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Preface 

The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) is 
a leading international conference in the area of data mining and knowledge 
discovery. This year marks the tenth anniversary of the successful annual series of 
PAKDD conferences held in the Asia Pacific region.  It was with pleasure that we 
hosted PAKDD 2006 in Singapore again, since the inaugural PAKDD conference was 
held in Singapore in 1997. 

PAKDD 2006 continues its tradition of providing an international forum for 
researchers and industry practitioners to share their new ideas, original research 
results and practical development experiences from all aspects of KDD data mining, 
including data cleaning, data warehousing, data mining techniques, knowledge 
visualization, and data mining applications. 

This year, we received 501 paper submissions from 38 countries and regions in 
Asia, Australasia, North America and Europe, of which we accepted 67 (13.4%) 
papers as regular papers and 33 (6.6%) papers as short papers.  The distribution of the 
accepted papers was as follows: USA (17%), China (16%), Taiwan (10%), Australia 
(10%), Japan (7%), Korea (7%), Germany (6%), Canada (5%), Hong Kong (3%), 
Singapore (3%), New Zealand (3%), France (3%), UK (2%), and the rest from various 
countries in the Asia Pacific region.  

The large number of papers was beyond our anticipation and we had to increase the 
Program Committee at the last minute in order to ensure that all papers went through 
a rigorous review process, without overloading the PC members.  We are glad that 
most papers were reviewed by three PC members despite the tight schedule.   We 
express herewith our deep appreciation to all PC members and the external reviewers 
for their arduous support in the review process. 

PAKDD 2006 made several other progresses giving the conference series more 
visibility.  For the first time, PAKDD workshops had formal proceedings published 
under Springer’s Lecture Note series.  The organizers of the four workshops, namely 
BioDM, KDLL, KDXD and WISI, put together very high-quality keynotes and 
workshop programs.  We would like to express our gratitude to them for the 
tremendous efforts.  PAKDD 2006 also introduced the best paper award in addition to 
the existing best student paper award(s).  With the help of the Singapore Institute of 
Statistics (SIS) and the Pattern Recognition & Machine Intelligence Association 
(PREMIA) of Singapore, a data mining competition under the PAKDD flag was also 
organized for the first time.  Last but not least, a one-day PAKDD School, similar to 
the one organized in PAKDD 2004, was held again this year. 

PAKDD 2006 would not have been possible without the support of many people 
and organizations.  We wish to thank the members of the Steering Committee for their 
invaluable suggestions and support throughout the organization process.  We are 
grateful to the members of the Organizing Committee, who devoted much of their 
precious time to the conference arrangement.  In the early stage of our conference 
preparation, we lost Hongjun Lu, who had helped us immensely in drafting our 
conference proposal.  We have missed him dearly but would like to continue his 
inspiration to make PAKDD 2006 a success.  We also deeply appreciate the generous 
financial support of Infocomm Development Authority of Singapore, the Lee 
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Foundation, the SPSS, the SAS Institute, the U.S. Air Force Office of Scientific 
Research, the Asian Office of Aerospace Research and Development, and the U.S. 
Army ITC-PAC Asian Research Office.  

Last but not least, we want to thank all authors and all conference participants for 
their contribution and support.  We hope all participants took this opportunity to share 
and exchange ideas with one another and enjoyed the conference. 
 

April 2006                                                                                       Masaru Kitsuregawa 
Jianzhong Li 
Ee-Peng Lim 

Wee Keong Ng 
Jaideep Srivastava 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Organization 

PAKDD 2006 Conference Committee 
 
General Chairs 
Ee-Peng Lim 
Hongjun Lu (Late) 
Jaideep Srivastava 

Nanyang Technological University, Singapore 
HK University of Science and Technology, China  
University of Minnesota, USA 

 

Program Chairs 
Wee-Keong Ng 
Jiangzhong Li 
Masaru Kitsuregawa 

Nanyang Technological University, Singapore 
Harbin Institute of Technology, China  
University of Tokyo, Japan 

 

Workshop Chairs 
Ah-Hwee Tan 
Huan Liu 

Nanyang Technological University, Singapore  
Arizona State University, USA 

 

Tutorial Chairs 
Sourav Saha Bhowmick 
Osmar R. Zaiane 

Nanyang Technological University, Singapore  
University of Alberta, Canada 

 

Industrial Track Chair 
Limsoon Wong I2R, Singapore 
 

PAKDD School Chair 
Chew Lim Tan National University of Singapore, Singapore 
 

Publication Chair 
Kuiyu Chang Nanyang Technological University, Singapore 
 

Panel Chairs 
Wynne Hsu 
Bing Liu 

National University of Singapore, Singapore  
University of Illinois at Chicago, USA 

 

Local Arrangement Chairs 
Bastion Arlene 
Vivekanand Gopalkrishnan 
Dion Hoe-Lian Goh 

Nanyang Technological University, Singapore 
Nanyang Technological University, Singapore  
Nanyang Technological University, Singapore 

 

Publicity and Sponsorship Chairs 
Manoranjan Dash  
Jun Zhang 

Nanyang Technological University, Singapore  
Nanyang Technological University, Singapore 



X Organization 

PAKDD 2006 Steering Committee 
 
Hiroshi Motoda (Chair) Osaka University, Japan 
David Cheung  
(Co-chair & Treasurer) 

University of Hong Kong, China 

Ho Tu Bao Japan Advanced Institute of Science and Technology, Japan 
Arbee L. P. Chen National Chengchi University, Taiwan 
Ming-Syan Chen National Taiwan University, Taiwan 
Jongwoo Jeon Seoul National University, Korea 
Masaru Kitsuregawa Tokyo University, Japan 
Rao Kotagiri University of Melbourne, Australia 
Huan Liu Arizona State University, USA 
Takao Terano University of Tsukuba, Japan 
Kyu-Young Whang Korea Advanced Institute of Science and Technology, Korea 
Graham Williams ATO, Australia 
Ning Zhong Maebashi Institute of Technology, Japan 
Chengqi Zhang University of Technology Sydney, Australia  
 

PAKDD 2006 Program Committee 
 
Graham Williams ATO, Australia 
Warren Jin Commonwealth Scientific and Industrial Research Organisation,

Australia 
Honghua Dai Deakin University, Australia 
Kok Leong Ong Deakin University, Australia 
David Taniar Monash University, Australia 
Vincent Lee Monash University, Australia 
Kai Ming Ting Monash University, Australia 
Richi Nayak Queensland University of Technology, Australia  
Vic Ciesielski RMIT University, Australia 
Vo Ngoc Anh University of Melbourne, Australia 
Rao Kotagiri  University of Melbourne, Australia 
Achim Hoffmann University of New South Wales, Australia 
Xuemin Lin University of New South Wales, Australia 
Sanjay Chawla University of Sydney, Australia 
Douglas Newlands University of Tasmania, Australia 
Simeon J. Simoff University of Technology, Sydney, Australia 
Chengqi Zhang University of Technology, Sydney, Australia 
Doan B. Hoang University of Technology, Sydney, Australia 
Nicholas Cercone Dalhousie University, Canada 
Doina Precup McGill University, Canada 
Jian Pei  Simon Fraser University, Canada 
Yiyu Yao University of Regina, Canada 
Zhihai Wang Beijing Jiaotong University, China 
Hai Zhuge Chinese Academy of Sciences, China 
Ada Waichee Fu Chinese University of Hong Kong, China 
Shuigeng Zhou Fudan University, China 
Aoying Zhou Fudan University, China 
Jiming Liu Hong Kong Baptist University, China 
Qiang Yang Hong Kong University of Science and Technology, China  



 Organization  XI 

Zhi-Hua Zhou Nanjing University, China 
Xiaofeng Meng Renmin University of China, China 
Bo Zhang Tsinghua University, China 
David Cheung University of Hong Kong, China 
Joshua Z. Huang University of Hong Kong, China 
Djamel A. Zighed University Lyon 2, France 
Joel Quinqueton University Montpellier, France 
Thu Hoang University Paris 5, France 
Wai Lam Chinese University of Hong Kong, Hong Kong, China 
Wilfred Ng University of Science and Technology, Hong Kong, China 
Ajay B Pandey Government of India, India 
P. S. Sastry Indian Institute of Science, Bangalore, India 
Shyam Kumar Gupta Indian Institute of Technology, Delhi, India 
T. V. Prabhakar Indian Institute of Technology, Kanpur, India 
A. Balachandran Persistent Systems, India 
Aniruddha Pant Persistent Systems, India 
Dino Pedreschi Università di Pisa, Italy 
Tomoyuki Uchida Hiroshima City University, Japan 
Tetsuya Murai Hokkaido University, Japan 
Hiroki Arimura Hokkaido University, Japan 
Tetsuya Yoshida Hokkaido University, Japan 
Tu Bao Ho JAIST, Japan 
Van Nam Huynh JAIST, Japan 
Akira Shimazu JAIST, Japan 
Kenji Satou JAIST, Japan 
Takahira Yamaguchi Keio University, Japan 
Takashi Okada Kwansei Gakuin University, Japan 
Ning Zhong Maebashi Institute of Technology, Japan 
Hiroyuki Kawano Nanzan University, Japan 
Masashi Shimbo Nara Institute of Science and Technology, Japan 
Yuji Matsumoto Nara Institute of Science and Technology, Japan 
Seiji Yamada National Institute of Informatics, Japan 
Hiroshi Motoda Osaka University, Japan 
Shusaku Tsumoto Shimane Medical University, Japan 
Hiroshi Tsukimoto Tokyo Denki University, Japan 
Takao Terano Tsukuba University, Japan 
Takehisa Yairi University of Tokyo, Japan 
Yoon-Joon Lee KAIST, Korea 
Yang-Sae Moon Kangwon National University, Korea 
Sungzoon Cho Seoul National University, Korea 
Myung Won Kim Soongsil University, Korea 
Sang Ho Lee  Soongsil University, Korea 
Myo Win Khin University of Computer Studies, Myanmar 
Myo-Myo Naing University of Computer Studies, Myanmar   
Patricia Riddle University of Auckland, New Zealand 
Eibe Frank University of Waikato, New Zealand 
Michael Mayo University of Waikato, New Zealand 
Szymon Jaroszewicz Technical University of Szczecin, Poland 
Andrzej Skowron Warsaw University, Poland 
Hung Son Nguyen  Warsaw University, Poland 
Marzena Kryszkiewicz Warsaw University of Technology, Poland 
Ngoc Thanh Nguyen Wroclaw University of Technology, Poland 



