraVascu-
lar UltraSound (IVUS) images. Mixed-Integer Evolution Strategies can
optimize different types of decision variables, including continuous, nom-
inal discrete, and ordinal discrete values. The algorithm is first applied to
a set of test problems with scalable ruggedness and dimensionality. The
algorithm is then applied to the optimization of an IVUS image analysis
system. The performance of this system depends on a large number of pa-
rameters that – so far – need to be chosen manually by a human expert.
It will be shown that a mixed-integer evolution strategy algorithm can
significantly improve these parameters compared to the manual settings
by the human expert.

1 Introduction

Many optimization problems are in practice difficult to solve with standard nu-
merical methods (like gradient-based strategies), as they incorporate different
types of discrete parameters, and confront the algorithms with a complex geom-
etry (rugged surfaces, discontinuities). Moreover, the high dimensionality of these
problems makes it almost impossible to find optimal settings through manual
experimentation. Therefore, robust automatic optimization strategies are needed
to tackle such problems.

In this paper we present an algorithm, namely the Mixed-Evolution Stra-
tegy (MI-ES), that can handle difficult mixed-integer parameter optimization
problems. In particular, we aim to optimize feature detectors in the field of
Intravascular Ultrasound (IVUS) image analysis.

IVUS images show the inside of coronary or other arteries and are acquired
with an ultrasound catheter positioned inside the vessel. An example of an IVUS

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 415–426, 2006.
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image with several detected features can be seen in Figure 1. IVUS images are
difficult to interpret which causes manual segmentation to be highly sensitive to
intra- and inter-observer variability[5]. In addition, manual segmentation of the
large number of IVUS images per patient is very time consuming. Therefore an
automatic system is needed. However, feature detectors consist of large numbers
of parameters that are hard to optimize manually and may differ for different
interpretation contexts. Moreover, these parameters are subject to change when
something changes in the image acquisition process.

Fig. 1. An IntraVascular UltraSound (IVUS) image with detected features. The black
circle in the middle is where the ultrasound imaging device (catheter) was located. The
dark area surrounding the catheter is called the lumen, which is the part of the artery
where the blood flows. Above the catheter calcified plague is detected which blocks the
ultrasound signal causing a dark shadow. Between the inside border of the vessel and
the lumen there is some soft plague, which does not block the ultrasound signal. The
dark area left of the catheter is a sidebranch.

To optimize these IVUS feature detectors, we propose to use mixed-integer
evolution strategies, which have so far been successfully applied to simulator-
based optimization of chemical engineering plants [2]. Before applying these
strategies on the application problem, their performance and reliability will first
be tried on a set of test functions, including a new integer test function with
scalable degree of ruggedness.

This paper is structured as follows: first, in Section 2, we will explain the
application problem in more detail. Then, in Section 3, mixed-integer evolution
strategies (MI-ES) will be introduced. These strategies are tried on artificial
test problems in Section 4. Promising variants of the MI-ES are then applied to
the parameter optimization of an IVUS feature detector in Section 5. Finally,
conclusions and future work are presented in Section 6.
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2 Intravascular Ultrasound Image Analysis

IntraVascular UltraSound (IVUS) is a technique used to get real-time high res-
olution tomographic images from the inside of coronary vessels and other arter-
ies. To gain insight into the status of an arterial segment a so-called catheter
pullback sequence is carried out. A catheter (� ±1mm) with a miniaturized ul-
trasound transducer at the tip is inserted into a patient’s artery and positioned
downstream of the segment of interest. The catheter is then pulled back in a
controlled manner, using motorized pullback (1 mm/s), during which images are
acquired continuously.

In [1] a state-of-the-art multi-agent system is used to detect lumen, vessel,
shadows, sidebranches and calcified plagues in IVUS images. The system, as
shown in Figure 2, is based on the cognitive architecture Soar (States, operators
and results) [6]. IVUS image processing agents interact with other agents through
communication, act on the world by controlling and adapting image processing
operations and perceive that same world by accessing image processing results.

Agents thereby dynamically adapt the parameters of low-level image segmen-
tation algorithms based on knowledge of global constraints, contextual knowl-
edge, local image information and personal beliefs. The lumen-agent, for exam-
ple, encodes and controls an image processing pipeline which includes binary
morphological operations, an ellipse-fitter and a dynamic programming module,
and it determines all relevant parameters. Generally, agent control allows the
underlying segmentation algorithms to be simpler and to be applied to a wider
range of problems with a higher reliability.

Image
Proc.

Results

Input
Images

Image
Processing
Platform

shadow
agent

lumen
agent

Interaction

ActionPerception

vessel
agent

calcified
plaque
agent

sidebranch
agent

Agent Platform
(Soar)

Interaction

Interaction

Fig. 2. Global view of the multi-agent
system architecture

Fig. 3. Schematic version of Figure 1 as
detected by the multi-agent image segmen-
tation system

Although the multi-agent system has shown to offer lumen and vessel detec-
tion comparable to human experts [1], it is designed for symbolic reasoning, not
numerical optimization. Further it is almost impossible for a human expert to
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completely specify how an agent should adjust its feature detection parameters
in each and every possible interpretation context. As a result an agent has only
control knowledge for a limited number of contexts and a limited set of feature
detector parameters.

In addition, this knowledge has to be updated whenever something changes
in the image acquisition pipeline. Therefore, it would be much better if such
knowledge might be acquired by learning the optimal parameters for different
interpretation contexts automatically.

3 Mixed-Integer Evolution Strategies

From the point of view of numerical analysis, the problem described above can
be classified as a black box parameter optimization problem. The evaluation
software is represented as an objective function f : S → R to be minimized,
whereby S defines a parametric search space from which the decision variables
can be drawn. Typically, also constraint functions are defined, the value of which
has to be kept within a feasible domain. Typically, the objective function eval-
uation and also partly the evaluation of the constraint function evaluation are
done by the evaluation software, which, from the point of view of the algorithm,
serves as a black box evaluator.

One of the main reasons why standard approaches for black box optimiza-
tion cannot be applied to the application problem, is because different types of
discrete and continuous decision variables are involved in the optimization. For
the parametrization of the image analysis system three main classes of decision
variables are identified:

– Continuous variables: These are variables that can change gradually in
arbitrarily small steps

– Ordinal discrete variables: These are variables that can be changed grad-
ually but there are smallest steps (e.g. discretized levels, integer quantities)

– Nominal discrete variables: These are discrete parameters with no rea-
sonable ordering (e.g. discrete choices from an unordered list/set of alterna-
tives, binary decisions).

Taking the above into account, the optimization task reads:

f(r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd
) → min (1)

subject to:
ri ∈ [rmin

i , rmax
i ] ⊂ R, i = 1, . . . , nr

zi ∈ [zmin
i , zmax

i ] ⊂ Z, i = 1, . . . , nz

di ∈ Di = {di,1, . . . , di,|Di|}, i = 1, . . . , nd

Here ri denotes a continuous variable, zi a integer variable, and di a discrete
variable which can be drawn from a predescribed set Di.
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3.1 Evolution Strategies

Mixed-integer evolution strategies (MI-ES) are a special instantiation of evo-
lution strategies that can deal with parameter types, i.e. can tackle problems
as described above. They were first proposed in Emmerich et al. [2, 3] for the
purpose of chemical engineering plant optimization with process simulators from
industry. There, a detailed outline of the algorithm was given with experiments
on test functions of higher dimension. However, the experimental analysis of this
algorithm deserves some further attention. Therefore, before presenting results
of new studies below, we will first give a brief outline of the algorithm and discuss
its working principles.

The main loop of the MI-ES is displayed in algorithm 1.. First, the algorithm
initializes μ individuals randomly (uniformly distributed within the parame-
ter ranges), and evaluates them by means of the objective function f . Then,
λ offspring individuals are created. For each new variant, two individuals are
drawn out of the current population P (t) and discrete recombination (= uni-
form crossover) on the objective variables and intermediate recombination (av-
eraging) on the step-size parameters is used to generate an offspring. Each of the
λ offspring generated by this process is then modified by means of the mutation
operator, which we will describe in more detail in section 3.2. Then the objective
function value of the λ new individuals (= offspring individuals) is evaluated.
Next, the selection operator chooses the μ best individuals out of the λ offspring
individuals and the μ parental individuals.

Note, that an alternative strategy would be to consider only the offspring pop-
ulation for the selection of individuals in P (t). This strategy would be termed a
(μ, λ)-ES. In this paper we choose a Plus-Strategy based on preliminary experi-
ments that indicated that this strategy behaves superior whenever only a small
number of experiments could be afforded. As long as the termination criterion1

is not fulfilled, these μ selected individuals form the next population P (t + 1).
The proposed algorithmic scheme will be called a (μ + λ)-ES.

Algorithm 1. Main loop of a (μ + λ)- ES.

t ← 0
initialize population P (t) of μ individuals randomly within the individual space I

evaluate the μ initial individuals applying fitness function f
while Termination criteria not fulfilled do

recombine λ offspring individuals out of μ parents, by choosing randomly two
individuals and recombine them, to obtain each of the offspring individual.
mutate the λ offspring individuals
evaluate the λ offspring individuals
select the μ best individuals for P (t+1) from λ offspring individuals and μ parents
t ← t + 1

end while

1 In most cases a maximal number of generations is taken as termination criterion.
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In order to allow for a mutative step-size adaptation, a surplus of offspring
individuals needs to be generated in each generation. The recommended ratio of
μ/λ � 1/7 leads to a good average performance of evolution strategies in many
cases [8].

3.2 Mutation of Different Variable Types

Individuals consist of three vectors of decision variables and associated to each of
these vectors, we also maintain a vector of step-size parameters. In [2] it was pro-
posed to learn only a single step-size for each variable vector. Accordingly, in this
case the vector reduces to a scalar value associated with a class of parameters.
In summary, a variable vector that represents an individual reads

(r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd
, s1, . . . , sns , q1, . . . , qnς , p1, . . . , pnp) ∈ I,

I = R
nr × Z

nz ×D1 × · · · ×Dnd
× (R+)ns × (R+)nq × [0, 1]np .

In case ns = nr the step-sizes are assigned to the different vector positions
and can be adapted individually. The step-size parameters for the continuous
variables si represent standard-deviations used for scaling the mutation distri-
bution of the object variables. In case ns = 1 the same step-size is used for all
parameters. The step-sizes for the integer variables are defined in a similar man-
ner. As we will discuss later, another distribution will be used to sample integer
values. Finally, the step-size parameters for the nominal discrete variables are
interpreted as mutation probabilities.

Algorithm 2. Mutation procedure in MI-ES
for i = 1, . . . , nr do

s′i ← si exp(τgNg + τlN(0, 1))
r′i = ri + N(0, s′i)

end for
for i = 1, . . . , nz do

q′i ← qi exp(τgNg + τlN(0, 1))
z′

i ← zi + G(0, q′i)
end for
p′

i := 1/[1 + 1−pi
pi

∗ exp(−τl ∗ N(0, 1))]

for i ∈ {1, . . . , nd} do
if U(0, 1) < p′

i then
d′

i ← uniformly randomly value from Di

end if
end for

Algorithm 2 summarizes the mutation procedure. For the local and global
step-size learning rates τl and τg we use the recommended parameter settings
τ = 1 and τl = 1/

√
2
√

nr and τg = 1/
√

2nr (cf. [8]).
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Note, that in case a single step-size is chosen, τl = 0. In the algorithm N(0, 1)
denotes a function that results in a standard normal distributed random number.
Accordingly, U(0, 1) denotes a function returning a uniformly distributed number
in [0, 1] ⊂ R and G(0, q) returns a geometrically distributed random value.

Among these distributions, the geometric distribution deserves further atten-
tion, as it is rarely referred to in literature. Rudolph [7] proposed the geometrical
distribution on integer representations. Geometrical distributed random vari-
ables are random variables whose values are in Z. They have properties similar
to normal distributed random variables in R. In particular, they have infinite
support in Z, are unimodal with a peak in 0, and their probability function is
symmetric in the origin. Moreover, as pointed out by Rudolph [7], multivariate
extensions are characterized by a rotational symmetry with regard to the �1

norm2 and they belong to a family of maximal entropy distributions. Finally,
by increasing the value q the standard deviation of the random variable can be
gradually increased. All these characteristics make the geometric distribution
well suited for application within mixed-integer evolution strategies.

A geometrically distributed random variable G can be generated from two
uniformly distributed random variables u1 := U(0, 1); u2 := U(0, 1) via:

G = G1 −G2, p = 1− s/nz

1 +
√

1 + ( s
nz

)2
, Gi =

⌊
ln(1 − ui)
ln(1− p)

⌋
, i = 1, 2 (2)

The mutation of the mutation probabilities is done by means of a logistic distri-
bution as described in [2]. To make sure that variables stay within their respective
boundaryes we have added some routines for interval treatment to the MI-ES.
While for the continuous variables we used reflection at the boundary, for the
integer variables we set the value to the bound, whenever the bound is exceeded.
The latter method is also used to keep the mutation probabilities within bounds.

4 Study on Artificial Test Problems

In order to select a favorable variant of the MI-ES for the time-consuming runs on
the image analysis problem, we study the behavior of the MI-ES on a generalized
sphere function and barrier problems using a new problem generator.

The generalized sphere function is an extension of a standard problem [2]:

fsphere(r, z,d) =
nr∑
i=1

r2
i +

nz∑
i=1

z2
i +

nd∑
i=1

d2
i → min (3)

nr = nz = nd = 7, r ∈ [−10, 10]nr ⊂ R
nr , z ∈ [−10, 10]nz ,d ∈ {0, . . . , 5}nd (4)

This problem is relatively simple, as it is decomposable and unimodal. We use it
to gain some insights of how the MI-ES behaves on rather simple problems and
thus to estimate the best case behavior of the MI-ES.
2 Sum of absolute values.
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Fig. 4. Surface plots of the barrier function for two variables. All other variableswere
kept constant at a value of zero, two integer values were varied in the range from 0 to
20.

As a more complex test case we designed the multimodal barrier problem.
It produces integer optimization problems with a scalable degree of ruggedness
(determined by parameter C) by generating an integer array A using the following
algorithm:

A[i] = i, i = 0, . . . , 20
for k ∈ {1, . . . , C} do

j ← random number out of {0, . . . , 19}
swap values of A[j] and A[j + 1]

end for
Then a barrier function is computed:

fbarrier(r, z,d) = fsphere(r,d) +
nz∑
i=1

A[zi]2 → min (5)

nr = nz = nd = 7, r ∈ [−10, 10]nr ⊂ R, z ∈ [0, 20]nz ,d ∈ {0, . . . , 5}nd (6)

The parameter C controls the ruggedness of the resulting function with regard
to the integer space. High values of C result in rugged landscapes with many
barriers. To get an intuition about the influence of C on the geometry of the
function we included plots for a two-variable instantiation of the barrier function
in Figure 4 for C = 20 and C = 100.

In Figure 5 we present some parameter studies of the MI-ES. We compare
different settings for the population and offspring sizes {(μ = 3, λ = 10), (μ =
4, λ = 28), (μ = 15, λ = 100)} on the sphere and barrier problems. It turns out
that the (μ = 4, λ = 28) setting performs best on the more difficult problems, at
least if only a limited number of about 2000 function evaluation can be afforded
(as in our application problem). However, the plots on the barrier problem show
that for long runs with t � 2000 a strategy with a larger population size might
be favorable. We also observed that it is less risky with regard to the performance
of the strategy to use a single step-size per parameter type (ns = nq = np = 1),
instead of individual step-sizes for all of the variables. This corresponds to the
findings in [2].
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Fig. 5. Averaged results on the sphere and the barrier functions. For all results the
median and the quartiles of 20 runs are displayed.

5 Experimental Results on Image Analysis Problem

To determine whether or not MI-ES can be used as an optimizer for the pa-
rameters of feature detectors in the multi-agent image analysis system we test
MI-ES on the lumen feature detector. This detector is chosen, because it can pro-
duce good results in isolation without additional information about sidebranches,
shadows, plagues and vessels.

Table 1 contains the parameters for the lumen feature detector together with
their type, range, dependencies and the default settings determined by an expert.
As can be seen the parameters are a mix of continuous, nominal discrete (integer)
and ordinal discrete(including boolean) variables.

For the experiments we use five disjoint sets of 40 images. The fitness function
used in the experiments is based on the difference (see Eq. 7)between the contour
c found by the lumen feature detector and the desired lumen contour C drawn
by a human expert. The difference measure is defined as the sum of the distances
of the points of contour c that are more than a threshold distance away from
contour C. The reason to allow for a small difference between the two contours
is that even an expert will not draw the exact same contour twice in a single
IVUS image. The fitness function itself is the calculated average difference over
the 40 images in the dataset.

Let #points denote the total number of points of contour C, then the contour
difference is defined as:

difference(c, C) =
#points∑

p=1

d(cp, C), if d(cp, C) > threshold (7)

On each of the 5 datasets we trained our (4 + 28) MI-ES algorithm for
100 iterations resulting in 2804 fitness evaluations. The results are displayed in
Table 2. Parameter solution 1 was trained on dataset 1, parameter solution 2
was trained on dataset 2, etc . . . .

Table 2 shows that for most cases the MI-ES parameter solutions result in
lower average contour differences when applied to both test- and training data.
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Table 1. Parameters for the lumen feature detector

name type range dependencies default

—
maxgray integer [2, 150] > mingray 35
mingray integer [1, 149] < maxgray 1
connectivity ordinal 4,6,8 6
relativeopenings boolean {false,true} true
nrofcloses integer [0, 100] used if not relativeopenings 5
nrofopenings integer [0, 100] used if not relativeopenings 45
scanlinedir ordinal {0,1,2} 1
scanindexleft integer [-100, 100] < scanindexright -55
scanindexright integer [-100, 100] > scanindexleft 7
centermethod ordinal {0,1} 1
fitmodel ordinal {ellipse, circel} ellipse
sigma continuous [0.5 10.0] 0.8
scantype ordinal {0,1,2} 0
sidestep integer [0, 20] 3
sidecost continuous [0.0, 100] 5
nroflines integer [32, 256] 128

Table 2. Performance of the best found MI-ES parameter solutions when trained on
one of the five datasets (parameter solution i was trained on dataset i). All parameter
solutions and the (default) expert parameters are applied to all datasets. Average
difference (fitness) and standard deviation w.r.t. expert drawn contours are given.

default parameter parameter parameter parameter parameter
parameters solution 1 solution 2 solution 3 solution 4 solution 5

dataset fitness s.d. fitness s.d. fitness s.d. fitness s.d. fitness s.d. fitness s.d.

1 395.2 86.2 148.4 39.5 159.8 43.5 185.4 43.0 144.8 42.0 271.0 74.8
2 400.2 109.2 183.3 59.2 180.7 58.4 207.2 69.2 232.7 71.0 352.0 73.1
3 344.8 65.6 205.9 69.8 203.9 70.1 164.4 49.7 183.9 80.3 327.1 55.9
4 483.1 110.6 284.4 92.7 269.0 73.2 250.4 80.4 173.2 64.7 330.1 82.2
5 444.2 90.6 368.4 100.9 370.9 102.5 462.2 377.3 168.7 64.0 171.8 54.5

Only parameter solution 3 applied to dataset 5 has a higher average contour
difference (444.2 vs 462.2). To determine if the best results obtained by the MI-
ES algorithm are also significantly better than the default parameter results, a
paired two-tailed t-test was performed on the (40) difference measurements for
each image dataset and each solution using a 95% confidence interval (p = 0.05).
The t-test shows that all differences are significant except for the difference be-
tween parameter solution 3 applied to dataset 5 and the default solution. There-
fore we conclude that the MI-ES solutions are significantly better than the de-
fault parameter solution in 96% of the cases (24 out of 25) and equal in one case.

Some other interesting results shown in Table 2 are that the solution trained
with dataset 4 performs better on dataset 1 than the solution which was op-
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timized with dataset 1 although this difference is not significant. Dataset 4 is
interesting anyway, as it is the only dataset for which the performance of all pa-
rameter solutions are mutually significantly different, while the solution trained
with this dataset has the best average performs on all other datasets. Visual
inspection of the results of the application of parameter solution 4 to the other
datasets shows that this solution is a good approximator of the lumen contours in
the other datasets, but that the particular solutions trained with those datasets
follow the expert contours more closely. Perhaps dataset 4 contains features of
the other datasets (1,2,3 and 5) which may explain this behavior. However, visual
inspection of the the image datasets does not show any apparent differences.

6 Conclusions and Outlook

In this paper we have applied Mixed-Integer Evolution Strategies (MI-ES) to
optimize the parameters of a lumen feature detector for IntraVascular Ultrasound
(IVUS) images. The mixed-integer evolution strategy uses state of the art type
of variation operators for mixed integer representations, where the parameters
are a combination of continuous, ordinal discrete and nominal discrete variables.
Different instantiations of the MI-ES are tested on two artificial test problems
in order to identify a favorable parameter setting for the experiments on the
application problem. Based on the results of this study, a (4 + 28)-MI-ES with
a single step-size for each variable class was identified as a robust strategy and
used for tackling the image analysis problem. The results show a significant
improvement over the parameters tuned manually by an expert.

Our first results clearly indicate the feasibility of the MI-ES approach for
optimizing parameters of feature object detectors. However, our tests are at the
moment restricted to the lumen feature detector. In future studies we plan to
investigate the potential of the method for the other feature detectors needed
for IVUS image analysis.

We do not expect to find one optimal solution for each feature detector to
work in all possible contexts and for all possible patients. Therefore we are going
to apply the methods outlined in this paper to different image interpretation
contexts which should result in a set of optimal image feature detector solu-
tions rather than in a single solution. The aim is then to let an agent in the
multi-agent system decide which particular solution to use based on its current
knowledge of the situation. We also intend to further study the mixed-integer
evolution strategy algorithm both in theory and practice to get more insight into
its strengths and weaknesses.
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Abstract. This paper investigates the communication system of hon-
eybees with the purpose of obtaining an intelligent approach for three-
dimensional reconstruction. A new framework is proposed in which the
3D points communicate between them to achieve an improved sparse
reconstruction which could be used reliable in further visual computing
tasks. The general ideas that explain the honeybee behavior are trans-
lated into a computational algorithm following the evolutionary comput-
ing paradigm. Experiments demonstrate the importance of the proposed
communication system to reduce dramatically the number of outliers.

1 Introduction

Three-dimensional reconstruction has always been a fundamental research topic
in computer vision and photogrammetry. Today the importance of image and
vision computing task has gained relevance in the evolutionary computing com-
munity. This paper proposes a bioinspired approach to tackle the problem of
sparse and quasi-dense reconstruction using as model the honeybee search be-
havior. This work is also inspired by the work of Louchet [12, 1, 13] in which an
individual evolution strategy was applied to obtain a three-dimensional model
of the scene using stereo-vision techniques. The main characteristic of that work
was the application of the Parisian approach to the evolution of a population
of 3D points, called flies, in order to concentrate those points on the object
surface of the scene. For more about the Parisian approach we recommend [7]
and [2]. One of the drawbacks of the approach of Louchet was the lack of a
paradigm to provide those 3D points with intelligent capabilities. Indeed, a high
number of outliers were produced with their technique. We decide to explore the
honeybee search behavior in order to develop an intelligent algorithmic process.
Honeybees are considered to perform one of the most complex communication
tasks, in the animal world. Indeed, concepts of memory attention, recognition,
understanding, interpretation, agreement, decision-making, and knowledge, as
well as questions about cognition and awareness, have appeared regularly in the
honeybee literature. In this way, the honeybees are considered to achieve mental
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tasks like remembering, recognizing, searching, finding, understanding, and even
disbelieving. All of these tasks are considered major subjects in computer vision
and we believe that an algorithm inspired from the honeybee behavior could
provide new insights in old problems not yet solved.

2 The Honeybee Dance Language

Currently, most scientists in the honeybee behavioral community agree that the
communication system of the bees is a language regarding insect capacities [3].
The honeybee dance language has been used by researchers to create machine
vision systems [19, 20], as well as for robotics tasks [11]. All these works attempt
to provide knowledge based on the study of the honeybee. However, none of these
works have used the adaptive behavior of the honeybee swarm. In this way, our
work is also related to the ant colony optimization meta-heuristic and is more
general field called swarm intelligence [5, 6]. However, our work is also strongly
related to evolutionary computing as we will explain later. This work is part of
our own effort to build new algorithms based on some basic principles taken by
the observation of a particular natural phenomenon [16, 18]. Honeybees use a so-
phisticated communication system that enables them to share information about
the location and nature of resources. If a sugar solution is placed outdoors a long
time might elapse before they found the food. Soon after this first visit, however,
bees soon began swarming around the feeder. The communication among bees is
performed using what is called the “dance language” as a means of recruitment.
The dance language refers to patterned repetitive movements performed by bees
that serve to communicate to their nestmates the location of food sources or nest
sites. In this way, the dance is a code that conveys the direction, distance, and
desirability of the flower patch, or other resource, discovered. The waggle dance
of honeybees can be thought of as a miniaturized reenactment of the flight from
the hive to the food or resource. Some honeybee scientists have correlated the
distance to the site with the speed of the dance. As the flight to the food dis-
tance becomes longer, the duration of the waggle portion of the dance becomes
longer. However, the detailed nature of distance communication has been diffi-
cult to determine, because the rate of circling and the length of the waggle run
correlate with distance information. Moreover, a question arise: if is the finding
that it is not distance per se the bees indicate, but rather the effort needed to
arrive at the dance location. What is really important is that honeybees use the
dance’s symbolically encoded information to locate resources. Thus, honeybees
use both dancing and odors to identify the location of resources, as well as the
desirability of a resource. The desirability is expressed in the dance’s “liveliness”
and “enthusiasm”: the richer the source, the livelier the dance that can last many
minutes, even hours. The dances are deployed to meet various colony needs such
as: changed to monitor shifting environmental conditions, responsive to commu-
nication with hivemates, and switched on the basis of superior information from
other dancers. Hence, these features suggest that the dance is a tool used by the
bees, rather than a behavioral pattern rigidly emitted. When a honeybee discov-
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ers a rich patch, she returns and seeks out her hivemates in a specific location
near the hive entrance called the “dance floor”. She performs the dance on the
vertical comb in the dark hive surrounded by numerous potential recruits. The
dancer pauses for antennal contact with her followers, and to transfer some of
the nectar she has harvest to them. The communicative nature of the dance is
apparent in that dances are never performed without audience. While the dance
is mostly used to indicate the location of flowers, it is also used for pollen, water
when the hive is overheating, waxy materials when the comb needs repair, and
the new living quarters when part of the colony must relocate. The angle that a
bee flies during the flight to the resource, relative to the sun azimuth (the hori-
zontal component of the direction toward the sun), is mirrored in the angle on
the comb at which the waggle portion of the dance is performed. If the resource
is to be found directly toward the sun, a bee will dance straight upward. If the
resource is directly away from the sun, the bee will dance straight downward.
If the resource is at 45◦ to the right of the sun, then the dance is performed
with the waggle run at 45◦ to the right of the vertical, and so forth. Honeybees
make a transition from round dances for food near the nest to waggle dances
at a greater distance. In fact the bees perform the round dance as the waggle
dance being performed on the same spot first in one direction and then in the
other. The bees trace out a figure-of-eight with its two loops more or less closely
superimposed upon one another. In this way, the waggle dance is represented at
its minimal measure of a single point.

Fig. 1. The honey bee search process is composed of three main activities: exploration,
recruitment and harvest
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These ideas can be represented as a flow diagram in order to develop an
algorithm. Figure 1 shows the flow diagram of the search process employed by the
honeybees. The honeybee algorithm that we are proposing is composed by three
main activities: exploration, recruitment and harvest. We would like to point
that this process is inherently parallel and the algorithm that we are currently
using could be further enhanced. The honeybee pass from an inactivity state
to the exploration stage in which the “scouts” travel considerable distances to
investigate potential sources, and then return and dance to recruit foragers. The
sharing of information about the location of sources such as: nectar, pollen,
water, and propolis; makes it possible for a honeybee colony to serve as an
information center. This communication system allows the reconnaissance of its
many foragers, surveying a vast area around the nest, to be used in the discovery
of the best sources. Once the exploration is started the recruitment and harvest
stages are initialized, and the whole cycle is repeated indefinitely only changed
by the current requirement of the hive.

3 The Honeybee Search Algorithm

In this section we give details about the algorithm that we are proposing to ob-
tain information about the three-dimensional world. Normally, the reconstruc-
tion of the three-dimensional world is achieved using calibrated and uncalibrated
approaches in which several geometric relationships between the scene and the
images are computed from point correspondences. The projection matrix mod-
els the transformation from the scene to the image, and this could be thought
as a direct approach. On the other hand, the transformation from the images
to the scene is realized by a process known as triangulation and this could be
imagined as an inverse approach. Obviously, to triangulate a 3D point it is nec-
essary to use two 2D points obtained from two images separated at least by a
translation. We would like to stay that errors on the calculation could produce
misleading results. Therefore it is necessary to apply the best possible algorithm
in the calculation of the projection matrix. The problem in this work is posed
as a search process in which the 3D points are searched using the direct ap-
proach. In this way, it is avoid the use of the epipolar geometry computation.
This idea represents a straightforward approach in which a 3D point with coor-
dinates (X, Y, Z) on the Euclidean world is projected into two 2D points with
coordinates (xl, yl) for the left camera coordinate system and (xr, yr) for the
right camera coordinate system. A measure of similarity is computed with the
Zero Normalized Cross-Correlation (ZNCC) and the image gradient to decide if
both image points represent the same 3D point. We apply an evolutionary al-
gorithm similar to evolution strategies (μ + λ) in which mutation and crossover
are applied as the main search operators.

In this work, we follow the approach proposed by Boumaza in which the new
population is created independently by the addition of three different process,
see Figure 3. This process is used by the exploration and harvest stages in the
honeybee search algorithm, see Figure 2. The exploration stage starts creating
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Fig. 2. Flow chart describing the honeybee search algorithm

a random population μE of 3D points called explorers, which are then trans-
formed into a new population λE using the mutation, crossover and random
steps. This stage attempts to simulate the natural process in which the bees
explore asynchronously the space in search of the food source. The selection of
the best explorers is made with a tournament selection after being evaluate to-
gether with the old population. We apply a sharing step in order to balance the
distribution of the explorers in the Euclidean world. We repeat this stage until
a given number of generations n = 30. Then, the recruitment stage is started.
Each explorer recruits a number of foragers proportionally to the fitness func-
tion. The size of the search space is proportional to the distance between the pair
of cameras (hive) and the current 3D point (explorer). Obviously the explorers
that are closer to the hive should have a bigger search space, compared with the
explorers that are farther away. We start with a fixed size ζ to the nearest visited
place near the hive. Then, as long as the bees are farther away from this initial
bee; the search space starts to be reduced using as information the distance on
the images in order to have an evaluation about the depth in which the points
are located.

di =
√

(xl − xr)2 + (yl − yr)2.

Now, we can proceed to reduce the search space with the following relationship:

f = 0.5× (1− u) + 1× u ,
ζ′i = ζi × f .

(1)
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Fig. 3. Flow diagram detailing the generation of a new population

Where u represents the degree of desirability that a place holds according to the
distance di/dmax. The value of f lies in the interval [0.5, 1], where 0.5 is related
to the highest distance, while 1 is related to the closest 3D point.

The next stage is to harvest the source patch for each explorer using a similar
algorithm with two cycles. The first cycle is dedicated to visit each place that
was selected by the explorer. In this way, the foragers that have been selected by
the explorer starts a new search process around the point where the explorer is
located in order to exploit this location. Hence, the exploration and exploitation
steps are achieved by the explorers and foragers respectively. As we can observe
each group of foragers exploits sequentially all places. Note that the number of
foragers that have been assigned to each explorer is variable according to the
fitness function. It is possible that not all explorers have assigned foragers to
harvest their place location. In order to know how many foragers are assigned
to each explorer, we calculate the proportion of foragers being assigned to the
explorers using the proportional fitness

pi = fitnessi/

N∑
j=1

fitnessj .

Thus, the number of foragers assigned to each explorer is computed using the
following factor

ri = pi ∗ λ , (2)
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where λ is the total size of the population. The second cycle is similar to the
exploration stage. Here, the fitness function computation uses besides the ZNCC
the homogeneity of the texture without gradient computation . The homogeneity
is computed using the Gray Level Coocurrence Matrix because it has been proved
reliable in image classification and segmentation for content based image retrieval
[10]. Also, the size of the search space is obviously smaller with respect to the
exploration stage where it is considered the whole space. However, the number of
bees could be even bigger with respect to the exploration stage because the total
number of foragers is much bigger than the total number of explorers. Here, we
use 200 explorers and 2000 foragers. Next we explain the main search operators.

3.1 Evolutionary Search Operators: Mutation, Crossover, and
Sharing

The honeybees are recombined coordinate by coordinate using the SBX crossover
operator [4]. The SBX operator emulates the working principle of the single point
crossover operator on binary strings. From two parent solutions P1 and P2, it
creates two children C1 and C2 as follows:

C1 = 0.5[(1 + β)P1 + (1− β)P2]
C2 = 0.5[(1− β)P1 + (1 + β)P2]

with β =

⎧⎨⎩ (2u)
1

ηx+1 if u < 0.5(
1

2(1−u)

) 1
ηx+1

otherwise.

The spread factor β is dependent on a random variable u ∈ [0, 1] and on
an user defined nonnegative value ηx that characterizes the distribution of the
children in relation to their parents.

Mutation is applied to each of the real variables using a polynomial distribu-
tion perturbation. The mutation operation modifies a parent P into a child C
using the boundary values P (LOW ) and P (UP ) of each of the decision variables
in the following manner:

C = P + (P (UP ) − P (LOW ))δ

with δ =

{
(2u)

1
ηm+1 − 1 if u < 0.5

1− [2(1− u)]
1

ηm+1 otherwise .

A novel representation proposed in [14],[15] is used for the real-coded evolu-
tionary operators. This consists in encapsulating both crossover and mutation
into a single algebraic affine transformation. Since two real-coded variables Y1

and Y2 represent a point in the affine plane, an affine transformation of the form

X ′
1 = b11X1 + b12X2 + C1

X ′
2 = b21X1 + b22X2 + C2

is applied, where the coefficients are arbitrary real numbers, subject to |brs| �= 0.
This transformation can be extended to include the n variables contained in
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two different solutions. Accordingly, the generation of new solutions within the
evolutionary algorithm can be stated as follows:(

X ′
11

Y ′
11

Z ′
11

. . . Z ′
1n

X ′
21

Y ′
21

Z ′
21

. . . Z ′
2n

)
=⎡⎢⎣ b11 b12 C1

b21 b22︸ ︷︷ ︸ C2︸︷︷︸
Crossover Mutation

⎤⎥⎦
n

⎛⎝X11 Y11 Z11 . . . Z1n

X21 Y21 Z21 . . . Z2n

1 1 1 . . . 1

⎞⎠
The advantages of this encapsulation are:

1. Standardized treatment of all transformations
2. Complex transformations are composed fromsimple transformationsbymeans

of matrix multiplication.
3. Simple inversion of the transformation by matrix inversion.
4. Extremely fast, hardware supported matrix operations in high-power graphic

workstations.

Finally, we applied a 3D sharing to the honeybees in order to balance the
diversity of solutions. In the work of Louchet a 2D sharing was applied with
the idea of simplifying the computation. However, this has the drawback of
incorrectly penalizing those 3D points that projects into the same image location
without being actually around the same 3D space. Thus, we decide to use the
sharing proposed by Goldberg and Richardson [9]

Sh(di,j) =

{
1− d(i,j)

σshare
, if di,j ≤ σshare

0 otherwise

where d(i,j) is the distance between the individuals i and j. σshare is the threshold
that controls the ratio of sharing. The above function is applied to each individual
to obtain a niche count as follows: ni =

∑N
j=1 Sh(di,j). Then the shared fitness

function is calculated with the following expression fitness′i = fitnessi

ni
.

4 Experimental Results and Conclusions

We have applied the honeybee search algorithm described in this paper on several
pair of images. Here for reason of space we show only the results that we have
obtained with two stereo pairs. Those images were captured with a Pulnix digital
camera TM-9701d with a C-mount Fujinon lens HF16A-2M1, of focal length
f = 16mm. We describe now the parameters that we have used in each stage of
the algorithm. The exploration stage uses a parent population μE = 200, and a
child population λE = 500. The child population is generated according to the
following rates: mutation αE = 0.6, crossover βE = 0.1, and random γE = 0.3.
The harvest stage uses a parent population of μH = 2000 and a child population
λH = 4000. The rates are the same of the exploration stage. The parameters
of the recruitment stage are automatically computed as we have explained in
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Fig. 4. These figures shows the results of applying the honeybee search algorithm.
The first two images shows the first stereo pair with the projection of the artificial
honeybees, while the second row shows the VRML to appreciate the spatial coherence.
The third and fourth rows show the results with a real person.
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the document, see Equations 1 and 2. The sharing uses the following parameter
σshare = 100mm. Note that the objects on both images are placed more or less at
the same distance to the stereo rig. The parameters of the evolutionary operators
of mutation and crossover are as follows: mutation ηm = 25 and crossover ηx = 2.
Note that the last two parameters describe how the evolutionary operations are
applied, while the rates of mutation and crossover specifies how many individuals
are generated with those operations.

The advantage of using the honeybee search algorithm is the robustness
against outliers. We can appreciate in the VRML images of Figure 4 that all 3D
points are grouped coherently with the goal of reconstructing compact patches.
This is due to the intelligent process described in this paper in which some ar-
tificial honeybees (explorers) guide the search process to obtain an improved
sparse reconstruction. The explorers guide the foragers using texture and cor-
relation information during the whole process. Similar to the natural process
the goal is achieved using a communication system that we have adapted to the
classical evolutionary algorithm. It is suitable to think that the honeybee search
algorithm could be applied in other contexts.
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Abstract. Pedestrian tracking video-based systems present particular
problems such as the multi fragmentation or low level of compactness of
the resultant blobs due to the human shape or movements. This paper
shows how to improve the segmentation stage of a video surveillance
system by adding morphological post-processing operations so that the
subsequent blocks increase their performance. The adjustment of the
parameters that regulate the new morphological processes is tuned by
means of Evolution Strategies. Finally, the paper proposes a group of
metrics to assess the global performance of the surveillance system. After
the evaluation over a high number of video sequences, the results show
that the shape of the tracks match up more accurately with the parts
of interests. Thus, the improvement of segmentation stage facilitates the
subsequent stages so that global performance of the surveillance system
increases.

1 Introduction

Surveillance systems are usually made up by several interconnected processing
blocks or stages that form a high-level representation of the sensed world. The
optimization of a video surveillance system consists of improving the particular
performance of a stage of the system by adding new computations and adjusting
the parameters which run this stage, so that the whole system increases its global
performance. In [1], the authors showed how to construct and tune a multi-stage
video surveillance system to obtain a good performance in the tracking of aircraft
and vehicles moving in an airport surface [2].

In this work, we adapt the system to track people based on the same ar-
chitecture of the tracking system for surface surveillance in airports. The first
new problem that arises from this adaptation is that the parts of interest or
blobs appear more fragmented as people are less compact (especially for the
extremities) than aircraft or vehicles [3]. Second, one of the main drawbacks of
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outdoor motion estimation is shadows [4] - [6], which attached to the moving
people make the system deform the real target. Moreover, shadows might [7] in-
terferer in subsequent stages of the tracking system so that it would be desirable
to remove them in a previous phase. The purpose of this study is to improve
the performance of this segmentation stage by adding a new block so that the
system detects more compact people-shaped blobs and eliminates if possible the
shadows so that the total performance of the whole system increases. The pa-
rameters that regulate this new block will be searched and tuned by an Evolution
Strategy (ES), which has proved to be valid for this type of problems in works
like [1]. The main goal of this work is to present based upon the idea that most
morphological image analysis tasks, can be reframed as image filtering problems
and that ES can be used to discover optimal filters which solve such problems.
This paper also introduces the fitness function that assesses the performance of
the segmentation block [8, 9]. Finally, we must test the improvement on the com-
plete system for which we need an evaluation function. Although there is a large
literature and previous works on metrics for performance evaluation [1], [10]-[12],
this paper shows an original proposal based on a minimal ground truth record
and it is able to evaluate a large number of video samples to obtain significants
statistical results.

This paper attempts to address these points. First, section 2 presents a study
of the segmentation stage in our video surveillance system. Section 3 details
the main problems that we face on tracking people and the solutions adopted.
Then, the evaluation function to assess the global performance of the system is
presented in Section 4. The details of the experiments and the final conclusions
are given in Sections 6.

2 Segmentation Stage

Automated visual surveillance aims to provide an attention-focussing filter to
enable an operator to make an optimum decision whenever an unusual event
occurs. This is achieved by directing the operators attention only to those events
classified as unusual. A generic video processing framework for automated visual
surveillance system [13, 14] is depicted in Figure 1. Although some stages require
interchange information with others, this framework provides a good structure
for the comprehension of our work.

A relevant problem in computer vision is the detection and tracking of moving
objects in video sequences. The detection of moving objects can be difficult for
several reasons. We need to account for possible motion of the camera, changes
in illumination of a scene and shadows, objects such as waving trees, objects that
come to a stop and move again such as vehicles at a traffic light, etc. Once the
moving objects have been identified, tracking them through the video sequence
can also be difficult, especially when the objects being tracked are occluded by
buildings or moved in and out of the frame due to the motion of the camera.

By Segmentation Stage, we mean the task of detecting regions that correspond
to moving objects such as people and vehicles in video. This is the first basic step
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Fig. 1. A generic video processing framework for automated visual surveillance system

of almost every vision system since it provides a focus of attention and simplifies
the processing on subsequent analysis steps. As we have said above, due to
dynamic changes in natural scenes such as sudden illumination, shadows, weather
changes, motion detection is a difficult task to process reliably. Frequently used
techniques for moving object detection are background subtraction, statistical
methods, temporal differencing and optical flow. Most of the moving object
detection techniques are pixel based [16, 17]. Background subtraction techniques
attempt to detect moving regions by subtracting the current image pixel-by-pixel
from a reference background image that is created by averaging images over time
in an initialization period. The pixels whose difference exceeds a threshold are
classified as foreground. Although background subtraction techniques perform
well at extracting most of the relevant pixels of moving regions, they are usually
sensitive to dynamic changes when, for instance, repetitive motions (tree leaves
moving in windy day, see Figure 2), or sudden illumination changes occur.

Fig. 2. Different segmentation results obtained in different condition. The first row
shows the excellent segmentation results in a calm day. However in the second row,
due to the tree leaves in a windy day, we observe brightness changes almost everywhere
in the image. Thus, the segmentation stage obtains worse performances.
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More advanced methods that make use of the statistical characteristics of
individual pixels have been developed to overcome the shortcomings of basic
background subtraction methods. These statistical methods are mainly inspired
by the background subtraction methods in terms of keeping and dynamically up-
dating statistics of the pixels that belong to the background image process. Fore-
ground pixels are identified by comparing each pixels statistics with that of the
background model. This approach is becoming more popular due to its reliability
in scenes that contain noise, illumination changes and shadow [14, 18]. Temporal
differencing attempts to detect moving regions by making use of the pixel-by-
pixel difference of consecutive frames (two or three) in a video sequence [19].

2.1 Background Subtraction

In our system we have implemented a background subtraction approach [20]. The
segmentation algorithm is based on the detection of targets contrasting with local
background, whose statistics are estimated and updated in an auxiliary image,
Background. Then, the pixel level detector is able to extract moving features
from this static background, simply comparing the difference with a threshold:

Detection(x, y) = [Im(x, y)−Back(x, y)] > THRESHOLD ∗ σ (1)

where σ represents the standard deviation of pixel intensity. A low threshold
would mean a higher sensitivity value, leading to many false detections and
higher probability of detection and not corrupting target shape quality. This is
one of the key parameters of the system. The background statistics (mean and
variance) for each pixel are estimated, from the sequence of previous images,
with a simple iterative process and weights to give higher importance to the most
recent frames. Besides, in order to prevent targets from corrupting background
statistics, the update is just performed for pixels not too near of a tracked target,
using the tracking information in the detector. So, the statistics for k-th frame
are updated as:

Back(x, y, k) = αIm(x, y, k) + (1 − α)Back(x, y, k − 1)
σ2(x, y, k) = α[Im(x, y, k)−Back(x, y, k − 1)]2 + (1− α)σ2(x, y, k − 1) (2)

being x and y pixels out of predicted tracks.
In Figure 3 some segmentation results are depicted following this approach.

2.2 Morphological Post-processing

As we can see in Figure 3, the last step (labelled as ’Segmentation result’) obtains
excellent results. However, it seems obvious that we can improve the segmenta-
tion stage. A pedestrian zoom views of the Figure 3 are depicted in Figure 4.
The white pixels make up the pedestrian and set up the foreground pixel map,
in which there are unconnected and missing areas. Furthermore, in all over Fig-
ure 3 there is a lot of noise which can confuse later processing. The goal of the
segmentation stage is not only to produce foreground pixel maps as accurately



442 O. Pérez et al.

Fig. 3. Instances of the segmentation stage. Although the results are good enough
(third column), notice that in the third row, the object detected is rather difficult to
track.

as possible, e.g. by removing the special types of noise, but rather to make the
pedestrians segmentation more visible and easier to process in the classification
stage (see Figure 1).

Fig. 4. A pedestrian zoom views of Figure 3. It is clear that we can improve the
segmentation stage. In the images appear unconnected and missing areas.

In order to improve segmentation results, morphological operators have been
implemented. The field of mathematical morphology contributes a wide range
of operators to image processing, all based around a few simple mathematical
concepts from set theory. Morphology is a broad set of image processing oper-
ations that process images based on shapes. Morphological operations apply a
structuring element to an input image, creating an output image of the same
size. The most basic morphological operations are dilation and erosion. In a
morphological operation, the value of each pixel in the output image is based
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on a comparison between the corresponding pixel in the input image and its
neighbors. By choosing the size and shape of the neighborhood, a morphological
operation can be tuned to be sensitive to specific shapes in the input image. In
our case, an erosion operator has been chosen as first post-processing step in
order to remove the noise. Then, we apply a delation operator to improve the
size and shape of the pedestrian.

Now, our problem is concerned with the selection of the size of the suit-
able structuring element and the number of iterations of the erode and di-
late operations. We define the rectangular size of structuring elements and
the number of iteration of erosion and dilate process by the next parameters:
HORIZONTAL-SIZE-ERODE, VERTICAL-SIZE-ERODE, HORIZONTAL-
SIZE-DILATE, VERTICAL-SIZE-DILATE, ITERATIONS-NUMBER-ERODE
and ITERATIONS-NUMBER-DILATE. Besides, we have to establish another
parameter involving in the segmentation stage: the THRESHOLD in Equation 1.
The election of the values of these parameters makes a big difference in the per-
formance of the system. Thus, in the next section, we show how to use Evolution
Strategies in order to optimize these parameters.

3 Optimizing Morphological Parameters by Means of
Evolution Strategies

Evolutionary Computation (EC) comprises several robust search mechanisms
based on underlying biological metaphor. Having been established as a valid
approach to problems requiring efficient and effective search, EC are increasingly
finding widespread application in business, scientific and engineering circles. Not
much work has been applied in automatic visual surveillance systems using EC.
Perhaps the main trouble is related with the enormous amount of data to process.
In [21] genetic programming is used to segment video sequences. Hwang [22]
shows a genetic algorithm which uses both spatial and temporal information
to segment and track moving objects in video sequences. In [1], an Evolution
Strategy (ES) for optimizing the parameters regulating a video-based tracking
system is presented.

We have implemented ES for improving the segmentation stage by adjusting
the parameters listed above. Regarding the operators, the type of crossover used
in this work is the discrete one and the replacement scheme which is used to
select the individuals for the next generation is (μ + λ)− ES.

In an ES, the fitness is a function that gives a score to the outcome of the
system and its design is probably the most critical task concerning both the
domain problem and the ES itself. In fact, it must be based on the foreground
pixel map’s features and most of the parameters within this domain algorithm
could affect the outcome of the segmentation stage.

After the morphological post-processing of an image, its foreground pixel map
consist of several blobs (i.e. coherent connected regions). In order to simplify
the process, we represents the blobs by its bounding rectangle. Let NB be the
Number of Blobs in a foreground pixel map. In our experimentation we have
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been working with videos where there is only a pedestrian, and therefore we
expect to found a short number of blobs in our ideal segmentation stage.

Let Im and Îm be the image before and after themorphological post-processing,
respectively. We define Im(x, y) and Îm(x, y) as true, if and only if the pixel (x, y)
belongs to a moving object, respectively. We define the Density ratio, D(B), of a
blob, B, as:

D(B) =
1
n

Card{Im(x, y) ∧ Îm(x, y)}; ∀(x, y) ∈ B. (3)

where n is the number of pixels in the blob B and card stands for the cardinality
(i.e. number of pixels) of a set. The operator ′∧′ (and) is applied to assess which
part of the processed image contains detected pixels in the original image.

Let AR(B) the Aspect Ratio of a blob, B. A blob is represented by its bound-
ing rectangle. We define AR(B) as:

AR(B) =
width(B)
height(B)

(4)

where width and height stands for the bounding rectangle’s width and height
of a blob, respectively. Since, in our system, pedestrians are the object that we
have to track, in contrast of shadows or noise, we expect to get a small value for
the AR(B) ratio in every blob.

At last, the fitness function that we have to minimize is:

fitness = αNB + β
∑

∀B∈Im

AR(B) − γ
∑

∀B∈Im

D(B) (5)

where α, β and γ are normalization coefficients.

4 Evaluation System

The main requirement for surveillance systems is the capability for tracking
objects of interests in operational conditions, with satisfactory levels of accuracy
and robustness. The difficult task is the definition of an automatic, objective
and detailed procedure able to capture the global quality of a given system in
order to support design decisions based on performance assessment. There are
many studies that evaluate video surveillance systems against the ground truth
or with synthetic images. Our contribution is a new methodology to compute
detailed evaluations based on a minimal amount of hand-made reference data
and a large quantity of samples. The result is a robust assessment based on a
statistical analysis of a significant number of video sequences. Thus, our work
used the proposed evaluation system to assess the surveillance system and check
the increase of the total performance.

4.1 Basis of the Evaluation System

The system requires as reference a function f(x,y) (it could be a function defined
on parts) that describes as well as possible the mean track followed by the targets
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we want to track. In this case, we have recorded a set of video sequences of people
walking along a footpath. Our set of samples was divided into two groups: (1)
50 video sequences of people moving from right to left along a footpath, and (2)
50 video sequences of people moving from left to right along a footpath.

Thus, the subsequent assessment was separated into two steps and we ob-
tained two sets of results for each one of the video sequences.

The function f(x,y) that approximates the objects’ trajectory was very simple
in both cases. It was a straight line that was considered the ground truth for the
system.

Fig. 5. Video shot samples from the two sets of sequences and the function f(x,y) that
approximates the trajectory of each pedestrian

4.2 Evaluation Metrics

This section explains the core of the evaluation system and how it worked in our
experiments. The evaluation system collected the tracks that were given by the
tracking system for each frame in all the video sequences. Then, a distance to the
reference function f(x,y) was computed so that only the tracks whose distance
was less than a given margin were considered for the subsequent assessment. The
set of metrics considered for this particular problem are listed below:

Absolute Area. It is computed by calculating the area of the detected track.

Fig. 6. Segmentation results before (from (a) to (c)) and after (from (d) to (f)) the
morphological post-processing
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Transversal Error. It is defined as the distance between the center of the track
and the segment which is considered as ground truth in this moment.

Continuity Faults. This metric checks if a current track existed the previous
moment or did not. If the track did not exist, it means that this track was lost
by the tracking system and recovered in a subsequent frame. This behavior
must be computed as continuity fault. This continuity metric is a counter
where one unit is added each time a continuity fault occurs.

Changes of Direction. This metric marks when a track changes its direction.
This metric is also a counter where one unit is added each time a change of
direction occurs.

5 Methodology and Results

Our general procedure for processing the video sequences was as follows:

1. Take a set of 5 random videos from the two video sequences groups.
2. Use the evolution strategies for adjusting the parameters of the morpholog-

ical operators added to the segmentation stage. We implemented ES with a
size of 10+10 individuals. This population is the minimum that assures the
same result as if we had taken a higher number of individuals. The mutation
factor of !σ = 0.5 and the initial seed was fixed at 100.

3. Repeat the experiment with at least three different seeds.
4. If the results are similar, fix the parameters of the morphological algorithms

for using them in all videos.
5. Take one video sequences set and the parameters obtained by the evolu-

tion strategy. Make the surveillance system work and collect all the people’s
tracks for each frame of each video sequence.

6. Evaluate these tracks and compare the results (with and without morpho-
logical algorithms in the segmentation stage).

7. Repeat the process for the second set of videos sequences from step 5.

In order to compare the effect of the morphological operators, we show some
pictures before and after the application of the algorithms (Figure 6). The results
of the optimization parameters are shown in Table 1. We can observe that the

Table 1. Optimization results. Notice that the structuring element shape rewards high
and thin objects according to the pedestrians’ shape.

HORIZONTAL-SIZE-ERODE 1

VERTICAL-SIZE-ERODE 4

HORIZONTAL-SIZE-DILATE 1

VERTICAL-SIZE-DILATE 4

ITERATIONS-NUMBER-ERODE 2

ITERATIONS-NUMBER-DILATE 2

THRESHOLD 15
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Fig. 7. Metrics for people walking from right to left before and after the morphological
process (left and right column respectively)
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Table 2. Numerical statistics of the Absolute Area and Transversal Error

Before morphological operators After morphological operators
Mean Max Min Mean Max Min

Absolute Area 7033 44890 111 3057.7 25636 203

Transversal Err. 10.5 49.5 0.009 7.8 45.15 0.00055

shadows and noises were removed so that subsequent stages of the surveillance
system created more appropriate tracks according to the parts of interests. That
is, the results had a real correspondence between the people we were interested
in and the resulted tracks of the tracking system. This affected directly the track
size, which was smaller as a consequence of the shadow elimination. This effect
is displayed in the Table 2.

Finally, the effect on the whole surveillance system is showed in Figure 7. In
order to have a more detailed idea of the system performance, the area under
study is divided into 10 zones. Each zone is defined as a fixed number of pixels
of the x-axis, the 10% of the horizontal size of the image. The absolute area and
the transversal error show the mean, variance and maximum values for each of
these two metrics.

All the metrics presented a remarkable improvement on the behavior of the
total surveillance system. The absolute area decreased its mean value from 7033
to 3057.7 (see Table 2 and Figure 7(a) and 7(b)) due to the better adjustment
of the tracks to the pedestrian shape. Second, the transversal error improved
from a mean value of 10.5 to 7.8, which means that the gravity center of the
people’s track is closer to the ground truth function f(x, y). Moreover, the last
figures show that the number of losses for the tracks and the changes of direction
decreased by a factor of 2.

As a final conclusion, we are able to confirm that the improvement in the
segmentation stage provides more compact and accurate blobs to the subsequent
blocks of the video surveillance system so that the performance of the surveillance
system does increased.
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Abstract. In this paper, we present an efficient method for detecting collisions 
between highly deformable objects, which is a combination of newly developed 
stochastic method and Particle Swarm Optimization (PSO) algorithm. Firstly, 
our algorithm samples primitive pairs within the models to construct a discrete 
binary search space for PSO, and in this way user can balance performance and 
detection quality. Besides a particle update process is added in every time step 
to handle the dynamic environments caused by deformations. Our algorithm is 
also very general that makes no assumptions about the input models and doesn’t 
need to store additional data structures either. In the end, we give the precision 
and efficiency evaluation about the algorithm and find it might be a reasonable 
choice for complex deformable models in collision detection systems. 

1   Introduction 

Fast and accurate collision detection between deformable geometric bodies is 
essential in application areas like virtual reality, animation, simulation, games and 
robotics. Numerous approaches have been investigated to it [1]. Recently, due to 
observations that perceived quality of most interactive 3D applications does not 
depend on exact simulation, but rather on real-time response to collisions [1] and that 
humans cannot distinguish between physically-correct and physically-plausible 
behavior of objects [2], stochastic collision detection becomes a focus, which can 
trade off accuracy for computation time by selecting random primitives (vertices, 
edges, triangles, etc.) as an initial guess of the potential collided regions within two 
meshes. In this way, collision detection is converted to the problem to search through 
sample space to find primitive pairs whose distance are shorter than the given 
threshold as fast as possible.  

This paper proposes the use of the Particle Swarm Optimization (PSO) algorithm 
to solve the problem described above. PSO is a population based evolutionary 
algorithm developed by Kennedy and Eberhart [3] [4] [5] and has been compared to 
genetic algorithms [6] for efficiently finding optimal or near-optimal solutions in 
large search spaces. Besides, PSO is an adaptive algorithm that leads itself very well 
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to dynamic changes and has great capability in solving the problem described above 
for stochastic collision detection.  

Most of collision detection algorithms are heavily based on data structures that can 
be more or less pre-computed and update during every simulation steps. In our 
algorithm, we make no assumption about the input model, which can without topology 
or with changing topology and even be “polygon soups”. Besides, the algorithm needn’t 
to store additional data structures such as bounding volume hierarchies, so the memory 
cost is low. It doesn't make any assumptions about object motion or temporal coherence 
between successive frames either. The model primitives may undergo any motions, 
vertices or edges can be inserted or deleted. 

The remainder of the paper is organized as follows. We survey some related work 
on collision detection for deformable objects in Sec.2. Sec. 3 shows the unified PSO 
algorithm. Sec. 4 gives an overview of our approach and we give more detail of our 
algorithm to handles deformable models in Sec.5. In Sec.6, we give precision and 
efficiency evaluation about the algorithm and discuss some of its limitations. 

2   Related Work 

Numerous collision detection methods have been extensively studied, such as Spatial 
partitioning method, Bounding Volume Hierarchies, Image-Space techniques, GPU-
based techniques, Distance Fields, or combination of them. Usually these mentioned 
methods have been demonstrated to work efficiently in different kinds of 
environments for rigid body simulations. But when we consider the problem of 
deforming bodies, they are not that useful, as they rely heavily on pre-computed data 
and data structures or they are dependent on certain body characteristics, for example, 
bodies that must be decomposed into convex pieces. A very general collision 
detection method for deformable objects has been proposed by Smith [7]. At every 
time step, the AABB of all objects is calculated. When two overlapping AABBs are 
found, object faces are first pruned against their overlap region. Remaining faces from 
all such overlap regions are used to build a world face octree, which is traversed to 
find faces located in the same voxels. A data structure called the BucketTree has also 
been proposed [8], which is an octree data structure with buckets as leaves where 
geometrical primitives can be placed. Another approach is suggested by van den 
Bergen [9], which is also used in the collision detection library called SOLID[10]. 
Initially, AABB trees are built for every model in its own local coordinate system. 
The AABBs in the trees are then transformed as the models are moved or rotated in 
the scene. This transformation causes the models’ locally defined AABBs to become 
OBBs in world space. When a model is deformed an update of the affected nodes in 
the trees has to be done. In the literature, there are also some other algorithms for 
flexible objects. For a more detailed review, please refer to the survey paper by [1]. 

Recently, “inexact” methods have become a focus in collision detection research. 
Stochastic methods selects random pairs of colliding features as an initial guess of the 
potential intersecting regions, and by this way it trades-off accuracy for computation 
time. When the object moves or deforms, the method considers temporal coherence in 
the sense that if a pair of features is close enough at a time step, it may still be 
interesting in the next one [1]. [11]uses probabilistic principles to estimate the 
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possibility of collision with respect to a given quality criterion. This approach is 
restricted to rigid objects. [12]combines BVHs and stochastic sampling: They use 
hierarchy of bounding volumes (k-dops) to pick appropriate random geometric 
primitives pairs and then chosen pairs iteratively converge to local distance minima. 
They also use spatial and space coherence to keep track of this local minimum over the 
neighborhood features. But it needs topology information and hierarchy structures.  

Our work inspires from ideas of above and aims to accelerate the searching process 
by Particle Swarm Optimization. The algorithm design, however, is problem of 
specifying and ascertaining many implicit and explicit factors, which have great 
effects to the performance. In the next sections, the design of the PSO for stochastic 
collision detection is described, and the results demonstrate this method leads to a 
more robust collision detection system. 

3   Unified Particle Swarm Optimization 

PSO is a new optimization technique originating from artificial life and evolutionary 
computation. Different from most commonly used population-based evolutionary 
algorithms, such as genetic algorithms, evolutionary programming, evolutionary 
strategies and genetic programming, PSO algorithm is motivated from the simulation 
of social behavior. The technique involves simulating social behavior among 
individuals (particles) “flying” through a multidimensional search space and 
evaluating particles’ positions relative to a goal (fitness) at every iteration. Particles in 
a local neighborhood share memories of their “best” positions, and use these 
memories to adjust their own velocities, and thus subsequent positions [4]. 

The original formulae developed by Kennedy and Eberhart[3] was improved by 
Shi and Eberhart [4]. Particle i is represented as Xi=(xi1,xi2,...,xiD) in D-dimensions. 
Each particle maintains a memory of its previous best position Pi=(pi1,pi2,...,piD) and a 
velocity along each dimension Vi=(vi1,vi2,...,viD). In each iteration step, the P vector of 
the particle with the best fitness in the local neighborhood, designated g, and the P 
vector of the current particle are combined to adjust the velocity along each 
dimension, and that velocity is then used to compute a new position for the particle. 
An inertia parameter , that is used to increases the overall performance of PSO [5]. 
These formulae are:  

)x(p*()*rand)xp(*()rand*v*v idgd22idid11idid −+−+= ηη  (1) 

ididid vxx +=  (2) 

where constants 1η  and 
2η determine the relative influence of the social and cognitive 

components, and are usually both set the same and give each component equal weight 
as the cognitive and social learning rate [4].Rand1() and rand2()are two random 
functions in the range [0,1].  

PSO algorithm has the ability to complete finding optimal or near-optimal 
solutions in large search spaces efficiently, which is very suitable for stochastic 
collision detection. Furthermore, PSO algorithm also has the advantages that it is easy 
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to overcome local optimization problem and process constrained conditions. PSO also 
can be implemented with ease and few parameters need to be tuned. In the next 
section, we will introduce our notation and give an overview of our approach.  

4   Algorithm Overview 

In the beginning we convert 3-Dimensions object space to discrete binary search 
space ( 23 Φ→Ω ) for adopting PSO. 

Two positive integer sets A and B are set, containing the serial number of 
primitives (here only point-point pairs are considered), which respectively belong to 
two models meshes. And a particle represents a pair of primitives between two sets. 
So in search space, the position of each particle is represented by AB-axis intersection 
and can be notated as Equation (3). The velocity is expressed by va (the velocity of A-
axis) and vb (the velocity of B-axis). Moreover, primitive pairs are antithetical, the 
search space can be half. 

pk={Ai,Bj} (3) 

Each particle also has a fitness, which is the distance between them in the 3-dimen- 
sions object space described by Equation (4): 

222 b.z)a.z()b.ya.y()b.xa.x(ƒ −+−+−=  (4) 

where a and b represent two vertexes, and each vertex has a (x, y, z) coordinate in 3-
dimensional object space.  

In order to reduce computation, we use the square of particle’s fitness. From above 
design, collision detection is converted to search through a discrete binary space to find 
those particles (optimal solution) whose fitness is below a given proximity threshold.  

For the case, the optimal solution is single the swarm will probably converge to it 
after iterations. But if the optimal solution is a set, such as collisions between 
sawtoothed models, or a collision cluster, how can we find them as many as possible? 
Here, we’d better look back to the settings of search space. At beginning we set it 
without taking primitives’ topology constraints into account, so continuous primitives 
in object space may distribute discretely in search space. But that makes our method 
more robust for various types of models. Here, we make use of one outside collided 
pairs set to record particles those falling below a given proximity threshold in each 
iteration. With the iteration number increasing, more places will be searched and 
more optima will be found.  

Iterations will stop, when maximum iteration number NI is attained. The 
maximum iteration within a time step is determined by the Formula(5), which 
allows users to balance precision (i.e. completeness) and reaction speed (i.e. small 
time step).  

pp
I CN

T
N

∗
=  

(5) 

T: A time step; NP: the population size of the swarm; CP: one parcel fitness 
computation cost. 
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5   Handing Deformable Models 

In this section, we give more details of our algorithm in handing collision detection 
between deformable models.  

During the process of simulation, models might deform in every time steps. 
Deformations of models in most cases are of two types: arbitrary vertex repositioning 
or splitting. For the former, a model might undergo a complete change of shape, from 
one time step to the other, by moving the relative position of all of its vertices. But 
during such deformations, the mesh connectivity stays the same, i.e. the mesh is not 
torn up in any way. For the latter, a model’s geometric primitives might change, such 
as increasing or decreasing the number or splitting the body into new separated pieces 
[13].Our method efficiently handles these two kinds of deformation.  

To our algorithm, the deformations of model mean variation of search space 
between time steps. This variation can be both or either of the following: position 
change of goal or size change of search space. 

In the view of the whole simulation, collision detection may be regarded as a 
consecutive PSO iteration process from the first time step to the last one. Different 
From the normal PSO, however, search space may undergo a change due to the model 
deformation after a fixed iteration (a fixed iteration number was deigned in a time 
step). This is a dynamic environments problem.  

PSO has been proven to be very effective for dynamic problems. In previous work, 
resetting particles’ memory is used to response to the changes [14]. Carlisle and 
Dozier investigated using PSO to track a single peak varying spatially [5]. Hu and 
Eberhart [15] suggested monitoring environments for a change and updating the 
gbest and pbest values of particles when a change is detected. 

As we all know, PSO algorithm has a mechanism to adapt itself to environment 
changes. The swarm searches for optima in solution space and typically shrink to a 
small space and if the changes occur in this area, PSO will probably find new 
optimum automatically without any modification [15]. If the changes are wide, we 
must take some strategies to response the changes effectively. So in the beginning of 
each time step (changes might have took place), a particle update process is added, in 
which fitness of all the particles are valued and a portion of the best of them are 
reserved. Replace their pbest values by their current X vector. Thus their profits from 
previous experiences are retained by their current location and they are forced to 
redefine their relationship to the goal. The other particles are allocated to new 
positions randomly, that ensure more different place in the search space will be 
searched, for the case that the whole population has already converged to a small area, 
it might not easy to jump out to follow the changes. In the section 6, we will test 
different portion reserved and compare the results. 

6   Implementation and Performance 

We have done many different experiments to investigate the performance characteristics 
of our proposed method. The experiments used have to be chosen with care, since the 
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results depend on the shapes of the models, their relative orientation and the deforma tions 
applied. All the tests were done using Pentium IV, 2.4 MHz CPU and Memory, 1G. 

For the initial experiment, we elected to explore the effects of taking different 
samples in a static scene of two collided hands (shown in Fig.1). We sampled five 
groups of primitives, which constituted five search spaces for PSO. It is evident that 
with more sample pairs, the precision is better, but the search cost is more. For 
example, if we want a 20% detection ratio, it is better to take group 2or 3 then group 4 
or 5. If we want a 30% detection ratio the group 3 is the best. If we want a 60% 
detection ratio the group 4 is the best. If we want more then 90% detection ratio, 
group 5 is the only choice (see Table1). So with the different precision demands, we 
can take different sample strategies to get the best result.  

We varied the population from 5 to 100 in a time step compared the success rates 
(shown in Fig.2).We would expect that, in general, more particles would search more 
space, and solutions would then be found sooner ,but we found this to be generally 
true in terms of performance, but not in terms of cost. Because of the time critical, 
population size and the iteration number are restricted to each other, and when the 
population increases, each iteration step represents a greater cost, as more particles 
call upon the evaluation function. A population size from 20 to 30 appears to be good 
choice. It is small enough to be efficient, yet large enough to produce reliable results. 

In the second experiment, two continuously deforming sneaks were moved slowly 
towards each other during 50 simulation time steps (shown in Fig.3). We test our  
 

Table 1. Compares of detection ratio of five sample groups for of two collided hands  

 

Fig. 1. Scene 1: Two collided hand models each of 26373 primitives and collided pairs are 
white 
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Fig. 2. Detection ratio with varied population size for two collided hands 

 

Fig. 3. Scene 2: Simulation of two deforming sneaks (each of 22236 primitives) during 50 time 
steps and the collided pairs are white 

algorithm to the spatio-temporal coherence between consecutive time steps by four 
updated methods, with a population of 30 particles: (1) Do nothing; (2) Update pbest 
of all population; (3) Reserve 50% of all and update their pbest, then re-randomize 
others; (4) Re-randomize all the population. The results are given in Fig. 4 and Fig.5. 
It's evident that if the deformation is not drastically, to method (1), (2), (3), previous 
experiences are retained by the particles, and spatio-temporal coherence between 
consecutive time steps ensure within little iteration, results would be found and 
detection ratio of method (3) increases faster than that of others. But if the models 
undergo a drastically deformation, such as a sudden collision took place shown in 
Fig.5, the method that re-randomize all the population will hold a steadily on ratio, 
but due to the spatio-temporal coherence, with the time flying, detection ratio of the 
method(3) became the highest.

At last, we have compared the performance and efficiency of our algorithm against 
prior collision detection algorithms: AABB and sphere hierarchies for deformable 
models in scene 2. As the sneaks deforms, many triangles become long and skinny 
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and the bounding volume and sphere become rather large and update process costs a 
lot of time. Our algorithm obtains speedup due to little number of elementary tests 
and little update cost. Therefore, as the result shown in the Fig.6, we achieve up to 2-3 
times overall speedup. Our algorithm has a limitation, that it couldn’t find all the 
collided pairs in most cases. But Kimmerle showed us in [12] that a detection ratio 
below 100% is sufficient to ensure a stable simulation. Even for a very challenging 
cloth simulation, a response ratio as low as 20% can be enough to get good visual 
results. So to our algorithm, if precision of collision detection is not so high, it leads 
to a more robust collision detection system. 

Fig. 4. Comparison of three kinds of update swarm strategies when deformation is not 
drastically

Fig. 5. Comparison of three kinds of update swarm strategies when deformation is drastically
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Fig. 6. Comparison of performance of our algorithm (PSCD) with prior-approaches based on 
AABB and sphere hierarchies 

7   Conclusion 

This paper has proposed a new method of Stochastic Collision Detection for 
deformable objects by using PSO Algorithm. Our algorithm samples primitive pairs 
within the models to construct a discrete binary search space for PSO, by which user 
can balance performance and detection quality. In order to handle the deformation of 
models in the object space, a particle update process is added in the beginning of every 
time step , which handles the dynamic environments problem in search space caused by 
deformation. This approach provides a more comprehensive way to trade-off accuracy 
for computation time. Moreover, the swarm can also handle temporal coherence and 
efficiently search through the highly large primitive pair search space. At last, we give 
the precision and efficiency evaluation about the algorithm and find it might be a 
reasonable choice for deformable models in Stochastic Collision Detection.  
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Abstract. This paper describes an approach to the use of genetic pro-
gramming (GP) for the automatic detection of rhythmic stress in spoken
New Zealand English. A linear-structured GP system uses speaker in-
dependent prosodic features and vowel quality features as terminals to
classify each vowel segment as stressed or unstressed. Error rate is used
as the fitness function. In addition to the standard four arithmetic opera-
tors, this approach also uses several other arithmetic, trigonometric, and
conditional functions in the function set. The approach is evaluated on
60 female adult utterances with 703 vowels and a maximum accuracy of
92.61% is achieved. The approach is compared with decision trees (DT)
and support vector machines (SVM). The results suggest that, on our
data set, GP outperforms DT and SVM for stress detection, and GP has
stronger automatic feature selection capability than DT and SVM.

1 Introduction

Stress is a form of prominence in spoken language. Usually, stress is seen as
a property of a syllable or of the vowel nucleus of the syllable. There are two
types of stress in English. Lexical stress refers to the relative prominences of
syllables in individual words. Rhythmic stress refers to the relative prominences
of syllables in longer stretches of speech than an isolated word. When words are
used in utterances, their lexical stress may be altered to reflect the rhythmic (as
well as semantic) structure of the utterance.

As English becomes more and more important as a communication tool for
people from all countries, there is an ever increasing demand for good quality
teaching of English as a Second Language (ESL). Learning English well requires
lots of practice and a great deal of individualised feedback to identify and cor-
rect errors. Providing this individualised feedback from ESL teachers is very
expensive, therefore computer software that could help ESL learners to speak as
a native speaker is highly desirable. Properly placing rhythmic stress is one of
the important steps for teaching ESL students to have good speech production.
Thus to be able to automatically detect the rhythmic stress patterns in stu-
dents’ speech becomes a really important functionality in this kind of computer
software.

There are a number of prosodic (sometimes referred to as ‘suprasegmental’)
features that relate to stress. Thus the perception of a syllable as stressed or

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 460–471, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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unstressed may depend on its relative duration, its amplitude and its pitch.
Duration is simply how long the syllable lasts. Amplitude relates to the perceived
loudness of the syllable, and is a measure of its energy. Pitch is the perceptual
correlate of the fundamental frequency (F0) of the sound signal, i.e. the rate of
vibration of the vocal folds during voiced segments.

A further correlate of stress is the quality of the vowel in a syllable. Vowels
are split into full vowels and reduced vowels in terms of the quality based on the
configuration of the tongue, jaw, and lips [1]. Full vowels tend to be more periph-
eral, and appear in both stressed syllables and unstressed syllables [2]. Reduced
vowels, including /@/ and /I/ in New Zealand English, tend to be more central,
and are only associated with unstressed syllables. Therefore, vowel quality is not
a completely reliable indicator of stress [2].

In order to automatically detect rhythmic stress, prosodic features and vowel
quality features as two main sets of features have been studied by many re-
searchers using machine learning algorithms.

Waibel [3] used duration, amplitude, pitch, and spectral change to iden-
tify rhythmically stressed syllables. A Bayesian classifier, assuming multivariate
Gaussian distributions, was adopted and 85.6% accuracy was achieved. Jenkin
and Scordilis [4] used duration, energy, amplitude, and pitch to classify vowels
into three levels of stress — primary, secondary, and unstressed. Neural networks,
Markov chains, and rule-based approaches were adopted. The best overall perfor-
mance was 84% by using Neural networks. Rule-based systems performed worse
with 75%. Van Kuijk and Boves [5] used duration, energy, and spectral tilt to
identify rhythmically stressed vowels in Dutch — a language with similar stress
patterns to those of English. A simple Bayesian classifier was adopted, on the
grounds that the features can be jointly modelled by a N-dimensional normal
distribution. The best overall performance achieved was 68%. Our previous work
[6] used duration, amplitude, pitch and vowel quality to identify rhythmically
stressed vowels. Decision trees and support vector machines were applied and
the best accuracy, 85%, was achieved by support vector machines.

However, the accuracies of the automatic stress detection from the litera-
ture are not high enough to be useful for a commercial system. The automatic
rhythmic stress detection remains a challenge to speech recognition.

Genetic programming (GP) has grown very rapidly and has been studied
widely in many areas since the early 1990s. Conrads et al. [7] demonstrated that
GP could find programs that were able to discriminate certain spoken vowels
and consonants without pre-processing speech signals. However, there are only
a few studies using GP in the automatic speech recognition and analysis area.
Most current research on automatic rhythmic stress detection uses other machine
learning algorithms rather than GP.

1.1 Goals

This paper aims to use GP to develop an approach to automatic rhythmic stress
detection in spoken New Zealand (NZ) English. The approach will be examined
and compared with other machine learning techniques such as decision tress
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(DT) and support vector machines (SVM) on a set of NZ English utterances.
Specifically, we investigate:

– how GP can be used to construct an automatic rhythmic stress detector,
– whether GP outperforms DT and SVM on the automatic problem, and
– whether GP has a stronger capability of handling irrelevant features than

DT or SVM.

The remainder of the paper is organised as follows: section 2 describes the GP
approach; section 3 presents the experiment design; section 4 provides experi-
ment results, and section 5 draws conclusions and discusses possible future work.

2 GP Adapted to Stress Detection

A linear-structured GP system [8] is adopted to construct an automatic rhythmic
stress detector in this study. This section addresses: 1) the feature extraction and
normalisation; 2) the terminal sets; 3) the function set; 4) the fitness function;
and 5) the genetic parameters and termination criteria.

2.1 Feature Extraction and Normalisation

As prosodic features and vowel quality features are recognised as the two main
sets of features for automatic stress detection, we also use both of them in the
approach. For each of the prosodic parameters (duration, amplitude, pitch), there
are many alternative measurements that can be extracted, and also many ways of
normalising the features in order to reduce variation due to differences between
speakers, recording situations or utterance contexts. Vowel quality features are
more difficult to extract. The subsections below describe the details of the feature
extraction and normalisation.

Duration Features. The absolute duration of a vowel segment is easily calcu-
lated directly from the hand labelled utterances since the start and end points
of the vowel segment are clearly marked. Three different levels of normalisation
are applied to the directly calculated absolute duration of a vowel segment. The
first level normalisation aims to reduce the impact of the different speech rate
of speakers. The second level normalisation aims to reduce the effects of the
intrinsic duration properties of the vowel. Both narrow and broad methods are
considered. The narrow method is to normalise the vowel segment duration by
the average duration for that vowel type, as measured in the training data set.
The broad method is to cluster the 20 vowel types into three categories (short
vowel, long vowel and diphthong) and to normalise vowel segment durations
by the average duration of all vowels in the relevant category. The third level
normalisation aims to reduce the effects of the local fluctuations in speech rate
within the utterance. Based on the three levels of normalisation, we have five
duration features for each vowel segment:

– D1: the absolute duration normalised by the length of the utterance.
– D2: D1 further normalised by the average duration of the vowel type.
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– D3: D1 further normalised by the average duration of the vowel category.
– D4: D2 further normalised by a weighted average duration of the immediately

surrounding vowel segments.
– D5: D3 further normalised by a weighted average duration of the immediately

surrounding vowel segments.

Amplitude Features. The amplitude of a vowel segment can be measured
from the speech signal, but since amplitude changes during the vowel, there are
a number of possible measurements that could be made — maximum amplitude,
initial amplitude, change in amplitude, etc. A measure commonly understood to
be a close correlate to the perception of amplitude differences between vowels is
the root mean square (RMS) of the amplitude values across the entire vowel. This
is the measure chosen as the basis of our amplitude features. Two levels of nor-
malisations are applied to the RMS amplitude value across a vowel segment. The
first level normalisation aims to reduce the effects of speaker voice volume dif-
ferences and recording condition differences. It is done by normalising the RMS
amplitude of each vowel segment against the overall RMS amplitude of the entire
utterance. The second level normalisation aims to reduce the effects of changes
in amplitude across the utterance. We normalise the vowel amplitude against a
weighted average amplitude of the immediately surrounding vowel segments.

– A1: the RMS amplitude of each vowel segment normalised by the overall
RMS amplitude of the entire utterance.

– A2: A1 further normalised by a weighted average amplitude of the immedi-
ately surrounding vowel segments.

Pitch Features. Pitch is calculated by measuring F0 of the speech signal. Five
pitch features of a vowel segment are computed, including the mean pitch value of
the vowel segment, the pitch values at the start and at the end points of the vowel
segment, and the minimum and maximum pitch values of the vowel segment.
In order to reduce the effects of speaker differences caused by their different
physiologies, we normalise the five pitch features of a vowel segment over the
mean pitch of the entire utterance. In addition, based on the five normalised
pitch features, we compute five other features that are intended to capture pitch
changes over the vowel segment.

– P1: the mean pitch value of the vowel normalised by the mean pitch of the
utterance.

– P2: the pitch value at the start point of the vowel normalised by the mean
pitch of the utterance.

– P3: the pitch value at the end point of the vowel normalised by the mean
pitch of the utterance.

– P4: the maximum pitch value of the vowel normalised by the mean pitch of
the utterance.

– P5: the minimum pitch value of the vowel normalised by the mean pitch of
the utterance.
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– P6: the difference between the normalised maximum and minimum pitch val-
ues — a negative value indicates a falling pitch and a positive value indicates
a rising pitch.

– P7: the magnitude of P6, which is always positive.
– P8: the sign of P6 — 1 if the pitch “rises” over the vowel segment, -1 if it

“falls”, and 0 if it is “flat”.
– P9: a boolean attribute — 1 if the pitch value at either the start point or

the end point of the vowel segment cannot be detected, otherwise -1.
– P10: a boolean attribute — 1 if the vowel segment is too short to compute

meaningful mean, minimum, or maximum values, otherwise -1.

Vowel Quality Features. Since there is some flexibility in the formation of
a vowel, there will in fact be a range of articulator parameter values that cor-
respond to the same vowel. Therefore, vowel quality features are more difficult
to extract. Pre-trained Hidden Markov Models (HMMs) phoneme models are
used to analyse vowel segments and extract measures of vowel quality [9]. The
algorithm is illustrated in figure 1 and outlined below.

Step 1. Extract vowel segments from the hand labelled utterance.
Step 2. Encode each vowel into a sequence of acoustic parameter vectors, using

a 15ms Hamming window with a step size (frame period) of 11ms.
These parameters consist of 12 MFCC features and the 0’th cepstral
coefficient with their first and second order derivatives.

Step 3. Feed the parameter vector sequence into the 20 pre-trained HMM vowel
recognisers to obtain 20 normalised acoustic likelihood scores. Each

Extract
The

Vowel
Segment

...          ...            ...
1 2 3

/u:/

1 2 3

/au//e/

1 2 3 1 2 3

/I/

   Acoustic
Likelihood 1

   Acoustic
Likelihood 2

   Acoustic
Likelihood 3

   Acoustic
Likelihood 20...           ...            ...

Recognise
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... Parameter
   Vector

/e/

/e/

Fig. 1. Vowel quality features processing
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score is the geometric mean of the acoustic likelihoods of all frames
in the segment, as computed by the HMM recogniser. The scores are
likelihoods that reflect how well the segment matches the vowel type of
the HMM.

Step 4. Find the score of the labelled vowel type Se, the maximum score of any
full vowel phoneme Sf and the maximum score of any reduced vowel
phoneme Sr from the above 20 scores.

Step 5. We then compare the scores of the best matching full vowel and the
best matching reduced vowel to the score of the labelled vowel. We
compute four features, two of which measure the difference between
the likelihoods, and two measure the ratio of the likelihoods. In each
case, we take logarithms to reduce the spread of values:

Rd =
−log(Sr − Se) if Se < Sr

0 if Se = Sr

log(Se − Sr) if Se > Sr

(1)

Fd =
− log(Sf − Se) if Se < Sf

0 if Se = Sf

log(Se − Sf ) if Se > Sf

(2)

Rr = log(Se/Sr) = log Se − log Sr (3)

Fr = log(Se/Sf ) = log Se − log Sf (4)

Step 6. We also compute a boolean vowel quality feature, T , to deal with cases
where the vowel segment is so short that F or R cannot be calculated.
If the vowel segment is less than 33ms, which is the minimum segment
duration requirement of the HMM recognisers, then the value of this
attribute will be 1. Otherwise, -1. If this value is 1, we set F and R
to 0.

2.2 Terminal Sets

All the features introduced in section 2.1 were organised into three terminal sets.
Terminal set I consists of 17 prosodic features (five duration features, two ampli-
tude features, and 10 pitch features). Terminal set II consists of five vowel quality
features. Terminal set III consists of all features combined from the prosodic and
vowel quality features. Features whose values have not been explicitly mentioned
in previous sections are floating point numbers with precisions up to seven digits.
In each terminal set, we also include real-valued constants in the range [−1.0, 1.0].

2.3 Functions

The function set contains not only the four standard arithmetic functions, but
also several other arithmetic and trigonometric functions and conditional func-
tions, as shown in equation 5.

FuncSet = {abs, sqrt, cos, sin,+,−, ∗, /, iflt, ifpr , ifnr} (5)
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Each of the first four mathematical operators takes a single argument. The abs
function returns the absolute value of the argument. The protected sqrt function
returns the square root of the argument. The cos or sin functions return the
cosine or sine values of the argument respectively. Each of the +,−, ∗, and /
operators takes two arguments. They have their usual meanings except that the
/ operator is protected division that returns 0 if its second argument is 0. The
three conditional functions each takes two arguments. The iflt function returns
1 if the first argument is less than the second one, otherwise 0. The ifpr function
returns the second argument if the first argument is positive, otherwise does
nothing. The ifnr function returns the second argument if the first argument
is negative, otherwise does nothing. Note that there is a redundancy in that
the conditional functions could be expressed in terms of each other. There is a
trade off between the increased breadth of the search space resulting from having
redundant functions, and the more complex programs (hence a deeper search of
the search space) resulting from a minimal set of non-redundant functions. We
believe that the smaller programs that are possible with the expanded function
set more than compensates for the broader search space.

2.4 Fitness Function

Error rate is used as the fitness function to evaluate programs. The classification
error rate of a program is the fraction of fitness cases in the training data set that
are incorrectly classified by the program. Rhythmic stressed vowel segments and
unstressed vowel segments are both treated as important so that neither class is
weighted over the other. In our data set, class stressed is represented by 1 and
class unstressed is represented by -1. If a program’s output is greater than or
equal to 0, then the output is counted as a class stressed output. Otherwise, it
is counted as a class unstressed output.

