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Abstract. A new connectionist model, called Switching Neural Network
(SNN), for the solution of classification problems is presented. SNN in-
cludes a first layer containing a particular kind of A/D converters, called
latticizers, that suitably transform input vectors into binary strings. Then,
the subsequent two layers of an SNN realize a positive Boolean function
that solves in a lattice domain the original classification problem.

Every function realized by an SNN can be written in terms of intel-
ligible rules. Training can be performed by adopting a proper method
for positive Boolean function reconstruction, called Shadow Clustering
(SC). Simulation results obtained on the StatLog benchmark show the
good quality of the SNNs trained with SC.

1 Introduction

Any classification problem can be viewed as an optimization problem, where a
proper functional, i.e. the probability of error, has to be minimized by choosing
the best classifier g inside a given collection Γ . In this sense any technique for
the solution of classification problems must provide for two different actions: the
class Γ of decision functions must be suitably determined (model selection) and
the best classifier in Γ must be searched for (training phase).

General theoretical results advise us against choosing a too large set Γ ; in fact,
with this choice it is likely to incur in the problem of overfitting: the training
phase generates a decision function g ∈ Γ that performs well on the examples of
the training set, but scores a high number of misclassifications on the remaining
points of the input domain. On the other hand, if a too small set Γ is considered,
it is impossible to obtain a sufficiently low number of errors in the training set.

A possible approach consists in choosing initially a large Γ , leaving to the
learning algorithm the task of retrieving a classifier g which is enough simple,
according to some index of complexity, and behaves well on the training set. This
is the approach followed by support vector machines [1], where a regularization
constant controls the trade-off between the complexity of the resulting decision
function and the number of errors scored by it on the available training set.

In a similar way, we will introduce in the following sections a new connection-
ist model, called Switching Neural Network (SNN), which is sufficiently rich to
approximate within an arbitrary precision any measurable function. As described
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later, this connectionist model presents some interesting properties, among which
the possibility of allowing a precise description of classifiers g ∈ Γ in terms of
intelligible rules.

A proper learning algorithm, called Shadow Clustering (SC), can be adopted
to search for the simplest SNN that ensures a sufficiently low number of errors on
the training set. Preliminary results show that SNNs trained by SC can achieve
generalization errors comparable with those of best machine learning techniques.
Due to space limitation, details of SC are not presented here, but can be found
elsewhere [2].

2 Model Selection

Consider a general binary classification problem, where d-dimensional patterns
x ∈ X ⊂ R

d are to be assigned to one of two possible classes, labeled by the
values of a Boolean output y ∈ {0, 1}. According to possible situations in real
world problems, the type of the components xi, i = 1, . . . , d, can be either
continuous ordered, when xi belongs to a subset of R, or discrete ordered, when
xi assumes values inside a finite ordered set, or nominal, when xi can assume
values inside a finite set, where no ordering is defined.

Denote with Im the set {1, 2, . . . , m} of the first m positive integers. Without
loss of generality, Im (for a proper value of m) can be regarded as the domain
of any discrete ordered or nominal variable. In the first case, Im is viewed as a
chain, whereas in the latter no ordering is assumed to be defined on it.

Now, consider the Boolean lattice {0, 1}n, equipped with the well known bi-
nary operations ‘+’ (logical sum or or) and ‘·’ (logical product or and). According
to the standard partial ordering on {0, 1}n, a Boolean function f : {0, 1}n →
{0, 1} is called positive if u ≤ v implies f(u) ≤ f(v) for every u, v ∈ {0, 1}n.

A recent theoretical result [3] asserts that positive Boolean functions are uni-
versal approximators, i.e. they can approximate arbitrarily well every measurable
function g : R

d → {0, 1}. Denote with Ql
n the subset of {0, 1}n containing the

strings of n bits having exactly l values 1 inside them. A possible procedure for
finding the positive Boolean function f that approximates a given classifier g is
based on the following three steps:
1. (Discretization). For every ordered input xi, determine a finite partition Bi

of its domain Xi such that a function ĝ can be found, which approximates
g on X within the desired precision and assumes a constant value on every
set B ∈ B, where B = {

∏d
i=1 Bi : Bi ∈ Bi, i = 1, . . . , d}.

2. (Latticization). By employing a proper function ϕ, map the points of the
domain X into the strings of Ql

n, so that ϕ(x) �= ϕ(x′) only if x ∈ B and
x′ ∈ B′, being B and B′ two different sets in B.