XII Organization 

Joao Gama University of Porto, Portugal 
Jinyan Li  Institute for Infocomm Research, Singapore 
Lihui Chen Nanyang Technological University, Singapore 
Manoranjan Dash Nanyang Technological University, Singapore 
Siu Cheung Hui Nanyang Technological University, Singapore 
Daxin Jiang Nanyang Technological University, Singapore   
Daming Shi  Nanyang Technological University, Singapore   
Aixin Sun Nanyang Technological University, Singapore  
Vivekanand Gopalkrishnan Nanyang Technological University, Singapore   
Sourav Bhowmick Nanyang Technological University, Singapore 
Lipo Wang Nanyang Technological University, Singapore   
Wynne Hsu National University of Singapore, Singapore 
Dell Zhang  National University of Singapore, Singapore 
Zehua Liu Yokogawa Engineering Asia, Singapore 
Ming-Syan Chen National Taiwan University, Taiwan 
Arbee L.P. Chen National Chengchi University, Taiwan 
San-Yih Hwang  National Sun Yat-Sen University, Taiwan 
Chih-Jen Lin National Taiwan University, Taiwan 
Jirapun Daengdej  Assumption University, Thailand 
Jonathan Lawry University of Bristol, UK 
Huan Liu Arizona State University, USA 
Minos Garofalakis Intel Research Laboratories, USA 
Tao Li Florida International University, USA 
Wenke Lee Georgia Tech University, USA 
Philip S. Yu IBM T.J. Watson Research Center, USA 
Se June Hong IBM T.J. Watson Research Center, USA 
Rong Jin Michigan State University, USA 
Pusheng Zhang Microsoft Corporation, USA 
Mohammed J. Zaki  Rensselaer Polytechnic Institute, USA 
Hui Xiong Rutgers University, USA 
Tsau Young Lin San Jose State University, USA 
Aleksandar Lazarevic United Technologies, USA 
Jason T. L. Wang New Jersey Institute of Technology, USA 
Sam Y. Sung South Texas University, USA 
Roger Chiang University of Cincinnati, USA 
Bing Liu  University of Illinois at Chicago, USA 
Vipin Kumar  University of Minnesota, USA 
Xintao Wu  University of North Carolina at Charlotte, USA 
Yan Huang University of North Texas, USA 
Xindong Wu University of Vermont, USA 
Guozhu Dong  Wright State University, USA 
Thanh Thuy Nguyen Hanoi University Technology, Vietnam 
Ngoc Binh Nguyen Hanoi University Technology, Vietnam 
Tru Hoang Cao  Ho Chi Minh City University of Technology, Vietnam 
 
 
 
 
 
 
 



 Organization  XIII 

PAKDD 2006 External Reviewers 
 
Alexandre Termier 
Andre Carvalho 
Atorn Nuniyagul 
Aysel Ozgur 
Ben Mayer 
Benjarath Phoophakdee 
Brian Harrington 
Cai Yunpeng 
Canh-Hao Nguyen 
Chengjun Liu 
Chiara Renso 
Cho Siu-Yeung, David 
Choi Koon Kau, Byron 
Christophe Rigotti 
Daan He 
Dacheng Tao 
Dang-Hung Tran 
Dexi Liu 
Dirk Arnold 
Dong-Joo Park 
Dongrong Wen 
Dragoljub Pokrajac 
Duong Tuan Anh 
Eric Eilertson 
Feng Chen 
Feng Gao 
Fosca Giannotti 
Francesco Bonchi 
Franco Turini 
Gaurav Pandey 
Gour C. Karmakar 
Haoliang Jiang 
Hiroshi Murata 
Ho Lam Lau 
Hongjian Fan 
Hongxing He 
Hui Xiong 
Hui Zhang 
James Cheng 
Jaroslav Stepaniuk 
Jianmin Li 
Jiaqi Wang 
Jie Chen 
Jing Tian 
Jiye Li 
Junilda Spirollari 
Katherine G. Herbert 
Kozo Ohara 
Lance Parson 

 

Lei Tang 
Li Peng 
Lin Deng 
Liqin Zhang 
Lizhuang Zhao 
Longbing Cao 
Lu An 
Magdiel Galan 
Marc Ma 
Masahiko Ito 
Masayuki Okabe 
Maurizio Atzori 
Michail Vlachos 
Minh Le Nguyen 
Mirco Nanni 
Miriam Baglioni 
Mohammed Al Hasan 
Mugdha Khaladkar 
Nitin Agarwal 
Niyati Parikh 
Nguyen Phu Chien 
Pedro Rodrigues 
Qiang Zhou 
Qiankun Zhao 
Qing Liu 
Qinghua Zou 
Rohit Gupta 
Saeed Salem 
Sai Moturu 
Salvatore Ruggieri 
Salvo Rinzivillo 
Sangjun Lee 
Saori Kawasaki 
Sen Zhang 
Shichao Zhang 
Shyam Boriah 
Songtao Guo 
Spiros Papadimitriou 
Surendra Singhi 
Takashi Onoda 
Terry Griffin 
Thanh-Phuong Nguyen 
Thai-Binh Nguyen 
Thoai Nam 
Tianming Hu 
Tony Abou-Assaleh 
Tsuyoshi Murata 
Tuan Trung Nguyen 
Varun Chandola 

 

Vineet Chaoji 
Weiqiang Kong 
Wenny Rahayu 
Wojciech Jaworski 
Xiangdong An 
Xiaobo Peng 
Xiaoming Wu 
Xingquan Zhu 
Xiong Wang 
Xuelong Li 
Yan Zhao 
Yang Song 
Yanchang Zhao 
Yaohua Chen 
Yasufumi Takama 
Yi Ping Ke 
Ying Yang 
Yong Ye 
Zhaochun Yu 
Zheng Zhao 
Zhenxing Qin 
Zhiheng Huang 
Zhihong Chong 
Zujun Shentu 

 

 



Sponsorship 

We wish to thank the following organizations for their contributions to the success of this 
conference: 

Air Force Office of Scientific Research, 
Asian Office of Aerospace Research and Development 

US Army ITC-PAC Asian Research Office 

Infocomm Development Authority of Singapore 

Lee Foundation 

SAS Institute, Inc. 

SPSS, Inc. 

Embassy of the United States of America, Singapore 



Table of Contents

Keynote Speech

Protection or Privacy? Data Mining and Personal Data
David J. Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Changing Face of Web Search
Prabhakar Raghavan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Invited Speech

Data Mining for Surveillance Applications
Bhavani M. Thuraisingham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Classification

A Multiclass Classification Method Based on Output Design
Qi Qiang, Qinming He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Regularized Semi-supervised Classification on Manifold
Lianwei Zhao, Siwei Luo, Yanchang Zhao, Lingzhi Liao,
Zhihai Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Similarity-Based Sparse Feature Extraction Using Local Manifold
Learning

Cheong Hee Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Generalized Conditional Entropy and a Metric Splitting Criterion for
Decision Trees

Dan A. Simovici, Szymon Jaroszewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

RNBL-MN: A Recursive Naive Bayes Learner for Sequence Classification
Dae-Ki Kang, Adrian Silvescu, Vasant Honavar . . . . . . . . . . . . . . . . . . . 45

TRIPPER: Rule Learning Using Taxonomies
Flavian Vasile, Adrian Silvescu, Dae-Ki Kang, Vasant Honavar . . . . . 55

Using Weighted Nearest Neighbor to Benefit from Unlabeled Data
Kurt Driessens, Peter Reutemann, Bernhard Pfahringer,
Claire Leschi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



XVI Table of Contents

Constructive Meta-level Feature Selection Method Based on Method
Repositories

Hidenao Abe, Takahira Yamaguchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Ensemble Learning

Variable Randomness in Decision Tree Ensembles
Fei Tony Liu, Kai Ming Ting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Further Improving Emerging Pattern Based Classifiers Via Bagging
Hongjian Fan, Ming Fan, Kotagiri Ramamohanarao,
Mengxu Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Improving on Bagging with Input Smearing
Eibe Frank, Bernhard Pfahringer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Boosting Prediction Accuracy on Imbalanced Datasets with SVM
Ensembles

Yang Liu, Aijun An, Xiangji Huang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Clustering

DeLiClu: Boosting Robustness, Completeness, Usability, and Efficiency
of Hierarchical Clustering by a Closest Pair Ranking
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‘There was of course no way of knowing whether you were being watched at any 
given moment.... It was even conceivable that they watched everybody all the time.’ 

   George Orwell, 1984 

Abstract. In order to run countries and economies effectively, governments and 
governmental institutions need to collect and analyse vast amounts of personal 
data.  Similarly, health service providers, security services, transport planners, 
and education authorities need to know a great deal about their clients.  And, of 
course, commercial operations run more efficiently and can meet the needs of 
their customers more effectively the more they know about them.  In general 
then, the more data these organisation have, the better.  On the other hand, the 
more private data which is collated and disseminated, the more individuals are 
at risk of crimes such as identity theft and financial fraud, not to mention the 
simple invasion of privacy that such data collection represents.  Most work in 
data mining has concentrated on the positive aspects of extracting useful infor-
mation from large data sets.  But as the technology and its use advances so 
more awareness of the potential downside is needed.  In this paper I look at 
some of these issues.  I examine how data mining tools and techniques are be-
ing used by governments and commercial operations to gain insight into indi-
vidual behaviour.  And I look at the concerns that such advances are bringing. 

1   The Need to Know 

In order to run a country effectively, a government must understand the needs and 
wishes of its people. In order to run a corporation profitably, the directors must 
understand the customers and the products or services they require. This point, this 
need for understanding, applies to any organization. It applies to health service 
providers, to security services, to transport planners, to education authorities, and so 
on.  Because of such needs, information about every individual at this conference is 
stored in countless commercial, government, and other databases. Some of this 
information is collected explicitly: when you take an examination or fill in an appli-
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cation form, you expect the data to be entered into a database.  But the vast majority 
of it is collected implicitly: details of what you bought in a supermarket, of your 
credit card transactions, satellite monitoring of vehicle locations, automatic photo-
graphs of vehicle registration plates, RFID systems which identify objects and people 
at a distance, is all collected and stored without you being aware of it. 