2.5 Parameters and Termination Criteria

In this GP system the learning process uses the tournament selection mechanism
with size four and the crossover, mutation and reproduction operators. It is
worth noting that in this GP system, the crossover and mutation operators are
independent in that the mutation operator can be applied regardless of whether
a tournament winner has also been selected for crossover, so that the sum of
the crossover rate and the mutation rate may be more than 100%. The selection
of parameter values used in this study is shown in Table 1. These values were
obtained through prior empirical research. The unusually high mutation rates
were found to be the most helpful for this problem.

The learning/evolutionary process is terminated when either of the following
criteria is met:

– The classification problem has been solved on the training data set, that is,
all vowel segments in the training set have been correctly classified, with the
fitness of the best program being zero.
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Table 1. Parameters used for GP training for three terminal sets

Parameter Kind Parameter Name I II III

Search Population size 1024 1024 1024
Parameters max-gwi 200 200 200

Genetic Crossover rate 71% 57% 47%
Parameters Mutation rate 97% 87% 83%

Program Initial program size 80 80 80
Parameters Max program size 256 256 256

– The number of generations reaches the pre-defined maximum number of
generations without improvement (max-gwi). In this study, max-gwi is set
at 200, which means that, if fitness values have had no improvement within
200 generations, the learning process will terminate.

3 Experiment Design

The system uses a data set collected by the School of Linguistics and Applied Lan-
guage Studies at Victoria University of Wellington. The date set contains 60 utter-
ances of ten distinct English sentences produced by six female adult NZ speakers,
as part of the NZ Spoken English Database (www.vuw.ac.nz/lals/nzsed). The
utterances were hand labelled at the phoneme level, including the time stamps of
the start and the end of a phoneme segment and the phoneme label. Further, each
vowel was labelled as rhythmic stressed or unstressed. There were 703 vowels in the
utterances, of which 340 are marked as stressed and 363 are marked unstressed.
Prosodic features and vowel quality features of each vowel segment are calculated
from the hand labelled utterances.

Three experiments were conducted on the three terminal sets respectively.
For each terminal set, since the data set was relatively small, a 10-fold cross
validation method for training and testing the automatic rhythmic stress detec-
tors was applied. In addition, the training and testing process was repeated ten
times, that is, 100 runs of training and testing procedures were made in total
for each terminal set. The average classification accuracy of the best program in
each experiment is calculated from the outputs of the 100 runs.

In addition, we investigate whether scaling the feature values in the three
terminal sets to the range [−1, 1] results in better performance.

We also compare our GP approach with the C4.5 [10] decision tree (DT)
system and a SVM system (LIBSVM [11]) on the same set of data. The SVM
system uses an RBF kernel and a C parameter of 1.0.

4 Results and Analysis

4.1 Detection Performance

Terminal Set I. Table 2 shows system performance of Terminal Set I. Based on
the average of 100 runs, GP achieved the best accuracy on the test set (91.9%).
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The accuracy of GP was 11.5% and 12.2% higher than that of DT and SVM
respectively on unscaled data, and was 11.0% and 8.4% higher on scaled. There is
little evidence showing any impact of using scaled data on GP and DT. However,
there is an improvement of 3.5% by using scaled data for SVM.

Table 2. Accuracy(%) for the terminal set I

GP DT SVM

Unscaled 91.9 80.4 79.7

Scaled 91.6 80.6 83.2

Terminal Set II. Table 3 shows the experiment results of Terminal Set II. GP
also achieved the best accuracy of 85.4%. The accuracy of GP was 5.7% and
6.3% higher than that of DT and SVM respectively on unscaled data, and was
5.7% and 4.1% higher on scaled. There is also little evidence to show any impact
of scaled data.

Terminal Set III. Table 4 shows the results of Terminal Set III, which combines
all the features used in Terminal Set I and Terminal Set II. Again, the best
accuracy of 92.6% was achieved by GP. GP outperformed DT and SVM by
12.1% and 10.8% on unscaled data respectively, and by 12.6% and 10.6% on
scaled. For all three systems, accuracies on scaled data were invariably higher
than those on the unscaled data but the differences were very small.

Comparing the results of all three terminal sets, we obtained the following
observations.

– On all terminal sets, regardless of whether the data are scaled or unscaled,
accuracy of GP is consistently and significantly higher than that of DT and
SVM. This indicates that GP is more effective than DT and SVM on the
automatic stress detection problem on our data set.

– For all systems, Terminal Set I consistently returns higher accuracies than
terminal set II. This indicates that either prosodic features are more accurate
than vowel quality features, or that vowel quality feature extraction needs
to be further improved.

– Maximising the coverage of features (using Terminal Set III) resulted in some
improvement for GP, but not for DT and SVM. Since terminal set III has the
most complete set of features, it is likely that not all of them are necessary
in detecting stress. Therefore the difference in performance of Terminal Set I

Table 3. Accuracy(%) for the terminal set II

GP DT SVM

Unscaled 85.4 79.7 79.1

Scaled 84.6 78.9 80.5
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Table 4. Accuracy(%) for the terminal set III

GP DT SVM

Unscaled 92.0 79.9 81.3

Scaled 92.6 80.1 82.0

and Terminal Set III could be used as an indication of how robust a system
is at handling unnecessary and irrelevant features. Except for GP, both DT’s
and SVM’s best accuracy scores dropped on Terminal Set III, therefore GP
is the most robust algorithm among the three at handling unnecessary and
irrelevant features on our data set.

4.2 Feature Impact Analysis

The top thirty programs in each run were analysed and the average impact of
each terminal input in programs was computed as a percentage, as shown in
Tables 5 and 6. The impact of a terminal input refers to the change of the
performance of a program if all occurrences of the terminal input are removed
from the program.

Table 5 shows the impact of the prosodic features. The patterns of the im-
pact of prosodic features are similar on both unscaled data and scaled data.
Three broad bands of impact emerged as high (above 5%, including all duration

Table 5. Impact analysis for prosodic features

Unscaled Scaled

Input Average Impact(%) Input Average Impact(%)

D5 27.7 D5 28.2

D3 27.4 D3 16.5

D2 15.1 D4 13.4

D4 13.7 D1 12.9

D1 8.3 D2 7.8

A1 2.3 A2 1.4

A2 1.1 A1 1.4

P2 1.1 P5 0.6

P1 0.7 P3 0.6

P3 0.7 P2 0.6

P8 0.6 P4 0.5

P4 0.4 P1 0.4

P5 0.3 P8 0.4

P10 0.3 P7 0.2

P7 0.3 P10 0.2

P6 0.1 P9 0.2

P9 0.1 P6 0.1
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Table 6. Impact analysis for vowel quality features

Unscaled Scaled

Input Average Impact(%) Input Average Impact(%)

Rr 31.9 Rd 21.0

Rd 20.7 Rr 19.9

Fr 2.8 T 4.5

T 1.5 Fd 0.76

Fd 0.34 Fr 0.38

features), medium (1% to 5%, including amplitude features), and low (under
1% including all pictch features), corrsponding exactly with the three feature
categories - duration, amplitude and pitch. This indicates duration has a bigger
impact than amplitude while pitch has the smallest impact. On both unscaled
and scaled data set, D5 and D3 are ranked as the first and second, indicating
that normalisations of a duration feature over the average duration of a vowel
category is better than that over the average duration of a vowel type.

The ranking of duration, amplitude and pitch in terms of impact in this study
matches the result in [6]. However, only one experiment was conducted in this
study whereas seven experiments with various combinations of the feature sets
were conducted in [6], where DT and SVM were used. This suggests that: 1)
GP has stronger feature selection ability than DT and SVM on the problem;
2) GP can automatically handle a large number of features; and 3) GP can
automatically select features that are only important to a particular domain.

As shown in Table 6, Rd and Rr have a much larger impact than Fd, Fr, and
T on both unscaled and scaled data. On unscaled data Rd’s impact (31.9%) is
larger than Rr’s impact (20.7%), whereas on scaled data the two features display
a similar impact. The results suggest that the reduced vowel quality features are
far more useful than full vowel quality features, regardless of whether differences
or ratios are used.

5 Conclusions and Future Work

The goal of this paper was to develop an approach to using GP for automatic
rhythmic stress detection in spoken NZ English. A range of prosodic and vowel
quality features were calculated, normalised and/or scaled from vowel segments
in speech. The approach was tested on 60 female adult utterances. A maximum
average accuracy of 92.61% was achieved by our GP system.

The results strongly support the use of GP to construct a more effective
automatic rhythmic stress detector than DT and SVM. Furthermore, according
to our data set, GP is more robust at handling large numbers of unnecessary
features and maintaining high performance than DT and SVM. GP also has a
stronger automatic feature selection ability than DT and SVM.

In addition, prosodic features appear to be more accurate in detecting stress
than vowel quality features, duration features being specially identified as the
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most important features. If using vowel quality, reduced vowel quality features
are more useful than full vowel quality features.

In future work, we will further analyse the GP programs to understand the
specific relationship amongst the feature terminals and the perceived stressed
and unstressed vowels in order to determine whether the generated GP program
with/without adapting can be applied to any other kind of data sets. We are
also planning to investigate the possibility of having GP automatically perform
higher level normalisations of the prosodic features and calculate vowel quality
features directly from acoustic likelihoods in order to erase the limitation of the
manual pre-process of the features.
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Abstract. This paper describes two new fitness functions in genetic pro-
gramming for object detection particularly object localisation problems.
Both fitness functions use weighted F-measure of a genetic program and
consider the localisation fitness values of the detected object locations,
which are the relative weights of these locations to the target object cen-
ters. The first fitness function calculates the weighted localisation fitness
of each detected object, then uses these localisation fitness values of all
the detected objects to construct the final fitness of a genetic program.
The second fitness function calculates the average locations of all the
detected object centres then calculates the weighted localisation fitness
value of the averaged position. The two fitness functions are examined
and compared with an existing fitness function on three object detection
problems of increasing difficulty. The results suggest that almost all the
objects of interest in the large images can be successfully detected by all
the three fitness functions, but the two new fitness functions can result
in far fewer false alarms and spend much less training time.

1 Introduction

As more and more images are captured in electronic form, the need for programs
which can detect objects of interest in a database of images is increasing. For
example, it may be necessary to detect all tumors in a database of x-ray images,
find all cyclones in a database of satellite images, detect a particular face in a
database of photographs, or detect all tanks, trucks or helicopters in a set of
images [1, 2, 3, 4]. This field is typically called object detection.

Object detection is an important field of research in image analysis and pro-
cessing for many modern tasks. It is the process of finding locations of the objects
of interest within images, known as object localisation, and determining the types
or classes of the objects found, known as object classification. Object localisa-
tion is sometimes referred to object detection, as it also involves classifying all
the objects of interest from background. It is noted that object detection is a
difficult task, particularly when the objects of interest are irregular and/or the
background is highly cluttered.

Genetic programming (GP) is a relatively recent and fast developing approach
to automatic programming [5, 6, 7]. In GP, solutions to a problem can be rep-
resented in different forms but are usually interpreted as computer programs.
Darwinian principles of natural selection and recombination are used to evolve

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 472–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a population of programs towards an effective solution to specific problems.
The flexibility and expressiveness of computer program representation, combined
with the powerful capabilities of evolutionary search, make GP an exciting new
method to solve a great variety of problems. A strength of this approach is that
evolved programs can be much more flexible than the highly constrained, param-
eterised models used in other techniques such as neural networks and support
vector machines. GP has been applied to a range of object recognition tasks
such as shape classification, face identification, and medical diagnosis with some
success [5, 8, 9, 10, 11].

Finding a good fitness function for a particular object detection problem is an
important but difficult task in developing a GP system. Various fitness functions
have been devised for object detection, with varying success [5, 9, 11, 12, 13].
These tend to combine many parameters using scaling factors which specify
the relative importance of each parameter, with no obvious indication of what
scaling factors are good for a given problem. Many of these fitness functions for
localisation require clustering to be performed to group multiple localisations
of single objects into a single point before the fitness is determined [14, 13, 12].
Other measures are then incorporated in order to include information about
the pre-clustered results (such as how many points have been found for each
object). While some of these systems achieved good detection rates, many of
them resulted in a large number of false alarms. In particular, the clustering
process during the evolutionary process made the training time very long.

This paper aims to investigate two new fitness functions in GP for object
detection, in particular localisation, with the goal of improving the detection
performance particularly reducing false alarms and improving the evolutionary
training efficiency. The two fitness functions will be examined and compared
with an existing fitness function on a sequence of object detection problems of
increasing difficulty.

The remainder of this paper is organised as follows. Section 2 describes the
basics of object detection. Section 3 describes the overview of our GP approach.
Section 4 details the two new fitness functions with design requirements. Section
5 describes experiment design and configurations and section 6 presents the
results with discussions. Finally, we draw conclusions in section 7.

2 Object Detection

The process for object detection is shown in Figure 1. A raw image is taken and a
trained localiser applied to it, producing a set of points found to be the positions
of these objects. Single objects could have multiple positions (“localisations”)
found for them, however ideally there would be exactly one localisation per
object. Regions of the image are then “cut out” at each of the positions specified.
Each of these cutouts are then classified using the trained classifier.

This method treats all objects of multiple classes as a single “object of in-
terest” class for the purpose of localisation, and the classification stage handles
attaching correct class labels. Compared with the single-stage approach [10, 11],
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Fig. 1. Object Detection Process

this has the advantage that the training is easier for both stages as a specific
goal is focused on the training of each of the two stages. The first is tailored
to achieving results as close to the object centres as possible (to achieve high
“positional accuracy”), while the second is tailored to making all classifications
correct (high “classification accuracy”).

The accuracy of the positions found by the localiser is important, as incorrect
results from this first stage will need to be handled by the second stage. Any false
alarms from the localisation stage could cause problems with the classification
stage, unless it is able to classify these as “background”. If the positions found
are not close enough to the object centres then the classification stage will likely
not handle it well.

The object localisation stage is performed by means of a window which sweeps
over the whole image, and for each position extracts the features and passes them
to the trained localiser. The localiser then determines whether each position is
an object or not (i.e. background).

3 Genetic Programming Applied to Object Detection

Our work will focus on object localisation using genetic programming. Figure 2
shows an overview of this approach, which has a learning process and a testing
procedure. In the learning/evolutionary process, the evolved genetic programs
use a square input field which is large enough to contain each of the objects of
interest. The programs are applied at many sampled positions within the images
in the training set to detect the objects of interest. If the program localiser
returns a value greater than or equal to zero, then this position is considered the
centre of an object of interest; otherwise it is considered background. In the test
procedure, the best evolved genetic program obtained in the learning process is
then applied, in a moving window fashion, to the whole images in the test set to
measure object detection performance.

In this system, we used tree structures to represent genetic programs [6]. The
ramped half-and-half method [5] was used for generating programs in the initial
population and for the mutation operator. The proportional selection mechanism
and the reproduction, crossover and mutation operators [5] were used in the
learning process.
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Fig. 2. An overview of the GP approach for object detection

3.1 Terminal Set

For object detection problems, terminals generally correspond to image features.
In this approach, the features are extracted by calculating the mean and standard
deviation of pixel values within each of the circular regions, as shown in Figure
3. This set of features has the advantages of being rotationally invariance. In
addition, we also used a constant terminal.
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region 1
Input window

Mean SD Regions
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F1 Circular region 1
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Fig. 3. Eight concentric circular region features

3.2 Function Set

In the function set, the four standard arithmetic and a conditional operation
was used to form the non-terminal nodes:

FuncSet = {+,−, ∗, /, if}

The +, −, and ∗ operators have their usual meanings — addition, subtraction
and multiplication, while / represents “protected” division which is the usual di-
vision operator except that a divide by zero gives a result of zero. Each of these
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functions takes two arguments. The if function takes three arguments. The first
argument, which can be any expression, constitutes the condition. If the first
argument is positive, the if function returns its second argument; otherwise, it
returns its third argument. The if function allows a program to contain a differ-
ent expression in different regions of the feature space, and allows discontinuous
programs, rather than insisting on smooth functions.

Construction of the fitness functions is the main focus of this paper, which
will be described in the next section.

4 Fitness Functions

4.1 Design Considerations

During the evolutionary process for object detection, we expect that the evolved
genetic programs only detect the objects when the sweeping window is centred
over these objects. However, in the usual case (except the ideal case), these
evolved genetic programs will also detect some “objects” not only when the
sweeping window is within a few pixels of the centre of the target objects, but
also when the sweeping window is centred over a number of cluttered pieces of
background. Clearly, these “objects” are not those we expected but are false
alarms.

Different evolved genetic programs typically result in different numbers of
false alarms and such differences should be reflected when these programs are
evaluated by the fitness function.

When designing a fitness function for object detection problems, a number of
considerations need to be taken into account. At least the following requirements
should be considered.

Requirement 1. The fitness function should encourage a greater number of
objects to be detected. In the ideal case, all the objects of interest in large
images can be detected.

Requirement 2. The fitness function should prefer a fewer number of false
alarms on the background.

Requirement 3. The fitness function should encourage genetic programs to
produce detected object positions closer to the centres of the target objects.

Requirement 4. For a single object to be detected, the fitness function should
encourage programs to produce fewer detected “objects” (positions) within
a few pixels from the target center.

Requirement 5. For two programs which produce the same number of detected
“objects” for a single target object but the “objects” detected by the first
program are closer to the target object centre than those detected by the
second program, the fitness function should rank the first program better
than the second.

Some typical examples of these requirements are shown in figure 4. In this
figure, the circles are target objects and squares are large images or regions. A
cross (x) represents a detected object. In each of the five cases, the left figure is
associated with a better genetic program than the right.
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Fig. 4. Examples of the design considerations of the fitness function

4.2 An Existing Fitness Function

As the goal is to detect the target objects with no or a small number of false
alarms, many GP systems uses a combination of detection rate and false alarm
rate or recall and precision as the fitness function. For example, a previous GP
system uses the following fitness function [10]:

fitnessCBF = A · (1 − DR) + B · FAR + C · FAA (1)

where DR, FAR, and FAA are detection rate (the number of small objects
correctly reported by a detection system as a percentage of the total number of
actual objects in the images), false alarm rate (also called false alarms per object,
the number of non-objects incorrectly reported as objects by a detection system
as a percentage of the total number of actual objects in the images), and false
alarm area (the number of false alarm pixels which are not object centres but
are incorrectly reported as object centres before clustering), respectively, and
A, B, C are constant weights which reflect the relative importance of detection
rate versus false alarm rate versus false alarm area.

Basically, this fitness function has considered requirement 1, and partially con-
sidered requirements 2 and 4, but does not take into accounts of requirements 3
and 5. Although this fitness function performed reasonably well on some prob-
lems, it still produced many false alarms and the evolutionary training time
was still very long [10]. Since this method used clustering before calculating the
fitness, we refer to it as clustering based fitness, or CBF for short.

4.3 First New Fitness Function — LFWF

To avoid a very large false alarm rate (greater than 100% for difficult problems)
in the training process, we use precision and recall, both of which have the range
between [0, 1], to construct the new fitness functions. Precision refers to the
number of objects correctly localised/detected by a GP system as a percentage
of the total number of object localised/detected by the system. Recall refers to
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the number of objects correctly localised by a system as a percentage of total
number of target objects in a data set. Note that precision/recall and detection
rate/false alarm rate have internal relationship, where the value of one pair for
a problem can be calculated from the other for the same problem.

During the object localisation process, a genetic program might consider many
pixel positions in an image as object centres, particularly for those pixels sur-
rounding the target object centres. For presentation convenience, we call each
object centre localised in an image by a genetic program a localisation.

Unlike the previous fitness function CBF, our first fitness function is based
on a “Localisation Fitness Weighted F-measure” (LFWF), which attempts to
acknowledge the worth/goodness of individual localisations made by the genetic
program. Instead of using either correct or incorrect to represent a localisation,
each localisation is allocated a weight (referred to as the localisation fitness)
which represents its individual worth and counts towards the overall fitness. If
all localisations have a high localisation fitness, then the overall fitness of this
genetic program will be good.

Each weight is calculated based on the distance of the localisation from the
centre of the closest object, as shown in Equation 2.

localisationFitness(x, y) = 1 −
√

x2+y2

r
, if x2 + y2 ≤ r

0 , otherwise
(2)

where
√

x2 + y2 is the distance of the localisation position (x, y) from target
object centre, and r is called the “localisation fitness radius”, defined by the
user. In this system, r is set to a half of the square size of the input window,
which is also the radius of the largest object.

In order to deal with all the situations in the five design requirements, we
used the localisation fitness to construct our first new fitness function, as shown
in Equations 3 to 5. The precision and recall are calculated by taking the lo-
calisation fitness for all the localisations of each object and dividing this by the
total number of localisations or total number of target objects respectively.

WP1 =

N
i=1

Li
j=1 localisationFitness(xij , yij)

N
i=1 Li

(3)

WR1 =

N
i=1

Li
j=1 localisationFitness(xij ,yij)

Li

N
(4)

fitnessLF WF =
2 × WP1 × WR1

WP1 + WR1
(5)

where N is the total number of target objects, (xij , yij) is the position of the j-th
localisation of object i, Li is number of localisations made to object i, WP1 and
WR1 are the weighted precision and recall, and fitnessLFWF is the localisation
fitness weighted F-measure, which is used as the first new fitness function.
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Main Characteristics. The fitness function has a number of properties. Firstly,
the main parameter in this fitness function is the localisation fitness, which can
by easily determined in the way presented here. This has an advantage over the
existing methods which have many parameters whose values usually need to be
manually determined. Secondly, in the previous approaches, the multiple local-
isations of each object must be clustered into one group and its centre found.
While this is not a too difficult task, it is very time consuming to do during
training. This new fitness function does not require clustering before the fitness
is calculated. We expect that the new fitness function will do a better job in
terms of reducing false alarms and evolutionary training time.

4.4 Second New Fitness Function — APWF

Our second fitness function is designed by combining the idea behind the clus-
tering based fitness function into our first new weighted fitness function. Rather
than using the averaged localisation fitness values for all localisations for each
object in LFWF, we calculate the average positions of all the localisations for
each object first then use the localisation fitness of the averaged position for all
localisations to calculate the weighted precision and recall, as shown in equa-
tions 6, 7, and 8. We refer to this fitness function as APWF, as it is based on
the “average position weighted F-measure”.

WP2 =

∑N
i=1 localisationFitness(

Li
j=1 xij

Li
,

Li
j=1 yij

Li
) · Li∑N

i=1 Li

(6)

WR2 =

∑N
i=1 localisationFitness(

Li
j=1 xij

Li
,

Li
j=1 yij

Li
)

N
(7)

fitnessAPWF =
2×WP2 ×WR2

WP2 + WR2
(8)

where WP2, WR2 and fitnessAPWF are the weighted precision, recall and fit-
ness function in this case. This fitness function mimics the idea of clustering
based fitness functions and we are interested in the investigation of effect of
it and compare it with our first new fitness function and the clustering based
fitness function.

5 Experiment Design and Configurations

We used three image data sets of New Zealand 5 and 10 cent coins in the exper-
iments. Examples are shown in Figure 5. The data sets are intended to provide
object localisation/detection problems of increasing difficulty. The first data set
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(a) (b) (c)

Fig. 5. Sample images in the three data sets. (a) Easy; (b) Medium difficulty; (c) Hard.

(easy) contains images of tails and heads of 5 and 10 cent coins against an almost
uniform background. The second (medium difficulty) is of 10 cent coins against
a noisy background, making the task harder. The third data set (hard) contains
tails and heads of both 5 and 10 cent coins against a noisy background.

We used 24 images for each data set in our experiments and equally split them
into three sets: a training set for learning good genetic programs, a validation
set for monitoring the training process to avoid overfitting, and a test set to
measure object detection performance.

To give a fair comparison for the three fitness functions., the “localisation
recall (LR) and precision (LP)” were used to measure the final object detection
accuracy on the test set. LR is the number of objects with one or more correct
localisations within the localisation fitness radius at the target object centres
as a percentage of the total number of target objects, and LP is the number of
correct localisations which fall within the localisation radius at the target object
centres as a percentage of the total number of localisations made. In addition,
we also check the “Extra Localisations” (ExtraLocs) for each system to measure
how many extra localisations were made for each object. The training efficiency
of the systems is measured with the number of training generations and the CPU
(user) time in second.

We used a population of 500 genetic programs for evolution in each experiment
run. The reproduction rate, crossover rate and mutation rate were 5%, 70% and
25%, respectively. The program size was initialised to 4 and it could increase to
8 during evolution. The system run 50 generations unless it found a solution,
in which case the evolution was terminated early. A total number of 100 runs
were performed for each fitness function on each data set and average results are
presented in the next section.

6 Results

Table 1 shows the results of the GP systems with the three fitness functions. The
first line shows that, for the easy data set, the GP system with the existing fitness
function, CBF , achieved an average localisation recall 99.99% and an average
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Table 1. Results of the GP systems with the two fitness functions

Dataset Fitness Test Accuracy Training Efficiency
function LR (%) LP (%) ExtraLocs Generations time(sec)

CBF 99.99 98.26 324.09 13.69 178.99
Easy LFWF 99.99 99.36 98.35 36.44 111.33

APWF 99.98 99.35 123.17 38.11 113.38

CBF 99.60 83.19 804.88 36.90 431.94
Medium LFWF 99.90 94.42 95.69 34.35 105.56

APWF 99.75 92.34 163.65 37.88 118.13

CBF 98.22 75.54 1484.51 31.02 493.65
Hard LFWF 99.53 87.65 114.86 33.27 107.18

APWF 99.27 83.26 187.50 37.27 123.77

of localisation precision 98.26%, and resulted in 324.09 extra localisations on
average. The average number of generations spent on training was 13.69 and the
average training CPU user time was 178.99 seconds.

The results on the easy data set show that all the three fitness functions
achieved almost perfect test accuracy. Almost all the objects of interest in this
data set were successfully localised with very few false alarms (both LR and
LP are very close to 100%), reflecting the fact that the detection task in this
data set is relatively easy. However, the extra locations and the training time
of the three approaches are quite different. Both the two new fitness functions
(LFWF and APWF) produced a far fewer number of extra localisations per ob-
ject than clustering based fitness function (CBF) and the gap between them is
significant. Although the CBF approach used only 13.69 generations on average,
which are considerably fewer than the other two approaches, it actually spent
about 50% longer training time. This confirms our early hypothesis that the
clustering process in the CBF approach is time consuming and the approaches
with the two new fitness functions are more efficient than that with CBF. The
approach with LFWF used slightly less time and produced fewer extra localisa-
tions than APWF.

The results on the other two data sets show a similar pattern in terms of the
number of extra localisations and training time. The systems with LFWF and
APWF always produced a significantly fewer number of extra localisations and
a much short training time than CBF and the LFWF was the best over the three
fitness functions. In addition, although almost all the objects of interest in the
large images were successfully detected (LRs are almost 100%), the localisation
precisions achieved by LFWF and APWF were significantly better than CBF,
suggesting that the two new fitness functions outperform the existing one in
terms of reducing false alarms. Also, LFWF outperformed APWF on these two
data sets.

As expected, performance on the three data sets deteriorated as the degree
of difficulty of the object detection problem was increased.
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6.1 Detection Map Analysis

To give an intuitive view of detection performance of the three fitness functions,
we checked the “detection maps” of some objects in the test set. Figure 6 (a), (b)
and (c) show the detection maps for the same 15 objects in the medium difficulty
data set produced by the three approaches. The black pixels in these maps indi-
cate the localisations of the 15 objects produced using the three fitness functions.
The “background” means that no objects were found in those positions.

(a) (b) (c)

Fig. 6. Sample object detection maps. (a) CBF; (b) LFWF; (c) APWF.

As shown in the figure, the clustering based fitness function CBF resulted in
a huge number of extra localisations for all the 15 objects detected. The LFWF
method, however, only resulted in a small number of extra localisations. Although
the APWF method produced more localisations than the LFWF method, it was
much better than the CBF method in producing extra localisations. These maps
confirm that the two new fitness functions were more effective than the clustering
based fitness function on these problems and the LFWF performed the best.

7 Conclusions

This paper described two new fitness functions in genetic programming for object
detection, particularly object localisation problems. Rather than using a clus-
tering process to determine the number of objects detected by the GP systems,
the two new fitness functions introduced a weight called localisation fitness to
represent the goodness of the detected objects and used weighted F-measures.
The first fitness function LFWF calculated the weighted localisation fitness of
each detected object, then used these localisation fitness values of all the de-
tected objects to construct the final fitness measure of a genetic program. The
second fitness function APWF calculated the average locations of all the de-
tected object centres then calculated the weighted localisation fitness value of
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the averaged position. The two fitness functions were examined and compared
with an existing fitness function on three object detection problems of increasing
difficulty. The results suggest that the two new fitness functions outperformed
the existing clustering based fitness function in terms of both detection accuracy
and training efficiency. The LFWF approach achieved the better performance
than the APWF approach.

In the future, we will apply the new approach to other object detection prob-
lems including object overlapping situations. We will also investigate new ways
for further reducing training time by effectively organising training examples.
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Abstract. A feature selection method for unsupervised learning is proposed. 
Unsupervised feature selection is considered as a combination optimization 
problem to search for the suitable feature subset and the pertinent number of 
clusters by optimizing the efficient evaluation criterion for clustering and the 
number of features selected. Instead of combining these measures into one ob-
jective function, we make use of the multiobjective immune clonal algorithm 
with forgetting strategy to find the more discriminant features for clustering and 
the most pertinent number of clusters. The results of experiments on synthetic 
data and real datasets from UCI database show the effectiveness and potential 
of the method. 

1   Introduction 

Intuitively, more features can describe a given target better and are in favor of the 
improvement of the discriminating performance. However, it is not the case in 
practice. One may extract the potentially useful features for many learning domains. 
However, some of the features may be redundant or irrelevant, and some may even 
misguide the learning results. In such a case, removing these “noise” features will 
often lead to better performance.  

Feature selection is defined as the process of choosing a subset from the original 
predictive variables by eliminating redundant features and those with little or no 
predictive information. In supervised learning, it is a popular technique and has been 
used in various applications because it can improve the performance of classifiers and 
lower or even avoid the dimension curse. According to the evaluation criterions, 
feature selection algorithms can be divided into filters and wrappers [1]. The former 
performs feature selection independently of any learning algorithm. On the other 
hand, the candidate feature subset is evaluated by the classification accuracy in 
wrappers.  

Compared with supervised learning, only in recent years, some investigations on 
feature selection for unsupervised leaning have been made gradually. The unsupervised 
feature selection algorithms also can be classified into filter and wrapper mehtods. 
Distance entropy based algorithm [2] and the method based on feature similarity [3] are 
examples of filters. Most researches on unsupervised feature selection belong to 
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wrappers. In [4], mixture models are used to implement feature selection and clustering 
simultaneously. In [5], a separation criterion is used for feature evaluation, and the 
minimum description length penalty term is added to the log-likelihood criterion to 
determine the number clusters. The multiobjective genetic algorithm and an evolutionary 
local selection algorithm are used in [6] and [7] respectively. 

In this paper, an unsupervised feature selection algorithm based on wrapper frame 
is proposed, in which FCM algorithm is applied to form the clusters based on the 
selected features. Generally, a feature selection algorithm involves two sides: a fea-
ture evaluation criterion and a search algorithm. A validity measure for fuzzy cluster-
ing is applied to evaluate the quality of the features for FCM algorithm. In addition, 
suitable feature selection and the pertinent number of clusters must be optimized at 
the same time in unsupervised feature selection since different feature subsets may 
lead to different cluster structures. The task presents a multi-criterion optimal prob-
lem. Recently, evolutionary computation algorithms get widely applications in feature 
selection [8] and synthesis [9] [10] to improve the performance and reduce the feature 
dimension as well. In paper [11], the Immune Clonal Algorithm (ICA) is applied to 
search for the optimal feature subset for classification in which different objectives 
are combined into a single objective function. The main drawback of using ICA here 
lies in that it is difficult to explore different possibilities of trade-offs among objec-
tives. Then the Immune Forgetting Multiobjective Optimization Algorithm (IFMOA) 
[12] is used to find a set of nondominated solutions which imply the more discrimi-
nate features and the more pertinent number of clusters.  

2   Evaluation of Features for Clustering 

Feature selection for clustering is to search for fewer features that best uncovers 
“natural” groups from data according to some criterion. So we need one or more crite-
rions to evaluate the quality of clustering based on different feature subsets. Among 
them, the within-cluster scatter and between-cluster separation criterion has been 
widely used. Two objective functions are used to compute these measurements inde-
pendently in [7]. The scatter seperability criterion 1( )w btrace S S− is used in [5]. A DB 

index is used in [6], which is more suitable for hard cluster. Since different cluster 
algorithms need different measures for evaluation, a validity measure for fuzzy clus-
tering proposed in [13] is used for the evaluation of FCM. 

After implementing FCM on data set { ; 1,2, , }iX X i n= = L , we can get the cen-

troids ( 1, 2, )jZ j c= L  and the fuzzy membership ( 1,2, , , 1,2, , )ij i n j cμ = =L L of 

vector i belonging to cluster j, in which (0,1)ijμ ∈ . Then, the fuzzy deviation of a 

sample iX is defined as 

ij ij i jd X Zμ= −  (1) 

where ⋅ is the usual Euclidean norm. Thus ijd is just the Euclidean distance between 

iX and jZ weighted by the fuzzy membership of data i belonging to cluster j. 
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For each cluster j, the summation of the squares of fuzzy deviation of each data 
point is called the variation of cluster j, which is denoted by 2

jσ and is defined as 

2
2 2 2

1 1
( )

n n

j ij ij i ji i
d X Zσ μ

= =
= = −∑ ∑ . (2) 

Then the total variation of data set X is  

2

1

c

jj
σ σ

=
= ∑ . (3) 

Consequently, the compactness of the fuzzy c-partition of the data set is defined as the 
ratio of the total variation to the size of the data set / nσ . The smaller the ratio is, the 

more compact the clusters are. And 2
j jnσ is called the compactness of cluster j 

where 
1

n

j i ij
n μ

=
= ∑ is the fuzzy cardinality of cluster j.  

On the other hand, the separation of the fuzzy c-partition is defined as:  
2

min , 1, , ,min i j c i j i jd Z Z= ≠= −L . (4) 

mind  measures the minimum distance between cluster centroids. Larger mind indicates 

that all the clusters are separated.  
Then, the compactness and the separation validity function or Xie-Beni index is de-

fined as 

min

n
XB

d

σ= . (5) 

A smaller XB indicates a partition in which the clusters are overall compact, and 
separate to each other. Thus, our goal in this paper is to find the feature subset for 
FCM with the smallest XB . 

It is noted that, in FCM algorithm, the objective function is 
2

1 1

n c q
q ij i ji j

J X Zμ
= =

= −∑ ∑ . (6) 

So, when 2q = in FCM, Xie-Beni index can be calculated by 2 minXB J nd= , from 

which, it is shown that the smallest XB implies the smallest 2J . 

3   The Need for Determining the Number of Clusters 

Unsupervised feature selection is difficult because one has not effective guidance for 
finding relevant features without class labels. And the task is made more challenging 
when the number of clusters is unknown. However, different feature subsets lead to 
varying cluster structure. Fig.1, for example, indicts it clearly. It can be found that the 
numbers of clusters are 1, 2, 3 using feature subsets 1{ }x , 2{ }x  and 1 2{ , }x x  respec-

tively. It is unreasonable using a fixed number of clusters in the process of feature 
selection. Therefore, suitable feature subset and the pertinent number of clusters must 
be considered at the same time.  
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Fig. 1. The influence of feature subset to the number of clusters 

In literatures, various criterions are used for finding the number of clusters, for ex-
ample, Bayesian Information Criterion [14], minimum message length is used in [4], 
and a minimum description length penalty is used in [5]. Instead of estimating the 
number of clusters, c, we get it by encoding it as a part of the individual solution 
along with the feature selection. Then each individual in Immune Multiobjective 
Optimization Algorithm represents a feature subset and a number of clusters. 

4   IFMOA for Unsupervised Feature Selection  

As discussed above, more than one criterion is needed for unsupervised feature selec-
tion, which will be the objective functions for IFMOA to be optimized to find the 
more discriminant features and the pertinent number of clusters with fewer features.  

4.1   Objective Functions 

A validity measure for clustering on the given feature subset is needed first. From 
section 2, it is found that a smaller XB indicates a partition in which the clusters are 
overall compact, and discriminated from each other. So we minimize the following 
objective function. 

1f XB= . (7) 

However, as Xie and Beni pointed in [13], the criterion above prefers larger num-
ber of clusters.  In order to compensate for the previous criterion’s bias to the number 
of clusters, then we minimize the second objective. 

2f c=  (8) 

where c is the number of selected clusters. 
The third objective is to find the feature subset with the minimum number of se-

lected features d when the other criterions are equal.  

3f d= . (9) 

Then, IFMOA, capable of maintaining a diverse population of solutions and result-
ing in global Pareto optimal solutions by multiobjective, is used to deal with the opti-
mization problem with above 3 objectives.  
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4.2   A Review of IFMOA 

IFMOA, an algorithm inspired by immune response, combines the Pareto-strength 
based fitness assignment strategy, the Clonal Selection Operator, and the Immune 
Forgetting Operator to solve multiobjective optimization problems [12]. Clonal Selec-
tion Operator (CSO) and Immune Forgetting Operator (IFO) are two operators simu-
lating the dynamic process of immune response in IFMOA. They allow us to extend 
the searching scope and increase the diversity of the populations, resulting in more 
uniformly distributing global Pareto optimal solutions and more integrated Pareto 
fronts over the tradeoff surface. 

IFMOA uses two populations: one of antibodies and another one of the nondomi-
nated solutions of each generation. The problems to be optimized are denoted as anti-
gens, and the candidate solutions are denoted as antibodies. The affinity indicates the 
matching between the solution and the problem. The overall flow of IFMOA is de-
scribed as follows: 

 
Algorithm: The Immune Forgetting Multiobjective Optimization Algorithm 
Step1: 0k = , Generate the initial antibody population { }1 2(0) (0), (0), (0)nA = a a aL and 

create an empty matrix (antibody archive) (0)P .  
Step2: Assigning affinity to the individuals in the combinational population pool 

of antibody population ( )kA and archive ( )kP . 
Step3: If the termination criterion is not satisfied, carry on the following opera-

tions, otherwise, stop.  
Step 3.1: Apply Clonal Selection Operator to antibody population ( )kA . 

Step 3.2: Update the antibody archive ( )kP and get ( 1)k +P . 
Step 3.3: Perform Immune Forgetting Operator and get ( 1)k +A . 
Step 3.4: 1k k= +  go to Step 2. 

Fig. 2. Immune Forgetting Multiobjective Optimization Algorithm 

4.3   Application of IFMOA in Unsupervised Feature Selection 

Three problems must be solved first in the application of IFMOA to the unsupervised 
feature selection: encoding strategy, the construction of the affinity function to evalu-
ate the performance of every individual, and the determinations of immune operators 
and the parameters.  

4.3.1   Encoding 
The decimal encoding is used and the length of an antibody is D+1, where D is the 
number of features. The initial antibody population )0(A  is generated randomly at 

between 0 and 1. And each one of pN  (population size) antibodies comprises two 

parts, the feature saliency for each feature and the encoding for the number of clus-
ters. Let 

1 2 1
( , , , , )

D Dv v v va a a a
+

L  denote an antibody, where ,...,
i Dv va a encode the feature 

saliency values of the associated features and 
1Dva

+
denotes the number of clusters. 
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Features with large saliencies are kept to constitute a suitable feature subset. And 
optimizing feature saliency values naturally leads to feature selection. The number of 
clusters can be obtained by the following decoding method: 

1min max min( ( ) )
Dvc round c c c a

+
= + −  where minc  is the minimal number of clusters, 

min 2c = since one cluster for a data set is meaningless, and maxc is the preestablished 

maximal number of clusters. ( )round a rounds the elements of a to the nearest integers. 

In the evolutionary, the feature saliency value is likely to become small if one of 
the input features is unimportant for the clustering. Consequently, when the feature 
saliency value becomes small enough, it means that it is possible to remove the corre-
sponding feature without sacrificing the performance of the clustering. In our work, 
all the feature saliency values , 1,2, ,

iva i D= L  denoted by each individual are normal-

ized first and let
1

1
i

D

vi
a

=
=∑ . The threshold is set to be 1/ D  and the features whose 

feature saliency values are lower than the threshold are discarded. 

4.3.2   Computation of Affinity 
In IFMOA, each individual in the combinational population pool of antibody popula-
tion ( )kA and archive ( )kP is assigned an affinity value ( )F i , which is computed 

by ( ) ( ) ( )F i R i D i= + . ( )R i is determined according to the concept of Pareto strength. 

( ) 0R i = indicates that the individual ip  is not dominated by any other individuals, 

corresponding to a nondominated solution. The purpose of ( )R i is to find the nondo-

minated solutions. ( )D i  is additionally incorporated to guide a more precise search 

process and is computed by ( ) ( )( )1 1D i d i= + , where ( )d i is the sum of distances in 

the solution space between one antibody and its two nearest individuals. The 
smaller ( )D i , the lower the similarity between one antibody and its neighboring indi-

viduals, which is beneficial to the diversity of the population. Thus the overall affinity 
should be minimized.  

4.3.3   Immune Operations 
Clonal Selection Operator(CSO) 
Inspired by the clonal selection theory, the Clonal Selection Operator (CSO) imple-
ments clonal proliferation ( C

PT ), affinity maturation ( A
MT ) and clonal selection ( C

ST ) on 

the antibody population )(kA . The evolvement process of CSO can be described as: 

CC A
SP M

( ) ( ) ( ( ) ( )) ( )
TT T

A k Y k Z k A k A k′→ → →U  (10) 

According to CSO, an antibody 1 2{ , , , }i ma x x x= L in the solution space will obtain iq  

copies by performing clonal proliferation, and then we get the new population ( )Y k . The 
affinity maturation is implemented through random changes, i.e.mutation of ( )Y k , with 
mutation probability 1/mP l= where l is the length of an antibody. Such changes may 

lead to an increase in the affinity of the clonal antibody occasionally. But mutation is not 
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applied to ( )A k in order to save the information of original antibody population. Thus the 
population after the affinity maturation is composed of the mutated population ( )Z k and 
the original population ( )A k . Finally, clonal selection is used to update the antibody 
population. In this case, preference is given to the individual with the higher affinity 
between the original antibody and its iq copies after mutation. CSO reproduces antibod-

ies and selects their improved progenies, so each individual will be optimized locally and 
the newcomers yield a broader exploration of the search space.  

Updating Antibody Archive 
In the iterative of IFMOA, the antibody archive stores the nondominated solutions of 
current combinational population. Such external population is the elitist mechanism 
most commonly used in multiobjective optimization, and it allows us to move towards 
the true Pareto front of the multiobjective problem. We set the antibody archive not to 

exceed a fixed size fN , and assume ( )1k +P  is its actual size. If ( )1 fk N+ pP , copy 

( )( )1fN k− +P dominated individuals having the best affinity from the current com-

binational population to ( )1k +P ; or else, compress ( )1k +P  until ( )1k +P  is having 

the best affinity equal to fN . 

Updating Clonal Forgetting Unit 
We randomly select r  antibodies in the current antibody population to fill the clonal 
forgetting pool. The activation of clonal forgetting pool is implemented by replacing 
the whole clonal forgetting pool with individuals from the antibody archive. The 
value of r  is decided by clonal forgetting ratio %T , ( )% *r round T n= . %T  is related 

to antibody population size and the problems to be optimized, it can be self-adaptive 
or fixed.  

5   Experimental Results and Discussion 

To evaluate the performance of the proposed method, a synthetic data set is used first, 
which consists of 400 data points and 6 features. With the first two significant fea-
tures, the points form four well defined clusters as shown in the first figure of Fig.3, 
which are formed by generating points from a pseudo-Gaussian distribution. Features 
3 and 4 are got by the similar way with feature 2. Features 5 and 6 are independently 
sampled from uniform distribution. Fig.3 illustrates this data set by projecting the 
points onto the feature subspaces with two dimensions.  

In the experiment, the length of the individual is 9. The first 8 decimal numbers en-
code the features, while the remaining one for the number of clusters.  In IFMOA, the 
population size is 20, the probability of mutation is 1/9, and the clonal forgetting 
proportion %T  is set to be 0.08. Antibody archive size 100fN = and clonal scale c 5n = . 
The termination criterion is triggered whenever the maximum number of generations 
50 is attained.  The maximal number of clusters is set to be 8. 
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Fig. 3. Some 2-dimensional projections of the synthetic data set 

Table 1 shows the set of nondominated solutions or Pareto solutions found by 
IFMOA. It can be observed that the solution found can describe the data set shown in 
Fig.3 well. Because the performance of clustering is our main focus here, then S1 is 
the best solution in terms of the XB index.  

Table 1. Nondominated solutions for the synthetic data 

Solution Feature subset Num. of  
features 

Num. of   
clusters 

XB index 

S1 
1 3{ , }x x  2 4 0.1278 

S2 
2 3 4{ , , }x x x  3 2 0.1690 

S3 
2 4 5{ , , }x x x  3 2 0.1848 

The second experiment is implemented to test the algorithm on the real data sets as 
shown in Table 2 from (http://www.ics.uci.edu/~mlearn/MLSummary.html) UCI ma-
chine learning repository. All the data sets are normalized beforehand.  

In the experiment, each data set was first randomly divided into two halves: one for 
feature selection, another for testing. According to the selected features and the num-
ber of clusters on the former set by the proposed algorithm, each data point in the test 
set is assigning to the cluster that most likely generated it. We evaluate the results by 
interpreting the components as clusters and compare them with the ground truth la-
bels. In each time, a final solution is selected among all the Pareto solutions in terms 
of XB index. In IFMOA, except the length of individual and the mutation are relevant 
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Table 2. Data sets used in experiment 2 

Data set Class  Attribute Num. of  data  

wine 3 13 178 
Ionospere 2 34 351 
wdbc 2 30 569 

to the dimension of data set, the values of the other parameters are same as those in 
experiment 1. The method is denoted as FSFCM-IFMOA in table 3. 

For each data set, we perform the proposed method 10 runs and record the average 
error rate and the standard deviation on the test set. For comparison, we combine the 
three objectives in section 4.1 into one objective function by a random weighted 
summation, and the suitable feature subset and the number of clusters are achieved by 
minimizing the objective function using Immune Clonal Algorithm (ICA) [15]. The 
function is defined as 1 1 2 2 3 3F f f fα α α= + + , in which iα is randomly generated in each 

evaluation and
3

1
1ii

α
=

=∑ . In ICA, the encoding strategy and the parameters including 

the population size, the probability of mutation, the clonal scale and the termination 
criterion are set the same as those in IFMOA. FSFCM-ICA is used for denoting the 
method and the average results of 10 runs are recorded in Table 3. Furthermore, we 
also ran FCM 10 times using all the features with the fixed number of clusters.  

Table 3. Comparison of the error rates and the standard deviations of data sets with and without 
feature selection 

Data set Method Error (%) Number of 
clusters 

Number of 
features 

FCM 5.51 ± 1.71 Fixed at 3 Fixed at 13 
FSFCM-ICA 7.87 ± 5.43 3.10 ± 0.57 6.4 ± 1.5 

 
wine 

FSFCM-IFMOA 5.05 ± 0.80 3.33 ± 0.48 9.0 ± 1.00 
FCM 28.41 ± 2.99 Fixed at 2 Fixed at 34 
FSFCM-ICA 32.37 ± 1.50 2.40 ± 0.89 16.6 ± 1.52 

 
Ionospere 

 FSFCM-IFMOA 24.43 ± 3.46 2.33 ± 0.57 27.0 ± 1.00 
FCM 7.68 ± 1.24 Fixed at 2 Fixed at 30 

FSFCM-ICA 8.42 ± 1.75 5.00 ± 1.87 15.21 ± 0.84 

 
wdbc 

FSFCM-IFMOA 7.42 ± 1.58 2.30 ± 0.67 25.9 ± 1.29 

From the results, we can find that the proposed method improved the performance 
in terms of the error rate when compared with using all the features and the fixed 
number of clusters. The improvement is more significant for the Ionospere data set. 
However, it is also shown that the dimension of the selected feature subset is high. It 
may be due to the fact that the final solution of each run is selected among all the 
Pareto solutions in terms of XB index since the performance is our preference. In addi-
tion, the value of the threshold for feature saliencies will influence the performance of 



 Immune Multiobjective Optimization Algorithm for Unsupervised Feature Selection 493 

feature selection also when the decimal encoding strategy is used and the number of 
selected features is unknown. It is also shown that the error rates of the FSFCM-ICA 
with randomly weighting are lower than the proposed method in our experiments. 

6   Conclusion 

In this paper, we proposed an unsupervised feature selection algorithm based on Im-
mune Forgetting Multiobjective Optimization Algorithm. Unsupervised feature selec-
tion is considered as a combinational optimization problems for minimize the number 
of features used and the criterion for measuring the performance of clustering. At the 
same time, different feature subsets lead to varying cluster structures, namely, the 
number of clusters is relevant to the feature subset considered. Instead of combining 
these evaluations into one objective function, we make use of the multiobjective im-
mune clonal algorithm with forgetting strategy to find the more discriminant features 
for clustering and the pertinent number of clusters. The results of experiments on 
synthetic data and real data sets show the potential of the method. Certainly, we just 
get some primary results and the application of the method on the segmentation of 
remote sensing image is our focus of further study. 
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Abstract. This paper presents a machine learning system to handle traffic con-
trol applications. The input of the system is a set of image sequences coming
from a fixed camera. The system can be divided into two main subsystems: the
first one, based on Artificial Neural Networks classifies the typology of vehicles
moving within a limited image area for each frame of the sequence; the second
one, based on Genetic Algorithms, takes as input the frame-by-frame classifica-
tions and reconstructs the global traffic scenario by counting the number of vehi-
cles of each typology. This task is particularly hard when the frame rate is low.
The results obtained by our system are reliable even for very low frame rate (i.e.
four frames per second). Our system is currently used by a company for real-time
traffic control.

1 Introduction

The problem of counting and classifying in an automatic, reliable and efficient way
the vehicles that travel along an urban street or a motorway is becoming more and
more important to maintain traffic safety and fluency (see for instance [7, 1, 8, 3, 13]).
Companies are beginning to employ systems based on filmed sequences, since they
appear to be more flexible, more maintainable and less expensive than systems based
on technological supports, such as sensors or other analogous devices that have to be
physically installed in many different places on the street. While, in order to contain
costs, some companies use less sophisticated devices, which produce image sequences
at a lower frame rate, analyzing low frame rate sequences by means of computer sys-
tems can be very difficult. Several commercial systems for traffic surveillance based on
filmed sequences exist (see among the others CVCS, by Alvarado Manufacturing [9],
CCATS by Traficon and AUTOSCOPE by Econolite). However these systems seem to
be based on high frame rate image sequences. In [2], Eikvil and Huseby pointed out
the main limitations of these systems and proposed a new system based on Hidden
Markov Models (HMM). As pointed out in [12, 13], Eikvil’s and Huseby’s system has
excellent performances when applied to high frame rate image sequences, but it fails to
correctly reconstruct the traffic scenario in the presence of low frame rate ones. In [12]
a good discussion on the motivations for which a system based on HMM has poor per-
formances on low frame rate image sequences can be found. In this paper, we present
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a system for traffic control which is able to work in real-time on low frame rate im-
age sequences. This work is a part of a joined research project between the University
of Milano-Bicocca and the Comerson company (http://www.comerson.com). The main
goal is recognizing and counting different types of vehicles that have traveled along a
street in a given time frame. In order to calculate statistics about the size of vehicles
traveling and thus propose strategies to increase traffic safety and efficiency, we distin-
guish three types of vehicles: cars, trucks and motorbikes. Our system is composed by
two modules. The first one, called Vehicle Classifier System, is based on a standard Feed
Forward Neural Network (NN) trained with the Backpropagation learning rule [5, 11].
The second one, called Vehicle Counting System, is based on Genetic Algorithms (GAs)
[6, 4]. This paper is organized as follows: in section 2, the Vehicle Classifier System is
presented and some experimental results are discussed. Section 3 describes the Vehicle
Counting System Experimental results are presented also for it. Finally, section 4 offers
our conclusions and hints for future work.

2 Vehicle Classifier System

This system takes as input a sequence of images (or frames). These images are inter-
preted as matrix of pixels, where every pixel can take values over the range [0,255],
corresponding to the various tonalities of gray (0 = white, 255 = black). The analysis of
a sequence of consecutive images (or frames) allows us to extract the background with
the same technique as the one used in [2]. Subsequently, a number of virtual sensors (or
detectors) of rectangular shape, arranged in a grid structure, are placed in some limited
regions of the street. For every detector Si composing the grid (1≤ i≤ 36 in figure) let
s(i,k) be the sum of the squared pixel-by-pixel differences between frame k (the running
image) and the background. The training set that is supplied as input to the classifier
can then be represented as a set of sequences s(1, j),s(2, j)...,s(36, j),Cj, with 1 ≤ j ≤ N,
where N is the number of frames in the image sequence. and, for each j, the value of Cj,
is interpreted as the class corresponding to the pattern s(1, j),s(2, j), ...,s(36, j). This class
can be: c, t, M, e or m if a car, a truck, a motorbike, no vehicle or more than one vehicle
is present on the grid of detectors, respectively. This system demands a training phase
in which a human being supplies the vehicle class contained into the grid of detectors at
each instant. Here, we present some experiments on the three different street scenarios
(whose names are Noranco, Bollate and Saragozza). Results obtained by k-folds cross-
validation are reported in table 1 (see for instance [10] for a definition of the cci, p and
r measures and for a description of the k-folds cross-validation method).

3 Vehicle Counting System

The output produced by the Vehicle Classifier System is a sequence like G1,G2...,Gn,
where ∀i ∈ [1,n],Gi ∈ {C,T,M,m,e}. A sequence of identical symbols, like for in-
stance (C,C,C,C,C,C). may represent: (1) the presence of the same car on the grid for
six consecutive frames, or (2) the presence of a number of different cars in the different
frames. The second of these events can happen because of the low frame frequency of
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Table 1. Results of the Vehicle Classifier System on three different image sequences. Each row of
this table corresponds to a different sequence. Names of the sequences are reported in column 1.
Column 2 shows results of the cumulative correctly classified instances (cci) for all the vehicles.
Columns 3 to 12 report results of precision (p) and recall (r) for the classes Car, Truck, Motorbike,
Empty and Mix respectively.

cci Car Truck Motorbike Empty Mix
Image Sequence

p r p r p r p r p r
Noranco 96.724% 0.837 0.802 0.899 0.873 0 0 0.984 0.991 0 0
Bollate 95.283% 0.904 0.906 0.773 0.791 0 0 0.976 0.988 0.647 0.324

Saragozza 90.42% 0.909 0.923 0.666 0.563 0.754 0.325 0.93 0.952 0.222 1.0

our image sequences. The task of counting the vehicles strongly depends on the iden-
tification of which one of these events happened. The Vehicle Counting System can be
partitioned into three phases: preprocessing, GA and statistics (and model) generation.
These phases are described below.

Preprocessing Phase. Let a sequence returned by the Vehicle Classifier System be
S = S0,S1, ...,Sn−1. In this phase, it is transformed into a sequence: V = V0,V1, ...,Vk−1,
where each symbol in the V sequence “points” at one or more consecutive identical
symbols in the S sequence. All the m and e symbols in the S sequence are not reported
in the V sequence, but their information is not lost: for instance, if the V sequence
contains two consecutive symbols CC, then we are sure that they don’t correspond to
the same car: the presence of m and e symbols in the S sequence allows us to build a
V sequence where consecutive identical symbols surely do not correspond to the same
vehicle.

Genetic Algorithm. Let V = [V0,V1, ...,Vk−1] be the output of the preprocessing phase.
The GA associates V with a population of individuals of the form I = [N0,N1, ...,Nk−1],
such that: (1) ∀i ∈ [0,k−1], Ni is the number of different vehicles of type Vi that have
passed in the ith sequence. (2) ∀i ∈ [0,k− 1], 1 ≤ Ni ≤ Li, where Li is the length of
the substring of the S sequence “pointed” by Vi. The fitness of GA individuals is cal-
culated by supervisioning a portion of the image sequence, i.e. by manually count-
ing how many cars, trucks and motorbikes pass through the grid of detectors. Let
Xj be the number of cars, Yj be the number of trucks and Z j be the number of mo-
torbikes that really passed through the grid (obtained by means of this supervision)
during a given subsequence j. The fitness of an individual I = [N0,N1, ...,Nk−1] is:

f (I) =
h

∑
j=1

(
1
Xj

|Xj − ∑
i:V [i]=C

Ni| +
1
Yj
|Yj − ∑

i:V [i]=T

Ni| +
1
Z j

|Z j − ∑
i:V [i]=M

Ni|), where

h is the total number of subsequences the image sequence has been partitioned into.
Normalizations of each member of the sum have been done in order to give the same
importance to each vehicle independently from the number of instances of that vehicle
which have been observed. Standard crossover operator can be used, while the muta-
tion works by replacing the old value of Ni by a uniformly generated random number
included in [1,Li].
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Statistics and model generation. Let S be the sequence produced by the Vehicle Clas-
sifier System, V the one produced by the preprocessing phase and W the one returned
by the GA. The model of our system is generated from the output of the GA, by con-
sidering the rates of all the results assigned to each subsequence of the same number of
identical symbols. For instance, let V contain a C symbol in positions 2, 5 and 11. Let
each one these three C symbols in V point to a sequence of 4 consecutive C symbols
in S. Furthermore, let no other C symbol in V point to a sequence of 4 consecutive C
symbols in S. Finally W contain the numbers 2 in positions 2 and 11 and 1 in position
5. Then, a consecutive sequence of 4 C symbols will be considered by our system as 2
cars with probability 2/3 and as 1 car with probability 1/3.

Experimental Results. The performance of the Vehicle Counting System has been
tested on the same street scenarios as the ones described in section 2. The learning phase
has always been done on a three minutes long image sequence of the same scenario as
the one used during the tests. In that phase, the GA runs have been executed with the fol-
lowing parameters: population size: 100, crossover rate: 95%, mutation rate: 0.001%,
tournament selection of size 10, chromosome length depending on the size of the V
sequence produced by the preprocessing phase. Results are reported in table 2, where

Table 2. Results of the Vehicle Counting System for the same image sequences as in section
2. Sequences have been partitioned into two subsequences. Both subsequences and the whole
sequences have been tested. Each line is related to one of these subsequences. Column 2 reports
the set of frames corresponding to each subsequence. Columns 3 to 8 report the real number
and the counted number of vehicles for the three typologies considered here (cars, trucks and
motorbikes).

Frame set Car Truck Motorbike
Image Sequence

real counted real counted real counted
Noranco 0-2730 67 73 25 20 1 0
Noranco 2730-4958 60 62 17 16 0 0
Noranco 0-4958 127 133 42 34 1 0

Bollate 0-4050 159 153 2 6 3 5
Bollate 4050-7579 138 142 4 2 2 1
Bollate 0-7579 287 293 6 9 5 8

Saragozza 0-2615 84 89 0 0 5 3
Saragozza 2615-5530 77 82 2 1 4 1
Saragozza 0-5530 161 173 2 1 9 6

the true values of the numbers of cars, trucks and motorbikes passed through the street
(values counted “by hand”) are shown next to the values counted by the Vehicle Count-
ing System. Each image sequence has been divided into two subsequences of frames.
The frame numbers corresponding to each subsequence is shown in column two. For
each image sequence, experiments have been performed on the whole sequence and on
the two subsequences. As the table shows, the numbers of cars, trucks and motorbikes
counted by the Vehicle Counting System very well approximate the true values for all
the cases considered.



Classifying and Counting Vehicles in Traffic Control Applications 499

4 Conclusions and Future Work

A new system for real-time classifying and counting vehicles has been presented in
this paper. It is based on the analysis of low frame rate image sequences of a street
scenario over a given time frame, taken by a fixed camera. It is composed by two sub-
systems: one, based on Feed Forward Neural Networks, for classifying the typology
of the moving vehicles. The other, based on Genetic Algorithms (GAs), for counting
them. Results shown in this paper are encouraging. Future work includes studying how
the preprocessing performances can affect the reliability of the whole system.

Acknowledgments. The authors gratefully acknowledge the Comerson company for
providing data for the experiments shown in this paper.
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Abstract. This paper presents an approach to the joint optimization of
neural network structure and weights which can take advantage of back-
propagation as a specialized decoder. The approach is applied to binary
classification of brain waves in the context of brain-computer interfaces.
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1 Introduction

The evolutionary approach that implements the conjunction of evolutionary al-
gorithms (EAs) with neural networks (NNs) is a more integrated way of designing
ANNs since it allows all aspects of NN design to be taken into account at once
and does not require expert knowledge of the problem. Some EAs have imple-
mented a search over the topology space, or a search for the optimal learning
parameters or weight setting.

The primary motivation for using evolutionary techniques to establish the
weighting values rather than traditional gradient descent techniques such as
backpropagation (BP) [5], lies in the trapping in local minima and in the non-
differentiability of the function. For this reason, rather than adapting weights
based on local improvement only, EAs evolve weights based on the whole network
fitness. An interesting area of evolutionary NNs is the combination of architec-
ture and weight evolution in order to find an optimal network architecture and
to train the network on a given data set. The advantage of combining these two
basic elements of a NN is that a completely functioning network can be evolved
without any intervention by an expert.

2 The Neuro-genetic Approach

The approach is designed to be able to take advantage of the backpropagation
(BP) algorithm if that is possible and beneficial; however, it can also do without
it. This research was tested by an industrial application [1] for the design of
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neural engine controllers, with particular attention to reduced power consump-
tion and silicon area. In this work we apply our neuro-genetic approach to brain
wave signal processing, in particular as a classification algorithm in the analysis
of P300 Evoked Potential. We restrict our attention to Multi-Layer Perceptrons
(MLPs), a specific subset of the feedforwards NNs which is powerful enough to
be general, while at the same time allowing for a compact representation.

2.1 The Evolutionary Representation

The initial population is seeded with random networks initialized with different
hidden layer sizes, using two exponential distributions to determine the number
of hidden layers and neurons for each individual, and a normal distribution to
determine the weights and bias values. For all weights matrices and bias we also
define matrices of variance, that will be applied in conjunction with evolutionary
strategies in order to perturb network weights and bias. Variance matrices will be
initialized with matrices of all ones. In both cases, unlike other approaches like
[6], the maximum size and number of the hidden layers is neither pre-determined,
nor bounded, even though the fitness function may penalize large networks. Each
individual is encoded in a structure in which we maintain basic information
about string codification of topology and weights and bias matrices. This kind
of structure is defined together with all parameters algorithms in [1]. The values
of all these parameters are affected by the genetic operators during evolution,
in order to perform incremental (adding hidden neurons or hidden layers) and
decremental (pruning hidden neurons or hidden layers) learning.

2.2 Fitness

Like indicated in [1] the fitness is proportional to the value of the mse and to
the cost of the considered network. It is defined as

f = λkc + (1− λ)mse, (1)

where λ ∈ [0, 1] is a parameter which specifies the desired trade-off between
network cost and accuracy, k is a constant for scaling the cost and the mse of
the network to a comparable scale, and c is the overall cost of the considered
network, defined as

c = αNhn + βNsyn, (2)

where Nhn is the number of hidden neurons, and Nsyn is the number of synapses.
The mse depends on the Activation Function, that calculates all the output
values for each single layer of the neural network. In this work we use the Sigmoid
Transfer Function. To be more precise, two fitness values are actually calculated
for each individual: the fitness f , used by the selection operator, and a test
fitness f̂ . f̂ is calculated according to Equation 1 by using the mse over the test
set. When BP is used, i.e., if bp = 1, f = f̂ ; otherwise (bp = 0), f is calculated
according to Equation 1 by using the mse over the training and test sets together.
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2.3 Genetic Operators

The genetic core of the algorithm is described by the following pseudo-code:

1. Select from the population (of size n) "n/2# individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Mutate the weights and the topology of the offspring.
(b) Train the resulting network using the training and test sets if bp = 1.
(c) Calculate f and f̂ .
(d) Save the individual with lowest f̂ as the best-so-far individual if the f̂

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The selection strategy used by the algorithm is truncation: starting from a
population of n individuals, the worst "n/2# (with respect to f) are eliminated.
The remaining individuals are duplicated in order to replace those eliminated.
Finally, the population is randomly permuted. Two types of mutation opera-
tors are used: a general random perturbation of weights, applied before the BP
learning rule, and three mutation operators which affect the network architec-
ture. The weight mutation is applied first, followed by the topology mutations,
as follows:

1. Weight mutation: all the weight matrices and the biases are perturbed by
using equations based on variance matrices and evolutionary strategies ap-
plied to the number of synapses of the entire neural network. These equations
are described in detail in [1]. After this perturbation has been applied, neu-
rons whose contribution to the network output is negligible are eliminated:
a variable threshold is defined, depending on a norm (in our case L∞) of the
weight vector for each node, and the relevant average and standard deviation
of the norms of the considered layer.

2. Topology mutations: these operators affect the network structure (i.e., the
number of neurons in each layer and the number of hidden layers). In par-
ticular, three mutations can occur, which are described in detail in [1]:
(a) Insertion of one hidden layer with probability p+

layer;
(b) Deletion of one hidden layer with probability p−layer;
(c) Insertion of a neuron with probability p−layer.

All three topology mutation operators are designed so as to minimize their im-
pact on the behavior of the network; in other words, they are designed to be as
little disruptive (and as much neutral) as possible.

3 Application to Brain-Wave Analysis

3.1 Brain-Computer Interfaces and Problem Description

Brain Computer Interfaces (BCI) represent a new communication option for
those suffering from neuromuscular impairment that prevents them from using
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conventional input devices, such as mouses, keyboards, joysticks, etc. Exploiting
the residual functions of the brain, BCI may allow those patients to communi-
cate. One of the most utilized electrical activities of the brain for BCI is the P300
Evoked Potential wave. This wave is a late-appearing component of an Event
Related Potential (ERP) which can be auditory, visual or somatosensory. The
idea of Donchin’s solution [3] is that the patient is able to generate this signal
without any training. This is due to the fact that the P300 is the brain’s response
to an unexpected or surprising event and is generated naturally. Donchin devel-
oped a BCI system able to detect an elicited P300 by signal averaging techniques
(to reduce the noise) and used a specific method to speed up the overall per-
formance. Donchin’s idea has been adopted and further developed by Beverina
and colleagues of ST Microelectronics [2]. We have applied the neuro-genetic ap-
proach described in Section 2 to the same dataset of P300 evoked potential used
by Beverina and colleagues for their approach on brain signal analysis based on
support vector machines.

3.2 Experimental Protocol and Results

The dataset provided by Beverina and colleagues consists of 700 negative cases
and 295 positive cases. The feature are based on wavelets, morphological criteria
and power in different time windows, for a total of 78 real-valued input attributes
and 1 binary output attribute, indicating the class (positive or negative) of the
relevant case. In order to create a balanced dataset of the same cardinality as the
one used by Beverina and colleagues, for each run of the evolutionary algorithm
we extract 218 positive cases from the 295 positive cases of the original set, and
218 negative cases from the 700 negative cases of the original set, to create a 436
case training dataset; for each run, we also create a 40 case test set by randomly
extracting 20 positive cases and 20 negative cases from the remainder of the
original dataset, so that there is no overlap between the training and the test
sets. This is the same protocol followed by Beverina and colleagues. For each run
of the evolutionary algorithm we allow up to 25,000 network evaluations (i.e.,
simulations of the network on the whole training set), including those performed
by the backpropagation algorithm. 100 runs of the neuro-genetic approach with
parameters set to their defaults values were executed with bp = 0 and bp = 1,
i.e., both without and with backpropagation. The results obtained are presented
in Table 1.

Table 1. Error rates of the best solutions found by the neuro-genetic approach with
and without the use of backpropagation, averaged over 100 runs.

training test
bp false positives false negatives false positives false negatives

avg stdev avg stdev avg stdev avg stdev

0 93.28 38.668 86.14 38.289 7.62 3.9817 7.39 3.9026

1 29.42 14.329 36.47 12.716 1.96 1.4697 2.07 1.4924
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Due to the way the training set and the test set are used, it is not surprising
that error rates on the test sets look better than error rates on the training
sets. That happens because, in the case of bp = 1, the performance of a network
on the test set is used to calculate its fitness, which is used by the evolutionary
algorithm to perform selection. Therefore, it is only networks whose performance
on the test set is better than average which are selected for reproduction. The
best solution has been found by the algorithm using backpropagation and is
a multi-layer perceptron with one hidden layer with 4 neurons, which gives 22
false positives and 29 false negatives on the training set, while it commits no
classification error on the test set. The results obtained by the neuro-genetic
approach, without any specific tuning of the parameters, appear promising. To
provide a reference, the average number of false positives obtained by Beverina
and colleagues with support vector machines are 9.62 on the training set and
3.26 on the test set, whereas the number of false negatives are 21.34 on the
training set and 4.45 on the test set [4].

4 Conclusion and Future Works

We illustrated an evolutionary approach to the joint design of neural network
structure and weights which can take advantage of BP as a specialized decoder.
The approach has been applied to the analysis of brain waves and compared to a
mature approach based on support vector machines which has been presented in
[2]. The comparison shows that our approach has some potential, even though,
unsurprisingly, it does not attain the same levels of accuracy. Further work on
this problem will include an in-depth study for parameters tuning and data set
up, in order to improve the accuracy of classification.
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Abstract. This paper discusses the problems raised by the optimization of a mu-
tual information-based objective function, in the context of a multimodal speaker
detection. As no approximation is used, this function is highly nonlinear and
plagued by numerous local minima. Three different optimization methods are
compared. The Differential Evolution algorithm is deemed to be the best for the
problem at hand and, consequently, is used to perform the speaker detection.

1 Introduction

This paper addresses the optimization of an information theoretic-based function for
the detection of the current speaker in audio-video (AV) sequences. A single camera
and microphone are used so that the detection relies on the evaluation of the AV syn-
chronism. As in [1], the information contained in each modality is fused at the feature
level, optimizing the audio features with respect to the video ones. The objective func-
tion is based on mutual information (MI) and is highly nonlinear, with no analytical
formulation of its gradient, unless approximations are introduced. The local Powell’s
method [2], has been tried in a first set of experiments and the conclusion was that a
global approach was more suited. For this, two Evolutionary Algorithms (EAs) - the
Genetic Algorithm in Continuous Space [3] and the Differential Evolution [4] - have
been applied and their performance compared and analyzed.

After a brief introduction to the optimization problem, the three previously men-
tioned optimization methods are applied to the problem at hand. A detailed discussion
follows the experiments presented in the last part of the paper and suggests that DE is
the best choice for solving the given problem.

2 Multimodal Speaker Detection Framework

Theoretic framework for multimodal feature extraction. The detection of the cur-
rent speaker in an AV sequence can be seen as a multimodal classification problem
[1]. The goal is to estimate the class membership O (”speaker” or ”non-speaker”) of
the bimodal source S that emits jointly an audio and a video signal, A and V . The
probability Pe of assigning S to the wrong class should be minimized. Since a sin-
gle camera and microphone are used, the detection rely on the evaluation of the syn-
chronism between the AV signals. The estimation of the MI between the AV features
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can be used as such a classifer. This MI classifier must be provided with suitable fea-
tures to perform well. Let FA and FV be the features extracted from A and V , and let
e = I(FA,FV )/H(FA,FV ) ∈ [0, 1] be the features’ efficiency coefficient [1] (I and H
standing respectively for Shannon’s MI and entropy). Then the following inequality can
be stated [1]:

Pe � 1− e(FA, FV ) + 1
log 2

. (1)

By minimizing the right hand term of inequality (1), we expect to recover in each
modality the information that originates from the common source S while discarding
the source-independent information present in each signal. This would lead to a more
accurate classification. For more details, see [1].

Application to speaker detection. The video features are the magnitude of the optical
flow estimated over T frames in the mouth regions (rectangular regions including the
lips and the chin). T−1 video feature vectors FV,t (t=1, . . . ,T−1) are obtained, each
element of these vectors being an observation of the random variable (r.v.) FV .

The speech signal is represented as a set of T −1 vectors Ct, each containing P
Mel-Frequency Cepstral Coefficients (MFCCs), discarding the first coefficient.

Audio feature optimization. As mentioned, the goal is to construct better features for
classification. The focus is now on the audio features FA,t(α), associated to the r.v. FA,
that are built as the linear combination of the P MFCCs, FA,t(α) =

∑P
i=1α(i)·Ct(i),

∀t = 1,. . . ,T−1. The α are to be optimized with respect to the Efficiency Coefficient
Criterion (ECC):

αopt = arg max
α
{e(FV , FA(α))}. (2)

A ΔECC criterion is introduced to perform only one optimization for two mouths
and to take into account the discrepancy between the marginal densities of the video
features in each region. If FM1

V and FM2
V denote the r.v. associated to regions M1 and

M2 respectively, then the optimization problem becomes:

αopt = arg max
α

{
[e(FM1

V , FA(α))− e(FM2
V , FA(α))]2

}
. (3)

This MI-based optimization criterion requires the availability of the probability density
function (pdf) as well as of the marginal distributions of FA and FV . To avoid any
restrictive assumption, they are estimated using Parzen windowing.

3 Optimization Method

Definition of the optimization problem. The extraction of the optimized audio features
requires to find the vector α ∈RP , that minimizes -ΔECC (Eq. (3)). To restrain the
set of possible solutions, additional constraints have been introduced on the α weights:

0 ≤ α(i) ≤ 1 ∀i = 1, 2, . . . , P , (4)
P∑

i=1

α(i) = 1. (5)
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The optimization problem is highly nonlinear and gradient-free. Indeed, the MI-based
objective function is a priori non-convex and is very likely to present rugged surface.
Moreover, it is difficult to obtain an analytical form of its gradient due to the unknown
form of the pdf of the extracted audio features. The use of Parzen window to estimate
the pdf reduces the risk of getting trapped in a local minimum by smoothing the cost
function. Because a trade-off has to be found between smoothness and accuracy of
the distribution estimates, the smoothing parameter is iteratively adapted. Thus, the
optimization problem is solved using a multi-resolution scheme (see [5]).

The deterministic Powell’s method [2] has been used in a first set of experiments [6].
However, the objective function still exhibited too many local optima for a local opti-
mization method to perform well. A global optimization strategy fulfilling the following
requirements turned out to be preferable:

1. Efficiency for highly nonlinear problems without requiring the objective function
to be differentiable or even continuous over the search space;

2. Efficiency with cost functions that present a shallow, rough error surface;
3. Ability to deal with real-valued parameters;
4. Efficiency in handling the two constraints defined by Eqs. (4, 5);

Genetic Algorithm in Continuous Space (GACS). An evolutionary approach such as
GACS answers the first three requirements while presenting flexibility and simplicity
of use in a challenging context. The adaptation developed in [3] efficiently deals with
finite solution domain by relating the genetic operators to the constraints on the solu-
tion parameters. The crossover operator is defined such that the child chromosome is
guaranted to lie into the acceptance domain (defined by Eq. (4)) provided its parents
are valid. The mutation is performed by perturbing a randomly selected chromosome
element with a zero-mean Gaussian perturbation which variance σ is defined as a cer-
tain fraction of the acceptance domain. The mutation is rejected if the mutated gene
lies outside its acceptance domain. To satisfy the constraint defined by Eq. (5), the new
population is normalized. Notice that the initial chromosomes are regularly placed in
the acceptance domain according to a user-defined number of quantization levels Q [7].
This ensures a better initial exploration of the search space than a random initialization.

This extension of GACS leads to better results than the Powell’s method. However,
the mutation operator appears to be ineffective. The solutions are indeed very close to
the search space limits. A high number of mutations are then rejected, resulting in a
loss of the population diversity and in a premature convergence of the algorithm. The
perturbation should adapt to the population evolution and should lead to a better explo-
ration of the search space.

Differential Evolution (DE). Differential Evolution, introduced in [4], is an Evolution
Strategy where the perturbation corresponds to the difference of chromosomes (or vec-
tors in this context) randomly selected from the population. In this way, the distribution
of the perturbation is determined by the distribution of the vectors themselves and no
a priori defined distribution is required. Since this distribution depends primarily on
the response of the population vectors to the objective function topography, the biases
introduced by DE in the random walk towards the solution match those implicit in the
function it is optimizing [8]. The exact algorithm we used is based on the so-called
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DE/rand/1/bin algorithm [8]. The initial population however is generated as done with
GACS. The validity of each perturbed vector is verified before starting the decision pro-
cess. If the element j of a child vector i does not belong to the acceptance domain, it is
replaced by the mean between its pre-mutation value and the bound that is violated [8].
This scheme is more efficient than the simple rejection adopted with GACS. Indeed, it
allows to asymptotically approach the search space bounds. To handle the second con-
straint (Eq. (5)), a simple normalization is performed on each child vector, as it was
done with GACS.

4 Results

Comparison of the optimization methods. All the test sequences are 4 seconds long,
PAL standard (T =100); 12 MFCCs are computed using 23.22ms Hamming windows.
The three different optimization methods are tested on a single speaker sequence using
-ECC (Eq. (2)) as the objective function. σ is fixed to 10% of the acceptance domain for
GACS, while the scaling factor F and the crossover probability CR required by the DE
algorithm [8] are fixed to 0.5 and 1 respectively 1. Both algorithms are run for 400 gen-
erations on a population of 125 vectors. 33 runs were then performed with GACS and
DE methods, whereas different initial solution guesses were tried for Powell’s method.
Table 1 summarizes the results. Obviously, a much better result is obtained using the

Table 1. Values of the -ECC cost function for 33 runs under the same conditions, on the same AV
sequence

Best Value Mean Value Standard Deviation
Powell -0.0213 -0.0183 0.0047
GACS -0.0695 -0.0619 0.0052

DE -0.0788 -0.0773 0.0018

global optimization schemes instead of the local one. DE is the algorithm that reaches
the best solution in a more stable way. Indeed, the standard deviation of the solutions
is much smaller in the case of DE than in the case of the other two methods, giving
us more confidence in the results. While the high variation of the solutions found with
Powell’s method is not a surprise (as it is very sensitive to initial conditions), the in-
stability of GACS solution seems intriguing. However, this is less surprising when we
analyze the evolution of the algorithm towards the solution: the degeneration of the
population combined with the less systematic exploration of the solution space (espe-
cially the boundaries) make GACS solutions to be very different from run to run. Both
the generation of the perturbation increment using the population itself instead of a pre-
defined probability density and the handling of the out-of-range values allow the DE
algorithm to achieve outstanding performance in the context of our problem.

Audiovisual speaker detection results. Five home-grown sequences with two individ-
uals (only one being speaking at a time) are now used. The DE optimization method is

1 The implementation of the DE algorithm is based on Storn’s public domain software [9].
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used to project the MFCCs on a new 1D subspace as defined in Sec. 2 using ΔECC
as optimization criterion. The measure of the MI between the resulting audio feature
vector F opt

A and the video features of each mouth region allows to classify the mouth as
”speaking” (highest value of MI) or ”non-speaking” (lowest value of MI). The normal-
ized difference of MI is always in favor of the active speaker, i.e. the correct speaking
mouth region is always indicated (see Table 2).

Table 2. Normalized difference between the speaking and the non-speaking mouth regions’ MI
using the audio features optimized with the −ΔECC cost function

Sequence 1 2 3 4 5
ΔI 84.23% 86.27% 95.55% 80.9% 76.15%

5 Conclusions

One central issue in the context of the multimodal speaker detection method described
here is the optimization of an objective function based on MI. Since no approximation
is made, neither of the pdf of the features (estimated from the samples), nor of the
cost function, the optimization problem turns out to be a quite challenging one. The
performances and limits of three optimization methods, the local Powell’s method and
the global GACS and DE, have been compared, showing that the intrinsic properties of
the DE algorithm make it the best choice for the problem tackled here. As a result, the
method is able to detect the current speaker on the five test sequences.
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Abstract. With the present paper we introduce a new Computer Assisted De-
tection method for Lung Cancer in CT images. The algorithm is based on sev-
eral sub-modules: 3D Region Growing, Active Contour And Shape Models, Cen-
tre of Maximal Balls, but the core of our approach are Biological Models of ants 
known as Artificial Life models. In the first step of the algorithm images undergo 
a 3D region growing procedure for identifying the ribs cage; then Active Contour 
Models are used in order to build a confined area for the incoming ants that are 
deployed to make clean and accurate reconstruction of the bronchial and vascular 
tree, which is removed from the image just before checking for nodules.  

1   Introduction 

The use of Chest Computer Tomography  (CT) has lead to a better identification of 
lung cancer as well as the definition of its type, also reducing the number of benign 
nodules that are removed. The output of such an exam is a huge amount of data 
(series of 2D images) that in the end the radiologist must investigate and look upon. 
With the present paper we discuss a new CAD system that makes use of Artificial 
Life models and other supporting techniques. A flowchart would look as follows: 
region growing is used to reconstruct the rib cage, Active Contour models are 
bounding (?) the ribs cage. Ants are released in this newly created confined volume to 
reconstruct the bronchial and the vascular tree, and finally atfer the trees removal the 
hunt for nodules begins. In the next section some research work is introduced. The 
following section describes the Ant System and the paper closes with some 
conclusions and the discussion of future work. 

2   Artificial Life 

Artificial Life is the study of man-made systems which exhibit behaviors characteris- 
tic of natural living systems. In nature ants use stigmergic communication (by indirect 
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interactions or by modifying the environment) using trails of pheromone [1]. These 
trails generally lead from the nest to different food-sources. When ants are trying to 
find a food source, generally the ant (trail C – Figure 1) that finds the shortest path 
reaches the nest quicker and thus its path has the most pheromone. Ants evolved the 
ability to cooperate, dividing their labor, such that all of them solve the tasks for 
which they are best suited in a robust manner.  

2.1   Research Work  

Among the pioneers of the field was Dorigo, that treated the Ant Colony Optimization 
problem [2] and showed how a group of ants can successfully find a close-to-optimal 
solution for the Traveling Salesman problem [3], Graph Coloring, Quadratic Assign-
ment Problem [4] or the Job Shop scheduling.  

Another pioneer of Collective was James Kennedy that, in 1995, proposed Particle 
Swarm Optimization (PSO) [5]. More related to the approach we pursue is the work  
by Chialvo and Millonas [6].  Based on the this paper, Ramos and Almeida [7] devel-
oped an extended model where ants are deployed in a digital habitat (image), such that 
the insects are able to move and to perceive it.  In  [8] Mazouzi and Batouche  introduce 
a MAS (Multi-Agent System) for 3D object recognition. Other work can also be found 
in [9] where a cognitive MAS for the surveillance of dynamic scenes is discussed.  

2.2   Materials 

The Input of the algorithm are lung CT images, composed of a series of 2D files in 
DICOM format. The 2D image size is generally 512x512 pixels with a 16bits depth. 
The series is reconstructed as a 3D Matrix with a voxel size in the 3rd

 
dimension 

which depends on the number of slices contained. The database for all the tests is 
provided by the MAGIC-5 Collaboration (add ref.). The images are being taken in the 
framework of the Regione Toscana (reference?) lung cancer screening program.  

3   Ants 

Ants are to be created and released in a confined 3-D world. Different algorithms 
could be developed. In the present paper we discuss the “Wander-approach” in which 
ants are randomly released in the habitat. While they wander about according to some 
well defined rules, they leave behind different quantities of pheromone. In the end a 
map of pheromone will be created that will represent the image that we are interested 
in: the reconstruction of the bronchial and vascular tree.  Two kinds of ant individuals 
are present. The queen creates and “manages” all the ants, it does not move and does 
not perceive the habitat. The reconstructor is aware of the habitat and lives in it.  

A third type, “the shaper”, that will try to recognize the nodules will soon be im-
plemented. 

The approach is based on an idea introduced by Ramos and Almeida in [7]. Let’s 
suppose that at time t an ant is in voxel k. At time t +1 the ant is supposed to choose 

as next destination one of the 26
th 

neighbours of k. This is done as follows: for each 
neighbour i the following probability is calculated: 
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Pik = W (σ i)w(σ i)

W (σ j )w(σ j )j / k

 (1) 

where  

W (σ) = 1+ σ
1+ δσ

 
 
 

 
 
 
β

 (2) 

is the function that depends on the  pheromone density, β   being the osmotropo-

taxic sensitivity and δ  the sensory capacity, while w(Δi) is the probabilistic direc-
tional bias. The directional bias is a probability that each voxel receives when taking 
into account the initial direction of the ant (Fig. 1). 
 

 

Fig. 1. One of the 
 
possible cases of directional bias. The lightest the colour of the voxel the 

higher the probability associated to that voxel. 

As its next destination the ant will chose the voxel with the highest Pik , and leav-
ing a voxel k it will leave behind a certain amount of pheromone T: 

T = η + pθh  (3) 

where η  is the preset amount of pheromone, p is a constant and θh  is the function 
that relates the amount of pheromone with the information provided by the image. 

The deposited pheromone will evaporate with a certain rate and it will not diffuse 
in neighbouring voxels. For this paper (if not specified otherwise) θh  is: 

θh = Ii − Ik  (4) 

We used the gradient rule as the difference in intensities between two voxels situated 
on the different sides of the border of a branch will imply a big pheromone quantity 
being left behind by the visiting ants.  

In this case the ant that is moving from voxel k to voxel i leaves behind an amount 
of pheromone equal to the gradient computed between the two voxels. 

