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Abstract. We present an algorithmic scheme for unsupervised cluster
ensembles, based on randomized projections between metric spaces, by
which a substantial dimensionality reduction is obtained. Multiple clus-
terings are performed on random subspaces, approximately preserving
the distances between the projected data, and then they are combined
using a pairwise similarity matrix; in this way the accuracy of each “base”
clustering is maintained, and the diversity between them is improved.
The proposed approach is effective for clustering problems characterized
by high dimensional data, as shown by our preliminary experimental
results.

1 Introduction

Supervised multi-classifiers systems characterized the early development of en-
semble methods [I},[2]. Recently this approach has been extended to unsupervised
clustering problems [3] 4.

In a previous work we proposed stability measures that make use of random
projections to assess cluster reliability [5], extending a previous approach [6]
based on an unsupervised version of the random subspace method [7].

In this paper we adopt the same approach to develop cluster ensembles based
on random projections. Unfortunately, a deterministic projection of the data into
relatively low dimensional spaces may introduce relevant distortions, and, as a
consequence, the clustering in the projected space may results consistently dif-
ferent from the clustering in the original space. For these reasons we propose to
perform multiple clusterings on randomly chosen projected subspaces, approxi-
mately preserving the distances between the examples, and then combining them
to generate the final “consensus” clustering.

The next section introduces basic concepts about randomized embeddings
between metric spaces. Sect. [3] presents the Randomized embedding clustering
(RE-Clust) ensemble algorithm, and Sect. @] show the results of the application
of the ensemble method to high dimensional synthetic data. The discussion of
the results and the outgoing developments of the present work end the paper.
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2 Randomized Embeddings

2.1 Randomized Embeddings with Low Distortion

Dimensionality reduction may be obtained by mapping points from a high to
a low-dimensional space: p : R? — R? | with d’ < d, approximately preserving
some characteristics, i.e. the distances between points In this way, algorithms
whose results depend only on the distances ||z; — z;|| could be applied to the
compressed data pu(X), giving the same results, as in the original input space. In
this context randomized embeddings with low distortion represent a key concept.
A randomized embedding between R? and R? with distortion 1+, (0 < € < 1/2)
and failure probability P is a distribution probability on the linear mapping
p: R — Rdl, such that, for every pair p,q € R, the following property holds
with probability > 1 — P:

1 —
< @) =@l ()
1+e |lp — all
The main result on randomized embedding is due to Johnson and Linden-
strauss [8], who proved the following:

Johnson-Lindenstrauss (JL) lemma: Given a set S with |S| = n there exists a
1 + e-distortion embedding into RY with d’ = ¢ logn/e2, where ¢ is a suitable
constant.

The embedding exhibited in [8] consists in random projections from R? into
Rd/, represented by matrices d’ x d with random orthonormal vectors. Similar
results may be obtained by using simpler embeddings [9], represented through
random d’ x d matrices P = 1/ Vd (rij), where r;; are random variables such
that:

E[’I“ij} = 0, VCLT[TZ‘]‘} =1

For sake of simplicity, we call random projections even this kind of embeddings.

2.2 Random Projections

Examples of randomized maps, represented trough d’ x d matrices P such that
the columns of the “compressed” data set Dp = PD have approximately the
same distance are:

1. Plus-Minus-One (PMO): random projections: represented by matrices P =
1/V/d'(ri;), where r;; are uniformly chosen in {—1, 1}, such that Prob(r;; =
1) = Prob(r;; = —1) = 1/2. In this case the JL lemma holds with ¢ ~ 4.

2. Random Subspace (RS) [7): represented by d’ x d matrices P = /d/d'(r;),
where r;; are uniformly chosen with entries in {0, 1}, and with exactly one
“1” per row and at most one “1” per column. Even if RS subspaces can be
quickly computed, the do not satisfy the JL lemma.
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3 Randomized Embedding Cluster Ensembles

Consider a data set X = {x1,29,...,2,}, where 7; € R%, (1 <i < n); a subset
A C {1,2,...,n} univocally individuates a subset of examples {z;|j € A} C
X. The data set X may be represented as a d X n matrix D, where columns
correspond to the examples, and rows correspond to the “components” of the
examples x € X. A k-clustering C of X is a list C =< Ay, Ag, ..., Ax >, with
A; € {1,2,...,n} and such that |JA4; = {1,...,n}. A clustering algorithm C
is a procedure that, having as input a data set X and an integer k, outputs a
k-clustering C of X: C(X,k) =< A1, Ag, ..., Ax >.

The main ideas behind the proposed cluster ensemble algorithm RE-Clust
(acronym for Randomized Embedding Clustering) are based on data compres-
sion, and generation and combination of multiple “base” clusterings. Indeed
at first data are randomly projected from the original to lower dimensional sub-
spaces, using projections described in Sect 2:2lin order to approximately preserve
the distances between the examples. Then multiple clusterings are performed on
multiple instances of the projected data, and a similarity matrix between pairs
of examples is used to combine the multiple clusterings.