Once the information has been collected, it can be used to answer the question it 
was intended for, but it can also be used to answer other questions.  But there is more 
than this.  If individual data sets can be used to answer new, as yet unposed, ques-
tions, then analyzing merged data sets can be even more powerful.  In general, data 
merging, data linking, or data fusion from both governmental and non-governmental 
sources is becoming increasingly widespread.  For example, information on electoral 
rolls, censuses, and surveys by national statistical offices can be linked to information 
on purchasing patterns, banking transaction patterns, medical records, cellphone re-
cords, websurfing traces, and so on.  By such means, your interests can be identified 
and your behaviour modeled, and predicted, to an unprecedented degree.  Thus the 
London Times of August 5th 2005 reports that ‘HBOS, Britain’s biggest mortgage 
lender, is pressing the Government to force local authorities to provide banks with 
details of council tax arrears’ in a drive to improve credit scoring.  Credit scoring, 
deciding who is a good and bad financial risk, is conceptually similar to insurance, so 
might not insurance companies similarly request direct access to medical records?  
Let us take this example further. Imagine a system which matched peoples’ medical 
records to their eating habits, as deduced from stored data describing their weekly 
supermarket food purchases.  Now link the results to their home address via the num-
ber of the credit card used to make the food purchases, and an insurance company 
could decide automatically to withdraw insurance cover from customers whom it 
thought were eating a diet which predisposed them to illness. 

The first part of this paper illustrates the power of data mining tools to protect us 
from harm by enabling us to predict what the future might bring unless we intervene 
in some way.  But data mining is a powerful technology.  All powerful technologies 
are ethically neutral.  They can be used for good, but they can also be used for bad.  
The second part of the paper illustrates how data mining tools can be misused, to 
invade our privacy.  In parallel with the discussion concerning the social impact of 
data mining, running throughout the paper there is a technical theme: that the statistics 
used for pattern discovery data mining must be simple because of the sheer amount of 
computation required. 

2   The Nature of Data Mining 

There are two broadly distinct aspects to data mining.  One is concerned with high 
level data summary – with model building.  The aim here is to create a broad descrip-
tion of a data set, to identify its main features.  Thus, for example, one might partition 
a data set describing customers into distinct behaviour classes using cluster analysis.  
Or one might build a neural network model to predict how objects will behave in the 
future.  There is an unlimited number of ways in which one might summarise a set of 
data, but, their aim is to identify the major characterising structures in the data. 
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The other aspect of data mining is pattern discovery.  Patterns are small local fea-
tures in a data set – a departure from a model.  They may consist of single points (as 
in outlier detection), small groups of points (as in detecting the start of an epidemic), 
small sets of variables which behave unexpectedly (as in microarray analysis), or 
some other small-scale departure from what is expected. 

Whereas the theory and methods of model building have been extensively devel-
oped by statisticians throughout the twentieth century, pattern detection and discovery 
is relatively unexplored.  Tools have been developed for particular application areas, 
and for particular types of problems, but this tends to have been in isolation.  It is only 
recently, a consequence of the increasing number of very large data sets and the com-
puter power to manipulate and search them quickly, that researchers have begun to 
think about a unified theory of pattern discovery. 

In pattern discovery, the aim is to detect data points or groups of data points which 
deviate noticeably from the expected – that is, from a background model.  Examples 
of such problems are given below, and some people regard this kind of problem as the 
core of data mining – the attempt to find unexpected ‘nuggets’ of information.  Pat-
tern discovery requires the construction of a background model, a measure of devia-
tion from that model (and deviation may be of many kinds), a search algorithm, and 
inference to decide if the deviation should have been expected. 

Pattern discovery presents some theoretical and practical challenges.  In particu-
lar, it is central to the notion of pattern discovery that one has to examine all ele-
ments in the database.  This is rather different from model building: for most pur-
poses, a summary model built on a sample of 5000 cases will be as effective as a 
model built on all five million cases.  But if one’s aim is to detect which cases are 
anomalous then there is no alternative to looking at each individual case.  So, for 
example, in mining telecoms data, one can construct an effective segmentation into 
usage type (a model) using just a sample of a few thousand customers, but if one is 
trying to identify which customers are perpetrating frauds there is no alternative to 
examining each record.  This suggests that pattern discovery exercises have an 
important property: the calculations involved in analyzing each case must be quick 
to perform.  Each case cannot involve lengthy iterative computations, for example.  
I illustrate this in my examples, showing how pattern discovery is often a kind of 
feature selection exercise, with the requirement that the features must be computed 
from relatively simple formulae. 

In commercial applications, data mining is often sold as a magic tool which will 
lead to the discovery of information without the user having to do any thinking.  This, 
of course is misleading.  It is no accident that scientist have produced various apho-
risms such as ‘chance favours the prepared mind’ and ‘the harder I work, the luckier I 
get’.  The truth is that the more you know about your data, about the problem, and 
about the sort of pattern you are looking for, the more likely you are to find something 
useful.  In the context of pattern discovery, the more you know about these things, the 
more precisely you can formulate the mathematical shape of the patterns to be found.  
The bottom line is that computing power does not replace brain power.  They work 
hand in hand.  The data miner who uses both will be the one who finds the interesting 
and valuable structures in the data. 
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3   Data Mining: The Reward 

In this section I illustrate the application of data mining pattern discovery tools to 
protect us from harm. 

Disease and illness are one type of harm, and an important class of data mining 
tools seeks to detect small local clusters of people suffering from a disease – perhaps 
because they have been exposed to a common cause, or perhaps because a contagious 
disease is spreading locally.  In such situations the clusters are two-dimensional, with 
geography providing the two dimensions.  Global clustering statistics, such as the 
Mantel-Bailar statistic, tells us whether the data points tend to suggest clustering, but 
they do not tell us where the clusters are.  Such measures are really a diagnostic mod-
eling tool.  To detect clusters it is necessary to scan the distribution of points, looking 
at each point of the space and comparing the local clustering tendency with what one 
would expect.  Here, ‘what one would expect’ will be based on the underlying popu-
lation distribution.  For example, one might assume that each person was equally 
likely to contract a disease, and then locate those regions where more than the ex-
pected number have the disease.  The simple statistics here are based on comparing 
counts of numbers of cases within a region of gradually increasing radius, with counts 
of numbers in the population within the region. 

This example has the property that information about the expected background dis-
tribution was obtained from another source – the distribution of the population.  In 
many problems, however, there is no other source.  An illustration is provided by a 
study we carried out to detect student cheating.  Plagiarism by students, assisted by 
the web, has been much in the news recently, but our problem was rather different.  
We were especially concerned to detect students who had copied their coursework 
from each other.  Our simple statistic was a measure of similarity between pairs of 
students.  The background model here is a distribution which has the same multivari-
ate characteristics as the distribution of scores obtained by the students.   

Another, again slightly different example is given by pharmacovigilance.  This is a 
post-marketing exercise carried out by pharmaceutical companies, aimed at detecting 
drug-induced side effects.  In principle the background distribution is straightforward 
– the number of prescriptions of each drug.  In practice, however, records are often 
incomplete, and some other way to derive a background distribution is needed.  Often 
fairly simple models are used – such as the assumption that the distribution of inci-
dents over drug and the distribution of incidents over side effects are independent.  
We have been experimenting with a more elaborate approach which takes into ac-
count the pharmaceutical similarity between the drugs.  That is, it is as if the drugs 
exist in a space in which closeness is determined by chemical similarity.  In all cases, 
however, a simple statistic based on the difference between the observed counts and 
the expected of incidents under the background model is used. 

Disease clustering and the other problems described above is concerned with detect-
ing local groups in space.  Such clusters represent an anomaly in the underlying density 
function of cases.  Another class of problems arises when one is aiming to detect an 
anomaly in a univariate or multivariate sequence of observations over time.  Change 
point problems are examples of such.  Taking disease outbreaks as an example again, 
one might have a natural background rate of infection, and will seek to detect, as early 
as possible, when the rate deviates (increases) from this.  Here the simple statistic is 
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based on comparing estimates of the rates before and after a putative change point.  
Further complications arise, of course, since often one wants to detect that a change has 
occurred as soon as possible.  In the case of disease outbreaks, early detection can mean 
that there is a chance of containing the disease.  Of course, things are complicated by 
factors such as incubation time: if the symptoms of the disease manifest themselves 
after the organism has become infectious, for example. 

There are many other problems in which mining the data for change points, per-
haps in real time, is important.  Monitoring for natural disasters (such as tsunamis), 
fault detection, and fraud detection, provide other important examples.  For fault de-
tection, careful on line monitoring of information from complex machinery, such as 
nuclear reactors or space missions, is vital to ensure that any peculiarities are detected 
early on.  In fraud detection, we developed a tool for credit card fraud detection which 
we called peer group analysis, in which one identifies the customers who have previ-
ously behaved most similarly to a target customer, and then monitors to see if and 
when the target starts to behave differently.  Since it is generally not known which 
customers should be the target, the fact that one has to do the computation for all 
customers hints at the amount of computation which such methods can involve.  Once 
again, we see the necessity of simple formulae. 

Although I have outlined spatial clustering and change point detection separately, 
they become especially powerful when combined.  Now we can see when a spatial 
cluster suddenly appears, or when incidents of ATM theft suddenly begin.  Once 
again, quick detection is often vital.  The recent cases of SARS, BSE, and now Avian 
Flu illustrate just how important these sorts of tools are. 

Change points are one kind of anomaly.  They occur when individuals suddenly 
begin to behave differently.  But even univariate time series can demonstrate other 
anomalies.  The case of Harold Shipman is an illustration. 

Harold Shipman is a contender for the title of the world’s most prolific serial killer.  
He was a family doctor, respected and admired by his patients.  But over a period of 
years he killed many his patients - one estimate is that he killed 236 people between 
1978 and 1998, primarily elderly women patients, for example by giving them over-
doses of painkillers.  Detection came in 1998 when an apparently healthy 81 year-old 
died suddenly on 24th June.  Her daughter, a lawyer, became suspicious when she 
realized that her mother had apparently signed a new will without her knowledge, 
leaving everything to Shipman.  Things rapidly escalated from there, and eventually 
Shipman was tried and found guilty on 15 counts of murder. 

At first glance this looks like a straightforward statistical problem, using control 
charts, cusums, or more elaborate tools.  Indeed, a retrospective cumulative plot of the 
mortality amongst females aged over 64 in Shipman’s practice shows a gradual in-
crease and even an anomalous sudden increase in the death rate around 1994. Appli-
cation of formal statistical tools detects that something unusual is going on here, and 
would flag this medical practice up for closer examination.  But, of course, if such 
monitoring is carried out prospectively, it is not just the one practice which is moni-
tored.  It is all such practices in the UK.  All in real time.  Once again the need for 
statistics which are quick to calculate is indicated. 

So far I have talked in terms of the statistics used to detect anomalous patterns and 
structures in data sets.  I have stressed the need for these statistics to be simple, since 
often massive search is involved.  But strange structures do arise by chance.  Not only 
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do we need to be able to locate such structures, but we need to assess how likely it is 
that they are merely chance events.  That is, as well as the algorithmic aspects implicit 
in search, we need the statistical aspects implicit in inference.   