As a 2D image is a 3D image with just one slice the first tests were performed on 
2D images. We started with different structures that we considered to be difficult, like 
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Fig. 2. First Image: Original structures extracted from a real CT. Second: the map of phero-
mones after 50 cycles. Third: the positions of the ants after 50 cycles. Fourth: Original CT, 
Fifth I: Pheromone Map for the CT slice. 

branching points, round structures, intersection of branches, lung fissures, etc. In the 
examples from Fig. 2, θh  was as described in (4).  

The following step was to launch a colony of ants in full 2D CT image. As the im-
age is 512x512 pixels we created a colony of 80.000 ants and started the algorithm. 
The output is represented in Fig. 3. 

At this point we began 3D trials, by choosing different θh  and in some cases the 
rules that we used made ants non-discriminative  and the resulted reconstruction can 
contain all the lung one can see in Figure 3 (In this case the θh = k * Ii ). 

Going to smaller structures, we tried regular “artificial” objects that the ants, using 
the “gradient rule” as θh , were able to fully reconstruct. This can be seen in Fig. 3. 

     

Fig. 3. Left: Zelous ants (reconstructing to much). Rest of the images:  artificial branching point 
after 1 and 50 cycles, artificial sphere after 1 and 50 cycles. 

   

Fig. 4. Ants at work - depositing pheromone  in the first and the second images. Third: . Recon-
struction of 3D lung branch. Left: after 1 cycle. Forth : after 50 cycles, Fifth : after 100 cycles. 

In Figure 4 (first 2 images) one can see the results of intermediate steps, when try-
ing to reconstruct a small part of the vascular tree. After some testing one obtains the 
last 3 images in Fig. 4, which represent a part of the bronchial tree in the right lung. 
As one can see the reconstruction is not clean enough and further testing still needs to 
be done. 
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4   Conclusions  

At the core of our algorithm stand Artificial life models (virtual ants or better, virtual 
termites if taken into account the existence of different types if individuals). One of 
our goals is to study and understand the collective behaviour of the ants in 3-D envi-
ronments– worlds by making them capable of acknowledging the environment and  of 
extracting useful information from it. We expect ants to behave differently when 
gaining a new grade of freedom which will lead to the revealing of new emergent 
behaviours of the colony based on ways the nature governs and controls our world. 
Another important aspect of the work is the creation of the CAD for lung CT. Once 
finished the reconstruction of the trees will be compared with already existing algo-
rithms from image processing like 3-D region growing and the best performer will be 
included in the CAD (or one could chose a merging solution). We still have to test the 
algorithm on full CT images. This work will be done once the algorithm has been 
fully tested, with very good results, on smaller images.  
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Abstract. In this paper, we present a novel approach to genetic learning of 
high-level visual concepts that works with sets of attributed visual primitives 
rather than with raster images. The paper presents the approach in detail and 
verifies it in an experiment concerning locating objects in real-world 3D scenes. 

1   Motivations, Related Work, and Contributions 

The primary motivation for research described in this paper is lack of a general 
methodology for design and development of pattern recognition systems. Manual 
design of such systems is for most real-world tasks tedious, time-consuming and 
expensive. The handcrafted solutions are usually limited in the scope of applicability 
and have poor ability to adapt, i.e., to perform visual learning.  

In most approaches to visual learning reported in the literature, learning is limited 
to parameter optimization that usually concerns a particular processing step, such as 
image segmentation, feature extraction, etc. Only some methods [3,7,8,10,11,13] 
close the feedback loop of the learning process at the highest (e.g., recognition) level 
and test the proposed approach in a real-world setting. Reports on approaches that 
learn using raw images as training data, and, therefore, produce the entire object 
recognition system, are rather scant. Moreover, some of the proposed methods make 
use of domain-specific knowledge and are highly specialized towards a particular 
application. 

This study on evolutionary visual learning is a step in a quest for more flexible, 
more universal, and more effective representations of pictorial information and the 
methods of its processing. In our former work on feature synthesis [1,5] we proposed 
a visual learning framework inspired by linear genetic programming and tested it on 
different object recognition tasks. Despite encouraging results, we came to the 
conclusion that further progress cannot be made without referring to representations 
of visual information other than raster images, and without providing more flexible 
mechanisms of its processing. Contributions of this paper address these issues and 
may be shortly characterized as follows. Firstly, the proposed approach works with 
visual primitives derived from input the image rather than with raster images. 
Secondly, for this purpose, we develop a novel variant of typed genetic programming 
(GP) customized to process such visual primitives.  
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Fig. 1. An exemplary image (left) and its corresponding VP representation (right) 

2   The Proposed Approach: Learning Based on Visual Primitives 

The main novelty of the proposed approach consists in abstracting from raster images 
and using visual primitives (VPs) as basic granules of visual information. Prior to the 
learning process, the input image undergoes an appropriate preprocessing that leads to 
its representation in terms of visual primitives (VPR for short). Each VP is described 
by four scalar attributes: x coordinate, y coordinate, orientation, and intensity. We 
employ Gabor filters [2] with four different orientations  (0°, 45°, 90°, and 135°) to 
extract VPs from the monochrome input image. A local maximum at location (x,y) in 

-Gabor filter response produces a VP p = (x, y, ). To limit the number of VPs in 
VPR, only a predefined -percentile of the brightest pixels in Gabor filter responses 
are taken into account. Also, no two VPs with the same orientation can be located 
closer than some predefined distance dmin. The resulting VPR is, a set of attributed 
VPs, is usually several orders of magnitude more compact than the original image. 
Figure 1 presents an exemplary image and its corresponding VP representation for 

 = 0.05 and dmin = 4. Each segment in VPR depicts a single VP, with its (x, y) coor-
dinates located in the middle of the segment and orientation depicted by slant.  

The visual learning in the proposed approach employs a variant of GP [4]. To meet 
the principle of least commitment [9], we allow the GP expressions/trees to work 
directly with sets of VPs rather than only with some predefined scalar features derived 
from them. To this aim, a typed GP is used with the following three basic types: 
scalars (ℜ for short), sets of VPs (P for short), and attribute labels (A for short). 
Consequently, there are three types of terminal GP nodes, which yield, respectively, 
an ephemeral random constant, a VPR of the input image z, and a tag of primitive 
attribute: Coordinate_X, Coordinate_Y, Orientation, or Intensity. The non-terminal 
GP operators may be divided into three following categories. Scalar operators accept 
and return arguments of type ℜ (as in standard GP applied to symbolic regression; see 
[4]). Selectors accept at least one argument of type P and return result of type P. A 
selector filters out some of the VPs it receives from its child node(s) according to 
some criterion/condition. Aggregators accept at least one argument of type P and 
return result of type ℜ. An aggregator combines, according to some rule, the values 
of a chosen primitive attribute of all the VPs it receives from its child node(s).  

Scalar operators encompass the basic arithmetic and fundamental functions (see 
Table 1). For both selectors and aggregators, there are two variants of them: 
parametric and non-parametric. Non-parametric selectors expect two child nodes of 
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Table 1. The complete list of GP operators 

Type Non-parametric Parametric 
Scalar +, –, ×, /, sin, cos, exp, log 
Selector ∪, ∩, \, SymmetricDifference Equals, LessThan, GreaterThan 
Aggregator Sum, Mean, Product, Median Moment, CentralMoment, Percentile 

type P and produce an output of type P. Operators that implement basic set algebra, 
like set union, intersection, or difference, belong to this category. Parametric 
selectors expect three child nodes of types P, A, and ℜ, and produce an output of type 
P. For instance, the operator LessThan applied to child nodes (P, Orientation, 70) 
filters out all VPs from P for which the value of the attribute Orientation is less than 
70. Non-parametric aggregators expect two child nodes of types P and A, and 
produce an output of type ℜ. Operators of this type implement mostly statistical 
descriptors, e.g., the operator Mean applied to child nodes (P, Coordinate_X) 
computes the mean value of coordinate x for all VPs in P. Parametric aggregators 
expect three child nodes of types P, A, and ℜ, and produce an output of type ℜ. For 
instance, the operator CentralMoment applied to child nodes (P, Coordinate_Y, 2) 
computes the central moment of order 2 of coordinate y for all VPs in P. Table 1 
presents the complete list of GP operators used in the computational experiments. 

3   Experimental Results 

For experimental verification, we chose the task of locating computer screens in 38 
images taken from the ‘aug1_static_atb_office_bldg400’ folder of the MIT-CSAIL 
Database of Objects and Scenes [14]. The images exhibit significant variability of 
brightness and proximity of monitor case, the state of the screen (on/off), lighting 
conditions, and scene contents (see example in Fig. 1). To avoid bias toward the center of 
the scene where the screens are most often to be found, we created extra examples by 
cropping each training example from all sides, what lead to (1+4)×38 = 190 examples. 
The original images have been converted to grayscale and downscaled to 128×96 pixels. 
Next, basing on the preprocessed image, we create its VPR using the procedure described 
in Section 3. For the resulting training set of images I, the number of VPs varied from 
103 to 145 per image (122.2 on the average).  

The experiment consisted in evolving a population of 1000 individuals for 50 gen-
erations, using a minimized fitness function f  defined as follows:   

 
∈ ∈

=
Iz zsp

Ipdsf ||/)()(
)(

, (1) 

where s(z) denotes the set of visual primitives produced by an individual s given 
image z as an input, and d(p) denotes the Euclidean distance between the VP p and the 
actual screen position. Most of GP-related parameters are set to their defaults used in 
ECJ library [6]. This includes: algorithm type (generational), mutation probability 
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Fig. 2. An input image (left) and the result produced by the best evolved individual (right) 

(SelectorGreaterThan  
 (SelectorLessThan  
  (SelectorGreaterThan 
   (SelectorLessThan  
    (SelectorGreaterThan  
     VPR        
     Coordinate_Y  
     (exp 0.96645296))  
    Orientation  
    (exp 0.96645296)) 
       Coordinate_X  
   (cos  
    (Median  
     (SelectorGreaterThan  
      VPR    
      Intensity  
      0.18945523)  
     Orientation)))  

 (continued in right column) 

  Coordinate_Y  
  (+  
   (-  
    (% (% 0.9664 -0.5619) 0.8692) 
           -0.8356722)  
   (Mean  
    (SelectorGreaterThan  
     VPR 
         Intensity  
     (exp 0.96645296))  
    Coordinate_Y)))  
 Intensity 
    (exp  
  (-  
   (-  
    (cos  
     (Median VPR Orientation)) 
    -0.8356722)  
   -0.8356722))) 

Fig. 3. The textual representation of the best individual found during the evolutionary run 

(0.1), mutation type (one-point), crossover probability 0.9, maximum tree depth 
allowed for individuals modified by genetic operators: 7, number of retries if the 
resulting individual does not meet this limit: 3. The procedure selecting the tree nodes 
for mutation or crossover selects internal tree nodes with probability 0.9, and tree 
leaves with probability 0.1. The software used ECJ [6]) and JAI [12] libraries.  

Figure 2 shows the result of recognition performed by the best individual found 
during the evolutionary run. In the VP image part, the closed polygon shows the 
actual location of the recognized object (computer screen). The short thick segments 
depict the VPs selected by the individual, whereas the thin segments correspond to 
those VPs which were originally present in the VPR of the input image, but have been 
filtered out by the individual. In Fig. 3, we present the code of the best GP individual 
evolved in the evolutionary run.  

4   Conclusions 

The major feature of the proposed approach is the abstraction from raw raster images, 
which enables the learning process to develop advanced visual concepts that may 
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successfully recognize complex objects in real-world views of 3D scenes. The 
approach proceeds by selecting subsets of VPs and aggregating their attribute values; 
this idea is general and may be easily adapted to any kind of set-based representation 
using attributed visual primitives. Note also that the VP representation is both 
application- and task-independent. There is virtually no domain-specific knowledge 
that would bias the method towards the considered task of monitor screen location.  

The compactness of VP representation reduces significantly the computational 
complexity as compared to processing of raster images. In our experiment, the time of 
individual evaluation amounted to 84ms on the average (Pentium 3.0 GHz). More-
over, as the original VP representation of a particular image does not change during 
evolution, it may be computed once, which reduces the learning time even more.  
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Abstract. In multifractal denoising techniques, the acuracy of the
Hölder exponents estimations is crucial for the quality of the outputs.
In continuity with the method described in [1], where a wavelet decom-
position was used, we investigate the use of another Hölder exponent
estimation technique, based on the analysis of the local “oscillations” of
the signal. The associated inverse problem to be solved, i.e. finding the
signal which is the closest to the initial noisy one but having the pre-
scribed regularity, is then more complex. Moreover, the associated search
space is of a different nature as in [1], which necessitates the design of
ad-hoc genetic operators.

1 Introduction

In the past years many different signal and image denoising techniques have
been proposed, some of them being even based on artificial evolution [1, 2]. The
basic notations are the following. One observes a signal or an image Y which is
some combination F (X,B) of the signal of interest X and a noise B. Making
various assumptions on the noise, the structure of X and the function F , one
then tries to obtain an estimate X̂ of the original signal, optimal in some sense.
We consider denoising as equivalent to increasing the Hölder function αY (see
section 2 for definitions) of the observations. Indeed, it is generally true that the
local regularity of the noisy observations is smaller than the one of the original
image, so that in any case, αX should be greater than αY .

In this paper, section 2 recalls some basic facts about Hölder regularity anal-
ysis. We describe in section 3 how oscillations are used to provide an estimator
of the Hölderian regularity. The new denoising method is explained in section 4
and the evolutionary algorithm, with its ad-hoc genetic operators, are detailed
in section 5. Numerical experiments are presented in section 6.
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2 Hölder Regularity

To simplify notations, we deal with 1D signals, and we assume that signals are
nowhere differentiable. Generalisation to differentiable signals simply requires to
introduce polynomials in the definitions [3]. Below the definitions of the pointwise
and local Hölder exponents are given.

Let α ∈ (0, 1), and x0 ∈ K ⊂ R. A function f : K → R is in Cα
x0

if for all x in
a neighbourhood of x0, |f(x)−f(x0)| ≤ c|x−x0|α (2) where c is a constant. The
pointwise Hölder exponent of f at x0, denoted αp(f, x0), is the supremum
of the α for which (2) holds.

Let us now introduce the local Hölder exponent: Let α ∈ (0, 1), Γ ∈ R. One
says that f ∈ Cα

l (Γ ) if ∃C : ∀x, y ∈ Γ : |f(x)−f(y)|
|x−y|α ≤ C (3). Let αl(f, x0, ρ) =

sup{α : f ∈ Cα
l (B(x0, ρ))}. The localHölder exponent of f at x0 is αl(f, x0) =

lim
ρ→0

αl(f, x0, ρ).

Since αp and αl are defined at each point, we may associate to f two functions
x → αp(f, x) and x → αl(f, x) which are two different ways of measuring the
evolution of its regularity.

The quality of a denoising technique based on these exponents, strongly relies
on the quality of an estimator of these quantities. In [1], the estimation was
performed by a wavelet technique. We will see in the sequel that a better esti-
mation of the Hölder exponent can be obtained by measuring the oscillations of
the function.

3 Estimation by Oscillations

The estimation based on oscillations measurements is a direct application of the
local Hölder exponent definition (see [4]). The condition (3) can be written as: A
function f(t) is Hölderian with exponent α ∈ [0, 1] at t if there exists a constant
c, for all τ : oscτ (t) ≤ cτα with

oscτ (t) = sup
|t−t′|≤τ

f(t′)− inf
|t−t′|≤τ

f(t′) = sup
t′,t′′∈[t−τ,t+τ ]

|f(t′)− f(t′′)|.

At each point we estimate the pointwise Hölder exponent as the slope of the
regression of the logarithm of the oscillation versus the size of the window τ . As
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Fig. 1. 10 multifractional Brownian Motions have been built with a regularity H
evolving like a sine. The 2 methods of estimation of the Hölderian regularity have
been applied: a wavelet-based (W1) and the method by oscillations (OSC). After an
optimisation of the parameters of the 2 methods in term of risk, the means of the
estimated Hölder functions are displayed.
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we see in figure 1, the estimation by oscillations provides better results than an
estimation by wavelets.

4 Method

According to the notation of section 1, we seek a denoised version X̂ of the
observed signal Y that meets the following constraints:

1) X̂ is close to Y in the L2 sense.
2) The Hölder function of X̂ is prescribed.

If αX is known, we choose αX̂ = αX . In some situations, αX is not known
but can be estimated from Y , see [5]. Otherwise, we just set αX̂ = αY + δ,
where δ is a user-defined positive function, so that the regularity of X̂ will
be everywhere larger than the one of the observations. Two problems have to
be solved in order to obtain X̂. First, a procedure that computes the Hölder
function of a signal from discrete observations is needed. Second, we need to be
able to manipulate the data so as to get a specific regularity. To solve the first
problem, the estimation method of section 3 is used, and for the second problem,
an evolutionary algorithm has been designed.

5 Evolutionary Algorithm

We consider that an individual is a signal (1D or 2D). On the contrary to [1]
where an individual was made of a subset of wavelet coefficients, a direct encod-
ing of the signal in the genome has been used.

Initialisation: As the search space is extremely large, a direct search starting
from a random set of initial signals has no chance to provide a good denoising
in a reasonable time. However, many initial guess are available, including the
noisy signal itself. We actually use several deterministic denoising methods to
provide the initial population. These methods are the Multifractal Bayesian
Denoising[6] and the Multifractal Pumping[5], and depend from a parameter
setting. The parameters are generated randomly.
Fitness: An important point of the method is that the fitness calculation is
based on two kind of fitness function. A pointwise fitness has been defined for
each point of the signal as a combination between the quality of the individual in
term of regularity and in term of distance to the noisy signal. As said above, it is
based on the estimation by oscillations. The pointwise fitness is then combined
to provide a local fitness. The local fitness is the sum of the pointwise fitness
on a given segment (or window). The local fitness is used in the crossover and
in the mutation operators. We compute the global fitness when we perform this
sum on the full signal. This fitness is used for the selection and for the ranking.
Crossover: A simple ranking selection mechanism with selective pressure 2 is
used to select two individuals. Random crossing points are then selected. For
images, a set of random rows and columns is chosen. The local fitness on each
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resulting segment is then used to select the best parts of the two individuals as
the corresponding segment of the child.
Mutation: In a similar way, each segment (or image window) is muted using a
probability law inversely proportional to the local fitness. For each individual
we consider the worst local fitness wlf i.e. the fitness of the worst segment. Let
lf(j, i) the local fitness of the ith segment of the jth individual. The probability
of mutation for this segment is Pm(j, i) = lf(j,i)

wlf .

6 Numerical Results

For the first example (see figure 2), the original signal is a Generalized Weier-
strass function with a regularity α(X, t) = t with t ∈ [0, 1]. This signal is cor-
rupted by a white Gaussian noise (standard deviation equal to 0.3). We use a
synthetic image to perform an experiment in 2 dimensions. The figure 3 shows
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Fig. 2. First row: original Generalized Weierstrass Function, noisy version, denoising
with Soft Thresholding, denoising by our method after 10 generations and 50 indi-
viduals, denoising by our method after 500 generations and 200 individuals. Second
row: corresponding Hölder functions. Our method allow to recover almost perfectly
the Hölder function of the original signal.

original noisy Soft Thres. 500 × 100 ind

Fig. 3. Original image, the noisy one, a denoising by Soft Thresholding and by our
method (100 ind, 500 gen). The second row displays the corresponding Hölder functions.
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the original image, the noisy one, a denoising by Soft Thresholding and by our
method. The second row displays the corresponding Hölder functions. As in the
previous examples, our method allows to obtain a denoised version of the signal
with the prescribed regularity.

7 Conclusion

We have experimented in this paper a new scheme for a multifractal denois-
ing technique. It is based on a more precise and more complexcomputation of
the Hölder exponent of a signal. This work is actually a first attempt to use
an estimation of Hölder exponent based on oscillations for signal enhancement.
Preliminary experiments yield satisfactory results, with a more precise control
of the reconstructed regularity, which has to be considered as a major advan-
tage for this type of techniques. Moreover, the evolutionary engine that has been
designed has the following interesting characteristics: it performs a basic hybridi-
sation with two other denoising techniques (Multifractal Bayesian Denoising and
Multifractal Pumping for the initialisation step), and uses locally optimised ge-
netic operators. Further work will first consist in a more precise analysis of the
locally optimised genetic operators in comparison with classical ”blind” ones.
Second, the hybridisation scheme has to be investigated as it may be a good
solution to reduce computation costs of the method. Additionally, the availabil-
ity of a pointwise and local definition of the fitness opens the way to ”Parisian”
evolution implementations for the genetic engine. This may be another solution
to reduce computational expenses of the method, see for example [7, 8].
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regularity analysis,” EVOIASP2001, LNCS 2038, 2001.

2. Pierre Grenier, Jacques Levy Vehel, and Evelyne Lutton, “An interactive ea for
mulifractal bayesian denoising,” EvoIASP 2005, 30 March - 1 April, Lausanne,
2005.

3. Y. Meyer, “Wavelets, Vibrations and Scalings,” American Mathematical Society,
CRM Monograph Series, vol. 9, 1997.

4. C. Tricot, Curves and Fractal Dimension, Springer-Verlag, 1995.
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Abstract. A novel evolutionary algorithm called Probability Evolutionary 
Algorithm (PEA), and a method based on PEA for visual tracking of human 
body are presented. PEA is inspired by the Quantum computation and the 
Quantum-inspired Evolutionary Algorithm, and it has a good balance between 
exploration and exploitation with very fast computation speed. In the PEA 
based human tracking framework, tracking is considered to be a function 
optimization problem, so the aim is to optimize the matching function between 
the model and the image observation. Then PEA is used to optimize the 
matching function. Experiments on synthetic and real image sequences of 
human motion demonstrate the effectiveness, significance and computation 
efficiency of the proposed human tracking method. 

1   Introduction 

With the fast developments of computer science and technology, visual analysis of 
human motion in image sequences interests more and more researchers from both 
laboratory and industry. Human tracking is a particularly important issue in human 
motion analysis and it has been a popular topic in the research of computer vision. 

Tracking can be divided into region-based, feature-based, active-counter-based and 
model-based tracking [1]. Model-based tracking can provide abundant informa tion of 
human motion, but the increasing of subparts of the human model would potentially 
incur high dimensionality and make tracking a difficult task. Different from using 
particle filters within the Bayesian framework [2-6], human tracking is considered to 
be a function optimization problem in this paper, so the aim is to optimize the 
matching function between the model and the observation. Function optimization is a 
typical application area of Genetic Algorithms (GAs), but canonical genetic 
algorithms is hard to be used here due to the high dimensionality of human model and 
the requirement of computation speed. In this paper, we present a novel evolutionary 
algorithm called Probability Evolutionary Algorithm (PEA) which is inspired by the 
Quantum computation [7] and Quantum-inspired Evolutionary Algorithm (QEA) [8], 
and then the PEA based human body tracking is proposed in which PEA is used to 
optimize the matching function. PEA has a good balance between exploration and 
exploitation with very fast computation speed, and it is suitable for human tracking 
and other real-time optimization problems. 
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2   PEA 

PEA is characterized by probabilistic superposed bit, observation and update method. 
In PEA, the individual is encoded by probabilistic superposed bit, which is defined as 
the smallest unit of information in PEA, as below: 
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where P0, P1, … Pk give the probability that a probabilistic superposed bit will be 
observed in the ‘0’ state, the ‘1’ state, …, and the ‘k’ state, respectively. So a 
probabilistic superposed bit is a linear superposition of the states 0 to k. In PEA, an 
individual is defined as a string of probabilistic superposed bits, so the individual is 
no longer a deterministic state, but a linear superposition of all kinds of states. 

For the individual can’t be used in the fitness function directly, an observation step 
is used to get the observed individual which is a deterministic k-nary string. 

The update operator is the only evolutionary operator in PEA which can increase 
the observation probabilities of some states, and decrease the observation probabilities 
of some other states, in order to make the high fitness state be observed more likely. 

The details of the observation and the update step, and the procedure of PEA could 
be found in our former paper [9]. 

3   PEA Based Human Tracking 

3.1   The Framework of PEA Based Human Tracking 

Different from tracking human using particle filters within the Bayesian framework, 
tracking is considered to be a function optimization problem in this paper. We denote 
the human model by X, and denote the observation associate with X by Z. The 
function f (X,Z) represents the matching degree between X and Z. Assume that we 
have known that the model at time instance t-1 is X t-1, so the model X t at time 
instance t can be get by equation 2. 

X t =X t-1+ X (2) 

Here, X is the change of the model X t-1. After we get X t, the matching function  
f (X t,Z t) can be calculated. Since X t is associated with X, the matching function can 
be written as: 

f (X t,Z t) = g ( X) (3) 

So tracking at time instance t is to optimize g ( X) in X’s search space. 
Generally, g ( X) is a multi-modal function with many local best solutions, and 
conventional optimization methods are difficult to get the global best solution, so we 
use PEA to optimize g ( X). 
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3.2   Human Model 

We employ a 10-part articulated human body model which consists of 10 parts and 
each pairs of neighbor parts are connected by the joint point, as shown in Fig. 1. 

The model has 10 joints, and the root joint is at the middle bottom of the trunk. The 
root joint has 3 degrees, and each of the other 9 joints has 1 degree. The model X can 
be written as: 

X = {x, y, 1, 2, … 10} (4) 

Here, x and y represent the location of the root joint, and 1, 2… 10 represent the 
swiveling angles of the 10 joints. X can be written as: 

X={ x, y, 1, … 10} (5) 

Human motion is a gradually changed movement, so X can be limited in a logical 
small scope. This scope can be learned or man-made. 

 

Fig. 1. 2D human body model 

4   Experimental Results 

Two image sequences are used here to demonstrate the effectiveness of PEA. 
Sequence 1 is a synthetic image sequence generated by Pose software [10] which 
consists of 100 frames. Sequences 2 is a real image sequence which consists of 325 
frames. The observation Z is also an important factor in tracking. Here we use two 
types of visual cues: edge and intensity. We compared the tracking results from PEA 
with Annealed Particle Filtering (APF). All the algorithms run on a 2.4GHz PC 
without code optimization.  

4.1   Parameters Setting 

In APF based tracking, 200 particles are used, and the particles are annealed for 8 
times. In PEA based tracking, the population size is set to 4, and the maximum 
number of generations is 200. 

4.2   Results 

Some tracking results of PEA and APF for sequence 1 and sequence 2 are shown in 
Fig. 2 and Fig. 3 respectively. The average computation time for one frame of PEA 
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Fig. 2. Some tracking results of sequence 1. The top row is the tracking results based on APF. 
The bottom row is the tracking results based on PEA. 

 

Fig. 3. Some tracking results of sequence 2. The top row is the tracking results based on APF. 
The bottom row is the tracking results based on PEA. 

Table 1. Average computation time for one frame 

Algorithm Particles or Population size second/frame 
APF 200 3.77s 
PEA 4 1.62s 

and APF are shown in Table 1. The results show that the PEA based tracking 
algorithm yields more stable results than APF, and run much faster than APF. 

In the experiments we also found that, when the population size is bigger than 10, 
the tracking result can not be improved further, so we suggest that the population size 
is set to 2 to 8 in applications in order to get a balance between the tracking accuracy 
and the computation time. 

5   Conclusions 

Model-based human tracking is a challenging problem, since the human model has 
high dimensionality. Different from tracking human using particle filters, we consider 
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tracking to be a function optimization problem, and a novel evolutionary algorithm 
called Probabilistic Evolutionary Algorithm (PEA) is proposed to optimize the 
matching function between the model and the observation. PEA has a good balance 
between exploration and exploitation with very fast computation speed. Experiments 
on synthetic and real image sequences of human motion demonstrate the 
effectiveness, significance and computation efficiency of the PEA based human body 
tracking algorithm. 
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Abstract. In this paper we discuss Evolution Strategies within the con-
text of interactive optimization. Different modes of interaction will be
classified and compared. A focus will be on the suitability of the ap-
proach in cases, where the selection of individuals is done by a human
user based on subjective evaluation. We compare the convergence dy-
namics of different approaches and discuss typical patterns of user inter-
actions observed in empirical studies.

The discussion of empirical results will be based on a survey conducted
via the world wide web. A color (pattern) redesign problems from litera-
ture will be adopted and extended. The simplicity of the chosen problems
allowed us to let a larger number of people participate in our study. The
amount of data collected makes it possible to add statistical support to
our hypothesis about the performance and behavior of different Interac-
tive Evolution Strategies and to figure out high-performing instantiations
of the approach.

The behavior of the user was also compared to a deterministic selec-
tion of the best individual by the computer. This allowed us to figure
out how much the convergence speed is affected by noise and to estimate
the potential for accelerating the algorithm by means of advanced user
interaction schemes.

1 Introduction

The research field of human-algorithm interaction (HAI) puts forward the in-
volvement of humans in algorithmic solution processes. In contrast to human
computer interaction the focus of this technology is on computational processes
that are assisted by users. In contrast to interactive software like text processing
systems or drawing software, the main structure of the solution process for the
higher level task is still governed by the algorithm. The user has to assist the
algorithm at some stages, that call for decisions based on subjective preferences,
or that require the insights of experts in a problem, the formalization of which
is often very difficult.

On a very global level we propose to distinguish between reactive or proactive
interaction, i.e. user feedback requested by the algorithm, or optional interven-
tions by the users into an autonomously running algorithm. An example for
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reactive feedback could be the request of an optimization algorithm on the sub-
jective evaluation of solutions by means of the user. Contrarily, an example for
proactive feedback would be given, if the user halts an optimization algorithm
that is in a phase of stagnation, changes some parameters, and lets it continue
with the changed settings. A boundary case for proactive feedback would be, if
the user simply decides to finish an algorithm and pushes some ’stop’ button
that terminates it.

Among the few algorithm classes that already integrate the user in the com-
putational process, interactive Evolutionary Algorithms (EA) are one of the
most well known. Applications range from arts [1] and music [11], to industrial
engineering applications [12, 7], mixture optimization [10], and prototyping in
product design [4]. An excellent overview on applications of IEA was given by
Banzhaf [4] and more recently by Takagi et al. [17].

In this paper we will mainly focus on the discussion of interactive variants
of Evolution Strategies (ES) [14, 16]. ES are instantiations of Evolutionary Al-
gorithms that are mainly used for the purpose of parameter optimization. In
particular they feature the self-adaptation of step-size parameters. This allows
to minimize the effort of the user as for many other EA the choice of the ad-
equate parameters can cause a significant problem for the unexperienced user.
Moreover, the self-adaptation makes it possible to automatically scale the be-
havior of the variation operator between a more exploratory coarse sampling or
a finer sampling, which is needed to achieve a high accuracy to the end of the
optimization.

ES have been already successfully applied for interactive optimization in para-
metric design. In particular the pioneering work of Herdy [9, 10] in this field
should be mentioned here, who applied interactive variants of the ES to vari-
ous problems ranging from the design of color mixtures to the search for coffee
mixtures that meet a desired taste.

However, we belief that there are still many open questions with regard to In-
teractive Evolution Strategies (IES). For example step-size adaptation deserves
further attention, and the typical behavior of the user. Moreover, it is an inter-
esting question how a meaningful theoretical results for the IES can be achieved.
In this paper, we intend to provide contributions to these questions. In particu-
lar we discuss new methods of how to conduct research in IES, analyze the user
behavior in the selection process and study the feasibility of the self-adaptive
step size adaptation within this context.

Our discussion adopts a representative problem for IES, namely the re-design
of RGB colors by means of subjective evolution as suggested by Herdy [9]. The
problem can be easily extended by using color patterns instead of a single color.
Moreover, it can be easily explained to people participating in experimental
studies, and thus can be readily used for collecting statistical data.

The structure of our paper is as follows: After a short introduction to ES
(Section 2) we will compare different interaction modes for Interactive ES and
discuss issues related to the convergence theory of the IES (Section 3). We con-
tinue with a discussion of self-adaptive features 4 in ES and discuss their role
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in interactive evolution strategies. Finally, in section 5, we report on first sta-
tistical studies of self-adaptive IES on color (pattern) redesign problems. The
paper concludes (Section 7) with a summary of first results and an outline of
some open questions for future research, some of which will be motivated by the
results presented in this study.

2 Evolution Strategies

Next we will describe the (μ,κ, λ)-ES, a modern instantiation of the ES. The
main loop of the (μ,κ, λ)-ES reads as follows: The algorithm starts with the
initialization of a population (multi-set) P0 of μ individuals (objective function
vectors + mutation parameters). The initialization can be done uniformly dis-
tributed within the parameter space. P0 forms a starting populations, and within
subsequent iterations a series of populations (Pt)i=1,2,... is generated by means
of a stochastic procedure: In a first step of this procedure λ random variations of
individuals in Pt are generated by means of a variation operator, the details of
which we will describe later. The new variants form the population Qt (offspring
population). Then, among all individuals in Pt and Qt the μ best individuals
that have not exceeded a maximal age of κ generations are selected by means of
a selection criterion. In case of κ = 1 the strategy is termed (μ, λ)-ES, while in
case of κ = ∞ we denote it with (μ + λ)-ES.

The variation-selection process is meant to drive the populations into regions
of better solutions as t increases. However, there is no criterion that can be
used to determine whether the best region was found (except in cases with a
pre-defined goal or bound on the objective space). Hence the process is usually
terminated if the user decides to stop it, e.g. because of his/her time constraints
or because of a long time stagnation of the best found value.

Next, let us describe the variation operator that are used to generate off-
springs. Individuals within the ES (if applied for continuous optimization) con-
sist of a vector of decision variables x = (x1, . . . , xnx

) ∈ R and a step-size vector
s = (s1, . . . , sns

) ∈ R
+ that is used to scale the mutation distribution of an

individual.
A mutation algorithm with a single step-size is described in algorithm 1. First

the step-size of the parent individual is multiplied by a constant factor, the value
of which can be 1, α or 1/α depending on a random number. Then this step-
size of the new individual is used to obtain the decision variables of the new
individual. These are obtained by adding an offset to the corresponding value of
the original individual. The value of this offset is determined by a standard nor-
mal distributed random number. The idea behind this mutation operator is that
decision variable vectors that are generated with a favorable step-size are more
likely to be part of the next generation, and thus also the information about the
step size that was used to generate them is transferred to that generation. The
process of mutative step-size adaptation was investigated in detail by Beyer et
al. [5]. Due to his findings, simple adaptation rules like the 2-point or 3-point
mutation for the step sizes serve well, whenever only a few iterations of the algo-
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rithm can be afforded. For a higher number of iterations, say tmax � 100, more
sophisticated adaptation mechanisms should be considered for the parameters of
the mutation. State of the art techniques include the individual step size adap-
tation by Schwefel [16] and the covariance matrix adaptation (CMA) by Hansen
and Ostermeier [8]. Note, that in order to allow for a mutative step-size adapta-
tion, a surplus of offspring individuals needs to be generated in each generation.
The recommended ratio of μ/λ � 1/7 leads to a good average performance of
the ES in many cases [16].

Algorithm 1 Generate λ offspring via 3-point mutation
1: Q = ∅
2: for i ∈ 1 . . . λ do
3: choose (x, s) randomly out of Pt

4: u ← uniform(0, 1) // uniformly distributed random number between 0 and 1

5: s′1 ←

⎧⎨⎩
s1α if u < 1

3

s1/α if u > 2
3

s1 otherwise
6: for j ∈ {1, . . . , nx} do
7: x′

j = xj + s′1 · normal(0, 1)
8: /* normal(0,1) generates standard normal distributed random number */
9: end for

10: end for
11: Q = Q ∪ {(x′, s′)}

3 Interactive Evolution Strategies

3.1 Interaction Modes

There are many possibilities to integrate user interaction in the ES. In general,
we can distinguish between reactive and proactive feedback. Reactive feedback
is feedback requested by the algorithm, e.g.

– the user might be asked for evaluation (grading) of offspring individuals
– the user is asked for selecting individuals
– the user is asked for generating variants

In contrast to this, proactive feedback denotes an optional intervention by the
user, e.g.:

– he/she might change the step-size parameter actively, e. g. after watching
the search process stagnate

– he/she might insert a new individual into the population or actively change
the variables of an individuals

In this paper we are more interesting in strategies with reactive feedback and the
only proactive feedback will be given, when the user decides to stop the search
process.
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Three straightforward types to implement a selection procedure would be (1)
to grade all individuals and let the algorithm select the best variations, (2) to sort
all individuals, (3) to simply mark the μ best individual(s) as suggested in [9].

In order to compare these alternatives, let us introduce the decision effort as
the number of possible choices the user has within one selection step. It seems
reasonable to assume that this measure correlates positively with the felt effort
by the user for conducting one selection. Following the procedure 1 would result
in (Ng)λ possibilities, if Ng represents the number of possible grading levels.
For the second alternative the user has to choose among λ! possible sequences,
while for procedure 3 the number of possibilities reduces to

(
λ
μ

)
= λ!

(λ−μ)!μ!

possibilities. Accordingly, the decision effort for the latter would be the lowest
(assuming λ < Ng). For μ = 1 it even reduces to λ alternatives. Since, the user’s
time is usually limited in the following, we will focus on a strategy that mini-
mizes the user’s effort, namely alternative 3 and μ = 1. Before discussing some
experimental results with the latter strategy, let us first explore some further
possibilities to conduct theoretical research on the behavior of interactive ES.

3.2 Bounding the Convergence Behavior

A problem when deriving a theory of interactive algorithms is that the behavior
of the user is highly difficult to model. However, in the remainder of this section
we explore possibilities to derive some meaningful theoretical results for the
theory of IEA without explicitly modeling the user.

A model that is frequently used for the analysis of ES is that of a markov
chain. A markov chain can be viewed as an autonomous stochastic automaton
(S, Pr{s′|s}), where S denotes a state space, and Pr denotes a function that
assigns a probability to each state transition from a state s ∈ S to a subsequent
state s′ ∈ S, Accordingly, ∀s ∈ S :

∑
s′∈S Pr{s′|s} = 1. By setting S = I

μ,
i.e. the space of possible parent populations, evolutionary algorithms on a finite
search space can essentially be modeled as Markov chains. This allows to obtain
results about the limit behavior and average behavior on some test problems
(e.g. [3]).

It was suggested by Rudolph [15], to extend this model to a stochastic
mealy automaton with deterministic output, whenever interactive evolution-
ary algorithms are to be modeled. Such an automaton can be denoted with
(S,X, Pr{s′|s, x}), where X denotes a set of input symbols. Now, the probabil-
ity function Pr{s′|x, s} denotes the probability that under the condition that
the current state is s and the user inputs the symbol x the next state will be s′.

An interesting observation is that given a stream of inputs, the behavior of
this strategy is reduced to that of a Markov chain again, where by the input
stream becomes part of the deterministic formulation of Pr. This allows us to
separate the analysis of the interactive part from the, still stochastic, remaining
part of the algorithm and, for instance, provides us with an means to analyze the
best case behavior of a strategy for some target function f , by minimizing the
expected distance E(Δt|w, f) to a desired target solution Δt over all possible
user inputs w ∈ Xt for a pre-described number of iterations t:
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E(Δt|w∗, f) = min
w∈Xt

E(Δt|w, f). (1)

Here X is for instance the space of all sequences of numbers between 1 and λ,
in case of a simple selection scheme and μ = 1. This convergence time of an
’ideal user’ can be compared on test-cases with known result to the measured
convergence behavior of an interactive ES in order to find out whether the user
does the selections in an optimal way. If so, it is likely that the implementation of
the algorithm marks the bottleneck of the convergence speed and it is not within
the hands of the user to further improve the convergence speed. Otherwise, if
the convergence speed of the ’ideal user’ is indeed much faster than that of the
interactive strategy, providing the user with selection aids or integrating some
smart user monitoring strategy might help to further increase the algorithmic
performance.

However, even for quite simple variant of interactive ES, the computation of
an ideal user behavior might be a challenging task as in every step there are
at least λ possibilities to choose the best individual, resulting in an exponential
number of at least λt possibilities for input streams up to the t-th iteration. In
some cases it might be possible to make the best choice in each iteration by
means of theoretical considerations. It shall also be noted here, that it suffices
to find a computer-based selection strategy that performs much better than the
interactive ES to motivate the potential of further improvements of the user
interaction. Later, we will give an example for such an analysis.

In summary, it seems that only in a few, very simple cases it will be possible to
get meaningful results from a convergence theory of interactive ES and empirical
results will likely play an important part in the dynamic convergence theory of
these algorithms, even if we assume the ’ideal user’.

Another theoretical question that can be easily addressed would be to check
if the strategy can converge globally. This would be the case, if the user can,
in principle obtain any given starting point obtain any other state with a finite
probability and a finite number of inputs, independent of the settings of the
strategy parameters. However, such kind of considerations tell us nothing about
the practically important convergence time, but it can well serve, to discard cer-
tain variants of interactive ES. For constant step sizes the result of probabilistic
convergence in limit for regular target functions and ideal users is simply in-
herited from the theory of the non-interactive ES, provided that the best found
solution is archived in case of a comma strategy. Moreover, the result can be ex-
tended to the self-adaptive case if the step-size is bounded below by a minimal
positive step size [5].

4 Self-adaptation and Interaction

One of the questions addressed in this paper is, whether self-adaptive mecha-
nisms of the ES works well for the interactive ES. With regards to this, there
are some important differences between the standard ES and the interactive ES.

First of all, for the standard ES in continuous spaces, the precision of an
optimum approximation can, in principle, get arbitrarily close. In applications
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of the interactive ES, the subjective nature of the objective function usually
forbids an arbitrary close approximation of some solution. The reason for this
is that in many cases the user will not be able to measure arbitrarily small
differences in quality. For example, when comparing two colors, a human will
perceive two colors as equal if their distance is below a just noticeable difference.
The concept of JNDs is quite frequently discussed in the field of psycho-physics,
a subbranch of cognitive psychology [2]. It is notable, that the JND depends on
the intensity and complexity of the stimulus presented to the user. Moreover, it
has been found that the lower the difference between two stimuli and the more
complex the stimuli are, the more time it takes for the user to decide upon the
similarity of two patterns. We will come back to this results, when we discuss
the empirical results of our experiments.

Another difference between the standard ES and the ES with subjective selec-
tion criterion is that the user’s attention level will decrease after a while. For a
theory of attention we refer to Anderson [2] and Reason [13]. Hence, the number
of experiments is usually very limited and very fast step-size adaptation mecha-
nisms have to be found, and only a few parameters of the mutation distribution
can be adapted.

Moreover, as discussed above, the amount of interaction should be minimized,
e.g. by choosing a simple selection scheme. This might prevent the use of step-size
adaptation strategies that demand for numerical values of the fitness function
value. A performance measure would be based on the number of selections made
by the user, rather than on the number of function evaluations.

5 A Color Redesign Test-Case

To study the effect of a human as fitness function and selection mechanism, a
small experiment was constructed. An evolutionary algorithm was implemented
in the form of a JAVA applet for the simple problem of finding the RGB values
of a certain color or combination of colors (see figure 1). In this experiment the
user selects one color or color pattern out of several alternatives that is closest
to a given target color. This selection is then used as a parent for the next
generation of alternatives that the user can choose from. When the user thinks
the algorithm will not improve the results any more he/she can choose to stop
the search by clicking the ’Done’ button. All data collected in this applet is then
send to a database and can be used for this research.

A one dimensional experiment was conducted using squares with only one
color and a two dimensional experiment was done by having a left and a right
color in the same square (see figure 1). Comparing these two experiments might
give insight into the scalability of this type of experiment.

The whole faculty was asked to help with this experiment by running this
applet in a web browser. About 200 runs were collected this way and the findings
in the paper are based on these runs. This experiment was then also carried out
using an ’ideal user’ in the form of a computer program that would always select
the color with the smallest Euclidian distance to the target color. Note, that
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Fig. 1. Subjective selection dialogue with user: The upper figures show the initial color
patterns (single color (left) and two-color test case (right)) and the lower figures show
color patterns at a later stage of the evolution. The bigger box on the left hand side
displays the respective target color, and in its center a small box is placed displaying
the selected color. Once the user presses the NEXT bottom a selection gets confirmed
and a new population will be generated and displayed. If the user is finally satisfied
with the result he/she presses the Done button, in order to stop the process.

this strategy maximizes the convergence speed in case of an ES with constant
step size. Having data on both a deterministic selection compared to a human
selector, provides us with insights of whether the user selects individuals in a
way that maximizes the convergence speed.

Two different algorithms were used. One with a fixed step size and one with a
self adapting step size. Three different stepsizes were used in the fixed algorithm:
10, 20 and 40. Note that RGB values can range from 0 to 255, that makes the
relative stepsizes approximately 0.039, 0.078 and 0.156. For the self adaptation
the 3 point step-size mutation scheme by Rechenberg was employed with α = 1.3
(cf. algorithm 1).

When the applet is started an algorithm is randomly selected for that run. The
user will only know what algorithm was selected after the experiment so that the
user will not be influenced by that knowledge. The random generation was done
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in such a way that 50% of the runs were done with the Rechenberg algorithm
and 16.667% of the runs for everyone of the three fixed step-size algorithm.

The target color was fixed in all the experiments to make them comparable
and was chosen to be [R = 220, G = 140, B = 50] so that every component
of the color was neither close to the variable bounds 0 and 255 nor equal or
close to any other component. Our choice happened to be a brownish version of
orange.

6 Results

First results we collected with our JAVA applet, by the help of many users who
participated in the experiment, are displayed in figures 2 and 3. Next, we will
discuss these results one by one.

Figure 2 shows the average function values for the different strategies. Note
that not all runs had the same length. Some people put more effort into finding
a better result than others. This is all part of the effect of using humans instead
of a computer. Conclusions based on this data should take this into account. It
is also notable that users took on average 5 seconds for a selection and hardly
proceeded more than 40 iterations.

The plot in figure 2 shows that self adaptation seems to outperform all the
other algorithms, with human selection as well as with the computer selection.
The fixed algorithm with step-size 20 seems to converge a lot faster in the begin-
ning though and stagnate after 10 iterations. This effect is also very plain with
the computer selection. There the fixed is quicker until generation 10 and then
self adaptation closes the gap and overtakes. The computer selection was also
run on the three different fixed step sized, but step size 10 was by far the best
in both the one dimensional and the two dimensional case. We note here, that
it is hard to figure out a-priori what is a good step size for an experiment with
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Fig. 2. The convergence behavior of different ES obtained in the online experiment.
The upper figure displays results for a single RGB color, and the lower figure results for
two different RGB colors. The number of iterations depends on the number of iterations
the at least two of the users spend until terminating the experiment.
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Fig. 3. The left plot shows step-size adaptation in interactive ES for single color and
two-color example. The right plot displays the history of a typical run of the two color
problem. The distance of the two colors to the target color is displayed over the number
of iterations. Note the divergence of the left color after 20 iterations.

subjective evolution, and thus a self-adaptive step size will be always a favorable
solution if no additional problem knowledge is given.

The two dimensional plot is a bit different though. Here a fixed step size of 20
seems to be the better choice. Self adaptation performs well in the beginning best
here but after 20 iterations the error seems to go up again. This is a unexpected
effect that only seems to occur with the self adaptation in the two dimensional
case if a human selection is used. In the case of the computer selection this effect
is totally absent and self adaptation outperforms all the fixed step-sizes.

In an effort to explain this effect figure 3 (right) shows the error of both colors
separately in a typical run of self adaptation using human selection. Note, how
both errors seem to converge nicely up until generation 20. From that point
onward only the right color seems to converge to an optimum whereas the left
color is actually moving away from the optimum. This suggests that this shows
how a human might try to use a certain strategy to optimize two dimensions. In
this case it seems the user tried to optimize the right color first and worry about
the left color later. Although this seems a feasible strategy, the self adaptive
algorithm has some problems with that. The total error goes up, the step-size is
stagnating and even increasing a bit (as figure 3 (left) shows).

What figure 3 also shows is that the step-sizes are decreasing at the same rate in
the one dimensional problem as they do in the two dimensional problem. It seems
though that in the two dimensional problem the step-size starts of a bit higher.

The fact that the computer selection outperforms the human selection is not
very surprising, as the selection could be viewed as a noisy selection method.
However, it is quite surprising how much this noise influences the algorithm.
A conclusion from this is that there might be still a great potential for im-
provements of the performance, that might be reached by assisting the user and
diminishing the noise. Moreover, when analyzing the noise, there seems to be
more to it than just adding noise to a fitness function. The results suggest hu-
mans use strategies that are based on some outside knowledge or even feelings
that influences self adaptation in an unfavorable way. Moreover, cognitive re-
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strictions of humans with regard to attention and just noticeable differences will
have to be taken into account when modeling this noise.

7 Conclusion

This paper contributes to the analysis of Interactive Evolution Strategies (IES)
with subjective selection criteria. The approach has been related to the context
of human algorithm interaction. Differences between interactive evolutions to
non-interactive ones were pointed out, including a discussion of different ways to
analyze these methods. In particular, we compared different forms of interaction,
e.g. by means of the decision effort criterion, and suggested concepts to obtain
bounds on the performance of interactive EA. Here we introduced the concept
of an ’ideal user’ that can be used to estimate the potential for improvements in
the interactive part of the algorithm.

In the empirical part of the paper we added new results to the experimental
work started by Herdy [9] on a color re-design test case. The experiment was
extended by a two-color redesign example. A JAVA applet implementing the IES
on the color test cases was developed and used in an internet survey to obtain a
significant number of results from different users.

The results clearly indicate the benefit of the step-size adaptation. Strategies
that work with step-size adaptation turned out to be more robust and diminish
the risk to choose a completely wrong step size. It is notable within this context,
that the employed 3 point step-size adaptation proved to be beneficial for a very
small number of less than forty generations.

By comparing to the results obtained with an ’ideal’ user’s selection scheme,
we could show that the users did hardly select individuals in a way that maxi-
mizes the convergence speed. This adds evidence to the fact that the noisy nature
of the user-based selection is harmful to the algorithm’s behavior. However, this
result can also be interpreted in a positive way, as it shows that there is still much
room for improvements for the user interaction. For instance decision aids, noise
reduction strategies, or smart user monitoring strategies might help to further
increase the performance of the IES.

We also note, that the kind of selection errors made by the users can hardly
be modeled by standard noise models like constant gaussian distributed offsets
to the objective function values. The noise function seems to be time dependent
and dependent on the distance to the target values.

For more complex targets another aspect has to be taken into account when
modeling the user: An insight we got from observations for more complex target
definitions (two color example) was that the user starts to use some strategy, e.g.
to first optimize the first and then the second color. Such kind of user behavior
has rarely been addressed in the context of interactive evolutionary algorithms
and deserves further attention.
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Yago Sáez1, Pedro Isasi1, Javier Segovia2, and Asunción Mochón3

1 Universidad CARLOS III de Madrid, Leganés 28911, Spain
yago.saez@uc3m.es

http://et.evannai.inf.uc3m.es/personal/ysaez/
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Abstract. This paper presents an objective experimental comparative
study between four algorithms: the Genetic Algorithm, the Fitness Pre-
diction Genetic Algorithm, the Population Based Incremental Learning
algorithm and the purposed method based on the Chromosome Appear-
ance Probability Matrix. The comparative is done with a non subjective
evaluation function. The main objective is to validate the efficiency of
several methods in Interactive Evolutionary Computation environments.
The most important constraint of working within those environments is
the user interaction, which affects the results adding time restrictions
for the experimentation stage and subjectivity to the validation. The
experiments done in this paper replace user interaction with several ap-
proaches avoiding user limitations. So far, the results show the efficiency
of the purposed algorithm in terms of quality of solutions and conver-
gence speed, two known keys to decrease the user fatigue.

1 Introduction

Evolutionary Computation (EC) encompasses computational models which fol-
low a biological evolution metaphor. The success of these techniques is based on
the maintenance of genetic diversity, for which it is necessary to work with large
populations. The population size that guarantees an optimal solution in a short
time has been a topic of intense research [2], [3]. Large populations generally con-
verge to better solutions, but they require more computational cost and memory
requirements. Goldberg et al. [4] developed the first population-sizing equation
based on the variance of fitness. They further enhanced the equation which
allows accurate statistical decision making among competing building blocks
(BBs) [2]. Extending the decision model presented in [2], Harik et al. [3] tried to
determine an adequate population size which guarantees a solution with the de-
sired quality. To show the real importance of the population size in Evolutionary
Algorithms (EAs) He and Yao [5] showed that the introduction of a non ran-
dom population decreases convergence time. However, it is not always possible to
deal with such large populations, for example, when the adequacy values must be
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estimated by a human being (Interactive Evolutionary Computation, IEC).
Those environments require methods capable to perform well with a short num-
ber of individuals (micropopulations).

IEC techniques can be applied to different fields, such as digital treatment of
images [6], composition of musical works [7], automotive design [8], automatic
design of figures [9], general artistic design [10], [11], for example, the design of
sculptures [12], or generation of gestures in 3D figures, aimed at virtual worlds,
pictures or games, [13]. A more detailed sort of examples can be found in a
complete survey about IEC [14].

The main problem in most of the above-mentioned references is that the
selection criteria is based on a merely artistic and personal point of view. In
these kind of applications the problems become more complex since the criteria
used is subjective, (it is based on human perception and changes according to
the user’s opinions or personal preferences). To avoid this problem a typical
IEC design problem with a non-subjective evaluation function is presented. This
environment allows to run a large number of experiments and to analyze the
behaviour of the four selected algorithms under the same conditions.

The remainder of the article is organized in the following way: a brief de-
scription of the algorithms used to compare the performance of our proposal is
presented in section 2. Section 3 reports the description of the problem environ-
ment and the results of the comparative tests. Finally, the conclusions are drawn
in section 4.

2 Description of Algorithms

IEC algorithms are difficult to test because they require the evaluation of the user
in their experiments. In addition, if the designer wants to compare the new algo-
rithms with existing ones, even more experimentation with humans is required.
The proposed algorithm (Chromosome Appearance Probability Matrix, CAPM)
is compared in every domain with the classical Genetic Algorithm (Simple Ge-
netic Algorithm, SGA) with the Fitness Predictive Genetic Algorithm (FPGA)
and a probabilistic algorithm called Population Based Incremental Learning
(PBIL). The SGA is always a good point of reference for the comparison and
the FPGA is one of the latest proposals for IEC problems [15]. The probabilistic
approach gives another interesting point of view to compare with, because it is
the starting point for the Estimation of Distribution Algorithms (EDA), [16] and
[17]. Besides, the proposed method was partially inspired by the EDAs.

The representation chosen for all the chromosomes is the same in all the
contrasted algorithms. Each individual is made up of various chromosomes which
are in turn, made up of a vector of integers. In the following section the selected
algorithms, except the SGA, will be briefly explained.

2.1 Fitness Predictive Genetic Algorithm

Since the user is present during the evaluation and the selection process in IEC
techniques it is necessary to work with micropopulations which are easily eval-
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uated. Nevertheless A small number or a reduced population affects negatively
the productivity of the GAs and, as a result, improvements over the conventional
GA are proposed. These improvements depend on the size of the population and
the fitness prediction of all the individuals which are not evaluated by the user,
[15], [27]. Thus it deals with an algorithm of M individuals and only a subset of
N are shown to the user. Then the user makes its personal evaluation. Finally,
the fitness of the rest (M-N) is obtained according to the differences encountered
with the selection made by the user in the previous iteration. There are several
types of approaches in order to estimate the fitness of the rest, but only the most
simple has been developed for this paper: the Euclidean distance approach. The
FPGA follows the next steps:

Step 1 - Initiate the population with N number of possible random
solutions: during this process N number of individuals are randomly initiated
from the population. The value of N depends on the quantity of individuals
which want to be shown to the user per iteration and it is also linked to the type
of problem which wants to be solved. The experiments done have been based on
N=10.

Step 2 - Evaluate N candidates: this process is responsible for the evaluation
of N visible candidates just as the user would do. As a result, and if decoding
was necessary, each of the genotypes are converted to corresponding phenotypes.
With the fitness value or adaptation of each individual of the whole N assigned,
the determined evaluation function for each problem is applied. At this point,
all other individuals of the population (M-N) remain to be evaluated. In the ex-
perimental domain populations of 100 individuals have been used, out of which
the user evaluates the best 10, M=100 and N=10.

Step 3 - Forecast fitness values of candidates M-N: this process is used
if the condition which guarantees the number of iterations is greater than 2. Al-
ternatively, it is used when an initial reference evaluation has been made which
allows the forecasting of the fitness values of the rest of the population (M-N).
The necessary modifications to adapt the algorithm to the selection method have
been done carefully and it corresponds to the proposals regarding to the algo-
rithm put forward by Hsu, [15]. Predictive fitness is obtained by the calculation
of Euclidean distance between the referenced chromosomes (those selected by
the user and those of the individuals not evaluated by the user). FPGAs are
effective in typical IEC problems in which the parameters are coded in such a
way that the Euclidean distance gives an idea of how close or far an individual
is from the one selected by the user. As the FPGA is not designed to be ap-
plied to numerical optimization problems and is not foreseen as being used with
the proposed coding, it is possible that due to their genotype differences, two
very close variables (as far as the phenotype is concerned) could produce great
distances.
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Step 4 - Select two parents: as with the SGA, the selection operator im-
plemented for the experimentation is based on the selection of the two best
individuals according to their adaptation or fitness value. However, the selection
can only be done with the best ’N’ individuals of the population. This previously
mentioned limitation is typical of FPGAs and IEC techniques in which the user
evaluates. Therefore, the selection forces the evaluation to a subset of the pop-
ulation ’N’. During each iteration, the selections made by the user are stored in
the ps1 and ps2 variables with the intention of doing other calculations which
will obtain the predictive fitness of the following iterations.

Step 5 - Cross pairs with parents: this process is exactly the same as the
SGA. Once the best two individuals of fitness value are selected the cross oper-
ator is applied in order to obtain the new generation of individuals. The propa-
gation strategy is elitist and, as a result, the selected parents go directly to the
following generation. The remainder are generated from the equally probable
crossing of the parents.

Step 6 - Mutate the obtained descendants: as with the SGA, this process is
responsible for mutating, with a certain probability, (Pmutation) several genes of
the generated individuals. The aim is to guarantee the appearance of new char-
acteristics in the following populations and to maintain enough genetic diversity.

Step 7 - Repeat until the final condition: like the SGA, the stop condition
of the algorithm is imposed by a maximum limit of iterations.

2.2 Population Based Incremental Learning (PBIL)

The basis for introducing learning in GA’s were established with the Population
Based Incremental Learning (PBIL) algorithm proposed by Baluja and Caruana
(1995), [23]. This algorithm means another optimization approach different than
the GAs, obtaining excellent results in certain problems, like [18], [19] and [20].
Besides, it has been the starting point for EDAs, [16] and [17], and a good
example for the proposed method CAPM.

The PBIL algorithm, [23] is partially based on the Equilibrium Genetic Al-
gorithm (EGA), [21], but with some improvements made. The authors present
it like a mixture between an EC algorithm and a hillclimbing approach, [18].

The main concept of the PBIL algorithm is the substitution of the genetic
population with a set of statistics representing the information about the individ-
uals. Therefore, the selection and crossover operators are not needed anymore,
and a probability distribution process is the responsible for changing the popu-
lations each iteration.

The success of this statistic approach opened a wide research field with lot of
works, [24], [16], [17], [26], etc..

Step 1 - Initialize probability matrix: this procedure is responsible for
initializing randomly all the individuals, also called solution vectors. For this task
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the probability matrix is firstly initialized with uniform distribution, equation
1, and all the alphabet elements will have the same likelihood of appearing.

Pi=[0..(k−1)],j=[0..(L−1)] =
1.0
k

(1)

where k represents the alphabet size and L the chromosome size.

Step 2 - Evaluate and generate N vectors of solution: this procedure
deals with the evaluation of the solution vectors. The solution vectors are gen-
erated after the first iteration through the sampling of the probability matrix.
Once the best solutions are selected, they are used to update the information
stored in the probability matrix.

Step 3 - Update the probability matrix: this step uses the following up-
dating rule:

Pi(X = j) = (Pi(X = j)× (1.0− α)) + (α×Mi,j) (2)

where Pi(X = j) is the probability of generate any of the j values which belong
to the alphabet in the ith position of the chromosome. α is the learning factor,
and Mi,j the probability matrix, column i, row j.

The learning factor of the algorithm (α) can differ depending on the prob-
lem. Besides, it affects the final results, [23]. Smaller learning rates imply wider
searches, and higher values mean deeper search processes. However, its value
should not be too high, because as the learning factor increases, the dependency
between the solution and the initial population is higher.

Step 4 - Mutation of the probability matrix: the mutation operator plays
an important role during the search process in order to guarantee the convergence
avoiding local optimums and maintaining the diversity through the iterations.

The mutation operator in PBIL algorithms can be done at two levels: solution
vector or probability matrix. Both of them are useful for maintaining the genetic
diversity, but after several experiments made in different works, the probability
matrix mutation appears to be slightly better, [22] or [23].

Step 5 - Repeat until the final condition: like the SGA and the FPGA the
stop criterion is imposed by a maximum limit of iterations which depend on the
problem to solve.

2.3 Chromosome Appearance Probability Matrix

In PBIL algorithms, the recombination operator is replaced by a vector of in-
dependent probabilities of each variable, and sampling this vector implies the
study of the selections made by the algorithm till that moment. This concept,
applied to IEC can be done in order to speed up the evolution in regards to the
user needs. This was the key motivation for developing this new method based
on the Chromosome Appearance Probability Matrix.
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The steps of the proposed algorithm are explained in detail in [28] and [1],
however this method introduces the following new features which differ from a
canonical genetic algorithm.

Probability matrix for guiding mutation: when the user selects an ele-
ment of the population, his or her selection is usually based on the collective
combination of features in each element of an individual. For example, if the
user is searching for tables he will appreciate the combination of several char-
acteristics such as the color of legs of the table, the number, the shape of the
surface, etc.. Therefore the information about the whole chromosome should be
kept. To do this, a multidimensional array, with the same number of dimensions
as genes, has been included. The bounds of the dimensions are determined by
the number of alleles of the different genes.

The probability array ’M’ is initialized by M(gene1, gene2, gene3, genem) =
1/T where ’m’ is the number of genes, and genei could have values in [allelei

1,
allelei

2 . . . allelei
ni

], and ni the number of alleles of gene ’i’. The total possible
combinations of chromosomes ’T’ is calculated by multiplying the maximum
sizes of each gene (T =

∏m
i=1 ni).

This array shows the probability of being chosen that each possible combina-
tion of alleles have. Each iteration implies a selection of one or two individuals,
and its chromosomes represent a position in the above array. After the selection,
the corresponding position in the array is updated by a factor of α with the
increment factor of the update rule, ΔM . This ΔM is calculated by the following
equation:

ΔM = [Mgene1
s,···,genen

s
× (1.0 + α))]−Mgene1

s,···,genen
s

(3)

The example in figure 1 shows how the update rule works for 1 chromosome
with 2 different genes, gen 1 with 4 alleles {pos1,..,pos4}, and gen 2 with 10,
{0..9}. It can be clearly seen how the probability matrix ’M’ is updated with
α = 0.005 and how it affects to the rest cells.

The update operations take care that the sum of all the elements of the array
will be 1. This array is very useful to keep information about the selection fre-
quency of a determined chromosome, and therefore, to help the mutation process
to evolve towards the preferences of the user.

Oriented mutation operator: the mutation operator is responsible for the
mutation of the individuals. Once a gene has been selected for mutation, a spe-
cific chromosome is taken as the base of the mutation process (reference chro-
mosome). This chromosome is selected from the whole possible chromosomes
following a uniform distribution fixed by the probability array. The higher the
value of a chromosome’s likelihood array, the better the probability of being
chosen. In the mutation process, a position in the chromosome to be mutated is
randomly selected. Then, the gene in this position is substituted by a gene from
the reference chromosome in that same position. Thus, the mutation operator is
the result of a function from the chromosome to be mutated and the reference
chromosome:
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Fig. 1. Update rule example for CAPM algorithm, α = 0.005

newChrom′ = mutateOneGen(OldChrom, referenceChrom) (4)

This approach has the ability to broadcast the preferences of the user towards
all the chromosomes of the individuals.

The inclusion of a clone remover operator: the clone remover operator
is responsible for mutating all those individuals which have exactly the same
genetic structure as the other individuals in the same population.

Replacement of all the population but parents with the new individ-
uals: the proposed strategy is elitist, however, as the user is not interested in
evaluating the same individuals between iterations, the algorithm mutates the
parents for the next generation, making them slightly different.

3 Experimental Tests

3.1 Trademark Finder

The problem arises from an idea proposed in [25] and it is explained more in
detail in [1]. The challenge of the trademark finder is to help the user in the task
of finding a specific logo which is new, different, or eye-catching, for a product,
or a company. For this purpose, like in brainstorming process, the system offers
different types of words, applying different colors, backgrounds, and styles. This
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is only a first version for making the experiments, but in future developments
figures and letter positions should change.

The algorithm starts randomly with six words (population), each one made
of five letters, with random colors and styles. The user must select in each iter-
ation the best two alternatives for him. Thus, each word is an individual of the
population, and each letter is a chromosome with four genes representing color,
font type, size and background, respectively. The search space is 3, 2× 1021.

3.2 Experimental Framework

Numerous experiments (≥ 100.000) are required to validate empirically the effi-
ciency of the methods. It must be taken into account that the problem should
be run repeatedly for all the possible parameters and algorithms. Besides the
fitness function must be the same for all the experiments in order to do an ho-
mogeneous comparative of the results. This is impossible to achieve with users
(individual subjective preferences). Therefore, it is necessary to develop a sim-
ulator which replaces the human interaction acting like a virtual user equal for
all the experiments, no matter the algorithm tested.

Evaluation based on ranking of preferences: for some type of products
and business the preferences of corporate colors and fonts can be clear at the
beginning of the search. Perhaps all letters in red are preferred, but the type of
red can be selected by the user. For this reason, in the first test, an automatic
evaluation which simulates the user behavior was designed with a ranking of
preferences evaluation function.

However, the problem with this first test is that the automatic evaluation
function is a non real world based function. To make the problem more complex
it has been decided to include more realistic conditions which means non linear
evaluation function and fluctuation in the preferences of the virtual user.

Evaluation based on fluctuating decisions rules sets: like humans do, it
is possible that the user could find more than one type of solution interesting.
Furthermore, after the study of the experiments conducted with humans [25]
it was realized that very often the user does not have a clear idea of his own
preferences. Also, often happened that his preferences or criteria changed as new
designs were proposed. To simulate those doubts inherent to human behaviours,
two sets of predefined evaluation rules which confront different preferences were
included. Those rules randomly change with a probability of 70% using set 1,
and 30% using set 2 (each iteration). These rules are applied independently to
each chromosome (character) to obtain an objective measure.

In order to make even harder the search two conditions were included. These
conditions forced the solution to search words with the same background for first
and last letter and different for the remainder.

3.3 Comparative Study

This section presents a comparative study of some simulations in order to show
the behavior of the algorithms explained in section 2. In the experiments devel-
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oped the final condition is reached when the fitness of one element is 100 points
(optimal solution), or when the iterations surpass 50. A valid measure is consider
when the fitness is greater than 90.

At this point, after making 10.000 experiments per algorithm, running them
with different parameters, see table 1, and both types of automatic evaluation
function, the following results were achieved (best parameters found for each
algorithm):

For the evaluation function based on the ranking the preferences only the
CAPM method reaches the optimal solution in all experiments done (iteration
32 in average), and neither of the others even reached a valid solution.

When comparing the results, there is a significant difference between the
algorithms: CAPM reaches much faster solutions in terms of iterations and better
quality solutions. As can been seen clearly in tables 1, 2 and also in figure 2.

Besides, the PBIL shows clearly a low performance when working with mi-
cropopulations, due to the genetic diversity during the first 50 iterations is too
low. Experiments with mutation likelihood of 45% have been run but this high
mutation rate does not help the algorithm and makes the search completely
random.

The FPGA has a good performance, but does not always beat the SGA results.
The main reason is that the Euclidean distance equation used for the fitness
prediction is not useful when predicting ranking evaluations or fluctuating rule
sets. At this point future developments to try FPGA with prediction functions
based on Neural Networks or Support Vector Machines are suggested.

Looking at the results for the fluctuating decisions evaluation model, the
user must take at least 35 iterations in average to obtain a valid solution, and
never reaches an optimal solution. However, the results are no so bad taking
into account that the evaluation is using a non-linear function which changes of
evaluation rules randomly (with 30% of probabilities of changing each iteration).

Table 1. Parameters used for experiments

Algorithm Population Size Mutation Prob. Learning factor (α)

SGA 10 [5% . . . 45%] N/A
FPGA 10(100) [5% . . . 45%] N/A
PBIL 10 [5% . . . 45%] [0, 01 . . . 0, 1]

CAPM 10 [5% . . . 45%] [0, 001 . . . 0, 01]

Table 2. Results with ranking of preferences

Iteration SGA 10 FPGA 100 PBIL 10 CAPM 10

10 50,00 51,00 30,00 62,00
20 65,00 65,00 35,00 85,00
30 74,00 74,00 38,00 98,00
40 80,00 80,00 43,00 100(32)
50 85,00 84,50 49,00 100



An Experimental Comparative Study for IEC Problems 551

Table 3. Results with fluctuating decisions rule sets

Iteration SGA 10 FPGA 100 PBIL 10 CAPM 10

10 51,25 52,00 35,50 58,00
20 63,50 61,50 37,00 71,50
30 70,00 70,00 39,50 84,50
40 76,00 74,50 40,50 91,50
50 80,00 77,99 44,50 96,00

Fig. 2. Average fitness per iteration in both evaluation functions

It applies opposite evaluation preferences for each set of rules, and finally finds
valid solutions after 35 iterations in average. The evolve process is very complex
and is unpredictable what is really going to happen with the user. It is not usual
to see the user changing completely of preferences each iteration (with 30% of
probabilities), but it was decided to experiment with the worst case. In fact, in
this evaluation mode all the algorithms tested except CAPM are unable to find
even a valid solution (fitness ≥ 90).

4 Conclusion

After the study and development of different algorithms and their formal com-
parative test for solving an specific problem of IEC, the following conclusions
have been drawn:

1. To test formally algorithms in IEC frameworks it is necessary to run a large
number of experiments. This task can only be achieved when working with
automatic evaluation functions. These functions must simulate human char-
acteristics, which are not always predictable. For this paper the simulator
changes its opinions or preferences randomly, with a probability of 30%.
Also, it has been decided to make the search based on a non linear fitness
function.
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2. The analysis of the results of the SGA, shows that, although it is considered
sufficient so far, it is not good enough for IEC, because it never reaches
a valid solution in the experiments made. Besides, the proposed method
has been compared successfully with an algorithm specifically developed for
solving IEC problems (FPGA) and with a probabilistic algorithm (PBIL).

3. The proposed method has the capability of learning by the study of the
selections made by the user. This alternative improves the results given by
the SGA, FPGA and PBIL in terms of the quality of the solutions and the
number of iterations in finding valid/optimal solutions.

Finally, as the micropopulations affects negatively to all algorithms tested,
becoming the main reason to decrease their performance, to avoid this prob-
lem a proposal is made to increase the selection pressure with the probability
matrix. However, other proposals based on predictive fitness must be studied
too.

Acknowledgment. This article has been financed by the Spanish founded re-
search MCyT project OPLINK, Ref: TIN2006-08818-C04-02.

References
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Abstract. In this paper, our model supplies designing environment that used the 
component network to identify the high score components and weak compo-
nents which decrease the number of components to build a meaningful and eas-
ily analysis simple graph. Secondary analysis is the bipartite network as the 
method for formatting the structure or the structure knowledge. In this step the 
different clusters’ components could link each other, but the linkage could not 
connect the components on same cluster. Furthermore, some weak ties’ compo-
nents or weak links are emerged by Bipartite Graph based Interactive Genetic 
Algorithm (BiGIGA) to assemble the creative products for customers. Finally, 
we investigated two significantly different cases. Case one, the customer did not 
change his preference, and the Wilcoxon test was used to evaluate the differ-
ence between IGA and BiGIGA. The results indicated that our model could cor-
rectly and directly capture the customer wanted. Case two, after the Wilcoxon 
test, it evidenced the lateral transmitting using triad closure extent the concep-
tual network, which could increase the weight of weak relation and retrieved a 
good product for the customer. The lateral transmitting did not present its con-
vergent power on evolutionary design, but the lateral transmitting has illustrated 
that it could quickly discover the customer’s favorite value and recombined the 
creative product. 

Keywords: Bipartite, chance discovery, BiGIGA, IEC. 

1   Introduction 

Kotler and Trias De Bes (2003) at the Lateral Marketing said, “The creativity which 
in the customer’s designing process is a kind of lateral transmitting, and only the 
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customer really knows what he wants.” The evolutionary computation must have a 
subjective (fitness function) for evaluation; thus, it does not suit personal design. The 
first application of IEC was that it had helped the witness to recognize the criminal 
face (Caldwell and Johnston, 1991), and it broken the limitation of EC (evolutionary 
computation) which needed the fitness function to implement the evolutionary 
computation. Therefore, the interactive genetic algorithm (IGA) (Nishino, Takagi, 
Cho and Utsumiya, 2001, Ohsaki and Ingu, 1998) has become a useful method. In the 
EC, the better chromosome has best chance to propagate the genes to the offspring; in 
contrast with the IEC, the interactive process not only supplies the stimulating 
information for a designer to drive him discovering what he wants, but also supplies 
the choosing and recombining power for a designer to make a creative product. 
Consequently the creative designing problem has become how to help the designer 
emerging a new creativity or recombining the creative concept into product. In 
addition, the fatigue issue is the problem of IEC (Nishino, Takagi, Cho and Utsumiya, 
2001; Ohsaki and Ingu, 1998; Takagi, 2001), for example, the chromosome contains i 
genes and each gene has j levels, then there will be j ^ i assembling patterns and its 
presenting population will be about 6-12. This means that the probability for a 
designer to find the best pattern is population / (j*i). However, the interactive process 
has become a heavy load for a designer to find a good solution in the limited timeline. 
In this paper, we introduce creating chance system which using the text mining 
technology to discover the weak ties on bipartite network (components network and 
product linking network) to reduce the customer’s fatigue problem.  

2   Related Works 

2.1   Fitness Function Predicting 

One of reducing fatigue problem is the fitness function predicting method. Lee and 
Chao (1999) used the sparse fitness evaluation which included the clustering technol-
ogy and fitness allocation method to reduce customer burden. But, in the experiment 
they used DeJong’s five functions as the fitness function; they did not really include 
the human being into genetic algorithm. Nonaka and Takeuchi (1995) proposed the 
knowledge growing theory. From the theory we know that on the designing process 
the customer want change component within chromosome which what he wanted. 
However, depending on the fitness could not resolve the designing problem. Haya-
shida and Takagi (2000) proposed the visualized IEC that combined the different 
capabilities of EC and human beings searching for a global optimum. However, the 
EC searched in n-D space and the human being globally searched on 2-D map. This 
means that using SOM distorted n-D to 2-D; then, human being according to the 2-D 
information decided his favorite position on the map. The EC relied on new fitness 
function to search the favorite product. In order to assemble the creative product we 
must understand the whole subjective space (2-D) and n-D context space. However, it 
seems not easy for a customer to use it. From these papers we know how to recognize 
the customer’s mind is a very important issue, because it not only understands the 
fitness function but also needs to know what the favorite cluster of component is 
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customer wants. From the past experiment data we discover that the components’ 
association rules can help us understand the customer’s favorite cluster or component 
network. In the next section we want to discuss how to understand what is customer 
wants and how to create a chance from history data’s structural information for him. 

2.2   How to Create the Chance 

Ohsawa and McBurney (2003) analyzed the contexts to define the high frequency 
term and mimed the relationship between the terms and then to build the associating 
graph. Finally, according to the important terms and associational terms they 
discovered the important weak key. Thus, these terms were as the chance. Watts 
(2003) proposed bipartite network which was built by multi-identity networks, their 
relationship were very complex. For example, Watts described the relationship 
between the actors and movies as shown in Fig.1. After collecting the data, according 
to the data, Watts built the component affiliation network (as the terms and 
connection by Ohsawa and McBurney defined) and let assembling like the cluster 
group network. The network could emerge new chance or creative chance by change 
the original structure of cluster group network. It means that bipartite network could 
depend on the overlap cluster network to expand the component network. It means 
had more flexibility to expand the network for creating the chance too. 

The previous discussion indicates that a customer had his favorite components’ 
cluster; hence the system collected the interactive data, and then passed through the 
associative analyzing we can sketch out the favorite component cluster and associat-
ing pattern. After the analysis the triad closure method is used to expand the linking 
structure and assemble the new product. In this step, we expect that the component 
network is as the affiliation network; therefore, the product is assembled by some 
components which structure is as the bipartite network. Finally, according to the 
component affiliation network and bipartite network build the overlap network. For 
this reason, we have two kind triad closure processes at least: one is expanding on 
component network and the other is expanding on overlap network. 

From the previous discussion, we think that these methods depended on the net-
work’s structural information to discover the chance. However, we use the graph theory 
to recognize the interactive data in designing process, and analyze the structural infor-
mation from the characteristic network, which may result in discovering the creative 
chance. 

 

Fig. 1. Affiliation network 
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3   BiGIGA Model - Chance Creating 

In this paper our application was what kind of cell phone is customer wanted. There-
fore, we used VFT (value-focused thinking) (Keeney, 1992) and brainstorm to define 
the objective, meaningful and context space. We implemented three brainstorm meet-
ings and every brainstorm meetings includes twenty people attended. The result of 
brainstorm by VFT is shown on the Table 1 (cell phone’s chromosome). The total 
designing space of cellular phone was 16384 (26×22×22×22×22). 

Table 1. The cellular phone’s chromosome design 

Faceplate Headset screen function-key number-key 
1..64 1..4 1..4 1..4 1..4 

 

Fig. 2. System architecture 

Our system as shown in Fig.2, the agent collected the interactive data and then to 
analyze what components and links can be accepted by customer; then according to 
the accepted data to discover the objective network and to construct customer’s value 
network. Therefore, the strong ties components is used to building the component 
network and the strong ties product is used to building the bipartite network. Finally, 
the triad closure method is used to extend the component network and overlap net-
work for discovering weak ties components (assemble the creative product). 

Weak Ties Mining Architecture 
As shown in Fig.3 the system generated six products requested the customer to evalu-
ate what product is wanted. After evaluation the system would collect interactive data 
as presented on table2. 

3.1   High Score Key 

We defined the columns and rows on the table2 as the sentence, the high score com-
ponent that was higher than the threshold value would be selected, relatively, the low 
score component that was lower than the threshold value would be removed. The high 
score component was defined by Eq.1 
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Fig. 3. The interface of BiGIGA 

Table 2. Experimental results 

 Face. hand. screen fun. num. score 
1 6 6 6 6 6 9 
2 2 2 2 2 2 7 

… 

5 7 7 7 7 7 8 
6 5 5 5 5 5 3 
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Cc was the score given by the customer for c component, Tc was the appearing time of 
c component, and p was the population size. 

Here, according to the set of high score key a (strong ties) to execute the crossover 
process as shown in Fig.4. 

 

 

Fig. 4 a. The set of high score key and change each other, b. Mapping to the product 

3.2   Discover the Weak Ties as the Chance on Component’s Network 

According to the interactive data, we can know the relationship between components 
and the important key key (a) (by Eq.2). Here we added an environmental constraint: 
only to count that in the same cluster’s link. It using Eq.1 and Eq.2 to sketch out the 
KeyGraph (the strong component not only is the important keys, but also is the high 
score key) (as shown in Fig.5). It uses Eq.2, the components which are the weak com-
ponents (not that high score components, but that the important components). The 
solid line represents the strong link (same cluster), and the dotted lines are the weak 
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link (different cluster) (as defined by Eq.3). These weak ties components and weak 
ties links’ components are as the bridge (chance) which can guide the old network to 
the new creative network. 
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The s is the sentence, the g is the cluster, D is the sentence, also is the article, the G is 
the all clusters. 

 

Fig. 5. Component’s value network 

After the previous procedures, using triad closure method to extend the component 
network (from dotted to solid), and the operation is shown in Fig.6. 

 

 

Fig. 6 a. The triad closure method, b. Mapping to the product 

3.3   Discover the Weak Ties as the Chance on Product Network 

After analyzing the important and weak components, in this section we want to un-
derstand how to assemble each other. 
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The a is the set of components, the pi and the pj are the part i and part j, and n is the 
number of selected components. It depended on the distance (link’s weight) to sepa-
rate it to the strong link or weak link. Of course, the link crossover was that we want 
changed to assemble the potential products (as shown in Fig.7). 
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Fig. 7 a. Triad closure method to extend the product network, b. Mapping to the product 

3.4   The Crossover Processing - Chance Creating 

The a is the weak ties components and weak ties links’ components, the b is all the 
high score component set and b’ is the partial of b. 

tt baCrossover '+=  (4) 

However, the partial of b is replaced by a to make a creative product a+b’, that is as 
the chance creating operation.  

In this operation, it includes the strong ties crossover that strong ties components or 
strong links replaced each other and the weak ties crossover that weak ties compo-
nents replace the strong ties components or the weak links replaced the strong links. 
These mechanisms are not like the IGA (depends on the strong ties crossover) have a 
little chance for mutation (the strong components replaced by weak ties components) 
and less triad closure expanding method creates the chance. 

3.5   Mutation 

In VFT process we could easily get the customers’ fundamental objectives, meaning-
ful and context space. Then, according to different requirements we design the value 
network and lock some favorite components and links’ structure what customer 
wants. Beside this, the mutation is very important process that it could generate the 
diversity of components or links in the evolutionary process. It will be a chance for 
searching his favorite component network and value network (as shown in Fig. 8).  

 

Fig. 8. Mutating operation 
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4   Experimental Design 

The purpose of this experiment was that recombined the weak ties and bipartite net-
work with IEC to guide the customer design his favorite product. First, we had sur-
veyed the cellular-phone’s market and implemented three brainstorm meetings to 
design the customer’s value network and the context of the cellular-phone. The cellu-
lar-phone was assembled by five parts as the faceplate, handset, screen, function-key 
and number-key. In our experiment, the faceplate had four types and each type had 
sixteen levels, the handset had four levels, the screen had four levels, the function-key 
had four levels and the number-key had four levels. The design of parameters of IGA 
and BiGIGA were shown on Table 3. 

Table 3. Parameter’s setting 

 IGA BiGIGA 
coding binary binary 

selection method elitism elitism 
population size 6 6 

crossover method one-point Lateral transmitting (near) 
crossover rate 0.8 × 

mutation method one-point lateral transmitting (far) 
mutation rate 0.01 × 

Twenty-two samples were drawn from the professors and colleges of university in 
north Taiwan. After the experiment, we had celebrated some tests to evidence the 
BiGIGA had the creative ability better than the IGA. 

5   Case Study 

5.1   The Variation of Prefer Components 

In order to compared the variation of prefer components between the IGA and the 
BiGIGA, we defined the Eq.5 for calculating the entropy, to investigate the variation 
of prefer components. 

component_total

component_appeared
entropy =

 
(5) 

The appeared_compponent is customer prefer components. 
The results of analysis data are shown in Fig. 9, it has two significant cases, 4 (case 

1) and 16 (case 2). 

 

Fig. 9. Entropy rate analysis 
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5.2   Case 1 –Customer Who Had No Lateral Transformation 

In the case 1, the analysis result is shown in Fig. 10. At g=1 all products were gener-
ated by random. At g=3 for IGA, the strong ties components dominated the evolution-
ary and as a result of the customer can quickly found his prefer product, but for 
BiGIGA its natural mechanism must mix the strong ties and weak ties on searching 
processes to help customer design, therefore, after the Wilcoxon matched-pairs 
signed-ranks test (the IGA was 0.05 and the BiGIGA was 0.10), the result indicated 
that if the customer really knew what he wants BiGIGA model would work as same 
as the IGA or little worse than IGA. 