The high level pseudo-code of the ensemble algorithm scheme is the following:

RE-Clust Algorithm:
Input:

— a data set X = {x1,22,...,2,}, represented by a d x n D matrix.
— an integer k (number of clusters)

— areal € > 0 (distortion level)

— an integer ¢ (number of clusterings)

— two clustering algorithms C and Ccom,

— a procedure that realizes a randomized map p

begin algorithm
(1) d=2. QIOngjlogc

(2) For eachi,j€{l,...,n} do M;; =0
(3) Repeat fort=1toc
(4) Pt = Generate projection matrix (d,d’)
() D D
(6) < <“ 02 v, O = C(Dy, k)
()Foreach2j6{1 ,n}
MO = 1Y 1 e ) 1(j e o)

ij
end repeat

(S)M Zt 1 M®

( ) <A1,A27.. A}c >:Ccom(M,k)
end algorithm.
Output:

— the final clustering C' =< Ay, Ao, ..., A >
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In the first step of the algorithm, given a distortion level ¢, the dimension d’
for the compressed data is computed according to the JL lemma.

At each iteration of the main repeat loop (step 3-7), the procedure
Generate projection matrix outputs a projection matrix P, according to the
randomized embedding p, and a projected data set D; = P, - D is generated;
the corresponding clustering < C’ft), ét), ey C,(:) > is computed by calling C,
and a M similarity matrix is built. The similarity matriz M®) associated to

a clustering C' =< CP, ét)7 cey C’,it) > is a n X n matrix such that:

k
M = S Hi e c) 1 e ) 8
s=1
where I is is the characteristic function of the set Cs. After step (8), M;; denotes
the frequency by which the examples ¢ and j occur in the same cluster across
multiple clusterings. The final clustering is performed by applying the clustering
algorithm C.op, to the main similarity matrix M. Choosing different random
projections we may generate different RE-Clust ensembles (e.g. PMO and RS
cluster ensembles).

4 Experimental Results

In this section we present some preliminary experimental results with the
RE-Clust ensemble algorithm. The Ward’s hierarchical agglomerative cluster-
ing algorithm [I0] has been applied as “base” clustering algorithm.

4.1 Experimental Environment

Synthetic Data Generation. We experimented with 2 different sample gen-
erators, whose samples are distributed according to different mixtures of high
dimensional gaussian distributions.

Samplel is a generator for 5000-dimensional data sets composed by 3 clusters.
The elements of each cluster are distributed according to a spherical gaussian
with standard deviation equal to 3. The first cluster is centered in 0, that is a
5000-dimensional vector with all zeros. The other two clusters are centered in
0.5e and —0.5e, where e is a vector with all 1.

Sample2is a a generator for 6000-dimensional data sets composed by 5 clusters
of data normally distributed. The diagonal of the covariance matrix for all the
classes has its element equal to 1 (first 1000 elements) and equal to 2 (last 5000
elements). The first 1000 variables of the five clusters are respectively centered in
0, e, —e, 5e, —5e. The remaining 5000 variables are centered in 0 for all clusters.

For each generator, we considered 30 different random samples each respec-
tively composed by 60, 100 examples (that is, 20 examples per class).

Experimental Setup. We compared classical single hierarchical clustering algo-
rithm with our ensemble approach considering PMO and RS random projections
(Sect.22). We used 30 different realizations for each synthetic data set, using each
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time 20 clusterings for both PMO and RS ensembles. For each PMO and RS ensem-
ble we experimented with different distortions, corresponding to € € [0.06, 0.5].

We implemented the ensemble algorithms and the scripts used for the exper-
iments in the R language (code is freely available from the authors).

4.2 Results

With samplel (Figl(a)) for 1.10 distortion, that corresponds to projections from
the original 5000 into a 3407 dimensional subspace, RE-Clust ensembles perform
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Fig. 1. Comparison of mean errors between single hierarchical clustering, PMO and
RS ensembles with different 1 + ¢ distortions. For ensembles, error bars for the 99%
confidence interval are represented, while for single hierarchical clustering the 99%
confidence interval is represented by the dotted lines above and below the horizontal
dash-dotted line. (a) Sample! data set (b) sample2.
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significantly better than single clustering. Indeed PMO ensembles achieve a
0.017 £ 0.010 mean error over 30 different realizations from samplel, and RS
ensembles a 0.018 £ 0.011 mean error against a 0.082 4 0.015 mean error for
single hierarchical clustering. Also with an estimated 1.20 distortion (with a
corresponding subspace dimension equal to 852) we obtain significantly better
results with both PMO and RS ensembles.

With sample2 (Figlll (b)) the difference is significant only for 1.10 distortion,
while for larger distortions the difference is not significant and, on the contrary,
with 1.4 distortion RE-Clust ensembles perform worse than single clustering.
This may be due both to the relatively high distortion induced by the randomized
embedding and to the loss of information due to the random projection to a too
low dimensional space. Anyway, with all the high dimensional synthetic data
sets the RE-Clust ensembles achieve equal or better results with respect to a
“single” hierarchical clustering approach, at least when the distortions predicted
by the JL lemma are lower than 1.30.

5 Conclusions

Experimental results with synthetic data (Sect.[L2)) show that RE-Clust ensem-
bles are effective with high dimensional data, even if we need more experiments
to confirm these results.

About the reasons why RE-Clust outperforms single clustering, we suspect
that RE-Clust ensembles can reduce the variance component of the error, by
“averaging” between different multiple clusterings, and we are planning to per-
form a bias-variance analysis of the algorithm to investigate this topic, using the
approach proposed in [T1] for supervised ensembles.

To evaluate the performance of RE-Clust with other “base” clustering algo-
rithms, we are experimenting with Partitioning Around Medoids (PAM) and
fuzzy-c-mean algorithms.
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