This brings me to what I call the fundamental problem of pattern inference in data 
mining.  It is the multiplicity problem.  We will be searching over a large collection of 
points, seeking for a large set of possible local cluster structures, so we must expect 
some such configurations to arise by chance.  The more data points we consider, the 
more likely such false positives are.  To allow for this we have to bring to bear ideas 
of scan statistics and false discovery rate.  Substantial theoretical advances have been 
made in these areas in recent years.  The mathematics underlying these advances is 
often quite difficult, and I believe there are significant opportunities for computational 
approaches. 

In the introduction, I mentioned the power resulting from combining data sources.  
So let me finish this section illustrating the tremendous potential benefits of data min-
ing by citing the Australian study which linked records of long haul flights to records 
of deep vein thromboembolisms, to reveal that the annual risk of thromboembolism is 
increased by 12% if one such flight is taken annually.  Data mining has an immense 
amount to offer for improving the human condition. 

4   Data Mining: The Risk 

It will be clear from the examples in the preceding section that data mining has the 
potential for immense good by protecting us from harm from a variety of causes.  
However, there is a downside.  In this section I want to examine just a few examples 
of the dangers of data mining. 

4.1   Elections 

My first example involves elections.  Elections are often very close run things.  In a 
sense, this means they may be intrinsically unstable systems.  In the 2004 US Presi-
dential election, the roughly equal proportions of votes in the Electoral College of 
53% favouring Bush and 47% favouring Kerry translated into 100% election of Bush 
as President, but a slight shift in the proportions could have resulted in a complete 
reversal of the outcome.  Similarly, in the German election of 2005, although Angel 
Merkel won 35.2% of the vote, and Gerhard Schröder won 34.3%, only one of them 
could be Chancellor, and in the 2005 UK General Election, the Labour Party won 
35% of the votes and the Conservatives won 32%.  In both of these cases it seems as 
if a slight change in the proportions could have resulted in a dramatic difference to the 
outcome.  (In fact, in the UK case, these roughly equal proportions of votes translated 
into 55% of the seats going to Labour, and only 30% going to the Conservatives, but 
that’s a different story.) 

Now, of course, the distribution of votes across electoral seats varies.  Some seats 
will be won by an 80:20 majority, while others by a 51:49 majority.  It is probably 
futile spending a lot of campaigning effort in seats where the ratio is traditionally 
80:20.  One has a far better chance of changing the outcome of the 51:49 seat.  So this 
is where the effort should be made, and this is where data mining comes in.  Data 
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mining allows one to target the particular individuals, in the marginal seats, who 
might be swayed – the floating voters, those who have not definitely made up their 
minds. 

But there’s even more than this.  People are different.  They may agree with your 
position on immigration, but disagree with your position on taxes.  And if you know 
this, if you have enough information on an individual voter, you can target your vote 
to match their interests.  You can gloss over your tax plans and play up your immigra-
tion policy when canvassing.  If you know that the crucial voters tend to watch a par-
ticular TV channel, then you can target your advertisements appropriately. 

This is a very radical change, brought about entirely by the possibilities provided 
by data mining.  While what the voters know about the candidates is still crucial, what 
the voters know, which voters knows what, and which voters are provided with more 
information can be strategically chosen by the candidates.  Data mining has changed 
the nature of elections.  The candidate with the most astute data mining team has the 
winning hand.  No elections at national level in the UK or US are now fought without 
a back room of data miners guiding actions, and the tools of data mining are used 
more and more extensively in modern elections in the West.  Sometimes they go un-
der the names of microtargeting or political sharpshooting.  One might even go so far 
as to say that nowadays, if you do not employ a data mining team, you will lose. 

4.2   False Positives, False Negatives 

My second example will probably be familiar to many of you, but its familiarity 
should not detract from its importance.  It is the problem arising from unbalanced 
class sizes in supervised classification.  Supervised classification is a very important 
type of data mining problem, and in many areas the relative numbers of objects be-
longing to the different classes are substantially different.  In retail banking fraud, for 
example, generally less than 1 in a 1000 transactions are fraudulent, and in screening 
for rare medical conditions the rate can be even lower.  This has serious implications 
for the effectiveness of classification rules, and for business operations.  This can be 
seen from the following simple example. 

Suppose that a classifier correctly identifies 1 in 100 fraudulent transactions, and 
correctly identifies 1 in 100 legitimate transactions.  This sounds like excellent per-
formance.  However, if only 1 in 1000 transactions are fraudulent, then 91% of those 
transactions flagged as suspect frauds are really legitimate.  This matters because 
operational decisions must be made.  To take an extreme case – if one decided to put 
a stop on all credit cards with suspect transactions one would have many irate legiti-
mate users.  Note that, again, we must examine all cases, so that simple calculations 
are needed: one of our data sets had just 1530 fraudulent accounts amongst over 
830,000 accounts altogether – all of which had to be examined. 

A less severe illustration of this sort of problem arose in the US system for screen-
ing potential terrorists on aircraft, when Senator Edward M. Kennedy was prevented 
from boarding his US Airways Washington to Boston flight because he was mistak-
enly matched to someone on a list of suspicious persons.  Later he was also automati-
cally flagged for observation by a system which looks for suspicious behaviour such 
as buying a one-way ticket.  And it is not reassuring to read that US border guards 
failed 100 percent of the time to detect counterfeit identity documents being used by 
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agents from the General Accounting Office testing the system by trying to enter the 
US illegally. 

The most effective way to tackle the particular problem of unbalanced classes 
seems to be to use a multistage approach.  Eliminate as many as possible of the 
clearly legitimate cases, so one can use more elaborate methods to focus on the re-
maining data.  Methods based on sampling from the larger class or on duplicating 
samples from the smaller class are not recommended. 

The overall point is that blind application of data mining techniques, without tak-
ing account of the practical requirements of the problem, can have adverse conse-
quences.  Thoughtless data mining carries a risk. 

4.3   Insurance 

One of the aims of commercial data mining is to be able to predict the behaviour and 
likely future of people.  In insurance, for example, the more accurately you can pre-
dict which people will have an automobile accident, or who will die early of a certain 
disease, the more profitably you are able to run your company for your shareholders.  
The aim is thus to make individual-specific predictions.  Often, however, the informa-
tion in the potential predictor variables is insufficient to allow very accurate predic-
tion rules, so averages are calculated for groups of similar people.  The predictions 
then represent a compromise between potential bias in the predictive model and accu-
racy in terms of variance reduction. 

But medical and data mining technology is changing that.  For example, genomic 
data permit increasingly accurate predictions of who will die early of different dis-
eases.  Data mining tools are being increasingly heavily used in bioinformatics to 
extract precisely this kind of information.  In some cases, the predictive accuracy will 
be such that certain individuals will be revealed to be very high risk – and will conse-
quently be unable to obtain insurance.  In fact, such situations have already occurred, 
also because of progress in medical science.  A positive AIDS test, for example, can 
make obtaining life insurance difficult, so there is a clear benefit in not taking a test, 
even if you suspect you may be positive.  Moreover, the taking of a test, even if the 
results are negative, can be interpreted by an insurance company as an indication that 
one suspects one is at risk.  I am sure that many of you have had the experience of 
analyzing a set of data and discovering that the fact that an item of information is 
missing is predictive in itself. 

4.4   Other Areas: Data Quality, Identity Theft, Disclosure Control and Beyond 

There are other areas of risk associated with data mining, and I briefly touch on just a 
few of them in this section. 

Textbook descriptions of data mining tools, and articles extolling the potential 
gains to be achieved by applying data mining techniques gloss over some of the diffi-
culties.  One difficulty which is all pervasive, and which has major consequences for 
almost all data mining tasks, is that data are very seldom perfect.  This matters be-
cause governmental and corporate decisions assume the data are correct.  But I feel 
confident that everyone in this room has experienced data problems at some time.  
Perhaps your computer has crashed at a critical moment, a program might not do 
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exactly what it was intended to do, perhaps the system cannot handle unusual custom-
ers or cases, perhaps software maintenance has introduced bugs, perhaps data have 
been entered incorrectly, and so on endlessly.  I have countless examples of problems 
of this kind, but a very simple one involved retired bus driver Frank Hughes.  An 
oversimple data-matching exercise meant that another man with the same name was 
matched to Frank Hughes the bus driver.  His former workmates were then shocked to 
see him walking down the street – since they had recently attended his funeral. 

This was a shock for his friends and a surprise for Mr Hughes, but perhaps it was 
fairly minor on the global scale of things.  Not so the warnings about record linkage 
from the TAPAC report, which says (p37-38): ‘One of the most significant of these 
issues concerns the significant difficulties of integrating data accurately. Business and 
government have long struggled with how to ensure that information about one per-
son is correctly attributed to that individual and only to that individual ... According to 
the General Accounting Office, the government already suffers significant financial 
losses from its inability to integrate its own data accurately.’ 

Identity theft describes the actions of a criminal who obtains personal information 
about you, and uses this to open bank accounts, obtain credit cards, bank loans, car 
finance, passports, a driving license, telecoms services, and other such instruments 
masquerading as you.  Worse still, such stolen identities can then be used for activi-
ties such as money laundering, immigration fraud, tax fraud, and worse.   Once such a 
theft has been detected, it can take years to sort it all out.  During this time, you may 
not be able to obtain loans, get a mortgage, buy a car or insurance, obtain credit cards, 
and so on.   It is estimated that each year about 100,000 such thefts occur in the UK, 
and that it costs the UK economy about £1.7bn. 

To commit identity theft, criminals have to collect information about you.  This in-
formation can come from various sources.  One significant danger is that separate 
items of information which are innocuous in themselves may be merged to produce 
something which acts as a key.  Traditional obvious sources include simple thefts of 
wallets or driving licences, discarded bills, credit card receipts or bank statements 
reclaimed from a rubbish bin.  More elaborate tools include strategies such as phish-
ing – persuading people to divulge security information or PIN numbers over the 
internet in the mistaken belief that it is a security check.  The internet is a new tech-
nology, and one which is changing its shape and form all the time.  It contains in-
creasing amounts of information about people, permitting all sorts of discoveries (for 
example that of the adopted teenage boy who manage to locate his sperm donor natu-
ral father with just two clever web searches).  And mining the internet has become a 
specialized area of data mining in its own right. 