BiGIGA(g=1) BiGIGA(g=2) BiGIGA(g=3) BiGIGA(g=4) 

    
IGA(g=1) IGA(g=2) IGA(g=3)  

   

 

Fig. 10. Case 1 

5.3   Case 2 –Consumer Who Had Lateral Transformation 

At g=1, BiGIGA lacked enough data to build the product network. At g=2, BiGIGA 
found some good products and obviously built the product network. After g=2, the 
BiGIGA brought the lateral transmission and influenced the customer’s value struc-
ture. The valid data quickly decreased it brought the broken product network; the 
graph was as the Small World on critical state. The weak ties components as the 
short-cut on Small World, at g=4, the high density product network was built. After 
the Wilcoxon matched-pairs signed-ranks test (IGA is 0.0017, BiGIGA is 0.09), 
which means that the BiGIGA’s components’ variation was higher than the IGA. 
From Fig.11 BiGIGA, we clearly observed that the customer was influenced by weak 
components and shifted his favorite to other cluster for creating innovation. And then, 
the new components’ cluster would supply for customer to continue his design, 
enlarging the entropy. When the valid products were enough to build the product 
network, the strong link connected with strong components for assembling the strong 
products. The IGA depend on the crossover and mutation to assemble the favorite 
product (time consuming as a result of lack chance to change), relatively, the BiGIGA 
has three kinds weak ties mechanism that owns big chance to change. It evidenced our 
bipartite graph could response the lateral transmission and according to the short-cut 
quickly discovered the favorite product. 
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BiGIGA(g=1) BiGIGA(g=2) BiGIGA(g=3) BiGIGA(g=4) BiGIGA(g=5) 

     
IGA(g=1) IGA(g=2) IGA(g=3) IGA(g=4) IGA(g=5) 

     
IGA(g=6) IGA(g=7) IGA(g=8) IGA(g=9)  

    

 

Fig. 11. Case 2 

6   Conclusions 

In this study, we developed a creative designing system and it supplied three kinds of 
weak ties to extend the complexity of network for emerging the chance and helped the 
customer to design his favorite product. In addition, the BiGIGA is not as same as the 
IGA, which not only depends on the nature selection (strong ties), but also depends on 
the weak ties that can keep the diverse evolution. Such the mechanism may signifi-
cantly decrease the customer’s fatigue problem. The experimental results also indicate 
that the BiGIGA not only to calculate the component’s weight, but also relied on the 
bipartite network to expand the weak ties for increasing the diversity. Such the 
mechanism can quickly expand the useful network and discover the favorite product 
for the customer (average times: IGA is 10, BiGIGA is 6.31). Beside this we investi-
gated the graph, when the graph became more complex and the diameter of cluster 
quickly decreased and become a Small World. In the Small World environment the 
customer could easily design diverse products and discover the product that he 
wanted. This is a very interesting weak ties phenomenon. 
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Abstract. Traditionally, product design problem is usually solved by
means of the conjoint analysis methods. However, the conjoint analysis
methods suffer from evaluation fatigue. An interactive evolutionary com-
putation (IEC) framework for product design has been thus proposed in
this paper. The prediction module taking care of evaluation fatigue is
the main part of this framework. In addition, since the evaluation func-
tion of product design is an additive utility function, designing operators
which heavily utilizes the prediction results becomes possible. The on-
chance operator is thus defined in this paper as well. The experimental
results indicated the on-chance operator can speed up IEC and improve
the quality of solution at the same time.

1 Introduction

Product design is one of the most important tasks of product development pro-
cess [1]. Traditionally, in product design phase, a product is represented by a
vector of attributes referring to customer needs and product specifications (for
example, appearance, price, functionality and so forth). Moreover, each attribute
includes several different alternatives named as attribute levels. Given a vector
of attributes, conjoint analysis [2][3], which is an interactive and structural tech-
nique, is the most common used approach to determine the optimal product.
However, as proven in [4], product design is a combinatorial optimization prob-
lem and hence NP-hard. Once the number of attributes or levels is very large, the
interactive process of conjoint analysis becomes infeasible because of evaluation
fatigue. Various approaches have therefore been proposed for solving product
design problems with large amounts of attributes or levels, including adaptive
conjoint analysis [5] and polyhedral adaptive conjoint [6]. In this paper, we pro-
pose an interaction evolutionary computation (IEC) framework to address the
product design problem since IEC is a powerful tool for identifying the user
preference [7].

Although being capable of identifying the user preference, IEC suffers from
evaluation/ human fatigue as well. Therefore, the canonical IEC is intuitively

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 565–574, 2006.
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insufficient for addressing the product design problem. In other words, the IEC
approach for product design will work out only if the human fatigue problem of
IEC is appropriately addressed. A prediction module, which learns user evalua-
tion patterns for predicting fitness values of succeeding individuals, is thus incor-
porated into our IEC framework for product design. Moreover, due to the eval-
uation criterion for product design has an additive functional structure, which
is actually a utility function found in utility theory [8] , the learning results can
be further used to design genetic operators for accelerating the searching pro-
cess. As a result, we propose an IEC with prediction module framework and a
specific genetic operator named as on-chance operator, which is different from
the traditional by-chance genetic operators, for product design in this paper.

The rest of the paper is organized as follows. Section 2 begins with giving
the formal definition of the product design problem. IEC framework for product
design, which incorporates with a prediction module, is then presented. The idea
of on-chance operator is also introduced in this section. Section 3 illustrates our
experimental design first. Actually, we implemented an IEC without prediction
for comparison. Then experimental results are shown in this section and followed
by a discussion on results. The final section presents the conclusion and outlines
our future work.

2 The Problem and the IEC Framework

2.1 The Product Design Problem

As mentioned earlier, the conjoint analysis model is the most common approach
to address the product design problem. The problem will be formulated as a com-
binatorial optimization problem under conjoint analysis model. In other words,
a product is considered to be a vector of k relevant attributes. And further,
each attribute ai(i = 1, 2, · · · , k) has si different attribute levels, li1, · · · , lisi

, for
instance. The product design problem therefore becomes a problem of searching
the optimal combination of attribute levels to satisfy the user preference. As-
sume P is the set of all possible product profiles (a product profile is an arbitrary
combination of attribute levels):

P = {a1a2 · · · ak|ai ∈ {li1, li2, · · · , lisi
}} (1)

and F (p) is the user preference or evaluation function:

F (p) = the score that the user gave to p,∀p ∈ P, (2)

then searching the optimal product profiles will be equivalent to determine ∃p∗ ∈
P such that F (p∗) ≥ F (p),∀p ∈ P and p �= p∗.

Based on equations 1 and 2, product design is extremely easy if the number
of possible profiles is small enough. However, the real world applications usually
have so many attributes or levels that evaluating all possible profiles is infeasi-
ble. Conjoint analysis model therefore assumes that the evaluation function is a
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utility function, which is a linear combination of part-worth utility value of each
attribute level:

F (p) =
k∑

i=1

wi · U(ai) (3)

where p is a specific profile whose ingredients are a1, a2, · · · ak, and ai equals to
one of its attribute levels li1, · · · , lisi

; U(ai) is the utility function of ai. Given lij ,
which is one of the attribute levels of ai, U(ai = lij) will return the part-worth
utility of lij . Eventually, wi is the weighted coefficient of U(ai).

Under the assumption mentioned above, multivariate techniques can be ap-
plied to figure out the optimal product if the user has evaluated sufficient
amounts of product profiles generated by some experimental design techniques,
such as orthogonal arrays [9]. Unfortunately, if the minimal number of product
profiles required to be evaluated for identification of optimal solution is very
large, the evaluation fatigue will be arisen and consequently bias the analytic
results. Other researches mentioned in Section 1, such as adaptive conjoint and
polyhedral adaptive conjoint, had tried to decrease the number of evaluation
needed for getting the optimal solution. But as we know, none of researches ad-
dressed this problem by using IEC approach. That motivated us to propose an
IEC framework for product design in this paper. However, dealing with human
fatigue is the most important issue for this framework.

2.2 The IEC Framework

Incorporating strategies to deal with human fatigue is inevitable to our IEC
framework for product design. Takagi, in his IEC survey [7], listed several strate-
gies for easing user burden to conquer the human fatigue problem of IEC. Re-
cently, Saez et. al, proposed a class of IEC framework, which named as Fit-
ness Predictive Genetic Algorithm (FPGA), to address human fatigue prob-
lem [10][11]. Llorà et. al., proposed a multi-objective approach using support
vector machine (SVM) as the learning method to conquer user fatigue [12]. Both
of them claimed fewer generations are needed than the other methods. However,
if we follow the conjoint analysis model to formulate the product design problem
in our IEC framework, then the strategy of predicting fitness values via learning
user evaluation patterns will be more suitable than the other strategies since
equation 3 precisely defines the target function for learning. Therefore, a pre-
diction module, which learns user evaluation patterns, is incorporated into our
IEC framework in order to reduce user burden.

The learning methods that have been proposed for various IEC applications
were mainly the neural networks (NN) [13][14][15][16]. Nevertheless, no matter
what methods are applied, the user burden will be reduced more or less because
fewer generations will be needed for finding out satisficing solutions [17], which
are good enough solutions for users. In order to learn the utility function defined
by equation 3 from IEC evaluation data, a genetic algorithm (GA) instead of
the commonly used NN was chosen to serve as the core of the prediction module.
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Fig. 1. The system architecture of our IEC framework

Easier implementation is the main reason for choosing GA. Fig. 1 illustrates the
system architecture of our IEC framework for product design.

Two primary modules, including an IEC module and a prediction module,
are sketched in Fig. 1. The IEC module is responsible for interacting with the
user generation by generation and eventually evolving satisficing solutions for
the user. However, evaluation data will be fitted into the prediction module for
learning user evaluation patterns. More importantly, an on-chance operator is
defined according to the feedback from the prediction module. The on-chance
operator is a deterministic operator, which replaces bad genes, or bad attribute
levels equivalently, with better ones. The offsprings generated by the on-chance
operator will be combined with other offsprings produced by canonical genetic
operators to form the next generation. The details concerning the on-chance
operator will be explained in the Section 2.3.

The prediction module is actually a GA predictor. The evaluation data col-
lected by the IEC module will serve as the training data for the GA predictor.
The chromosome of the GA predictor is an array of the prediction values of all
attribute levels. For example, if a product consists of k relevant attributes and
each attribute ai has si attribute levels, then the chromosome will be an array
shown in Fig. 2.

In Fig. 2, all k attributes from a1 to ak are included in this array. Moreover,
each element of the array represents the prediction utility value of the corre-

Fig. 2. The chromosome of the GA predictor
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sponding attribute level. As such, the root mean square (RMS) error function is
an intuitive way to compute the fitness value of specific chromosome. The fitness
function of the GA predictor is thus defined as follows:

F (c) =

√∑n
i=1(ûi − ui)2

n
(4)

where c is a chromosome, n is the number of training data, ui is the utility value
of ith training example, which is actually the score given by user and ûi is the
utility value of ith training example predicting by the chromosome c.

The GA predictor will minimize the RMS error as much as possible and
generate a utility prediction function for feeding back to IEC module. As a
result, this function can be utilized to evaluate the succeeding individuals as
well as to design the on-chance operator.

2.3 The On-Chance Operator

The genetic algorithm uses random choice as a tool to guide the searching pro-
cess [18, page 5]. Such a guided random search works fine if execution time or
evolving generations is unlimited. However, random choice sometimes is unsuit-
able for IEC since IEC is strongly constrained by execution time. Therefore, if a
searching direction is determined by the prediction function, evolving individuals
along with this direction is an approach worthy to be considered.

The prediction module mentioned in Section 2.2 will identify a utility predic-
tion function after each generation of IEC. Using this prediction function, the
optimal product profile is easy to find because the additive structure of utility
function. In other words, the product profile consisting of attribute levels with
highest prediction values will be the optimal solution if the prediction function
is correct. Therefore, we define an on-chance operator which heavily utilizes the
prediction results for evolution of the IEC population.

The on-chance operator manipulates chromosomes by the following ways:

1. Gradient ascent. Replacing the bad genes, which are attribute levels with
lowest prediction utility values, by the best ones.

2. Emergence. Replacing the bad genes by the attribute levels which never
appear before or appear fewer times than the others. The prediction val-
ues of attribute levels that never appear before are obviously error-prone.
Moreover, experimental design techniques, such as orthogonal arrays, usually
suggest that each attribute level should appear equally for estimating utility
values correctly. The reason to emerge such attribute levels is therefore all
concerning the prediction correctness.

3. Elitism. The optimal product profile predicted by the prediction function
will be chosen directly into the next generation.

As a result, both the on-chance operator and the canonical genetic operators,
which are typically by chance, are used to evolve the population of IEC.
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3 Experiments and Discussion

3.1 Experimental Design

Two systems, including a canonical IEC (cIEC) and the IEC framework (IECoc,
oc stands for on-chance) presented in Section 2.2, have been implemented for
comparison. The main issues are the efficiency and the quality of solution. More-
over, we have tried various combinations of the on-chance operator and canonical
genetic operators to investigate how the on-chance operator impacts on the evo-
lution of IEC.

A cellular phone design application is selected for investigation. More pre-
cisely, a cellular phone consists of five different attributes in this research. The
attributes includes appearance, display, numerical keypad, receiver and control
button. The appearance attribute has 19 different attribute levels and the others
have 4 attribute levels respectively. Fig. 3 illustrates all these 35 attribute levels.

Some important attributes of a real world product design application (such
as price, for instance) are missing in the specification listed above. However, the
combinatorial nature is preserved in this test application.

The population size of both cIEC and IECoc were 9. Two-way deterministic
tournament selection was used for both IEC systems. cIEC adopted single point
crossover and mutation with probabilities 80% and 0.6% respectively. Ten-point
scale was used for users to evaluate each candidate cellular phone. If the user
gave any one cellular phone 10 points, cIEC or IECoc would terminate. Then
the cellular phone getting 10 points would be the final solution. Fig. 4 shows the
interface of the IECoc.

A series of Monte Carlo simulations had been running to determine the pa-
rameter settings of the GA predictor mentioned earlier. The parameter settings
are listed in Table 1.

Eventually, the laboratory experiment was used to evaluate the performance.
Dozens of subjects were invited to manipulate IEC systems to identify their most

Fig. 3. The cellular phone design application. Five attributes, including appearance,
display, numerical keypad, receiver and control button are used in this application. The
appearance has 19 attribute levels and the others have 4 attribute levels respectively.
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Fig. 4. The user interface of IECoc

Table 1. The parameter settings of the GA predictor

population size = 20
crossover rate = 0.95
mutation rate = 0.14
number of generations = 500 or 80% of individuals dominated by elitist

favorite cell phones. The subjects were randomly divided into several groups and
were requested to operate one of the systems.

3.2 Experimental Results and Discussion

To understand the impact of the on-chance operator, several individuals of cur-
rent generation, from 1 to 4, were selected and manipulated by the on-chance
operator. The remaining individuals were manipulated as usual. We called these
4 different combinations of the on-chance operator with canonical genetic op-
erators as IECoc−1, IECoc−2, IECoc−3, and IECoc−4 respectively. IECoc−1

randomly selected one individual from current population and replaced it with
the optimal product profile predicted by the GA predictor. Except the elitism,
IECoc−2, IECoc−3 and IECoc−4 further replaced individuals based on the other
rules: the gradient ascent and emergence mentioned in Section 2.3. However, the
emergence rule had higher priority.

The number of generation and the execution time. The average numbers
of generation needed by five different IEC systems are listed in Table 2. However,
because each system was only manipulated by 5 subjects, Mann-Whitney test,
which is a non-parametric test procedure was used to investigate the significance
of experimental results. As a result, the data listed in Table 3 are yielded by the
test procedure.

In Table 3, the average numbers of generation of IECoc−1 and IECoc−4 are
both significant fewer than cIEC. The other two versions of IECoc need less
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Table 2. The number of generation needed by IEC systems

cIEC IECoc−1 IECoc−2 IECoc−3 IECoc−4

average number of generation 11.4 6.2 8.2 8.2 6.8

Table 3. Mann-Whitney test results for number of generations executed by several
IEC systems. z is the observed z value of the standard normal distribution. Then p is
the proportion of the normal distribution falling to the right of the z value. Therefore,
if p is less than 0.05 or even 0.01,then the result is significant.

IECoc−1 IECoc−2 IECoc−3 IECoc−4

z p z p z p z p

cIEC 2.09 0.0183 1.46 0.0721 1.46 0.0721 2.09 0.0183
IECoc−1 – -1.15 0.1251 -0.94 0.1736 -0.52 0.3015
IECoc−2 – – 0.1 0.4602 0.94 0.1736
IECoc−3 – – – 0.52 0.3015

Table 4. Mann-Whitney test results of satisfaction investigation for cIEC and various
IECoc

IECoc−1 IECoc−2 IECoc−3 IECoc−4

z p z p z p z p

cIEC -4.71 <.0001 -4.79 <.0001 -4.95 <.0001 -4.39 <.0001
IECoc−1 – -1.37 0.0853 -1.4 0.0808 1.12 0.1314
IECoc−2 – – 0.0 0.5 2.74 0.0031
IECoc−3 – – – 2.47 0.0068

generations than cIEC too, though the results are not significant. Therefore,
IECoc is no doubt faster than cIEC for the most cases. That implies the on-
chance operator speeds up the convergence of IEC.

Satisfaction investigation. After manipulating the IEC systems, each subject
was further asked to fill in a questionnaire which included topics related to the
appearance, functionalities and desire to purchase of the derived cell phones.
The other questionnaire containing questions on innovation and correctness was
also necessary to fill. Five-point scale, with 1=”very good” and 5=”very bad”
was used for both questionnaires. Table 4 lists the statistical test results.

All four versions of IECoc significantly outperform cIEC in the satisfaction
investigation. Recall from Table 3, IECoc needs fewer generations than cIEC for
finding out solution, we can claim the on-chance operator can accelerate the con-
vergence of IEC and improve the quality of solution as well. However, it is worth
to note that IECoc−2 or IECoc−3 seems outperforming the other two versions.

Comparison of IECoc with other algorithms for product design. The
orthogonal array technique is one of the most important methods to design prod-
uct profiles for evaluation. However, a minimal design is very difficult to find for a
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complicated product whose attributes or attribute levels are plenty. We can just
estimate the number of profiles needed to evaluate for our cellular phone design
application from the literature. As a result, no more than 80 product profiles
will be needed for our design application, since a minimal design for a problem
with 5 attributes and their attribute levels are 20, 8, 8, 8 and 8, respectively,
whose problem size is larger than ours, actually need only 80 profiles [9]. In other
words, if the population size of IEC is 9, then 9 generations are the upper bound
for finding final solutions. Fortunately, IECoc almost needs 6 to 8 generations
to find out solutions according to the experimental results listed in Table 2.

However, new algorithms for product design presented recently, especially the
fast polyhedra conjoint, are more effective than the orthogonal array technique.
For instance, the fast polyhedra conjoint [6], which is a branch-and-bound tech-
nique, can solve our cellular phone design application only by evaluating 35
product profiles (35 is the number of total attribute levels), which is equivalent
to 4 generations.

Nevertheless, the IEC approach for product design still has some advantages
over algorithms using conjoint model. The learning capability is one of the ad-
vantages. Conjoint model assumes the attributes are mutually independent. If
attributes are not mutual independent, that is the problem is a non-linear prob-
lem, then the profiles needed to evaluate will increase tremendously. However,
learning methods such as neural networks and genetic programming can handle
the non-linearity easily.

4 Conclusions and Future Work

We have proposed an IEC framework with a GA prediction module for prod-
uct design. Since using conjoint analysis model to formulate the product design
problem, the prediction module can be further utilized. As a result, we have
designed an on-chance operator which deterministically manipulates the chro-
mosome according to the prediction results. Experimental results indicated the
on-chance operator could speed up the canonical IEC and improve the quality
of solution at the same time. This result is promising.

However, as a tool for product design, our IEC framework still needs to im-
prove because the performance is worse than some recently developed algorithms,
such as fast polyhedra conjoint. Therefore, how to accelerate IEC further by
utilizing the on-chance operator is our short-term goal. Besides, applying other
learning methods which can handle the non-linearity among attributes is another
research direction.
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12. Llorà, X., Sastry, K., Goldberg, D., Gupta, A., Lakshmi, L.: Combating user fatigue
in igas: Partial ordering, support vector machines, and synthetic fitness. In: ACM
Genetic and Evolutionary Computation Conference (GECCO 2005), ACM press
(2005) 1363–1371

13. Biles, J.A., Anderson, P.G., Loggi, L.W.: Neural network fitness functions for a mu-
sical iga. In: International ICSC Symposium on Intelligent Industrial Automation
and Soft Computing. (1996)

14. Burton, A., Vladimirova, T.: Genetic algorithm utilising neural network fitness
evaluation for musical composition. In G.D. Smith, N.S., Albrecht, R., eds.: Pro-
ceedings of the 1997 International Conference on Artificial Neural Networks and
Genetic Algorithms. (1997) 220–224

15. Johanson, B., Poli, R.: GP-music: An interactive genetic programming system for
music generation with automated fitness raters. In: Genetic Programming 1998:
Proceedings of the Third Annual Conference, Morgan Kaufmann (1998) 181–186

16. Dozier, G.V.: Evolving robot behavior via interactive evolutionary computation:
from real-world to simulation. In: Proceedings of the 2001 ACM Symposium on
Applied Computing (SAC). (2001) 340–344

17. Simon, H.A.: The New Science of Management Decision. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1977)

18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization&Machine Learning.
Addison Wesley (1989)



F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 575 – 585, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Practically Applying Interactive Genetic Algorithms to 
Customers’ Designs on a Customizable C2C Framework: 

Entrusting Select Operations to IGA Users  

Fang-Cheng Hsu
1
 and Ming-Hsiang Hung

2
  

1 Department of Information Management, Aletheia University 
http://fanechi.myweb.hinet.net/ 

fanechi@email.au.edu.tw 
2 Graduate School of Management Science, Aletheia University  

s1788124@email.au.edu.tw 

Abstract. We propose a customizable C2C (customer to customer) framework 
to fully utilize interactive genetic algorithms (IGA) and to discover the potential 
capabilities of IGAs in customer designs. Traditionally, IGA users assign 
fitness to each chromosome. No matter the rating or ranking of the assignments, 
the traditional methods were unnatural, especially when IGAs were applied to 
customers’ designs. In this study, we find that allowing IGA users to directly 
select chromosomes into the mating pool according to their hidden fitness 
function(s) is not only a natural way to implement the select operations of IGA, 
but is also more effective. We call the model where parts of select operations 
are manipulated by users, the SIGA model. Preventing fatigue, however, is the 
most important challenge in IGA. The OIGA (Over-sampling IGA) model has 
been extremely effective at decreasing user fatigue. To verify the performance 
of the proposed SIGA, we conduct a case study and use the OIGA model as a 
benchmark. The results of the case study show that the proposed SIGA model is 
significantly more effective than the IOGA model. 

1   Introduction 

Fulfilling customers’ true needs is essential in marketing. In the current “manufac- 
turers-stores-buyers” commerce framework, buyers must go to stores or shopping 
malls to choose the products that satisfy their wants. Customers usually spend 
significant amounts of time looking for their favorite products in the stores, but the 
items they actually get do not always meet their needs. 

In traditional manufacturer-centered designs, market researchers are sent to 
discover customers’ needs. Manufacturers design new products based on researchers’ 
reports. No matter how many “unmet needs” are reported, the manufacturers decide 
which ideas to develop and assign them to project development teams. Transferring 
the customers’ needs and wants this way might result in biased information and cause 
the product designers to create unneeded products. Furthermore, this can result in 
producing low-demand products. 
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To reduce misunderstandings, manufacturers are investigating the concept of user-
centered designs, or customers’ designs. Most modern user-centered approaches are 
where “customers interactively design with manufacturers”, and are applicable to 
B2C (business-to-consumer) and B2B (business-to-business) e-commerce.  

The “customers interactively design with manufacturers” strategy is not suitable 
for personalization, however, and might not be appropriate in a quickly changing 
environment. A more accurate method of meeting customers’ needs is to allow them 
to design products completely by themselves and make the products accordingly. 
Executing this complete customers’ designs concept on B2C or B2B e-commerce is 
impractical, except for manufacturers that are well equipped with enormous adaptable 
and efficient manufacturing processes for various products. 

One special feature of C2C (customer to customer) e-commerce is that the buyer’s 
needs are quickly transmitted to an enormous number of individual sellers. This 
feature makes C2C e-commerce an attractive candidate for developing a framework to 
accomplish the goal of complete customer design. 

In this paper, we propose an Interactive Genetic Algorithms (IGA) based 
framework to accomplish complete customers’ designs on a customizable C2C e-
commerce platform. The framework supports customers (buyers) designing products 
by themselves with IGA-based toolkits equipped by the C2C market provider, i.e. 
intermediaries of C2C e-commerce, and the products are provided by other customers 
(sellers) according to their designs. Critical to the framework’s success is whether 
customers accept the IGA-based toolkits. So far, researchers have found evidence 
supporting the hypothesis that using IGA can create satisfying products within a large 
alternative space, but the user fatigue problem in IGA still requires a solution [1]. 

This study not only focuses on providing practical IGA-based toolkits for a 
customizable C2C framework, but also on assuring that the toolkits is used naturally 
and reduces fatigue suffered on the customizable C2C framework. We propose a 
manipulated IGA-based toolkit, and by entrusting select operations of IGA to 
customers, ensure that the toolkit is practical. To verify the performance of the 
proposed strategy, we conduct a case study on mineral water bottle design and 
analyze the differences between the proposed model and a benchmark model.  

2   Background 

2.1   Manufacturer-Centered Designs and User-Centered Designs 

Although Internet stores have provided customers with convenient shopping 
alternatives and have significantly shortened the shopping cycle, what customers 
actually get through these stores (shopping malls/Internet stores) does not always 
meet their needs. An industry’s product designers are talented in designing impressive 
products, but products should not just be impressive. They should meet customers’ 
needs and wants.  

To overcome the previously mentioned drawbacks, researchers proposed the 
concept of user-centered designs, or customers’ designs. We discovered that many 
companies have abandoned their efforts to understand exactly what products their 
customers want and have instead equipped them with tools to design and develop 
their own products. The user-centered design models should be equipped with a set of 
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facilitating toolkits in order for customers to interact with the system. One practicable 
user-centered design system refers to “customer innovation” [2], [3] and is well 
known by industries. The conjoint analysis-based approaches [4], [5], [6] are also 
available for implementing user-centered design systems.  

In most cases, the customers’ designs are handled as a sub-process of product 
development. The product profiles designed by the customers are sent back to the manu- 
facturers for analysis in order to develop new products that satisfy both the customers’ 
wants and the manufacturers’ profit requirements. In other cases, the manufacturers 
embed cost information in toolkits and use the cost information as constraints when 
customers use the toolkits to design their products. This “customers interactively design 
with manufacturers” strategy is applicable to B2C and B2B e-commerce, but might not 
be able to survive personalization requirements and a quickly changing environment. 

A better method of meeting customers’ needs is allowing them to design product 
profiles completely by themselves and making the products accordingly. A new C2C 
e-commerce framework can be created if C2C market providers could equip C2C 
buyers with a set of design toolkits that allow them to transfer their wants into product 
profiles while allowing numerous individual sellers on the web to negotiate with the 
buyers for an acceptable price. 

2.2   Manipulated Fitness Assignment of Interactive Genetic Algorithms 

Genetic algorithms (GA) need a fitness measurement for each individual chromosome 
in every generation in order to guide the evolution. Therefore, we must carefully 
design a pertinent fitness function and use it to generate the fitness. We can apply 
IGA to solve problems that have difficulties with designing a fitness function. In this 
case, the user serves as a fitness function and assigns fitness to the chromosomes. 
Designing an IGA fitness assignment method is an interesting future research topic. 
Conventional fitness assignment strategy asks users to assign fitness to every 
individual chromosome of the population, known as the rating all strategy [7]. Other 
assignment strategies, such as the bias strategy, the picking some up strategy [8], and 
the distance-based bias strategy [9] have also addressed the need to improve the 
performance of IGA.  

Assigning fitness during evolutions places a heavy load on IGA users during the 
interaction activities. This results in the primary fatigue problem in IGA. Although 
many IGA-based systems have been proposed for real world cases, the fatigue 
problem still needs to be solved. 

The select operations in GA are divided into three parts:  

1. Calculating the fitness of each chromosome according to a pre-designed fitness 
function. 

2. Deciding which chromosomes should be selected into the mating pool according to 
their fitness.  

3. Selecting pairs of chromosomes for crossover and/or selecting a chromosome for 
mutation. 

In GA, a computer executes all three parts. In conventional IGA, a human does the 
first part, while a computer executes the other two parts. Are there any strategies, 
however, to manipulate the other two parts of the select operations to improve IGA 
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performance? In this study, we propose a manipulated selection interactive genetic 
algorithm (SIGA), where humans do the first and second parts of the select opera- 
tions, while a computer executes the third part.  

3   Research Framework and Models 

3.1   The Customizable C2C E-Commerce Framework 

In the traditional “manufacturers/stores/Internet stores-buyers” framework, three 
implicit assumptions are recognized: (1) Manufacturers well understand customers’ 
needs or wants, (2) buyers well know their preferences, and (3) the products in 
shopping malls or Internet stores are enough to satisfy all buyers’ wants. The facts 
show that customers at traditional shopping malls usually spend a large amount of 
time looking for their wants, but few of these wants are ultimately satisfied. 
Therefore, a customizable C2C e-commerce framework (Fig. 1) is proposed to give 
unsatisfied customers another option to fulfill their needs or wants.  

 

Fig. 1. The customizable C2C e-commerce framework 

The product profile in the framework is defined as follows: A product P is 
composed of n attributes (P = (al, a2, . . ., an)). If attribute ai has li attribute levels, then 
the size of the product space, denoted by S, is equal to l1 x l2 . . . x ln. The buyers can 
design their ideal products’ profiles within S. 

The framework includes: (1) many individual buyers, including professional 
designers, (2) an intermediary (like e-Bay) or a market provider, and (3) many 
individual sellers and some home manufacturers. The intermediary is responsible for 
providing a set of customers’ design toolkits. The customers’ design toolkits allow 
customers (buyers) to design many kinds of products by themselves. The intermediary 
is also responsible for providing a product list sub-system and a negotiating sub-
system. The product list sub-system collects and catalogs the products designed by the 
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buyers and announces the product lists on web pages; the negotiating sub-system 
provides potential sellers communication channels with which to advertise the 
designed products and to negotiate prices and delivery dates with buyers (or to bid for 
target products).  

The design toolkits contain an efficient IGA and it is expected that somewhere in 
the world, there will exist at least one seller who has the producing competence to 
fulfill a certain demand. We also can expect that at initial stages of the customizable 
C2C framework, most of the demand might be met by hand, and later with computer-
aided manufacturer systems or other systems.  

3.2   The Benchmark Model: Over-sampling-based IGA (OIGA) 

To improve IGA performance in customer designs, Hsu and Huang [10] proposed a 
customer values-based IGA to solve the fatigue problem. To ensure that the search 
space is a complete union set and is suitable for different customers, they followed 
Keeney's value-focused thinking [11] to build a sufficiently large product space. The 
results of a case study show the model is significantly helpful for improving IGA 
performance in customer designs.  

After that, Hung and Hsu [12] proposed an over-sampling-based IGA (OIGA), 
which not only followed Keeney’s value-focused thinking approach, but also allowed 
IGA users to be involved in generating the first population. Since the over-sampling 
strategy can ensure that a suitable proportion is prepared in the first generation, the 
case study results show that the strategy performs as expected.  

In this study, the OIGA model is used as a benchmark model for comparison with 
the proposed model. The OIGA model procedure is shown below. 

OIGA( ) 

{ 

Build a search space using Keeney's value-focused 
thinking approach. 

Generate a first generation of chromosomes with over-
sampling strategy.  

Do  

{ 

Phenotypes of the chromosomes are shown to the user. 

The user assigns fitness to each chromosome. 

IGA selects chromosomes into the mating pool according 
to the fitness. 

IGA generates new chromosomes of the next generation by 
applying crossover and/or mutation. 

} Continue until the user has found a satisfactory 
chromosome or has reached other ending conditions. 
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3.3   The Proposed Model: Entrusting Select Operations of IGA to Customers 

The IGA fitness assignment processes are time-consuming and tedious, but any 
inaccurate rating causes IGA to select improper chromosomes into the mating pool, 
resulting in user fatigue.  

The actual purpose of the fitness function in GA is to calculate fitness values of the 
chromosomes. Some fit chromosomes are then selected into a mating pool 
accordingly. The real key is determining which chromosomes should be selected into 
the mating pool. 

The fitness function and the fitness value are both methods of selecting chromo- 
somes into the mating pool. Allowing IGA users to directly select fit chromosomes 
into the mating pool, however, is a very natural and effortless method. In other words, 
select operations of IGA do not necessarily require fitness functions and fitness value. 
We should allow IGA users to bypass the fitness assignment processes and let them 
directly select fit chromosomes into the pool according to their hidden fitness 
functions. Therefore, we propose a model that allows users to directly select 
chromosomes from the nth generation into the mating pool to evolve the next generation 
of chromosomes. The proposed model refers to SIGA, which introduces human 
capabilities slightly more than simple IGA. The SIGA procedure is shown below. 

SIGA( ) 

{ 

Build a search space using Keeney's value-focused 
thinking approach. 

Generate a first generation of chromosomes with over-
sampling strategy.  

Do  

{ 

Phenotypes of the chromosomes are shown to the user. 

The user selects k (0<= k <= n, n = population size) 
chromosomes into the mating pool. 

IGA randomly generates (n-k) chromosomes into the pool. 

IGA generates new chromosomes of the next generation by 
applying crossover and/or mutation. 

} Continue until the user has found a satisfactory 
chromosome or has reached other ending conditions. 

4   A Case Study: Designing Water Bottles with SIGA and OIGA 

4.1   The Chromosome Structure of Mineral Water Bottles 

Mineral water bottle design was used as a case study to verify the performance of the 
proposed model. A mineral water bottle has five attributes: cap, neck, label, body, and 
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base; the cap itself has 8 attribute levels, while the other attributes take on 16 attribute 
levels. The size of the solution space (bottles) is 219 (= 23 x 24 x 24 x 24 x 24 = 
524,288). The chromosome structure, genotype, and the phenotype of the encoded 
attribute levels are created by following the value-focused thinking approach. The 
results are shown in Table 1.  

Table 1. The chromosome structure, genotype, and phenotype of the mineral water bottles 

 

 

Fig. 2. The interface of the SIGA system 

4.2   Experimental Designs 

We invited anyone who was interested in customers’ designs to take part in this water 
bottle design experiment. Each subject was asked to design his or her preferred bottle 



582 F.-C. Hsu and M.-H. Hung 

from 524,288 candidate bottles using OIGA and SIGA systems separately. The 
experiment randomly provided OIGA-based and SIGA-based systems. Fig. 2 shows 
the SIGA-based system interface. We recorded 65 valid records at the end of the 
experiment. 

During the experiments, we recorded the number of generations every subject 
actually used in both systems, and set those numbers as the efficiency indexes (Ei-OIGA, 

i=1…65 and Ei-SIGA, i=1…65). At the end of the tests, both on OIGA and SIGA, subjects 
were asked to choose one satisfactory bottle from the chromosomes of the last 
generation, and rated the bottle on a 100-point scale for a satisfaction score. We used 
these scores as the effective indexes (Fi-OIGA, i=1…65 and Fi-SIGA, i=1…65). 

In the experiments, the population size was set to 8, one-point crossover was used, 
one elitist bottle in each generation was preserved in the next generation, the cross- 
over rate and mutation rate were 0.8 and 0.01 respectively, and the over-sampling rate 
was 0.7 [10], [12 ].  

5   Experimental Results 

The results of the efficiency experiments are shown in Fig. 3. They show that no 
matter which system the subjects used, most of them completed their designs within  
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10 generations. The results of the Wilcoxon signed-ranked test on the system’s 
efficiency index are shown in Table 2. The results in Table 2 indicate that the 
efficiency index of OIGA is not significantly different from SIGA (p =0.238). 

Fig. 4  and Table32 show experimental results from the effective test and the 
results of the Wilcoxon signed-ranked test on the effective index. The results indicate 
that SIGA models are more effective than OIGA, and the SIGA’s effective index is 
significantly different from OIGA (p =0.000). 

Table 2. Results of the Wilcoxon Signed-Ranked Test on efficiency index 

 

Table 3. Results of the Wilcoxon Signed-Ranked Test on effective index 

 

6   Concluding Remarks 

In this paper, we propose a customizable C2C framework to fully utilize interactive 
genetic algorithms and to discover the potential capabilities of IGAs in customer 
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designs. The traditional interactive IGA methods are unnatural, especially when IGA is 
applied to customers’ designs. In this study, we found that allowing IGA users to 
directly select chromosomes into the mating pool is not only a natural way to implement 
the select operations of IGA, but also more effective than the traditional method.  

Freeing users from fatigue is the most important challenge in IGA. The OIGA 
(Over-sampling IGA) model has shown its effectiveness at decreasing fatigue. We 
conducted a case study and used the OIGA model as a benchmark. The results show 
that the proposed SIGA model is significantly more effective than the OIGA model. 
This means that users who design their product profiles with the benchmark system 
will achieve the same satisfaction level as with the proposed system, but will use 
more IGA generations. These extra generations will cause user fatigue. In other 
words, the evidence shows that the proposed model performs better than the 
benchmark system in terms of preventing fatigue. 

To create an effective, applicable, and fatigue-free IGA, the interaction between 
humans and computer systems in IGA must be extended. One possible extension is 
allowing humans to directly interact with the genome, the genetic operators, or the 
evolution processes; another possible extension is allowing humans to cooperate with 
computational intelligence by guiding human-assigned fitness accurately or directing 
IGA operations in the chromosome effectively. 
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Abstract. We propose a sequential IGA, multi-objective IGA and parallel 
interactive genetic algorithm (IGA), and evaluate them with a multi-objective 
floor planning task through both simulation and real IGA users. Combining 
human evaluation with an optimization system for engineering design enables 
us to embed domain specific knowledge which is frequently hard to describe, 
subjective criteria and preferences in engineering design. We introduce IGA 
technique to extend previous approaches with sequential single objective GA 
and multi-objective GA. We also introduce parallel IGA newly. Experimental 
results show that (1) the multi-objective IGA and the parallel IGA clearly 
provide better results than the sequential IGA, and (2) the multi-objective IGA 
provides more diverse results and faster convergence for a floor planning task 
although the parallel IGA provides better fitness convergence. 

1   Introduction 

Interactive Evolutionary Computation (IEC) is an EC that optimizes a target system 
based on human subjective evaluation, and the human plays the role of a fitness function 
of conventional EC [1]. When it is applied to fields that include a degree of subjectivity, 
such as engineering design, arts creation, music composition, or architecture, interaction 
with a human evaluator helps the EC to generate solutions that incorporate his/her 
expertise, or intuition without its explicit description into the optimisation platform. 
Interaction between an IEC user and EC can proceed in many ways depending on task 
domain. For instance, the user may participate in choosing elite designs for survival, 
modify an individual and reinsert it into the population of designs, freeze parts of the 
design with the intention of reducing the search space dimensionality besides human 
fitness evaluation in normal IEC. Therefore, Parmee redefined IEC broadly as the 
system optimisation based on human-machine interaction [2].  
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Multi-objective design optimisation is defined as the problem of finding a vector of 
decision variables that optimizes a vector function whose elements represent multiple 
objective functions. The philosophy of multi-objective optimisation comes from the 
need to achieve compromise decision making in a problem of many conflicting 
objectives. In such an environment, the ideal platform would enable us to gather a 
diverse set of solutions, each with their own offering of different levels of objective 
satisfaction, so that a choice of solution or solutions can easily be reached.  

Our previous survey [3] showed that many so-thought quantitatively dominated 
problems, such as engineering design or system design, had (1) multiple conflicting 
objectives and (2) subjective objectives among them. Subjective objectives may act as 
conflicting or complimentary to quantitative objectives and are unpredictable due to 
their nature.  

Recently, the usage of EC techniques in multi-objective optimisation has become 
particularly popular. A multi-objective optimisation problem modelled by EC is 
termed as Evolutionary Multiple-objective Optimisation (EMOO). The particular 
suitability of EC to multi-objective optimisation tasks and their subjectivity aspect 
had made EMOO incorporate IEC to gather subjective opinions of the designer [3]. 
Some researchers followed similar ideas such as gathering objective preferences from 
the designer [4], or asking the designer to pick favourable search area [5], and our 
interactive multi-objective design optimization framework [6] used subjective 
opinions of the designer as an additional objective function with promising results. 

In this paper, we use genetic algorithm (GA) as one of EC techniques and propose 
a new algorithm developed for this framework: the parallel interactive genetic 
algorithm (IGA) that optimises each design objective in separate population islands 
before merging the solutions. The results of the parallel IGA are compared with 
previously proposed two algorithms of the framework, the sequential IGA and the 
multi-objective IGA that is based on the non-dominated sorting genetic algorithm of 
Deb [7]. We propose three IGA's in section 2, explain experimental evaluation task 
and condition in section 3, discuss the experiments in sections 4 and 5, and conclude 
on this comparison of three IGA's with remained future work. 

2   Platforms Developed for Interactive Multi-objective 
Optimisation 

2.1   Sequential IGA 

The sequential IGA acts as a single objective optimisation platform, taking turns to 
optimize the quantitative and qualitative objectives independently.  

A single population is evolved by a sequentially switched fitness function. Initially 
a subjective run is performed with a conventional IGA, meaning that, the user needs 
to evaluate all the individuals of the current population displayed by one design at a 
time, by giving a qualitative rating between 0 and 9, 0 being the best design and 9 
worst. Users are allowed to give the same rating to more than one design. The 
subjective optimization is run by the algorithm by solely taking into account the user 
given rating, which, to the algorithm, acts as a blackbox fitness function. A subjective 
generation is then followed by a given number of quantitative optimisation runs 
where fitness is evaluated by a regular fitness function.  
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This method treats the subjective and quantitative features of the design problem as 
separate objectives to be optimized. For instance, the individuals created from one 
qualitative run are fed into the following quantitative run as parent designs, which 
ensures the starting point of the quantitative run to be subjectively optimized designs. 
This is how the connection between subjective and quantitative criteria is ensured. 

With this algorithm, the authors aimed to represent a typical design cycle in an 
engineering design firm, where the design is thrown over the wall between the 
marketing department, concerned with subjective aspects of the design, and the R&D 
department, concerned with quantitative aspects of the design. Figure 1 shows the 
flow of sequential IGA 

2.2   Multi-objective IGA  

Multi-objective IGA is based on a modified version of a popular multiple objective 
optimisation algorithm, the non-dominated sorting GA 2 by Deb [7].  

The algorithm enhances usual non-domination based multi-objective optimisation 
techniques by introducing the concept of elitism and diversity. Elitism makes sure to 
preserve globally good solutions throughout generations. In the non-dominated 
sorting GA 2, elitism is achieved by combining parent and offspring populations 
before sorting them for non-domination. Non-domination of a solution shows how 
many solutions are better in all criteria from the current solution. The non-dominated 
sorting GA 2 also looks into obtaining as diverse solutions on the Pareto front (the 
solution set, observed when there are conflicting objectives, which contains solutions 
that are non-dominating to each other) as possible, by a performing calculation called, 
crowding distance. Readers may refer to Deb [7] for a detailed description of the 
crowded tournament operator and the overall non-dominated sorting GA 2 procedure.  

We modify the Deb et al.'s GA to include interactive fitness gathering and renamed 
it as the multi-objective IGA in our study. In multi-objective IGA also a single 
population is optimised. The subjective objective value is gathered from the user for a 
single solution, whereas the quantitative fitness of a solution is assessed by the built-
in fitness function. Figure 2 shows the flow of multi-objective IGA.  

2.3   Parallel IGA 

EC techniques are suitable for parallelization, as crossover, mutation, and evaluation 
can be performed independently on different individuals. It is possible to separate 
individuals themselves to be evolved in different processors or programs, or separate 
each location or program to perform different selection and recombination routines on 
each individual. In either case, the reason of the choice of parallelization depends very 
much on the problem at hand. For instance, parallelization can be a solution for 
computationally demanding problems, to apply selection and recombination routines 
to individuals, or it can simply be a way to separate populations, as in our case. In any 
of these cases, three main parallelization techniques are used widely [8]:  

• Master-slave parallelization, where a single processor maintains control over 
selection and uses the other processors only for crossover, mutation and evaluation 
of individuals. This is useful for few processors and very large evaluation times. 
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• Island model, where every processor runs an independent EC, using a separate sub-
population. The processors cooperate by regularly exchanging migrants (good 
individuals). This technique model is suitable for clustering populations.  

• Diffusion model, where the individuals mate with other individuals only with the 
local neighbourhood. This approach is particularly suitable for massively parallel 
computers with a fast local intercommunication network. 

The usage of parallelization on EMOO can be effective as the goal of EMOO is to 
find a set of good solutions rather than a single optimum. Nevertheless there exists a 
limited amount of literature on their usage in this field [9][10]. On the other hand, the 
usage of parallelization techniques in IEC has not been reported.  

For the purposes of our research, we hypothesize that the usage of parallelization 
and the usage of interactivity together could be advantageous and natural for our 
problem. Since we deal with multiple conflicting objectives these could be evolved with 
separate populations with elite migrants exchanged between one another i.e. following 
the island model. The subjective objective fitness of a solution could be obtained by 
user interaction and used to evolve one population while the other population is evolved 
by a regular fitness function. It has been hypothesized that the obvious advantages of 
this method would be (1) quantitatively evolved population could be evolved much 
faster, utilizing the time by the human-computer interaction, (2) a compromise decision 
can be encouraged by the migration of elites between populations.  

The features of the parallel IGA include parallelisation technique, immigrant 
selection, replacement strategy, and fitness assignment strategy to immigrants:  

Parallelisation technique: the parallel IGA uses an island model and optimises n 
separate populations with n separate objectives with immigrants exchanged 
among them. In our experiments, we use n = 2. 

Immigrant selection: the top three elite solutions are selected from each population to 
be migrated. 

Replacement strategy: the worst three individual solutions from each population are 
replaced with the immigrants 

Fitness assignment strategy to immigrants:  
• In the population optimised using the quantitative objective, immigrants are sorted 

with respect to IGA rating. If any two ratings are equal, sorting is done using the 
calculated quantitative objective fitness. After sorting, an arbitrary quantitative 
fitness is assigned to the immigrants to ensure their survival. The arbitrary fitness 
assignment proceeds with dividing the range of fitness obtained into five main 
regions. Then, the mid, top, and bottom fitness levels of the top fitness range (i.e. 
the minimum fitness interval as the problem is modelled as a minimisation 
problem) is assigned to the three immigrants.  

• In the population optimised using the quantitative objective, immigrants are all 
given the minimum, i.e. the best IGA rating. The reason is that the subjective 
fitness rating is a discrete value and designs taking the same rating value are 
allowed. However, there is very little probability that any two designs would give 
the same quantitative fitness evaluation. Even though two designs may differ from 
each other, the user might give the same rating in contrast to the quantitative 
fitness evaluation. The parallel IGA fitness assignment strategy therefore is 
represents this phenomenon. 
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Two parallel IGA platforms are used for testing: the pseudo parallel IGA that uses 
a fitness function as a pseudo IGA user and the real parallel IGA that is a normal IGA 
with a real human user. The user evaluation of the pseudo parallel IGA is simulated 
by a fitness function and no real user involvement is included. The pseudo parallel 
IGA is conducted to evaluate its maximum performance under the ideal condition 
without human fluctuation in his/her evaluation.  Figure 3 shows the flow of the 
general parallel IGA procedure. Pseudo parallel IGA is coded with the C language 
whereas real parallel IGA is written with C++, using the Microsoft Foundation Class 
Library (MFC), Open Graphics Library (OpenGL) and Coin3D Library1.  
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Fig. 3. Parallel IGA flow 

                                                           
1  Please refer to http://msdn.microsoft.com, www.opengl.org, and www.coind3d.org for more 

information on these graphics libraries. 
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3   Experimental Evaluation with Floor Planning Design  

3.1   Task Description  

The house floor planning design is used as a benchmark task. The objectives are to 
find the width and length of each room as shown on Figure 4(a). These parameters 
will (1) minimize the cost of build which directly relates to the total area of the floor 
plan, and (2) maximize subjective user evaluation received by the interactive fitness 
evaluation element. This problem is an ideal candidate for testing the developed 
algorithms as it includes both quantitative and subjective features. Minimization of 
cost clearly constitutes a quantitative feature. On the other hand, the arrangement and 
sizes of the rooms vary from person to person and can be easily subjectively 
evaluated. Table 1 shows the parameters of the problem and how the overall area is 
 

Living 
Room 

Bedroom 3 Bedroom 1 Kitchen

width

length

Bathroom 
Bedroom 2 

         
                               (a)                                                                          (b) 

Fig. 4. (a) Dimensional variability in the floor plan design, (b) Graphical user interface of the 
modelled floor plan design problem 

Table 1. Floor plan design parameters 

Room Parameter 
Parameter 
Label 

Area 

Living room width X0 A1=X0 (2.2 – X1) 

Kitchen length X1 

Kitchen width X2 
A2=2 X1 X2 

Bedroom 1 width X3 

Bedroom 1 length X4 
A3=X3 X4 

Bathroom length X5 A4=2*[3.6 – (X0+ X6)]* X5 

Bedroom 2 width X6 

Bedroom 2 length X7 
A5=X6 X7 

Bedroom 3 - - A6=X1*[3.6 – (X2+ X3)] 

Hall - - 
A7= [3.6 – (X0 +X6)]*[2.2 – (X1+ X5)]  + X6*[2.2 – 

(X1+ X7)] 
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deduced from these parameters. Detailed description of the problem can be found in 
[3]. Figure 4(b) is an example of the user interface used for our experiments. 

The users are asked to evaluate the design by paying special attention to the sizes 
of the bathroom and kitchen. The greater the sizes of these rooms, the greater the user 
satisfaction should be. The reasons for this included: (1) ensuring the subjective and 
quantitative objectives to be conflicting such that a pareto front could be reached and 
analysed, (2) ensuring consistency between pseudo user evaluation as obtained from the 
pseudo parallel IGA and the real user evaluation in the subjective components of the 
rest of algorithms developed. Table 2 shows the fitness evaluation method for subjective 
and quantitative objectives in the relevant components of the three different algorithms.  

Table 2. Fitness evaluation in quantitative and subjective components of the parallel IGA, 
multi-objective IGA, and sequential IGA 

 Description Component 

Real human 
evaluation 

A 10-scale subjective rating is taken 
from the user. 

Real parallel IGA subjective island 
Multi-objective IGA subjective 
component 
Sequential IGA subjective component 

∑
=

7

1i
iA  

This function minimizes the total 
area of the rooms thus reduces cost 
which is directly proportional to the 
total area of the floor plan.  

Pseudo parallel IGA quantitative island 
Real parallel IGA quantitative island 
Multi-objective IGA quantitative 
component 
Sequential IGA quantitative component 

42

1

AA +
 This function simulates a user whose 

requirement is bigger bathroom and 
kitchen areas.  

Pseudo parallel IGA subjective island 

3.2   Test Parameters 

Real GA coding, tournament selection, a mutation rate of 0.01, one-point simulated 
binary crossover with a rate of 0.9, distribution indexes of 20 for Simulated Binary 
Crossover and 10 for real mutation are used in both parallel IGA islands, sequential 
IGA and multi-objective IGA.  

GA properties such as recombination and selection operators, probabilities for 
selection, recombination and mutation, and population sizes are kept constant 
throughout to allow an accurate comparison of the three approaches. 

Experimental subjects are 2 females and 3 males whose ages range in 22-26. The 
subjects’ expertise included three product designers, one engineer, and one 
architectural engineer.  

Users continued to run the program until subjective generation 5 was reached. 
Each user conducts one test for each of parallel IGA, sequential IGA, and multi-
objective IGA.  

For sequential IGA, with each user, 6 runs are performed, 3 of which are subjective 
and 3 of which are quantitative runs. For these, each subjective run consisted of 5 
generations, while each quantitative run consists of 10 generations.  

For multi-objective IGA, with each user, one run of 5 generations are performed. 
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For parallel IGA, the number of generations and the population size for each island 
is given in Table 3.  

Table 3. Parallel IGA parameters for quantitative and subjective population islands 

 
Population 

size 

Number of 
generations at 

each run 

Total 
number of 
generations 

Total number 
of user 

evaluations 
Parallel IGA - Quantitatively 
optimised population island 

50 10 50 0 

Parallel IGA - Subjectively 
optimised population island 

12 1 5 60 

Multi-objective IGA 12 1 5 60 
Sequential IGA  - Quantitative 
optimisation run 

12 10 50 0 

Sequential IGA  - Subjective 
optimisation run 

12 1 5 60 

4   Results  

Sequential IGA, multi-objective, and IGA Parallel IGA are compared over 55, 5, and 
55 generations, respectively, in terms of overall average subjective fitness, overall 
average quantitative fitness, average subjective fitness of last generation, and average 
quantitative fitness of last generation. The Wilcoxon signed rank test, which is a 
nonparametric pair observation test, is used to compare the results from these three 
algorithms.  

Figure 5 shows the average fitness values obtained at each generation of each run. 
In the sequential IGA the qualitative average fitness showed a worsening trend in the 
five runs pursued, while the quantitative results showed a result that was smoothly 
improving. In the multi-objective IGA, parallel values were obtained as opposed to 
sequential in sequential IGA. The qualitative and quantitative fitness averages both 
showed an improving trend and the convergence to Pareto front was observed. As the 
number of generations increase the solutions are minimized with respect to both 
criteria. For the parallel IGA, the Wilcoxon signed rank test indicates that: 

• The pseudo parallel IGA is significantly advantageous over both sequential IGA 
and multi-objective IGA in terms of overall average subjective fitness, overall 
average quantitative fitness, average subjective fitness of last generation, and 
average quantitative fitness of last generation, with a risk of 0.05. 

• The real parallel IGA is significantly advantageous over the multi-objective IGA 
in terms of overall average subjective fitness, overall average quantitative fitness, 
and average quantitative fitness of last generation, with a risk of 0.05. The 
significance of average subjective fitness of last generation could not be 
concluded with the number of tests performed.  

• The real parallel IGA is significantly advantageous over the sequential IGA in 
terms of overall average subjective fitness, overall average subjective fitness, and 
average quantitative fitness of last generation, with a risk of 0.05. The 
significance of average quantitative fitness of last generation could not be 
concluded with the number of tests performed.  
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• We could conclude that the parallel IGA then provides significantly better results 
in terms of multi-objective IGA and sequential IGA under our experimental 
conditions although no significance was concluded for average last generation 
subjective and quantitative fitnesses. Figure 5 shows the change in fitness in 
subjective and quantitative fitness values in the three algorithms. The following 
section discusses these findings. 

 

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100
Number of Generations

(a)

A
ve

ra
ge

 q
u

an
ti

ta
ti

ve
 f

it
n

es
s Pseudo Parallel IGA

Sequential IGA

Multi-objective IGA

Real Parallel IGA

 

0
2
4
6
8

10
12
14
16

0 1 2 3 4 5 6 7 8 9

Number of Generations
(b)

A
ve

ra
ge

 q
ua

lit
at

iv
e 

 f
it

ne
ss Pseudo Parallel IGA

Sequential IGA

Multi-objective IGA

Real Parallel IGA

 

Fig. 5. Change of average (a) quantitative and (b) qualitative fitness in sequential IGA, multi-
objective IGA, pseudo IGA, and real parallel IGA 

5   Discussions 

In multi-objective problems, it is important that a set of good solutions that are 
diverse from each other are obtained, so that compromise decision making can be 
implemented. This section discusses the results in terms of fitness convergence and 
diversity of results, after laying out the main sources of error. 

 (A) Sources of Error 
Pseudo parallel IGA showed significantly better fitness convergence in both 
subjective and quantitative objective values than the multi-objective IGA and the 
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sequential IGA. However, the multi-objective IGA and the sequential IGA involved 
real human evaluation whereas parallel IGA did not. In order to minimise the 
tendency for this error, during user evaluation in the multi-objective IGA and the 
sequential IGA, users were asked to evaluate designs by observing the sizes of the 
kitchen and bathroom, hence to resemble the fitness function in parallel IGA. 
However, noise due to human inconsistency is inevitable and should be taken into 
account in the assessment of results.  

Another point to bear in mind while assessing these results is the number of 
generations pursued with each algorithm. The multi-objective IGA pursues one 
quantitative and one subjective generation together at a time since the evolution is 
simultaneous. As the user must be involved in every generation and his/her fatigue 
must be considered, only 5 quantitative generations could be evolved as opposed to 
55 in the sequential IGA and the parallel IGA. We can observe that even with only 
five generations, the performance of multi-objective IGA in both objective values was 
comparable to that of the parallel IGA and the sequential IGA.  

(B) Fitness Convergence 
The multi-objective IGA and parallel IGA reached satisfactory designs in a shorter 
time of 4 to 5 generations, whereas the sequential IGA failed to reach an equally 
satisfactory design in the qualitative and quantitative objective spaces in a total of 45 
generations. Although the final fitness scores of the quantitative objectives were 
better in the sequential IGA and the parallel IGA than the multi-objective IGA since 
the subjective objective was of equal importance to the design overall, the sequential 
IGA performed significantly worse than other two IGA's. Rather than reaching a 
compromise decision of equal qualitative and quantitative factors, the sequential IGA 
competed the two objectives against each other; resetting and trying to recover from 
the affects of the opposite objective each time. On the other hand, no significant 
difference was found between averages of parallel IGA and multi-objective IGA at 
the final generation although the overall fitness average of parallel IGA is better than 
that of multi-objective IGA. 

(C) Diversity 
After the second quantitative run of the sequential IGA, the quantitative objective has 
taken over providing designs with little or no difference for the qualitative evaluation 
by the user. The users reported difficulty in distinguishing the designs, even though 
minor differences still existed, but were difficult to be visualized. This led the users 
to give similar ratings to designs, and it became difficult for the algorithm to 
diversify designs. On the other hand, the diversity preservation mechanism with the 
help of the crowding distance calculation in the multi-objective IGA has provided 
results that were visually distinct from each other. Although no quantification of 
diversity was performed, the diversity level in decreasing order was with multi-
objective IGA, parallel IGA, and sequential IGA. 

6   Conclusions 

This paper compared three IGA algorithms, namely parallel IGA, multi-objective 
IGA and sequential IGA that are developed to optimise conflicting subjective and 
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quantitative multi-objectives. The algorithms are evaluated with the floor planning 
design problem.  

The major advantage of parallel IGA is its flexibility to accommodate more than 
one population. The population size of multi-objective IGA has to be constant as 
multiple objectives are dealt with simultaneously on each design, while that of the 
parallel IGA is adjustable according to human limitations in the subjectively evolved 
designs and according to the potential of the computer in the quantitatively evolved 
designs. So the time spent by human during design evaluation is utilised and as more 
number of generations can be evolved in the quantitative objective, we can get a 
better fitness in this objective space. As there exist different populations, the parallel 
IGA does not engage in a fight between the two contradictory objectives, as was the 
case of sequential IGA. Thus we can conclude that both the multi-objective IGA and 
the parallel IGA are significantly better than the sequential IGA and that sequential 
optimisation did not give satisfactory results in dealing with multiple objectives in 
conflict. The parallel IGA is observed to be satisfactory for incorporating multiple 
criteria principles even though in itself the algorithm is not a multi-objective 
optimisation algorithm. In dealing with subjective and quantitative conflicting design 
objectives, both multi-objective IGA and the parallel IGA seem to be promising 
approaches.  

Although the quantitative objective remains implicit to the multi-objective IGA, 
the parallel IGA displays the user the designs that emigrated from the quantitative 
objective island to the subjective objective island. Therefore, in addition to the above 
advantage, real parallel IGA can help promote innovative decision making by making 
the user observe computer generated results and reconsider the evaluation given.  

Future work will focus on investigating parallel IGA’s performance with other 
multi-objective optimisation algorithms and with different benchmark problems. 
Additionally, a pair-wise preference experiment is to be undertaken for the final 
populations achieved from the two algorithms.  
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Abstract. This paper investigates the feasibility of evolutionary search
techniques as a mechanism for interactively exploring the design space of
2D painterly renderings. Although a growing body of painterly rendering
literature exists, the large number of low-level configurable parameters
that feature in contemporary algorithms can be counter-intuitive for non-
expert users to set. In this paper we first describe a multi-resolution
painting algorithm capable of transforming photographs into paintings
at interactive speeds. We then present a supervised evolutionary search
process in which the user scores paintings on their aesthetics to guide the
specification of their desired painterly rendering. Using our system, non-
expert users are able to produce their desired aesthetic in approximately
20 mouse clicks — around half an order of magnitude faster than manual
specification of individual rendering parameters by trial and error.

1 Introduction

Techniques for processing photographs into artwork have received considerable
attention in recent years and comprise a rapidly developing branch of computer
graphics known as image based non-photorealistic rendering (NPR). Perhaps the
most well studied NPR problem is that of painterly rendering; the automated
stylisation of imagery to give a hand-painted appearance. A number of these
algorithms now exist capable of emulating a variety of styles, such as water-
colour [1] and oil [2, 3, 4, 5, 6, 7].

Although the output of contemporary painterly rendering algorithms is often
of high aesthetic quality, the usability of such algorithms is impeded by the
plethora of low-level parameters that must be set in order to produce acceptable
output. Many of these parameters are data dependent, for example determining
the scale of image features to paint [3, 4]. The presence and fine-tuning of such
parameters is necessary to retain generality of the algorithm, but can be difficult
for the non-expert user to achieve. Furthermore, some algorithms [3, 6] seek
to emulate a broad range of artistic styles using additional user configurable
parameters. For example, [3] varies brush size, colour jitter, and stroke length to
interpolate between pseudo ”expressionist” and “pointillist” styles. Often these
parameters can be time consuming to set — both due to their number, and due
to their low-level nature, which can make them non-intuitive for inexperienced
users to manipulate when aiming for a conceptually higher level effect (e.g. a

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 599–610, 2006.
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gloomy painting, or an energetic, cheerful composition). Moreover, parameters
can interact in complex ways leading to emergent behaviour within the painting
that the user may not expect or understand. The end result is often a slow,
iterative trial and error process before the user is able to instantiate their desired
results.

This paper presents a solution to the problem of NPR parameter selection
by framing the task as a goal-centred evolutionary search to be solved using a
Genetic Algorithm (GA). We do not wish to eschew interaction, for this is of-
ten where artistic creativity is expressed when applying NPR algorithms (such
techniques are better regard as tools, rather than black-box processes for cre-
ating artwork). Instead we draw inspiration from Sims [8] who adopted user
supervision in his evolutionary artistic processes. Our system iteratively evolv-
ing a population of painterly renderings towards the user’s aesthetic ideal, and
on each evolutionary cycle presenting a sample of the population to the user
for fitness evaluation. The user’s evaluation affects the natural selection phase
of the GA, and so affects the composition of subsequent generations of paint-
ings. Similar architectures have also been applied in a other computer graph-
ics domains; for example recent work facilitating the interactive evolution of
pixel-vertex shaders [9] and animated screen-savers [10]. To facilitate timely in-
teraction in our system we make use of a fast, segmentation based algorithm
for painterly rendering. This algorithm not only draws upon existing painterly
rendering literature (encapsulating many of the styles available using existing
techniques), but also draws upon colour psychology to allow tonal variations
that influence the emotional context or “mood” of the painting. This is achieved
by mapping HSV colour transformations on to Russell’s 2D “pleasure-arousal”
emotional state space [11], and harnessing emotional state as a high level NPR
parameter for painterly rendering [12].

The remainder of the paper is organised as follows. We begin by briefly sur-
veying existing painterly techniques in Section 1.1. We then give detailed descrip-
tions of our painting algorithm (Section 2) and interactive GA search (Section 3).
We conclude with a gallery of results and discussion in Section 4.

1.1 Related Work

The majority of image based painterly rendering algorithms adopt the stroke-
based rendering paradigm, generating paintings by compositing ordered lists of
virtual “brush strokes” on a 2D virtual canvas. The development of such algo-
rithms arguably began to gain momentum with Haeberli’s semi-automatic “im-
pressionist” painting system [13]. In Haeberli’s system, stroke attributes such as
colour or orientation were sampled from a source photograph whilst stroke size,
shape and compositing order was set interactively by the user. Litwinowicz [2]
was the first to propose a fully automated 2D painting algorithm, again focus-
ing upon the impressionist style. Paintings were synthesised by aligning small
rectangular strokes to Sobel edge gradients in the image and stochastically per-
turbing the colour of those strokes. Hertzmann later proposed a “coarse to fine”
approach to painting using curved β-spline strokes . Spline control points were
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extracted by hopping between pixels in directions tangential to Sobel edges.
The process operated at several discrete spatial scales, concentrating stroke de-
tail in high frequency areas of the image. The β-splines used in this technique
were later extended to active contours, enabling a relaxation based approach
to curved stroke painting [14]. Other early painterly rendering algorithms such
as [15] and [4] also made use of local image processing operators; placing strokes
according to variance measures within a local window.

Our approach contrasts with these early painterly rendering algorithms in
that we operate using multi-scale segmentation only, substituting image gradi-
ent and variance measures for region shape properties to guide stroke placement.
Among the first to propose the use of segmentation algorithms for painting were
Gooch et al. [5], who placed strokes along medial axes of segmented regions to
produce painterly artwork. The benefits of their approach included a significant
reduction in the number of brush strokes whilst preserving fine detail in the ren-
dering. Segmentation was also used by [16, 17] to produce painterly abstractions.
Notably these systems used a human gaze tracker to correlate level of detail in
the painting with perceptually salient detail in the source image. An automatic
system for salience adaptive painting, driven by machine learning rather than
run-time interaction, was recently presented by Collomosse and Hall [7]. This
work also applied evolutionary search techniques to NPR, harnessing GAs as a
relaxation mechanism for automatically controlling level of detail in paintings
within a single artistic style. By contrast we here apply GAs for style selec-
tion using interactive aesthetic evaluation, and as such, our work is also closely
aligned with algorithms encompassing a range of visual styles selectable via user
parameterisation. Hertzmann [3] claims expressionism, pointillism, impression-
ism and “abstract” styles through the variation of low level parameters such as
stroke length. Similarly low-level parameters are used to tune the visual style of
paintings in [6]. We have encompassed a similar gamut of rendering styles within
our painterly framework.

2 Painterly Rendering Algorithm

In this section we briefly describe our fast multi-resolution technique for stylising
photographs at interactive speeds. The scope of this paper is such that we have
focused on the parameterisation of the algorithm and interested readers are
directed to [12] for a more detailed description. The algorithm accepts a 2D
photograph as input, and outputs a 2D painterly rendering of that photograph —
the visual style of which is a function of eight user-configurable scalar parameters,
p1..8 (Figure 1) which are output by the evolutionary search step (Section 3).

We begin by creating a colour band-pass pyramid segmentation of the source
image by applying the EDISON [18] algorithm at several spatial scales. This
segmentation is computed only once, during system initialisation, to facilitate
real-time interaction during the search process. To produce a painting, the pyra-
mid layers are rendered in coarse to fine order. Segmented regions within each
layer are painted using a combination of “interior” and “boundary” strokes; as
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Param Description

p1 Colour jitter
p2 Maximum hop angle
p3 Region turbulence
p4 Colour (pleasure)
p5 Colour (arousal)
p6 Stroke jaggedness
p7 Stroke undulation
p8 Region dampening

Fig. 1. Summary of the eight rendering parameters p1..8 used to control visual style in
our painting algorithm

we explain in the next subsection. For each layer, the “interior” strokes of all
regions are first rendered, followed by the “boundary” strokes of all regions.

2.1 Interior and Boundary Stroke Placement

Brush strokes are formed using Catmull-Rom piecewise cubic splines, the control
points of which are computed from the binary mask of each region as follows.

Interior Strokes. The interior of a segmented region is first filled using a
modified boundary-fill algorithm that paints strokes tangential to the region’s
principal axis, obtained by computing the eigenvectors of pixel coordinates in-
side the region. Lines parallel to the principal axis are traversed, and strokes
are started and terminated as region boundaries are encountered. The spacing
between these traversal lines is proportional to stroke thickness. As each stroke
is placed, control points are distributed uniformly over the stroke’s length, and
jittered via small translations to disguise the regularity of the stroke placement
process. Stroke colour is set to the mean colour under the stroke, computed from
the source image. This colour is subject to random perturbation, the magnitude
of which forms one parameter of the rendering process, written p1. Stroke thick-
ness is set on a per region basis, in proportion to region area. In the case of very
large regions, thickness is capped and strokes are painted horizontally (after [19])
to preserve natural appearance.

Boundary Strokes. The boundary of the segmented region is vectorised to
produce a closed polygon. Points on the polygon are visited in order, and added
to an initially empty “working set”. Upon each point’s addition, we sum the dis-
tance between all points in the working set to a line drawn between the first and
last points in that set. If the distance is above a threshold (or no further points
remain in the chain code), we output the most recently added point as a stroke
control point. The working set is then emptied. A brush stroke is terminated,
and a new stroke started, when the angle between adjacent control points rises
above a preset threshold. In practice this threshold governs the typical length
of brush strokes, and we allow this to vary between 0 − 50◦ as another of our
rendering parameters (written p2). The stroke must also be terminated if the
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colour of a new control point differs significantly from the mean colour of those
already present in the stroke. Stroke thickness and colour are set as with the
interior stroke placement process.

2.2 Rendering Parameters

In addition to the two rendering parameters (p1, p2) governing stroke placement
(Section 2.1), we also incorporate the following six parameters that allow modu-
lation of the painting’s visual style. All parameters are summarised in Figure 1.

Region Turbulence. Flat expanses within paintings, for example sky or water,
may be depicted in a variety of artistic styles. Our system encompasses a gamut
of rendering styles ranging from the calm, serene washes of a watercolour to the
energetic swirls of a Van Gogh oil or the chaotic strokes of a Turner seascape. We
introduce similar effects by repeatedly performing boundary stroke placement
(Section 2.1) subjecting region masks to morphological erosion prior to each
iteration. The number of iterations is proportional to rendering parameter p3.
This has the effect of allowing boundary strokes to grow into the interiors of
regions in an unstructured manner, so breaking up flat expanses in the painting.

Tonal Variation. Certain combinations of colours can evoke particular emo-
tions, so helping to convey a particular mood to a composition. We have iden-
tified a number of cues from colour psychology, and mapped these to regions
of Russell’s 2D pleasure-arousal emotional space [11] — see Figure 2 (left). By
specifying an emotional state (a point (p4, p5) in this space defined by two fur-
ther rendering parameters), we allow the user to interactively vary the emo-
tional ambiance or “mood” of the composition. Wright and Rainwater [20] have
found the notion of happiness (pleasantness) to be primarily dependent on colour
brightness (luminance), and to a lesser degree on saturation. Intuitively arousal
corresponds to colour saturation, but can also be linked to hue. Wright and
Rainwater’s study has shown calmness to be blue-correlated [20], but according
to Mahnke blue may also suggest depression and cold [21].

We have defined a number of transfer functions that operate upon hue, satu-
ration and luminance as a mechanism for instantiating the colour heuristics we
have distilled from the literature [20, 21]. The complex psychological theories un-
derpinning colour and emotion generate non-linear mappings of hue, saturation
and luminance variation to the pleasure-arousal space. We approximate these
piecewise with a collection of linear transfer functions — different functions are
applied in each of six regions of the space. Figure 2 (right) illustrates the bound-
aries of these regions, and the transfer functions used over the pleasure-arousal
space. Functions G(x) and U(x) correspond to greying and un-greying (scaling
saturation in proportion to x), while D(x) and L(x) correspond to lightening
and darkening (scaling luminance in proportion to x). The operation of the lat-
ter function is capped for “boundary” brush strokes to prevent bleaching of fine
detail. Care is taken in blending the constants of proportionality to prevent vis-
ible discontinuities near the boundaries defined over the pleasure-arousal space.
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Fig. 2. Left: Russell’s 2D pleasure-arousal space used to parameterise tonal variation
in the painting. Right: False colour schematic illustrating the various colour transfor-
mations performed within regions of the pleasure-arousal space. Functions G, U , L, D,
T1 and T2 are defined in Section 2.2.

Functions T1(x) and T2(x), indicated in Figure 2, are two special cases that
encode hue variation consistent with aroused displeasure (anger) and apathetic
displeasure (depression). Hue is manipulated via an RGB space transformation
prior to saturation and luminance manipulations. In the former case T1(x), pre-
dominantly red colours are reddened and green (associated with calm) is reduced
(in proportion to x). These effects combine with the saturation and luminance
transformations already present to produce the combination of aroused reds and
dismal darks that appear in psychological literature in association with anger.
In the latter case T2(x) we increase the blue in proportion to x to generate
a monotonous shift into the blue spectrum, associated with sadness and calm.
Colours are also desaturated and darkened in accordance with transformations
already present in that quadrant of the space.

Brush Stroke Style. We have introduced two parameters to control variation
of stroke style in our system. These afford the user some control over stroke
accuracy (p6) and angularity (p7) in the painterly rendering.

When rendering a brush stroke we create an arc-length parameterisation over
the piecewise Catmull-Rom spline that smoothly interpolates its control points.
To enhance the angularity or “jaggedness” of strokes we create an additional
linear interpolation over the control points using the same arc-length param-
eterisation. Lineally interpolating between these two functions, in proportion
to p7, yields our desired style of stroke. We then introduce inaccuracies into
the stroke placement process by inducing undulations in the trajectory of the
stroke. Whilst rendering, we translate points on the stroke along their normal
vectors — the distance a particular point is moved is set by a periodic function
with frequency and amplitude proportional to p6. Finally, we introduce a further
parameter (p8) to dampen the effects of undulation (p6) on interior strokes. This
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can lead to visually chaotic stroke placements in the backgrounds of paintings
that may or may not be desirable depending on the user’s intended visual style.

3 Evolutionary Search for Parameter Selection

Given this parameterised rendering framework, the painting process is reduced to
a search for the point in our parameter space [p1p2...p8] ∈ �8) that corresponds
to a painting expressing the target aesthetics of the user. Our system adopts a
genetic algorithm (GA) search strategy. GAs are often cited as appropriate for
exploring high dimensional parameter spaces as large regions of problem space
can be covered quickly, and local minima (e.g. arising due to interactions.between
painting parameters) are more likely to be avoided [22, 23]. We now describe the
initialisation and iterative stages of our GA search.

3.1 Initialisation

We begin by initialising a fixed size population of individuals. We have opted for a
population size of 1000 individuals, determined empirically to be a suitable trade-
off between diversity the real-time processing constraints of our system. Each
individual contains eight normalised scalar values that comprise the genotype of
a particular painting. These values are seeded randomly in the initial generation.

3.2 Iterative Search

Genetic algorithms (GAs) simulate the process of natural selection by breeding
successive generations of individuals through cross-over, fitness-proportionate
re-production and mutation. In our implementation we terminate this iterative
process when successive improvements in fitness become negligible (the change
in both average and maximum population fitness over a sliding time window fall
below a threshold). We now describe a single iteration of this process.

Interactive Evaluation. The first step in each iterative cycle is population
evaluation. We wish to measure the proximity of each individual’s phenotype to
the user’s “ideal” aesthetic. Specifically we require a mapping M([p1p2...p8]) $→
f ∈ � where f is a normalised fitness score; higher values correspond to aestheti-
cally superior paintings. As our aim is to assist the user in style specification it is
not possible to write an automatic function for M(.). Our objective is therefore
twofold. First, to estimate the mapping function M(.) through user interaction.
Second, to search for the point p ∈ �8 such that:

p = argmaxi [M(i)] (1)

Our approach is to sparsely evaluate M(.) over a subset of the population, and
use this data to extrapolate the behaviour of M(.) over the entire population.
We have designed a simple user interface, allowing us to prompt for the fitness
of a given individual drawn from the population (so obtaining a sparse domain
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Painting

Bad

Rating bars

Excellent

thumbnails

Fig. 3. Snapshot of the interactive evaluation screen. The user is presented with thumb-
nails of the highest ranking 9 paintings and asked to rate one by clicking with the mouse.
Depending on the horizontal location of the click within the thumbnail, a fitness score
[-1,1] is assigned to the chosen rendering. This snapshot shows images from the first
generation of paintings — hence the diverse selections available.

sample of M(.)). The user is supplied with a graduated colour bar, and asked
to rate the aesthetics of the painting rendered from a given individual on a
continuous scale spanning red (bad), amber (neutral) and green (excellent) — see
Figure 3. Manually evaluating the entire population on each iteration would be
impractical, and to reduce user load we request evaluation of only one individual
per generation. The user is presented with the nine fittest individuals from the
previous iteration, and asked to rate the individual that they feel most strongly
about. Note that in the first iteration individuals are deemed to exhibit equal
fitness (see equation 2) and so are chosen from the population at random.

We use a Gaussian “splatting” technique to encode the results of our sparse
user interactions, and transform these into a continuous estimate for M(.). Each
time a user evaluates an individual we obtain a point q and a user fitness rating
U(q) = [−1, 1]. These data are encoded by adding a Gaussian to a cumulative
model, built up over successive user evaluations. Each Gaussian distribution is
centred at point q, and multiplied by the factor U(q). We assume the integral
under the Gaussian to be well approximated by unity in space �8 ∈ [0, 1], and
so infer the continuous function M(.) as:
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M(p) = 0.5 +
{

0 if N = 0,
1

2N

∑N
i=1 U(q

i
)G(p, q

i
, σ) otherwise

(2)

where p is an individual to be evaluated in the current generation, q
i

are indi-
viduals evaluated by the user in the previous N iterative cycles, and U(x) is the
user’s score of a given genotype x. The function G(x, μ, σ) denotes a Gaussian
distribution with mean μ and standard deviation σ, evaluated at x. The stan-
dard deviation σ governs the locality in problem space over which a single user
evaluation holds influence. We have used the value σ = 0.1 for all of the results
presented here. Equation 2 provides us with an estimate for M(.) defined over
the entire problem space, which we then apply to evaluate the whole population.

Selection and Propagation. Once the current population has been evaluated,
pairs of individuals are selected and bred to produce the next generation of
painting solutions. Parent individuals are selected with replacement, using a
stochastic process biased toward fitter individuals. A single offspring is produced
from two parents by way of stochastic cross-over and mutation operators. Each
of the eight parameters that comprise the genome of the offspring has an equal
chance of being drawn from either parent. Mutation is implemented by adding
a random normal variate to each of the eight parameters. These variates have
standard deviations of 0.1, i.e. 97% of mutations will produce less than ±0.3
variation in a particular rendering parameter.

4 Results and Conclusion

We have tested our system on a wide range of images, a give representative exam-
ples in Figure 5. In Figures 5a we show single photograph (BIGBEN) evolved into
“abstract” and “expressionist” styles reminiscent of those presented in [3, 24].
Convergence took 15 and 17 mouse clicks respectively — less than one minute
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Fig. 4. Population statistics corresponding to the evolution of the paintings shown in
Figure 5c1 (blue, dotted), Figure 5c2 (red, dashed), Figure 5c3 (green, solid) respec-
tively. The + symbol indicates algorithm termination. ∗ indicates a negative fitness
rating from the user.
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of user time. Furthermore, our segmentation based painting algorithm did not
require technical parameters (e.g. scale or low-pass kernel size [3]) to be specified
explicitly by the user. Figures 5e1, e2 give examples of further painterly styles,
contrasting two different stroke placement styles encompassed by our system.
The first is reminiscent of the “impressionist” style paintings generated by [2],
the latter the impasto style oil paintings generated by [7]. Figure 5b gives a
further examples of the broad classes of image handled by our system. Figure 5c
demonstrates a single photograph (DRAGON) evolved into three distinct visual
styles. A non-expert was asked to use our system to create paintings depicting
high-level concepts such as anger (Figure 5c1), cheerfulness (Figure 5c2) and de-
spair (Figure 5c3). Graphs recording the mean population fitness, and standard
deviation (diversity) during the evolution of these paintings are also supplied in
Figure 4. Convergence took between 20 to 25 generations before the termination
criteria was triggered. In Figure 4 we have forced evolution to continue beyond
30 generations, however improvements in mean fitness beyond the automated
termination point are negligible.

To evaluate the usability of our system we developed an alternative low-level
interface using sliders to independently control p1..8. Users were asked to pro-
duce identical renderings to those previously generated using our GA. Users were
usually able to reproduce results, but required five or six minutes of experimen-
tation (and several hundred mouse clicks) before doing so — approximately five
times longer than when using our GA goal-based search.

When working with our system, we have found that users will often focus on
a particular aesthetic property of the painting and focus on the improvement of
that property. For example, users might address the issue of edge detail over,
say, the style of the in-filled background. Often these properties have no direct
mapping onto individual rendering parameters, providing some explanation of
the timing improvements of a top-down goal seeking approach to style selection
over a bottom up configuration of low-level painting parameters. The impact of
this behaviour can be observed in the graph of Figure 4 (left). Gradual increases
in painting “fitness” are observed over time, interrupted by short-lived dips.
These dips become less pronounced as the generation count increases. We have
found the presence of dips to correlate with the issuing of negative ratings by
users; typically these are issued when a user has refined one aspect of the painting
to their liking, and begun to address a further aspect of the composition that
they had so far neglected. By neglecting refinement of the latter aspect, a false
representation of the user’s “fitness function” M(.) (see Section 3.2) has been
conveyed to the system and encoded in the Gaussian distribution model. This
requires user correction, often in the form of rating penalisation.

Throughout our work we have assumed the user has an ideal painting in
mind, and wishes to express instantiate that ideal through NPR. An alternative
application of our system might be in style exploration, where the user has no
well-developed goal state in mind. Early indications are that the guided search
provided by our system may be suitable for such activities. However if the user
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Fig. 5. A gallery of painterly renderings produced by our system, original images inset

substantially revises their aesthetic ideals late in the search, the reduced popu-
lation diversity can require tens of iterations before the user is able to explore
new regions of the problem space. If our system were to be used in this manner,
we would suggest increasing the standard deviation of the variates used during
mutation to maintain population diversity further into the search.

Acknowledgements

We are grateful for the assistance of users who participated in evaluation of the
GA interface, and also for the contribution of Maria Shugrina in development of
the colour model.



610 J.P. Collomosse

References

1. Curtis, C., Anderson, S., Seims, J., Fleischer, K., Salesin, D.H.: Computer-
generated watercolor. In: Proc. ACM SIGGRAPH. (1997) 421–430

2. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proc.
ACM SIGGRAPH, Los Angeles, USA (1997) 407–414

3. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes.
In: Proc. ACM SIGGRAPH. (1998) 453–460

4. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering
based on local image approximation. In: Proc. ACM NPAR Sympos. (2000) 53–58

5. Gooch, B., Coombe, G., Shirley, P.: Artistic vision: Painterly rendering using
computer vision techniques. In: Proc. ACM NPAR Sympos. (2002) 83–90

6. Hays, J., Essa, I.: Image and video based painterly animation. In: Proc. ACM
NPAR Sympos. (2004) 113–120

7. Collomosse, J.P., Hall, P.M.: Genetic paint: A search for salient paintings. In:
proc. EvoMUSART (at EuroGP), Springer LNCS. Volume 3449. (2005) 437–447

8. Sims, K.: Artificial evolution for computer graphics. In: Proc. ACM SIGGRAPH.
Volume 25. (1991) 319–328

9. Ebner, M., Reinhardt, M., Albert, J.: Evolution of vertex and pixel shaders. In:
LNCS (in Proc. EuroGP’05). Volume 3447., Springer-Verlag (2005) 261–270

10. Draves, S.: The electric sheep screen-saver: A case study in aesthetic evolution. In:
LNCS (in Proc. EvoMUSART’05). Volume 3449., Springer-Verlag (2005) 458–467

11. Russell, J.A.: Reading emotion from and into faces: Resurrecting a dimensional-
contextual perspective. In Russel, J.A., Fernández-Dols, J.M., eds.: The Psychology
of Facial Expression. Cambridge University Press (1997) 295–320

12. Shugrina, M., Betke, M., Collomosse, J.P.: Empathic painting: Interactive styliza-
tion using observed emotional state. In: Proc. ACM NPAR Sympos. (2006)

13. Haeberli, P.: Paint by numbers: abstract image representations. In: Proc. ACM
SIGGRAPH. Volume 4. (1990) 207–214

14. Hertzmann, A.: Paint by relaxation. In: Proc. Computer Graphics Intl. (CGI).
(2001) 47–54

15. Treavett, S., Chen, M.: Statistical techniques for the automated synthesis of non-
photorealistic images. In: Proc. 15th Eurographics UK Conference. (1997) 201–210

16. DeCarlo, D., Santella, A.: Abstracted painterly renderings using eye-tracking data.
In: Proc. ACM SIGGRAPH. (2002) 769–776

17. Santella, A., DeCarlo, D.: Visual interest and NPR: an evaluation and manifesto.
In: Proc. ACM NPAR Sympos. (2004) 71–78

18. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: 16th

Intl. Conf. on Pattern Recognition. Volume 4. (2002) 150–155
19. Kolliopoulos, A.: Image segmentation for stylized non-photorealistic rendering and

animation. Master’s thesis, Univ. Toronto (2005)
20. Wright, B., Rainwater, L.: The meaning of colour. Journal of General Psychology

67 (1962)
21. Mahnke, F.: Color, Environment, and Human Response. Van Nostrand Reinhold

(1996)
22. de Jong, K.: Learning with genetic algorithms. Machine Learning 3 (1988) 121–138
23. Holland, J.: Adaptation in Natural and Artificial Systems. 1st edn. Univ. Michigan

Press (1975) ISBN: 0-472-08460-7.
24. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc.

ACM NPAR Sympos. (2000) 7–12



Robot Paintings Evolved Using Simulated

Robots

Gary Greenfield

Mathematics & Computer Science,
University of Richmond,

Richmond VA 23173, USA
ggreenfi@richmond.edu

http://www.mathcs.richmond.edu/∼ggreenfi/

Abstract. We describe our efforts to evolve robot paintings using simu-
lated robots. Our evolutionary framework considers only the initial posi-
tions and initial directions of the simulated robots. Our fitness functions
depend on the global properties of the resulting robot paintings and on
the behavior of the simulated robots that occurs while making the paint-
ings. Our evolutionary framework therefore implements an optimization
algorithm that can be used to try and help identify robot paintings with
desirable aesthetic properties. The goal of this work is to better under-
stand how art making by a collection of autonomous cooperating robots
might occur in such a way that the robots themselves are able to partic-
ipate in the evaluation of their creative efforts.