3. (Positive Boolean function synthesis). Select a positive Boolean function f
such that f(ϕ(x)) = ĝ(x) for every x ∈ X .

2.1 Discretization

Since the exact behavior of the decision function g is not known, the approxi-
mating classifier ĝ and the partition B have to be inferred from the examples
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(xj , yj) of the training set S. Every set Bi ∈ Bi must be enough large to include
the component xji of some point xj in S. Nevertheless, the resulting partition
B must be enough fine to capture the actual complexity of the function g.

Several different discretization methods for binary classification problems have
been proposed in the literature [4, 5, 6]. Usually, for each ordered input xi a set of
mi−1 consecutive values ri1 < ri2 < · · · < ri,mi−1 is generated and the partition
Bi is formed by the mi sets Xi ∩Rik, where Ri1 = (−∞, ri1], Ri2 = (ri1, ri2], . . . ,
Ri,mi−1 = (ri,mi−2, ri,mi−1], Rimi = (ri,mi−1, +∞). Excellent results have been
obtained with the algorithm Chi2 [5], which employ the χ2 statistic to decide the
position of the points rik, k = 1, . . . , mi − 1, and with the technique EntMDL
[4], which adopts entropy estimates to achieve the same goal. An alternative
promising approach is offered by the method used in the LAD system [6]: in this
case an integer programming problem is solved to obtain optimal values for the
cutoffs rik.

By applying a procedure of this kind, the discretization task defines for each
ordered input xi a mapping ψi : Xi → Imi , where ψi(z) = k if and only if
z ∈ Rik. If we assume that ψi is the identity function with mi = |Xi| when xi

is a nominal variable, the approximating function ĝ is uniquely determined by a
discrete function h : I → {0, 1}, defined as h(ψ(x)) = ĝ(x), where I =

∏d
i=1 Imi

and ψ(x) is the mapping from X to I, whose ith component is given by ψi(xi).

2.2 Latticization

The function ψ provides a mapping from the domain X onto the set I =∏d
i=1 Imi , such that ψ(x) = ψ(x′) if x and x′ belong to the same set B ∈ B,

whereas ψ(x) �= ψ(x′) only if x ∈ B and x′ ∈ B′, being B and B′ two differ-
ent sets in B. Consequently, the 1-1 function ϕ from X to Ql

n, required in the
latticization step, can be simply determined by defining a proper 1-1 function
β : I → Ql

n. In this way, ϕ(x) = β(ψ(x)) for every x ∈ X .
A possible way of constructing the function β is to define in a proper way

d mappings βi : Imi → Qli
ni

; then, the binary string β(u) for an integer vector
u ∈ I is obtained by concatenating the strings βi(ui) for i = 1, . . . , d. It can be
shown [3] that a good choice for βi is the inverse only one coding, which maps
an integer ui ∈ Imi into the binary string zi ∈ Qmi−1

mi
having zik = 0 if and only

if ui = k. In fact, this coding is both an isometry and a full order-preserving
mapping (when xi is an ordered input). These properties characterize also the
mapping β if the inverse only one coding is adopted for all the βi.

Since ϕ(x) is obtained by the concatenation of d binary strings ϕi(xi), if the
discretization task has produced for each ordered input xi a set of mi −1 cutoffs
rik, as described in the previous subsection, the kth bit of ϕi(xi) assumes value
0 if and only if xi ∈ Rik. Note that xi ∈ Rik if and only if xi exceeds the cutoff
ri,k−1 (if k > 1) and is lower than the subsequent cutoff rik (if k < mi). On the
other hand, if xi is a nominal input the kth bit of ϕi(xi) assumes value 0 if and
only if xi = k.

Thus, the mapping ϕi can be implemented by a simple device that receives in
input the value xi and compares it with a sequence of integer or real numbers.
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This device will be called latticizer; it produces mi binary outputs, but only one
of them can assume the value 0. The whole mapping ϕ is realized by a parallel
of d latticizer, each of which is associated with a different input xi.

2.3 Switching Neural Networks

After the discretization and the latticization steps we have transformed the
training set S = {(xj , yj), j = 1, . . . , s} into a collection of examples S′ =
{(zj , yj), j = 1, . . . , s}, where each zj = ϕ(xj) is a binary string in the Boolean
lattice {0, 1}m for a proper value of m. The original binary classification prob-
lem can then be solved by retrieving a positive Boolean function f(z) such that
ĝ(x) = f(ϕ(x)) minimizes the probability of misclassifying a pattern x ∈ X .