With identity theft in mind, you should always shred any financial documents, 
credit card slips, and so on, and if you suspect your mail is going astray, report it.  
You should use different PIN numbers and passwords, irritating though that may be, 
and you should never store PIN numbers with the cards to which they refer.  You 
should never divulge personal information to people who ring you on the phone (even 
if they claim to be from your bank).  Always ring them back on a number you know 
to be correct.  Always check banks statements for suspicious transactions.  Don’t tell 
others your PIN numbers or passwords.  Clearly all this is a tremendous hassle – but it 
is nothing compared with the difficulties if you become a victim. 
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Privacy on the internet can be protected to some extent by coding stored and trans-
mitted data, as well as the use of password protection.  But in some situations these 
tools cannot be applied.  For example, the information governments collect about 
people is intended to be used to understand those people, so it has to be divulged to 
researchers and administrators.  But this involves a risk.  Tools of disclosure control 
have been developed to prevent people from being able to identify individuals in large 
datasets.  Some of these tools involve modifying the data, so that it retains its statisti-
cal properties but loses information on individuals; others involve randomly perturb-
ing the data. 

5   The Ethics of Advanced Technologies 

There is a basic principle of personal data confidentiality: that ‘personal data should be 
used only for the purpose for which it was collected, unless explicit permission is given’.  
Unless this is respected, public confidence will be shaken.  The consequence will be that 
survey and census response rates will fall.  This in turn will lead to less accurate data 
and conclusions, and hence to less effective government and less profitable corpora-
tions.  Privacy of personal data lies at the foundation of effective societies. 

For these reasons, the principle of data confidentiality has been enshrined in vari-
ous legal ways, varying between countries.  Many of them permit individuals to ex-
amine data relating to themselves, and to correct it if it is wrong.  (In the context of 
identity theft, it is a good idea to periodically check your records with credit reference 
agencies.) 

I said in the introduction that all advanced technologies are ethically neutral.  They 
can be used for good or bad.  This is as true for data mining as it is for nuclear tech-
nology and biological disciplines – the technology that the people in this room are 
involved in is just as sophisticated as those technologies.  This means that criticisms 
of such a technology should be focused on the (mis)use to which it is put, not on the 
technology itself: the equations are the same, and it is what is done with them that 
counts. 

As far as data mining is concerned, the genie is out of the bag.  These advanced 
methods for discovering the unexpected in data exist, and are being used more and 
more often on more and more data sets.  We cannot pretend that they no longer exist.  
The technology has the power to bring immense good, but if used the wrong way, it 
can also bring harm.  As Jerrold Nadler said when he appeared before the United 
State’s Technology and Privacy Advisory Committee in November 2003: the ‘ques-
tion isn’t whether technology will be developed, but rather whether it will be used 
wisely.’ 
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2006.  Web search has come to dominate our consciousness as a convenience 
we take for granted, as a medium for connecting advertisers and buyers, and as 
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lowing a brief overview of the state of the art and how we got there, this talk 
covers a spectrum of technical challenges arising in web search – ranging from 
spam detection to auction mechanisms. 
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Abstract. Dr. Bhavani M. Thuraisingham is an invited speaker for PAKDD 
2006.  She is a Professor at the Eric Jonsson School of Engineering and Com-
puter Science, University of Texas at Dallas.  She is also director of the Cyber 
Security Research Center and President of Bhavani Security Consulting. 

1   Summary 

Data mining is the process of posing queries and extracting patterns, often previously 
unknown from large quantities of data using pattern matching or other reasoning 
techniques. Data mining has many applications for national security, also referred to 
as homeland security. The threats to national security include attacking buildings, 
destroying critical infrastructures such as power grids and telecommunication sys-
tems. Data mining techniques are being investigated to find out who the suspicious 
people are and who is capable of carrying out terrorist activities. One particular secu-
rity application that can benefit from data mining is surveillance. We need to build 
infrastructures to conduct surveillance so that we can determine who might be suspi-
cious. However, we also need to protect the privacy of the individuals who are law 
abiding citizens.  

This presentation will first discuss data mining for surveillance applications. We 
will survey various surveillance applications and discuss the developments on apply-
ing data mining. Suspicious event detection is an area that has been investigated in 
some detail. The idea here is to represent various events, some of which are suspi-
cious such as entering a secure room. Later when that event occurs the system will 
flag this event as suspicious. One of the challenges here is to combine suspicious 
event detection with say facial recognition techniques to determine who the suspi-
cious people are in addition to detecting the suspicious events. Another challenge is to 
conduct distributed surveillance where there are multiple video feeds and the system 
has to monitor and combine events which may be suspicious. The system should also 
be able to detect the movements of people as they travel from one place to another. 
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Link analysis techniques could be utilized to follow such movements and determine 
the links that are suspicious. A third challenge is to associate people with unidentified 
luggage or bags. When the system detects an unaccompanied bag, it should then be 
able to carry out a trace back and determine who has left the bag. Finally a person by 
him or herself may not be suspicious, but seen together in a group he/she may be. 
That is, the system has to identify groups of suspicious individuals. Other challenges 
include conducting on-line analysis of surveillance data where the system should have 
the capability to analyze the surveillance data in real-time, make decisions and take 
appropriate actions.  

The critical need for applying data mining for surveillance poses serious privacy 
threats. The challenge here is to carry out privacy preserving surveillance. There are 
some efforts on blanking the face of a per-son so that his/her privacy is maintained. 
However by doing this, the suspicious people’s identity is also not revealed. Some 
efforts have focused on individuals carrying tags so that the faces of those with the 
appropriate tags are not revealed. This approach has a problem as the suspicious per-
son can steal tags from others. A solution we are investigating is to encrypt all the 
faces of people with some keys. Only trusted agents have the keys for decryption. If 
the surveillance data shows that an individual is carrying out suspicious activities, 
then the trusted agents can reveal the identity of these suspicious people.   

In addition to mining surveillance data, data mining can also be applied for geospa-
tial applications. For example, one could combine web services provided by Google 
Maps or Map quest and connect the maps with say “friend of a friend” ontologies and 
determine the locations of various individuals. Suspicious people can use this infor-
mation to terrorize the individuals whose locations have been revealed. Geospatial 
data can be mined to detect changes as well as detect unusual objects. The presenta-
tion will also discuss mining geospatial data. 

In summary, the presentation will provide an overview mining surveillance data as 
well as conducting privacy preserving surveillance. Applying data mining to geospa-
tial data such as maps will also be discussed. 
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Abstract. Output coding is a general framework for solving multiclass catego-
rization problems. Some researchers have presented the notion of continuous 
codes and methods for designing output codes. However these methods are 
time-consuming and expensive. This paper describes a new framework, which 
we call Strong-to-Weak-to-Strong (SWS). We transform a “strong” learning al-
gorithm to a “weak” algorithm by decreasing its iterative numbers of optimiza-
tion while preserving its other characteristics like geometric properties and then 
make use of the kernel trick for “weak” algorithms to work in high dimensional 
spaces, finally improve the performances. An inspiring experimental results 
show that this approach is competitive with the other methods. 

1   Introduction 

A more general method for multiclass problem is to reduce the problem to multiple 
binary problems. In [1] Crammer described a unifying method (Section 2) for reduc-
ing multiclass problem to multiple binary problems. 

Recently a robust Minimax classifier (Section 3) where the probability of correct 
classification of future data should be maximized has been provided [2]. No further 
assumptions are made with respect to the each two class-conditional distributions. 
The minimax problem can be interpreted geometrically as minimizing the maxi-
mum of the Mahalanobis distances to the two classes. “Kernelization” version is 
also available. 

Section 4 presents new algorithm. In section 5, we report the experimental results. 
Finally, section 6 presents conclusions. 

2   Design of Output Codes 

Let 1 1{( , ),..., ( , )}m mS x y x y= be a set of m training examples where each instance 

ix belongs to a domain χ . We assume that each label iy  is an integer from the set 
{1,..., }kϒ = . A multiclass classifier is a function :H χ → ϒ that maps an instance 

x into an element y ∈ ϒ . An output codes M is a matrix of size k l×  over  where 
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each row of M corresponds to a class y ∈ ϒ . Then different binary classifiers 1,..., lh h  
can be yielded. We denote the vector of predictions of these classifiers on an instance 
x as 1( ) ( ( ),..., ( ))lh x h x h x= . We denote the r th row of M by rM . Given an example 
x  we predict the label y for which the row yM is the “closest” to ( )h x . Naturally we 
can perform the calculations in some high dimensional inner-product space Z using a 
transformation : l Zφ → and use a general notion for closeness, then define it 
through an inner-product function : l lK × → , which satisfies Mercer conditions 
[3]. Thus ( ) arg max { ( ( ), )}r rH x K h x M∈ϒ= . We define the 2 norm of a matrix M and 
introduce slack variables ζ , denote by , ,1

ii r y rb δ= − . Then the problem of finding a 
good matrix M can be stated as the following optimization problem: 
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for some constant 0β ≥ . Let 1i  be the vector with all components zero, except for 

the i th component which is equal to one, and let 1  be the vector whose components 

are all one. We can denote by , ,1 iyi r i rγ η= − .  

 Finally, the classifier ( )H x can be written in terms of the variable γ as: 

{ },( ) arg max ( ( ), ( ))i r iir
H x K h x h xγ=  

(2) 

However solving optimization problem ( ) is time-consuming. In this paper our al-
gorithm solves this optimization problem heuristically. 

3   A Probability Machine 

Let x  and y  model data from each of two classes in a binary classification problem. 

We wish to determine a hyperplane ( , ) { | }TF a b z a z b= = , where \ {0}na ∈ and 
b ∈ which separates the two classes of points with maximal probability with respect 
to all distributions having same mean and covariance matrices. This is expressed as: 
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In formulation (3) the term θ  is the minimal probability of correct classification of 
future data.  

Learning large margin classifiers has become an active research topic. However, 
this margin is defined in a “local” way. MPM considers data in a global fashion, while 
SVM actually discards the global information of data including geometric information 
and the statistical trend of data occurrence. 

1
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4   SWS (Strong-to-Weak-to-Strong) Algorithm 

The following natural learning problems arise, 

1. Given a matrix M, find a set binary classifiers h which have small empirical 
loss. 

2. Given a set of h , find a matrix M which has small empirical loss. 

3. Find both a matrix M and a set h  which have small empirical loss. 

The previous methods have focused mostly on the first problem. Most of these 
works have used predefined output codes, independently of the specific application 
and the learning algorithm. We mainly aim to solve the 3rd problem, however it is so 
hard to solve the designing problem not to mention finding a “good” classifier and a 
wonderful output codes simultaneously by using common optimization methods. 
Therefore a heuristic algorithm has been proposed instead of solving the optimization 
problem (1) directly. We use probability output θ in (3) of MPM to build a heuristic 
algorithm and then solve the design problem of output coding heuristically. In our 
framework SWS (Strong-to-Weak-to-Strong), we generalize the notion of “weak” 
algorithm. We can view an algorithm with less iterative steps of optimization as a 
“weak” algorithm and make use of the kernel trick for “weak” algorithm to work in 
high dimensional spaces, finally improve the performances. SWS and the heuristic 
algorithm make it realizable to solve both problems with acceptable time-consuming 
and complexion. 