1 Introduction

Open Problem #3 of McCormack’s five open problems in evolutionary music
and art (EMA) [1] requires one, “To create EMA systems that produce art
recognized by humans for its artistic contribution (as opposed to any purely
technical fetish or fascination).” The recent publicity garnered by the robot
paintings of Moura, Ramos, and Pereira that resulted from their ARTSBOT
(ARTistic Swarm roBOTS) Project might at first glance be seen as a solu-
tion to McCormack’s third open problem since the paintings are described on
the web (see http://alfa.ist.utl.pt/ cvrm/staff/vramos/Artsbot.html) as “arti-
ficial art,” and in print as “non-human art” [2] or “symbiotic art” [3]. Note
that here the symbiosis is intended to be between human and robot. The site
http://www.lxxl.pt/artsbot/ where the images of the robot paintings with the
best resolution can be found also provides a “Symbiotic Art Manifesto” written
by Moura and Pereira.

It is unfortunate that some of the hyperbole associated with the ARTSBOT
project detracts from what is potentially a promising new development in evo-
lutionary art. At the center of the ARTSBOT Project lies an implementation
of a collective robotics art making system to create what are known as swarm
paintings. The ARTSBOT team reveals this by saying [4] — to paraphrase and
polish slightly — that the artworks are made by “a swarm of autonomous robots,
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that ‘live’ [by] avoiding simply [executing] streams [of commands] coming from
an external computer, [and] instead actually co-evolve within the canvas [en-
vironment]; acting [by] laying ink according to simple inner threshold stimu-
lus response functions, [while] simultaneously reacting to the chromatic stimu-
lus present in the canvas environment [left by other robots], as well as by the
distributed feedback, [that] affect[s] their future collective behavior.” We note
that ARTSBOT was one of the few collective robotics entries in the most re-
cent international ArtBot art exhibition for “robotic art and art-making robots”
(see http://artbots.org/2004/participants/). Moura and Pereira claim that they
have created organisms that generate drawings without any intervention on their
part thereby creating “a new kind of art” based on a paradigm of non-human
autonomous entities that allow personal expression by human artists to be aban-
doned [3]. Perhaps this somewhat of an exaggeration. Since the controllers for
their robots were not evolved, ARTSBOT is not an evolutionary art system,
but rather an art making system consisting of human programmed autonomous
agents that reside and function in an artificial ecosystem. There is a close con-
nection here between stigmergy [5] — the situation where autonomous agents
alter their environment either accidentally or on purpose in such a way that
they influence other agents to perform actions that achieve an objective such as
nest building — and swarm painting. The principal difference is that stigmergy
is usually associated with a clearly defined task or objective while swarm paint-
ing is usually associated with the more poorly defined objective of producing
aesthetic imagery.

While in our opinion the question of whether or not the ARTSBOT robot
paintings are more than what McCormack referred to as a “technical fascination”
has not yet been satisfactorily answered, what is most significant to us is the fact
that ARTSBOT does not address McCormack’s penultimate challenge, Open
Problem #5, which requires one: “To create artificial ecosystems where agents
create and recognize their own creativity.” In this paper using simulated collective
robotics and taking for motivation the penultimate problem of how autonomous
robots engaged in making swarm paintings might eventually go about learning
to recognize their own creativity, as a first step we investigate an evolutionary
framework that is designed to show how simulated robots might be able to
formulate ways to evaluate the aesthetic quality of their paintings. Unlike the
aesthetic evaluation system for agent produced art studied by Saunders and
Gero where each agent produced its own paintings and the evaluation model
was based on social dynamics [6], we consider an aesthetic evaluation system
where the collective agents are given shared access to a set of image evaluation
parameters which can then be used either individually or collectively to modify
the image making process. To help understand the consequences of our design,
we consider what effect different types of computations made using our set of
evaluation parameters have on our robot paintings.

This paper is organized as follows. In section two we provide some background
on the use of swarms and the non-interactive genetic algorithm for image making.
In section three we give the specifications for our simulated robots. In section four
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we describe how their controllers work. In section five we present our evolutionary
framework. In section six we define our set of image evaluation parameters and
then proceed to give examples of some of the robot paintings we evolved using
various fitness functions formulated based on these parameters. In section seven
we consider the implications of our work for the problem of how robot swarms
might go about evaluating their creative efforts. In section eight we offer our
summary and conclusions.

2 Background

The notion of swarm paintings was first introduced in an image processing paper
by Ramos that was contributed to an ant colony optimization (ACO) conference
[7]. Related work appeared in [8] and [9]. In this problem domain the use of
the interactive user-guided evolution paradigm that was originally proposed by
Sims [10] (i.e. the interactive genetic algorithm) was first studied by Aupetit
et al [11]. They investigated an ant colony simulation where the virtual ants
deposited and followed color – the scent — while exploring a toroidal grid in
order to produce “ant paintings.” Greenfield [12] non-interactively evolved ant
paintings by evolving the genomes required for governing the behaviors of the
virtual ants using fitness functions. His observation that only elementary tech-
niques were needed to measure ant exploration and ant cooperation capabilities
offers hope that relatively simple behavioral assessment parameters can be used
to help identify increased image complexity or well organized image compositions
in other evolutionary swarm painting scenarios. The use of the (non-interactive)
genetic algorithm in evolutionary art was first considered by Baluja et al [13].
Using this technique for evolving two-dimensional imagery, interesting results
have been obtained by Greenfield [14] using co-evolution and the image gener-
ation method known as “evolving expressions”, by Machado and Cardosa [15]
using neural nets, and by Bentley [16] in order to identify cellular automata
“patterns.” In general, the question of how to evaluate aesthetics on the basis of
scientific principles and computational methodologies is a difficult one. To sam-
ple several different author’s thoughts on the matter and help gauge the scope
of the debate see [17, 18, 19, 20, 21].

3 S-Robot Specification

The design of our simulated robots, or S-robots, is loosely based on a software
model for Khepera robot simulation by Harlan et al [22]. An S-robot is a virtual
circular entity with four binary valued proximity sensors together with a three-
channel color sensor. Three of the proximity sensors are located at the front of
the S-robot and the fourth is located at the rear. The forward and backward
sensors scan a field 120◦ wide and the two side sensors scan a field 45◦ wide in
such a way that there is a 15◦ overlap with the forward sensor. Thus the forward
facing ‘field of vision” is from −90◦ to +90◦ up to a distance of twenty units
and the rear facing field of vision is from −60◦ to 60◦ also up to a distance of
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twenty units. Proximity sensors detect other robots and environmental obsta-
cles or boundaries but do not distinguish between the two. The color sensor is
mounted directly beneath center (rx, ry) of the S-robot. The S-robot’s forward
direction is determined by the unit vector (dx, dy). For all of the images shown
here, the robot’s two pens were operated synchronously so that either both were
up or both were down. The reason for this was so that when the S-robot was
mark making, the pen colors could be chosen so that that the mark had an
automatic built-in highlight. An S-robot’s painting mark is five units wide. An
S-robot can swivel (i.e rotate in place) 10◦ clockwise or counterclockwise per
clock cycle and can move v units per clock cycle, −1 ≤ v ≤ 1, in either the
forward or backward direction in accordance with the sign of v. The S-robot
roams on an n×m unit gridded world.

4 S-Robot Controllers

The “onboard computer” for an S-robot is an interrupt driven controller whose
job is to place a sequence of commands in an execution queue, sleep until the
queue is empty, and then plan and load the S-robot’s next sequence of commands
when it is awoken. An S-robot is autonomous because it can place commands in
the queue to request sensors readings so that when it is awoken it can perform
actions based on these sensor values. The controller loads commands of the form
<mnemonic> <argument> where the mnemonic is chosen from the list:

MOV Move
SWI Swivel
SPD Set Speed
SNP Sense Proximity Vector
SNC Sense Color Vector
PUP Pen Up
PDN Pen Down

Only the MOV, SWI, and SPD commands actually make use of the argument,
in all other cases it is treated as a dummy argument. By having the controller
indicate how far it wants the S-robot to travel, or how many degrees it wants
the S-robot to swivel, the burden of timing shifts to the simulator itself. The
simulator calculates how many clock cycles these actions will take so that it
can manage the discrete event scheduling, synchronize the movements of all the
S-robots, detect collisions, and update the sensors accordingly.

While in the future we would like to evolve the controllers themselves, in
this paper we make use of two controllers that we wrote ourselves in order to
consider how the cooperation between two S-robots was affected by their initial
placement and direction headings. Each of our controllers has four pre-planned
painting sequences it can load into the queue. For ease of managing simulated
evolution and evaluating the results, at run time we made only one of the four
painting sequences available to each controller. The four sequences can produce
an elongated double hooked curve, a wedge, a segment of a spiral, and a zigzag
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Fig. 1. Two S-robots using different controllers and different painting motifs. Note that
one of the S-robots did most of its painting by leaving its pens down while executing
a back-up and swivel sequence following boundary collisions.

Fig. 2. Images of two S-robots painting with, and without, exhibiting robot interaction.
On the left, the S-robot painting the closed figure is oblivious to its companion, while on
the right it collides with its companion and gets bumped into a new painting trajectory.

motif. Figure 1 shows an early S-robot test painting made using two S-robots
where one used the double hooked curve to draw closed figures and the other
used the zigzag sequence as it tried to roam more freely over the canvas. The
latter left the pens down during a back-up obstacle avoidance sequence which
explains the appearance of the long curving trails.

We now describe our two controllers. Controller A always first checks the for-
ward sensor. If it is clear, it queues the assigned painting command sequence
followed by commands to swivel, move a short distance away, and take a prox-
imity reading. If the forward sensor is set, but the backward sensor is clear,
it queues a back-up sequence followed by swivel sequence and again requests a
proximity reading. Otherwise, having concluded it is boxed in, it swivels and
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tries to move only a short distance away before taking a new proximity reading.
Controller B, on the other hand, can be set up so that it uses the color channel
sensors to search either for areas of the canvas that have not yet been painted or
for areas that have been painted by one of its companions. Whenever it locates
pixels of the type it is searching for, it queues the assigned painting command
sequence followed by a swivel sequence, otherwise it swivels and moves a short
distance from its present location. In both cases it again queues a color read-
ing. Figure 2 shows what happens when an S-robot with an A controller that
is drawing a closed figure gets bumped off course when an S-robot with a B
controller that is trying to fill in unpainted canvas gets too close.

5 Evolutionary Framework

The S-robot paintings described below were all painted on 200× 200 canvases.
The S-robots were permitted to paint for 150,000 clock cycles. The genome for
an individual S-robot is the vector (sx, sy, d) where (sx, sy) is its initial position
and d is its initial true compass heading, −180 ≤ d < 180. For a collection, or
swarm, of N S-robots the genome g is the concatenation of the genomes of the
individual S-robots. Thus g is a vector with 3N components. The point mutation
operator applied to g displaces each component of g by a small amount, while the
crossover operator applied to genomes from two swarms implements the usual
uniform crossover operator for two vectors with the same number of components.

Our evolutionary framework uses a population of size P = 16. Some evolu-
tionary runs set the number of S-robots at N = 2 while others use N = 4. For
each of G = 30 generations, the painting made by the swarm of S-robots with
genome g is assigned fitness Fg using one of the calculation methods described
below. Then the P/2 least fit genomes are discarded and P/4 breeding pairs are
formed by cloning from the pool of P/2 survivors. Breeding within each pair is
performed using crossover. Finally all P genomes are subjected to point muta-
tion. Thus an evolutionary run considers G ·P = 30 ·16 = 480 S-robot paintings.
The painting associated with the most fit genome is logged after every five gen-
erations. Since point mutation is applied to every genome in the population at
the conclusion of every generation, the implicit genetic algorithm is non-elitest
and therefore the generation in which the most fit genome will appear during
the course of a run cannot be predicted in advance.

6 The S-Robot Fitness Calculation

When a group of N S-robots is making an S-robot painting, the following data is
collected: np, the number of squares of the grid that were painted; nb, the number
of times an S-robot reacted to the situation where the forward proximity bit was
set but the backward proximity bit was clear; ns, the number of times an S-robot
reacted to the situation where the forward and backward bits were both set; and
nc, the number of times an S-robot was successful at color sensing. Figure 3
shows an example of the improvement in image “complexity” that occurred over
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Fig. 3. S-robot paintings where fitness was determined by the two S-robot’s ability to
cover the canvas. The image on the left is the most fit image in the initial randomly
generated population, the image on the right is the most fit image after ten generations.

Fig. 4. Two S-robot paintings where image fitness was determined using a linear combi-
nation of the S-robot behavioral assessment terms. The goal is to evolve a composition.
The image on the left is the most fit image from the original population, the image on
the right is the most fit image from the twentieth generation.

time simply by letting Fg = np, thereby ensuring that the proportion of canvas
that was painted was optimized. Figure 3 shows a comparison of the most fit
image from the initial randomly generated genome population with the most fit
image after ten generations.

Figure 4 shows two S-robot paintings obtained using the fitness function given
by Fg = np − nb + 100ns + 1000nc. Over time evolution causes the canvas to
fill in more and locates the closed figure in such a way that maximal S-robot
interaction can occur. Figure 5 shows the two most fit S-robot paintings after
fifteen and thirty generations from a run using fitness given by Fg = np −
100ns+1000nc. They show two different “solutions” to the optimization problem
posed. One exhibits mutual following behavior by the two S-robots and the
other exhibits avoidance behavior since one S-robot retreats to a corner and
lingers there. Figure 6 shows the synergy that resulted when the fitness function
Fg = nsnc was used and the color sensing robot was initialized to seek the
paint trails of its companion. Finally, Figure 7 shows an example using fitness
function Fg = nsnc + npnb, which adds a new term to the previous fitness
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Fig. 5. S-robot paintings from the fifteenth and thirtieth generations obtained from a
run that used a fitness function that maximized the assessment terms np and nc, while
minimizing ns

Fig. 6. S-robot paintings from the tenth and twentieth generations obtained from a
run that used a fitness function that maximized S-robot interaction by using a product
of the behavioral assessment terms nb and nc

Fig. 7. S-robot paintings from the fifth and twentieth generations obtained from a run
that used a fitness function with interaction terms to maximize both S-robot interaction
and canvas coverage

function in order to increase canvas coverage in an effort to compensate for
the fact that one of the S-robots is now being restricted to making a smaller
mark when it paints. We believe these examples help support our contention
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that it is possible to impose a style on robot paintings by carefully devising the
fitness functions. That is, following a relatively brief period of experimentation to
discover how weighting and combining the parameters affects S-robot paintings,
one can become reasonably competent at formulating fitness functions using the
parameters in such a way that the evolved imagery will matching one’s own
aesthetic tastes.

7 On Autonomous Fitness Calculation

The previous section showed how the evolution of our S-robot paintings occurs
by using optimization to select the initial configurations of the individual S-
robot settings. This optimization treats the fitness calculation as a computation
that assigns an aesthetic value to each painting by the swarm of S-robots that
created it. Even though it would be a very time consuming process, we feel
it is important to make the observation that this fitness calculation could be
performed by the S-robots themselves, because we believe that any collection of
robots that is engaged in evaluating or recognizing their own creativity would
need to include some kind of aesthetic evaluation capability such as ours. Of
course, to fully implement the protocol that our S-robots would need to follow
in order to achieve this aesthetic evaluation goal, the functionality of the S-
robots would need to be enhanced so that they could exchange data with one
other, make use of a pseudo random number generator, and have their initial
position and heading correctly calibrated. Assuming this were done, an outline
of the protocol would be:

1. S-robots save their initial positions and headings.
2. While the painting is being executed, S-robots save information needed to

collectively calculate image fitness.
3. Designated S-robot traverses entire canvas to determine global statistics

needed for fitness calculation (e.g. paint coverage of canvas).
4. S-robots share data in such a way that each is able to calculate image fitness.
5. S-robots compare current fitness value to their saved fitness values to decide,

if necessary, which two of their saved genomes to cross, before mutating their
genomes for the next painting.

6. S-robots are placed on a new canvas with the correct desired initial positions
and headings.

It should be clear that it would not be too difficult to design more sophisticated
protocols for robot genomes involving controller settings, planning algorithms,
or painting sequences in addition to the initial configuration data.

8 Summary and Conclusions

We considered the problem of how to evolve swarm paintings. We did so by de-
veloping an evolutionary framework using simulated autonomous mark-making



620 G. Greenfield

robots. To use the non-interactive genetic algorithm within this framework, we
introduced global image assessment parameters and local behavioral assessment
parameters that could be used for formulating fitness functions to evaluate, or
rank, images on the basis of criteria intended to identify aesthetically interesting
paintings. Even though evolution was only able to control the initial placement
and positioning of the robots, we gave examples to show how the use of different
fitness functions could affect the aesthetic qualities of the robot paintings. We
also explained how, in principle, our evolutionary fitness scheme could be man-
aged by the robots themselves. We believe this represents a first step towards
reaching the eventual goal of having autonomous robots collectively evaluate and
recognize their own creative efforts.
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Abstract. Decentralized coordination can be achieved by the emergence of a 
consensual choice inside a group of simple agents. Work done on emergence of 
social laws, and on emergence of a shared lexicon, are known examples of pos-
sible benefits of consensus formation in multi-agent systems. We think that in 
the artificial artistic realm, the agreement on some individual choices (attrib-
utes, behaviour, etc) can be important for the emergence of interesting patterns. 
We describe here an effective decentralized mechanism of consensus formation 
and how we can achieve a random evolution of decentralized consensual 
choices. Our goal is designing swarm art, exploring the landscape of forms. 
Non coordinated social behaviour can be unfruitful for the goal of collective ar-
tistic creation. On the other hand, full agreement along time generally leads to-
wards too much homogeneity in a collective pattern. This way, the random suc-
cession of collective agreements can lead to the emergence of random patterns, 
somewhere between order and chaos. We show several application of this tran-
sition between consensual choices in a group of micro-painters that create ran-
dom artistic patterns. 

1   Introduction 

The emphasis of this paper is on the design of micro-painters swarms, which are able 
to create interesting patterns in artistic terms. There are already examples of collective 
paintings inspired by social insects: L. Moura [1] has used a small group of robot-
painters inspired by ants’ behaviour, which move randomly in a limited space. Stimu-
lated by the local perception of the painting they may leave a trace with one of their 
coloured pens. The painters rely on stigmergic interaction [2] in order to create cha-
otic patterns with some spots of the same colour. Colour has the pheromone role: a 
spot dominated by a certain colour has the capacity to stimulate the painter-robot to 
add some paint of the same colour. Monmarché et al. [3] have also designed groups of 
painters inspired by ants’ pheromone behaviour. It is based on a competition between 
ants: the virtual artists try to superimpose their colours on traces made by others, 
creating a dynamic painting that is always changing. His painters have the capability 
to “sniff” the painted colours on the environment and react appropriately. The socie-
ties are composed by a small number of individuals (less than 10). We [4] have made 
experiments in swarm painting using also ideas of stigmergy, where painters are at-
tracted by  the state of the tableau spots (presence or absence of ink). 
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Achieving consensus by a decentralised mechanism can be very useful for the co-
ordination of a population of autonomous individuals, where the figure of a leader 
does not exist. It is the case of common lexicon emergence among a population of 
agents. Kaplan [5] has studied the dynamics of consensus, in the case of research on 
language, specifically the formation of a shared lexicon inside a population of 
autonomous agents. In multi-agent AI systems, it can be crucial that agents agree on 
certain social rules, in order to decrease conflicts among individuals and promote 
cooperative behaviour. Shoham and Tennenholtz [6] have tested, experimentally and 
analytically, convergence properties of several behaviours for the on-line emergence 
of social conventions inside multi-agent systems.  

In general, research on convention emergence assumes that all of the options in 
confront are equivalent in quality terms, and any of them has the same probability to 
be chosen by all individuals as a convention. In this case, what is important for coor-
dination and for behaviour simplification is that every one agrees on a rule (driving on 
the right is a human example)—the nature of the rule is not relevant.  

Our goal is to make a population make consecutive collective decisions, producing 
a kind of a random evolution of collective choices. The nature of choices and the 
duration of each consensus have to be completely random. With this goal in mind, we 
want to design behaviours that assure fast convergence, inside a population of parsi-
monious individuals, in situations of maximal competition (worst case). But, at the 
same time, we want also the possibility of dissidence of one or more agents in situa-
tions of unanimity and that one of the dissidents imposes efficiently a new choice to 
others. This way we will achieve a random evolution of consensus controlled through 
an auto-organized mechanism. 

We have tried, without success, to adapt the existing behaviours to dissidence and 
consensus evolution. Thus, we introduced a behaviour that demonstrated better results 
in what concern convergence velocity in convention emergence. This behaviour re-
vealed to be also suited to dissidence and to the random evolution of consensual 
choices along time. 

We thought that one natural application of this dynamic random choice process 
would be the artistic world. So, we have created a group of micro-painters (Gau-
gants), which are able to move and paint inside a virtual canvas. The Gaugants are 
able to adopt consensual decisions, with direct implications on their coordination, 
creating complex artistic patterns. 

In the next section (2) we describe and analyse the most known behaviours for 
convention emergence, showing their limitations for the goal of cycles of breaking 
and forming consensus; in section 3 we introduce a new behaviour based on the no-
tion of force and conflict interaction which is able to converge quickly in worst case 
situations and it can be easily adapted to breaking and forming consensus ; in section 
4 we describe in detail, this successful behaviour; in section 5 we apply the random 
consensual sequence mechanisms to the artistic world. We will incorporate them in a 
society of micro-painters (swarm-painters), the Gaugants, are able to create consen-
sual sequences around colour and we close the paper by presenting our conclusions. 
All our Gaugants paintings were made in Starlogo [7]. 



624 P. Urbano 

2   The Emergence of Conventions 

We will describe and discuss the main algorithms on convention emergence devel-
oped in lexical and social rules formation research. Agents are able to make their own 
decisions, and they can interact with each other, influencing and being influenced by 
others. With time, a winning option can eventually emerge and a consensus is there-
fore attained. The main goal is to reach a global consensual choice through decentral-
ised mechanisms based on self-organisation. In every model each agent has only local 
access to the society, which is composed of anonymous agents. 

2.1   Interaction Games 

The interaction games are based on a series of dialogues involving a pair of agents. In 
each dialogue, two of the society members are randomly chosen for interaction, the 
hearing and speaking elements. These names were used in the context of language 
games, and we maintain them in this paper although, hearing and speaking are used 
here in a metaphorical sense in the course of a unilateral interaction. During an inter-
action, the hearing agent gets access to the speaking agent state, and can change his 
option based on the speaking agent information. These games differ in the type of 
agents’ behaviours. 

Initial situation and behaviour evaluation. Speaking about performance analysis, 
we are interested especially in the average convergence velocity and its variation with 
the number of agents. The convergence velocity is the number of dialogues necessary 
for reaching a global consensus, starting with options that are equally distributed 
among agents—no option dominates in the initial population. 

In the research of convention emergence, initial situations correspond to situations 
of maximal competition. In the literature, two initial situations of maximal competi-
tion are considered. In the first one we have only two choices where each one is 
adopted by 50% of the population, and in the second one we have a different choice 
per individual. 

2.2   Behaviours 

We are going to describe and discuss the most important algorithms that were de-
signed in the course of convention emergence research 

Simple imitation. In the imitation game, agents are defined just by the options they 
use in order to name a particular object. During a dialogue, the speaking agent 
indicates to the hearing agent the option it is currently using, and the latter adopts it 
immediately. Starting with 2 or N options equally distributed in the population (N 
agents), nothing directs the group towards convergence, as every option can increase 
its influence with equal probability. In general, convergence is assured after an 
important series of oscillations in a time quadratic with the number of agents. 

Positive reinforcement with score. The strategy that agents use in this game is to 
adopt the most diffused option they have seen in the population. In this behaviour, 
positive reinforcement with score (PRS), players associate a score with each option. 
An agent is defined by his own option and by a preference vector whose dimension is 
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equal to the total number of options present among the population. Agents register on 
this data structure the number of times they met a member of each option. During a 
dialogue, the speaker chooses as its current option the one with highest score in its 
preference vector (in case of a draw, one of the winners is chosen randomly) and 
subsequently the hearing agent increases by one unit the corresponding counter. 
Kaplan has studied the dynamics of convergence for both initial situations of maximal 
competition. Every counter in the preference vector starts with 0 except for the option 
initially adopted—the respective counter starts with one unity. In this game, 
convergence is quicker than simple imitation and the variation is n log n. 

Positive reinforcement with a forgetting mechanism. Even before the work on 
language games, Shoham and Tennenholz [6] have made a series of experiments on 
the emergence of a consensus where the collective choice was a social rule. They 
have compared experimentally a number of different individual behaviours, where 
one of them was very similar to Kaplan’s PRS referred above. They introduced two 
different forgetting mechanisms in PRS and one of them happened to improve the 
social rule emergence efficiency, reducing the average number of interactions 
necessary to form a collective choice over a number of simulations. The latter 
forgetting mechanism consists in fact in possessing a small-term memory (length N) 
instead of a counter, where only the last N choices seen during the last N interactions 
are registered. The agent only adopts another option if this new one was seen more 
times than his current option during the last N encounters. Agents began the games 
with empty memories. In fact, the simple imitation game of Kaplan corresponds to a 
full forgetting, the short-term memories of the agents have only one cell (they just 
register the current encounters). We have reproduced the experiments of Shoham and 
Tennenholtz for games up to 1000 players, for different memory lengths, and we 
concluded that the most efficient size is 5 and 7 units for 2 and N (one for each 
individual) initial options. 

2.3   The Goal of Repeatedly Breaking and Forming Consensus 

We wish a scenario where it is desirable to alternate between different collective op-
tions, i.e., a succession of consensual situations. How could we work out a decentral-
ised strategy related to the described convention behaviours in order to invert a con-
sensual situation? We have tried to introduce a dissidence component in the most 
behaviours described earlier, but finally we found that it is more suited to the decen-
tralized achievement of stable non-changing conventions. Note that we wish not only 
the success of a consensus inversion, but also the dynamics of an epidemics’ diffu-
sion, with no resistance, with focus on the dissident agent. 

The natural idea was to make a dissident become stubborn for a while after chang-
ing randomly his choice: this way he would maintain his new choice influencing the 
others with whom he meets. We consider that stubborn state is not accessible to the 
other players—agents only communicate their options. Compared to the other behav-
iours, a stubborn agent would be more successful interacting with simple imitators. 
But, the performance would be very poor. In what concerns consensus inversion by a 
stubborn agent we concluded that performance decreases as the memory of encoun-
ters length is increased. An agent that memorizes the last three or four encounters will 
be much more difficult to convince than a simple imitator. 
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This way, the already known behaviours for convention emergence are unsuited for 
our goals. Even in the case of only one dissident. We did not even treat other essential 
problems: what happens if we have more than one stubborn agent at the same time, 
adopting different options? And what is the appropriate moment to end the temporary 
stubborn behaviour as we want a succession of several consensual choices? 

3   Conflict Interactions for Consensus 

In our effort to look for other behaviours suited for our goals, we have introduced 
force as a new attribute of agents, besides choice. The force attribute transforms each 
dialogue in a conflict interaction. The main point of conflict interactions is that agents 
only imitate other agents stronger than them.  

3.1   Double Imitation of Stronger Agents with Reinforcement 

In this successful behaviour, during encounters, the loosing agents imitate both the 
force and the option of the winning adversaries. The new recruited agents will have 
their force increased having more power to recruit. At the same time, equals reinforce 
their force, independently of loosing or winning. This way, we add a positive rein-
forcement if they have the same options. Let’s look at the behaviour in more detail. 

If the speaking agent is stronger (or have identical force) than the hearing agent, 
the latter will adopt the choice and the force of the former. If the speaking agent is 
weaker than the hearing agent, this one will conserve both force and option. In case 
they have the same option at the beginning of interaction, force is reinforced in one 
unit, independently of loosing or winning. In sum, the stronger ones recruit weaker 
agents (these will be at least as strong as the winners imitating their choices, and they 
can even overpass them in case their options were the same) enlarging the influence 
of their options. 
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Fig. 1. The difference of performance of PRS, PRS with short-term memory and our behaviour: 
imitate the stronger 
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We have conducted a series of experiences [8] in order to test the efficiency con-
vergence until consensus in situations of maximum competition (equal initial force 
and equally distributed choices). Our experiments showed convergence for popula-
tions up to 1000 elements, with 2 and N initial options (N = number of players) 
equally distributed, where each players starts with force of 0 units. The velocity of 
convergence is faster than in the PRS game with the forgetting mechanism. Figure 1 
compares both games, in the case of 2 options and N options, plotting the average 
number of encounters necessary for consensus on 1000 simulations for a population 
varying from 100 to 1000 players. 

3.2   Adaptation to Dissidence 

We have verified experimentally that forces tend to be relatively homogeneous after 
consensus. This way, the force of an agent can serve as a local measure of the others’ 
forces. If a solitary representative of an option has significantly more force than all 
the other agents (they all belong to the opposition), than his option will always domi-
nate the whole population with the efficiency of a diffusion process with origin in one 
agent. We have tested populations varying from 3 to 1000 elements, where the soli-
tary agent starts always with 200 times more force than the others, and we have al-
ways found a successful consensual inversion. Thus, to reverse consensual situations 
we just need that an agent changes to another option and increases his force by a sig-
nificant value (for example, 200). 

Therefore, our behaviour showed good results in what concerns fast convergence 
in situations of maximum competition between choices and also to the capacity of a 
stronger individual alone to influence the whole population reversing a consensual 
situation and achieving a new consensus. Here, force functions as kind of power to 
influence and recruit others. 

4   Random Consensus Succession 

We are now ready to discuss the agent behaviour suited for achieving a random collec-
tive succession of consensual choices. In principle, dissidence must appear during a 
consensual situation. But how can an agent, constrained to have local access to others, 
knows that everybody adopted the same option? He just can’t. But he can count the 
number of consecutive equals he encounters (agents with the same choice as his own) 

4.1   Memory of the Number of Consecutive Equals 

Each agent will possess a counter where he registers the number of consecutive agents 
he meets with the same option after he has adopted his current one. So whenever he 
meets an “equal” he increases his counter and whenever he meets a “different” he 
resets his counter to zero. Thus, this memory is a local measure of the choices adopted 
by the whole group. 

4.2   Dissidence Threshold and Probability 

Now we will answer the question: But when does an agent adopt the dissident behav-
iour? After consecutively seeing some reasonable number of agents with the same 
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option. This number is called the dissidence threshold and is a local attribute. After 
having seen at least a certain number of consecutive equals an agent will be a dissi-
dent with some probability, which is called the dissidence probability. The most im-
portant parameter is the dissidence threshold. In fact, consensus duration depends 
very much on this parameter. This way, every agent should adopt the same dissidence 
threshold, and it should also evolve in order for the emergence of different durations 
of consensual periods. 

4.3   The Final Behaviour 

Now we are ready to give in detail the final behaviour. Each agent possesses 4 attrib-
utes: choice, force, dissidence threshold (dt) and probability (dp). During a random 
encounter two agents face each other and the speaking agent reveals his choice and 
his force. The hearing agent updates his equals’ counter. If his counter is less or equal 
to dt than he becomes a dissident with probability dp. To be a dissident is to increase 
his force in 200 units and to change the option to another, chosen randomly; he also 
chooses randomly a new dissidence threshold. After this stage the agent will fight in 
his head with his partner. If he is not stronger than him, he will imitate both his force 
and his choice, otherwise he conserves both. After the fight, comes the reinforcement: 
if he had the same choice as his partner when they met than his force is reinforced 
(one more unit), independently of the fight outcome. 

We know that our behaviour is maximally efficient in situations of just one dissi-
dent. A bigger number of dissidents implies, generally, larger transition periods. The 
exception is the case we have more than one dissident with the same choice—the 
efficiency will obviously increase. In the worst case, every individual has a different 
choice and we know the performance is good, even in the unlikely situation where 
they have the same force (better than the standard behaviours, see fig. 1). 

In each consensual period, every individual will have the same option and the same 
dt. In each dissidence point, those two attribute values will change randomly, which 
means that we’ll have a random consensus evolution concerning the nature and dura-
tion of each consensus. Through the variation of both parameters, we can obtain a 
large diversity of consensual periods and transition periods between two consensual 
choices. We want, in general, short transition periods and variable consensus dura-
tions, constraining these two parameters dt e dp. Note that there are cases where con-
sensus is not even achieved-just think of a zero dt or even a very small value. 

5   Random Consensual Paintings 

The Gaugants are a swarm of small artificial micro-painters, which are able to paint a 
bi-dimensional (toroidal) virtual canvas, composed of small cells. Each patch pos-
sesses an attribute: colour. There is a fixed colour (usually grey) for the background. 
Any other colour corresponds to paint. Initially, we launch these painters in a non-
painted background, each one occupying a particular cell, and they will move along, 
depositing a trace of ink, until the canvas is completely fulfilled. Note that each 
painter is constrained to paint only non-painted cells and when there isn’t any non-
painted cell left, the artistic work cannot change and is considered finished. We can 
also stop the painting after some pre-defined time. After setting up the society, we 
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have a sequence of steps where in each time step every Gaugant executes its own 
behaviour until the painting is finished. 

5.1   The Gaugants 

Each Gaugant is very simple and has a very simple social behaviour. Each one has a 
position (real Cartesian coordinates), an orientation (0..360), and can only inhabit one 
cell, the one that corresponds to the round of their coordinates. They have a certain 
speed, which is a global parameter—speed corresponds to the number of cells they 
move forward in each step. On the other hand, the painters are created with a particu-
lar colour. They can interact unilaterally with any other painter independently of their 
position in order to exchange information unless they are constrained by some radius 
of perception. Our micro-painters will have incorporated the imitation and dissidence 
behaviours we described above, based on force. 

5.2   Consensual Colours 

The micro-painter agents will establish a consensus around colour. Here is the general 
behaviour: 

1. If counter number is no less than the dissidence threshold, change to a dissident 
with probability dp (if success go to 2 else to 3). 

2. Turn into a dissident: mutate and increase force in 200 units; choose a random 
dissidence threshold and reset the counter of equals. 

3. Choose a random partner. If his partner is stronger then imitate him, otherwise 
does not change. Gaugants always imitate the force and equals-threshold of 
stronger agents, during interactions—it is essential for our consensual sequence 
formation. They also imitate colour because this is the focus of consensus. But 
they can imitate other attributes as well, that we find important for pattern crea-
tion. 

4. If he had the same colour as his partner at the beginning of their encounter, 
then increase force in 1 unit (reinforcement). Update the equal’s counter de-
pendent on the colour of his partner (1 unit more in case they were the same 
and 0 in case they were different). 

5. Try to paint his patch (only if it is not yet painted). 
6. Executes its own non-interactive behaviour (normally related with movement). 

Mutation involves always colour: the dissident changes to a different colour (nor-
mally randomly chosen) and he changes also the equals-threshold. However the dissi-
dent may also change other parameters. 

5.3   Experiment 1 

Besides position, orientation, colour, force and equals-threshold, each Gaugant has a 
parameter called Rot In the beginning we divide the global population in a number of 
groups and put each group with the same orientation and position. The agents choose 
their colours in a random fashion. The same happens with the Rot parameter. There is 
a global parameter MaxRot and each agent sets his Rot to a random value inside the 
interval [0,MaxRot]. So, in the initial situation, inside a group, the painters have the 
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same position and orientation, but different colours and Rots. The Gaugants only 
imitate the colours of the others (Rot is fixed since the beginning). In this experiment 
we consider that each painter may communicate with any other. The non-interactive 
individual behaviour consists only in rotating Rot degrees and going forward a num-
ber of steps (speed). Speed is a global parameter and also not subject of imitation. The 
dissident only changes his colour (mutation). 

Fig. 2 shows three snapshots of a painting evolution along time (population of 
2000 painters divide in groups of 20 groups 100 elements. 

   

Fig. 2. Evolution of a painting. 2000 micro-painters divided in 20 groups of 100 elements, dp = 
0,001. MaxRot is 20 and any agent can imitate another (global communication). 

We can see that initially every group element is in the same patch but because they 
do different rotations, the one-colour spots get larger and larger, and after a while, 
every agent is dispersed in the tableau creating a confused background that highlights 
the initial spots. The fact that any micro-painter can choose any other as a partner is 
the responsible for having similar forms and colours in different parts of the tableau. 
We can see also different consensual areas, implying different consensus durations—
this is due to the change of the equals-threshold during dissidence. 

 

Fig. 3. Gallery of 3 Gaugant paintings 

In figure 3 we show 3 paintings that were made by different population dimen-
sions, initial group divisions, speed and MaxRot. For every one we have a population 
of 2000 agents and dp=0,001. These and other pictures can be seen in 
http://www.di.fc.ul.pt/~pub/gaugants. 
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5.4   Experiment 2 

In the second experiment Gaugants will imitate both colour and orientation. The dis-
sident will change colour and orientation. Moving is just going forward a number of 
speed units (global parameter) and rotating to the right a random number of units 
(between 0 and Rot). MaxRot is 6 and each group imposes to theirs elements the same 
position and orientation. Each element begins with a random colour and Rot is ran-
domly chosen between 0 and MaxRot. 

In figure 4 we show the evolution of a painting made by a population of 2000 ele-
ments divided in 30 groups where everybody can choose any other as a partner to 
interact. We can see clearly the sequence of consensus (specially due to colour, the 
change of orientation was very light). 

Looking at figure 5, showing a painting that we call The Swans we can see clearly 
that orientation is changed during dissident behaviour. 

   

Fig. 4. Three snapshots of a painting by 2000 agents that imitate both colour and orientation 

 

Fig. 5. The swans. Four initial groups of 500 agents each. 
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6   Conclusion and Future Work 

Achieving consensus in a population of autonomous agents can be very useful for the 
co-ordination of a swarm of simple entities. Following work on imitation in the area 
of convention emergence, we have developed a new model for achieving consensus. 
Our model uses a force attribute and behaviour is based on imitation. During a con-
flict interaction, when an agent looses the combat it will imitate the option of the 
winner. At the same time the looser will be a little stronger than the winner. We are in 
presence of a process of recruitment where the strong recruits the weak. We have 
analysed this algorithm through a series of experiments and concluded that it has good 
properties, namely fast convergence towards sharing a global option and the capacity 
to select collectively the best quality options, being well adapted to a changing world. 
More, it is well suited to dynamic optimization, where the value of options can 
change based on the context. 

We have applied this collective mechanism of emergence of random consensual 
sequences to the artistic world, namely to the production of collective paintings. We 
introduce the Gaugants, a society of micro-painters and we show some examples of 
paintings somewhere between order and chaos. Consensus around some attributes can 
be the source of some order and pattern but breaking consensus and new consensus 
formation can be the source of diversity and non-homogeneity. 

In the Gaugants artistic world, we are also extending imitation beyond certain local 
parameters (the case of colour or orientation). Our aim is that not only attributes but 
also behaviours are subject to imitation creating more variations in the random-
patterns made by a swarm of micro-artists. 
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Abstract. Human subjectivity have always posed a problem when it
comes to judging designs. The line that divides what is interesting or
not is blurred by the different interpretations as varied as the individuals
themselves. Some approaches have made use of novelty in determining
interestingness. However, computational measures of novelty such as the
Euclidean distance are mere approximations to what the human brain
finds interesting. In this paper, we explore the possibility of determining
interestingness in a more direct method by using learning techniques
such as Support Vector Machines to identify emotions from physiological
signals, and then use genetic algorithms to evolve artworks that resulted
in positive emotional signals.

1 Introduction

Even today, automation has only been effectively applied on systems which are
mechanical in nature. Even with a specialized field like artificial intelligence,
activities which involve human creativity continue to present a major challenge as
far as automation is concerned. Examples of these are systems requiring human
preference. In producing designs amiable to humans, a system must be able
to model what humans find interesting. A system which is able to recognize the
interestingness of something will also be able to mimic curiosity. One major issue
in building such systems is that human preference tends to be subjective. While
one person’s choice might not be the same as that of another, several theories
have been proposed which suggest a common psychological pattern involved in
the process of making those choices.

One approach that has been explored is the use of novelty to calculate
interest[1]. Novelty can be calculated using machine learning techniques such
as neural networks, but in this context, these techniques can be viewed as mere
approximations to the way the human brain recognizes novelty, and based on our
experiments, there are cases when interest is not necessarily a function of novelty.
On the other hand, studies have been done which suggest basic emotions hav-
ing physiological signatures[2]. These patterns can be used as hypotheses with
which to detect interest. This approach, intuitively, is a more direct measure of
interest.

Although the use of physiological signals has been used directly in producing
art[3], Our application involves determining interesting two-dimensional digital
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artworks which can be used as parents to evolve succeeding generations of art
using genetic algorithm. Other possible applications of this technique can be in
any other forms of art which elicits physiological reactions. Another application
could be in the field of medicine. This technique can be used to help quadriplegic
people communicate emotions.

In the following section, we discuss the use of genetic algorithms in evolution-
ary art. In section 3, we introduce Support Vector Machines. In Section 4, we
discuss the methodology and experimental setup. Section 5 presents the results
of the experiments. The last section discusses implications of this research and
future directions.

2 Genetic Algorithms and Art

Genetic algorithms (GAs) are learning methods motivated by the biological evo-
lutionary process. GAs generate succeeding hypotheses by repeatedly combining
and mutating the best ones based on a fitness function[4]. They are a particu-
lar class of evolutionary algorithms that use techniques inspired by evolutionary
biology such as inheritance, mutation, natural selection, and recombination or
crossover. Genetic algorithms are typically implemented as a simulation in which
a population of abstract representations (called chromosomes) of candidate so-
lutions (called individuals) to an optimization problem evolves toward better
solutions. The evolution starts from a population of completely random indi-
viduals and happens in generations. In each generation, the fitness of the whole
population is evaluated, multiple individuals are stochastically selected from the
current population (based on their fitness), modified (mutated or recombined)
to form a new population, which becomes current in the next iteration of the
algorithm.

Artwork can likewise be evolved using genetic algorithms [5]. The basic idea be-
hind creating art from mathematical equations is to produce a color for each pixel
from a formula operating on an x,y coordinate. Normally, the artwork is steered
by a human operator who selects members of a population based upon some aes-

Fig. 1. (a) Two parent trees that can be used to generate artworks. (b) Three possible
children of both parents.
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thetic criteria. Using genetic algorithms, we can form new formulas from the pre-
vious formulas via the “crossover” and the “mutation” operations. The crossover
operator exchanges a randomly chosen branch of one parent tree with a randomly
chosen branch of the other parent to generate children as illustrated in Fig. 1.

3 Support Vector Machines

Support Vector Machines (SVMs) are learning systems that use a hypothesis
space of learning functions in a high dimensional feature space, trained with a
learning algorithm from optimization theory that implements a learning bias
derived from statistical learning theory[6]. When used for classification, the
SVM algorithm attempts to create a hyperplane that separates the data into
two classes with the maximum-margin, called an optimal separating hyperplane
(OSH). Given training examples labelled either “yes/active” or “no/inactive”,
a maximum-margin hyperplane is identified which splits the “yes/active” from
the “no/inactive” training examples, such that the distance between the hyper-
plane and the closest examples -the margin, is maximized. Figure 2 illustrates
a simple example of how an OSH divides two dimensional data. The use of
the maximum-margin hyperplane is motivated by Vapnik Chervonenkis Theory,
which provides a probabilistic test error bound that is minimized when the mar-
gin is maximized. However the utility of this theoretical analysis is sometimes
questioned given the large slack associated with these bounds: the bounds often
predict more than 100% error rates. The parameters of the maximum-margin
hyperplane are derived by solving a Quadratic Programming (QP) optimization
problem. There exist several specialized algorithms for quickly solving the QP
problem that arises from SVMs.

Fig. 2. An Optimal Separating Hyperplane divides the data into two classes

4 Methods

Human Electroencephalography (EEG) measures both the frequency and ampli-
tude of electrical activity generated from the brain. The growing use of EEG has
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enabled researchers to study regional brain activity and brain function, in partic-
ular, emotional activity. In this paper, we basically want to distinguish positive
emotions from negative ones. We use the basic emotions based on the Facial
Coding System (FACS)[7] as our positive and negative examples of emotions
because of their universality and assumed innate neural substrates. The FACS
basic emotions are classified as: Anger, Sadness, Happiness, Surprise, Disgust
and Fear.

Levenson[8] demonstrated that voluntary facial activity produced significant
levels of subjective experience of a certain emotion. Autonomic distinctions were
identified between positive and negative emotions. This also extended to include
distinctions between some negative emotions. Recorded heart rate was also found
to differentiate emotions.

Hubert and De-Jong [9] showed different electrodermal responses and heart
rates when subjects were exposed to film stimuli to elicit a positive and nega-
tive response. A temporary decrease in heart rate was observed during negative
stimulation, while it remained unchanged during positive stimulation. Skin con-
ductance increased significantly during negative stimulation and it recorded only
an initial increase during positive stimulation. Experiments by Collet demon-
strate that each basic emotion has a specific Autonomic Nervous System (ANS)
response pattern associated with it. Fifteen out of fifteen emotion pairs were dis-
tinguished using combined electrodermal (skin resistance, skin conductance and
skin potential), thermo-circulatory (skin blood flow and skin temperature) and
respiratory parameters (instantaneous respiratory frequency). Emotions were re-
dundantly separated thus supporting the hypothesis of ANS specificity[2].

It has thus been proven that there exists specific Autonomic Nervous System
parameters which can be associated with each basic emotion. These parameters
will serve as our basis of the genetic algorithm for selecting which artwork to
evolve.

Due to the stochastic nature of EEG signals, patterns specific to an emotion
are not identical. As such, machine learning techniques can be employed to infer
models of human emotions from these signals.

Support Vector Machines have been shown to be excellent in inferring boolean
functions from a training set of positive and negative examples. In our exper-
imental setup, the positive examples refer to emotions such as happiness, ex-
citement, and surprise, and the negative examples to emotions such as sadness,
disappointment, and anger.

By means of using an image exposure technique, different emotional states
were elicited from the test subjects. The subjects consisted of 8 volunteers (4
male and 4 female; between 21 and 32 years of age). All of the subjects in this
experiment were graduate students whose visual art backgrounds range from
completely none to 3D graphic designers. They gave informed written consent to
the study and were not paid for their participation. All were in healthy condition
and did not take any prescribed medication.

An image pool of 72 images consisting of 36 positive (happy) and 36 negative
(sad/depressing) was compiled. These images have been selected at the discre-
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tion of the facilitator. Each participant was asked to select 2 images from the
pool that stimulated the strongest positive and negative response. Following an
initial resting state of two minutes to calibrate the EEG machine per participant,
subjects were shown their respective selected images. Each subject was shown
their respective image to elicit the corresponding emotion, followed by a 30 sec-
ond resting period in between emotions. The emotional mood states were highly
intensive and maintained for at least one minute. This is a period sufficiently
long for valid estimates of EEG activity to be measured.

Subjects were required to refrain from smoking and consuming caffeine and
stimulants 2 hours immediately preceding the experiment to prevent irregular-
ities in ANS parameters. Absolute silence was observed during all experiments
to prevent signal artifacts.

The ANS parameters recorded were respiration, ECG and 8 channels per fre-
quency, Alpha, Theta and Beta. Alpha (Berger’s wave) is the frequency range
from 8.5 Hz to 12 Hz. It is characteristic of a relaxed, alert state of consciousness
and is present by the age of two years. Beta is the frequency range above 12 Hz.
Low amplitude beta with multiple and varying frequencies is often associated
with active, busy or anxious thinking and active concentration. Theta is the fre-
quency range from 4.5 Hz to 8 Hz and is associated with drowsiness, childhood,
adolescence and young adulthood. This EEG frequency can sometimes be pro-
duced by hyperventilation. Theta waves can be seen during hypnagogic states
such as trances, hypnosis, deep daydreams, lucid dreaming and light sleep and
the preconscious state just upon waking, and just before falling asleep. It was
observed that the women in the group recorded a more pronounced difference
between emotional states compared to the men. The following experimental re-
sults will demonstrate the effects of better training data with regards to emotion
detection.

The collected EEG test data were then classified into training models used for
the learning algorithms of Support Vector Machines. SVM were trained to recog-
nize positive and negative emotions using these EEG models. 16 sets of training
data were utilized, comprised of 2 sets of emotions (positive and negative) for
each of the 8 participants. Upon completion of SVM training, generalized tem-
plates of positive and negative emotions were created. These emotional templates
were the basis upon which the SVM would compare and classify EEG test data,
as either a positive emotion or a negative emotion (Fig. 3).

During the testing phase, each participant was asked to sit in a comfortable
armchair and connected to the EEG machine. The same restrictions and con-
trolled conditions applied to the test subjects, no stimulants, no smoking and
absolute silence during the experiment. Digital art images were presented in a
monitor in front of each subject for one minute while EEG signals were being
recorded. The sequence of presentation of the images was randomly selected. The
group of initial images all belonged to a single “family”, they were all evolved
from the same parents. Using SVM classifier, the artwork that resulted in the
most positive classification was selected to be the image to be evolved. A negative
response to the artwork signals disinterest/boredom, prompting the image to be
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Fig. 3. Flow diagram of using physiological signals to evolve artworks

discarded. A 30 second resting period was observed in between images. During
this resting period, a blank white screen is showed to the participants. Evolution
of artwork was carried out until the third generation of offspring. Each selection
made by SVM was recorded for post-experiment evaluation. In order to verify
the correctness of the automatically chosen artwork, the subjects were exposed
to the same images immediately after the experiment and asked to recall their
choice. This was validated against the record of interesting artworks determined
by SVM.

5 Results

In the testing phase, six subjects participated out of the eight who volunteered
in the training phase. SVM was able to classify eleven out of eighteen actual data
correctly from the six subjects. This translates into a 61% accuracy. Consistent
with the training data, it was also observed that the females in the group recorded
a higher percentage of correct emotions determined (55%) as compared to the
males (45%). This could be attributed to more consistent signals extracted from
female subjects. Sample images used in the experiment are shown in Figure 4.
Figure 5 shows the accuracy obtained by SVM classification. Figure 6 illustrates
the distribution of accuracy between the genders.

6 Conclusion

Previous basis of finding interesting designs have focused on novelty to evolve
art. Although novelty has been shown to coincide with human preference to some
accuracy, it can be considered indirect measures of what the human brain itself
finds interesting. This paper has presented a more direct approach of measuring
interest by using physiological signals which can be used as fitness function to
evolve new designs.
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Fig. 4. Genetic art images on the left are the original images. Images on the right
corresponds to eight children produced from the parent. (a) An example where the
positive classification by SVM matched human preference, enclosed by dotted lines.
(b)An example wherein the positive classification by SVM, enclosed by dotted lines,
did not match the preference of a subject, enclosed by solid line.

Fig. 5. Accuracy of classification

Experimental results have shown that using machine learning techniques such
as Support Vector Machines, human preference in artworks can be generally in-
ferred. For our purposes, we have used this approach to evolve art, however, there
are many other facets wherein this technique can also be applied. Other poten-
tial areas of application can include the field of medicine. One advantage born of
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Fig. 6. Distribution of accuracy between male and female subjects

this approach is the possibility of being able to communicate the preferences and
emotions of quadriplegic people. However, present methods of extracting phys-
iological signals are still considered cumbersome inasmuch as they still require
cumbersome machines.

Future directions of research can extend this approach by incorporating a pre-
processing step such as the Blind Source Separation (BSS) algorithm to minimize
noise in EEG signals which should improve the classification accuracy.
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Abstract. Science of Networks is a very young discipline whose results
have rapidly influenced many different fields of scientific research. In this
paper we present some experimentations of a new approach on genera-
tive music based on small-world networks. The basic idea of this work is
that network can be a useful instrument for musical modeling, analysis
and creation. We studied over 100 musical compositions of different gen-
res (classical, pop, rock) by means of science of networks, then used this
data for generating algorithms for musical creation and author attribu-
tion. The first step of this work is the implementation of a software that
allows to represent and analyse musical compositions, then we developed
a genetic algorithm for the production of networks with particular fea-
tures. These networks are finally used for the generation of self-organized
melodies and scales.

1 Introduction

In 1998, an important paper [1] demonstrated that the connections between
peoples all over the world may be studied as a graph which is not completely
random or regular but an ordered lattice with a small quantity of disorder.
For the construction of this model Watts and Strogatz used a procedure called
“rewiring”, which consists of attaching to each edge of a regular lattice, of the
probability p that the edge be moved to another vertex. Such probability p,
comprised between 0 and 1, determines the randomness of the structure; a graph
with p = 0 is completely regular and a graph with p = 1 is entirely random, for
0 < p < 1 we obtain a network called small-world. This model is based upon two
parameters, path length (L) and clustering coefficient (C). The first parameter
measures the average separation between two vertices in a graph composed by
N vertices and E edges, the second one is the ratio between the edges present
in the neighborhood of a vertex i (which is composed of all the vertices directly
connected to the vertex i) and the maximum possible number of edges of the
neighborhood, that is given by the formula:
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(Ni (Ni − 1))
2

(1)

where Ni is the number of nodes of the subgraph of the neighborhood of i. So
the clustering coefficient Ci is will be calculated as follows:

Ci =
2 ∗ Ei

(Ni (Ni − 1))
(2)

Where Ei is the number of edges of the neighborhood of i. The clustering coef-
ficient of the whole network is the average value of all Ci’s. Usually, a random
graph is characterized by low values of C and L. This means that each vertex
communicates with all the others in a small number of paths, but also means
that the structure is not enough connected, unlike real networks, in which every
vertex (people) results to be more connected with near vertices. On the contrary
a regular network has a high clustering coefficient but also a high average separa-
tion between vertices. The model called small-world, maintains a good clustering
coefficient like regular networks and a very small number of passages are neces-
sary to connect the vertices of the structure. The work of Watts and Strogatz
gave a scientific explanation of the phenomenon popularly known as “six degrees
of separation”, and gave birth to a series of studies which influenced many other
fields of scientific research.

An alternative model of small-world network was given by Newman [2, 3, 4]
which created a graph where the randomness was not introduced by a rewiring
procedure but adding to a regular structure a small number of nodes with a high
number of links per node. These vertices have the same function of the short
paths of the Watts and Strogatz model, since they diminish the average value of
L without the risk of disaggregation for some areas of the graph, as it happens
in some cases with the rewiring procedure.

Another important contribute to science of networks is given by Albert-Làszlò
Barabàsi and his team [5, 6, 7, 8, 9]. Their work is particularly focused on “scale-
free” networks, like the Internet and the World Wide Web. These networks are
characterized by the presence of some hyper-connected nodes, also called hubs,
and a large quantity of other nodes with a very small number of links. The work
of Barabàsi et al. has shown the most important features of these networks,
such as the power law distribution of links in the structure, the presence of
different areas (called continents by Barabàsi) in the WWW, and shown the
error and attack tolerance of scale free networks. Barabàsi has also studied the
average separation between web pages (approximately estimated in 19 passages,
or clicks), finding surprising similarities between scale-free networks and the
small-world model defined by Watts and Strogatz.

2 Musical Modeling Through Networks

According to Latora et al. [10, 11, 12] every complex system can be seen as a
network where the single elements are represented by nodes, and the links show
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the interaction between parts. Music may also be thought as a complex system
[13], with a strong interaction and emerging properties. Recently, network has
been adopted as a metaphor for algorithmic composition and for musical analysis.
In some cases [14] the “interconnected musical networks” have been used as
instruments to improve interaction in musical performances and as extension of
Cage’s work on indeterminacy [15]. Composers such as Weinberg use network as
a tool to connect musicians and performers producing brand new interactions
and very sophisticated compositional practices (that in some cases involve a
great amount of people at great distances). In other cases [16, 17, 18] network
becomes an instrument for graphical and analytical modeling of music and a
new paradigm for generative and evolutionary music [19, 20].

Every musical composition may be modeled as a network where each node
corresponds to a note and each link represents a connection between notes.
For instance, if a song starts with F and the second note is A# we will have
two nodes connected by a link and so on, till the end of the song. Network
becomes a sort of map of the composition, a catalogue of the paths performed
by the musician, represented as they were the streets of a city, or the traffic of an
airport. All the connections in the map represent melodic intervals of the studied
song. This kind of representation is advantageous because it shows, in a single
image, the complex plot of interplay in a composition. The connections between
nodes clearly show how the notes are linked, so that it is easy to understand
how a melody is organized only by watching the graphical structure. We may
think network as an instrument for didactic use too. As shown in Fig. 1 a simple
picture can help a non expert listener or musician comprehend musical concepts.

Fig. 1. Screenshot of SWAP
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Musical structures contained in compositions may be easily characterized; for
instance, all melodic intervals or the notes directly connected to a generic note
are immediately apparent. In the next section a software for musical modeling
and creation by networks will be described.

3 SWAP (Small World Analyser and Player)

SWAP is a software for musical representation, analysis and synthesis. SWAP’s
interface is divided in three main areas:

1. Control Panel,
2. Net View,
3. Logger Window.

The Control Panel, situated at the left of the interface, is the area where all
the controls, buttons and information are placed. Through this area the user
may execute all the operations available in this software. The Net View, at
the center of the interface, is the part of the interface where the networks are
represented, while the logger window (placed under the net view window) shows
all the operations made by SWAP. We may divide the functionalities of SWAP
in two parts. The first is representation and modeling function. Giving a MIDI
file as input, SWAP creates a representation of the composition as a network. All
numerical information on networks can be controlled by the Net Info window
placed in the control panel. This window shows all data extracted from the
composition, such as number of nodes, edges, average edges per node number,
clustering coefficient, path length, and so on. SWAP also contains a window
called Node Info, which gives all the information about every single node of the
network. The user may select a node directly from the Net View with a mouse
click. The selected node will be automatically evidenced on the graph and all
the edges connected to this node will change color from white to fluorescent
green, so all the notes directly connected to the selected one will be immediately
apparent. On the Node Info window will appear all the information on the node:
value (A, A#, B etc.), number of links and so on. Another important option is
the Mouse Explore function, which allows to rotate the network in the Net View
area and to visualize it from the best view point.

In the Control Panel are also placed all the controls for the construction of a
musical network, which can be created by the user by choosing the number of
nodes, links per node and the percentage of randomness in the links’ distribution.
A network (constructed with SWAP or loaded from a MIDI file) may be saved as
a text file which represents the network as a matrix. Each entry of this matrix
has two indices related to the nodes of the network, and its numerical value
represents the connections in the structure. So if we have 0 between two nodes
there is no link between them, on the contrary if the value is 1, we have an
edge that links the two nodes. This representation allows the user to define
networks and to place each link in the structure finding the more appropriate
configuration. The second functionality of SWAP is called Synthesis, and allows
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to create scales and melodies from the networks created or from those imported
from MIDI files. This function will be better described in another section of this
paper.

4 Graph-Based Analysis

The first step of our work consisted of thorough analysis of the topology of
networks derived from musical compositions. The parameters analysed are the
ones studies by Watts and Strogatz in their paper, clustering coefficient and path
length. We extracted these data from the networks and then compared all these

Fig. 2. Comparisons between C and L values of Bach’s compositions with random and
regular networks with the same number of nodes and edges

Fig. 3. L-C Space. Networks extracted from Bach’s (squares) and Mozart’s (circles)
composition. Each symbol in the L-C space is characterized by values of clustering
coefficient and average path length.
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values with the values of completely ordered and random networks with the
same number of nodes and edges. The results are very interesting, since the data
of our networks are found to be intermediate between order and randomness.
Fig. 2, shows some data extracted from Bach’s compositions and some graphical
representations of these comparisons.

The second step was to compare values from different authors trying to find
interesting differences that can be underlined by means numerical and graphical
data. We introduced a two-dimensional space with path-length on X axis and
clustering coefficient on Y axis (Fig. 3), and found a certain tendency of different
authors’ compositions to occupy different areas of this space. There are of course
some overlaps in these data. Although these data are only preliminary, but we
also find them interesting.

Finally, we carried out an ANOVA analysis between groups of compositions
of different authors. We compared C and L values from about 100 musical com-
positions classified for musical genre (Classical or Pop) and author (J. S. Bach,
F. Battiato, The Beatles, G. F. Handel, W. A. Mozart and F. Zappa). The first
analysis did not produce significant results, there was no significant difference
between data from different genres, but the second one showed significant dif-
ferences in the clustering coefficient of different composers:

F (5, 95) = 4.461, p < .001

this result may be a good starting point for more analytical studies and for the
development of graph-based algorithms for author attribution.

5 Creation of Melodies

There are two basic algorithms for the production of melodies through SWAP.
The first finds the minimum path between given start and an end nodes, gen-
erating a simple melody. This function, based on Floyd-Warshall algorithm, is
basically a way of exploring network’s characteristics through sound. From a
musical view point, the scales derived from this technique are not very inter-
esting, but we found this algorithm a very interesting to better understand the
dynamics of the studied network.

The second is a simple random algorithm called Walking which, starting from
a given node, randomly chooses the path to cover by randomly selecting subse-
quent links. The user may define the start node, the sequence’s length, the speed
(expressed in beat per minute) and the resolution of the melody (1/4, 1/8, 1/16
etc.). The melodies obtained by this algorithm are much more pleasant than the
previous ones. In this case, the melody does not follow a minimum path but is
“free to walk” in the structure. This method may show some similarities with
the Markovian Chains, but walking is a simpler algorithm. Markovian Chain is a
stockhastic model in which the transition probability which determines the pas-
sage to another state of the system depends only on the previous state. Walking
is a model in which the selection of the paths is based on the distribution of links
in the structure. Thus, if we have as fist step a node connected to three other
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nodes, the three respective links have the same possibility of being choosen. The
only constraint is the connection between vertices, and the paths are possible
only where a link is placed (there is no possibility of going, for instance, from a
generic node A to another node B if there is no link between them).

Of course, the resulting melody is influenced by the distribution of the edges
in the network, so that if we have interesting intervals in the network the scales
will be more music-like. For instance, also the “imported” networks can be re-
used in order to create melodies. This is an interesting technique because allows
to use a structure whose melodic intervals (i.e., the connections between nodes)
are of course non-dissonant, so the resulting scale should be melodic.

The interesting thing is that the melody produced by means of this technique
are completely different by the original one. As we discussed above, network
is a kind of representation which can be thought of as a map, so a virtually
infinite number of musics can be created by the same network, just like there are
infinite ways of walking in the streets of a city. Since our algorithm is completely
random the musics generated are self-organized, so we do not even influence
musical creation.This result suggests that a “good” network is able to produce
nice melodies just by means of a random algorithm. In the next section we
will introduce the use of genetic algorithms for the generation of networks with
determined characteristics in order to produce interesting melodies.

6 Genetic Algorithms

As we discussed above, we created a representation in which musical composi-
tions are characterized by points in a L-C two-dimensional space. Since we noted
the tendency of compositions of different authors to occupy different areas in the
space, we decided to implement a system for the creation of “author-like” net-
works, based on genetic algorithms. Roughly speaking, we can inscribe a region
of the space in a circle of radius r, and decide that the compositions contained
in that area are the ones we are looking for.

Then we use genetic algorithms with the purpose of seeking graphs located
near the center of the circle. So to do this we defined a fitness function for
minimizing of the distance from the center of our interested area. For instance,
let P be a point in the L-C plane, with distance d from the center T of our area.
We may define the fitness function as follows:

f(d) = 1− d
log(1−t)

log(r) (3)

where t is the threshold parameter. Fig. 4 shows the basic features of our fit-
ness function. After defining an interesting region, for example by observing the
distribution of compositions of a certain author in the L-C plane, it is possible
to grow populations of networks situated near the center of the circle. In order
to create a population of networks we define the number of individuals of the
population and the number of nodes and links of networks. As we said we cre-
ated a fitness function for minimizing the distance from a target point called T
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Fig. 4. Graphical representation of fitness function target

in the L-C plane, of course the target is characterized by values of average path
length (X axis) and clustering coefficient (Y axis). Thus we define the following
parameters: Target Point (i.e., the C and L values of the networks), Random
Rate (the percentage of new fellows), Injection Rate (the number of epochs for
each random injection of individuals), Mutation Rate (the probability to have
a mutation of a gene), Elite (the percentage of individuals that will be taken
for the next population), Crossover Rate (the number of individuals that will be
genrated by crossover), Radius (the radius of the target area) and the Number of
Epochs. Fig. 5 show results of some experiments on a population of 300 fellows
for 1000 epochs. We defined a random rate of 5% , an elite of 2%, a crossover
rate of 70% and a mutation rate of 0.1%. The initial population has an average
fitness just above 0.3 and the best individuals are very close to the average, after
1000 epochs the best networks have more than 0.8 of fitness and the mean is
over 0.75. As shown in figure, the introduction of new individuals generates a
decrease of the mean, in fact the mean’s values are continuosly oscillating. In
this case we fixed the injection rate at 10, so every 10 epochs a 5% of new fellows
are inserted in the population.

7 Conclusions and Further Developments

This work shows a new approach on musical representation and analysis based
on small-world networks. Musical pieces have been represented as graphs and
studied by using the tools of science of networks. The results obtained with these
experiments are interesting since they underline similarities between the inner
structure of some compositions and the graphs studied by Watts and Strogatz
and by Barabási. Of course, this is the first step of a more complex study ori-
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Fig. 5. Results of experimentations with genetic algorithms. The black line represents
the fitness values of the best fellows and the grey line represent the mean.

ented to generative and evolutionary music, computer assisted composition and
computer-based musicology.

Our future work will be basically focused on the deepening of our statistical
analysis, and on other ways of graph-like representations (for example, using
hubs and scale-free networks). Other experimentations will be oriented to find
useful criteria for defining pleasant music and to use them to build appropriate
fitness functions for the construction of musical networks. We are trying to use
Zipf’s law [21, 13, 22, 23] for the evaluation of music. Moreover, we are going
to define more complex and sophisticated algorithms for musical creation and
sound synthesis, both with and without human interaction.
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Abstract. This paper describes an ongoing exploration into the use of
Continuous-Time Recurrent Neural Networks (CTRNNs) as generative
and interactive performance tools, and using Genetic Algorithms (GAs)
to evolve specific CTRNN behaviours. We propose that even randomly
generated CTRNNs can be used in musically interesting ways, and that
evolution can be employed to produce networks which exhibit proper-
ties that are suitable for use in interactive improvisation by computer
musicians. We argue that the development of musical contexts for the
CTRNN is best performed by the computer musician user rather than
the programmer, and suggest ways in which strategies for the evolution
of CTRNN behaviour may be developed further for this context.

1 Introduction

At the junction between computer music and artificial intelligence lies the goal
of developing generative or interactive software agents which exhibit musical-
ity. The appearance of musicality is determined either by a listening, watching
audience or an interacting performing musician. Attempts in this domain have
taken on a wide variety of forms due, on the one hand, to the wide variety of
methods in artificial intelligence, and broadened further by the myriad possible
interpretations of these techniques in a musical domain, and in addition by the
myriad musical styles and substrates in which such an interpretation takes place
[1, 2].

The approach presented here is inspired first and foremost by a search for
general-purpose behavioural entities that could be adopted by computer mu-
sicians in a flexible manner. Our approach is influenced by, and indeed made
possible by, the availability and popularity of modular extensible computer mu-
sic platforms such as Max/MSP [3], PD [4] and SuperCollider [5]. Practising
musicians who work with these tools often build up personalised repertoires
of software patches and commonly adapt publicly available third-party objects
to their own performance needs. This feeds a powerful form of social creative
search in which something designed with a given purpose in mind may be re-
appropriated indefinitely. Thus rather than thinking in terms of stand-alone
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intelligent musical systems, we conceive of a generic behavioural tool that can
be developed in different directions by practising musicians.

This paper proposes the Continuous-Time Recurrent Neural Network
(CTRNN) as one such tool. The remainder of this section gives a background and
technical description of the CTRNN and discusses aspects of its behaviour that
are relevant to musical improvisation. Section 2 discusses the implementation
of the CTRNN in Max/MSP and initial performance uses of the CTRNN, and
expands upon our methodology. Sections 3 and 4 discuss methods for evolving
CTRNNs and for designing performance contexts for them.

1.1 Background

Non-symbolic artificial intelligence (AI) emphasises low-level behaviours at the
heart of all species’ strategies for survival, as understood in terms of Darwin’s
theory of evolution [6]. Early work in cybernetics by Grey-Walter [7] established
an experimental context in which wheeled robots, containing sensors and motors
connected by simple analogue circuits, could be designed to produce observably
lifelike behaviour. Since the development of Genetic Algorithms (GAs) and in-
creasingly smaller and faster computer processors, it has become possible to
evolve compact algorithms that allow a physical wheeled robot to satisfactorily
perform more precisely defined cognitive tasks.

The notion of minimal cognition [8, 9] has helped home in on the meaning of
the term lifelike. In recent years a great effort has been made to understand how
extremely simple biologically-inspired algorithms could learn tasks such as object
recognition, selective attention and simple memory, using CTRNNs embodied in
simulated agents and situated in simple physical environments.

1.2 Technical Description of the CTRNN

CTRNNs are a kind of artificial neural network: an interconnected network of
simulated neurons modelled on a computer. In the case of CTRNNs neurons are
typically of a type known as the leaky integrator. This is a greatly simplified
model of a real neuron, with a continually updating internal state determined
by a differential equation,

τi(dyi/dt) = −yi +
∑

Wijσ(gj(yj − bj)) + Ii (1)

where τi is the time constant, gi is the gain and bi is the bias for neuron i, Ii is
any external input for neuron i and Wij is the weight of the connection between
neuron i and neuron j. σ is a non-linear transfer function which in our case is
tanh.

CTRNNs allow recurrency, meaning that network connections can exist in
any direction, including potential connections from any node to itself. The com-
bination of recurrency and internal state makes for a system which can produce
complex internal patterns of activity and which has a memory-like response to
its environment [8]. Each node has three parameters – bias, gain and time con-
stant – associated with its behaviour, and each connection between nodes has
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Hidden NodesInput Nodes
Output Nodes 

(subset of hidden nodes)

Fig. 1. CTRNN architecture

one parameter – a weight. Due to the complex relation between network param-
eters and network behaviour, along with the non-specificity of solutions to tasks
that they are typically used for, a common method for arriving at a CTRNN
which performs a certain task is to use a Genetic Algorithm (GA).

CTRNNs are known to be theoretically capable of replicating any dynamical
system, and it has been shown that very small CTRNNs are capable of arbitrarily
complex dynamics [10].

1.3 Categorisation of Behaviour from CTRNN

Our interest in the CTRNN as a musical unit stems from the potentially un-
bounded range of temporal dynamics of which it is capable. It is a sub-symbolic
system, meaning that it is unlikely to have immediate application in the domain
of discretised musical events traditional to computer music and fundamentally
implicit in human musical behaviour. Although an appropriate use of CTRNNs
would therefore be in the signal domain, we focus on simple rhythmic behaviours
at the control rate, and we refer to this domain as gestural. The CTRNN’s in-
teraction with the world consists of vectors of real valued inputs and outputs,
updating continually and frequently, in our case on the order of 10 milliseconds.
A representative example of the CTRNN in a musical context, which illustrates
our intended use of the system, places it with a series of features extracted from
an audio stream as input, and a set of synthesis parameters as output. In this
case the CTRNN is conceived of as a direct interactive participant in a musical
performance.

Beer [10] provides an extensive mathematical analysis of the behaviour of
small CTRNNs, the presentation of which is beyond the scope of this paper. A
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key notion in such an analysis is that nodes with suitably strong self-connections
can saturate, meaning that their own feedback dominates their input and locks
them in a certain state. In this way nodes can act as internal switches which
influence the behaviour of the rest of the network. Such nodes may flip states.
More broadly, due to its internal state and recurrency, the state of a CTRNN at
time t is determined not only by the present input, but the history of inputs up
until time t, and the starting state of the network.

In the case of a static input (i.e., whose values are not changing), CTRNNs
can be described in terms of their internal dynamics in the same way as any
closed dynamical system. The network will either find a static resting state,
move periodically, or move quasiperiodically or chaotically [11].

In the case of changing inputs, we consider three distinct categories of CTRNN
behaviour as perceived. These categories are specific to our musical purpose and
are not derived from a formal approach: they attempt to capture a musician’s
perception of CTRNN behaviour rather than CTRNNs themselves.

In the first category, each input state leads to one output pattern, which may
be either static or cyclical. As the input state moves from A to B and back again,
the CTRNN moves between associated patterns, returning to the same pattern
for each input.

The second category is identical to the first except that after changing input
state from A to B, a transitory period of indeterminate length precedes the
output’s arrival at its resting pattern. The length and form of these transitionary
sections vary depending on the particular trajectory through input states, but
always end up at the same pattern for any given input state.

In the third category, there may be more than one output pattern for each
input state, and which one is arrived at will be determined by the trajectory
through input states. Thus moving from input state A to input state B leads
to a different output pattern than if one were to move via input state C. In
other words, the system has multiple attractors for the same resting input, and
is dependent on the history of the input leading up to its resting state.

2 Musical Uses

The use of neural networks in studies of music cognition and in composition al-
ready has a long and rich history. Commonly cited benefits of a neural network
approach to musical problems are generalisation, the possibility of extrapolat-
ing general features from a corpus of examples, and graceful degradation, the
robust nature of the network’s response to unexpected inputs, as compared to
rule-based systems. [12] and [13] contain an exemplary cross-section of such
work. Mozer [14], for example, uses trained recurrent neural networks to gener-
ate musical melodies with note-by-note prediction. He identifies and addresses
problems of securing musical structure over longer time scales than are naturally
dealt with by the network, and thus improves the quality of melodies generated
in this way. In this and other work in music and AI the final goal is often a
machine that makes novel competent music within a given context without the
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aid of a musician. According to the valuable ‘Frankenstein’ analogy provided by
Todd and Werner in the same volume [1], the present approach differs from this
body of work by beginning with the problem of the ‘monster’s’ acceptance in
society.

2.1 The CTRNN as Max/MSP Object

The first author has implemented the CTRNN in C as a Max/MSP external
object. The object can read and write networks to and from plain text files,
and can also randomly generate networks according to a set of user-specified
parameters. It can also save and recall network states.

Inputs are sent to the CTRNN as a list of floats to the object’s left inlet. Each
input list triggers one update of the network, causing a list of output values to
be sent from the object’s left outlet. Inputs should therefore be sent at equal
time intervals. For behaviour suitable for human interaction, a rate of the order
of 10 milliseconds is appropriate. This can easily be achieved in a robust manner
in Max/MSP.

We describe below how networks with specific behaviour have been generated
using a GA in a simple command-line program so that the Max/MSP object
can then read them. In other cases, users can randomly generate networks by
selecting a number of input nodes, a number of outputs, and a number of in-
ternal (hidden) nodes, as well as setting maximum and minimum values for a
number of parameters that will then be generated at random. These ranges in-
clude values for the time constants, biases and gains for both hidden nodes and
input nodes (separate ranges are allowed for each type of node), for weights of
connections from input nodes to hidden nodes, and finally for weights of con-
nections from hidden nodes to hidden nodes. There is also a density parameter
which determines the proportion of connections that are non-zero. Randomly
generated networks obviously do not have precisely pre-specified behaviour, but
they still obey tendencies. For example it is easy to vary the number of hidden
nodes and the density of networks and observe an increased activity as both of
these values are increased.

2.2 Development of a Methodology

Initial motivation for using the CTRNN came from a desire to generate metri-
cally free rhythmic patterns, inspired by the work of Karl Sims in evolving loco-
motive behaviours [15]. Rhythmic patterns were achieved by placing a threshold
on one of the CTRNN outputs in order to trigger drum events. This idea was
the subject of the first author’s MSc dissertation, and was conducted entirely in
a non-realtime context.

The second author, working with freely improvised electroacoustic music, has
started working with a trial version of the CTRNN Max/MSP object to control
a spectral filter through which he plays the piano. This reframes the original mo-
tivation behind using the CTRNN according to a distinction in electroacoustic
theory between the systems autonomy of the instrument and the control of the
performer. According to this the most interesting period in the case of the piano
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is its decay period, which lies beyond the control of the player: the sound is on
its own after the hammer strikes the string. The pianist John Tilbury describes
this as the contingency of the piano sound [16]. The present form of the CTRNN,
even randomly generated, offers an opportunity to implement similar contingent
relationships between performer and electroacoustic process, generating micro
structures that control electroacoustic processes in turn dependent on the per-
former’s activity. Given the CTRNN as a Max/MSP object the user would be
free to develop his or her own approach to the problem of how to map inputs and
outputs, and take on the responsibility of making the CTRNN sound good in
his or her own musical context through an iterated approach of performance and
adjustment. The challenge of refining parameter mappings is already familiar to
any musician developing interactive software.

Introducing evolution to the project suggests the possibility of developing a
system that has certain behavioural facets that would drive an engaging im-
provisation in very basic ways: for example responding to an input pattern but
not in the same way every time; behaviour potentially changing over time; set-
tling into patterns but producing variations on themes. Put more loosely, such
a system should have idiosyncrasies and tendencies that the user could put to
effective use to drive an improvisation. However, writing fitness functions that
result in these desires being met is not straightforward. In the following section
we describe initial attempts to do this.

3 Evolving Musical CTRNNs

Our long term aim is to develop methods for allowing musician users to be able
to define their own behavioural targets for CTRNNs. However, since the use
of GAs is not straightforward, some thought needs to be given to how this is
facilitated, and what kind of behaviours can be defined. This paper deals with
a simple initial experiment to evolve CTRNNs that exhibit the third category
of behaviour in section 1.3, in the hope that the resulting networks exhibit
behaviour that is inherently appealing to musicians.

This only goes half way to the claim of evolving musical behaviour since there
are many musical considerations left over. In the previous section, we argued that
the CTRNN should be placed in a musical context by the musician user. In the
language of behavioural robotics, this means it is up to the musician to embody
and situate the CTRNN. Embodiment, in this context, refers to the CTRNNs
set of input and output systems in Max/MSP, such as audio analysis tools at the
input, and synthesiser parameters at the output. Situatedness, in this context,
refers to the musical environment in which the CTRNN will be used, which
includes the playing styles and knowledge of the performers who will be playing
with the CTRNN. Note that whilst, ideally, behavioural systems are evolved in
embodied, situated contexts, the complications that come with achieving this in
a musical context are side-stepped by trying to evolve general-purpose musical
behaviours. Such issues are addressed in the concluding remarks.
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CTRNNs are assumed to be fully-connected in the hidden layer, and with
a full set of connections from the input layer to the hidden layer. Non-fully
connected CTRNNs are thus expressed as having some zero weights. The number
of parameters needed to describe a fully-connected CTRNN with n hidden nodes
and m input nodes is n2 +3n+nm+3m (since there are n2 connections between
the hidden nodes, and nm connections from the input nodes to the hidden nodes,
each with a single weight, as well as bias, gain and time constant parameters for
each of the hidden and input nodes). Genotypes for the CTRNNs were expressed
as vectors of real numbers in the range {0,1}, with a mapping from genotype
to phenotype that transformed this range to prespecified ranges for each of the
parameters. All mappings were linear except for time constants, which were
mapped exponentially.

A rank-based GA was used with standard crossover and mutation. At each
generation, pairs of individuals from the fittest third of the population were
selected at random for breeding, and their offspring were used to replace indi-
viduals from the weakest third of the population. Mutation involved adding a
random vector of average length 0.01, drawn from a Gaussian distribution, to
the individual genotype string. Genotype values that fell outside of the range
{0,1} were bounced back in with an elasticity of 0.1. Multipoint crossover was
used, with a probability of 0.1 that the source genotype would be swapped at
each point along the genotype.

The fitness function for the CTRNN was as follows: a number x of input
patterns were generated using random walks starting from the origin (the same
set of input patterns were then used for all of the trials). For each input pattern
the CTRNN was reset to zero, and run on the input values for t time steps, then
on a fixed input of zero for another t time steps, and then for another t/10 time
steps, still with the zero input, the output sequence for this final period being
stored. The x stored output sequences were then compared with each other in
order to establish their similarity. For each pair of outputs, absolute differences
between corresponding pairs of values in the output sequences were taken and
summed to produce a dissimilarity score. This was repeated with different time
offsets, and the lowest possible dissimilarity score was taken (i.e., the score for
the case in which the pairs were most similar). The average of the dissimilarity
scores for each pair of outputs was taken as the fitness of the CTRNN. This
meant that out of phase, but otherwise identical, periodic outputs would receive
a score of zero. Two versions of the evolutionary process were attempted. In
the first a gradual increase in the number x of input sequences over the course
of the GA was used in order to smooth the difficulty of the task. Early on in
the GA CTRNNs had tasks involving 3 input sequences, and over time this was
increased to 20 input sequences. In the second version, 20 input sequences were
used right from the beginning. GAs were run for 2000 generations. t was fixed
at 500.

A number of evolutionary runs were made with different values for the number
of hidden nodes from 3 to 10. In each case networks were give two inputs and
three outputs. This was so that the network could be later interacted with using
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a two-dimensional controller in Max/MSP (hence the two inputs) and could be
visualised in a three-dimensional parameter-space plot (hence the three outputs).

The resulting CTRNNs were tested for the generality of their behaviour by
being compared with 200 random CTRNNs of the same number of nodes on
an identical task as the fitness function, but with a new set of random input
patterns which were different from the ones used in the fitness function. In
other words, the CTRNNs were tested to see how far their history-dependent
behaviour extended. Figure 2 shows the results of such a test averaged over 10
trials. A few random nodes score higher than the evolved nodes. It was noted
that random nodes with a higher density of connections scored higher, exhibiting
more erratic behaviour in general. However, despite the fact that the performance
of the evolved CTRNNs is quite variable, the graph indicates that the evolved
behaviour has some generality.

Fig. 2. Generality of fitness of evolved networks (lines) versus random networks
(points) for a range of node numbers. The lighter line shows networks evolved using
an incremental fitness function.

Informal interactive testing of the evolved and random networks showed a re-
markable range of behaviours, and the most immediate implication of this is that
a more thorough categorisation of CTRNN behaviour from a musical point of
view is in order. Evolved networks tended to be doing something more interesting
and often the nature of their evolved behaviour was immediately apparent: by
repeating the same input patterns one could easily observe the network falling
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into distinct cyclic attractors. The incrementally evolved networks seemed to
find less satisfying solutions which often involved oscillating at a rate near to
the time step of the CTRNN update rules; a behaviour that it would probably
be beneficial to punish. Larger networks were generally more interesting, but the
best networks from this trial, as judged by the first author, were the 5 and 10
node evolved networks, suggesting that larger networks are not necessarily more
interesting.

Similar informal tests with a wider set of CTRNNs revealed the potential
for compositionally useful behaviour in almost all networks, both random and
evolved: regardless of interactive potential or sustained varied dynamics, many
of the oscillations made by CTRNNs at cyclic attractors were rhythmically and
dynamically pleasing when connected up to various synthesis or filter parameters.

We have used the word ‘interesting’ without hope of qualifying it with why
things are interesting at this stage. More formal tests should be set up to deter-
mine which kind of network behaviours are of interest to a range of performing
musicians. Since our focus is on interactive behaviour in an improvisational con-
text our main concern is whether the CTRNNs can sustain interest through
interaction. Whilst our small evolved CTRNNs had a relatively predictable be-
haviour (although they produced more sustained interest than random networks
of a similar size), more complex CTRNNs (with large numbers of densely con-
nected nodes) produced complex output patterns that were intriguing to listen
to but appeared to have very little to do with what was being played to them,
thus failing to be interactive. Truly interesting interactive behaviour comes with
the sense that the CTRNN is responding to its input at the same time as per-
forming autonomously. This has been hard to pinpoint in the present study but
should be made a central concern in future tests.

We conclude that it is relatively easy to define targets for CTRNN behaviour
and approach those targets through evolution, but that further investigation is
needed into how to specify target behaviour that is musically useful. Now that
a framework is in place in which CTRNNs can be evolved and tested, both in
simulation and through direct interaction in musical contexts, it will be possible
to extensively explore a variety of approaches to designing fitness functions and
applying network behaviours to musical goals. Plans for future work in these
areas are discussed in the following section.

4 Future Work

4.1 Finding Target Behaviours

With the standalone GA application in place, exploring behaviours evolved for
different tasks becomes a simple matter of writing new fitness functions. The
fitness function used in the experiment above aims to produce a behaviour that
exhibits some minimal aspect of musicality. A range of similarly general purpose
fitness functions could be added to this to produce a repertoire of behavioural
units, and to this extent it would be desirable to test a variety of simple fitness
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Fig. 3. Example of an output trajectory for an evolved CTRNN

functions in an iterative manner with improvising musicians. Alternative func-
tions could focus on levels of predictability, rhythmic features of the CTRNN
behaviour, call and answer dynamics, or producing specific patterns under spe-
cific circumstances.

A natural development would be to get CTRNNs to imitate human perfor-
mances, beginning with recorded training data which the CTRNN is expected to
imitate. Referring back to our representative example in section 1.3, a performer
could take over the part of the CTRNN, controlling the filter, and all input and
output data could then be recorded. However, this approach implies difficulties:
it would not be sufficient just to feed the CTRNN with the input sequences and
rate it according to how close its output comes to the target output sequences.
At the very least the sequences would need to be divided into a set of discrete
trials; this is necessary in order to convince the network to pay any attention
to its inputs. To this end it will be necessary to explore how data sets can be
recorded and divided into significant events either manually or automatically.