This target can be pursued by adopting a proper technique, named Shadow
Clustering (SC) [2], which is able to construct a positive Boolean function f
that generalizes well starting from the examples contained in S′. To our best
knowledge, SC is the first method of this kind. It adopts an overall strategy sim-
ilar to Hamming Clustering [7], successfully employed in the solution of binary
classification problems. A detailed description of the approach followed by SC
for the synthesis of positive Boolean functions is presented in [2].

If a ∈ {0, 1}m is a binary string with length m, let P (a) be the subset of Im

including the indexes i for which ai = 1. A positive Boolean function can always
be written in the following Positive Disjunctive Normal Form (PDNF):

f(z) =
∨

a∈A

∧

j∈P (a)

zj (1)

where A is an antichain of the Boolean lattice {0, 1}m, i.e. a collection of binary
strings such that if a, a′ ∈ A neither a < a′ nor a′ < a. The symbol

∨
(resp.

∧
)

in (1) denotes a logical sum (resp. product) among the terms identified by the
subscript. In particular,

∧
j∈P (a) zj is an implicant for the function f ; however,

when no confusion arises, the term implicant will also be used to denote the
corresponding binary string a ∈ A.

The execution of SC produces the antichain A to be employed in (1) for
obtaining the PDNF of the desired positive Boolean function f . This expression
can be readily implemented on a two-level digital circuits including only and,
or ports. It should be observed that only the values 1 in a binary string a ∈ A
give rise to an incoming connection in the corresponding and port. Thus, values
0 in a behave as don’t care symbols for the associated implicant.

The approximating function ĝ(x) that solves our binary classification problem
is then given by the composition f(ϕ(x)) of the positive Boolean function f with
the mapping ϕ produced by discretization and latticization steps. The device
implementing ĝ(x) is shown in Fig. 1.

It can be considered as a three layer feedforward neural network, where the
first layer is responsible of the realization of the binary mapping ϕ(x), while
the other two realize the expression (1) for the positive Boolean function f .
Every and port in the second layer is connected only to some of the outputs
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Fig. 1. Schema of a Switching Neural Network

leaving the latticizers; they correspond to values 1 in the associated implicant.
These connections are represented by bold circles in Fig. 1 and can be viewed as
switches that establish links between the inputs of the and ports and the outputs
of the latticizers. For this reason the connectionist model shown in Fig. 1 is called
Switching Neural Network (SNN).

It is interesting to observe that, unlike standard neural networks, SNNs do
not involve weights; furthermore, signals traveling on them have only one level.
Thus, it should be concluded that the behavior of the function ĝ(x) is entirely
memorized in the architecture of the SNN (connections and switches). This is
not a limitation, since it has been shown that SNN are universal approximators.

Every implicant a ∈ A generated by SC can be translated into an intelligible
rule in the if-then form underlying the classification problem at hand. Consider
the substrings ai of a that are associated with the ith input xi to the network.
The logical product

∧
j∈P (a) zj gives output 1 only if the binary string z = ϕ(x)

presents a value 1 in all the positions where ai has value 1.
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If xi is an ordered variable, the execution of SC always generates binary strings
ai containing a single sequence of consecutive values 0, i.e. a run of 0. If this
run begins at the (j + 1)th position and finishes at the kth bit of ai, the logical
product

∧
j∈P (a) zj can give output 1 only if rij < xi ≤ rik. In the particular

case where the run of 0 begins at the first position (resp. finishes at the last
position), the condition becomes xi ≤ rik (resp. xi > rij).

As an example, suppose that an ordered variable xi has been discretized by
using the four cutoffs 0.1, 0.25, 0.3, 0.5. If the implicant a with ai = 10011 has
been produced by SC, the condition 0.1 < xi ≤ 0.3 has to be included in the if
part of the if-then rule associated with a.

On the other hand, if xi is a nominal variable the portion ai of an implicant
a gives rise to the condition xi ∈

⋃
k∈Imi

\P (ai){k}. Again, if the implicant a

with ai = 01101 has been produced by SC, the condition xi ∈ {1, 4} has to be
included in the if-then rule associated with a. In any case, if the binary string
ai contains only values 0, the input xi will not be considered in the rule for a.