Recently a number of powerful kernel-based learning machines have been pro-
posed. In KPCA, kernel serves as preprocessing while in SVM kernel has an effect on 
classification in the middle process. There could be two stages for kernel to affect the 
result in our algorithm. The first is in the middle process as it behaves in SVM. The 
second is where algorithm transforms several weak classifiers to a strong classifier. 

4.1   Strong-to-Weak Stage 

In the Strong-to-Weak stage, we transform “Strong” classifier to “Weak” classifier by 
equipping less iterative numbers of optimization while preserving its characteristics 
like large margin and geometric properties. 

On the one hand, it could decrease total time-consuming especially in the case of 
large numbers of classes because each binary classifier needs less iterative steps of 
optimization.  

On the other hand, our algorithm takes the geometric difference of classes into ac-
count while other methods ignore the difference because MPM uses Mahalanobis 
distance that involves geometric information. Therefore SWS preserve the character-
istics. Based on concept above we can use a simple iterative least-squares approach 
because the algorithm only requires “Weak” learning algorithms. 

4.2   Weak-to-Strong Stage 

In this stage, we make use of the kernel trick for “Weak” algorithm to work in high 
dimensional spaces and finally improve the performances. According to the classifica-
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tion performance, multiclass classifier obtained by our algorithm becomes a much 
more “Strong” learning algorithm. 

We notice that the saddle point from optimization problem (1) we are seeking is a 
minimum for the primal variables with respect to iζ . We can get 

, 1, . . 1 1 0iyi ii r
r

i e andη γ γ= ≤ ⋅ =  (4) 

And 1 iy may be viewed as the correct point distribution, ,i rη  could be viewed as the 

distribution obtained by the algorithm over the labels for each example. Then we can 

view iγ as the difference between the former and the later. It is natural to say that an 

example ix affects the result if and only if iη is not a point distribution concentrating 

on the correct label iy . Further we can say that only the questionable points contribute 

to the learning process and regard them as “critical points”. We notice that one “criti-
cal point” may contribute to more than one class while “support vector” [3] contrib-
utes to only one class. It is typically assumed that the set of labels has no underlying 
structure, however there exist lots of different relation among category in practice. It 
means that it is reasonable that one example makes different contributions to some 
classes or classifiers. 

Unlike other methods, our algorithm implements implicit update in high dimen-

sional spaces by using a transformation : l Zφ → . And the output codes update 

merely occurs in final discrimination from (2): 

{ },( ) arg max{ ( ( ), )} arg max ( ( ), ( ))
update
r i r iir r

H x K h x M K h x h xγ= =  (5) 

5   Experiments 

In this section we test our algorithm using one-against-rest method experimentally on 
six data sets from the repository at University of California.1  

Table 1. Best results of our algorithm and other methods with polynomial kernel of degree 2 

 DB2 DAG 
SVM 

One-against-
One SVM 

One-against-Rest 
SVM 

One-against-
rest SWS 

Iris 
Letter 
Glass 
Segment 
Vowel 
Wine 

97.3 
98.2 
73.5 
96.4 
99.2 
99.8 

96.6 
97.9 
73.8 
96.6 
99.2 
98.8 

97.3 
97.9 
72.0 
96.6 
99.0 
99.4 

96.6 
97.8 
71.9 
95.2 
99.0 
98.8 

97.3 
99.1 
79.2 
96.4 
99.0 
99.9 

                                                           
1 URL: http://www.ics.uci.edu/~mlearn/MLRepository.html 
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Table 2. Accuracies with various iterative numbers given two polynomial kernel of degree 2 

Iterative num-
bers 

   5     10 30      50 

Iris 
Letter 
Glass 
Segment 
Vowel 
Wine 

96.8 
98.9 
74.2 
94.1 
98.4 
99.0 

97.3 
99.1 
79.2 
96.4 
99.0 
99.9 

97.3 
99.1 
79.2 
96.4 
99.0 
99.9 

97.3 
99.1 
79.2 
96.4 
99.0 
99.9 

 

Table1 presents the best results of our algorithm and other methods. Table2 dis-
plays the results of using different iterative steps with polynomial kernel of degree 2 
(in “weak” classifiers and in weak-to-strong stage).  

From Table1, we can say that our algorithm (SWS) is more efficient than others in 
most cases. Especially our algorithm achieves significant performances in Glass data 
set for the algorithm takes geometric information into account. It is clear that experi-
ments show that the algorithm is fast to compute and efficient due to its heuristic. 

6   Conclusions 

We have introduced a new method as a solution to multiclass problems. Results ob-
tained on the benchmark datasets suggest that our algorithm outperforms most other 
algorithms with most datasets although using one-against-rest method. 
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Abstract. Semi-supervised learning gets estimated marginal distribution XP  
with a large number of unlabeled examples and then constrains the conditional 
probability )|( xyp  with a few labeled examples. In this paper, we focus on a 
regularization approach for semi-supervised classification. The label 
information graph is first defined to keep the pairwise label relationship and can 
be incorporated with neighborhood graph which reflects the intrinsic geometry 
structure of XP . Then we propose a novel regularized semi-supervised 
classification algorithm, in which the regularization term is based on the 
modified Graph Laplacian. By redefining the Graph Laplacian, we can adjust 
and optimize the decision boundary using the labeled examples. The new 
algorithm combines the benefits of both unsupervised and supervised learning 
and can use unlabeled and labeled examples effectively. Encouraging 
experimental results are presented on both synthetic and real world datasets. 

1   Introduction 

The problem of learning from labeled and unlabeled examples has attracted 
considerable attention in recent years. It  can be described as follows:  with l  labeled 

examples l
iii yxM 1},{ ==  drawn from an unknown probability distribution YXP ×  and 

u  unlabeled examples ul
ljjx +
+= 1}{  drawn from the marginal distribution XP  of YXP × , 

how to learn YXP ×  by exploiting the marginal distribution XP ? It is also known as 

semi-supervised learning, and a number of algorithms have been proposed for it, 
including Co-training [6], random field models [7,8] and graph based approaches [9, 
10].  

However, learning from examples has been seen as an ill-posed inverse problem 
[11], and regularizing the inverse problem means finding a meaning stable solution, 
so in this paper we focus on regularization approaches. Measure based regularization 
[12] assumes that two points connected by a line going through high density region 
should have the same label. Based on this assumption, the regularizer is weighted 
with data density. The idea of information regularization [13] is that labels should not 
change too much in regions where marginal density is high, so regularization penalty 
that links marginal to the conditional distribution is introduced, and it is expressed in 
terms of mutual information );( yxI  as a measure of label complexity. Both of the 
above two methods take density into consideration, and can get the decision boundary 
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that lies in the region of low density in 2D example. However, it is difficult to apply 
them in high-dimensional real world data sets.  

Manifold regularization [1-4] assumes that two points close in the input space 
should have the same label, and exploits the geometry of the marginal distribution to 
incorporate unlabeled examples within a geometrically motivated regularization term. 
However, after incorporating an additional regularization term, there are two 
regularization parameters. It not only makes it difficult to find a solution, but needs 
improvement in theory. In addition, how to choose appropriate values for 
regularization parameters is a new problem.  

In this paper, we first define the label information graph, and then incorporate it 
with neighborhood graph. Based on modified Graph Laplacian regularizier, we 
propose a novel regularized semi-supervised classification algorithm. There is only 
one regularization parameter reflecting the tradeoff between the Graph Laplacian and 
the complexity of solution. The labeled examples can be used to redefine the Graph 
Laplacian and further to adjust and optimize the decision boundary. Experimental 
results show that our algorithm can use unlabeled and labeled examples effectively 
and is more robust than Transductive SVM and LapSVM. 

This paper is organized as follows. Section 2 briefly reviews Graph Laplacian and 
semi-supervised learning assumption. In section 3, we define label information graph 
with labeled examples and propose the regularized semi-supervised classification 
algorithm. Experimental results on synthetic and real world data are shown in section 
4, followed by conclusions in section 5. 

2   Related Works 

2.1   Graph Laplacian 

Graph Laplacian [5] has played a crucial role in several recently developed algorithms 
[14,15], because it approximates the natural topology of data and is simple to compute 
for enumerable based classifiers. Let’s consider a neighborhood graph ),( EVG =  

whose vertices are labeled or unlabeled example points },,,{ 21 ulxxxV +=  and 

whose edge weights ul
jiijW +
=1,}{  represent appropriate pairwise similarity relationship 

between examples. The neighborhood of jx can be defined as those examples which 

are closer than ε  or the k nearest neighbors of jx . To ensure that the embedding 

function f  is smooth, a natural choice is to get empirical estimate )(GI , which 

measures how much f varies across the graph: 

+

=
−=

ul

ji
ijji

ji
ij

Wxfxf
W

GI
1,

2

,

))()((
2

1
)(  

(1) 

where 
ji

ijW
,

2  is normalizing factor, so that 1)(0 ≤≤ GI .  
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Defining T
ulxfxff )](,,([ˆ

1 += , and WDL −=  as Graph Laplacian matrix, 

where D is diagonal matrix given by 
+

=
=

ul

1j
ijii WD , )(GI  can be rewritten as: 

fLf
W

GI T

ji
ij

ˆˆ
2

1
)(

,

=  
(2) 

2.2   Semi-supervised Learning Assumptions 

In the semi-supervised learning framework, the marginal distribution XP  is unknown, 

so we must get empirical estimates of XP  using a large number of unlabeled 

examples and then constrain the conditional )|( xyp  with a few labeled examples. 

However, there is no identifiable relation between the XP  and the conditional 

)|( xyp , so the relationship between them must be assumed. Manifold 

regularization[1,2] assumes that two points that are close in the input space should 
have the same label. In other words, the conditional probability distribution )|( xyp  

varies smoothly along the geodesics in the intrinsic geometry of XP .  

3   ReguSCoM: Regularized Semi-supervised Classification on 
Manifold 

3.1   Our Motivation 

We have noticed that the knowledge of the joint probability distribution ),( yxp  is 

enough to achieve perfect classification in supervised learning. We divide the process 
of semi-supervised learning into two steps. Firstly we get the empirical estimates of 
the marginal distribution XP  using both labeled and unlabeled examples and estimate 

)|(ˆ xyp according to the information carried about the distribution of labels. 