4.2 Developing Mappings from CTRNN Outputs

When using the CTRNN in Max/MSP, the user is able to observe three dimen-
sions of output states from a CTRNN in a window generated in Jitter, the video
editing extension to Max/MSP. By observing output states during practice we
propose developing this interface so that a musician could draw colour-coded re-
gions into the 3-D space that he or she wishes to correlate to specific parameter
settings of an instrument. A feedforward neural network could then be trained
to implement the desired mapping. Through an iterative process of practice and
adjustment a more carefully crafted combination of behaviour and desired sound
could be developed, bringing together a CTRNN behaviour with a specific reper-
toire of output states. Successfully implementing this addition may reinforce the
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notion that it is sufficient to provide the musician with a set of CTRNNs with
general-purpose behaviours. The musician is then able to chose from a set of
behaviours, and iteratively design a mapping from behaviour to audible musical
output. Similar processes could be applicable to the input of the network.

4.3 Evoking a Coevolutionary Context

Better still would be to create a context in which the behaviour of the CTRNN
can be modified in real time, so that the CTRNN, its embodiment (the
Max/MSP input-output context), and its situatedness (the musical context that
it will be used in) could collectively converge, rather than the latter two converg-
ing around the former. Thus experimentation with real-time interactive CTRNNs
begs the notion of a coevolution between user and unit that would lead to a pow-
erful interactive system at the moment of performance, but would also imply a
gradual adaptive development of all aspects of the system during preparation.
CTRNNs can also be modified in various ways to introduce ontogenic adaptation
(as opposed to evolution) into the preparation process. This paper stops short
of suggestions for how these developments could be achieved, but research into
this problem could take various immediate directions likely to throw up fruitful
results.

5 Summary

We have introduced the CTRNN as a performative and/or compositional tool
for musicians using modular extensible computer music platforms such as
Max/MSP. We have described how networks can be randomly generated or
evolved to produce particular behavioural properties, and demonstrate very sim-
ple examples in which evolved CTRNNs exhibit behaviours that are of interest
to improvising musicians.

We have discussed future work in this area, including gathering training data
to be used for the evolution of more specific CTRNN behaviours and developing
mappings from CTRNNs to performance parameters using a trained feedforward
network. We suggested that the CTRNN should be adapted by musicians ac-
cording to their own performance contexts and their own interpretation of its
behaviour, and that it should inform their own actions during performance as
well as during the development of their performance contexts.

The notion of a coevolution or adaptive codevelopment between CTRNN be-
haviour and user is provoked by the present work. We suggest that this problem
could be made into a fruitful topic of research.
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Abstract. Synthesising timbres and changes to timbres from natural
language descriptions is an interesting challenge for computer music. This
paper describes the current state of an ongoing project which takes a ma-
chine learning approach to this problem. We discuss the challenges that
are presented by this, discuss various strategies for tackling this prob-
lem, and explain some experimental work. In particular our approach is
focused on the creation of a system that uses an analysis-synthesis cycle
to learn and then produce such timbre changes.

1 Introduction

The term timbre is used in various ways in music. One way is in describing
gross categories of sounds: instrument types, the sound of certain combinations
of instruments, different stops on a pipe organ, a discrete choice of sounds on a
simple electronic keyboard, and so on.

A second aspect of timbre is the distinctive sound qualities and changes in
those qualities that can be produced within one of those gross categories. To a
skilled player of an acoustic instrument, such timbral adjustments are part of
day-to-day skill. A notated piece of music might contain instructions concerning
such timbres, either in absolute terms (‘harshly’, ‘sweetly’) or comparative terms
(‘becoming reedier’), and musicians use such terms between each other to com-
municate about sound (‘Can you sound a little more upbeat/exciting/relaxed’).

From here onwards we will denote these two concepts respectively by the
terms gross timbre and adjectival timbre.

The player of a typical electronic (synthesis-based) instrument does not have
access to many of these timbral subtleties. Occasionally this is because the syn-
thesis algorithms are incapable of producing the kinds of changes required. How-
ever in many cases this lack of capability is not to do with the capacity of the
synthesis algorithm—afterall, a typical synthesis algorithm is capable of produc-
ing a much larger range of sound changes than a physically-constrained acoustic
instrument—but to do with the interface between the musician and the in-
strument/program [1, 2]. In current systems, the know-how required in order to
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effect the timbral change suggested by an adjectival description of timbre-change
is vast.

Providing tools for manipulating timbre is an underexplored problem in com-
puter music. In this paper we will discuss ongoing work on a project that aims to
combine machine learning methods for searching synthesis parameter space and
classifying timbre, together with analysis methods such as spectral analysis and
principal component analysis. The long-term aim of this project is to produce
systems that:

– Allow the synthesis of timbral changes to a sound from natural language
descriptions of the desired change.

– Facilitate the automated discovery of transformations in synthesis parameter
space that have meaningful timbral effects in sound space.

– Providing a framework whereby advances in the computer-based analysis of
timbre can be used automatically to synthesise timbre and timbral changes.

2 Approaches to Timbre

2.1 Theory and Notation of Timbre

Compared to other aspects of music such as pitch and rhythm, timbre is not well
understood. This is evidenced in a number of ways. For characteristics such as
pitch and rhythm, there exist theories of how they work and produce perceptual
effects; there are well-understood notations for them; and we understand how to
synthesize them from fundamental components to get a particular effect.

By contrast, timbre lacks this repertoire of theory and notational support (as
explored by Wishart [3]). Nonetheless there is a large repertoire of language asso-
ciated with timbre and timbral changes. These timbral adjectives and metaphors
provide a powerful means for musicians to communicate between themselves
about timbre; but by contrast to the more formal notations for, say, pitch or
rhythm, they do not provide a usable structure for inputting desired timbres or
timbral changes into computer music systems [4, 1, 5, 6].

One approach would be to come up with a new language for timbre, which
is more closely aligned with the way in which timbre is generated in electronic
instruments. However this has many problems. For example timbre words convey
information that has musical meaning, and we would like to create systems
so that electronic and acoustic instruments can be played side-by-side and the
players able to communicate using a common vocabulary. For these reasons we
focus on how we can use traditional timbre words in a computer music setting.

2.2 Timbre as Gross Categorisation

At the beginning of this paper we introduced two notions of timbre: timbre as a
gross categorisation of sounds, and timbre as the differences in sound qualities
within those gross categories.
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These two aspects of timbre are very different; most of the literature on timbre
in computer music has focused on the gross categorisation, beginning with the
early of Wessel [7].

An example of studies of gross timbre is the work of McAdams et al. [8].
In this work three dimensional timbre space was defined, the dimensions being
attack time (time taken for volume of a note to reach maximum), the spectral
centroid (the relative presence of high frequency versus low-frequency energy in
the frequency spectrum), and spectral flux (a measure of how much the spec-
tral changes over the duration of a tone). A number of instruments where then
analysed by these three techniques and a graph of the results showed how each
occupied a different part of the timbre space.

Such representations are useful when the aim is purely analytic, i.e. we want
to understand existing sounds. However the aim of our work is oriented towards
synthesis, and so we need to consider what representation is appropriate for being
used ‘backwards’ to go from analysis to synthesis. Whilst a representation such as
the three-dimensional model in [8] might yield acceptable results for categorising
sounds, this representation is not adequate for synthesis of sound. We certainly
could not work backwards from a three dimensional timbre representation and
hope to synthesise the starting sound, since the representation is oversimplified
and too much information has been lost.

Much of the recent work in the area of gross timbre has focused on the devel-
oping MPEG-7 standard. This work defines a framework for describing sounds in
terms of spectral and temporal measurements of the sound, extracted through
some analysis method. This work is interesting in that it identifies a number
of features that are proven to be important for recognition and perception of
timbre based on past research.

A large proportion of other research into timbre in computing has focused
on automated recognition or categorisation of instruments. For example Kostek
[9] describes a system that uses machine learning methods to classify which
instrument is playing.

This has possible applications in databases of music for automated searching
of stored sounds. The automated approach eliminates the need for a human to
enter metadata identifying each sound, thus greatly simplifying the process of
creating large sound databases. The common approach is to use neural networks
to learn the sound of various instruments after being presented with various
recordings of each. The key in this sort of work is to find common features
between different recordings of a certain type of instrument, where the recordings
may have different pitches, loudness, or playing style. Such features may be
specifically symbolically represented, e.g. if the classification is performed using
a decision tree method; or, they may be subsymbolically represented e.g. if a
neural network was used.

Analysis of real instruments reveals that the tone of a single instrument can
vary greatly when pitch is changed, or with changes in the volume of the playing.
Therefore, the challenge in gross timbre identification is to identify the common
features of the sound that identify a certain instrument, despite the large varia-
tions in tone that can be produced.
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2.3 Timbre Analysis for Adjectival Timbre

A different body of work focuses on the concept of adjectival timbre. Here, the
focus is not on studying the sound of an instrument as a whole, but on looking
at individual generic characteristics of sounds such as brightness, harshness,
or thickness. Early work on this was carried out by Grey [10], who identified
some features of a synthesis algorithm which correlate strongly with timbral
characteristics.

There are many studies in the field of psychoacoustics where experiments
have been carried out to identify salient perceptual parameters of timbre. This
experiments have usually taken the form of listening tests where volunteers have
produced verbal descriptions of sounds, and the results are analysed to find
correlations in the language used. This is useful as it identifies adjectives that
are important for describing sounds, and this could form the basis for the types
of perceptual features we might aim to control in the synthesiser program we
are developing. However, these psychoacoustic experiments by themselves are
not enough in order to synthesise the given perceptual features, since we also
need to find a correlation of an adjective with certain spectral and temporal
features of a sound; then more specifically with the parameters within a specific
synthesis algorithm that give rise to those timbres or timbral changes.

The SeaWave project [4] made some progress in finding these correlations.
Certain spectral and temporal features of starting sounds where modified, and
the perceived changes in timbre where recorded. Some correlations where found
and these were used to develop a synthesis system where certain timbral fea-
tures such as resonance, clarity, or warmth could be controlled. The number
of adjectives that where available to user to control the sound where limited,
suggesting that more a much more extensive study of synthesis parameters and
their perceptual correlates is needed.

It is interesting to note that while machine learning techniques have been used
for automated classification of different instruments, it does not appear that a
general system has been developed for automatically identifying adjectives that
describe a certain sound. The small amount of work that has been carried out
in this area has focused on specific domains. For example a recent paper by
Disley and Howard [11] is concerned with the automated classification of timbral
characteristics of pipe organ stops. It does not appear that any work has been
carried out on automated classification of timbral differences between pairs of
sounds.

2.4 Synthesis of Timbre

The most limited range of work to date has been on the automated synthesis of
timbres or timbral changes.

Some work has been done on the automated synthesis of gross timbre. Clearly
it is not possible to synthesise gross timbre from just words, but machine learn-
ing methods can be applied to learn synthesis parameters for a particular instru-
mental sound. In these cases the learning is guided either by interaction with a
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human [12, 13] or by the comparison of spectral features between the synthesized
instrument-candidates and recordings of real instruments [14].

Of greater interest the this project is the automated synthesis of adjectival
timbre. There are two basic concepts: associating adjectives/adverbs and classi-
fications with timbres (‘wooden’, ‘bright’), and words which are describe charac-
teristics that sit on a timbral continuum (‘can you play less reedily please?’, ‘let’s
have some more bounce’). A preliminary attempt to create a dictionary of such
timbre-words, and to group them into classes, was attempted by Etherington
and Punch [4].

A small amount of work has attempted to do automated synthesis of sounds
from timbral descriptions. The SeaWave system [4] is based on a number of
listening experiments which attempt to match specific sets of transformations of
sound signals with words that describe those transformations. This works well
up to a point; however the transformations required to achieve many kinds of
transformations are likely to be complex, requiring more than simply the increase
or decrease of a couple of synthesis parameters; and also they will typically be
dependent on the starting sound.

Another attempt to generate quasi-timbral aspects of sound is given by Mi-
randa [1]. He made use of machine learning methods to deduce correlations
between parameters that could be used in synthesis and their perceived effects.
This was then used to build up a database of matches between descriptive terms
and characteristics which are used in synthesis; when the user requests a sound
these characteristics are looked up in the database and a synthesis algorithm
called with these characteristics. This provides a powerful methodology for gen-
erating sounds ex nihilo; however it was not applied to transforming existing
sounds.

Since these two groundbreaking pieces of work, there appears to be no further
work on linking linguistic descriptions of adjectival timbre to synthesis.

3 Complex Mappings: A Challenge for Timbre
Exploration

One of the main difficulties with synthesis of timbres from descriptions is the
complex nature of the mapping from the parameter space of a synthesis algo-
rithm to the space of sounds, and then to the space of features that are described
when we hear sounds (a more general exploration of such complexities in AI is
given by Sloman [15]). Typically, many different closed subsets in parameter
space will map onto the same timbre adjectives. Furthermore, features of timbre
are influenced by previous exposure. For example, we are familiar with ‘wooden’
and ‘metallic’ sounds, and believe these to be contrasted; however in a syn-
thesis algorithm it is possible to realise sounds that are physically unrealistic,
e.g. sounds which are ‘between’ wooden and metallic, or which have both such
characteristics.



Synthesising Timbres and Timbre-Changes from Adjectives/Adverbs 669

This complexity contrasts with, say, loudness, where the mapping from the
parameter (amplitude) to the perceptual effect (loudness) is straightforward.
This presents a challenging problem for interfaces for timbre [2]; the timbral
equivalent of the volume knob or piano keyboard is not obvious, nor is it obvious
that such an interface could exist.

4 Experiments Timbre Synthesis Via Machine Learning

So far in this paper we have discussed work on the automated analysis of tim-
bre, and on the synthesis of timbre. However there has been little progress in
combining the results of these two approaches. in the remainder of this paper
we present experimental work which attempts to combine these two ideas.

4.1 Approaches

There are basically two approaches to this problem. One is an analytic approach,
where we work out directly how changes in the production of a sound lead to
changes in the perceived timbral properties of the sound. The second, which
we have used in our work, is a machine learning approach, where we take many
examples of sounds, associate human-written metadata about timbre with them,
and then apply machine learning methods [16] to create the relevant mappings.

An initial, somewhat näıve, perspective on this is to view it as being an inverse
problem. That is, we take a set of sounds (recorded from acoustic instruments)
that demonstrate the desired timbres (or timbral changes), and analyse what
characteristics are common between the sounds that fit into an similar timbre-
class. Then we apply analysis methods (e.g. spectral analysis) to these sounds
to understand what characteristics of the sound ‘cause’ the different perceived
timbral effects, and then apply these same characteristics to our desired sound
to transform it in the same way.

However there are (at least!) two problems with this näıve model. Firstly, it
is usually difficult to extract the characteristics that characterise a particular
timbre or change of timbre. We can analyse sounds in many different ways, and
not all of the characteristics that we can extract will be relevant to the production
of a particular timbre. Even if we can eliminate some features by removing those
characteristics that are common to sounds in various classes, there may be some
arbitrary features that are irrelevant.

A second difficulty is found in the final stage of the process. Even if we can
isolate such a characteristic, it is not easy to apply this to another sound: some-
times the characteristic can be difficult to express within a particular synthesis
paradigm, and even if we can apply it, changing that characteristic in synthesis
parameter space will not have the same effect in perceptual space. An additional
problem of this kind is that, even when the changed sound is available within
the synthesis algorithm being used, finding an appropriate change of parameters
to effect the timbral change can be difficult.
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4.2 System Overview

In our system we have tackled this problem in this indirect fashion, whilst avoid-
ing the näıve approach of inverting the mapping. An overview of the program is
given in figure 1.

An initial stage of the process consists of training a timbre classification algo-
rithm. This takes a training set of many acoustic sound samples that have been
hand-annotated with timbral metadata, and uses those to train a classifier which
will sort sounds into relevant classes based on the timbre-words of interest. Some
initial experiments with a neural network based classifier have proven promising.

The other main stage of the process consists of learning the parameter choice
to feed into the synthesis algorithm. Sounds are generated using a synthesis algo-
rithm (the algorithm used remains fixed throughout the process). The resultant
sound files are then fed into the trained timbre classification algorithm, which
outputs a measure of how strongly the sound fits into each timbral class.

This measure is then used as a quality measure (e.g. a fitness measure in
a genetic algorithm [17]) in a machine learning algorithm. This could be used
in a number of ways. One way would be to learn the values of certain input
values in the synthesis algorithm which then remain fixed (in a similar fashion to
[14, 18]). Another would be to learn which parameter changes (or characteristics
characterised by covarying parameter changes, as in attribute construction in
data mining [19]) are important in making particular perceived timbral changes.

The remainder of this section consists of a description of these two core com-
ponents of the system.

4.3 Timbre Classification

In order for our learning system to be able to create a sound with the desired
timbre, we need to be able to test the fitness of each solution that the system
proposes. Of course, this needs to be an automated process, so our solution is to
use a neural network capable of recognising certain timbral features in a sound.

Fig. 1. Indirect learning of timbral change
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Firstly, some pre-processing is carried out on the input sound wave in order to
greatly reduce the complexity of the data, and therefore make it suitable for use
as input to a neural network. Spectral analysis is carried out on the audio using
an FFT, and the partials making up the sound are extracted from this, including
the amplitude envelope and tuning information for each partial. From this data,
a set of 20 inputs for the neural network is generated. Inputs 1-15 are the peak
amplitude of each of the first 15 partials of the sound, which should describe
the general ‘colour’ of the timbre. The next input is the average detuning of
the partials, which describes how much the tuning of the partials differs from
a precise harmonic series. The remaining inputs describe the overall amplitude
envelope of the sound, and are attack time (time taken for the amplitude to
reach its peak), decay time (time from the peak amplitude to the end of the
note), and finally attack and decay slopes (rate of change in amplitude) which
describe the general shape of the amplitude envelope.

The aim of the neural network is to map a set of inputs onto a set of val-
ues describing the timbral features present in the sound. In order to define the
expected output of the network in our prototype, samples of notes from 30 (syn-
thesised) instruments were collected, and 9 adjectives where chosen to describe
the timbre of each instrument (bright, warm, harsh, thick, metallic, woody, hit,
plucked, constant amplitude). Listening tests where carried out on each instru-
ment sample, and values ranging from 0 to 1 were assigned indicating how well
each adjective described the instrument (a value of 1 meaning the particular
feature was strongly present in the sound, while 0 indicating that the adjective

Fig. 2. Timbre recognition process
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did not apply to the sound at all). This work decided that our neural network
would have 9 outputs onto which the inputs are mapped.

An application (figure 2) was developed that takes a list of sound files and their
associated values for each adjective, carries out the necessary pre- processing to
generate a set of inputs, and then trains a neural network to associate the correct
adjectives with each sound’s input data. A 3-layer back-propagation network was
used, with 100 neurons per layer (this value was chosen empirically and gave
reasonable training times as well as better generalisation than was achieved
with smaller networks). Once the network is trained, the application allows the
user to select an instrument sound that was not included in the training data,
and run it through the system to classify its timbre.

4.4 Timbre Shaping

The second main part of the process is shaping the timbre, i.e. adjusting the
parameters of the synthesis algorithm to produce the desired timbral charac-
teristics. A screenshot of this program is shown in figure 3. The system uses
an additive synthesis algorithm, using the parameters described in the previous
section for synthesis rather than analysis.

In initial experiments, the system used a genetic algorithm (similar to [12]) to
explore the parameter space and find a sound with the desired characteristics.
The neural network timbre classifier was used to calculate a fitness for each
solution in the population. However, tests of the program showed that the genetic
algorithm had difficulty in finding suitable solutions, and did not show signs of
converging towards a good solution. This is probably due to the sheer complexity
of the mapping between synthesis parameters and the description of the timbre
that they produce.

Fig. 3. The timbre shaping program
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We have developed an alternative algorithm that is much more successful at
finding the synthesis parameters for the desired timbre. It is designed to make
use of the information that stored in the timbre classification neural network in
order to search through the synthesis parameter space. The algorithm is similar
to the back-propagation method used in training neural networks. Firstly, we
take an arbitrary set of input values as a starting point and feed them into
the neural network. These input values represent synthesis parameters. We run
the network in order to obtain a set of results which represent a description
of the timbre that would be produced. An error value for each output is then
calculated, based on a comparison between the desired output and the actual
output of the network. This error is then passed back through the network just
as it is in the back-propagation algorithm, the only difference being that we do
not actually modify any of the weights in the neuron connections. The error
eventually propagates down to the inputs, therefore telling us how we need to
adjust each input in order to obtain a better solution. The process then repeats
until the overall error rate drops to an acceptable amount

There are clear reasons why this algorithm is more successful at finding a
solution than the genetic algorithm. When using a genetic algorithm, each pro-
posed solution is given a single fitness value which reflects how well it solves the
problem. This means that we have no way of knowing how good each parameter
in the solution is, since we can only judge the solution as a whole. Our algo-
rithm however, gives us a separate error value for each parameter that makes
up the solution, allowing us to move towards a good solution more effectively.
Our algorithm makes use of the knowledge about timbre that is contained in
the neural network, whereas with the genetic algorithm the genetic operators
did not have sufficient power in combining and making small changes to timbral
characteristics.

5 Results

5.1 Results of the Timbre-Classification Algorithm

The results of the timbre recognition process are presented in table 1. This
shows a comparison between the timbral characteristics of five sounds, classified
by a list of adjectives and a value indicated how strongly each characteristic was
detected in the sound, by both a human listener and the neural network.

Early results from our timbre classification system are encouraging. In the
experiment, a single human listener first assigned values to describe the timbre
of the five test sounds, then the neural network was used to obtain a classifica-
tion. The test sounds of course had not been used as part of the training set for
the network. The results table shows that the prototype at this stage generally
works well. There is evidence that the system is extracting common timbral fea-
tures across different types of instrument sounds. It is particularly successful in
detecting harshness, or sounds that are ‘woody’, or sounds that are hit. Unsur-
prisingly, it has trouble distinguishing between hit or plucked instruments, which
is to be expected since the network’s input data contains no information about
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Table 1. The table first shows the expected value from a user listening test, followed
by the neural network’s actual answer in bold. A value of 1.0 indicates that a feature
is strongly present in the sound, whereas a value of 0.0 indicates that the feature is
absent.

Instrument Bright Warm Harsh Thick Metallic Woody Hit Plucked Constant
Amplitude

Vibraphone 0.6 0.5 0.4 0.4 0.5 0.3 1.0 0.0 0.0
0.6 0.8 0.4 0.3 0.1 0.2 1.0 0.0 0.0

Elec. Guitar 0.7 0.2 0.7 0.2 0.4 0.1 0.0 1.0 0.0
0.3 0.6 0.7 0.4 0.2 0.3 0.6 0.4 0.0

Piano 0.6 0.5 0.1 0.6 0.2 0.3 1.0 0.0 0.0
0.7 0.4 0.3 0.6 0.0 0.2 1.0 0.0 0.0

Xylophone 0.8 0.3 0.7 0.1 0.0 0.8 1.0 0.0 0.0
0.7 0.5 0.6 0.4 0.0 0.9 1.0 0.0 0.0

Elec. Piano 0.5 0.5 0.2 0.4 0.2 0.2 1.0 0.0 0.0
0.2 0.9 0.1 0.1 0.1 0.2 1.0 0.0 0.0

the spectrum of the sound’s attack portion, which is known to be significant in
recognising sound sources.

5.2 Results of the Timbre Shaping Algorithm

Some of the results from the timbre-shaping process can be heard at
http://www.cs.kent.ac.uk/people/staff/cgj/research/

evoMusArt2006/evoMusArt2006.html

6 Future Directions

There are many future directions for this work. Some of these are concerned
with timbre recognition, for example using ear-like preprocessing (as in [20]) of
sound to generate the inputs to the neural network. We will also carry out more
extensive human trials of the timbre-recognition experiments.

There are many future directions beyond this. A major limitation of many
attempts at automated synthesis of timbre or timbre change is that the learning
has been applied to a single sound. Future work will focus on learning transfor-
mations of synthesizer parameter space with the aim of finding transformations
that will apply to many different sounds.
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Abstract. This paper presents a novel Strongly-Typed Genetic Pro-
gramming approach for building Regression Trees in order to model ex-
pressive music performance. The approach consists of inducing a Re-
gression Tree model from training data (monophonic recordings of Jazz
standards) for transforming an inexpressive melody into an expressive
one. The work presented in this paper is an extension of [1], where we
induced general expressive performance rules explaining part of the train-
ing examples. Here, the emphasis is on inducing a generative model (i.e.
a model capable of generating expressive performances) which covers
all the training examples. We present our evolutionary approach for a
one-dimensional regression task: the performed note duration ratio pre-
diction. We then show the encouraging results of experiments with Jazz
musical material, and sketch the milestones which will enable the system
to generate expressive music performance in a broader sense.

1 Background

1.1 The Expressive Performance Modelling Problem

Modelling expressive music performance is one of the most challenging aspects of
computer music. The focus of this work is to study how skilled musicians (here
a Jazz saxophone player) express and communicate their view of the musical
and emotional content of musical pieces by introducing deviations and changes
of various parameters. The expressive performance modelling problem can be
stated as follows. We define an expressive performance database B that consists
of a set of pairs (Si, Ei), where Si is a set of melodic features of a given score note
Ni, and Ei is a set of acoustic features describing the expressive transformations
applied to note Ni. The problem is to find a model M that will minimise the
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error Err(M(Si), Ei) between the prediction M(Si) and the actual expressive
transformation Ei for all the pairs (Si, Ei) in B. Typically Si is a set of features
describing the melodic context of note Ni, such as its melodic and rhythmic
intervals with its neighbours or its metrical position in the bar. On the other
hand, Ei contain local timing and overall energy information of the performed
note, but can also contain finer-grain information about some intra-note features
(e.g. energy envelope shape, as studied in [2], or pitch envelope).

1.2 Regression Trees for Expressive Performance Modelling

In the past, we have studied expressive deviations on note duration, note on-
set and note energy [3]. We have used this study as the basis of an inductive
content-based transformation system for performing expressive transformation
on musical phrases. Among the generative models we induced, Regression Trees
and Model Trees (an extension of the former) showed the best accuracy.

Regression Trees, are widely used in pattern recognition tasks, each non-leaf
node in a Regression Tree performs a test on a particular input value (e.g. in-
equality with a constant), while each non-leaf node is a number representing
the predicted value. By using a succession of IF-THEN-ELSE rules, Regression
Trees iteratively split the set of training examples into subsets where the pre-
diction can be achieved with increasing accuracy. The resulting structure is a
coherent set of mutually-excluding rules which represents the training set in a
hierarchical way. Figure 1 shows an example of a simple Regression Tree. This
tree performs tests on 2 different features and returns a numerical prediction at
its leaves. Whether this tree can produce accurate predictions when processing
unseen data depends directly on the generalisation power of the model. To en-
sure good generalisation capability, tree induction algorithms, such as C4.5 [4]
and M5 [5], provide pruning operations that rely on statistical analysis on the
set of training examples.

Fig. 1. A simple Regression Tree example. Tests are performed on 2 different features,
namely Feature0 and Feature1. If a test succeeds, the left-side children is executed,
while if the test fails, the right-side children is executed. When reaching a leaf, a
numerical prediction is returned.



678 A. Hazan et al.

1.3 Evaluation Methodology for Expressive Transformation Data

We would like to add in the building process an evaluation of the model when
predicting expressive transformations of musical excerpts in different musical sit-
uations. An example is to measure the system’s ability to predict transformations
of a given musical fragment at a given tempo when the model was built using
training data based on recordings of the same tune but played slightly faster.
Another example would be to compare the system behaviour when providing
predictions on two dissimilar tunes when it was trained using data representing
only one of these. In this work, we intend to evaluate the ability of our model
to solve expressive musical performance situations considering these aspects.

1.4 An Evolutionary Computation Perspective

Most of tree induction algorithms are greedy, e.g. trees are induced top-down,
a node at a time. According to [6], several works pointed out the inadequacy
of greedy induction for difficult concepts. An alternative is to use Evolutionary
Computation techniques, and especially Genetic Programming to evolve Regres-
sion Trees. By combining the high-level representation of computer programs and
the near-optimal efficiency of learning with the parallel processing of several po-
tential solutions, the Genetic Programming framework is an interesting direction
for building such models. Koza [7] shows that this method has been successfully
applied to concept learning and empirical discovery tasks.

Background on Genetic Programming
Genetic Algorithms (GA) can be seen as a general optimisation method that
searches a large space of candidate hypotheses seeking one that perform best ac-
cording to a fitness function. As presented in [8], GA transform a population of
individuals, each with an associated value of fitness (i.e. ability to solve the prob-
lem), into a new generation of the population. The new generation is obtained
using the Darwinian principles of survival and reproduction of the fittest and
analogs of naturally occurring genetic operations such as crossover and mutation.
In [7], Koza presents the Genetic Programming (GP) extension. While in the GA
framework individuals are typically represented as binary or float strings, in the
GP paradigm the structures undergoing adaptation are hierarchical computer
programs of dynamically varying size and structure. These computer programs
are represented as trees, in which a node represents a function, while each leaf
is a terminal (e.g. input of the computer program).

Strongly Typed Genetic Programming
According to Montana [9], in standard GP, there is no way to restrict the
programs it generates to those where the functions operate on appropriate
data types. When the programs manipulate multiple data types and contain
functions designed to operate on particular data types, this can lead to unneces-
sarily large search times and/or unnecessarily poor generalisation performance.
This analysis is crucial in the context of building a Regression Tree model
for expressive music performance. Indeed, tests operate on input variables
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of the program, that is, inputs are compared to inputs which appear in the
training set. On the other hand, leaves contain predictions which should reflect
the distribution of outputs Ei in the training set. Although both inputs and
predictions of our model can be coded as float values, building a program that
performs direct comparisons between an input value, and an output value (i.e. a
melodic feature in Si and an expressive feature in Ei), would produce ineffective
computations, and a considerable effort would be spent in order to generate
individuals that reasonably fit the training examples. Montana presented an
enhanced version of GP called Strongly Typed Genetic Programming (STGP)
which enforces data type constraints. Using this approach, it is possible to
specify what type of data a given GP primitive can accept as argument (e.g.
type of input), or can return (e.g. output). To the best of our knowledge, this
work presents a novel approach for building Regression Trees using STGP.

In section 2, we describe how to represent the problem and implement
the structural constraints of Regression Trees using STGP types. Preliminary
results in predicting one-dimensional expressive transformations of musical
material are then presented in 3. Finally, Section 4 draws some conclusions and
future work.

2 An Approach for Building a STGP Regression Tree
Music Performance Model

2.1 Performance Training Data

Each score note Ni in the performance database B is annotated with a number
of attributes representing both properties of the note itself and some aspects of
the local context in which the note appears. Information about intrinsic proper-
ties of the note include the note duration and the note metrical position, while
information about its context include the duration of the previous and following
notes, and the extension and direction of the intervals between the note and the
previous and following notes. Thus, each Si in B contains six features sumaris-
ing this melodic information. In the last section, we will discuss the perspective
of generating new melodic representations for building expressive models. Each
note Ni is associated to a set of acoustic features Ei describing how the note was
played by the performer. This information was obtained by applying a segmen-
tation algorithm on the audio recordings and then performing an alignment of
the annotated audio with the score (see [10] for a detailed description of these
two steps). In this work, we focus on the duration ratio of the performed note,
i.e. ratio between the performed note duration and the score note duration. This
is obviously a first step before considering an extended set of expressive fea-
tures as presented in [2] and [3]. Because this work is preliminary, we limited
our training set to a few examples of the expressive performance database we
maintain, namely two versions of the excerpt Body And Soul, performed at 60
and 65 beats per minute, and two versions of Like Someone In Love, performed
at 120 and 140 beats per minute.
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2.2 Types and Primitives

Going back to Figure 1 we can see that the general structure of the Regression
Tree is the following. Each node is a test comparing an input with a value that
was generated analysing the training data. Each leaf is an output value con-
taining the numerical prediction. Thus, both inputs and outputs of the program
should have different types. We define 4 different types, namely InputValue, Feat-
Value, RegValue and Bool. The first three types represent floating-point values,
while the latter type represents boolean values that will be used when perform-
ing tests. Now we can define the primitives that will be used to build our models.
They are listed in Table. 1.

Table 1. STGP primitives used in this study. Each primitive is presented along with the
number of arguments it handles, the type of each argument, and its return type. Note
that primitives EFeatValue and ERegValue, which are used for constant generation,
take no argument as input.

Primitive NameNumber of argumentsArguments Type Return Type

IF 3 1st: Bool, 2nd and 3rd:
RegValue

RegValue

LT 2 1st: InputValue, 2nd
FeatValue

Bool

EFeatValue 0 - FeatValue

ERegValue 0 - RegValue

The IF primitive tests whether its first argument of type Bool is true or false.
If the test succeeds, its second argument is returned, otherwise its third argu-
ment is returned (both second and third arguments have a RegValue type). The
LT primitive tests whether its first argument is lower than the second argument
(The former has a InputValue type and the latter FeatValue). The primitive
returns a Bool which value is true if the test succeeds, false otherwise. Given
the definitions of our types, we can see that during the building process the
output of the LT primitive will always be connected to the first argument of
the IF primitive. Instead, we could have chosen to use a single primitive IFLT
with 4 arguments (the first two being involved in InputValue typed comparison,
and the last two being used to return a RegValue). However, we think that re-
stricting the tests to inequalities would be a constraint for future developments.
EFeatValue and ERegValue are zero-argument primitives. We use them for gen-
erating constants. The first one generates constants to be involved in inequality
tests (primitive LT). In order to produce meaningful tests, values produced by
EInput are likely to be the values appearing in the vectors Si of the training
set. To ensure this, we collected all the features in Si in B. When creating a
EFeatValue primitive, we choose randomly one of them. Similarly, ERegValue
primitive generates constants of type RegValue that will form the numerical pre-
dictions returned by the model. It is desirable that these predictions respect
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Fig. 2. Duration ratio distribution in the training data

approximately the statistical distribution of the vectors Ei in B. In this case, we
focus on the single duration ratio in Ei. After having analysed the distribution of
this value (see Figure 2.2), we decide to randomly generate ERegValue following
a gaussian distribution fitting the training data.

2.3 Terminal Set

The elements of the terminal set are the inputs of the program. Each of the
features of test vector Si is associated to an input of the tree INi, 0 ≤ i ≤ 5.
Terminals are of type InputValue, thus they will only feed primitives accepting
arguments of this type (i.e. the LT primitive in the present case). Given the types,
primitives, and terminals presented above, we are now able to build a Regression
Tree structure in the STGP framework. Figure 3 shows how the example tree
introduced in Figure 1 is represented.

Fig. 3. STGP Regression Tree example involving two successive tests. Typed connec-
tions between primitives are appearing. Also, constants generated by zero-arguments
primitives appear in parentheses. EFV stands for EFeatValue, while ERV stands for
ERegValue. The arrow indicates the output point of the program.
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2.4 Genetic Operators

The genetic operators we use are basically a refinement of the operators proposed
by [7], and [9] in their Strongly Typed variant, where the operation is constrained
to produce a type-consistent structure. Operators are Tree Crossover, where
two individuals can swap subtrees, and Standard Mutation, where a subtree is
replaced by a newly generated one. Additionally, Shrink mutation replaces a
branch with one of its child nodes, and Swap mutation swaps two subtrees of an
individual. Also, two floating-point mutation operators where added to process
the randomly-generated constant returned by EInput and ERegValue primitives.

2.5 Fitness Evaluation

Individuals are evaluated on their ability to produce an output M(Si) that
matches Ei for each note Ni of a musical fragment in the training set. Con-
sequently, the fitness measure is the average error of the model Err(M(Si), Ei).
We use the following fitness function:

f =
1

1 + RMSE
(1)

where RMSE is the Root Mean Squared Error between training and predicted
duration ratio, averaged over the notes of a musical fragment, itself averaged over
all the training fragments. We are aware that this fitness measure is very general
and that it does not catch in detail the behaviour of the model (e.g. evolution of
the error note by note during the performance of a musical fragment). We have
no guarantee that the best ranked individual will be the model that performs
the best from the musical point of view. However this measure gives a first
search direction during the evolution. Future developments will take advantage
of perceptually-based fitness measures, but prior to this we have to address
the issue of multi-dimensional prediction (see Sec. 4) in order to generate new
melodies.

2.6 Evolutionary Settings and Implementation

We define the following evolutionary settings for the different runs. The popula-
tion size is fixed to 200 individuals. The evolution stops if 500 generations have
been processed or if the fitness reaches a value of 0.95. We use a generational
replacement algorithm with a tournament selection. Crossover probability is set
to 0.9, with a branch-crossover probability of 0.2, which means that crossovers
are more likely to be performed on leaves, with the effect of redistributing the
constants and terminals in the tree. The Standard mutation probability is set
to 0.01, while the Swap mutation has been set to a higher value (0.1) in order
to let a individual reorganise its feature space partition with more probability.
Finally, Shrink mutation probability is set 0.05. The maximum tree depth has
been set to 10, which could lead to the generation of very complex individuals
(here we do not look for a compact model).
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We build our system using Open Beagle framework [11], which is a C++
object oriented framework for Evolutionary Computation. Open Beagle was pri-
marily designed for solving Genetic Programming tasks and includes STGP fea-
tures such as the operators presented above.

3 Results and Evaluation in Different Musical Situations

In this section, we test the ability of our model in predicting expressive trans-
formations given different training situations. Note that in this section we will
not focus on the fitness of the individuals as defined in last section. Rather, we
evaluate a model based on its error prediction. First, we address the problem of
evaluating precision and generalisation capability of the induced model in the
context of expressive music performance. In Figure. 4, we present the RMSE of
the best-so-far model when predicting the note duration ratio of the four ex-
cerpts presented above. On the top, the model is only trained with one of the
four fragments, namely Body and Soul played at 60 beats per minute, i.e, the
fitness function is only based on this error. On the bottom, the model is trained
using the four fragments. First we can see that excerpts that share the same

Fig. 4. Best-so-far individual RMSE for each of the target songs when the fitness takes
into account only the Body And Soul (played at 60 beats per minute) prediction error
(top), or when the fitness takes into account prediction the error of the four fragments
(bottom). Gray solid (respectively dashed) line is the RMSE of Body And Soul played
at 60 (respectively 65) beats per minute. Black solid (respectively dashed) line is the
RMSE of Like Someone In Love played at 120 (respectively 140) beats per minute.
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Fig. 5. Note by note Squared Error of the duration ratio during the evolution process

melodic representation evolve in a similar fashion. In the case of being trained
with only one song (top of Figure. 4), the prediction error start to differentiate
at generation 200. After this point, predictions concerning the training and sim-
ilar fragments become better while predictions concerning dissimilar fragments
become worse. On the other hand (bottom of Figure. 4), when all the fragments
are used during training, the error tends to be minimised for the four excerpts.
Some modifications of the model improve the prediction for all excerpts (e.g. gen-
eration 530), while others (e.g. generation 870) benefit only to excerpts sharing
the same melodic features.

Figure. 5 shows the note by note Squared Error of the duration ratio during
the evolution process. First generation model error appear on the back while
last generation model error is on the front. We can see, that even if the overall
error is minimised, some notes, such as note 61, 80, and 85 are modelled with
less accuracy. This means that the best tree model does not cover these melodic
situations appropriately. New specific branches should be created to perform
tests on melodic features that represent theses melodic situations.

Finally, in Figure. 6, we perform an informal comparison between two models
and the training data when predicting the duration ratio of each note the excerpt
Like Someone In Love played at 140 beats per minute. The first model is the
best-so-far STGP model obtained for this task (indicated in grey dotted line).
The second model (grey dashed line) was obtained using a propositional greedy
Regression Tree algorithm (see [3] for details), which is an accurate technique for
the performance modelling task. The black solid line corresponds to the actual
training data for this excerpt. We can see that both STGP and greedy Regression



Modelling Expressive Performance 685

Fig. 6. Note by note duration ratio prediction for Like Someone in Love played at 140
beats per minute. Black solid line refers to the performance training data, grey dotted
line refers to the best-so-far STGP model, and grey dashed line corresponds to a greedy
Regression Tree model as presented in [3].

Tree models behave qualitatively well, and their mean prediction error is very
similar. Thus, our approach to build Regression Tree performance models based
on STGP is promising, although the results we present here are very preliminary.

4 Conclusion

We presented in this work a novel Strongly Typed Genetic Programming based
approach for building Regression Trees in order to model expressive music per-
formance. The Strongly Typed Genetic Programming framework has been in-
troduced, along with the primitives, operators and settings that we apply to this
particular task. Preliminary results show this technique to be competitive with
greedy Regression Tree techniques for a one-dimensional regression problem: the
prediction of the performed note duration ratio. We want to scale up our ap-
proach to the generation of expressive musical performances in a broader sense,
and plan to work in the following directions:

– Predict more expressive features, such as onset and mean note energy devia-
tion, which will enable the model to predict expressive melodies. This will be
achieved by defining a new RegValue complex data type, along with an ap-
propriate constant generator and operators. New fitness measures have to be
defined and in order to assert the musical similarity between the model’s out-
put and the performer’s transformations. We believe that the use of percep-
tually motivated fitness measures (e.g. [12]) instead of statistical errors (e.g.
RMSE) can lead to substantial improvements of the accuracy of our models
and make the difference with classical greedy techniques. Additionally, intra-
note features are of particular interest in monophonic performances and will
be considered. This will include energy, pitch, and timbrical features.
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– Generate new melodic representations for our expressive performance
database: as pointed out in Section. 2, the melodic representation we use
is based on musical common sense but is not necessarily the best one. A
particular drawback of this representation is that it only capture local con-
text information, when several works stress that expressive music perfor-
mance is a complex phenomenon which involves a multi-level representation
of the music. An interesting work perspective is to devise a evolutionary
melodic feature extractor that would coevolve with the performance model.
[13] presents relevant ideas to achieve this.

– Increase the amount of training data. We are aware that our database is still
small and that much more data is needed. New methods for the acquisition
of performance data from polyphonic recordings (which would allow us to
obtain data from commercial recordings) start to give interesting results. It
is mandatory to build a representative performance database if we want to
investigate thoroughly the generalisation (from both statistical and musical
point of of view) power of the induced models. We will use statistical tests
(e.g. 10-fold or one-song-out cross validation) to assess the performance of a
given model. However we want to keep track of the sequences of events we
are modelling, consequently we will avoid to use any technique which would
lead to loose the temporal continuity in the data.

– Towards a model with state. A drawback in the model architecture is that
it only bases its predictions on the melodic features of the note to be trans-
formed, while it should also have access to the past predictions it returned.
This last aspect is an important issue of the challenging expressive music
performance problem.
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10. Gómez, E., Grachten, M., Amatriain, X., Arcos, J.: Melodic characterization of
monophonic recordings for expressive tempo transformations. In: Proceedings of
Stockholm Music Acoustics Conference 2003, Stockholm, Sweden (2003)

11. Gagné, C., Parizeau, M.: Open beagle manual. technical report rt-lvsn-2003-01-
v300-r1. Technical report, Laboratoire de Vision et Systèmes numérique, Université
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12. Grachten, M., Arcos, J., López de Mántaras, R.: Melody retrieval using the implica-
tion/realization model. In: Online Proceedings of the 6th International Conference
on Music Information Retrieval, London, UK (2005)

13. Conklin, D., Anagnostopoulou, C.: Representation and discovery of multiple view-
point patterns. In: Proceedings of the International Computer Music Conference,
La Havana, Cuba (2001) 479–485



Evolutionary Musique Concrète
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Abstract. This paper describes a genetic algorithm that operates di-
rectly on time-domain waveforms to produce musique concrète compo-
sitions. The form of these compositions is derived from the evolutionary
process itself. The aesthetic motivation is discussed and the results of
the algorithm are described.

1 Background

Although electronic music experiments had been going on since the develop-
ment of the telephone, a great breakthrough came in 1948, when Pierre Schaef-
fer broadcast his early studies in musique concrète on Radio-diffusion-Télévision
Française[1]. Musique Concrete is a genre in which composers manipulate record-
ings of actual sounds rather than notes. Composers who use notes deal with ab-
stract symbols that represent large categories of possible sounds; performances
are unique interpretations of the symbols. A composer of musique concrète pro-
duces a definitive recording that is the piece; at performances, the recording
is simply played. Techniques for composing with actual sounds give composers
access to an extremely wide array of timbres—anything that could be recorded
or brought out of a recording through manipulation. We are no longer restricted
to pitches and rhythms that can be written using traditional western notational
symbols.

Since the incorporation of recorded sounds is pervasive in contemporary elec-
tronic music, it is ironic that little attention has been given to developing tech-
niques for manipulating recordings with genetic algorithms. Most research ap-
plying genetic algorithms to music has focused on symbolic music(see [2] for a
review). Some research has broached the issue of timbre exploration through
synthesis, but direct manipulation of recorded sounds has not been addressed.
Johnson[3, 4] and Dahlstedt[5, 6] use interactive genetic algorithms to explore
synthesis parameters. Horner, Beauchamp, and Packard[7] derive novel sounds
with an interactive genetic algorithm that applies filtering and time-warping op-
erations to populations of synthesized sounds. This comes closer to addressing
recorded sounds, since filtering and time-warping need not be applied exclusively
to synthesized sounds. These researchers all work to produce novel sounds that
can be worked into later compositions. For a series of recent compositions, I have
developed a technique that would allow me to use genetic algorithms to produce
a series of pieces constructed from found sounds whose form would be derived
from the evolutionary process.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 688–695, 2006.
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2 A Genetic Algorithm That Operates on Time-Domain
Waveforms

Since conventional genetic algorithms are meant to be applied to discrete sym-
bols, applying them to sounds requires some modification. In my description of
these changes, I will try to distinguish between practical choices that can be
transferred to other musical projects and aesthetic choices that result in the
characteristic sound of my pieces.

2.1 Representation

In a typical genetic algorithm, parameters are mapped onto genes and the or-
dered collection of genes forms a chromosome. Usually all chromosomes in the
population have the same number of genes. My technique operates directly on
digitized waveforms that can have arbitrary lengths. Each chromosome is a time-
domain waveform. Using instantaneous samples as genes would be a bad idea:
sexual reproduction would introduce clicks; mutation would introduce noise. So
in my algorithm, there is no analysis and there are no discrete genes. Instead, a
hybrid approach to genes is adopted. For the purpose of calculating fitness, sam-
ples are treated as genes. For the purpose of sexual reproduction and mutation,
segments of waveform bounded by zero crossings are treated as genes.

Typically, a genetic algorithm runs for many generations. The initial popula-
tion and any intervening generations are discarded; a representative member of
the final population is chosen as the product of the algorithm. My algorithm pro-
duces a piece of music whose formal structure is a product of the evolutionary
process. Each waveform produced by the algorithm becomes part of the final
piece. A piece begins with the simultaneous playback of the initial waveform
population. Whenever a waveform finishes playing, a new waveform is generated
to take its place. The instant before a waveform’s playback begins, its fitness is
measured. Each waveform’s playback volume is weighted by its fitness.

Since the output of the algorithm is a piece of music, choices regarding output
representation are primarily aesthetic. If I wanted a piece with a different formal
structure or simply a tool to generate sonic material to use elsewhere, I would
make different choices.

2.2 Fitness

The choice of fitness function is primarily aesthetic. The purpose of a fitness
function in my algorithm is simply to provide directionality for pieces produced
by the algorithm and to determine the volume at which each waveform is played
back. It is important that some waveforms be fitter than others for natural
selection to take place. The fitness function is based on the correlation between
waveforms in the population and a specified target waveform. Formally, this can
be written as

Fitness =
waveform · target

‖waveform‖ ‖target‖bn (1)
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where n is the number of times the waveform has reproduced and b is a parameter
between 0 and 1. For b = 0, a waveform will never reproduce twice. For b =
1, a waveform’s fitness is not reduced by reproduction. The bn modifier is to
encourage biodiversity (see §4.2).

Although a stripped down version of the algorithm can, under appropriate
circumstances, produce sounds that can be recognized as imitations of the target
waveform, this is not the compositional goal. The population is never expected
to converge to some target. The biodiversity modifier lowers fitness each time a
waveform becomes a parent to prevent the offspring of a handful of extremely
fit individuals from dominating the population. In addition, the compositional
framework for the piece (§3) has high-level control over the fitness function,
which can change over the course of the piece.

2.3 Reproduction

Sexual reproduction is carried out by splicing genetic material from two indi-
viduals to produce one individual in the next generation. For each offspring,
two parents are selected from the population. The probability that an individual
will be selected as a parent is based on its fitness. Each parent is divided at
some randomly selected crossover point. The location of the crossover point is
adjusted to make sure it falls on a zero crossing. The first part of one parent
is spliced to the last part of the other parent (figure 1). Because the crossover
point is randomly selected and can be different for each parent, offspring can be
arbitrarily short or potentially as long as the combined lengths of both parents.

b)

a)

c)

Fig. 1. a) Two parent waveforms (solid line) with their randomly selected crossover
points (dotted line). b) The crossover point adjusted to fall on zero crossings. c) The
child waveform.
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I could have used a fixed crossover point, but I felt this was an opportunity to
introduce rhythmic interest.

2.4 Mutation

Mutation occurs immediately after the offspring is produced, before its playback
begins. Each segment of waveform between zero crossings has a slight probability
of mutating. This mutated segment of waveform can include multiple zero cross-
ings. Larger mutations are more perceptually relevant; that is, it is possible for a
listener to identify mutated segments and sometimes even the type of mutation.
Smaller mutations tend to denature the original sounds and produce waveforms
that sound more like the target waveform.

A typical mutation function adds a random number to a gene. We can ex-
tend this concept to waveforms by adjusting a waveform’s amplitude (figure 2a).
This is done by selecting a random number and multiplying each sample of a
waveform segment by that number. Another way of extending this concept is
to raise each sample of a waveform segment by a power (figure 2b). To prevent
the exponentiation from severely amplifying or attenuating the segment being
mutated, each segment is normalized after exponentiation so that it retains its
original maximum amplitude.

e)

f)

g)
d)

a)

b)

c)

Fig. 2. Mutation operations showing the original waveform (short dashes) and the
resultant waveform (solid line) with the mutation boundaries (long dashes): a) amplify
b) exponentiate c) resample d) reverse e) remove f) repeat g) swap
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We can think in terms of time rather than amplitude and resample a segment
of waveform to lengthen it, making it lower in pitch, or to shorten it, raising its
pitch (figure 2c).

Because mutation is applied to segments of waveform, rather than individual
genes, we can draw inspiration from the types of errors that happen in actual
gene transcription. Mutation functions can reverse a waveform segment (figure
2d), remove a waveform segment entirely (figure 2e), repeat a waveform segment
a random number of times (figure 2f), or swap neighboring waveform segments
(figure 2g).

3 Compositional Framework

In a single, unchanging environment, the algorithm described above would even-
tually converge to a local minimum where all individuals would have roughly the
same length as the target waveform and would have acquired some of its am-
plitude envelope and frequency characteristics. To create formal compositional
structure, I define a world in which the waveforms evolve. A world consists of
multiple distinct environments that change over time.

For a given piece, the world will be characterized by some number of locations.
These locations may be mapped spatially onto speakers. The environment at
each location will initially be defined by some target waveform and some set of
mutation probabilities. Immediately after an individual is created, it has a slight
chance of moving to another location. If it migrates, it will pan from one speaker
to the other over the course of its playback. It will be considered to be in the
second location for its entire duration and will have its fitness determined there.
It will be given the opportunity to reproduce in the second location, but not
the first. In this way, sounds with new characteristics will enter each location,
enhancing biodiversity.

The world will be characterized by probabilities of change. Both target wave-
form and mutation probabilities can change whenever a new waveform is created.
There are two sorts of changes that environments can undergo. One is the slow
drift that is seen in ice ages: these take place over an enormous amount of time
from the perspective of individuals but happen many times over the evolution of
a species. This is simulated by slowly cross-fading between two target waveforms.
The other is the drastic change that results from catastrophic events, such as
fire decimating a forest, causing it to be replaced by grassland. This is achieved
by replacing the target waveform with a completely different waveform.

The changing environment prevents the population from strongly resembling
the target waveform. The goal is to present the process, not draw attention to
the underlying environment. Catastrophic environmental changes lead to musical
surprises that reveal subsets of the population that were previously too unfit to
be heard above the dominant sounds. Migration can have similar effects; it also
increases biodiversity, which means there are always sounds in each location that
can take advantage of the changing environment.
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4 Results

4.1 General Description of Output

As evolution occurs, all of the waveforms in the population are written to a
single sound file with each individual waveform weighted by its fitness. This
weighting causes fit individuals to rise to prominence. Each time a waveform
ends, a new individual is generated from the population. The new individual’s
playback begins immediately at the end of the waveform it replaces. Because
the initial biodiversity is very high, the beginning of the output file is a wash
of textures reminiscent of the timbres of the initial population. Within a few
generations, a few fit individuals dominate the mix, causing a sound in which
particular features of the initial population can be identified.

As evolution progresses, qualities of the initial population are preserved but
are increasingly transformed through reproduction and mutation as the popu-
lation takes on properties of the target waveform. The similarity to the target
waveform depends on the type of mutation used, on the probability of mutation,
and on the amount of time over which evolution occurs.

4.2 Biodiversity

In order for a piece to be musically interesting, biodiversity must be maintained.
Since output is weighted by fitness, only fit sounds are heard distinctly. The
truly musical moments occur when previously unfit sounds become fit, either
through a changing environment or migration. Novel sounds bloom out of the
sea of sounds and affect what is heard after they become fit.

4.3 Effects of Mutation on Output

Each type of mutation has a characteristic sound that can be readily heard if a
population evolves with only that type of mutation. Amplification changes the
population in two ways. The amplitude envelopes of individuals in the popula-
tion tend towards the amplitude envelope of the target environment. Portions
of individuals that are in phase with the target will be amplified, while portions
that are out of phase will be attenuated. Exponentiation is very similar to am-
plification in its behavior, but it is much more invasive; it significantly alters the
timbre of the waveform. Resampling allows pitch to become closer to the pitch
of the target waveform.

The quality of the biologically inspired mutations (reverse, remove, repeat,
swap) depends largely on the number of neighboring genes grouped for muta-
tion. Application to large segments of the waveform leaves the waveform more
recognizable but is less likely to add significantly to the fitness of the popula-
tion. Given a population of individuals that are several seconds long, typically
one or two lengthy mutations will audibly propagate to future generations over
the course of a several minute piece. Application to very small segments of a
waveform typically makes the original sound unrecognizable but is more likely
to have a positive effect on fitness and be incorporated in the population.
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When the biologically inspired mutations are applied to perceptibly large
segments of a waveform, the function itself can be clearly identified. That is, the
a listener can tell that a segment of a waveform has been reversed, removed,
swapped with another segment, or repeated. When the grain size is fairly small,
portions of the waveform tend to get shuffled around to more closely resemble the
target waveform. Portions of a waveform that have been reversed tend to retain
some quality that tells the listener that reversal has taken place, but the only
biologically inspired mutation that has a significant fingerprint when applied to
small segments of a waveform is repetition. Repetition creates pitch out of noisy
segments of a waveform. When the grain size is small and the probability of
mutation is high, repetition is effective at getting the population to denature
to the point where the target environment can be recognized. For example, a
listener unfamiliar with the target environment can identify the environment as
a bell when listening to the evolution of a population of waveforms evolving with
a bell as the target environment.1

4.4 Achieving Musical Results

Because the goal here is to make interesting music, rather than to attain a
duplicate of some target sound file, I usually choose fairly small mutation prob-
abilities and to apply mutations to fairly large segments of waveforms. This
allows the sounds to be quite recognizable, even several minutes into the output
file. The migration of individual waveforms from one environment to another
and the ability of environments to change over time significantly contributes to
the musicality of the output. I chose probabilities for both migration and envi-
ronmental change that caused the trajectory of the piece to change every few
minutes. This prevented the population from being dominated by the offspring
of a few individuals and becoming monotonous.

5 Conclusion

I have used this algorithm to produce several pieces and an installation that have
been performed and well received.2 Many listeners have expressed surprise that
the pieces were algorithmically generated with no composer intervention beyond
setting initial conditions. This speaks to the algorithm’s efficacy in producing
novel and pleasing musical results. Depending on the source sounds and initial
probabilities that I choose, I can generate very different pieces that share the
characteristic sound of the algorithm. Over the course of a typical piece, sounds
from the initial population slowly evolve. Rhythms change gradually; different
sounds from the initial population rise to prominence at different points; and
the piece has clear directionality, punctuated by occasional musical surprises.

1 See http://cmagnus.com/cmagnus/ga_results.shtml for sample output.
2 See http://cmagnus.com/cmagnus/comp/gasketch.shtml for a short piece.
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Abstract. In this paper we propose the use of an interactive multi-agent
system for the study of rhythm evolution. The aim of the model proposed
here is to show to what extent new rhythms emerge from both the in-
teraction between autonomous agents, and self-organisation of internal
rhythmic representations. The agents’ architecture includes connection-
ist models to process rhythmic information, by extracting, representing
and classifying their compositional patterns. The internal models of the
agents are then explained and tested. This architecture was developed
to explore the evolution of rhythms in a society of virtual agents based
upon imitation games, inspired by research on Language evolution.

1 Introduction

The early applications of evolutionary computation to music go back to 1991 with
the works of Horner and Goldberg by applying genetic algorithms to thematic
bridging [1]. Since then there have been many successful attempts to apply these
techniques to music. For a discussion on the history and achievements genetic
algorithms please refer to Gartland-Jones and Copley [2].

Neural Networks have also been used extensively in the context of music.
There have been connectionist models for pitch perception, rhythm and me-
tre perception, melody conduction and composition, many of them collected in
Griffith and Todd’s book [3].

Memetic theory, the cultural counterpart of biological evolution, was invented
by Dawkins in 1979 [4], and postulates that culture is an evolutionary process
evolving through the exchange, mutation and recombination of units of informa-
tion that can be observed in different scales. Although the definition of a meme
is still quite obscure, there have been some computational attempts to model
the evolution of musical style according to this theory [5].

In the specific case of rhythm composition, we can find applications of evo-
lutionary computation such as the Interactive Genetic Algorithm (IGA)from
Horowitz [6] to breed drum measure loops, the CONGA system from Tokui and
Iba [7] using genetic algorithms and genetic programming to generate rhythms
which are evaluated by the user, and the creation of rhythms with cellular au-
tomata by Brown [8].

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 696–706, 2006.
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All these methods have been developed mainly with three applications in
mind: Sound synthesis, composition, and musicology [9]. This paper focuses on
the later; i.e., a framework for the study the evolution of music.

2 Imitation Games: Language and Music

Agent based modelling is a technique frequently seen in the A-Life context to
study complex systems. The emergent behaviour of the system is observed when
autonomous elements self-organise as a consequence of the interactions between
each other and the environment. Regarding music, the applications of A-life
models are described by Miranda and Todd [10]. The scope of the work pre-
sented on this paper considers a society of agents where rhythms are exchanged,
processed and categorised with neural networks.

In the real world, there is no direct transposition of the knowledge between
individuals, this meaning that it is not possible to copy all the information inside
a person’s brain and present it to another. In the case of language or a musical
performance, this features get more accentuated as there is a strangulation in
the channel and consequently in the amount of information that you are able to
process. Although, is easy to exchange information in the computer without loss
of data, for the purpose of simulation we need to find processing mechanisms
and interaction schemes that can cope with this human limitation.

While some defend the innateness of Language and thus the role of genetic
mutations in its evolution, Steels [11] defends that language corresponds to a
Self-organising phenomena like the ones observed in chemical and biological
processes. Furthermore language develops subject to big pressures of the envi-
ronment, such as limited time for articulation of words, and acoustically adverse
environments.

The same duality of opinions can arise on the musical side. The transmission
media is the same as language, and music is also subject to the same kind of pres-
sures, although not constrained to meanings and concepts. Werner and Todd [12]
put emphasis on the role of mate selecting pressures for the evolution of reper-
toires, and the evaluation of the specimen fitness is made the according to the
musical material. Miranda [13] explored the self-organising potential of agents’
societies by furnishing the agents with motor and auditory skills and letting them
evolve a shared repertoire of short sound sequences through imitation games .

Originally inspired by Wittgenstein [14], Luc Steels [15] proposed a model
of imitation games for artificial agents. Bart de Boer [16] applied this game
methodology to study the emergence of a coherent vowel system handling phono-
articulatory parameters. Miranda [17] applied a slightly different version of the
algorithm to develop intonations. Basically the game consists of one agent picking
a random sound from its repertoire and the other agent trying to imitate it. Then
feedback is given about the success of the imitation. On the basis of this feedback,
the agents update their vowel repertoires.

Our approach differs from the applications previously presented in the sense
that the judgement is made upon a system of internal categories of each of the



698 J.M. Martins and E.R. Miranda

agents and how the repertoire evolves in the continuous search to generate music
that the other agent will recognise in his internal categories system.

In this paper we introduce the groundwork that characterises our approach;
i.e., the connectionist nature of the agent’s mechanism for representing rhythms.

3 Agents Architecture

We will present the architecture an agent containing two neural networks in cas-
cade that receive a stream of rhythmic events as input and contain three output
neurons that map these rhythms into a tridimensional space. For a comprehen-
sive foundation on neural network theory please refer to Haykin’s book [18].

Each agent is provided with a set of two neural networks: a SARDNET and
a one layer Perceptron (Figs 2 and 5). The first one receives the stimulus se-
quentially from an input, encoded as a MIDI stream of rhythmic events, and
generates an activation pattern corresponding to the agents perception of the
type of event and its place in the sequence. The dynamics of this network is fully
explained in Sec. 3.1. The pattern of activation from the Sardnet then becomes
the input of the later network, the Perceptron, which generates three output
values that enable the categorisation of the received sequences. The architecture
and learning rules of the Perceptron are explained in Sec. 3.2.

The events are represented as vectors with three components. The first com-
ponent defines the musical instrument (timbre), the second defines the loudness
(velocity), and the third defines the value in milliseconds that the sound lasts
(Inter-onset interval). These three dimensions correspond to human perceptual
attributes with different scales in sensitivity and range. Modelling these differ-
ences in the learning algorithm was not part of the scope of this paper.

3.1 Sardnet

The SARDNET [19] is a self-organising neural network for sequence classification
that was applied in phonology and recently it was also applied to simulations
for evolving melodies [20]. This network is an extension of the original Self Or-
ganised Map (SOM) which is a neural network used for unsupervised learning
developed by Kohonen [21]. The SOM has proven to be a powerful tool for many
engineering applications and some of its variations have provided explanations
for the organisation and development of the visual cortex [22].

The SOM is also called a competitive network or “winner-takes-all” net, since
the node with largest input “wins” all the activation, which reflects on the pos-
sibility of updating that unit in order to become more similar to the input.
The neighbouring units of the winning neuron are also updated according to
a neighbourhood function that organises representations of similar stimuli in a
topographically close manner.

In Fig. 1 we can see a diagram of a SOM with 16 units and one input. The
dimension of the input vector determines the dimension of the weights vector of
each unit. To determine which weight vector is the closest one to the input unit,
the euclidean distance is calculated:
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d2 (v,w) =

√√√√ n∑
i=1

|vi − wi|2 (1)

The SARDNET keeps some essential features from the SOM, but adds two
important features that enables us to deal with sequences of events. The first
diverging characteristic is that the winning neuron is removed from subsequent
competitions, and the second difference corresponds to holding the previous ac-
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tivations with a decay in each time step. The dynamics of SARDNET is shown
on Fig. 2 where we can observe a the stream of events passing through the input
and activating three units in sequence (W14, W7, W2). The training algorithm
for the SARDNET is shown on Tab. 1.

Table 1. The Sardnet training algorithm

INITIALIZATION:
Clear all map nodes to zero

MAIN LOOP:
While not end of sequence
1. Find inactive weight vector that best matches the input.
2. Assign 1.0 activation to that unit.
3. Adjust weight vectors of the nodes in the neighbourhood.
4. Exclude the winning unit from subsequent competitions.
5. Decrement activation values for all other active nodes.

RESULT:
Sequence representation = activated nodes ordered by activation values.

Like the SOM, the SARDNET uses the Euclidean distance d2(w, v) from Eq.
1 to evaluate which is the weight that better matches the input. On step 3 of the
algorithm the weight of the winning and the neighbourhood units are changed
according to the standard rule of adaptation:

Δwjk = α(wjk,i − vi) (2)

where α depends also on the distance to the winning unit, meaning its position in
the neighbourhood. The neighbourhood function decreases as the map becomes
more organised.

As in step 5 of the algorithm, all the active units are decayed proportionally
to the decay parameter d,

ηjk(t + 1) = dηjk(t), 0 < d < 1 (3)

In the following section we present the details of the Perceptron, the network
that receives the activation patterns from the SARDNET, keeping the relevant
information about this activation patterns across several sequences.

3.2 Perceptron

The Perceptron is a neuron-like learning network developed by Rosenblatt [23]
which is a one layer feed-forward neural network with a set of inputs that are fully
connected to an output layer. The outputs of Perceptrons are explicit functions
of the inputs. Fig. 5 shows its architecture.
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Fig. 3. Activations from the output layer on in two different views
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Oi = g(hi) = g

(∑
k

w′
ikIk

)
(4)

Eq. 4 is the propagation function of the Perceptron and g(h) in Eq. 5 is
the activation function computed by the units. In this case this function is a
sigmoidal function,

Oi = g(hi) =
1

1 + exp(−hi)
(5)

The Perceptron uses the gradient descendant method to change the weights
in order to adjust the test input to a given target.

Δwjk = η ∗ (Tk −Ok)Ij ; (6)

where η is the learning rate, T is the target value and Tk−Ok is the corresponding
error during the training phase.

The number of inputs of the Perceptron is the number of units of the SARD-
NET. The number of output neurons is arbitrarily defined as being 3 to be able
to visualise the results in a tridimensional grid. This output grid enables the
categorisation of the input sequences.
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4 Analysis of the Agent

4.1 Sardnet

First we trained the Sardnet solely with prerecorded rhythms. We used a map
with 50 elements, 10 in the length and 5 in the breadth, a learning rate of 0.1.
The map was initialised with random weights in the range of -1 to 1. To per-
form the first organisation tasks the map was fed with 5 sequences of rhythms of
latin music, each of them containing one or two instruments, very much like it
would be if these were performed by other agents. After a couple of iterations a
pattern of organisation could already be observed in the network, but the corre-
spondent sequences extracted sounded extremely chaotic. After 50 iterations the
rhythms start to sound organised as well, and the changes to the timbre of the
instrument have the largest perceptual impact. This was expected to be so, as
there is no discrimination in the organisation algorithm regarding the different
weight components. Nevertheless, the organisation process is fine tuned enough
to adapt perceptually perfectly to the incoming sequence after 80 iterations, and
a learning musician is also expected to make timbre mistakes.

The graphs from Fig. 6 show the evolution of the third component of the
weights (Inter-onset Intervals). The first graph shows the initial value of the
weights, as explained above, the second shows the organisation process after 20
iterations, and the third shows the weights stabilised after 80 iterations. Fig.
6 d) shows the difference between the sums of the weights in two consecutive
iterations, this being a measure of the stabilisation of the weights.

Previously it was stated that the SOM adapts its weights, not only for the
winning elements, but also in its neighbourhood. In Fig. 7 it is shown the same
organisation process but considering the neighbourhood change. The parameter
σ controls the range of the the gaussian that changes the neighbourhood. By
using an initial value of σ = 2.97 we can more rapidly capture the global charac-
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Fig. 6. Sarnet weight evolution without change of neighbourhood: a) Weight initiali-
sation; b) After 20 iterations; c)After 80 iterations; d) Difference between the weights’
sum in consecutive iterations

teristics of the input. It is necessary to reduce gradually this value in order not to
destroy the representations of the events that occur less frequently. Comparing
Figs. 6d) and 7d) we see that this procedure accelerates the convergence process.

One of the most important conclusions is that although it is possible to extract
very similar sequences from both maps, the internal representation can be quite
different, as can be seen from both Figs. 6 and 7 both trained with the same
sequences.

4.2 Perceptron

The Perceptron’s architecture is explained in Sec. 3.2. The Perceptron used for
these experiments had 50 input units, that receive their values directly from
the activations of the output layer of the Sardnet. These input units are fully
connected to 3 output neurons enabling the mapping and categorisation of the
input sequences into a tridimensional space of straightforward visualisation. We
chose the first three activation layers of 50 elements corresponding to three
rhythms fed previously to the Sardnet, and trained the Perceptron to respond to
these patterns with three different targets, namely [1, 0, 0], [0, 1, 0] [0, 0, 1]. This
process took 434 epochs to reach an error of categorisation of 10−3 as can be seen
in Fig. 8 a). Each training patterns is marked with an (o) in the categorisation
space (Fig. 8 b)). Later, we fed the perceptron with the last two rhythms and
observed its activation marked with an (x). These were found to be much closer
to the [0, 1, 0] target, which interestingly correspond to the most similar pattern
regarding the IOIs.
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consecutive iterations

0 50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

434 Epochs

T
ra

in
in

g−
B

la
ck

  G
oa

l−
G

ra
y

Performance is 0.000999658, Goal is 0.001

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

z

y
x

Fig. 8. a) Perceptron error in learning process; b) Categorisation space

5 Conclusion

With this paper we presented the architecture of an interactive virtual agent that
is able to learn rhythms. The agent is composed of two neural networks that are
able to learn the rhythms representation through self-organising processes. As it
happens with humans, the agents always have different internal representations
for the rhythms they listen to. Furthermore, the output of the networks cate-
gorises the incoming sequences and provides a measurement for the agents to
judge how related are the listened rhythms. The rhythm representation allows
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for all types of rhythms to be encoded, considering event variables of Inter-onset
interval, timbre and intensity. Several tests to the individual networks were made
to show the potential to evolving rhythms and categories. We are now studying
the results of number of simulations of imitation games where different rhythmic
repertoires were evolved from scratch under a variety of different scenarios.
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Abstract. We propose a new multimedia authoring paradigm based on
evolutionary computation, video annotation, and cinematic rules. New
clips are produced in an evolving population through genetic transforma-
tions influenced by user choices, and regulated by cinematic techniques
like montage and video editing. The evolutionary mechanisms, through
the fitness function will condition how video sequences are retrieved and
assembled, based on the video annotations. The system uses several de-
scriptors, as genetic information, coded in an XML document following
the MPEG-7 standard. With evolving video, the clips can be explored
and discovered through emergent narratives and aesthetics in ways that
inspire creativity and learning about the topics that are presented.

1 Objectives

The broader goal of this research is to find new ways of editing and producing
multimedia documents. In our approach, the main objectives are: (1) To use
Evolutionary Computation for the creation of a new paradigm for multimedia
production; (2) To develop annotation mechanisms enabling fitness evaluation
of a set of video clips; (3) To use the system in an interactive way, so that the
evolutionary process may be affected by the user.

The system that we are proposing, MovieGene, is a multimedia production
system, that uses genetic algorithms[1] and user selection, as a way to evolve
a population of video segments. These segments are previously annotated with
metadata (MPEG-7 [2] descriptors), that is used in the selection process. The
user actions may influence the evolutionary process as a selection operator. Con-
cepts inspired in video editing techniques are used to assemble the resulting
videos.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 707–711, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Video Annotation, Metadata, and Evolving Video

Annotation should address both high level semantic information, entered by
humans annotating the video, and also low level information, such as color his-
tograms, obtained automatically. The relative start time and the duration (vari-
able) of each segment, within a video document, is of interest to explore (evolve)
and hence to code into the chromosome as annotations. The fitness function eval-
uates color similarities between genes of different chromosomes, using histograms
in the GoFGoPColor descriptor. Text annotation is used in order to have semantic
information, in the FreeTextAnnotation and KeywordAnnotation descriptors.
The shot type is also used. We defined a set of video clips as the population,
video annotations of each shot as the genotype, and the video editing process as
the expression process. Video sequences (phenotype) are taken as expressions of
video annotations (genotype). Each gene contains the full set of descriptors, for
the characterization of a video segment (figure 1).

Fig. 1. Three atomic video segments (genes) example

3 Fitness Function

The fitness function f is formulated (equation 1) as the sum of all distances be-
tween individual and goal genes. For each gene (segment) value, the descriptors’
distance weighted sum is calculated: the similarity matching of GoFGoPColor (C)
descriptors of a segment and the specified goal colors; the KeywordAnnotation
(K) similarity matching using a proposed algorithm for distance computation
[3]; the FreeTextAnnotation (F ) similarity matching using a developed [3] hy-
brid algorithm, that uses the Levenshtein1 algorithm; and an ad hoc similarity
matching function for the ShotDistance (S) proposed [3] descriptor.

1 http://www.nist.gov/dads/HTML/Levenshtein.html
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The equations for the distance measurement between each individual’s de-
scriptor, at some segment, and the goal (purpose to reach) are of the generic
form Z = d(Zi, Zgoal). The formula [2] for matching and measuring the distance
between two distinct GoFGoPColor descriptors, G and G′, is C =

∑
n |Gn−G′

n|,
where C = d(G, G′). The number of coefficients for the color histogram is repre-
sented by n. As mentioned, the metrics for free text similarity F = d(s1, s2) and
for the keywords distance K = d(s1, s2) are calculated with proposed algorithms
[3]. The camera shots can be classified, accordingly to the distance between the
camera and the subjects as combinations of close, medium and long shots. The
S = d(s1, s2) values range between 0.0 (close-up) and 1.0 (long-shot).

Let I set include all the individuals i of the current generation step: f : I →
[0, 1]. Let Vi be the set of an individual’s video segments with descriptions, wd

the weight for the specific descriptor d, g the number of genes/segments per
individual, and fi(Vi) the fitness function applied to all those segments:

fi(Vi) =
∑
v∈Vi

1
g

(
wCC(v) + wKK(v) + wF F (v) + wSS(v)

)
, i ∈ I (1)

The genetic algorithm flow can be summarized as follows: starts with an
initial population where each individual initial fitness value is set, and then the
evolutionary loop begins. The validation for the goal achievement is applied,
and if any individual is the solution for the problem then the loop ends. If not, a
fitness evaluation is used for the selection step, applying a method based on each
individual fitness value and the probability of entering a tournament. Several
individuals, depending on the selection probability, are elected for mating, and
a crossing over technique is applied pairing two individuals. Elitism, if used,
guarantees the election of the best individuals. mutation is the next step, and
individuals that were mated may be mutated with a very low probability. For
the ones that weren’t mated, a shortcut towards the step of elimination is taken.
Next, a choice of individuals to be eliminated is made and the ones that are
chosen are disposed of. The ones that stay are the population new generation.

4 MovieGene System

The MovieGene’s system architecture (figure 2) considers three components:

Interface. The user interface is a Java application/applet. It is a window pro-
viding interactive access to the evolving videos that are to be produced.

Application. The core is the MovieGene’s application linked with libraries for
specific tasks: VideoMPEG7 for reading and writing multimedia documents
descriptors in MPEG-7 format and coded in an XML file; JMF2 which pro-
vides low level methods for multimedia objects reading, writing and editing;
ECJ3 for the implementation of the genetic algorithms module.

2 Java Media Framework – http://java.sun.com/products/java-media/jmf/
3 Java-based evolutionary library – http://cs.gmu.edu/~eclab/projects/ecj/
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Repository. The container for the original multimedia documents and also for
the new produced documents along with the respective media descriptors.

Fig. 2. MovieGene’s system architecture

In the initial screen the user can introduce the intended characteristics for the
final document, including the semantic description, the shot type, and the color
histogram, using text boxes, histogram sliders and buttons. Genetic parameters
are the probabilities of selection for crossing over and mutation, the percentage of
elitism, and the number of generations. At each step of the evolutionary loop, the
resulting videos are presented (figure 3). The user can eliminate a specific video,
hit for the next round, or go towards process completion, when the resulting
(best) video can be played.

Several unattended tests were done with preset genetic parameters: selection
for crossover probability to pS = 0.5, mutation probability to pM = 0.01, elitism
to 10%. The selection method used was 2 Tournament and combination was
One-Point crossover. The default weights were: wC = 0.1, wF = 0.2, wK = 0.6
and wS = 0.1. The tests showed that the results closely match the goals defined
by the user in combining video segments and that the genetic algorithm can
be used interactively, taking less than a second to present the results of each
generation to the user.

5 Conclusions and Perspectives

A new multimedia authoring paradigm was introduced for the production of
video-based documents, using evolutionary computation, video annotation and
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Fig. 3. Evolutionary step screen

cinema editing properties. The evolutionary process aims at best clips editing,
according to a fitness function based on distance metrics for color, camera and
textual annotation descriptors.

Currently, MovieGene allows for the accommodation of spatial, graphical, and
rhythmic continuity editing rules, mainly through the support of syntactic prop-
erties like color and shot distance, and of additional editing rules that may rely
on more semantic properties. Although it may perform automatic video editing,
MovieGene intends to empower the user as a film editor, supporting the creative
edition by proposing innovative evolutionary combinations the user may sub-
jectively select from, in the process of arriving at more satisfactory or artistic
solutions. Some of the improvements in this direction include the provision of a
more abstract, rich, and flexible interface, that does not require the user to be
aware of low level video descriptors and genetic algorithms terminology.
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Abstract. In this paper, an evolutionary algorithm is used to calculate
optimal extensions of a base melody line by statistical interval-distance
minimization. Applying an evolutionary algorithm for solving such an
optimization problem reveals the effect of audible convergence, when it-
erations of the optimization process, which represent sub-optimal melody
lines, are combined to a musical piece. An example is provided to eval-
uate the algorithm, and to point out differences, when different musical
genres, represented by different interval distance classification schemes,
are applied.

1 Introduction

With the progress of computers, various compositional methods were converted
to computational algorithms, and composers started to apply more and more
(especially stochastic) methods to achieve an automatic generation of music.
See [1] for an overview of methods used in the past.

Recently, Operations Research methods have been applied to generate opti-
mal melody lines, e.g. in [2] combinatorial optimization methods were proposed.
Evolutionary algorithms are also a valuable approach for the generation of music,
see e.g. [3], [4], [5], and the references therein. The main problem with optimiza-
tion approaches in composition is the definition of the optimum. An intuitive
approach goes as follows: the main objectives are specified by the composer, and
constraints are implied by some given set of compositional rules. These rules de-
pend on the respective area of composition. The decision process for automatic
composition is two-fold. First, a mapping of compositional rules to a numerical
model, which is suitable for automatic optimization has to be defined. After the
optimization has been conducted, a re-mapping from the numerical optimization
result to a musical piece has to be applied.

This paper is organized as follows. Section 2 provides a short review of how
horizontal tension of melodies is handled numerically. Section 3 presents details
of the evolutionary algorithm, which was developed to optimize melodies. Com-
bining intermediate steps of the optimization process to a musical piece leads
to the effect of audible convergence, which is exemplified in Section 4. Section 5
concludes the paper.

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 712–716, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Algorithmic Treatment of Notes and Tension

Let n be an integer value of a musical note, whose value denotes the number of
half steps from the lowest C. The distance i(n1, n2) between two notes n1, n2 is
called interval. In some simplified view, the intervals of a melody line, i.e. the
horizontal alignment of notes, may be used to evaluate consonance or dissonance.
Intervals can be classified with respect to the musical area, e.g. one Classical
and one Jazz classification proposed in [6] are shown in Table 1. The perfect
fourth (i(·, ·) = 5) is often regarded as a special case. In Classical context, it is
commonly considered as a complete consonant with the main tone of the key of
the respective melody above (notated 5a), while it could also be understood as
dissonant with the main tone below (notated 5b). i+ denotes an augmentation
and i◦ a diminishment.

Table 1. Interval categories cc (Classical) and cj (Jazz)

cc Category Intervals cj Category Intervals

1 Complete consonants: 0, 5a, 7, 12 1 Primary consonants 3, 4, 8, 9
2 Incomplete consonants: 3, 4, 8, 9 2 Secondary consonants 0, 7, 12

3 Dissonants: 1,2, 5b, 6, 10, 11 3 Mild dissonants 2+, 2, 6, 8+, 10
4 Dissonants 1, 11, 13
x Perfect fourth 5

The idea is to map intervals i to ordinally scaled categories c shown in Ta-
ble 1. Using the Classical map would return cc(3) = 2 for an interval i = 3,
while the Jazz map would return cj(3) = 1. Subsequently, such a numerical
evaluation scheme can be applied for optimizing a melody line constrained to
horizontal tension. An excerpt from Wolfgang Amadeus Mozart’s Allegro from
Eine Kleine Nachtmusik is depicted in Figure 1. The intervals of this melody are
‖5a, 5a, 5a|5a, 5a, 5a, 4, 3|(2), 3, 3, 3, 3|3, 3, 3, 3, 7‖.

Applying the category schemes above yields to the interval category list
‖1, 1, 1|1, 1, 1, 2, 2|3, 2, 2, 2|2, 2, 2, 2, 1‖ with the Classical evaluation scheme, and
to ‖x, x, x|x, x, x, 1, 1|3, 1, 1, 1|1, 1, 1, 1, 1, 2‖ using the Jazz evaluation scheme.
The arithmetic mean and variance (in parenthesis) for each bar is 1(0), 1.6(0.3),
2.3(0.3), 1.8(0.2) as well as x(x), 1(0), 1.5(1), 1.2(0.2). For further application,
some simplified scheme has to be used in order to deal with the perfect fourth
in an automated framework, such that unevaluated sections, i.e. the first bar
evaluated with the Jazz scheme, do not occur.

One issue regarding the split of the melody into single bars is e.g. the consid-
eration of the parenthesized major 2nd, which should not be included for tension
calculations as it is not a direct part of the melody, and not acting as a dissonant
note. Although the musically trained eye and ear is able to sort this out easily,
simple numerical algorithms, without using any type of artificial intelligence, are
not able to distinguish such facts. A possibility is to exclude intervals between
bar lines. This strategy excludes valid as well as important intervals, but has
been used below.
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Fig. 1. W.A. Mozart - Allegro from Eine Kleine Nachtmusik (KV525)

3 Evolutionary Algorithms

We use a standard genetic algorithm adapted from [7]. Every member of our
population has a numeric representation (genotype) and an audible representa-
tion (phenotype). Each chromosome of the population consists of melody data,
i.e. one integer per note. To evaluate the fitness of one chromosome, a set of in-
terval categories, as shown above, has to be set up. Furthermore, a target mean
and variance structure for each bar is necessary. The target mean and variance
values should be in line with the values assigned to each interval category. The
fitness f of a generated melody vector is evaluated by calculating weighted sum
of the distance between the pre-specified target means μi and target variances
σ2

i , i.e.

f =
|b|∑

i=1

λm‖μi, Mean(bi)‖ + λv‖σ2
i , Variance(bi)‖

where |b| is the number of bars (or bar sets), while λm and λv can be used to
adjust the importance of the mean or the variance. The functions Mean(bi) and
Variance(bi) return the mean and variance of the interval categories in bar (or
bar set) bi (i = 1, . . . , |b|). Different distances ‖ · ‖ can be used.

In [4] ten mutation operators for melody lines are presented, and applied to
the MusicBlox project. For the algorithm described in this paper, the following
operators are applicable, due to fixed note durations: Swap two adjacent notes,
transpose a note pitch by a random interval, transpose a note pitch by an octave,
and reverse a group of notes within a randomly selected start and end point.

The algorithm was implemented in MatLab 7. Each generated melody is con-
verted to the GNU LilyPond format, which enables visualization and audibility,
as both the score and a MIDI file is generated.

4 Audible Convergence

We aim at constructing an optimization process, which leads to audible conver-
gence, by listening to intermediate steps of the evolutionary algorithm. We start
with some random melody, which will be iteratively optimized into a consonant
melody, given a subjective set of consonance rules - represented by interval cate-
gories. To avoid a pure random noise generation without any musical substance,
an optimal extension of some base melody has been used. Assume that some base
melody m, which should be extended, consists of nm notes. Each bar of the final
extended melody consists of one note of the base melody and ne notes of extended
melody, such that the final melody has n = nm · (ne + 1) notes. These extension
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Fig. 2. Example convergence of the algorithm for different weighting schemes

notes will be randomly chosen at the beginning and are meant to converge nu-
merically, and thus also audibly, during iterations of the evolutionary algorithm.

Consider the following example. The first nine notes of Ludwig van
Beethoven’s Für Elise (Bagatelle in A minor for solo piano (1808), WoO 59)
are used as the base melody, i.e. m = (52, 51, 52, 51, 52, 47, 50, 48, 45). Let the
melody extension structure in common time be one quarter of the base melody
followed by six eights of melody extension. Then the final melody will consist
of nine bars with a total of 9 × 7 notes, i.e. one base note and six extension
notes per bar. A simplified interval category scheme was used. The target mean
and variance for the first and last three bars is 1(0.5), and for the three bars in
the middle 3(2) has been chosen. This target value structure implies a rather
consonant beginning and ending, and a more dissonant middle part.

The initial population has been generated by creating melody lines, where
each extension note is modified by adding an uniform-randomly chosen interval
in the range of [−5, 5] half steps relative to its base note. The last base note
has to be replicated at the end of the score, which is necessary to calculate the
fitness of the last bar accordingly.