Thus, it follows that every implicant a gives rise to an if-then rule, having
in its if part a conjunction of the conditions obtained from the substrings ai

associated with the d inputs xi. If all these conditions are verified, the output
y = ĝ(x) will be assigned the value 1. A logical or connects all the rules obtained
in this way for every implicant a in the antichain A produced by SC.

Due to this property, SC (with the addition of discretization and latticization)
becomes a rule generation method, being capable of retrieving from the training
set some kind of intelligible information about the physical system underlying
the binary classification problem at hand.

3 Simulation Results

To obtain a preliminary evaluation of performances achieved by SNNs trained
with SC, the ten classification problems included in the well-known StatLog
benchmark [8] have been considered. In this way the generalization ability and the
complexity of resulting SNNs can be compared with those of other machine learn-
ing methods, among which rule generation techniques based on decision trees,
such as C4.5 [9]. In all these simulations the discretization method adopted in the
LAD system [6] has been used to map continuous inputs into binary strings.

The tests contained in the StatLog benchmark present different characteristics
that allow to evaluate the behavior of a classification algorithm under several
angles. Four problems (Heart, Australian, Diabetes, and German) presents a
binary output, thus permitting a direct application of the SNN approach, as
described in the previous section. However, two of them (Heart and German)
adopts a specific cost matrix to weight misclassified patterns.

The remaining six tests concern multiclass problems, which have been split
into a sequence of binary classification problems by constructing a separate set
of implicants for each output value. The class of an new pattern x has then been
chosen by adopting the criteria introduced in [10], which performs a weighted
sum of perfect matching rules (those verified by x), having weight 1, and almost
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matching rules (those verified by x, except for one condition), which is assigned
the weight 0.1.

The complexity of an SNN is measured through the number of and ports
in the second layer (corresponding to the number of intelligible rules) and the
average number of conditions in the if part of a rule. Tab. 1 presents the results
obtained. Accuracy and complexity of resulting SNNs are compared with those
of rulesets produced by C4.5. In the same table is also reported the best gen-
eralization error reported in the StatLog report [8] for each problem, together
with the rank scored by SNN when its generalization error is inserted into the
list of available results.

Table 1. Generalization error and complexity of SNN, compared with C4.5 and with
other methods, on the StatLog benchmark

Test Generalization error # Rules # Conditions
Problem SNN C4.5 Best Rank SNN C4.5 SNN C4.5

Heart 0.393 0.781 0.374 2 24.3 11.4 5.03 2.68
Australian 0.125 0.155 0.131 1 26.4 11.5 5.55 2.76
Diabetes 0.250 0.270 0.223 8 73.8 9.4 4.61 2.58
Vehicle 0.278 0.266 0.150 12 91.2 26.1 5.92 4.03
German 0.716 0.985 0.535 13 95.8 21.1 8.90 2.77
Segment 0.037 0.040 0.030 11 82.8 28.0 4.51 3.94
DNA 0.057 0.076 0.041 3 132.0 34.0 8.99 4.47
Satimage 0.135 0.150 0.094 6 262.0 80.0 7.92 5.41
Letter 0.115 0.132 0.064 5 1532.0 570.0 8.38 7.64
Shuttle 0.0001 0.001 0.0001 1 18.0 20.0 3.17 3.14

Apart from one case (Vehicle) the generalization error scored by SNN is always
lower than that obtained by C4.5. On the other hand, the complexity of SNN is
considerably higher (except for the Shuttle problem). As a consequence of this
greater complexity, the execution time of SNN is significantly higher than that
of C4.5. It ranges from 3 sec. (Australian) to a hour (Letter) for the StatLog
benchmark, whereas the construction of the set of rules with C4.5 requires at
most three minutes.

This behavior depends on the method employed to produce the implicants
and the corresponding rules. In SNN every rule separates some patterns of a
class from all the example in the training set belonging to other classes; at most
a small error is accepted to avoid overfitting. On the contrary, C4.5 creates rules
that are verified by a subset of patterns from different classes. Subsequent rules
correct errors performed by previous ones; therefore, rules must be applied in a
specific order.

It is interesting to note that in four out of the ten problems SNN achieves one
of the first three ranking positions. This points out the quality of the solutions
offered by SNN, even if its behavior in dealing with multiclass problems can be
improved by properly adapting the SC algorithm to reconstruct in an efficient
way positive Boolean functions with several outputs.
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