Secondly, we adjust )|(ˆ xyp  to )|( xyp  using a few labeled examples and then get 

)()|(),( xpxypyxp = . The first step can be considered as semi-supervised 

classification, while the second step is supervised learning. 
We have assumed that if two points Xxx ∈21,  are close in the input space, then 

the conditional )|( 1xyp  and )|( 2xyp  are near in intrinsic geometry of XP . In 

manifold regularization [1] this assumption is represented by adjacency matrix, i.e., 

edge weights ul
jiijW +
=1,}{ . However, this adjacency matrix doesn’t take into 

consideration the information carried by labeled examples. The regularization term 
)(GI , especially for binary case classifiers, is proportional to the number of separated 

neighbors, that is, the number of connected pairs that are classified differently by 
decision boundary. Therefore for labeled examples ix  and jx , if they are of the same 
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label, they should not be separated by the decision boundary, so we can redefine the 
relationship between ix  and jx  by strengthening it. If ix  and jx  have the different 

labels, we can weaken it. 

3.2   Definition of Label Information Graph 

In the manifold learning, one of the key assumptions is that the data lie on a low 
dimensional manifold M  and this manifold can be approximated by a weighted 
graph constructed with all the labeled and unlabeled examples. So the performance of 
the learning algorithm significantly depends on how the graph is constructed.  

We consider all the sample points },,,{ 21 ulxxx + , including both the labeled and 

unlabeled examples. When the support of XP  is a compact submanifold M , the 

geometry structure can be approximated using the Graph Laplacian with both labeled 
and unlabeled examples. The Least Squares algorithm solves the problem with the 

squared loss function 
==

−=
l

i
ii

l

i
ii xfyfyxV

1

2

1

))((),,( , which is based on the 

minimizing the error on the labeled examples. It is important to observe that  

=

==

−−−=

−−−≥−−

l

ji
jiji

l

ji
jjii

l

i
ii

yyxfxf

xfyxfyxfyl

1,

2

1,

2

1

2

))())()(((

)))(())((())(()1(2

 

(3) 

If 0))((
1

2 →−
=

l

i
ii xfy , then 

0))())()(((
,

2 →−−−
=

l

iji
jiji yyxfxf  

(4) 

So if δ<− ji yy , then ε<− )()( ji xfxf , where 0,,0, >→ εδεδ and .  

We define )()( ulul +×+  matrix J  as follows. 

≥−≤−

<−≤

=

otherwise

yyandljiifWor

yyandljiifWor

J jiij

jiij

ij

,0

,,0

,,1

δ

δ

 

(5) 

This can be seen as a label information graph ),( EVG ′=′ , whose vertices are the 

labeled or unlabeled example points },,,{ 21 ulxxxV +=  and whose edge weights ijJ  

represent appropriate pairwise label relationship between labeled examples  i  and j . 

According to the label information graph, the right of the equation 3 can be 
rewritten as follows: 
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==

−=−−−
ul

ji
ijji
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ji
jiji Jxfxfyyxfxf

1,

2

1,

2 ))()(())())()(((  
(6) 

This term can be seen as label information carried by labeled examples and 
penalizes classifiers that separate the examples having the same labels. 

Remark: In graph G′ , weight ijJ  just represents appropriate pairwise label 

relationship between i  and j . If labeled example  i  has the same label as j , they 

should not be separated by decision boundary. This relationship must not be 
represented only by element ijJ . For example, for large scale problems, this 

relationship ijJ  can be represented by a geodesic path jkkkik n
JJJ ,,

211
, which can be 

computed by finding a shortest path ( jkkki n ,,,, 21 ) from  i  to j  in graph G′ . 

3.3   Classifier Based on the Modified Graph Laplacian 

In this section, we consider the problem of using the manifold structure to improve 
the performance of the classifier f , where YMXf →∈: . In most situations, the 

manifold is approximated by a graph constructed with all examples and f is defined 

on the vertices of the graph, so a stabilizer is necessary. An important class of 
stabilizers is squares of norms on reproducing kernel Hilbert spaces (RKHS). The 

squared norm 
2

K
f  is used as stabilizer to penalize high oscillation of various types. 

The geometry structure of the marginal distribution XP  is incorporated as a 

regularization term based on the neighborhood graph [1,2]. In order to exploit the 
label information, equation 6 is also introduced as a penalty term based on the label 
information graph. 

The neighborhood graph and the label information graph have the same vertices 
and can be incorporated together. So the optimization problem has the following 
objective function: 

fLff

JWxfxfffH

a
T

K

ul

ji
ijijjiKHf

ˆˆ

)())()((][min

2

1,

22

+=

+−+=
+

=∈

γ

γ
 

(7) 

where )( JWDLa +−= , D is diagonal matrix given by 
+

=
+=

ul

1j

)( ijijii JWD  and γ  

is a regularization parameter that controls the complexity of the clustering function. It 
has the same form as unsupervised regularization spectral clustering [1] The 
existence, uniqueness and an explicit formula describing the solution of this 
minimizing problem are given by the Representer theorem. Then the solution of the 
problem has the unique solution: 
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+

=
=

ul

i
ii xxKxf

1

),()( α  
(8) 

where α  can be solved by an eigenvalue method and the regularization parameter γ  
can be selected by the approach of L-curve. For binary classification problem, 
classifier function f  is constant within the region of input space associated with a 

particular class, that is }1,1{−=Y . 

3.4   Learning Algorithm 

The crux of the proposed learning algorithm is to redefine the Graph Laplacian based 
on the clustering hypothesis and then adjust the semi-supervised classification with 
the labeled examples.  

The complete semi-supervised learning algorithm (ReguSCoM) consists of the 
following five steps. 

Step 1. Construct adjacency graph ),( EVG =  with )( ul +  nodes using k  nearest 

neighbors. Choose edge weights ijW  with binary or heat kernel weights, construct 

label information graph ),( EVG ′=′  , and then compute the Graph Laplacian aL . 

Step 2. Regularized semi-supervised classification. At this step, we use the objective 
function given by equation 7. 

Step 3. Label the unlabeled examples. Firstly, we select one labeled example from 
l
iii yxM 1},{ == . Without loss of generality, we select },{ 11 yx , so all the examples 

clustering with },{ 11 yx  will have the same label 1y  as },{ 11 yx , while the others 

will have the label different from 1y . So for every Myx ii ∈},{ , we get a label iŷ . 

Step 4. Compute 
=

−
l

i
ii yy

1

2ˆ . Stop if  
=

≤−
l

i
ii thresholdyy

1

2ˆ , otherwise, select the 

i th labeled example where ii
i

yyi ˆmaxarg −= . 

Step 5. Adjust the weights ijJ . For the selected i th example, we can find the labeled 

examples j  satisfying }1,ˆ,{ ljyyyy jjij ≤≤≤−≤− εδ , and then adjust the 

weight ijJ  and re-compute the matrix aL . Goto step 2. 

4   Experimental Results 

4.1   Synthetic Data 

We first conducted experiments on two moons dataset. The dataset contains 200 
unlabeled sample points, and all the labeled points are sampled from the unlabeled 
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points randomly. Figure 1 (left) shows the results of unsupervised manifold 
regularization clustering without labeled points, where the curves represent the 
decision boundary. After adjusted by one labeled point for each class using 
Regularized Semi-supervised Classification on manifold (ReguSCoM) proposed in 
this paper, the decision boundary has little change as shown in Figure 1 (right). The 
reason lies in that this dataset has regular geometry structure and the manifold 
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Fig. 1. The result of unsupervised regularization clustering and Regularized Semi-supervised 
Classification with only one labeled points for each class on two moons dataset 
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Fig. 2. Regularized Semi-supervised classification on two moons dataset added with Guassian 
noise and 0, 1, 3, and 5 labeled points respectively 
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regularization clustering can find this structure. The Graph Laplacian based algorithm 
can implement perfectly the cluster assumption that the decision boundary does not 
separate the neighbors. 

Figure 2 shows the results of semi-supervised classification using ReguSCoM 
algorithm on two moons dataset with Guassian noise and 0, 1, 3, and 5 labeled points 
added respectively. With 0 labeled points it can be regarded as unsupervised manifold 
regularization clustering. From the figure, it is clear that unsupervised classification 
failed to find the optimal decision boundary. The reason is that the dataset loses the 
regular geometry structure when noise added. With more labeled examples added, the 
decision boundary can be adjusted appropriately. With only 5 labeled points for each 
class, the proposed algorithm can find the optimal solution shown in Figure 2. 

4.2   Real World Datasets 

In this section, we will show the experimental results on two real world datasets, 
USPS dataset and Isdolet dataset from UCI machine learning repository. We 
constructed the graph with 6 nearest-neighbors and used the binary weight of the edge 
of the neighborhood graph, that is 10 orWij = .  
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Fig. 3.  Mean error rates with the number of labeled examples at the precision-recall breakeven 
points on Isolet (left) and USPS (right) dataset 
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Fig. 4. Comparing the error rate of ReguSCoM, Transductive SVM, and LapSVM at the 
precision-recall breakeven points 
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We first used Isolet database of letters of the English alphabet spoken in isolation. 
We chose isolet1+2+3+4 dataset of 6238 examples and considered the task of binary 
classifying one of spoken letter from another. Figure 3 (left) shows the mean error 
rates with the increasing of number of labeled examples using ReguSCoM.  

We also show the results of 45 binary classification problems using USPS dataset. 
We used the first 400 images for each handwritten digit, and processed using PCA to 
100 dimensions as in [1]. Figure 3 (right) shows that the mean error rates decrease 
with the increase of number of labeled examples. We compare the error rate of 
ReguSCoM with Transductive SVM and LapSVM at the precision-recall breakeven 
points in the ROC curves, as shown in Figure 4. We choose Polynomial kernel of 
degree 3, as in [1]. Experimental results show clearly that ReguSCoM is of higher 
accuracy than Transductive SVM and LapSVM. 

5   Conclusions 

Learning from examples has been seen as an ill-posed inverse problem and semi-
supervised learning is to benefit from a large number of unlabeled examples and a 
few labeled examples. We propose a novel regularized semi-supervised classification 
algorithm on manifold (ReguSCoM) in this paper. The regularization term not only 
represents the intrinsic geometry structure of XP  that implies the information of 

classification, but reflects the label information carried by labeled examples. Our 
method yields encouraging experimental results on both synthetic data and real world 
datasets and the results demonstrate effective use of both unlabeled and labeled data. 
In future work, we will explore the link to other semi-supervised leaning algorithms 
in theory and will investigate other alternative training approaches based on manifold 
learning to improve performance of semi-supervised learning algorithm. To attack 
nonlinear ill-posed inverse problem will also be part of our future work. 
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Abstract. Feature extraction is an important preprocessing step which is encoun-
tered in many areas such as data mining, pattern recognition and scientific visu-
alization. In this paper, a new method for sparse feature extraction using local
manifold learning is proposed. Similarities in a neighborhood are first computed
to explore local geometric structures, producing sparse feature representation.
Based on the constructed similarity matrix, linear dimension reduction is applied
to enhance similarities among the elements in the same class and extract optimal
features for classification performances. Since it only computes similarities in a
neighborhood, sparsity in the similarity matrix can give computational efficiency
and memory savings. Experimental results demonstrate superior performances of
the proposed method.