For evaluating the (negative) fitness, which has to be minimized, the Eu-
clidean distance was chosen. The size of the initial population was set to 30.
Within each of 20 iterations, the 10 best of the previous population have been
added to the new population. 10 new melodies have been added by mutating
five notes of the best melody of the previous population and 10 by mutating ten
notes of the second best melody.

The convergence of the fitness value is depicted in Figure 2 for a equally
weighted mean and variance (λm = λv = 1, left), as well as λm = 3 and λv = 1
(right). The audible convergence cannot be shown in this paper satisfactorily, as
the size of final scores tends to grow to several pages.

5 Conclusion

In this paper, an evolutionary algorithm to calculate optimal extensions of base
melody lines was presented. The algorithm applies a minimization of the sum of
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distances between pre-defined target means and target variances and the inter-
vals (interval categories) of the melody. Using an evolutionary algorithm reveals
the effect of audible convergence, when iterations of the optimization process
are combined to a musical piece. Using different interval category schemes for
different musical genres results in different audible convergence structures, which
lead to musically interesting results. A motivating example was conducted and
summarized. This basic algorithm, which contains a set of musical simplifica-
tions, can be further refined to obtain even more audibly convergent results.
This paper provides the basis for such efforts.
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Abstract. An autonomous music composition tool is developed using Genetic 
Algorithms. The composition is conducted in two Stages.  The first Stage gen-
erates and identifies musically sound patterns (motifs). In the second Stage, 
methods to combine different generated motifs and their transpositions are ap-
plied. These combinations are evaluated and as a result, musically fit phrases 
are generated. Four musical phrases are generated at the end of each program run. 
The generated music pieces will be translated into Guido Music Notation (GMN) 
and alternate representation in Musical Instrument Digital Interface (MIDI). The 
Autonomous Evolutionary Music Composer (AEMC) was able to create interest-
ing pieces of music that were both innovative and musically sound. 

1   Introduction 

In [1], Gartland-Johnes and Colpey distinct between two important objectives of search 
algorithms; exploration and optimization. Search algorithms, such as Genetic and Evo-
lutionary algorithms, in creative applications definitely serve the formal objective. 

An excellent review of the application of Genetic Algorithms in musical composi-
tion is provided in [2]. However, as stated in [3], most evolutionary composition sys-
tems listed in literature need a tutor, or a human evaluator in an interactive GA envi-
ronment. The development of autonomous unsupervised music composers that pos-
sess automatic fitness assessment is still limited. Furthermore, the concept of compos-
ing music based on a library of motives is, however, near or perhaps slightly beyond 
the frontier of current capabilities of artificial Intelligence (AI) technology. Thus, this 
area of research spearheads a new direction in automated composition. For that, design-
ers of evolutionary music requires new techniques that focus on creating classes of 
musical potential, as opposed to existing techniques that describe predicted linear out-
comes. That should lead to an examination of the dynamic interaction between aspects 
of musical system [4]. The work presented in this paper is an attempt in that direction.  

2   Genetic Algorithms Implementation 

The composition of music is performed in two Stages. In Stage I, a set of motifs are 
generated. In Stage II, motifs and their transpositions are combined to form two music 
phrases A and B. At the end of Stage II, phrase A sharp is generated by sharing each 
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note of the phrase. At the end, a combination of ABA#A is produced, which is one of 
the common combinations in music composition theory. 

3   Stage I 

In Stage one, motifs are generated. A table of 16 best motives is constructed to be 
used in Stage two. These motifs will be used both in their current and transposed 
locations to generate musical phrases in Stage two. Figure 1, shows the chromosome 
structure in Stage I. The genetic structure of one gene, of the chromosome used in 
Stage I, is shown in Figure 1.  

Fig. 1. Chromosome and gene structure for Stage I 

At the end of Stage I, a table of the top 16 motifs is constructed. Each row in the 
look-up table represents a motif. The columns represent the different notes in the 
motif. Although all motifs generated are one whole note in duration, they could be 
composed of either one, two, four, six, or eight notes.  

3.1   Stage I Evaluation Function 

In Stage I, only an Intervals Evaluation Function was used. Within a melody line 
there are acceptable and unacceptable jumps between notes.  Any jump between two 
successive notes can be measured as a positive or negative slope. Certain slopes are 
acceptable, others are not. The following types of slopes are adopted: Step: a differ-
ence of 1 or 2 half steps. This is an acceptable transition. Skip: a difference of 3 or 4 
half steps.  This is an acceptable transition. Acceptable Leap: a difference of 5, 6, or 7 
half steps.  This transition must be resolved properly with a third note. Unacceptable 
Leap: a difference greater than 7 half steps.  This is unacceptable. 
     If a leap is acceptable and resolves properly, no penalty will be assigned. There is 
also a possibility of bonus within the interval section.  Certain resolutions between 

 
 
 
 

Gene 1 2 … … … … … 

Note Pitch Duration     O    V 
0000 REST/PAUSE 000 1 
0001 C 001 1/2 
0010 C# 010 1/4 
0011 D 011 1/8 
0100 D# 100 1/16 
0101 E 1  whole note 
0110 F 1/2  half 
0111 F# 1/4  quarter 
1000 G 1/8  eighth 
1001 G# 1/16  sixteenth 
1010 A 
1011 A# 
1100 B 
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notes are pleasant to hear.  We can define these bonus resolutions as the 12-to-13 and 
the 6-to-5 resolutions.  The first is a stronger resolution, and therefore receives a lar-
ger weight.  Thus the bonuses are calculated as in equations (1) and (2). 
 

12-to-13 bonus = (#occurances of 12-to-13 steps/15) * 0.66 (1) 

                6-to-5 bonus = (#occurances of 6-to-5 steps/15) * 0.34 (2) 

The total interval fitness: 

                Interval Fitness = 1 / (total_error (1 – total_bonus))  (3) 

4   Stage II 

In Stage II, motifs from the look-up table constructed in stage I are combined to form 
two phrases A, and B. Each phrase is eight measures, and each measure is one whole-
note motif, Figure 2. 

 
 
 

 
 

Fig. 2. Chromosome structure for Stage II 

4.1   Stage II Evaluation Functions 

In stage II, two evaluation functions are implemented; Intervals, and ratio. The Inter-
val evaluation function described in the previous section is used to evaluate interval 
relationships between connecting notes among motifs. Other evaluation function is 
described below. 

 
Ratios Evaluation Function.  The basic idea for the ratios section of the fitness func-
tion is that a good melody contains a specific ideal ratio of notes, and any deviation 
from that ideal results in a penalty.  There are three categories of notes; the tonal cen-
ters that make up the chords within a key, the color notes which are the remaining 
notes within a key, and chromatic notes which are all notes outside a key. Each type 
of note is given a different weight based on how much a deviation in that portion of 
the ratio would affect sound quality. The arbitrary ratios sough were: Tonal Centers 
make up 60% of the melody; Color Notes make up 35% of the melody; and Chro-
matic Notes make up 5% of the melody. Although these ratios choices could be quite 
controversial, they were a starting point and current ongoing work is looking further 
into making these ratios chosen by the user or music style dependent.  

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Phrase A Phrase B

......4135122 .................. ...



720 Y. Khalifa and R. Foster 

5   Results 

The four motifs in Figure 3 (a) to (d) were picked from the final 16 motifs chosen by 
the program.  It can be observed that each motif has an identical rhythm consisting of 
four eighth-notes, one quarter-note, and two more eighth notes.   
    Examining motif a, the first three notes are all F#’s, indicating that no penalty will 
be assigned (a step size of 0).  The next note is a G#, (2 half-steps away from F#).  
This transition is classified as a step and no penalty is assigned.  The following notes 
are F#, G#, and E (a difference of 2, 2, and 3 half steps, respectively). These transitions 
are also acceptable.  
    Since each of the motifs in Figure 3 (a) to (d) contained an identical rhythm, it is of 
no surprise that a piece composed from these motifs contain the same rhythm.  What 
is interesting to note, however, are the measures marked as I, II, III, and IV.   

 

 
                  
                 (a) 
 

  

 

 
 

(b) 
 

 
  

(c) 
 

 
 

(d) 

 
 

 
 

(e) 

Fig. 3.  (a) - (d) Sample motifs generated in Stage I of the Evolutionary Music Composer. (e) A 
partial piece composed from motifs in the same generation as those in (a) through (d). 
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Measure I and III are the only measures throughout the entire excerpt in which the 
last two eighth-notes are not G# and E. Measures II and IV are the only ones in which 
the first three eighth-notes are not all F#’s. The last note of measure I and the first note 
of measure II are the same. This is the result of the intervals evaluation function, since 
it’s role in Stage II is to evaluate the transitions between motifs.   

6   Discussion and Future Work 

New techniques in evaluating combinations of motives are needed. The evaluation of 
motive combination should take into consideration the overall musical piece rather 
than the note transition resolutions of the first and last notes in the motif only. One 
approach that will be investigated is the application of formal grammars. A formal 
grammar is a collection of either or both descriptive or prescriptive rules for analyzing 
or generating sequences of symbols. In music, these symbols are musical parameters 
such as notes and their attributes.  
    In a multi-objective optimization problem such as music composition, different 
evaluation functions are applied and contribute in the fitness measure of a generated 
piece. The main functions that have been designed are intervals and ratios. They have 
been equally considered in evaluating the evolutionary generated music so far.  
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Abstract. We present a theoretical evolutionary musical accompani-
ment generating system capable of evolving to different organized sounds
according to an external performer. We present a new approach for im-
plementing the fitness functions.

1 Introduction

Musical accompaniment system design is the task of making a system to produce
musical accompaniment for a soloist performer as a human accompanist would
produce. The first successful musical accompanist system dates back to 1984 [1].
The musical accompaniment system design can be subdivided into three sub-
tasks: “Listening”, “Musical Decision” and “Performing”. “Listening” consists
in hearing the aural data being played by the soloist and translating it into a no-
tation that the system can interpret. “Musical Decision” is the system’s decision
of which is its part in the music, id est, what is the musical data the system should
play. And “Performing” is the system’s part execution itself; commonly referred
as synthesis for computerized systems. Musical accompaniment system design-
ers, even separating the system in those three subtasks, usually prefer to model
the whole system [2]. Others, however, focus on only one of those parts. For exam-
ple, [3] focuses on “Musical Decision” subtask; our proposal has that same focus.

In order to take ahead the “Musical Decision” part of the system, rather
than simply reading a score [1], systems today intend to implement advanced
algorithms for musical composition [4], such as use of genetic algorithms (GA).

In despite of criticisms [5], GA continued to be a fluent framework for musical
composition [6][7]. [8], another work of the same author group of [5], says “a GA
with no notion of meta-level control of the reasoning process is unlikely to solve
the harmonisation problem well”, however, the works that continued using GA
do not seem to care much on that and have used different approaches to attack
the eminent problems concerning to the use of GA. [6] used a hybrid approach

� This work was sponsored by CNPQ.
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that, somehow, depended on an interactive GA (IGA); [9] and [7] eliminated the
fitness function phase.

The problems related to the GAs that lead researchers to use IGAs, or any
alternative algorithm, are closely related to the subjectiveness of modeling a
fitness function, which is, in turn, one of the consequences of the hardness of
modeling a fitness function. Since a composer changes its set of musical rules
even within the same music, the GA may work well untill a certain point , but,
with the increase of the music complexity, it becomes hard to trust in a single
fitness function.

Here we present a theoretical proposal of an alternative implementation of
fitness functions in the direction of counterpart the musicians subjectivity with
a layered control of fitness functions, which we will call “meta fitness function”.
We begin in the Sect. 2 with a overview of the system. In the Sect. 3 we model
the basic structures present in the system. In the next step (Sect. 4) we talk
about the fitness adaptation layer and introduce the meta fitness function. Then
we make a discussion (Sect. 5) and, finally, the conclusion (Sect. 6).

2 Overview

Look at Fig. 1, where we show the parts of the system. The external performer
inserts a musical data stream. This stream is passed to the fitness adaptation
algorithm, which uses it to modify a fitness function. This modified fitness func-
tion is delivered to the genetic algorithm that generates accompaniment data to
be played. And, then, the genetic algorithm returns the musical accompaniment
to be played.

We will use GA both for generating musical data to be played and to mod-
ify the fitness function. We call the former the “Evolutionary Accompaniment
Generation” (EAG) layer and the latter the “Fitness Adaptation” (FA) layer.

Fig. 1. The parts of the system
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For our GAs design, we will let openings for the design of reproduction,
crossing-over and mutation methods. So we will only concentrate on the design
of the fitness functions.

3 Data Structures Models

Before modeling a fitness function, we must define how the individuals of the
GA are. For the EAG layer, our proposal does not depend strongly on such a
definition, but we must provide one for consistency reasons. We will use a very
simple definition: An individual is a set of pitchs, which we call “cluster”.

For the FA layer, each individual must represent a fitness function for the
EAG layer, once we want the EAG fitness function to be time-variant. To
get this, we state that an individual of the FA layer is a set of rules that
guides the fitness function of the EAG layer. This set of rules are filled in two
tables:

Rhythmic Pattern Table (RPT). The RPT has information about the rhythm
and its relationship with the clusters. In this table, each column represents a
rhythmic unit. The first line tells, in an arbitrary time unit, how long each
rhythmic unit lasts. The second line tells the beat strength of each rhythmic
unit. From the third line on, for each pitch in the cluster there is a correspond-
ing line telling if the pitch is to be played or not at a rhythmic unit. This
example:

first line 1 1 1 1
second line 2 1

2 1 1
2

third line 1 0 1 0

is a music part in 2/4 metre: 4 rhythmic units with the same duration. The
first rhythmic unit is to be played with a strong beat, the third a soft beat, the
second and the fourth have very soft beats. The first pitch in the cluster is to
be played at the first and the third rhythmic unit.

Transitional Table (TT). This table is filled with data saying how good is to
go from one pitch to another. Let us examine this example with, for simplicity,
only the pitchs of the traditional western major diatonic scale:

C D E F G A B Note: D E F G A B C
.1 .2 .3 .4 .5 .6 .7 C .7 .6 .5 .4 .3 .2 .1
D E F G A B C Note: E F G A B C D
.1 .2 .3 .4 .5 .6 .7 D .7 .6 .5 .4 .3 .2 .1

. . . . . . . . .

So, descending from C to the prior D is 0.2 good in the arbitrary scale used;
and ascending from C to the next D is 0.7 good.
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Each entry in the table can have, as well, a pointer to another TT, which
permits the fitness function to evaluate sequences of pitchs. If the sequence C,
D, E is to be evaluated, and the entry tt(C, Ascending D) has a pointer to
another TT tt′, so, the value of tt′(D, Ascending E) is considered instead of
tt(D, Asceding E).

4 The FA Layer: The Meta-fitness Function

Regard again Fig. 1. The FA layer – the Fitness Adaptation Algorithm in the
figure – receives a musical stream, which is being externally performed. Basing
on this stream, it chooses a new individual representing a fitness function to
govern the EAG layer.

The algorithm expects the musical stream to be similar to the musical stream
received up to the present moment, and keeps generating and selecting individ-
uals according to the musical stream received up to the present moment. The
system must be prepared, however: the environment can suddenly change and
there may not be enough time for the evolution to work on the avaliable data.
For the case of abrupt changes, the system maintains a database of diversi-
fied individuals. The algorithm for the FA layers fitness function, which we call
“meta-fitness function”, is shown in the Alg. 1.

Algorithm 1. Meta-Fitness Function
1: ffi means “individual representing a fitness functions for the EAG layer”.
2: Let P be the generated population of ffi.
3: Let D be the database of ffi.
4: Let f c be the current ffi.
5: E = D + {f c}
6: Let m be the musical stream being inserted.
7: Let fα be such fα(m) = max{si(m), ∀si ∈ E}
8: if fα = f c then
9: Let f be such −‖f c − f‖ = max{−‖f c − f i‖, ∀f i ∈ P} //smooth change

10: else
11: f ← fα //abrupt change
12: end if
13: return f

The “distances between two individuals” are euclidian distances between the
values in the data structures. 1 The meta-fitness function recognizes the hap-
pening of an abrupt change when there is in the database any individual that
fits the musical stream better than the current one, and in this case, it returns
this better individual; otherwise it returns the individual most similar to the
current one.
1 It must there be enough care about not comparing data to pointers in TTs.
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5 Discussions

The problems related to fitness functions modeling for evolutionary composition
arise because we cannot count on having a methodologic way to define such func-
tions. Once the generated data must converge according to the fitness function,
any mistake shall lead everything to a system’s misbehaviour. Once the music
subject is very subjective, the designer of the fitness function is likely to make
the system act as the designer thinks to be “good”. And once the musical genre
or rules can change along the time, a fitness function can stop working. These
points lead us to the need of a way to make the fitness function to be corrected
along the time, and a meta-fitness function seems to be conceptually good to do
this work.

6 Conclusion

The task of modeling fitness functions for GAs in evolutionary composition is
hard and delegating the judgement of fitness to human evaluation can be a dull
work. GA and IGA have to find ways where human beings interacts with the sys-
tem, with your natural actions, like singing, dancing, or playing any instrument.
GA and IGA shall continue to be a good framework for musical composition, if
designers can incorporate elaborated criticisms into theirs systems.

The implementation of this work is in progress.
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Abstract. Real-world optimization problems are often subject to un-
certainties, which can arise regarding stochastic model parameters, ob-
jective functions and decision variables. These uncertainties can take
different forms in terms of distribution, bound and central tendency.

In the multiobjective context, several studies have been proposed to
take uncertainty into account, and most of them propose an extension
of Pareto dominance to the stochastic case. In this paper, we pursue
a slightly different approach where the optimization goal is defined in
terms of a quality indicator, i.e., an objective function on the set of
Pareto set approximations. We consider the scenario that each solution
is inherently associated with a probability distribution over the objec-
tive space, without assuming a ’true’ objective vector per solution. We
propose different algorithms which optimize the quality indicator, and
preliminary simulation results indicate advantages over existing methods
such as averaging, especially with many objective functions.

1 Motivation

Knowledge about the set of Pareto-optimal solutions is useful in many appli-
cations involving multiple objectives. Therefore, considerable research, particu-
larly in the context of evolutionary computation, has been devoted to generating
methods, i.e., techniques that try to generate the entire Pareto set or approxi-
mations of it. One recent approach of this type is indicator-based multiobjective
optimization [1], which has the advantage that no additional diversity preserva-
tion mechanisms are required. Zitzler and Künzli [1] have demonstrated that this
approach can be superior to popular algorithms such as SPEA2 and NSGA-II,
with respect to the quality indicator under consideration.

Many real-world optimization problems are subject to uncertainties and there-
fore this aspect needs to be accounted for. Among the different types of uncer-
tainty one can distinguish, cf. [2], we here consider the case that the determination
of the objective function values is a stochastic process, i.e., every time a solution is
evaluated, a different objective vector may be returned. Such a scenario emerges,
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e.g., if the underlying computational model involves stochastic components such
as Monte Carlo simulation.

While uncertainty in the objective functions gained some attention in the
single-objective context [3, 2], only few studies address this problem within a
multiple criteria setting. [4] were among the first to discuss uncertainty in the
light of generating methods, although they did not propose a particular multiob-
jective optimizer for this purpose. Several years later, [5] and [6] independently
proposed stochastic extensions of Pareto dominance and suggested similar ways
to integrate probabilistic dominance in the fitness assignment procedure; both
studies consider special types of probability distributions. In [7], another rank-
ing method is proposed which is based on the average value per objective and
the variance of the set of evaluations. Similarly, [8] suggested to consider for
each dimension the mean over a given sample of objective vectors and to apply
standard multiobjective optimizers for deterministic objective functions.

In this paper, we consider different scenarios for uncertain environments and
propose and investigate several techniques to integrate uncertainties within the
framework of indicator-based search, based on the algorithm presented in [1];
here, we focus on the ε+ quality indicator [9]. In particular, the main contribu-
tions are:

– A probabilistic model that combines quality indicators and uncertainty;
– Different algorithms to integrate this model into the optimization process;
– Preliminaries experimentations on multiobjective test functions to compare

these algorithms to existing ones.

The major differences to previous studies are (i) the investigation of uncertainty
in the context of indicator-based multiobjective search and (ii) the more general
perspective, as knowledge about the type of underlying probability distribution
is not required.

2 Proposed Model: Combining Uncertainty and Binary
Indicators

2.1 Indicator-Based Multiobjective Optimization

Let X denote the search space of the optimization problem under consideration
and Z the corresponding objective space. Without loss of generality, we assume
that Z = IRn and that all n objectives are to be minimized. In the absence
of uncertainty, each x ∈ X is assigned exactly one objective vector z ∈ Z
on the basis of a vector function f : X → Z with z = f(x). The mapping
f defines the evaluation of a solution x ∈ X , and often one is interested in
those solutions that are Pareto optimal with respect to f .1 However, generating
the entire set of Pareto-optimal solutions is usually infeasible, e.g., due to the
complexity of the underlying problem or the large number of optima. Therefore
1 A solution x ∈ X is Pareto optimal if and only if there exists no x′ ∈ X such that

(i) f(x′) is component-wise smaller than or equal to f(x) and (ii) f(x′) �= f(x).
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in many applications, the overall goal is to identify a good approximation of the
Pareto-optimal set.

Different notions of what a good Pareto set approximation is are possible,
and the definition of approximation quality strongly depends on the decision
maker and the optimization scenario. We here assume that the optimization
goal is given in terms of a binary quality indicator I, as proposed in [1]. A
binary quality indicator, cf. [9], is a function I : M(Z) ×M(Z) → IR, where
M(Y ) stands for the set of all possible multisets over Y , that can be regarded
as a continuous extension of the concept of Pareto dominance to multisets of
objective vectors. The value I(A, B) quantifies the difference in quality between
A, B ∈ M(Z). Now, if R denotes the set of Pareto-optimal solutions (or any
other reference set), and f(Y ) := {f(x) |x ∈ Y }, then the overall optimization
goal can be defined as

argminS∈M(X) I(f(S), f(R)) (1)

2.2 Handling Uncertainty

In the following, the above optimization model will be extended to take uncer-
tainty into account; later, we will discuss how to estimate and compute expected
indicator values for uncertain environments.

As to uncertainty, the basic difference to the classical settings is that the
vector function f does not represent a deterministic mapping from X to Z,
but a stochastic process: every time a solution x ∈ X is evaluated using f , it
may be mapped to a different objective vector z ∈ Z. The higher the degree of
uncertainty, the larger the variance among the objective vectors resulting from
multiple, independent evaluations of x. Thus, with each solution x a random
variable F(x) is associated the range of which is Z; the underlying probability
density function is usually unknown and may be different for other solutions.

Now, consider an arbitrary solution multiset S = {x1,x2, . . . ,xm} ∈ M(X).
Based on the random variables F(xi) associated with the elements xi of S, a
corresponding random variableF(S) is defined for S which takes values inM(Z);
P (F(S) = A) denotes the probability that (i) all members of S are mapped to
elements of A ∈ M(Z) and (ii) there is at least one x ∈ S per z ∈ A for which
z = f(x). Using this notation, we can now reformulate the optimization goal for
uncertain environments as

argminS∈M(X) E(I(F(S),F(R))) (2)

where R is an arbitrary reference set from M(X) and E(·) stands for the ex-
pected value.

Note that there is a fundamental difference to other approaches, cf. [2]: we do
not assume that there is a ’true’ objective vector per solution which is blurred by
noise; instead, we consider the scenario that each solution is inherently associated
with a probability distribution over the objective space.
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2.3 Estimating the Expected Indicator Value

If the probability density functions are known in advance and identical for all
solutions x ∈ X , then the expected value for any indicator can be computed
according to

E(I(F(S),F(R))) =
∫∞
−∞

∫∞
−∞ pdfF(S)F(R)(A, B) · I(A, B) dAdB

=
∫∞
−∞

∫∞
−∞ pdfF(S)(A) · pdfF(R)(B) · I(A, B) dAdB

(3)

since F(S) and F(R) are independent from each other. Here, pdfF(·) denotes
the probability density function associated with the random variable F(·).

However, in practice the underlying probability density functions are in gen-
eral unknown, may vary for different solutions, and therefore can only be esti-
mated by drawing samples. Let us assume that S(x) ∈ M(Z) represents a finite
sample, i.e., a multiset of objective vectors, for solution x. Now, the expected
indicator value E(I(F(x), {A∗}) of F(x) with respect to a given set of objective
vectors {z∗1, . . . , z∗q} can be estimated as follows

Ê(I(F(x), {z∗1, . . . , z∗q})) =
∑

z∈S(x)

I({z}, {z∗1, . . . , z∗q})
|S(x)| (4)

where Ê stands for the estimated expected value and | · | for the cardinality of
a set. For a multiset S of solutions with S = {x1,x2, . . . ,xm}, the formula is

Ê(I(F(S), {z∗1, . . . , z∗q}) =
∑

z1∈S(x1)

. . .
∑

zm∈S(xm)

I({z1, . . . , zm}, {z∗1, . . . , z∗q})∏
1≤i≤m |S(xi)|

(5)
and if one considers a reference set R of solutions with R = {x∗

1, . . . ,x
∗
r}, then

the estimate amounts to

Ê(I(F(S),F(R)) =
∑

z∗
1∈S(x∗

1)

. . .
∑

z∗
r∈S(x∗

r)

Ê(I(F(S), {z∗1, . . . , z∗r}))∏
1≤i≤r |S(x∗

i )|
(6)

This approach is based on the assumption that the probability of a solution
x ∈ X to be mapped to any objective vector z in the corresponding sample S(x)
is uniformly distributed, i.e., P (F(x) = {z}) = 1/|S(x)| for all z ∈ S(x).

2.4 Computing Expected Indicator Values

Computing the expected indicator value for two multisets of solutions in the
aforementioned manner is usually infeasible due to combinatorial explosion. Sup-
pose each multiset contains 100 solutions with a sample size of 10 each, then
equation 6 contains 10010 ·10010 = 1040 summands. However, if particular prop-
erties of the indicator used can be exploited, then the exact calculation for Ê(. . .)
may become feasible. We here propose an algorithm for the (additive) ε-indicator
[9] to compute the expected quality difference between a multiset S ∈ M(X)
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and a reference set R with one element only - for reference sets of arbitrary size
the computation is still too expensive to be useful in practice. Later in Section 3
it will be discussed how this procedure can be integrated into an evolutionary
algorithm.

For a minimization problem, the ε-indicator Iε+ is defined as follows:

Iε+(A, B) = infε∈IR{ ∀z2 = (z21 , . . . , z2n) ∈ B ∃z1 = (z11 , . . . , z1n) ∈ A :
∀1 ≤ i ≤ n : z1i ≤ ε + z2i}

(7)

It gives the minimum ε-value by which B can be moved in the objective space
such that A is at least as good as B; a negative value implies that A is better
than B in the Pareto sense. If B consists of a single objective vector z∗, then
the formula reduces to

Iε+(A, {z∗}) = inf
ε∈IR

{∃z1 = (z11 , . . . , z1n) ∈ A : ∀1 ≤ i ≤ n : z1i ≤ ε + z∗i } (8)

Now, to compute Ê(Iε+(F(S), {z∗})) it is not necessary to consider all com-
binations of objective vectors to which the elements x ∈ S could be mapped
to. Instead, one can exploit the fact that always the minimum Iε+({x}, {z∗}))-
value determines the actual indicator value. By sorting the objective vectors
beforehand, it suffices to consider the ε-values in increasing order.

In detail, this works as follows. We consider all pairs (xj , zk), where xj ∈ S
and zk ∈ S(xj), and sort them in increasing order regarding the indicator value
Iε+({zk}{z∗}). Suppose the resulting order is (xj1 , zk1), (xj2 , zk2), . . . , (xjl

, zkl
).

Then, the estimate of the expected indicator value is

Ê(Iε+(F(S), {z∗})) = Iε+({zk1}, {z∗}) · P (F(xj1 ) = zk1) +
Iε+({zk2}, {z∗}) · P (F(xj2 ) = zk2 | F(xj1 ) �= zk1) +
. . .
Iε+({zkl

}, {z∗}) · P (F(xjl
) = zkl

| ∀1≤i<lF(xji ) �= zki)

It can be done more efficiently as soon as if all Iε+ values of the different
elements of one solution are smaller than ε, then the remaining Iε+ values greater
than ε, have a probability of 0. This scheme can be used, as detailed by Alg. 1.

Algorithm 1 (Estimation of the Expected ε-Indicator Value)

Input: S ∈ M(X) (multiset of decision vectors)
z∗ ∈ Z (reference objective vector)

Output: Ê(Iε+(F(S), {z∗})) (estimate for the expectation value of Iε+)

Step 1: Determine ε = minx∈S maxz∈S(x) Iε+({z}, {z∗})
Step 2: Set L = ∅. For each x ∈ S and z ∈ S(x) do:

1. ε = Iε+({z}, {z∗}).
2. If ε ≤ ε then AppendToList(L, (ε,x)).

Step 3: Sort L in increasing order according to the ε-values.
Step 4: Set Ê = 0. For each x ∈ X set N [x] = 0.



732 M. Basseur and E. Zitzler

Step 5: While NotEmpty(L) do:

1. (ε′,x′) = FirstElement(L).

2. p = 1/(|S(x′)| − N [x′]) · x∈S 1 − N [x]/|S(x)|.
3. Ê = Ê + p · ε′.
4. N [x′] = N [x′] + 1 and RemoveFirstElement(L).

Step 6: Return Ê.

3 Algorithm Design

In this section, we discuss on how to integrate algorithm 1 in multiobjective EAs
in order to achieve the optimization goal defined in equation 2. The following
discussion is based on [1].

In the general case, during the selection process of EAs, we are interested
in the case that M solutions need to be removed from the current population,
with the goal of maximizing the quality of the remaining solutions, in our case
according to the binary indicator Iε+ . But, clearly, this problem is NP-hard.
Therefore, consider mainly the steady-state version (M = 1), which corresponds
to an evolution strategy ES(N + 1). According to a performance indicator,
removing one individual can be solved optimally by deleting the solution xw ∈ S
which has the worst EIV value.

With the algorithm 1, the Estimation of the Expected ε-Indicator Value
(EIV ) is computed. Then, we are able to evaluate the quality of different pop-
ulations against a reference set. As shown in equation 2.4, the algorithm can
be used to evaluate the quality of a single solution against a reference set. The
quality of a solution xi ∈ S is measured by estimating EIV of S \ {xi} against
S, which corresponds to the lost of quality of S if we remove the solution xi.
The general EA is detailed in algorithm 2.

Algorithm 2 (Steady-state IBEA algorithm: EIV )

Input: N (population size)
G (maximum number of generations)

Output: S (approximation set)

Step 1: Initialization: Generate an initial population S of size N ; set the generation
counter g to 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in S, i.e., for all
xi ∈ S set Fit(xi)= Ê(I(F(S),F({xi}))= 1

|S(xi)| zi∈S(xi)
Ê(I(F(S), {zi}))

Step 3: Environmental selection: Remove the individual xw ∈ S with the smallest
fitness value, i.e., Fit(xw) ≤ Fit(x) for all x ∈ S.

Step 4: Termination: If g ≥ G then return S.

Step 5: Mating selection: Perform binary tournament selection on S.

Step 6: Variation: Apply recombination and mutation operators and insert the gen-
erated individual into the population S. Increment the generation counter
(g = g + 1) and go to the Step 2.
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Let us consider s evaluations for all xi ∈ S. In order to realize this comparison,
the epsilon values of each individual have to be sorted (see algorithm 1). Then
the selection process, according to the EIV fitness assignment algorithm, has a
complexity of θ(n(Ns)2log(Ns)) (Ns solutions - Ns elements to sort for every
solution to evaluate). In order to reduce this complexity, we develop two methods
which approximate the ranking obtained with EIV algorithm.

The first approach consists in approximating the sorting step of EIV by a
Bucket sort (BCK). c different values are first defined, with an uniform repar-
tition on the definition interval [Imin, Imax] of the performance indicator (we
could also use the minimum and maximum values computed for the indicator).
Then, during the Step 1 of algorithm 1, we compute an approximated indicator
value IBCK

ε+ , to speed up the sorting step by the use of bucket sort. Let crange

be defined as (Imax − Imin)/c and cell = (int)[ (Iε+ (z,z∗)−Imin)

crange
].

IBCK
ε+ (z, z∗) = Imin + cell ∗ crange (9)

The maximum error of this approach is equal to (Imax − Imin)/c. The algo-
rithm complexity is in θ(nN2s(s + c)).

The second approach consists in approximating the minimum value computed
by EIV with an exponential function (Exp) applied on the different computed
indicators values, as realized in [1], without uncertainty:

Fit(x1) =
∑

z1∈S(x1)

∑
x2∈S\{x1}

∑
z2∈S(x2)

−e−Iε+ (z2,z1)/κ (10)

With one evaluation per solution, when kappa is close to 0, the correspond-
ing ranking tends to be exactly a lexicographic sorting comparison between all
computed indicator values. With several evaluations per solution, the proba-
bility of occurrence of each possible indicator is not considered here, but the
computational complexity of the algorithm 2 is reduced to θ(n(Ns)2).

To evaluate the different scheme proposed, we also propose two alternative
algorithms. The first approach envisaged consists in approximate EIV fitness
assignment function is the Averaging method (Avg). First, the average value is
computed for each objective function, then the exact algorithm can be easily
applied with |S(x)| = 1, ∀x ∈ S. In fact, in this case, we have the relation
Ê(I(F(S),F({x∗})) = Ê(I(F(S), {z∗}), and:

Fit(x∗) = Ê(Iε+(F(S), {z∗}) = min{z ∈ S(x) Iε+{z}{z∗}} (11)

Then, the algorithm complexity is in θ(Ns+N2) (averaging step + indicator
values computation).

We also implement the fitness assignment method proposed by Hughes [5],
based on the Probabilistic Dominance Relation (PDR) between solutions:

Fit(x∗) =
1

|S(x∗)| ∗
∑

z∗∈S(x∗)

n∑
i=1

∑
x∈S\x∗

1
|S(x)| ∗

∑
z∈S(x)

inf(zi, z∗i ) (12)



734 M. Basseur and E. Zitzler

with inf(zi, z∗i ) equal to 0 (resp. 0.5, 1) if the ith objective value of z is smaller
(resp. equal, greater) than the ith objective value of z∗. The complexity of PDR
fitness assignment algorithm is in θ(n ∗ (Ns)2).

For all the different schemes proposed in this section, with use algorithm 2.
The fitness assignment step is replaced by the corresponding method. Then,
for mating selection, we make a binary tournament between the solutions of S,
without the deleted solution xw. To achieve the tournament step, we compare
the solutions according to their fitness value, computed for the selection (which
is not exactly the true fitness value, since one solution has been removed from
the population).

4 Simulation Results

In the following, we investigate two questions concerning performance of the 5
different algorithms. First, we evaluate these algorithms for one selection step,
and compare the loss of quality obtained by each method. secondly, comparison
is done on entire runs on multiobjective tests functions.

We present only preliminary results. The uncertainty is defined with known
bound, distribution and central tendency. Moreover, performance evaluation are
realized by using the true objective vectors value of the output solutions. We
would like to make evaluation based expected values as in equation 3, but it is
really not feasible.

4.1 Environmental Selection

The test are done with the different approximative and exact selection methods
previously described: EIV , BCK, Exp, Avg, PDR.

We evaluate the selection process on randomly generated Pareto population:
100 individuals are generated, with random value for each objective function.
Then, we scale the values of each individual x to obtain

∑n
i=1 fi(x) = n/2. In the

biobjective case, it corresponds to solutions on the diagonal [{1, 0}, {0, 1}]. Then,
for each solution, we generate s different evaluations, by adding a random value
(in an interval [−σ, σ]), for each objective vector. For each test, we generate 100
random populations, with 10 evaluations per solution, a uniform noise defined
on the interval [−0.05, 0.05], and two objective values. We evaluate the different
methods by varying the number of objective functions, the sample size, or the
level of uncertainty. The bucket sort was tested with c = 50.

Then, we first evaluate the selection process with the exact Iε+ value compu-
tation, which determines the worst solution xw. Then, for each approximative
fitness assignment algorithm i, we compute the worst solution xwi . To evalu-
ate the effectiveness of the approximation, we compute the difference, in terms
of performance indicator, between the exact and the approximative approach:
Iε+(S \ {xwi}, S)− Iε+(S \ {xw}, S) (smaller values are better).

The figures 1, 2 and 3 give the results obtained with the different selection
methods (BCK, Exp, PDR and Avg) for 4 different number of objective func-
tions, 3 different sample size, and 3 levels of uncertainty. The smaller values are
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achieved by BCK in many cases, especially with an important level of uncer-
tainty, many objectives, or a lot of evaluations. The other methods obtain small
values only for small sample size or small level of uncertainty. The exponen-
tial approaches almost obtain the exact approach results, only when s = 1. In
normal case, we suggest to use the exponential function approach, which is not
expensive to compute and almost gives the optimal results. With uncertainty,
BCK seems to be more effective.

4.2 Entire Optimization Runs

For the entire optimization runs, we consider 5 multi-objective test functions
taken from the literature: ZDT1, ZDT6 [10], DTLZ2 [11], KUR [12] and COMET
[13]. The number of decision variables has been fixed to 50 for all the test prob-
lems. Tests are realized by considering two different types of uncertainty: (1) an
uniform-distributed random noise is applied on the evaluation functions, in a
fixed interval [−σ, σ]; (2) a uniform-distributed random noise is applied on the
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Fig. 3. Average selection error, with different number of objective functions
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decision variables. The result is a variable noise, depending on the form of the
objective space around the envisaged solution.

The population size N is set to 50, with s = 5 evaluations for each solution.
Uniform repartition is applied for the two types of uncertainty (i.e. on decision
or on objective space). The maximum number of generations is set to 5000.
We perform 30 runs for each problem. The different methods are tested with
the same initial populations. The other parameters used, such as mutation and
recombination operators are those used in [1].

To evaluate the effectiveness of each method, we generate the ’true’ objec-
tive vector for each solution. Then, for each approximation A, we compute
Ê(Iε+(R, A)) value, where R is the reference set, determined by merging all so-
lutions found during the experimentations, and keeping only the non-dominated
evaluations. The comparison of the whole set of runs is realized using the Mann-

Table 1. Comparison of the different selection methods for the Iε+-indicator using
the Mann-Whitley statistical test: P value, with noise on objective vectors (Z) and on
decision vectors (X) - 2 objective problems. A cell 10−a corresponds to a significance
level in the interval [10−a, 10−(a−1)].

EIV BCK Exp Avg PDR
Z X Z X Z X Z X Z X

DTLZ2 EIV > 5% > 5% 10−11 10−11 > 5% 10−6 > 5% > 5%
BCK 10−4 > 5% 10−11 10−11 10−3 10−3 > 5% > 5%
Exp > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
Avg > 5% > 5% > 5% > 5% 10−11 10−10 > 5% > 5%
PDR 10−9 10−4 10−5 10−4 10−11 10−11 10−8 10−8

ZDT1 EIV > 5% > 5% 10−4 10−7 > 5% > 5% 10−5 > 5%
BCK > 5% > 5% 10−5 10−8 > 5% > 5% 10−7 > 5%
Exp > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
Avg > 5% > 5% > 5% > 5% 10−5 10−7 10−6 > 5%
PDR > 5% > 5% > 5% > 5% > 5% 10−11 > 5% > 5%

ZDT6 EIV > 5% > 5% 10−11 > 5% > 5% > 5% > 5% > 5%
BCK > 5% > 5% 10−11 > 5% > 5% 10−3 > 5% > 5%
Exp > 5% 10−5 > 5% 10−3 > 5% 10−7 > 5% 10−2

Avg 10−2 > 5% 10−4 > 5% 10−11 > 5% > 5% > 5%
PDR 10−3 > 5% 10−5 > 5% 10−11 > 5% > 5% 10−3

KUR EIV > 5% > 5% > 5% 10−4 > 5% 10−4 > 5% > 5%
BCK > 5% > 5% > 5% > 5% > 5% 10−2 > 5% > 5%
Exp > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
Avg > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
PDR > 5% > 5% > 5% > 5% > 5% 10−2 > 5% 10−3

COMET EIV 10−3 > 5% > 5% 10−11 > 5% > 5% 10−4 10−11

BCK > 5% > 5% > 5% 10−11 > 5% > 5% > 5% 10−11

Exp > 5% > 5% 10−2 > 5% > 5% > 5% 10−3 10−10

Avg > 5% > 5% > 5% > 5% > 5% 10−11 10−2 10−11

PDR > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
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Whitley statistical test, applied on the sets of Ê(Iε+(R, A)) values computed for
each method.

Table 1 and 2 represents the comparison of the different selection methods for
the Ê(Iε+) with the two different types of uncertainty: on objective vectors, and
on decision variables. To compare the sets of runs, we use the Mann-Whitley
statistical test, as described in [14]. The columns give the adjusted P value of
the corresponding pairwise test that accounts for multiple testings; it equals
to the lowest significance level for which the null-hypothesis (the medians are
drawn from the same distribution) would still be rejected (with a significance
level of 5%). A value under 5% shows that the method in the corresponding row
is significantly better than the method in the corresponding column.

In many cases, the results are not significant in the bi-objective case, since the
different approaches are similar, i.e. they use the same ε-indicator-based fitness
assignment. But some conclusions could be extracted from table 1:

– The exponential approximation approach Exp, give worst results in many
cases, excepted for KUR and COMET instances.

– BCK and EIV obtain similar results, which shows the efficiency of BCK
to approximate EIV fitness assignment method.

– Uncertainty on objective vectors: in many cases, ε-indicator-based approaches
Avg, BCK and EIV perform significantly better than Hughes selection mech-
anism PDR, especially for COMET and ZDT1 instances.

– Uncertainty on decision variables: Avg results are significantly worst than
EIV , BCK and PDR, in many cases (problems DTLZ2, ZDT6 and KUR).

In table 2, we represent the results obtained for experimentations realized on
DTLZ2 test function, with different number of objectives. This table shows a
superior performance of EIV , BCK and Exp fitness assignment methods when

Table 2. Evaluation with several number of objectives to optimize: DTLZ2 test func-
tion, using the Mann-Whitley statistical test: P value, with noise on objective vectors
(Z) and on decision vectors (X). A cell 10−a corresponds to a significance level in the
interval [10−a, 10−(a−1)].

EIV BCK Exp Avg PDR
Z X Z X Z X Z X Z X

n=5 EIV > 5% > 5% 10−8 10−9 10−2 10−7 10−11 10−11

BCK > 5% > 5% 10−9 10−9 10−2 10−7 10−11 10−11

Exp > 5% > 5% > 5% > 5% > 5% > 5% 10−11 10−10

Avg > 5% > 5% > 5% > 5% 10−6 10−2 10−11 10−11

PDR > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%

n=10 EIV > 5% > 5% 10−2 10−7 10−2 10−7 10−11 10−11

BCK > 5% > 5% > 5% 10−8 10−2 10−8 10−11 10−11

Exp > 5% > 5% > 5% > 5% > 5% > 5% 10−11 10−11

Avg > 5% > 5% > 5% > 5% > 5% > 5% 10−11 10−11

PDR > 5% > 5% > 5% > 5% > 5% > 5% > 5% > 5%
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the number of objective functions is growing. Exp is dominated by EIV and/or
BCK in several cases, especially for the 5 objectives instance.

5 Discussion

In this paper, we propose a method for handling uncertainty in indicator-based
evolutionary algorithm. Our approach tries to make no assumption about distri-
bution, bounds and general tendency of the uncertainty. We propose the algo-
rithm EIV , which computes the exact expected value of ε-indicator. In order to
apply this algorithm to environmental selection in EAs, we propose several al-
gorithms which approximate the results obtained by EIV , which select the best
possible solutions during environmental selection, according to the ε-indicator
performance metric. We have made several experimentations. First, we consider
the goal to minimize the loss in quality during environmental selection: BCK
give a good approximation of EIV selection, which is more time consuming.
Then, we made some experimentations on classical tests functions. Our pro-
posed method give interesting results with an increasing number of objective
functions. This are preliminary results. More experimentations are needed to
evaluate the different approaches on different problems and uncertainties. The
first experimentation done for environmental selection process, with different
levels of uncertainties, number of objective functions and sample size, show that
the quality of the selected individuals, according to the Iε+ indicator, is improved
by the use of EIV or BCK fitness assignment method. We can expect that en-
tire runs results will show the same tendency, but further experimentations has
to be done. We also need to define new comparison test, which involve a set of
expected objective vectors values, without knowledge about the true objective
vector.
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Abstract. This paper explores how fluctuating crosstalk in a determin-
istic fitness function introduces noise into genetic algorithms. We model
fluctuating crosstalk or nonlinear interactions among building blocks via
higher-order Walsh coefficients. The fluctuating crosstalk behaves like
exogenous noise and can be handled by increasing the population size
and run duration. This behavior holds until the strength of the crosstalk
far exceeds the underlying fitness variance by a certain factor empirically
observed. Our results also have implications for the relative performance
of building-block-wise mutation over crossover.

1 Introduction

Recently, Sastry and Goldberg [1] presented an unbiased comparison between the
computational costs associated with crossover in a selectorecombinative genetic
algorithm (GA) to that of mutation. In that study, the mutation algorithm
exploits its linkage knowledge to greedily change one building block (BB) at a
time. In deterministic problems, the mutation algorithm outperforms the GA.
However, in the presence of constant exogenous Gaussian noise, the situation
flips as the selectorecombinative GA comes out on top.

One might wonder how these operators would fare in the presence of crosstalk,
or what is sometimes referred to as epistasis. Goldberg [2] conjectures that one
type of crosstalk, fluctuating crosstalk, can induce similar effects to explicit
Gaussian noise, although still deterministic. He explains how a GA can converge
to the global optimum if the same approaches are applied as if external noise
was present: supply a larger population of individuals and allow more time for
population convergence. Furthermore, the needed population and convergence
time follow facetwise models derived for fitness functions with additive Gaussian
noise when the crosstalk signal falls below a certain critical point. The purpose
of this paper is to construct a bounding test function that demonstrates this
effect when the fluctuation noise is varied from the nonexistent to the very high,
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and understand this in the light of recent theoretical decomposition of problem
difficulty as pointed out elsewhere [2].

This paper is organized as follows. We first present a brief background to
crosstalk in the context of a three-way decomposition to problem difficulty. In
section 3, we describe how to represent fluctuating crosstalk through Walsh
transformations and explain how many deterministic functions possess some
form of fluctuating crosstalk. The next section compares our results to known
models of population size, convergence time, and function evaluations. A thresh-
old is observed for when fluctuating crosstalk deviates from these models based
on the expected population size when crosstalk acts as a signal rather than noise.
The paper concludes with a connection of our results to mutation and crossover
performance and briefly addresses future work.

2 Crosstalk: A Facet of Problem Difficulty

Epistasis in GA literature refers to the nonlinear interactions among genes or sets
of genes, and is widely known to be a contributing factor of GA-hardness. His-
torically, there have been three primary approaches to tackling epistasis [3]. The
first approach relies on a priori measurements of problem difficulty which can
either be direct or indirect measurements of epistasis. Davidor [4] first suggested
that the amount of epistasis determines problem hardness for a GA. However,
Naudts [5] observes that it is the distribution and structure of the epistasis that
contributes to problem difficulty, and not only the amount of it. He shows these
a priori measures are sensitive to non-linear scalings and require further theoret-
ical development for robust and accurate measures. He introduces the concept of
a site-wise optimization measure but careful probing reveals that it fails to cor-
rectly identify difficulty in several cases. A related area of these measurements
is epistasis approximation through random sampling [4] but Naudts [5] finds
random sampling a poor solution for approximating values of such measures.
Heckendorn [6] derives local bitwise epistasis measures that scale well to overall
difficulty for certain polynomial functions. He proposes techniques of argument
centering and parity truncation to reduce epistasis for this class of functions.
The second common approach is to use variants of the Factorized Distribution
Algorithm (FDA) [7] — a probabilistic model building GA (PMBGA) [8] with
multivariate interactions. Although such techniques directly confront epistasis,
the FDA only guarantees optimal solutions for particular gene interactions [9]
and requires prior information generally not available. The third approach calls
for a change in problem representation but direct approaches [10] on the problem
require a hefty amount of ingenuity and manipulation. Indirect representational
approaches like the popular Gray Code “shifting” technique [11] show practical
promise but the clarifying of the relationship between the need for shifting and
epistasis remains to be done.

In this paper, we validate a fourth approach first proposed by Goldberg [2]. In
discussing problem difficulty, Goldberg identified the three forms of crosstalk as a
mapping to his three identified primary sources of problem difficulty: deception,
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scaling, and exogenous noise. Hence, a simple but effective way to optimize
deterministic functions in the presence of crosstalk is to apply known techniques
of handling deception, scaling, and exogenous noise. It becomes readily apparent
of the mapping to deception and scaling, and these cases are well addressed in the
literature. We explain the mapping between fluctuating crosstalk and exogenous
noise with an example.

Consider the objective fitness function f(x) = f1(x1x2x3x4) + f2(x5x6x7) +
f3(x8x9)+f4(x5x6x7x8x9) . This function has three BBs defined by bit ranges:x1

tox4,x5 tox7, andx8 tox9. Eachbit range corresponds to a set of decision variables
that are related to one another. We assume that the GA is aware of these substruc-
tures and will seek to find the values over these positions that maximize fitness. In
a problem without epistasis (f4), each BB is independent of each other and the
global solution can be found by optimizing the sub-functions f1, f2, and f3. Find-
ing the correct BBs means finding the bit values that optimize such sub-functions.
The concatenation of these BBs gives an optimal solution for f . In general, such
substructures are not known ahead of time but in many cases are believed to exist
and can be found in parallel through an array of GAs [2].

From this equation we can see how crosstalk or epistasis defined by f4 refers to
the nonlinear interaction among BBs. f4 may be positive (reinforcing crosstalk),
negative (punishing crosstalk), or a mix of positive and negative values. Goldberg
[2] has shown that reinforcing crosstalk maps to scaling, and punishing crosstalk
maps to scaling or deception, and that a competent GA that can handle scaling
and deception can handle reinforcing and punishing crosstalk.

Now, suppose that instead of always punishing or rewarding the individual
once the correct target bits are found, we add or subtract some positive weight
w to the fitness function based on the parity over the target bits; +w for even
parity and −w for odd parity. A natural question to consider is how drastic shifts
in fitness because of a single bit change can be overcome during the course of
BB decision making. Fortunately, two things act in our favor. First, the initial
populations are assumed sufficiently randomized such that the target bits over
BBs participating in the crosstalk are random. Hence, the net effect on fitness
due to fluctuating crosstalk is zero since there are equal numbers of even-parity
individuals as there are odd-parity individuals over those target bits. The second
factor in our favor is the fact that ultimately, the GA will converge even with
a possible selection stall. Thus, towards the end of the run fluctuation crosstalk
behaves as either reinforcing crosstalk or punishing crosstalk and a GA that can
handle those can effectively handle fluctuating crosstalk.

3 Principled Modeling of Fluctuating Crosstalk Through
Walsh Coefficients

Having explained fluctuating crosstalk in the context of problem difficulty, we
must now address how we model it in a principled way to account for any con-
ceivable fluctuating crosstalk subfunction. This will be accomplished by repre-
senting the fitness function in another basis, the partial-parity or Walsh basis.



Fluctuating Crosstalk as a Source of Deterministic Noise 743

The Walsh basis is significant to GAs because it allows for bounding measures of
deceptiveness and for faster schema-average fitness calculation. And in our case,
it allows us to represent our fluctuating crosstalk example f4 as a partial, signed
sum of the Walsh coefficients. We begin with some notation and definitions.

For our discussion, we take the intuitive approach introduced by Goldberg
[12]. Let x = xlxl−1 . . . x2x1 be the l-bit string representing the coding of the
decision variables for an arbitrary individual. We now introduce the auxiliary
string positions yi that are mapped to from the bitwise string positions xi for
i = 1, . . . , l by:

yi =
{

1, if xi = 0
−1, if xi = 1 .

This definition allows the following multiplication to act as an exclusive or
operator (XOR). The jth Walsh function ψj(y) where 0 ≤ j ≤ 2l−1 is calculated
as:

ψj(y) =
l∏

i=1

yji

i , yi ∈ {−1, 1}

where ji is the ith bit of the binary representation of j and y is understood to
be the transformed x using the auxiliary mapping.

In the canonical basis, fitness values are obtained by referencing a table of
bitstrings and their objective fitness values. Bethke [13] showed that any fitness
function f(x) over a finite domain can be rewritten as a partial signed sum of
the Walsh coefficients, given by

f(x) =
2l−1∑
j=0

wjψj(x) .

For an arbitrary fitness function, we can imagine that some portion of the partial
signed sum of the Walsh coefficients has direction - meaning that this smaller
sum is acyclic in the limit and represents what the GA seeks to solve. The
remaining portion fluctuates with possibly irregular periods and shapes - but
not contributing to the overall direction of the function. This latter portion will
likely involve higher-order Walsh coefficients since a higher order indicates that
more bits interact with another (since more bits of the index are set). Consider
the inclusion of the Walsh coefficient w2l−1 for example. This means taking
the parity of the entire string. It provides no direction but merely acts as a
source of deterministic noise. Other coefficients could be included as part of this
fluctuating crosstalk but for this paper we assume only a full parity.

4 Effect of Crosstalk on GA Scalability

Exogenous noise is a problem for GAs because it interferes with the decision
making process as a GA tries to identify the dividing lines between building
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blocks and infer the superiority of one partition member over another. In this
section, we compare exogenous noise effects to those wrought by deterministic
noise and empirically validate model adherence. We present facetwise models of
population, convergence time, and function evaluations when exogenous noise
is present and examine at what point fluctuating crosstalk diverges from these
models. However, we first need to introduce the test problem that was common
to the three experiments.

4.1 Test Problem

To test the effects of deterministic noise on population size, convergence time,
and function evaluations, our test problem consists of an on-average deceptive,
concatenated trap function. The use of a trap function assumes a knowledge of
linkage information but this well suits our situation since we want to focus on
the effects of fluctuating crosstalk and assume that other factors are favorably
constant. Such a function allows for efficient exchanging of BBs since each BB
is independent of each other. The concatenated trap also allows for controlled
testing of problem difficulty since both the order of the trap and number of
traps play a role in determining problem difficulty. Each BB consists of a 5-bit
trap function with a max fitness of 1 at 11111 and other fitness values linearly
interpolated from 1 − d to 0 as the number of 1’s range from 0 to 4 where d is
called the signal.

The Walsh coefficient w2l−1 is then added to or subtracted from this tem-
porary fitness based on the full parity of the string to obtain the final fitness.
Modeling epistasis in this manner translates to the highest bitwise interaction
possible where every bit interacts with every other bit. Note that the inclusion
of an even number of BBs (m, ranging from 4 to 50) preserved optimal solutions
under full parity although individual BBs were penalized. The GA utilized bi-
nary tournament selection (s = 2) and no mutation. We also chose uniform-BB
crossover [1] to avoid disrupting discovered BBs. Our purpose in using this is
to show that even in the best case when perfect crossover is used, determinis-
tic noise exists and its effects of deterministic noise can be modeled by known
models dealing with exogenous noise.

For each of the following plots, data was obtained by performing 30 bisection
runs of 50 independent GA trials. In a single bisection run, the population size is
adjusted after each set of 50 trials until the minimum population size is obtained
that yields an average of m− 1 correctly discovered BBs. The interested reader
may refer to [14] for population size adjusting details. We then report the average
of the averages over all bisection runs.

4.2 Population Size

One simple but effective way to overcome the negative effects of exogenous noise
is to supply a larger population. Increasing the population size sufficiently en-
sures that in the initial generations the target BBs are present and discovered by
the averaging out of the noise. It also assists in decision making over time so the
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GA might reliably choose the best partition member. Practical population sizing
bounds on selectorecombinative GAs using generation-wise modeling were given
by Goldberg, Deb, and Clark [15]. Those early bounds provided a guarantee of
good solution quality in a selectorecombinative GA with a sufficiently large pop-
ulation and have shown to well approximate solution quality in the more recent
Bayesian Optimization Algorithm (BOA) [16]. They were known to be some-
what conservative for the typical selectorecombinative GA, however, and tighter
bounds provided by Harik, Cantú-Paz, and Goldberg [17] are derived from the
gambler’s ruin problem which considers the accumulated correctness of decid-
ing between partition members. This model, which also accounts for exogenous
noise, is given by:

n = −
√

π

2d
2k log(α)

√
σ2

f + σ2
N (1)

where d is the signal or difference in fitness between the best and second best
individuals, k is the BB size, α is the error tolerance, σ2

f is the fitness function
variance, and σ2

N is the noise variance.
Without noise, this reduces to

n0 = −
√

π

2d
2k log(α)σf . (2)

Dividing 1 by 2 and letting σ2
N = w2

2l−1 and σ2
f = mσ2

BB, where σ2
BB is the

5-bit trap variance, reveals an important population size ratio:

nr =
n

n0
=

√
1 +

w2
2l−1

mσ2
BB

. (3)

The above model was specifically derived with exogenous noise in mind but
what effect on required population size does fluctuating crosstalk have? When the
crosstalk signal is low, we would expect the GA to first solve BBs for the fitness
function, since solving these will yield higher marginal contributions than those
BBs of the crosstalk. The crosstalk merely interferes with the decision making,
acting as a source of deterministic noise. As the crosstalk signal increases, the
problem shifts to a parity-dominated one whereby individuals with even parity
are first discovered and then varied to find the secondary benefits of solving the
trap function. In this sense the directional function is actually perturbing the
crosstalk. Once on the parity-dominated side, the required population will level
off since the population is large enough for the GA to find the optimal or near-
optimal solution and supplying a larger crosstalk signal only creates an effective
reduction in the marginal value of solving BBs from the new perturbation source.

Figure 1 illustrates these principles clearly. Before the parity-dominated point
but for a given crosstalk signal, required population size grows as problem size
m grows. More building blocks induce higher collateral noise since more BBs
incur larger numbers of schemata to consider, and the resulting changes to a
single BB due to crossover are obfuscated by the simultaneous variations among
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Fig. 1. Population size requirements for optimal convergence when fluctuating crosstalk
is present (wj = w2l−1) and problem size m varies from 4 to 50 BBs. Initially, the
effects of the crosstalk follow the model (rising bolded line) of exogenous noise closely
but then level off when the problem becomes parity-dominated. The flat bolded line is
the average required population for all problem sizes tested.

other crossover-induced BB changes. What is not as intuitive though is why the
population size tends to level off where it does.

This can be explained by what we term the parity-induced filtering effect . We
begin by considering the behavior of the GA as it nears the situation described
by the middle of the curve. Here, the partial parity function plays a major role
in BB processing just as the previous deterministic function still does. For full
l-bit parity and early on in the GA processing, half of the population will lose
its market share since half will be penalized for its odd number of ones. For the
other half, the GA is processing the deterministic function. Hence, it requires
roughly twice the population needed when no noise is present (nr ≈ 2). This
effect is compounded by the subsequent generation of individuals. Of course, this
only applies for the initial generations where schema diversity is high. It should
also be remembered that the directional function still plays a nontrivial role at
this critical point and we would not expect a true doubling of the population.

If we assume an upperbound of a doubling in required population size, as
empirically observed, we can estimate the critical point for the corresponding
crosstalk signal:

nr = 2 =

√
1 +

w2
2l−1

mσ2
BB

(4)

and hence
w2

2l−1 = 3mσ2
BB . (5)

Now, recall equation 3:

nr =
n

n0
=

√
1 +

w2
2l−1

mσ2
BB

.

This represents the ratio of the required population size for some fitness func-
tion with noise to the required population size for the same function without
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noise. Note that d has entirely dropped out of the equation. From Fig. 2, we see
that d actually has a small influence on the population enlargement factor due
to noise and recognize that our model does not capture this small difference.
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Fig. 2. Population size requirements for optimal convergence when fluctuating crosstalk
is present (wj = w2l−1)

4.3 Convergence Time

Our scalability analysis would not be complete without considering the effects
of deterministic noise on convergence time. With a little reasoning we see that
the filtering effect elongates convergence time similarly to growing the required
population size. This may be thought of as a bump in selection pressure since
with s-tournament selection the GA now needs 2s individuals to have the same
quality of choices in selection. Individuals of the wrong parity are immediately
discarded, and can only be chosen if all s individuals are placed into the selection
pool.

Various convergence time models have been employed over the years. We forgo
the development of convergence time models here but the interested reader may
refer to [14] and [2] for such cronologies. For our discussion, we note that conver-
gence time models based on quantitative genetics [18, 19] are proving especially
useful [20, 21, 22, 23, 24, 25, 26, 2]. A facetwise model using selection pressure in
the presence of exogenous noise that we employ here is that of Miller and Gold-
berg (1995, 1996):

tc =
π
√

l

2I

√
1 +

σ2
N

σ2
f

(6)
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Fig. 3. Convergence time requirements for optimal convergence when fluctuating
crosstalk is present (wj = w2l−1)

where I is the selection intensity [18, 24, 27]. As we saw with population size, the
ratio of the convergence time under noise to that without noise does not depend
on the signal. We start by considering the convergence time needed when noise
is absent:

tc0 =
π
√

l

2I
. (7)

By casting equation 6 in terms of tc0, and then dividing both sides by tc0, we
obtain the convergence time ratio:

tc,r =
tc
tc0

=

√
1 +

w2
2l−1

mσ2
BB

. (8)

Note again that the convergence time doesn’t depend on the trap signal d. We
observe from Fig. 3 that the predicted plots follow the model well for varying
signals and building blocks. In comparing the predicted plots, it is the sloping
solid line that represents the prediction. For m = 4, we see that convergence
time follows precisely what is predicted but reaches the critical threshold earlier
than the average of the time-convergence runs. This can be attributed to the
fact that for small m, fewer BBs means fewer simultaneous variations among
other crossover-induced BB changes and is hence more sensitive to larger Walsh
coefficients. Sensitivity reduces for larger m, and we see that the critical threshold
levels out just under a tc,r of 2.
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4.4 Function Evaluations

The number of function evaluations needed to reliably find the optimal solution
is a product of convergence time and population size. This measure of time
is the true test of performance and based on our results of population size and
convergence time, we expect results to follow the model initially until the critical
point given by equation 5. Afterwards, the parity-dominated side behaves as
explained previously. Figure 4 confirms this but also gives way to some immediate
conclusions.
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Fig. 4. Functional evaluation requirements for optimal convergence when fluctuating
crosstalk is present (wj = w2l−1)

5 Future Work

Future work includes modeling fluctuating crosstalk using smaller order Walsh
coefficients and determining a more precise transition point between crosstalk-
as-noise and crosstalk-as-signal. Another useful direction is to consider various
forms of epistasis such as if only a portion of the entire chromosome is used to de-
termine the parity of the individual. Such epistasis may be uniformly distributed
as parity bits within each BB, confined to entire BBs, or be a mixture of both.
Of course, bits may also be involved in multiple parity evaluations. We seek to
consider these effects on GA scalability and under what conditions fluctuating
crosstalk behaves like exogenous noise.
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6 Summary and Conclusions

We have illustrated the introduction of noise in a deterministic fitness function
via fluctuating crosstalk. We modeled fluctuating crosstalk with higher-order
Walsh coefficients and showed that fluctuating crosstalk behaves like additive
exogenous noise until the crosstalk variance far exceeds the underlying fitness
variance by a certain threshold we empirically observe. While the crosstalk be-
haves similarly to external noise, its effects can be handled in a similar manner
by increasing the population size and run duration.

Returning to where we started, the question that motivated this study was
a prior performance comparison [1] between mutation and crossover with and
without exogenous noise. We have shown that fluctuating crosstalk acts as a
source of deterministic noise and affects GA performance similarly to exogenous
noise. For a precise discussion of when mutation is preferred over the selectore-
combinative or vice versa, the reader should consult the aforementioned work.
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Abstract. Many practical optimization problems are subject to uncer-
tain fitness evaluations. One way to reduce the noise is to average over
multiple samples of the fitness function in order to evaluate a single indi-
vidual. This paper proposes a general way to integrate statistical rank-
ing and selection procedures into evolutionary algorithms. The proposed
procedure focuses sampling on those individuals that are crucial for the
evolutionary algorithm, and distributes samples in a way that efficiently
reduces uncertainty. The goal is to drastically reduce the number of eval-
uations required for a proper operation of the evolutionary algorithm in
noisy environments.

Keywords: Evolutionary algorithm, noise, ranking, selection.

1 Introduction

In many practical optimization problems, a solution’s fitness is noisy, i.e. it can
not be determined accurately and has to be considered a random variable. The
sources for noise can be manifold, including optimization based on randomized
simulations, measurement errors, stochastic sampling, and interaction with users.

Generally, noise is considered a major challenge for optimization, as it makes
it difficult to decide which of two solutions is better, and thus to drive the search
reliably towards the more promising areas of the search space. The effect of noise
on the performance of evolutionary algorithms (EAs) has been investigated in
several papers, and EAs are generally considered to be quite robust with respect
to noise, see e.g. [1, 3, 14]. A recent survey on this topic is [16].

For most noisy optimization problems, the uncertainty in fitness evaluation
can be reduced by sampling a solution’s fitness several times and using the aver-
age as estimate for the true mean fitness. Sampling n times scales the standard
deviation of the estimator of the mean by a factor of 1/

√
n, but increases the

computational time by a factor of n. This is a critical tradeoff trade-off: either
one can use relatively exact estimates but only run the algorithm for a small
number of iterations (because a single fitness estimate requires many evalua-
tions), or one can let the algorithm work with relatively crude fitness estimates,
but allow for more iterations (as each estimate requires less effort).

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 752–763, 2006.
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This paper presents a new way to integrate statistical ranking and selection
techniques into EAs in order to improve their performance in noisy environments.
Ranking and selection addresses the question of identifying the individual with
the true best mean out of a given (finite) set of individuals by sampling the
individuals’ fitnesses. Thereby, it is attempted to achieve a desired selection
quality (e.g. probability of correct selection) with a minimal number of samples.
We propose a framework that tightly integrates an efficient statistical selection
procedure with an EA, allowing it to focus on those pairwise comparisons that
are crucial for the EA’s operation.

Section 2 briefly surveys related work. Section 3 introduces a statistical selec-
tion technique, OCBA, that is used in the EA. Section 4 examines the informa-
tion requirement of the EA. Section 5 explains how OCBA is adapted to generate
that information efficiently. Section 6 gives preliminary empirical results.

2 Related Work

There have been some earlier attempts to integrate ranking and selection tech-
niques into EAs. Stagge [17] considered a (μ, λ) or (μ+λ) evolution strategy and
suggested that the sample size should be based on an individual’s probability
to be among the μ best ones that will be selected. Hedlund and Mollaghasemi
[15] use an indifference-zone selection procedure to select the best m out of k
individuals within a genetic algorithm.

For tournament selection, Branke et al. [8, 9] and Cantu-Paz [11] use sequential
sampling techniques to reduce the number of samples to the minimum required to
discriminate between individuals in a tournament. Adaptive sampling strategies
have also been examined for situations where the noise strength varies over space
[13]. Boesel [4] argues that for linear ranking selection, it is sufficient to group
individuals of similar quality into one rank, and a corresponding mechanism is
proposed.

To “clean up” after optimization (to identify the best, with high probability, of
all visited solutions), Boesel et al. [5] uses a ranking and selection procedure after
the EA has finished. Recently, Buchholz and Thümmler [10] used a statistical
selection technique for selection in a μ + λ strategy as well as to maintain a
pool of promising candidates throughout the run from which at the end the final
solution is selected.

None of the above works provides the general framework and tight integration
of selection algorithms and EAs that is suggested here.

A comprehensive overview and extensive comparison of different selection
procedures can be found in [7], which concludes that OCBA together with an
appropriate stopping rule is among the best performing statistical selection pro-
cedures. Our approach is based on OCBA which shall be described next.

3 Optimal Computing Budget Allocation

The Optimal Computing Budget Allocation (OCBA) [12] is a sequential ranking
and selection procedure that is based on Bayesian statistics. The OCBA was
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improved with flexible stopping rules in [7], and was shown to be one of the
most efficient selection procedures. We first define the sampling assumptions
that were used to derive the procedure, then describe the procedure itself.

Let Xij be a random variable whose realization xij is the output of the j-th
evaluation of individual i, for i = 1, . . . , k and j = 1, 2, . . .. Let wi and σ2

i be
the unknown mean and variance of the evaluated individual i, and let w[1] ≤
w[2] ≤ . . . ≤ w[k] be the ordered means. In practice, the ordering [·] is unknown,
and the best individual, individual [k], is to be identified with fitness sampling.
OCBA assumes that simulation output is independent and normally distributed,
conditional on wi and σ2

i , for i = 1, . . . , k. Although this normality assumption
is not always valid, it is often possible to batch a number of evaluations so that
normality is approximately satisfied.

Let ni be the number of replications for individual i run so far. Let x̄i =∑ni

j=1 xij/ni be the sample mean and σ̂2
i =

∑ni

j=1(xij − x̄i)2/(ni − 1) be the
sample variance. Let x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(k) be the ordering of the sample
means based on all replications seen so far. Equality occurs with probability 0 in
contexts of interest here. The quantities ni, x̄i, σ̂

2
i and (i) may change as more

replications are observed.
The standard selection problem is to identify the best of the k individuals,

where ’best’ means the largest expected fitness. From a Bayesian perspective
the means Wi are St

(
x̄i, ni/σ̂2

i , ni − 1
)

distributed (assuming a non-informative
prior), where St (m, κ, ν) is a Student-distribution with mean m, precision κ
and ν degrees of freedom. Upper case is used for the random variable, and lower
case is used for the (as yet unknown) realization. Given the data E seen so
far, the probability PCSBayes that the individual with the best observed mean,
individual (k), is really the best individual, [k], can be approximated using the
Slepian inequality and Welch approximations:

PCSBayes
def= Pr

(
W(k) ≥ max

i�=(k)
Wi | E

)
≥

∏
i�=(k)

Pr
(
W(k) ≥ Wi | E

)
≈

∏
i�=(k)

Φν(k)i
(d(k)i/s(k)i)

def= PCSSlep,

with Φν(·) the cummulative distribution function of Student’s distribution, νij

the degrees of freedom by Welch’s approximation, dij = x̄i− x̄j the observed dif-

ference and sij =
√

σ̂2
i /ni + σ̂2

j /nj the variance of the difference of the estimated
means.

For most practical problems, it is not so important to identify the really best
solution. Instead, it is sufficient to find a solution close to the optimum. This can
be reflected by introducing an “indifference zone” δ∗. Then, PCSSlep is replaced
by the probability of good selection,

PGSSlep,δ∗
def=

∏
i�=(k)

Φν(k)i

(
(d(k)i + δ∗)/s(k)i

)
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The OCBA variant working with PGSSlep,δ∗ as quality goal is denoted OCBAδ∗ .
OCBAδ∗ attempts to optimize PGSSlep,δ∗ by greedily and iteratively allo-

cating additional evaluations to individuals where it promises the largest im-
provement, assuming that the means do not change and the standard error is
scaled back appropriately. More specifically, in a first stage of sampling,OCBAδ∗

evaluates the fitness function n0 times per individual. In each subsequent se-
quential stage, τ additional evaluations are given to one individual, and none
to the others. The ith individual is selected in a given stage if it maximizes
PGSSlep,δ∗ when the distribution for the ith unknown mean is changed from
St

(
x̄i, ni/σ̂2

i , ni − 1
)

to

W̃i ∼ St
(
x̄i, (ni + τ)/σ̂2

i , ni − 1 + τ
)

The OCBAδ∗ stops sampling when PGSSlep,δ∗ exceeds a prespecified probability
of good selection level, PGSSlep,δ∗ ≥ 1− α∗. See [12] for early work and [7] for
a full specification of OCBAδ∗ .

4 Order Information Required by EAs

Looking at an EA’s typical iteration (Figure 1), there are two steps which are
affected by noise: In the selection step, better fit individuals are assigned a higher
probability to be selected as mating partner. In the replacement step1, the set
of new and old individuals is reduced to the usual population size by removing
some individuals depending on age and fitness.

t+1

t
Population

ParentsSelection

Offspring

Reproduction

Replacement

Fig. 1. Loop of an evolutionary algorithm

For deterministic fitness functions, the EA has access to the complete order-
ing of the combined set of individuals in the old population and the generated
offspring population. That is, for any pair of individuals, it can determine with
certainty which one is better. However, only parts of this information is actually
1 This is often also called “environmental selection”.
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used within an EA generation. Therefore, in order to make the sampling more
efficient, in this section we examine exactly what information is necessary for the
operation of an EA. In Section 5, we then show how OCBAδ∗ can be adapted to
efficiently generate just this key information.

Different EA variants require different kinds of order information. We first
describe different replacement and selection strategies. We then show how they
can be combined into some typical algorithm variants.

We assume that the population size is μ, and λ offspring are generated in
each iteration. We consider three orderings based on the observed means:

– ()P denotes the ordering from worst to best of the individuals in the old
population, i.e. x̄(1)P

≤ x̄(2)P
≤ . . . ≤ x̄(μ)P

.
– ()O denotes the ordering from worst to best of the individuals in the offspring

population, i.e. x̄(1)O
≤ x̄(2)O

≤ . . . ≤ x̄(λ)O
.

– () denotes the ordering from worst to best in the combined old and offspring
populations, i.e. x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(μ+λ).

The order information required is specified as a set C containing pairs of
individuals 〈i, j〉 that need to be compared.

If 〈(i), (j)〉 ∈ C and i > j, it means that the EA will operate under the
assumption that the individual on rank i is better than the individual on rank
j, or w(i) > w(j). Note that the pairs of individuals to be included in C may
depend on the current ordering according to observed sample means, which may
change during the sampling procedure.

4.1 Replacement Strategies

The replacement step determines which μ individuals, out of the μ+λ individuals
from the old and offspring populations, survive to the next generation to form
the new population.

In generational replacement, the old population is completely replaced by
μ offspring, and no fitness information is needed. However, this is often combined
with elitism, which means that only μ− 1 offspring are generated, and the best
individual from the old population is transfered to the new population. In this
case, the algorithm needs to make sure that the (perceived) best individual in
the old population is really better than all the others in the old population. In
the notation introduced above, this means

C ←
μ−1⋃
i=1

{〈(μ)P , (i)P 〉} . (1)

In a steady state EA, in each iteration a single offspring is generated and
replaces the worst individual in the population. This only requires to identify
the old population’s worst individual, i.e.

C ←
μ⋃

i=2

{〈(i)P , (1)P 〉} (2)
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In the (μ, λ) replacement typically used in evolution strategies, the best μ
out of the λ children are selected as new population, i.e. the algorithm wants to
ensure that individuals (λ−μ+1)O , (λ−μ+2)O , . . . (λ)O are really better than
individuals (1)O, (2)O, . . . (λ− μ)O, or

C ←
λ⋃

i=λ−μ+1

{〈(i)O, (1)O〉, 〈(i)O, (2)O〉, . . . , 〈(i)O, (λ− μ)O〉} . (3)

For a (μ + λ) replacement where the new population is formed by the μ
best of the μ + λ individuals from the old and offspring population, set

C ←
λ+μ⋃

i=λ+1

{〈(i), (1)〉, 〈(i), (2)〉, . . . , 〈(i), (λ)〉} . (4)

4.2 Mating Selection

In the EA literature, different methods have been proposed to select, from the
population, the parents that generate a child. Among the most popular are
linear ranking selection and tournament selection, which generate the same
expected probability for an individual to be selected. For standard tournament
selection, two individuals i and j are chosen randomly from the population, and
the better one is selected. Thus, for a single selection step, order information on
only these two individuals is required:

C ← {〈i, j〉} (5)

Evolution strategies usually use random mating selection which does not
require any fitness information. Another popular selection strategy is fitness
proportional selection. Since it is based on relative fitnesses rather than ranks,
our method can not be applied here. However, fitness proportional selection is
known to have some scaling and convergence issues, and generally rank-based
selection methods are preferred anyway.

4.3 Combining Mating and Replacement

A particular EA uses a combination of selection and replacement strategies.
These two steps are performed one after the other2, and thus can be considered
together with respect to the sampling procedure. This means that C contains
the union of all pairs of individuals as required for the chosen selection and
replacement strategies, with one peculiarity: Because selection is done after re-
placement, one has to make sure that the comparisons required within e.g. a
tournament selection are also surviving the replacement step. This can be easily

2 If the evolutionary cycle is broken up after reproduction, selection immediately fol-
lows replacement.
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achieved by selecting ranks instead of individuals in the selection step. For ex-
ample, for a tournament selection, instead of selecting the better of individuals
i and j, one can select the better of individuals (p) and (q), where p and q are
ranks in the surviving population.

For example, consider a simple steady-state EA with population size μ = 4,
and one offspring generated. The two individuals for mating are selected by
two tournaments. Then, we need to insure that the worst individual is re-
moved by replacement, i.e. C ← {〈(2)P , (1)P 〉, 〈(3)P , (1)P 〉, 〈(4)P , (1)P 〉}. Fur-
thermore, we need two random pairs of individuals for tournament, e.g. C ←
C ∪ {〈(3), (2)〉, {〈(5), (3)〉}. Overall, this means only information about the rel-
ative order of μ + 1 pairs of individuals needs to be correct, as opposed to the
μ(μ + 1)/2 = 10 pairs for a complete ordering. The savings increase with in-
creasing population size. For e.g. μ = 20, only 21 pairs of individuals need to be
compared, as opposed to 210 for a complete ordering.

Additional savings in an EA setting stem from the fact that individuals that
survived from the previous generation have already been re-evaluated. OCBAδ∗

can make full use of this information. Furthermore, because it is likely that
individuals surviving to the next iteration have been sampled more often than
those that are killed off, there is an additional advantage of using OCBAδ∗

compared to using a fixed sample size [2].

5 Using OCBAδ∗ to Generate Order Information

One of OCBAδ∗ ’s advantages is its flexibility. It can be easily adapted to not
only select the best out of a given set of individuals, but for arbitrary quality
measures. To integrate it into an EA, we want to make sure that the EA operates
“correctly”, meaning that the order relations required by the EA have been
determined correctly with a sufficiently high probability. Section 4 explained
how to determine the required set of comparisons C. As a quality criterion, we
define the probability of good generation (PGGBayes) as probability that all
pairwise comparisons in C are correct. The following equation approximates the
probability that for all pairs in C, the individual with the higher observed rank
also has a higher true mean value. It assumes rank i > rank j for all 〈i, j〉 ∈ C.
If rank j > rank i, simply replace 〈i, j〉 by 〈j, i〉 in C before calculation.

PGGBayes
def= Pr

⎛⎝ ∧
〈i,j〉∈C

Wi + δ∗ > Wj | E

⎞⎠
≥

∏
〈i,j〉∈C

Pr (Wi + δ∗ > Wj | E)

≈
∏

〈i,j〉∈C
Φνij ((δ

∗ + dij)/sij) = PGGSlep,δ∗ (6)

Here, theOCBAδ∗ usesPGGSlep,δ∗ as goal function just as it doeswithPGSSlep,δ∗ .
It automatically and efficiently allocates samples to individuals until a desired goal
PGGSlep,δ∗ > 1− α∗ is obtained.
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The resulting EA using OCBAδ∗ needs α∗ as input:

Procedure OCBAEA
δ∗ (α�)

1. Evaluate each new individual n0 times (old individuals have already been
sampled at least n0 times). Estimate the ranks by ordering the individuals
based on the observed mean values.

2. Determine C: initialize C ← ∅ and add comparisons from the operators as
described in Sections 4.1–4.2.

3. WHILE the observed results are not sufficiently sure (PGGSlep,δ∗ < 1−α�)
DO
(a) Allocate new evaluations to the individuals according to the OCBAδ∗ -

allocation rule.
(b) If ranks have changed from the previous iteration of the ranking proce-

dure, update C: initialize C ← ∅ and add comparisons from the operators
as described in Sections 4.1–4.2.

OCBAEA
δ∗ is called in every iteration of the EA after the offspring has been

generated and before replacement. Then, the EA proceeds simply using the
ordering given by the sample means.

The number of samples taken by OCBAEA
δ∗ depends on the problem config-

uration and the settings of α∗ and δ∗. It may be useful to vary α∗ over time,
as higher accuracy may be needed towards the early and late phases of the
algorithm (cf. [6]).

6 Empirical Evaluation

We empirically compare different sampling mechanisms based on their perfor-
mance on a single iteration. The proposed integration of ranking and selection
with EAs needs a more exhaustive evaluation in future work.

We stochastically generated k = 10 individuals with means distributed ac-
cording to the negative of an exponential distribution with mean 1 and vari-
ances distributed according to an inverted gamma distribution with α = 100
and β = 99 (Figure 2). Such a distribution with more good than bad individuals
seems common in an EA run, at least towards the end of the run, when the al-
gorithm produces many solutions close to the optimum, and a few outliers. The
results below are averaged over 100,000 such randomly sampled populations.

We compare the frequentist probability of a good generation PGGiz,δ∗ de-
pending on the expected number of evaluations used by different procedures. To
calculate PGGiz,δ∗ , we run the sampling mechanism and look at the resulting
order according to sample means. If all decisions required by the scenario (i.e.,
those defined by C) have been identified correctly taking into account the in-
difference zone, the run is counted as successful. Otherwise, it is not successful.
PGGiz,δ∗ is the percentage of correct runs. The parameters α∗ and δ∗ not only
are determinants of PGGiz,δ∗ , but also of the expected total number of samples,
E[N ], for a given numerical experiment.
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Fig. 2. Empirical distribution of means (a) and variances (b) for the empirical tests

The sampling mechanisms considered are:

1. A standard allocation scheme which samples all individuals equally often.
This is denoted by Equal.

2. OCBAEA
δ∗ for a steady-state EA with population size μ = 9 and one offspring

generated
3. OCBAEA

δ∗ for an evolution strategy with 5, 10 replacement.
4. OCBAδ∗ to select the best of the 10 individuals.
5. OCBAδ∗ to give a complete ranking of the 10 individuals.

For all tests, an indifference zone of δ∗ = 0.2 is used, i.e. the ordering of a
pair of individuals is accepted as correct if the higher ranked individual is not
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more than 0.2 worse than the lower ranked individual. We use the stopping rule
PGGSlep,δ∗ > 1− α∗, where α∗ is varied to generate lines in Figure 3.

A complete ranking of the individuals is the most challenging task and re-
quires the highest number of samples to reduce the error 1 − PGGiz,δ∗ . The
curves for steady-state EA and (5,10) ES are significantly below the curve for
the complete ranking, which shows that an EA indeed requires only partial infor-
mation, and that a lot of samples can be saved by generating only the required
information. Interestingly, the steady-state EA operation even requires less sam-
ples than identifying only the best individual (OCBA0.2Select). This is due to
the fact that we generate the means according to a negative exponential distribu-
tion, i.e. there are several good but few bad individuals, and thus it is relatively
easier to identify the worst individual and the better of two random pairs for
the steady-state EA than it is to identify the best individual.

Figure 4 compares our new OCBA-based EA with standard EAs using the
same number of samples for each individual. The OCBA-based sampling alloca-
tion schemes are much more efficient than the corresponding Equal allocation
variants, which shows that integrating a statistical ranking and selection proce-
dure is beneficial.
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Fig. 4. Comparison of the new OCBA-based EA (bold lines) and the standard EA with
Equal sampling (thin lines)

For example, to reduce the probability of an erroneous generation, 1−PGGiz,δ∗ ,
to 0.02, the standard (5, 10)-ES would require an average of 1160 evaluations per
generation. OurOCBA-based ES achieves the same accuracy with 385 evaluations
per generation. For the steady-state EA, the differences are even larger: the stan-
dard steady-state EA would require an average of 845 evaluations per generation.
while our OCBA-based EA only requires 240 evaluations. That is, our method
saves 67-71% of the samples, and the benefit of our newly proposed methods in-
creases with an increasing desired PGGiz,δ∗ .
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While this only looks at a single example of an artificially generated itera-
tion, it is to be expected that the benefit of our proposed method will be even
larger for larger populations (because the required information becomes an even
smaller portion of the information required for a full ranking) and in an itera-
tive EA setting (because OCBA will be able to re-use the samples of surviving
individuals, and those are the individuals that were allocated relatively many
samples).

7 Conclusion

Optimization in noisy environments is challenging, because the noise makes it
difficult to decide which of two solutions is better, which is a prerequisite for every
optimization algorithm. While noise can usually be reduced by averaging over
multiple samples, this is a costly process. In this paper, we have proposed a new
adaptive sample allocation mechanism that attempts to minimize the number
of samples required to warrant a proper functioning of an EA. The approach is
based on two ideas:

1. Restriction of the focus on those pairwise comparisons that are actually
used by the EA. As the empirical results have shown, these comparisons
may require less samples than even only identifying the best individual.

2. The use of OCBA, a sample allocation procedure from statistical ranking
and selection. This allowed to distribute the additional evaluations to those
individuals where they promise the highest benefit, and to stop sampling
when there is sufficient evidence for correct selection.

More work is needed to identify the best way to take advantage of this proposal.
As a next step, we will show the benefit of the proposed method not only on a
hypothetical generation, but over a complete run of the EA. Then, the method
will be extended to allow an efficient identification of the best individual encoun-
tered during the run. Finally, guidelines for setting the parameters α∗ and δ∗ as
iterations proceed in order to obtain a better overall performance are needed.
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Abstract. The effect of different representations has been thoroughly
analyzed for evolutionary algorithms in stationary environments. How-
ever, the role of representations in dynamic environments has been largely
neglected so far. In this paper, we empirically compare and analyze three
different representations on the basis of a dynamic multi-dimensional
knapsack problem. Our results indicate that indirect representations are
particularly suitable for the dynamic multi-dimensional knapsack prob-
lem, because they implicitly provide a heuristic adaptation mechanism
that improves the current solutions after a change.

Keywords: Evolutionary algorithm, representation, dynamic environ-
ment.

1 Introduction

Many real-world problems are dynamic in nature. The interest in applying evo-
lutionary algorithms (EAs) in dynamic environments has been increasing over
the past years, which is reflected in the increasing number of papers on the topic.
For an in-depth overview on the topic, see e.g. [2, 10, 12, 17].

Most of the literature attempts to modify the algorithm to allow a better
tracking of the optimum over time, e.g. by increasing diversity after a change,
maintaining diversity throughout the run, or incorporating a memory. In this
paper, we focus on the representation’s influence on an EA’s performance in
dynamic environments. Instead of searching the solution space directly, usually
EAs search in a transformed space defined by the genetic encoding. This mapping
between solution space and genetic search space is generally called “representa-
tion”, or “genotype-phenotype mapping”. The representation together with the
genetic operators and the fitness function define the fitness landscape, and it is
generally agreed upon that a proper choice of representation and operators is
crucial for the success of an EA, see e.g. [15, 16].

Depending on the representation, the fitness landscape can change from being
unimodal to being highly multimodal and complex, and thus the representation
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strongly influences the EA’s ability to approach the optimum. In a dynamic en-
vironment, in addition to the (static) characteristics of the fitness landscape, the
representation influences the characteristics of the fitness landscape dynamics,
as has been recently demonstrated in [3]. Consequently, depending on the repre-
sentation, the tracking of the optimum over time may be more or less difficult.

This paper examines the performance of three different genetic representa-
tions for the dynamic multi-dimensional knapsack problem (dMKP) [3]. The
MKP is a well studied problem, and different representations have been pro-
posed and compared e.g. in [6, 9, 14, 15]. For our study, the binary representa-
tion with a penalty for constraint handling is selected as an example of a direct
representation. As indirect representations, we consider a permutation represen-
tation and a weight-coding. In the latter, the items’ profits are modified and a
simple deterministic heuristic is used to construct the solution. Intuitively, this
last representation seems particularly promising for dynamic environments, as
it naturally incorporates heuristic knowledge that would immediately improve a
solution’s phenotype after a change of the problem instance.

The paper is structured as follows: Section 2 introduces the dynamic MKP
problem and briefly explains the different representations used in this study. The
experimental results are reported and analyzed in Section 3. The paper concludes
in Section 4 with a summary and some ideas for future work.

2 The Dynamic Multi-dimensional Knapsack Problem

Knapsack problems [11] are commonly used combinatorial benchmark problems
to test the performance of EAs. The multi-dimensional knapsack problem (MKP)
belongs to the class of NP-complete problems. The MKP has a wide range of
real world applications such as cargo loading, selecting projects to fund, budget
management, cutting stock, etc. It can be formalized as follows.

maximize
n∑

j=1

pj · xj (1)

subject to
n∑

j=1

rij · xj ≤ ci, i = 1, 2, ..., m (2)

where n is the number of items, m is the number of resources, xj ∈ {0, 1} shows
whether item j is included in the subset or not, pj shows the profit of item j, rij

shows the resource consumption of item j for resource i and ci is the capacity
constraint of resource i.

For the MKP, several different genetic representations and genetic operators
have been proposed. A detailed analysis and comparison for static environments
can be found in [6] and more recently in [15]. In the following, we describe the
representations selected for our study in dynamic environments.
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2.1 Direct Representations for the MKP

A representation is called direct if it can be interpreted directly as a solution to
the problem. For the MKP, this corresponds to an assignment of values to the
variables xi in the above definition, e.g. in the form of a bit string where each
bit corresponds to an item, indicating whether an item should be included in
the knapsack or not.

Binary Representation with Penalty. One drawback of direct representa-
tions is often the difficulty to maintain feasibility, as the search space contains
many infeasible solutions. In our study, we use a simple penalty-based method
to drive the search towards feasible regions of the search space. We apply the
penalty mechanism recommended in [8], which guarantees that feasible solutions
are always preferred over infeasible ones.

fitness(x) = f(x)− penalty(x) (3)

penalty(x) =
pmax + 1

rmin
∗max{CV (x, i) | i = 1 . . .m} (4)

pmax = max{pi | i = 1 . . .m} (5)
rmin = min{rij | i = 1 . . .m, j = 1 . . . n} (6)

CV (x, i) = max(0,

n∑
j=1

rij · xj − ci) (7)

where pmax is the largest profit value calculated as in Eq. 5, rmin is the mini-
mum resource consumption calculated as in Eq. 6 and CV (x, i) is the maximum
constraint violation for the ith constraint ci calculated as in Eq. 7. It should be
noted that rmin �= 0 must be ensured. As genetic operators bit flip mutation and
uniform crossover are used.

2.2 Indirect Representations for the MKP

Indirect representations require to run a decoder to generate the solution based
on the genotype. There are many possible indirect representations. Usually, a
representation is preferred that decodes all elements of the search space into
feasible solutions. Thus, it is not necessary to design complicated repair mecha-
nisms or to use a penalty to ensure feasibility. In this paper, we look at the two
indirect representations discussed below.

Permutation Representation. A popular indirect representation is the per-
mutation representation [6, 7], where the search space consists of all possible
permutations of the items. To obtain the phenotype (actual solution), a decoder
starts with an empty set, then considers the items one at a time in the order
specified by the permutation. If an item can be added without violating any
constraint, it is included in the solution, otherwise not.

The decoder used by the permutation representation guarantees that only
feasible solutions are generated. Furthermore, these solutions lie on the bound-
ary of the feasible region in the sense that no additional items could be included
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without violating at least one constraint, which is a necessary condition for op-
timality. Thus, the decoder generates solutions that are of significantly higher
quality than randomly generated solutions. In a dynamic environment, solu-
tions are immediately “repaired” after a change such that they are again at the
boundary of feasibility in the new environment.

In [9], a good setup for the permutation representation is recommended, in-
cluding uniform order based crossover (UOBX) and insert mutation as variation
operators. In insert mutation, a new position for an element is selected randomly.
The mutated element is inserted into its new position and the other elements
are re-positioned accordingly. In UOBX, some positions are transfered directly
to the offspring from the first parent with probability p1 = 0.45. Then, starting
from the first position, undetermined positions are filled with missing items in
the order of the second parent.

Real Valued Representation with Weight Coding. A more complex ex-
ample for indirect representations is the weight-coding (WC) approach [14]. In
the weight-coding technique, a candidate solution for the MKP consists of a
vector of real-valued genes (biases) associated with each item. To obtain the
corresponding phenotype, first the original problem P is transformed (biased)
into a modified problem P ′ by multiplying the original profits of each item with
the corresponding bias. Then, a fast heuristic is used to find a solution to P ′, and
finally, the resulting solution (items to be placed in the knapsack) is evaluated
based on the original problem. Raidl [14] discusses two possible decoding heuris-
tics. The one using the surrogate relaxation method is preferred due to its lower
computational requirements. The surrogate relaxation method [13] simplifies the
original problem by transforming all constraints into a single one as follows:

n∑
j=1

(
m∑

i=1

ai · rij

)
xj ≤

m∑
i=1

ci (8)

where ai is the surrogate multiplier for the ith constraint, and rij is the resource
coefficient.

Surrogate multipliers are determined by solving the relaxed MKP (i.e., vari-
ables xi can take any value ∈ [0, 1]) by linear programming, and using the values
of the dual variables as surrogate multipliers. Then, to obtain a heuristic solu-
tion to the MKP, the profit/pseudo-resource consumption ratios denoted as uj

are calculated as given in Eq. 9.

uj =
pj∑m

i=1 airij
(9)

The items are then sorted in decreasing order based on their uj values, and this
order is used to construct solutions just as for the permutation representation, i.e.
items are considered one at a time, and if none of the constraints are violated,
added to the solution. To keep computation costs low, in [14] the surrogate
multiplier values ai are determined only once for the original problem at the
beginning. As a result, the decoding step starts with the computation of the uj
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values based on the biased profits. Note that in a dynamic environment, the WC
representation requires to re-compute the pseudo-resource consumption values
ai after every change of the environment.

In [14], several biasing techniques are discussed and compared. We initialize
the biases according to wj = 2R, where R is a uniformly generated variable in the
range [−1, 1] This leads to a distribution with many small and few larger values.
For mutation, we deviate from the re-initialization of biases used in [14] and
instead use Gaussian mutation with σ = 1. To generate the modified profits, the
original profits are simply multiplied with the biases, i.e. p′j = pj ∗ wj . Uniform
crossover is used as second genetic operator.

Since the permutation representation and the WC representation share similar
construction mechanisms, they both benefit from the resulting heuristic bias.
However, by calculating the pseudo-resource consumption values, the influence
of heuristic knowledge for WC is even larger.

In dynamic environments, the WC representation appears to be particularly
advantageous, for two reasons:

1. Because of the integration of heuristic knowledge, good solutions are gener-
ated right from the beginning, i.e., the algorithm improves more quickly. In
dynamic environments, time is scarce (otherwise one could just regard the
problem as a sequence of stationary problems), and the heuristic bias gives
this representation a head start.

2. Changes of the environment are immediately taken into account by the un-
derlying heuristic, which means that the existing solutions are heuristically
adjusted after a change of the problem instance.

2.3 The Dynamic MKP

In our study, we use a dynamic version of the MKP as proposed in [3] and
described below. Basis is the first instance given in the file mknapcb4.txt which
can be downloaded from [1]. It has 100 items, 10 knapsacks and a tightness ratio
of 0.25. For every change, the profits, resource consumptions and the constraints
are multiplied by a normally distributed random variable as follows:

pj ← pj ∗ (1 + N(0, σp))
rij ← rij ∗ (1 + N(0, σr))
ci ← ci ∗ (1 + N(0, σc))

(10)

Unless specified otherwise, the standard deviation of the normally distributed
random variable used for the changes has been set to σp = σr = σc = 0.05 which
requires on average 11 out of the 100 possible items to be added or removed
from one optimal solution to the next. Each profit pj , resource consumption rij

and constraint ci is restricted to an interval as determined in Eq. 11.

lbp ∗ pj ≤ pj ≤ ubp ∗ pj

lbr ∗ rij ≤ rij ≤ ubp ∗ rij

lbc ∗ ci ≤ ci ≤ ubp ∗ ci

(11)
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where lbp = lbr = lbc = 0.8 and ubp = ubr = ubc = 1.2. If any of the changes
causes any of the lower or upper bounds to be exceeded, the value is bounced back
from the bounds and set to a corresponding value within the allowed boundaries.

3 Empirical Results

For this study, we used a more or less standard steady-state EA with a popula-
tion size of 100, binary tournament selection, crossover probability of 1.0, and
mutation probability of 0.01 per gene. The genetic operators crossover and mu-
tation depend on the representation and have been implemented as described
above. The new child replaces the current worst individual in the population if
its fitness is better than the worst. The EA uses phenotypic duplicate avoidance,
i.e. a child is re-generated if a phenotypically identical individual already exists
in the population. This feature seems important in particular for indirect repre-
sentations with high redundancy, i.e. where many genotypes are decoded to the
same phenotype.

Unless stated otherwise, after a change, the whole population is re-evaluated
before the algorithm is presumed. The genotypes are kept unless the change cre-
ates phenotypically identical individuals, in which case duplicates are randomized.
As a performance measure, we use the error to the optimum. We use glpk [5] for
calculating the surrogate multipliers for the WC and CPLEX for calculating the
true optimum for each environment. All results are averages over 50 runs with
different random seeds but on the same series of environment changes.

Note that the following analysis assumes that the evaluation is by far the
most time-consuming operation (as is usual for many practical optimization
problems), allowing us to ignore the computational overhead caused by the de-
coders.

3.1 Relative Performance in Stationary Environments

Figure 1 compares the three representations on a stationary environment, which
will serve as a baseline for the comparison in dynamic environments. As can
be seen, the permutation representation is fastest to converge, WC is some-
what slower but then takes over, and the binary representation with penalty is
very slow, and remains worst throughout the run. The first (random) solution
generated by the WC, permutation, and binary approaches has an error of ap-
proximately 6366, 7381, and 16374922, respectively. This shows that the WC
representation has a higher heuristic bias than the permutation representation,
while the binary approach starts with infeasible (more infeasibles with lower
tightness ratios) and highly penalized solutions.

3.2 Dynamic Environment

The relative performance of the different representations in a dynamic environ-
ment is shown in Figure 2. In the plot, the fitness of the first individual after a
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Fig. 1. Error over time for different representations in a stationary environment

change is indicated with (x) for the permutation approach and (o) for the WC
approach. For further details see also Table 1.

Several interesting observations can be made. First, as expected, there is a
significant increase in error right after a change. Nevertheless, the error after a
change is much smaller than the error at the beginning of the run. Compared to
the first environment, the average error of the starting solution in environments
2-10 is reduced by approximately 75% for WC, 71% for permutation and 96%
for the binary representation with penalty. This means that all representations
benefit dramatically from transferring solutions from one environment to the
next. WC starts better than the permutation representation, and both indirect

Table 1. Average error or initial solution, the solution right before change, and the
solution right after a change, ± standard error

WC permutation binary

initial solution 6307±133 7471±140 15764226±418421
before change 197±10 260±15 834±33
after change 1482±67 2201±94 577226±47984
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Fig. 2. Error over time for different representations in a dynamic environment
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representations are much better than the binary one. The binary representation
with penalty can not prevent the solutions to become infeasible, but recovers
quickly. It clearly benefits most from re-using information, and it can improve
its performance over several environmental periods (not only from the first to
the second environment).

Second, starting from better solutions, the algorithms are able to find better
solutions throughout the stationary periods. The benefit seems highest for the
binary representation, while the permutation approach can improve performance
only a little bit. At the end of the 10th environmental period (evaluation 50,000),
the solution quality reached by the indirect representations is close to the error
found after 50,000 evaluations in a stationary environment. This means that the
algorithms don’t get stuck at a previously good but now inferior solution.

Third, as in the stationary case, the WC representation outperforms the per-
mutation representation after a while and performs best overall.

3.3 Restart

Instead of continuing the EA run after a change, one might also re-start the
EA with a new, randomized population, which is a common strategy to avoid
premature convergence of the population. In this case, improving the solution
quality fast would be even more important. As Figure 3 shows, re-initializing
the population after a change is worse than simply continuing for all three rep-
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Fig. 3. Error over time for different representations in a dynamic environment. Com-
parison of keeping the population (solid line) or re-start (dashed line) after a change
for the (a) WC (b) permutation and (c) binary representation.
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resentations. For the permutation representation, the difference is the smallest,
for binary representation it is largest. The results suggest that premature con-
vergence is not so much an issue in the settings considered, either because the
duplicate avoidance used is sufficient to prevent premature convergence, or be-
cause the population does not converge within the 5000 evaluations per period
anyway.

3.4 Hypermutation

Hypermutation [4] has been suggested as a compromise between complete restart
and simply continuing evolution. With hypermutation, the mutation probabil-
ity is increased for a few iterations after a change to re-introduce diversity. For
our experiments, we tried to increase mutation in such a way that it would
have similar effects for all representations. For the binary representation, we
increased the probability of mutation to pm = 0.05 per gene. For WC, we in-
creased the standard deviation for the Gaussian mutation to σ = 5. For the
permutation representation, we applied insert mutation 5 times to each newly
generated individual. In our tests, hypermutation had little effect except if the
WC representation is used (not shown). Only for WC, hypermutation helped
to speed up fitness convergence significantly in the first period, which indicates
that either the mutation step size or the area for initialization have been chosen
too small in the first environment.

3.5 Higher Change Frequency

Obviously, the higher the change frequency, the more important it is to produce
good solutions quickly, and thus the higher should be the advantage of indirect
representations. Figure 4 shows the same performance plots as in the previous
subsection, but with a change every 2000 evaluations.

With the higher change frequency, the WC representation improves over the
permutation representation only in the third environmental period, although
according to the number of evaluations, the switch is actually earlier than in
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change every 2000 evaluations
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Fig. 5. Error over time for different representations in a highly severe dynamic
environment

the previous case with lower change frequency. The binary representation keeps
improving over all 10 environmental periods.

3.6 Effect of Change Severity

The aim of this experiment is to see the effect of change severity. To implement
a more severe change, in Eq. 10, we set the standard deviation of the normally
distributed random variable used for the changes to σp = σr = σc = 0.1 and each
profit pj, resource consumption rij and constraint ci is restricted to an interval
as determined in Eq. 11 with lbp = lbr = lbc = 0.5 and ubp = ubr = ubc = 1.5.

The results for this more severe environment, shown in Figure 5 look very
similar to the standard case we have looked at in the above subsections. The
error immediately after a change is significantly higher, but all algorithms adapt
rather quickly and the solutions found later on are comparable to those in the
standard case. As the analysis of the offline error below will show, in particular
the binary encoding suffers from the increased severity. The indirect encodings
are barely affected.

4 Discussion and Conclusion

The results have demonstrated that the representation can have a tremendous
effect on an EA’s performance in dynamic environments. While the permutation
representation was fastest to converge in terms of solution quality, the WC rep-
resentation was best in coping with the dynamics of the problem. The binary
representation with penalty performed extremely poor, as it improves slowly and
is not even able to maintain feasibility after a change.

In a stationary environment, what usually counts is the best solution found
at the end. After 20000 evaluations, the obtained errors of the approaches are
73 for WC, 170 for permutation, and 570 for binary representation with penalty.
However, in a dynamic environment usually the optimization quality over time
is important. Table 2 summarizes all the results by looking at the offline error,
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i.e. the average error over evaluations 5000-20000. This interval has been chosen
because it was covered in all experiments, and removes the influence from the
initial “warm-up” phase.

In the stationary case, WC representation performs best, with permutation a
close second (+39%), and binary representation with more than four times the
offline error of the two indirect representations. In a dynamic environment, when
the algorithm is restarted after every change, the permutation representation
benefits from its fast fitness convergence properties and performs best, while
the binary representation improves so slowly and generates so many infeasible
solutions that it is basically unusable. If the algorithms are allowed to keep
the individuals after a change, they all work much better than restart. With
increasing change frequency or severity, the performance of all approaches suffers
somewhat, but the gap between the best-performing WC representation and
the direct binary representation increases from 532% in the dynamic baseline
scenario to 867% in the high frequency scenario and 3233% in the high severity
scenario.

Table 2. Offline error of different representations in different environments Evaluations
5000-20000

WC permutation binary

stationary 179.1 248.1 947.8
restart 1581.6 1115.2 625746.0

dynamic base 342.2 470.4 1823.0
high frequency 397.1 561.5 3445.7
high severity 456.4 621.6 14756.9

Overall, our results indicate that indirect representations, and in particular
those with a strong heuristic component like weight-coding, may have clear ad-
vantages in dynamic environments, in addition to the advantages they provide in
stationary environments. As future work, we will verify this hypothesis also for
the travelling salesman problem and look at representations with explicit repair
mechanisms.
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Abstract. The shaky ladder hyperplane-defined functions (sl-hdf’s) are
a test suite utilized for exploring the behavior of the genetic algorithm
(GA) in dynamic environments. We present three ways of constructing
the sl-hdf’s by manipulating the way building blocks are constructed,
combined, and changed. We examine the effect of the length of elemen-
tary building blocks used to create higher building blocks, and the way
in which those building blocks are combined. We show that the effects of
building block construction on the behavior of the GA are complex. Our
results suggest that construction routines which increase the roughness
of the changes in the environment allow the GA to perform better by
preventing premature convergence. Moreover, short length elementary
building blocks permit early rapid progress.

1 Introduction

In order to conduct controlled observations on the GA in dynamic environments,
a test suite of problems is necessary, so that we can control the inputs to the
system and define metrics for the outputs. Moreover, the more parameters of
the system (e.g. time and severity of shakes, difficulty of the problem) that are
controllable, the easier it is to test explanations for the observed behavior.

Other test suites for EAs in dynamic environments exist, such as the dynamic
knapsack problem, the moving peaks problem and more [1]. The test suite and its
variants presented here are similar to the dynamic bit matching functions utilized
by Stanhope and Daida [2] among others. The test functions that we developed to
explore the GA in dynamic environments, the shaky ladder hyperplane-defined
functions (sl-hdf’s) [3], are a subset of the hdf’s [4]. Holland created these func-
tions in part to meet criteria developed by Whitley [5]. The hdf’s, designed to
represent the way the GA searches by combining building blocks, are well-suited
for understanding the operation of the GA [6] [7] [8]. Extending our previous
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work on sl-hdf’s [6] [7] [8], here we explore the effect of different types of build-
ing blocks on the GA by manipulating the way in which intermediate building
blocks within the sl-hdf’s are constructed. Moreover, whereas in past papers we
often examined the effect of the severity of change within a single environment
type, here we compare the effect of different environment types while holding
the severity of change relatively constant.

We begin by describing the sl-hdf’s and three variants. We then describe the
experiments with these functions, examine the behavior of the GA, discuss the
results and draw some conclusions.

2 Shaky Ladder Hyperplane-Defined Functions and the
Variants

In this section we describe the sl-hdf’s and the three variants we will be exploring.
For an in-depth explanation of the construction of the sl-hdf’s see [8].

The sl-hdf’s are a subset of Holland’s hdf’s [4]. To make the hdf’s usable as a
test platform in dynamic environments we place three restrictions on the hdf’s:
(1) The Unique Position Condition (UPC), which requires that all elementary
schemata contain no conflicting bits; (2) The Unified Solution Condition (USC),
which guarantees that all of the specified bits in the positive-valued elementary
level schemata must be present in the highest level schema, and that all inter-
mediate schema are a composition of lower level schema; and (3) The Limited
Pothole Cost Condition (LPCC), which states that the fitness contribution of
any pothole plus the sum of the fitness contributions of all the building blocks
in conflict with that pothole must be greater than zero.

These three conditions guarantee that any string that matches the highest
level schema must be optimally valued. Moreover it gives us an easy way to
create a similar but different sl-hdf by changing the intermediate building blocks.
This process is referred to as “shaking the ladder” [3], i.e. the intermediate
schemata are changed which alters the reward structure that describes the fitness
landscape. Thus these restrictions allow us to transform the full class of hdf’s
into a class that can be used for exploring the behavior of the GA on dynamic
environments.

There are many parameters that control the construction of the sl-hdf’s. Next
we explain and explore the parameters that affect the three variant sl-hdf con-
struction methods used in this paper.

2.1 Elementary Schemata Length

The elementary schemata length (l) is the distance between fixed bits in the
elementary schemata. For the first two variants described below (Cliffs and
Smooth), the elementary schemata length is not specified. When the elementary
schemata length is not specified the fixed bit locations are chosen randomly from
the whole string. On average when the length is unspecified, the actual length
will be large, nearing the length of the string. For the third variant (Weight),
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the elementary schemata length is set to l = ls
10 = 50, where ls is the overall

length of the string. This relationship is taken from Holland [4].

2.2 Mean and Variance of Schemata Weight

To create the schemata we need to specify the weight (w) that each schema
contributes to the overall fitness function. Two parameters, mean and variance
of the schemata weight, are used to specify the normal distribution from which
the weight for each intermediate schemata is drawn. There is one caveat to this:
since a normal distribution would allow negative weights to be drawn, and since
the proof of the optimality of the highest level schemata requires that the inter-
mediates always increase the overall value of the schemata, a weight is redrawn
from the same distribution if its value is not positive. In all of the experiments
described herein, the weight of the elementary schemata (2), potholes (−1) and
highest level schemata (3) remains unchanged. In the first two variants (Cliffs
and Smooth), the weight of the intermediate schemata is also held constant at 3.
However in the third variant (Weight) the weight of each intermediate schemata
is drawn from a distribution with mean of 3, and variance of 1.

2.3 Restricted vs. Unrestricted Intermediate Construction

In the sl-hdf there are three groups of schemata held constant, the elementary
schemata, the potholes, and the highest level schema. The fourth set of schemata,
the intermediate schemata, is the group of schemata that changes. Thus the in-
termediate schemata could either be constructed out of any of the fixed groups
of schemata, which is called the unrestricted construction method, or the in-
termediate schemata could be constructed out of just the elementary schemata,
which is called the restricted construction method and is more similar to Hol-
land’s original description [4]. The unrestricted construction method is used in
the first variant (Cliffs) below, while the restricted method is used in the other
two variants (Smooth and Weight).

2.4 Random vs. Neighbor Intermediate Construction

The schemata utilized for construction of the next level of intermediate schemata
are selected randomly or from a prescribed order from the previous level. The
random construction method creates new intermediate schemata at level n, by
randomly choosing without replacement two schemata from level n − 1 and
combining them. In the neighbor construction method, all of the schemata at
level n − 1 are sorted by the location of their centers, which is the index value
half the distance between their left and right fixed loci. The first two schemata
that are next to each other in this sorted list are combined, and then the next
two, until all pairs have been combined.

If the random construction routine has been used then when the ladder
shakes, all of the intermediate schemata are destroyed and new ones are cre-
ated by randomly combining the lower level schemata to create the interme-
diate schemata, and weights are assigned by drawing from the distribution
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specified by the intermediate weight mean and variance. If the neighbor con-
struction routine is specified, then the intermediate schemata are left alone and
instead new weights are drawn for the intermediate schemata. Thus when the
neighbor construction routine is used the only thing that changes during the
shakes of the ladder are the weights, and therefore this is sometimes called
“shaking by weight.” When the random construction routine is used then the
whole form of the ladder changes and thus this is sometimes called “shaking by
form.”

2.5 The wδ Parameter

wδ is the fraction of intermediate schemata weights that are changed when the
ladder is shaken. This parameter only makes sense with the neighbor intermedi-
ate schemata construction method, since in the random method all weights are
changed when the ladder is shaken. However in the first two variants described
below (Cliffs and Smooth), the variance of the weights is 0, thus the weights are
all the same. In the last variant (Weight) wδ = 1 and the neighbor construction
method is utilized, which results in shaking all the weights every time.

3 Variations on the sl-hdf

Given all of the parameters described above, it is necessary to determine how to
explore this space systematically. One of the major choices is to decide whether
to utilize the restricted or unrestricted intermediate construction technique. Ini-
tially we utilized the unrestricted technique, because it increased the amount
of variety in the landscape. One of the properties of this technique is that it
creates a large pool of material to draw from for the creation of the intermediate
schemata. Thus once this decision has been made it is logical to use the shaking
by form technique to sample widely from this pool of building blocks. This cre-
ates the most diverse and unrestrained set of building blocks. This unrestricted,
shaking by form landscape became the Cliffs variant.

This variant does indeed produce interesting results, but we wanted to create
something more similar to the original hdf’s [4] and the best way to do that was
to restrict the intermediate construction method. This small restriction changes
the composition of the building blocks in a minor way, but does nothing to change
the fact that they are dramatically changed every time the ladder shakes. This
restricted, shaking by form landscape became the Smooth variant.

Finally, in order to move even closer to Holland’s original description we
utilized the neighbor intermediate construction technique. This technique dra-
matically alters the way intermediate building blocks are constructed in this
test suite. However, since this technique fixes the particular schemata that are
combined it is necessary to use a new way to introduce dynamics into the land-
scape. The only property a schema has besides its particular form is the weight
assigned to it. Thus it is clear that if the form of the schema is held constant,
in order to create dynamics the weights must be changed. Moreover, in order to
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make this variant as close to Holland’s as possible we also restricted the length
of the elementary building blocks. This restricted, shaking by weight landscape
became the Weight variant.

The main differences between these variants as described in the preceding
paragraphs are detailed in Table 1. We will describe each of these variants in
turn in the following sections.

3.1 Cliffs Variant: Intermediate Schemata Are Cliffs

Figure 1 illustrates the Cliffs landscape, the base case in this paper.
The major differences between this variant and the other two are that it

uses the unrestricted construction method. When creating a new intermediate
schemata using the unrestricted method, all of the previous level schemata, plus
the potholes, and the highest level schemata can be used to generate the new
schemata. This has the property of introducing ”cliffs” into the landscape, be-
cause the combination of any schemata and the highest level schemata is the
highest level schemata. Thus many intermediate schemata are replaced by copies
of the highest level schemata. An effect of this is that any string which matches
the highest level schema will have a much higher value relative to the other
strings than it would in the restricted construction method. Moreover, the ef-
fect of having some intermediate schemata combining with potholes or potholes
combining with potholes to create intermediate schemata is interesting and com-
plicated. Essentially, this has the effect of smoothing some transitions since some
of the potholes will not be as detrimental as they could be. On the other hand,
if there is one of these “bridges” in place and the ladder shakes removing the
bridge, an individual making use of that bridge will suffer a sharp decline in fit-
ness because, it loses an intermediate schemata and gains a pothole. In general
the result of all these effects is that the fitness landscape is more sharply defined.

Fig. 1. Illustration of Shaky Ladder Construction and the Process of Shaking the
Ladder for the Cliffs Variant
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As to the rest of the parameters, the length of the schemata is not specified.
The order of the schemata is set to 8. The length of the string is 500. The number
of elementary schemata is 50. The mean of the intermediate schemata weight is
3 with a variance of 0. The construction method for the intermediate schemata
is unrestricted and random.

3.2 Smooth Variant: An sl-hdf Without Cliffs

The variant that we refer to as the Smooth sl-hdf throughout this paper is
constructed using the restricted method, which is the only difference between it
and the Cliffs variant, and can be seen in Figure 2.

Fig. 2. Illustration of Shaky Ladder Construction and the Process of Shaking the
Ladder for the Smooth Variant

This variant is called the Smooth sl-hdf because unlike the sl-hdf with Cliffs,
there are no sharp edges in the landscape. Instead elementary schemata are
combined to form intermediate schemata, which then are combined to form the
next level of intermediate schemata and so forth.

To fully specify the parameters, the length of the schemata is not specified.
The order of the schemata is set to 8. The length of the string is 500. The number
of elementary schemata is 50. The mean of the intermediate schemata weight is
3 with a variance of 0. The construction method for intermediate schemata is
restricted and random.

3.3 Weight Variant: Shaking the Weights Not the Form

This variant most closely resembles the hdf’s described by Holland. It has lim-
ited length building blocks, and a highly restricted intermediate building block
construction routine, as is explained in Figure 3.

To fully specify the parameters, the length of the schemata 50. The order
of the schemata is set to 8. The length of the string is 500. The number of
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Fig. 3. Illustration of Shaky Ladder Construction and the Process of Shaking the
Ladder for the Weight Variant

elementary schemata is 50. The mean of the intermediate schemata weight is
3 with a variance of 1. The construction method for intermediate schemata is
restricted, as mentioned, and neighbor.

4 The Experiments and Results

The basic parameters for the experiment are laid out in Table 1.

Table 1. Initial GA and sl-hdf Parameters

Parameter Cliffs Variant Smooth Variant Weight Variant
Population Size 1000
Mutation Rate 0.001
Crossover Rate 0.7
Generations 1800
String Length 500
Selection Type Tournament, size 3
Number of Elem. Schemata 50
Elementary Schemata Order 8
Elementary Schemata Length Not Specified 50
Mean, Var. of Int. Schem. Wt. 3, 0 3, 1
Int. Constr. Method Unrestricted, Random Restricted, Random Restricted, Neighbor
tδ 1, 25, 100, 900, 1801
wδ 0 1
Number of Runs 30

4.1 Cliffs Variant Results

To more closely compare the three behavioral regimes of interest, we examined
three values of tδ: 1, 100 and 1801 for whole runs 1. To provide some description of
1 There are quantitative differences between tδ values other than those presented here.

We concentrate on these values for illustrative purposes.
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the distribution (and variance) of the results, Figure 4 illustrates both the fitness
of the best individual in the population (Best Performance) and the average
fitness of the population (Average Performance) for the three tδ values, averaged
across 30 runs, presented every tenth generation.
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Fig. 4. Cliffs Variant: Performance Results of tδ = 1801, 100, 1

These results show that the regularly changing environment is able to outper-
form the static environment in the long run. Initially the dynamic environment
under-performs the static environment but, before halfway through the run, the
dynamic environment has achieved a superior fitness in both the best individuals
and the average fitness of the populations. This is because the regularly changing
environment prevents the GA from being locked into particular building blocks
and forces it to explore a wider range of schemata. In the future, we hope to
substantiate this hypothesis. For instance, the particular schemata located in
each individual in the population could be examined.

In addition, Figure 4 shows that the Best and Average Performance results for
the constantly changing environment surpass the static environment. It also is
interesting to note that the gap between the performance of the best and average
individuals in the constantly changing environments appears to be larger than
it is in the other two environments. This is due to the fact that the constant
dynamism of the tδ = 1 environment means that more individuals receive a 0
score in every generation than in the other two environments, thus driving down
the Average Performance of the system relative to the Best Performance.

In a similar way, when the ladder is shaken in the regularly changing en-
vironment, the Average Performance of the system falls farther than the Best
Performance of the system. This makes sense–when the ladder is shaken many
of the individuals that were being rewarded before lose those rewards and hence
their fitness falls greatly; however it is reasonable to suppose that there are
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Fig. 5. Smooth Variant: Performance Results of tδ = 1801, 100, 1

some individuals (the new best individuals) immediately after a shake that have
a higher performance than they did before the shake and thus they mitigate the
fall of Best Performance.

4.2 Smooth Variant Results

In Figure 5, the results have been pared down to show the Best and Average
Performance in the changing and static regimes2. Again, it is clear that a GA in
a regularly changing environment is able to outperform a GA in a static envi-
ronment in the long run. In this variant, the changing environment outperforms
the static environment earlier on, but the GA does not perform as well as in the
Cliffs environment. This is because the landscape changes in this variant are not
rough enough to prevent the premature convergence [8].

In addition, like in the Cliffs variant, the Average Performance of the system
falls farther than the Best Performance during a shake. This effect is due to
the fact that individuals that were not the best in the past become the best
after a shake, mitigating the decrease even though the population on average
loses more fitness. Moreover it is interesting to note that the performance hits
at these shakes do not appear to be as dramatic as they are in the Cliffs variant,
for either the Average or Best Performance. This is one piece of evidence that
shakes are not as violent in the Smooth variant as they are in the Cliffs variant.

4.3 Weight Variant Results

In Figure 6, the results again have been pared down to show the Best and
Average Performance of the GA in the changing and static regimes, and as

2 tδ = 1 is not presented since its behavior is qualitatively similar to tδ = 100.
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in the Smooth variant the constantly changing environment is omitted. This
graph is very different from the previous two graphs that examined the Best
and Average Performance of the other two variants. Clearly there is virtually no
difference between the static and changing environments.
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Fig. 6. Weight Variant: Performance Results of tδ = 1801, 100

In addition, the GA operating in this variant underperforms the GA’s operat-
ing in the Smooth and Cliffs variants. This is because as the severity of the shakes
decreases the GA is more likely to converge on suboptimal solutions [8]. On the
other hand, in this variant the GA is able to make much more rapid progress
early on, because the short elementary building blocks are easy to discover.

Moreover, the phenomenon that was observed before where the Average Per-
formance falls farther than the Best Performance after a shake is not seen here.
The loss of this effect is because the best individuals in the population are sim-
ply not that distinct from the average individuals. In addition, the loss due to
a shake of the ladder is not that great and thus all individuals fall, but they
fall a small amount. This, of course, is further confirmation that the shakes in
this variant do very little to disrupt the GA’s search process and thus this is the
smoothest landscape of the three variants presented here.

In sum, across all three variants, we go from a situation where we have three
distinct classes of phenomenon in the Cliffs landscape (“quasi-static”, “regularly
changing”, “constantly changing”), to two distinct classes of phenomenon in the
Smooth landscape (“quasi-static”, “changing”), to one class of phenomenon in
the Weights landscape. This leads to the hypothesis that bigger and different
types of changes can produce different ranges of behavior in the GA. One way
to confirm this hypothesis in the future would be to see if the GA exhibits
similar behavior in other landscapes, or even in some of these landscapes (e.g.
the Weight variant), when the way that the shake occurs is changed.
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5 Conclusion and Future Work

This paper describes three different methods for constructing sl-hdf’s, by vary-
ing the way basic building blocks are created and combined. GA behavior is
dramatically different on the three variants, which suggests these (and other)
variant sl-hdf’s can be used to systematically explore GA behavior on wide
range of dynamic environments. For example, we found that for the landscapes
defined by some sl-hdf construction methods (the Cliffs and Smooth variants),
a dynamic environment is actually preferable to a static environment because it
prevents the GA from prematurely converging. In addition, the results indicate
that increasing the severity of these shakes can increase the overall performance.
Also, short elementary building blocks can lead to rapid progress in the early
generations of a GA run. These observations may lend some guidance to ap-
plication practitioners attempting to utilize GA’s in dynamic environments. To
be specific, one recommendation is to examine carefully the reward structure
for the GA; by properly manipulating the reward structure, a practitioner can
increase the efficacy of the GA. For example, in the job scheduling domain,
a practitioner could alter the rewards received for scheduling combinations of
jobs, which would be similar to changing the reward structure of the building
blocks.

Two observations of the GA’s behavior on the sl-hdf’s studied here suggest
properties of sl-hdf’s that are associated with high GA performance in dynamic
environments. First, we found that sl-hdf’s with short elementary schemata lead
to rapid performance increases early on relative to sl-hdf’s built from longer
schemata. Second, the Cliffs shaking method allows for an increase in perfor-
mance because it prevents premature convergence. These two observations sug-
gest other ways to construct sl-hdf’s that should lead to even better GA per-
formance. For instance, we defined a new sl-hdf variant, Defined Cliffs, in which
we combine short elementary building blocks with the Cliffs shaking method.
Preliminary results have shown that the Defined Cliffs variant has a superior
performance to any of the results presented in this paper. A more in-depth dis-
cussion of these results will be presented in a future paper.

The results presented here show that different ways of constructing and com-
bining building blocks in sl-hdf’s can dramatically change the overall “texture”
of the dynamic landscapes experienced by the GA. However, these results are
only an initial examination of what effect different components of the building
block construction process have on the performance of a GA. That is, because
the interacting nature of some of these construction methods (how elementary
building blocks are defined and combined) can create complex relationships be-
tween the construction algorithm and the overall texture of the landscape, it
will take additional systematic studies to tease apart these relationships. In ad-
dition, the fact that the sl-hdf’s also are dynamic, further complicates matters,
and makes it difficult to determine if a landscape is easy or hard. Thus it is
clear that future work exploring both the construction space of sl-hdf’s and the
dynamics that can be employed within this space is warranted to describe the
overall effect of building blocks on the performance of the GA.
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In conclusion, these experiments show that the construction of building blocks
can dramatically change the behavior of the GA. By beginning to understand
how the composition of building blocks can affect this behavior, practitioners
can start to gain insight into how to better utilize GA’s in real world problems.
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Abstract. In recent years dynamic optimization problems have attracted
a growing interest from the community of genetic algorithms with sev-
eral approaches developed to address these problems, of which the mem-
ory scheme is a major one. In this paper an associative memory scheme is
proposed for genetic algorithms to enhance their performance in dynamic
environments. In this memory scheme, the environmental information is
also stored and associated with current best individual of the population
in the memory. When the environment changes the stored environmental
information that is associated with the best re-evaluated memory solution
is extracted to create new individuals into the population. Based on a series
of systematically constructed dynamic test environments, experiments are
carried out to validate the proposed associative memory scheme. The en-
vironmental results show the efficiency of the associative memory scheme
for genetic algorithms in dynamic environments.

1 Introduction

Genetic algorithms (GAs) have been applied to solve many optimization prob-
lems with promising results. Traditionally, the research and application of GAs
have been focused on stationary problems. However, many real world opti-
mization problems are actually dynamic optimization problems (DOPs) [4]. For
DOPs, the fitness function, design variables, and/or environmental conditions
may change over time due to many reasons. Hence, the aim of an optimization
algorithm is now no longer to locate a stationary optimal solution but to track
the moving optima with time. This challenges traditional GAs seriously since
they cannot adapt well to the changing environment once converged.

In recent years, there has been a growing interest in investigating GAs for
DOPs. Several approaches have been developed into GAs to address DOPs,
such as diversity maintaining and increasing schemes [5, 7, 11], memory schemes
[2, 14, 17], and multi-population approaches [3]. Among the approaches devel-
oped for GAs in dynamic environments, memory schemes have proved to be
beneficial for many DOPs. Memory schemes work by storing useful information,
either implicitly [6, 9, 12] or explicitly, from the current environment and reusing
it later in new environments. In [17, 19], a memory scheme was proposed into
population-based incremental learning (PBIL) [1] algorithms for DOPs, where
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the working probability vector is also stored and associated with the best sample
it creates in the memory. When the environment changes, the stored probability
vector can be reused in the new environment.

In this paper, the idea in [17] is extended and an associative memory scheme is
proposed for GAs in dynamic environments. For this associative memory scheme,
when the best solution of the population is stored into the memory, the current
environmental information, the allele distribution vector, is also stored in the
memory and associated with the best solution. When the environment changes,
the stored environmental information associated with the best re-evaluated mem-
ory solution is used to create new individuals into the population. Based on the
dynamic problem generator proposed in [16, 18], a series of DOPs with differ-
ent environmental dynamics are constructed as the test bed and experiments
are carried out to compare the performance of the proposed associative memory
scheme with traditional direct memory scheme for GAs in dynamic environ-
ments. Based on the experimental results we analyze the strength and weakness
of the associative memory over direct memory for GAs in dynamic environments.

2 Overview of Memory Schemes

The standard GA, denoted SGA in this paper, maintains and evolves a popu-
lation of candidate solutions through selection and variation. New populations
are generated by first probabilistically selecting relatively fitter individuals from
the current population and then performing crossover and mutation on them to
create new off-springs. This process continues until some stop condition becomes
true, e.g., the maximum allowable number of generations tmax is reached.

Usually, with the iteration of SGA, individuals in the population will eventu-
ally converge to the optimal solution(s) in stationary environments due to the
pressure of selection. Convergence at a proper pace, instead of pre-mature, may
be beneficial and is expected for GAs to locate expected solutions for stationary
optimization problems. However, convergence becomes a big problem for GAs
in dynamic environments because it deprives the population of genetic diversity.
Consequently, when change occurs, it is hard for GAs to escape from the opti-
mal solution of the old environment. Hence, additional approaches, e.g., memory
schemes, are required to adapt GAs to the new environment.

The basic principle of memory schemes is to, implicitly or explicitly, store
useful information from the current environment and reuse it later in new envi-
ronments. Implicit memory schemes for GAs in dynamic environments depend
on redundant representations to store useful information for GAs to exploit dur-
ing the run [6, 9, 12]. In contrast, explicit memory schemes make use of precise
representations but split an extra storage space where useful information from
current generation can be explicitly stored and reused later [2, 10, 15].

For explicit memory there are three technical considerations: what to store
in the memory, how to update the memory, and how to retrieve the memory.
For the first aspect, usually good solutions are stored in the memory and reused
directly when change occurs. This is called direct memory scheme. It is also
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interesting to store environmental information as well as good solutions in the
memory and reuse the environmental information when change occurs [8, 13, 17].
This is called associative memory scheme, see Section 3 for more information.
For the second consideration, since the memory space is limited, it is necessary
to update memory solutions to make room for new ones. A general strategy
is to select one memory point to be replaced by the best individual from the
population. As to which memory point should be updated, there are several
strategies [2]. For example, the most similar strategy replaces the memory point
that is the closest to the best individual from the population. For the memory
retrieval, a natural strategy is to use the best individual(s) in the memory to
replace the worst individual(s) in the population. This can be done periodically
or only when the environment change is detected.

The GA with the direct memory scheme studied in this paper is called direct
memory GA (DMGA). DMGA (and other memory based GAs in this study) uses
a randomly initialized memory of size m = 0.1∗n (n is the total population size).
When the memory is due to update, if any of the randomly initialized points still
exists in the memory, the best individual of the population will replace one of
them randomly; otherwise, it will replace the closest memory point if it is better
(the most similar memory updating strategy). Instead of updating the memory
in a fixed time interval, the memory in DMGA is updated in a stochastic time
pattern as follows. Suppose the memory is updated at generation t, the next
memory updating time tM is given by: tM = t+ rand(5, 10). This dynamic time
pattern can smooth away the potential effect that the environmental change
period coincides with the memory updating period (e.g., the memory is updated
whenever the environment changes).

The memory in DMGA is re-evaluated every generation to detect environmen-
tal changes. The environment is detected as changed if at least one individual
in the memory has been detected changed its fitness. If an environment change
is detected, the memory is merged with the old population and the best n−m
individuals are selected as an interim population to undergo standard genetic
operations for a new population while the memory remains unchanged.

3 Associative Memory for Genetic Algorithms

As mentioned before, direct memory schemes only store good solutions in the
memory and directly reuse the solutions (e.g., combining them with the current
population) when change occurs. In fact, in addition to good solutions we can
also store current environmental information in the memory. For example, Ram-
sey and Greffenstette [13] studied a GA for robot control problem, where good
candidate solutions are stored in a permanent memory together with information
about the current environment the robot is in. When the robot incurs a new en-
vironment that is similar to a stored environment instance, the associated stored
controller solution is re-activated. This scheme was reported to significantly im-
prove the robot’s performance in dynamic environments. In [17, 19], a memory
scheme was proposed into PBIL algorithms for DOPs, where the working prob-
ability vector is also stored and associated with the best sample it creates in
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the memory. When the environment is detected changed, the stored probability
vector associated with the best re-evaluated memory sample is extracted to com-
pete with the current working probability vector to become the future working
probability vector for creating new samples.

The idea in [17, 19] can be extended to GAs for DOPs. That is, we can store
environmental information together with good solutions in the memory for later
reuse. Here, the key thing is how to represent current environment. As mentioned
before, given a problem in certain environment the individuals in the population
of a GA will eventually converge toward the optimum of the environment when
the GA progress its searching. The convergence information, i.e., allele distri-
bution in the population, can be taken as the natural representation of current
environment. Each time when the best individual of the population is stored in
the memory, the statistics information on the allele distribution for each locus,
the allele distribution vector, can also be stored in the memory and associated
with the best individual.

The pseudo-code for the GA with the associative memory, called associative
memory GA (AMGA), is shown in Fig. 1. Within AMGA, a memory of size
m = 0.1 ∗ n is used to store solutions and environmental information. Now each
memory point consists of a pair < S, D >, where S is the stored solution and
D is the associated allele distribution vector. For binary encoding (as per this
paper), the frequency of ones over the population in a gene locus can be taken
as the allele distribution for that locus.

As in DMGA, the memory in AMGA is re-evaluated every generation. If an
environmental change is detected, the allele distribution vector of the best mem-
ory point < SM (t), DM (t) >, i.e., the memory point with its solution SM (t)
having the highest re-evaluated fitness, is extracted. And a set of α ∗ (n − m)
new individuals are created from this allele distribution vector DM (t) and ran-
domly swapped into the population. Here, the parameter α ∈ [0.0, 1.0], called
associative factor, determines the number of new individuals and hence the im-
pact of the associative memory to the current population. Just as sampling a
probability vector in PBIL algorithms [1], a new individual S = {s1, · · · , sl} is
created by DM (t) = {dM

1 , · · · , dM
l } (l is the encoding length) as follows:

si =
{

1, if rand(0.0, 1.0) < dM
i

0, otherwise
(1)

The memory replacement strategy in AMGA is similar to that in DMGA.
When the memory is due to update, if there are still any randomly initialized
memory points in the memory, a random one will be replaced by <SP (t),DP (t)>,
where SP (t) and DP (t) are the best individual and allele distribution vec-
tor of the current population respectively; otherwise, we first find the memory
point < Sc

M (t), Dc
M > with its solution Sc

M (t) closest to SP (t). If SP (t) is fit-
ter than Sc

M (t), i.e., f(SP (t)) > f(Sc
M (t)), the memory point is replaced by

<SP (t), DP (t)>.
The aforementioned direct and associative memory can be combined into GAs.

The GA with hybrid direct and associative memory schemes, denoted DAMGA,
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t := 0 and tM := rand(5, 10)
initialize P (0) randomly and empty memory M(0)
evaluate population P (0)
repeat

evaluate memory M(t)
if environmental change detected then

denote the best memory point <SM (t),DM (t)>
I(t) := create α ∗ (n − m) individuals from DM (t)
P ′(t) := swap individuals in I(t) into P (t) randomly

if direct memory combined then // for DAMGA
P ′(t) := retrieveBestMembersFrom(P ′(t),M(t))

else P ′(t) := P (t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in P ′(t) by SP (t)
extract the allele distribution vector DP (t) from P ′(t)
if still any random point in memory then

replace a random one by <SP (t), DP (t)>
else find memory point <Sc

M (t),Dc
M (t)> closest to <SP (t), DP (t)>

if f(SP (t)) > f(Sc
M (t)) then <Sc

M(t), Dc
M >:=<SP (t), DP (t)>

// standard genetic operations
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc) // pc is the crossover probability
mutate(P ′(t), pm) // pm is the mutation probability
replace elite from P (t − 1) into P ′(t) randomly
evaluate the interim population P ′(t)

until terminated = true // e.g., t > tmax

Fig. 1. Pseudo-code for the AMGA and DAMGA

is also shown in Fig. 1. DAMGA differs from AMGA only as follows. After new
individuals have been created and swapped into the population, the original
memory solutions M(t) are merged with the population to select n − m best
ones as the interim population to go though standard genetic operations.

4 Dynamic Test Environments

The DOP generator proposed in [16, 18] can construct random dynamic envi-
ronments from any binary-encoded stationary function f(x) (x ∈ {0, 1}l) by a
bitwise exclusive-or (XOR) operator. We suppose the environment changes ev-
ery τ generations. For each environmental period k, an XORing mask M(k) is
incrementally generated as follows:

M(k) = M (k − 1)⊕ T (k), (2)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0) and
T (k) is an intermediate binary template randomly created with ρ× l ones (ρ is
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a parameter) for environmental period k. For the first period k = 1, M(1) is set
to a zero vector. Then, the population at generation t is evaluated as below:

f(x, t) = f(x⊕M(k)), (3)

where k = %t/τ& is the environmental period index. With this generator, the
parameter τ controls the change speed while ρ ∈ (0.0, 1.0) controls the severity
of environmental changes. Bigger ρ means severer environmental change.

The above generator can be extended to construct cyclic dynamic environ-
ments1, see [19], as follows. First, we can generate 2K XORing masks M(0), · · ·,
M(2K − 1) as the base states in the search space randomly. Then, the environ-
ment can cycle among them in a fixed logical ring. Suppose the environment
changes every τ generations, then the individuals at generation t is evaluated as:

f(x, t) = f(x⊕M (It)) = f(x⊕M(k%(2K))), (4)

where k = "t/τ# is the index of current environmental period and It = k%(2K)
is the index of the base state the environment is in at generation t.

The 2K XORing masks can be generated as follows. First, we construct K
binary templates T (0), · · · , T (K−1) that form a random partition of the search
space with each template containing ρ × l = l/K bits of ones2. Let M (0) = 0
denote the initial state, the other XORing masks are generated iteratively as:

M(i + 1) = M(i)⊕ T (i%K), i = 0, · · · , 2K − 1 (5)

The templates T (0), · · · , T(K−1) are first used to create K masks till M(K)=
1 and then orderly reused to construct another K XORing masks till M (2K) =
M(0) = 0. The Hamming distance between two neighbour XORing masks is the
same and equals ρ× l. Here, ρ ∈ [1/l, 1.0] is the distance factor, determining the
number of base states.

We can further construct cyclic dynamic environments with noise [19] as fol-
lows. Each time the environment is about to move to a next base state M (i),
noise is applied to M (i) by flipping it bitwise with a small probability pn.

In this paper, the 100-bit OneMax function is selected as the base station-
ary function to construct dynamic test environments. OneMax function aims
to maximize the number of ones in a binary string. Three kinds of dynamic
environments, cyclic, cyclic with noise, and random, are constructed from the
base function using the aforementioned dynamic problem generator. For cyclic
environments with noise, the parameter pn is set to 0.05. For each dynamic en-
vironment, the landscape is periodically changed every τ generations during the
1 For the convenience of description, we differentiate the environmental changing pe-

riodicality in time and space by wording periodical and cyclic respectively. The envi-
ronment is said to be periodically changing if it changes in a fixed time interval, e.g.,
every certain GA generations, and is said to be cyclicly changing if it visits several
fixed states in the search space in certain order repeatedly.

2 In the partition each template T (i) (i = 0, · · · , K − 1) has randomly but exclusively
selected ρ × l bits set to 1 while other bits set to 0. For example, T (0) = 0101 and
T (1) = 1010 form a partition of the 4-bit search space.
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run of an algorithm. In order to compare the performance of algorithms in dif-
ferent dynamic environments, the parameters τ is set to 10, 25 and 50 and ρ is
set to 0.1, 0.2, 0.5, and 1.0 respectively. Totally, a series of 36 DOPs, 3 values of
τ combined with 4 values of ρ under three kinds of dynamic environments, are
constructed from the stationary OneMax function.

5 Experimental Study

5.1 Experimental Design

Experiments were carried out to compare the performance of GAs on the dy-
namic test environments. All GAs have the following generator and parameter
settings: tournament selection with tournament size 2, uniform crossover with
pc = 0.6, bit flip mutation with pm = 0.01, elitism of size 1, and population size
n = 100 (including memory size m = 10 if used). In order to test the effect of the
associative factor α on the performance of AMGA and DAMGA, α is set to 0.2,
0.6, and 1.0 respectively. And the corresponding GAs are reported as α-AMGA
and α-DAMGA in the experimental results respectively.

For each experiment of a GA on a DOP, 50 independent runs were executed
with the same set of random seeds. For each run 5000 generations were allowed,
which are equivalent to 500, 200 and 100 environmental changes for τ = 10,
25 and 50 respectively. For each run the best-of-generation fitness was recorded
every generation. The overall performance of a GA on a problem is defined as:

FBOG =
1
G

G∑
i=1

(
1
N

N∑
j=1

FBOGij ), (6)

where G = 5000 is the total number of generations for a run, N = 50 is the total
number of runs, and FBOGij is the best-of-generation fitness of generation i of
run j. The off-line performance FBOG is the best-of-generation fitness averaged
over 50 runs and then averaged over the data gathering period.

5.2 Experimental Results and Analysis

Experiments were first carried out to compare the performance of SGA, DMGA
and α-AMGAs under different dynamic environments. The experimental results
regarding SGA, DMGA and α-AMGAs are plotted in Fig. 2. The major statis-
tical results of comparing GAs by one-tailed t-test with 98 degrees of freedom
at a 0.05 level of significance are given in Table 1. In Table 1, the t-test result
regarding Alg. 1−Alg. 2 is shown as “+”, “−”, “s+” and “s−” when Alg. 1 is
insignificantly better than, insignificantly worse than, significantly better than,
and significantly worse than Alg. 2 respectively. From Fig. 2 and Table 1 several
results can be observed.

First, both DMGA and AMGAs perform significantly better than SGA on
most dynamic problems. This result validates the efficiency of introducing mem-
ory schemes into GAs in dynamic environments. Viewing from left to right in
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Fig. 2. Experimental results of SGA, DMGA, and α-AMGAs

Fig. 2, it can be seen that both DMGA and AMGAs achieve the largest perfor-
mance improvement over SGA in cyclic environments. For example, when τ = 10
and ρ = 0.5, the performance difference of DMGA over SGA, FBOG(DMGA)−
FBOG(SGA), is 87.6− 58.9 = 28.7, 66.5− 59.8 = 6.7, and 67.0− 65.5 = 1.5 un-
der cyclic, cyclic with noise, and random environments respectively. This result
indicates that the effect of memory schemes depends on the cyclicity of dynamic
environments. When the environment changes randomly and slightly (i.e., ρ is
small), both DMGA and AMGAs are beaten by SGA. This is because under
these conditions, the environment is unlikely to return to a previous state that
is memorized by the memory scheme. And hence inserting stored solutions or
creating new ones according to the stored allele distribution vector may mislead
or slow down the progress of the GAs.
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Table 1. The t-test results of comparing SAG, DMGA and α-AMGAs

t-test Result Cyclic Cyclic with Noise Random

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ + s− s− s+ s+ s+ s− s− s+ s−
0.6-AMGA − DMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+
1.0-AMGA − DMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+

0.6-AMGA − 0.2-AMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+
1.0-AMGA − 0.6-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s− s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ s+ s− − s− s+ s+ − − s+ s−
0.6-AMGA − DMGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+
1.0-AMGA − DMGA − s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.6-AMGA − 0.2-AMGA − s+ s+ s+ s− s− s+ s+ s− s− s+ s+
1.0-AMGA − 0.6-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s− s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ s+ s+ + + s+ s+ − − s+ s+
0.6-AMGA − DMGA s+ s+ s+ s+ − + s+ s+ + s+ s+ s+
1.0-AMGA − DMGA s+ s+ s+ s+ − − s+ s+ − + s+ s+

0.6-AMGA − 0.2-AMGA s+ + s+ s+ − − s+ s+ + s+ s+ s+
1.0-AMGA − 0.6-AMGA − − s+ + + − s+ s+ − s− s− s+

Second, comparing AMGAs over DMGA, it can be seen that AMGAs outper-
form DMGA on many DOPs, especially under cyclic environments. This happens
because the extracted memory allele distribution vector is much stronger than
the stored memory solutions in adapting the GA to the new environment. How-
ever, when ρ is small and the environment changes randomly, AMGAs are beaten
by DMGA for most cases, see the t-test results regarding α-AMGA – DMGA.
This is because under these environments the negative effect of the associative
memory in AMGAs may weigh over the direct memory in DMGA.

In order to better understand the performance of GAs, the dynamic be-
haviour of GAs regarding best-of-generation fitness against generations on dy-
namic OneMax functions with τ = 10 and ρ = 0.5 under different cyclicity
of dynamic environments is plotted in Fig. 3. In Fig. 3, the first and last 10
environmental changes (i.e., 100 generations) are shown and the data were av-
eraged over 50 runs. From Fig. 3, it can be seen that, under cyclic and cyclic
with noise environments, after several early stage environmental changes, the
memory schemes start to take effect to maintain the performance of DMGA and
AMGAs at a much higher fitness level than SGA. And the associative memory
in AMGAs works better than the direct memory in DMGA, which can be seen
in the late stage behaviour of GAs. Under random environments the effect of
memory schemes is greatly deduced where all GAs behave almost the same and
there is no clear view of the memory schemes in DMGA and AMGAs.

Third, when examining the effect of α on AMGA’s performance, it can be
seen that 0.6-AMGA outperforms 0.2-AMGA on most dynamic problems, see
the t-test results regarding 0.6-AMGA – 0.2-AMGA. This is because increasing
the value of α enhances the effect of associative memory for AMGA. However,
1.0-AMGA is beaten by 0.6-AMGA on many cases, especially when ρ is small,
see the t-test results regarding 1.0-AMGA – 0.6-AMGA. When α = 1.0, all the
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Fig. 3. Dynamic behaviour of GAs during the (Left Column) early and (Right Column)
late stages on dynamic OneMax functions with τ = 10 and ρ = 0.5

individuals in the population are replaced by the new individuals created by the
re-activated memory allele distribution vector when change occurs. This may be
disadvantageous. Especially, when ρ is small, the environment changes slightly
and good solutions of previous environment are likely also good for the new one.
It is better to keep some of them instead of discarding them all.

In order to test the effect of combining direct memory with associative mem-
ory into GAs for DOPs, experiments were further carried out to compare the
performance of DAMGAs over AMGAs. The relevant t-test results are presented
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Table 2. The t-test results of comparing α-AMGAs and α-DAMGAs

t-test Result Cyclic Cyclic with Noise Random

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA s+ s+ s+ s+ + s+ s+ s+ − + s+ s+
0.6-DAMGA − 0.6-AMGA s+ + s+ s+ + s+ s+ s+ + + s+ s+
1.0-DAMGA − 1.0-AMGA s+ s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA s+ s+ s+ s+ − + s+ s+ + − s+ s+
0.6-DAMGA − 0.6-AMGA s+ + s+ s+ + − + s+ + − s+ s+
1.0-DAMGA − 1.0-AMGA + s+ s+ s+ + s+ + + s+ + s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA + + − s+ + − s+ s+ + s+ s+ s+
0.6-DAMGA − 0.6-AMGA + + s+ s+ − + + s+ − − s+ s+
1.0-DAMGA − 1.0-AMGA + + + s+ − − − + + − s+ s+

6 Conclusions and Discussions

This paper investigates the introduction of an associative memory scheme into
GAs for dynamic optimization problems. Within this memory scheme, the allele
distribution information is taken as the representation of the current environ-
ment that GAs have searched. The allele distribution vector is stored together
with the best member of the current population in the memory. When the en-
vironmental change is detected, the stored allele distribution vector that is as-
sociated with the best re-evaluated memory solution is extracted to create new
individuals into the population. A series of dynamic problems were systemati-
cally constructed, featuring three kinds of dynamic environments: cyclic, cyclic
with noise, and random. Based on this test platform experimental study was
carried out to test the proposed associative memory scheme.

From the experimental results, the following conclusions can be drawn on
the dynamic test environments. First, memory schemes are efficient to improve
the performance of GAs in dynamic environments and the cyclicity of dynamic
environments greatly affect the performance of memory schemes for GAs in dy-
namic environments. Second, generally speaking the proposed associative mem-
ory scheme outperforms traditional direct memory scheme for GAs in dynamic
environments. Third, the associative factor has an important impact on the per-
formance of AMGAs. Setting α to a medium value, e.g., 0.6, seems a good choice
for AMGAs. Fourth, combining the direct scheme with the associative memory
scheme may further improve GA’s performance in dynamic environments.

For future work, comparing the memory scheme investigated with implicit
memory schemes is now under investigation. And it is also interesting to fur-
ther investigate the interactions between the associative memory scheme and
other approaches, such as multi-population and diversity approaches, for GAs
in dynamic environments.

in Table 2, from which it can be seen that DAMGAs outperform AMGAs under
most dynamic environments. However, the experiments (not shown here) indi-
cate the performance improvement of α-DAMGA over α-AMGA is relatively
small in comparison with the performance improvement of α-AMGA over SGA.



Associative Memory Scheme for Genetic Algorithms 799

References

1. S. Baluja. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Tech. Report CMU-
CS-94-163, Carnegie Mellon University, 1994.

2. J. Branke. Memory enhanced evolutionary algorithms for changing optimization
problems. Proc. of the 1999 Congr. on Evol. Comput., vol. 3, pp. 1875-1882, 1999.

3. J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck. A multi-population approach
to dynamic optimization problems. Proc. of the Adaptive Computing in Design and
Manufacturing, pp. 299-308, 2000.

4. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers, 2002.

5. H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking changing
environments. Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 523-530,
1993.

6. D. E. Goldberg and R. E. Smith. Nonstationary function optimization using genetic
algorithms with dominance and diploidy. Proc. of the 2nd Int. Conf. on Genetic
Algorithms, pp. 59-68, 1987.

7. J. J. Grefenstette. Genetic algorithms for changing environments. Proc. of the 2nd
Int. Conf. on Parallel Problem Solving from Nature, pp. 137-144, 1992.

8. A. Karaman, S. Uyar, and G. Eryigit. The memory indexing evolutionary algorithm
for dynamic environments. EvoWorkshops 2005, LNCS 3449, pp. 563-573, 2005.

9. E. H. J. Lewis and G. Ritchie. A comparison of dominance mechanisms and simple
mutation on non-stationary problems. Proc. of the 5th Int. Conf. on Parallel
Problem Solving from Nature, pp. 139-148, 1998.

10. N. Mori, H. Kita and Y. Nishikawa. Adaptation to changing environments by
means of the memory based thermodynamical genetic algorithm. Proc. of the 7th
Int. Conf. on Genetic Algorithms, pp. 299-306, 1997.

11. R. W. Morrison and K. A. De Jong. Triggered hypermutation revisited. Proc. of
the 2000 Congress on Evol. Comput., pp. 1025-1032, 2000.

12. K. P. Ng and K. C. Wong. A new diploid scheme and dominance change mechanism
for non-stationary function optimisation. Proc. of the 6th Int. Conf. on Genetic
Algorithms, 1997.

13. C. L. Ramsey and J. J. Greffenstette. Case-based initializtion of genetic algorithms.
Proc. of the 5th Int. Conf. on Genetic Algorithms, 1993.

14. A. Simões and E. Costa. An immune system-based genetic algorithm to deal with
dynamic environments: diversity and memory. Proc. of the 6th Int. Conf. on Neural
Networks and Genetic Algorithms, pp. 168-174, 2003.

15. K. Trojanowski and Z. Michalewicz. Searching for optima in non-stationary envi-
ronments. Proc. of the 1999 Congress on Evol. Comput., pp. 1843-1850, 1999.

16. S. Yang. Non-stationary problem optimization using the primal-dual genetic algo-
rithm. Proc. of the 2003 IEEE Congress on Evol. Comput., vol. 3, pp. 2246-2253,
2003.

17. S. Yang. Population-based incremental learning with memory scheme for changing
environments. Proc. of the 2005 Genetic and Evol. Comput. Conference, vol. 1,
pp. 711-718, 2005.

18. S. Yang and X. Yao. Experimental study on population-based incremental learning
algorithms for dynamic optimization problems. Soft Computing, vol. 9, no. 11,
pp. 815-834, 2005.

19. S. Yang and X. Yao. Population-based incremental learning with associative mem-
ory for dynamic environments. Submitted to IEEE Trans. on Evol. Comput., 2005.



F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 800 – 804, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Bayesian Optimization Algorithms  
for Dynamic Problems 

Miloš Kobliha1, Josef Schwarz1, and Ji í O enášek2 

1 Brno University of Technology, Faculty of Information Technology,  
Department of Computer Systems, Božet chova 2, Brno 612 66, CZ 

Tel.: +420-5-41141210, Fax: +420-5-41141270 
{kobliha, schwarz}@fit.vutbr.cz 

2 Kimotion Technologies, Leuvensesteenweg 200,  
Boutersem B-3370, Belgium 

Abstract. This paper is an experimental study investigating the capability of 
Bayesian optimization algorithms to solve dynamic problems. We tested the 
performance of two variants of Bayesian optimization algorithms – Mixed 
continuous-discrete Bayesian Optimization Algorithm (MBOA), Adaptive 
Mixed Bayesian Optimization Algorithm (AMBOA) – and new proposed 
modifications with embedded Sentinels concept and Hypervariance. We have 
compared the performance of these variants on a simple dynamic problem – a 
time-varying function with predefined parameters. The experimental results 
confirmed the benefit of Sentinels concept and Hypervariance embedded into 
MBOA algorithm for tracking a moving optimum.  

1   Introduction 

Evolutionary Algorithms (EAs) have been widely utilized to solve stationary 
optimization problems. But many real optimization problems are actually dynamic. In 
case of dynamic problems the fitness function, parameters and environmental 
conditions may change over time. Most methods for handling dynamic problems 
encourage higher diversity of population than conventional EAs does. The survey of 
main techniques in the field is described in [1, 2]. The efficient approach is based on 
Triggered Hypermutation, which uses two different scales of mutation probability – 
one for stationary state (0.001) and another for nonstationary state (0.3). For 
achieving sufficient population diversity, Morrison [2] proposed the concept of 
Sentinels – subpopulation of individuals in the population not modified by the 
reproduction process. These “not moving” individuals are also able to provide the 
detection of environmental changes. A very competent overview of the current 
methods for dynamic problem optimization is published in [3].  

Our goal is to test the capability of the new versions of BOA algorithms including 
the phenomenon of Hypervariance and Sentinels. The rest of the paper is organized as 
follows. Section 2 explains MBOA and AMBOA algorithms and the newly proposed 
modifications in more detail, Section 3 presents experimental results; conclusions and 
future works are presented in Section 4. 
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2   BOA Algorithms and Dynamic Optimization 

2.1   MBOA Algorithm  

MBOA explores the search space by sampling a probability distribution that is 
developed during the optimization. It works with a population of N candidate 
solutions/individuals. In each generation, typically the N/2 fittest individuals 
(“parents”) are used for the model building and N/2 new solutions (“offspring”) are 
generated from the model. These offspring individuals are evaluated and incorporated 
into the original population, replacing some of the old ones. This process is repeated 
until the termination criteria are met. More implementation details can be found in [4]. 

Let us denote the i-th variable as Xi and the set of variables that influence Xi as Πi. 
The overall probabilistic model f(X0, …, Xn-1) is defined as a product of conditional 
distributions p(Xi|Πi). MBOA constructs each p(Xi|Πi) by measuring correlations 
between variable Xi and variables Πi and by decomposing the domain of p(Xi|Πi) into 
axis-parallel partitions where Xi is assumed to be decorrelated from Πi. In each 
partition the distribution of Xi can be approximated by the following Gaussian kernel: 
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where {xi}j ⊂ ℜ denotes the set of realizations of variable Xi among the individuals 
from parent population that traverse to j-th partition, and |{xi}j | denotes the number of 
such individuals. The scaling factor ηg is equal to 1 in MBOA. All kernels in the same 
leaf have the same height 1/|{xi}j | and the same width σij: 
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2.2   AMBOA with Variance Adaptation 

In order to prevent optimizer from premature convergence, the MBOA with variance 
adaptation (AMBOA) was introduced in [5]. An overall scaling factor ηg controls the 
width of Gaussian kernels (see Eq.1). For N/2 offspring individuals (with Nsucc 
successes and Nfail failures), the total change of factor in the (g+1)-th generation is: 

1
1

−
+ = p

p
N

N
gg

fail
succ ααηη  ,  (3) 

where p denotes the desired success rate (for Nsucc/(Nsucc + Nfail)=p it holds ηg+1=ηg). 
The choice of α determines how fast the desired success rate is achieved. For 
increasing α the adaptation is faster, but also more sensitive to oscillations. In our 
experiments, we choose α = e 4/N and  p=0.05+0.3/n-1/2, in accordance with [5]. 

2.3   AMBOA and MBOA Algorithms with Hypervariance 

Firstly, we proposed a new version – Adaptive Hypervariance Mixed Bayesian 
Optimization Algorithm (AHMBOA) with a new interpretation of , (see Eq.1).The 
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value of  is set to a suitably large value in generation immediately after the change of 
fitness function. In next generations the value of  is set back to the value before the 
change. Secondly, we designed Hypervariance Mixed Bayesian Optimization 
Algorithm (HMBOA) which is derived from AHMBOA by skipping the adaptation of 
 during the optimization process.  

2.4   The Embedded Sentinels 

Sentinels are permanent members of the population, uniformly distributed through the 
search space. They participate on the generation of offspring, but they are not 
replaced by new individuals during the tournament replacement process. In order to 
distribute Sentinels uniformly in the search space we used the well known formula 
published in [2]. 

3   Experimental Results 

Our goal is to test and compare the ability of the proposed BOA versions to track the 
optimum in dynamic environments. We used a simple dynamic test problem which 
can be interpreted as a problem with changing fitness peak location. The performance 
is measured by the Collective Mean Fitness published in [2]: 

GMFE
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g

M

m
BGC //)(

1 1= =
= ,  (4) 

where EC is the Collective Mean Fitness, FBG is the fitness value of the best solution 
in current generation, M is the number of runs, and G is the number of generations. 
We used four levels of Sentinels in population (0, 30, 50, and 70 percent). The test 
function F(X,g) is defined as a normalized sum of moving peaks: 
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with each moving peak f(xi,g) having the sinusoidal form  
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where xi∈<0,80 >, g is the generation number, T is the movement period and 
k∈{0.5,4} is the step-scale. Thus, the shift of the sinus function is done using the 
staircase floor function which represents the mobility of the sinusoidal peak. 

We have used three control parameters of experiments: the percentage S of 
Sentinels in the population, two movement parameters which set the movement mode 
– the movement period T and the step-scale k. The Collective Mean Fitness EC (see 
Eq. 4) is calculated for M=10 runs, permanent number of generations (G=1000) and 
FBG equal to best F(X,g). The movement period was in the range T∈<40,200>. 
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Fig. 1. The effect of movement period T for S=0%, the step-scale k=0.5 (left), and k=4.0 (right) 
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Fig. 2. The effect of Sentinels for T=200, the step-scale k=0.5 (left), and k=4.0 (right) 

In Fig. 1 the dependency of EC on the movement period T for two values of step-
scale k and zero percentage of Sentinels is presented. It is clear that EC is increasing 
for longer movement periods. AMBOA and AHMBOA outperform HMBOA. The 
effect of variance adaptation is significantly better than the effect of Hypervariance 
applied only during one critical generation after the change of the fitness function. Let 
us note that MBOA was not able to track the optimum in any experiment.  

In Fig. 2 the positive influence of embedded Sentinels is demonstrated for all tested 
algorithms in case of movement period T equal to 200 generations. It is evident that 
the HMBOA algorithm outperformed AHMBOA and AMBOA for the Sentinel 
percentage value greater than 30. This can be explained by a phenomenon when the 
influence of Sentinels partly resulted in limited exploitation of search is balanced by 
the presence of Hypervariance. 
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4   Conclusions  

In the paper the performance of two variants of Bayesian optimization algorithms was 
tested – MBOA algorithm developed for optimization of mixed continuous discrete 
problems and AMBOA algorithm which extends MBOA with variance adaptation. 
Both algorithms confirmed its applicability to dynamic environment, but with the 
limited minimal period of the change of fitness function.  

That is why we proposed a new extension of MBOA and AMBOA algorithm with 
embedded Sentinel concept. This technique contributes to the implicit adaptation of 
the probabilistic model after the change of fitness function. The Sentinels concept 
together with Hypervariance included in HMBOA algorithm was the best choice 
resulting in significantly improved performance. The future work will be focused on 
testing the performance on more complex benchmarks. We will consider more 
advanced adaptation scheme for the probabilistic model building using additional 
information derived from embedded Sentinels. 
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Abstract. This paper proposes and compares two approaches to defeat
the noise due the measurement errors in control system design of electric
drives. The former is based on a penalized fitness and two cooperative-
competitive survivor selection schemes, the latter is based on a survivor
selection scheme which makes use of the tolerance interval related to the
noise distribution. These approaches use adaptive rules in parameter set-
ting to execute both the explicit and the implicit averaging in order to
obtain the noise defeating in the optimization process with a relatively
low number of fitness evaluations. The results show that the two ap-
proaches differently bias the population diversity and that the first can
outperform the second but requires a more accurate parameter setting.

1 Introduction and Problem Description

When an evolutionary algorithm is implemented, the individuals are explicitly
or implicitly sorted according to their fitness values in order to perform a parent
selection, a survivor selection or to assign a lifetime score. If the evolutionary
optimization is performed in a noisy environment, the solutions can be wrongly
sorted due to the fitness overestimations and underestimations (see [1] and [2]).
This paper proposes and compares two different approaches to treat the noisy
environment and shows an application to the control of a Permanent Magnet
Synchronous Motor (PMSM) in presence of measurement errors. In Fig. 1 the
block diagram of a vector-controlled PMSM drive is shown. For details concern-
ing this control scheme see [3], [4] and [5]. The problem of the control design
(self-commissioning) can be formulated as the determination of ten parameters
(see Fig. 2) which solve a multi-objective optimization problem in H ⊂ R

10.
The performance given by each solution is numerically evaluated through a cost
objective function f built up by means of the weighted-sum of f1,j, f2,j, f3,j and
f4,j which respectively measure the speed error at the settling, speed overshoot,

F. Rothlauf et al. (Eds.): EvoWorkshops 2006, LNCS 3907, pp. 805–809, 2006.
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speed rise-time, and undesired d-axis-current oscillations for each speed step j of
a training test (see [5] for details). Since each single objective function requires
a set of measurements the measurement errors affect the objective function f
which is therefore noisy.

2 Prudent-Daring and Tolerant Selection Schemes

The Adaptive Prudent-Daring Evolutionary Algorithm (APDEA) ex-
ecutes the minimization of f operating dynamically on both the population size
and the number of fitness evaluations (sample size). For each individual, the
fitness f is replaced with an ”image” fitness function given by f̂ = fest + b

ni
s

where the estimated fitness fest [1] is the current average fitness calculated over
ni

s samples (related to the ith individual of the population) and b is a weight
coefficient. b

ni
s

is a penalty term which has a big influence for unreliable solutions
(ni

s low) and which progressively tends to have a negligible influence for reliable
solutions (ni

s � 1). Besides, a maximum number of samples nmax
s is established

taking into account the features of the noise under examination. An initial sam-
pling of points (see Fig.2) is done at pseudo-random. At the first generation the
fitness f̂ is calculated (with ni

s = 1) for all the individuals and the coefficient

ξ = min
{
1,
∣∣∣ f̂best−f̂avg

f̂best

∣∣∣} is determined. f̂best and f̂avg are respectively the best
and average fitness values among the individuals of the population. The coeffi-
cient ξ is a fitness-based index of the population diversity; it can be seen as a mea-
surement of the state of the convergence of the algorithm (see [5]). In fact if ξ ≈ 1
there is a high population diversity and therefore the convergence conditions are
far; if ξ ≈ 0 there is a low population diversity and therefore the convergence is
approaching. At each subsequent generation μ individuals undergoing crossover
are selected according to the ranking selection [6] and the blend crossover [7] is
then applied. The mutation probability is then calculated by pm = 0.4 (1− ξ)
and the mutation is executed (see for details [5]). The fitness values of the λ
offspring individuals are calculated (with ni

s = 1 ) and the population made up
of both parents and offspring (μ + λ) undergoes the following survivor selection



Prudent-Daring vs Tolerant Survivor Selection Schemes 807

based on two cooperative-competitive [8] schemes. a) Prudent Survivor Selec-
tion: the value Spru = Sf

pru + Sv
pru (1− ξ) is calculated and the best performing

Spru individuals according to f̂ are thus selected. Sf
pru is the minimum size of

the prudent population and Sv
pru is the maximum size of the variable population;

b) Daring Survivor Selection: the value Sdar = round (Smax
dar ξ) is calculated and

the best performing Sdar individuals according to fest are thus selected. Smax
dar is

maximum size of the daring population; c) The prudent and daring populations
are merged (Spop = Spru + Sdar). Thus, the algorithm prudently selects a part
of the population taking into account the reliability of the solutions and dares
give the surviving chance to those solutions which are not reliable (ni

s low) but
which are promising (fest high). Moreover, the algorithmic logic is based on the
idea that for ξ ≈ 1 (Spru small and Sdar big) the fitness values are very different
among each other and a wrongly estimated individual coming from the daring
survivor selection does not strongly affect the operation of sorting according to
the fitness. On the contrary, for ξ ≈ 0 (Spru big and Sdar small) a wrongly es-
timated individual could significantly affect the operation of sorting according
to the fitness. In the last case, to dare introduce an unreliable individual could
mean to introduce a wrong direction search [1]. The newly merged population
then undergoes a reevaluating cycle: for each individual the value of additional
samples nadd

s = round
(
nmax

s
(1−ξ)

ni
s

)
is calculated and nadd

s fitness reevaluations

are executed. The values of ni
s, fest and f̂ are then updated. Consequently, the

number of reevaluations to be executed on one individual depends on the state
of the whole population (i.e. ξ) and on the previous history of the individual
(i.e. ni

s). Finally, the coefficient ξ is updated at the end of each generation.

The Adaptive Tolerant Evolutionary Algorithm (ATEA) assumes that
the noise is Gaussian and that its standard deviation has the same constant
value in all the points of the domain H under study. Taking into account these
hypotheses, the wideness wTI of the Tolerance Interval related to noise has been
determined as shown in [9]. The ATEA works on the fitness f̃ = fest [1]. An
initial sampling is performed at pseudo-random. The fitness values f of these in-
dividuals are determined and the coefficient ξ = min

{
1,
∣∣∣fbest−favg

fbest

∣∣∣} is thus cal-

culated. In the generic kth generation the following steps are executed. Selection
(μ), blend corossover and mutation occur as for the APDEA. The fitness values
related to the offspring newly generated (λ) are thus calculated. The (μ + λ)
individuals undergo the Tolerant Survivor Selection consisting of the following.
a) The individuals are sorted according to the fitness f̃ ; b) The population size
Spop = Sf

pop + Sv
pop (1− ξ) is calculated; c) The individual having position Spop

with fitness f̃Spop is detected and an auxiliary population made up of individuals

whose fitness value falls within
[
f̃Spop − wTI

2 , f̃Spop + wT I

2

]
is created; d) For each

individual of this auxiliary population the value nadd
s = round

(
nmax

s
(1−ξ)

ni
s

)
is

calculated and nadd
s fitness reevaluations are executed. The values of ni

s and f̃
are then updated; e) The main population (made up of (μ + λ) individuals) is
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updated and resorted according to f̃ ; f) The best performing Spop individuals are
saved for the subsequent generation. Finally, the value of ξ is updated according
to the formula ξ = min

{
1,
∣∣∣ f̃best−f̃avg

f̃best

∣∣∣}. The main idea behind the ATEA is
that if it is possible to prove that an individual, even if underestimated, is in the
top part of the list, it should not be reevaluated; analogously if an individual
is so bad that, even if overestimated, is in the bottom part of the list. In other
words, when Spop is calculated, the algorithm implicitly divides the population
in three categories: individuals surely good, individuals surely bad and individ-
uals which require a more attentive analysis. The individuals surely good or bad
do not require additional evaluations; the others require a reevaluation cycle.

3 Numerical Results and Conclusion

Following the procedure described in [9] for Gaussian distribution, the 90% of
the fitness samples falls in a tolerance interval with wideness wTI = 0.1702
with a probability γ = 0.99. Both the APDEA and the ATEA have been ex-
ecuted in order to minimize the fitness f with nmax

s = 10. Concerning the
APDEA Spru ∈ [40, 160], Sdar ∈ [0, 20] and b = 0.2; concerning the ATEA
Spop ∈ [40, 160]. Also a standard Reevaluating Genetic Algorithm (RGA) em-
ploying the same crossover and mutation techniques used for the APDEA and
the ATEA has been implemented. This RGA executes the averaging over time
[2] with a sample size nmax

s = 10 for every evaluation and makes use of a stan-
dard survivor selection which saves at each generation the prefixed Spop = 100
best performing individuals. Each of the three algorithms has been executed 65
times. Each execution has been stopped after 20000 fitness evaluations. Table 1
compares the best performing solutions found by the three methods and shows
the best fitness values f , the average best fitness f̄ (over the 65 experiments)
and the corresponding standard deviation σ. The algorithmic performances and
the behavior of ξ for the APDEA and the ATEA are shown in Fig. 3 and in
Fig. 4 respectively. The numerical results show that both the APDEA and the
ATEA converge faster than the RGA to solutions very similar among each other.
Concerning the convergence velocity, the APDEA proved to be more performing
than the ATEA. Moreover the APDEA is more general than the ATEA since
the latter makes use of the assumption that the noise is Gaussian and with a
constant σ in all the domain. On the other hand, the APDEA, unlike the ATEA,
requires the setting of b and Smax

dar . A wrong choice of b would lead to a too strong
or too weak penalization in the fitness function. Analogously, Smax

dar determines
the audacity of the algorithm and its wrong setting could lead to either a wrong

Table 1. Solutions and related Fitness

Kisd τisd Kisq τisq Kωr τωr τsm K1 K2 K3 f f̄ σ

RGA 10.99 0.0023 6.66 0.0012 0.243 0.0141 0.0106 0.0019 0.0009 0.1891 0.858 0.867 0.0134

APDEA 11.49 0.0022 6.20 0.0011 0.264 0.0145 0.0109 0.0021 0.0006 0.1901 0.851 0.861 0.0158

ATEA 11.14 0.0021 6.61 0.0013 0.259 0.0132 0.0101 0.0020 0.0008 0.1957 0.854 0.860 0.0120
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search direction or an excessive exploitation. Regarding nmax
s , that is a parame-

ter common for both APDEA and ATEA, the setting is a much less critical issue.
In fact, it can be set as the minimum sample size which describes a proportion
of distribution with a given probability (see [9]). Fig. 4 shows that in the case of
the APDEA, ξ has high-frequency oscillations before settling down to the value
0. For the ATEA, ξ has less oscillations with low-frequency. Our interpretation
of this phenomenon is the following. The APDEA introduces during the dar-
ing selection some unreliable solutions before reevaluating them. This behavior
leads to an abrupt increasing of the population diversity that is corrected during
the survivor selection of the subsequent generation. On the contrary, the ATEA
aims to properly sort the candidate solutions and to include for the subsequent
generation only the solutions that are surely in the top part of the list. Conse-
quently, the classical recombination and mutation are the ones in charge of the
exploration. This logic leads to a milder variation of the population diversity.
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Cunningham, Pádraig 13
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Lima, Cláudio 740
Lin, Geng-Sian 554
Lin, Mu-Hua 554
Logofatu, Doina 320
Lu, Bin 484
Luna, Francisco 255
Lutton, Evelyne 520

Maestre, Esteban 676
Magnus, Cristyn 688
Mahata, Pritha 67
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Messina, Enza 495
Meyer, Patrick Emmanuel 91
Miranda, Eduardo Reck 696
Mochón, Asunción 542
Molina, José Manuel 438
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