1 Introduction

Feature extraction is an important preprocessing step which is encountered in many
areas such as data mining, pattern recognition and scientific visualization [1]. Discov-
ering intrinsic data structure embedded in high dimensional data can give a low di-
mensional representation preserving essential information in the original data. While
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Multi-
dimensional Scaling (MDS) are traditional linear dimension reduction methods [1, 2, 3],
recently nonlinear dimension reduction methods utilizing local geometric structures
have been proposed [4, 5]. Isomap first connects paths between each data point and
its neighbors and then extends them by searching for the shortest paths for each pair
of data points [4]. Based on the constructed distance matrix, classical MDS finds low
dimensional representation to preserve geodesic distances among data points. However,
Isomap does not give optimal dimension reduction for classification, since it does not
consider class information. Also some limitations in Isomap exist in its assumption that
the data is connected well enough to define low dimensional geometry. But in many real
situations, for example, if the data has separated classes, a small number of neighbors
will not connect classes and a large number of neighbors would fail to capture nonlinear

� This work was supported by the Korea Research Foundation Grant funded by Korea Govern-
ment (MOEHRD, Basic Research Promotion Fund) (KRF-2005-204-D00046).
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structure in the data. MDS at the second stage of Isomap does not give an efficient way
to compute low dimensional representation for a new data point. Moreover, MDS may
not give optimal dimension reduction for classification.

In this paper, we propose a new approach which combines a linear dimension reduc-
tion and local manifold learning through the similarity-based sparse feature representa-
tion. We learn local manifolds from the neighborhood configuration. However instead
of searching for shortest paths for each pair of data points, we apply a linear dimension
reduction method for the similarity matrix reflecting local manifolds. Local similarity
learning gives the effects of unfolding nonlinear structures in the data and a linear di-
mension reduction finds a optimal transformation which maximizes similarities within
each classes and minimizes similarities between classes.

The rest of the paper is organized as follows. In Section 2, a new method for similarity-
based feature extraction using local manifold learning is presented. In Section 3, based
on the sparse similarity matrix a linear dimension reduction method, Minimum Squared
Error Solution (MSE), is applied. Experimental results in Section 4 demonstrate the per-
formance of the proposed method.

2 Similarity-Based Feature Extraction Using Local Manifold
Learning

Throughout the paper, we assume that the data is given with known class labels and the
problem is to assign a class label to new samples, i.e., the goal is classification. First
a similarity matrix based on the local geometric structure in the data is constructed.
When a natural similarity measure between data points is available, the most similar
k neighbors for each data objects are kept as actual neighbors and relations with the
other remaining points are disregarded, i.e. their similarities are set as zeros. Also a
distance measure can be converted to a similarity measure. As in Isomap, the distance
dij between two points ai and aj is defined as ‖ai − aj‖ if one is among the k-nearest
neighbors of the other or within the ε-radius neighborhood, otherwise dij = ∞. Simi-
larity is defined from the distance by a converter function f as

sij = f(dij).

What is required for the converter function f is{
dij ≤ dik ⇔ f(dij) ≥ f(dik),
0 = f(∞). (1)

The conditions in (1) imply that all similarities are nonnegative and the infinite distance
is mapped to zero similarity. Also similarity is measured in inverse order of distances.

For a data set A = {a1, · · · , an} and the similarity matrix

S = [sij ]1≤i,j≤n = [s1, · · · , sn], (2)

each column si = [s1i, · · · , sni]T represents the similarities between a data point ai

and the others. Similarities among nearby points are emphasized while connections
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with points resided in the far distance are disregarded. Taking the column si as a new
feature vector gives a sparse feature representation for ai.

Nearby points ai and aj which belong to the same class will share a majority of
neighbors and therefore si and sj show similar patterns. However, nearby points can
belong to different classes and some points in the same class may not be nearer than the
points in the different classes as in the cases of nonlinearly structured data. Hence based
on the new feature representation, we perform linear dimension reduction in order to
enhance similarities among the elements in the same class and decrease them between
elements belonging to different classes as discussed in Section 3.

Now we discuss several properties of the proposed method addressing detailed im-
plementations for the optimal values for k or ε, and a converter function f . The re-
quirements in (1) for a converter function f impose the inverse relationship between
distance measure and similarity measure. As examples, these two functions can be used
for a converter function,

sij = s({ai, aj}) =
1

(1 + α‖ai − aj‖)β
, α, β > 0, (3)

sij = s({ai, aj}) = exp(−‖ai − aj‖2
2λ2

), λ ∈ R. (4)

The purpose of the parameterα in (3) is the normalization of distance measure. Let τ be
the average of distances from each data point to the nearest neighbor. The inverse of τ
was used for α in our experiments. In that case, the remaining distances are represented
as a ratio of τ .

The optimal value for k should be chosen to be large enough so that the majority in
the k-neighbors of data points is the members of the same class as the given point, and
at the same time it should be small enough to capture nonlinear geometric structure in
the data. In our implementation, k was chosen as follows. For each data point ai, let ti
is the number of data points which have the same class labels as ai and are nearer to ai

than any data points belonging to the different classes. Then k is determined as

k =
1
r

r∑
i=1

⎛⎝ 1
ni

∑
j∈Ni

tj

⎞⎠ , (5)

where Ni is the index set of data items in the class i and ni is the number of elements
in the class i. Eq. (5) computes the average number of the nearest neighbors which
has same class labels as each data point. The number k chosen by Eq. (5) increases
similarities among data points within each class and also decreases similarities of data
points belonging to different classes. Cross-validation also can be used to determine the
optimal values for any parameters.

3 Linear Dimension Reduction Based on the Similarity Feature
Vectors

For the similarity matrix constructed in Section 2, any linear dimension reduction
methods can be applied. In this section, we apply Minimum Squared Error Solution
(MSE) [1] for the constructed sparse feature vectors.
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Table 1. Class distribution in the letter image recognition data

Class A B C D E F G H I J K L M
no. data 789 766 736 805 768 775 773 734 755 747 739 761 792

Class N O P Q R S T U V W X Y Z
no. data 783 753 803 783 758 748 796 813 764 752 787 786 734

Let us denote a data set A as

A = {a1, · · · , an} = {aj
i | 1 ≤ i ≤ r, 1 ≤ j ≤ ni}, (6)

and the similarity vectors constructed in Section 2 as {s1, · · · , an}, where each class i
(1 ≤ i ≤ r) has ni elements {aj

i | 1 ≤ j ≤ ni} and the total number of data is n =∑r
i=1 ni. Minimum Squared Error Solution (MSE) finds a set of linear discriminant

functions {gi}(1≤i≤r),

gi(z) = w0i + wT
i z =

{
1, if z ∈ class i
0, otherwise

which minimize the least squares error∥∥∥∥∥∥∥
⎡⎢⎣1 sT

1
...

...
1 sT

n

⎤⎥⎦[w01 · · · w0r

w1 · · · wr

]
−

⎡⎢⎣ y11 · · · y1r

...
...

yn1 · · · ynr

⎤⎥⎦
∥∥∥∥∥∥∥

2

F

≡ ‖PW − Y ‖2F (7)

where yji = 1 if aj belongs to the class i, and 0 otherwise [1]. The MSE solution of
the problem (7) can be obtained by W = P+Y , where P+ is the pseudo-inverse1 of
P [6]. For any new data point z and a similarity vector u = [s(a1, z), · · · , s(an, z)]T ,
z is assigned to the class i if for all j 	= i

gi(u) > gj(u) where [g1(u), · · · , gr(u)] = [1, s(a1, z), · · · , s(an, z)]W.

We call this approach as sparse MSE. Since similarities are computed in a neighbor-
hood, a similarity matrix S is very sparse. With a sparse similarity matrix S, computa-
tions utilizing sparsity can be used to save computational complexities [7, 8].

4 Experimental Results

For the experiment, letter image recognition data was downloaded from UCI Machine
Leaning Repository. From the capital alphabet letters of black-and-white rectangular
pixel images, 16 integer attributes were extracted [9]. The data distribution is described
in Table 1. From the 26 alphabets, three data sets were composed as shown in Table 2.
Each class was randomly split to the training and test sets in the ratio of 3:2 and the

1 When the Singular value decomposition (SVD) of P is P = UΣV T , the pseudo-inverse of P
is obtained as V Σ+UT .
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Table 2. Prediction accuracies by LDA, MSE and sparse MSE, and sparsity in a similarity matrix.
The percentage of nonzero components in the similarity matrix S in sparse MSE is shown.

Sparse MSE
LDA MSE Prediction accuracy Sparsity

k-neighbors ε-radius k-neighbors ε-radius
Data 1 ={A,E,I,O,U} 94.5 % 91.4 % 99.2 % 99.4 % 3.6 % 2.1 %
Data 2={A,R,U,Q,M} 94.1 % 90.4 % 97.4 % 98.7 % 3.2 % 1.8 %
Data 3={P,K,Z,Q,D} 94.4 % 91.0 % 98.3 % 99.0 % 2.9 % 3.0 %

mean prediction accuracies by 10 times random splitting to the training and test sets
were computed as a performance measure.

Prediction accuracies by sparse MSE as well as LDA and MSE are shown in Table
2. In the reduced dimensional spaces by each method, the 1-NN classifier was used for
classification. For sparse MSE, the converter function in (3) was used. The value k for
the k-neighbors was chosen as discussed in (5) and cross-validation was used to deter-
mine the optimal values for other parameters. The percentage of nonzero components
of the similarity matrix S in sparse MSE is also reported in Table 2. While the similarity
matrix constructed by local manifold learning contained only nonzero components of
about 4 % of the total components, sparse MSE improved classification performance
greatly compared with LDA and MSE.

Note that the similarity matrix can be learned in various ways. Instead of converting
Euclidean distances to similarities, similarities between data points can be defined di-
rectly without using distance measures. Hence even when the data is not represented as
the vector space representation, the proposed method can be applied for any similarity
measures.
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Abstract. We examine a new approach to building decision tree by in-
troducing a geometric splitting criterion, based on the properties of a
family of metrics on the space of partitions of a finite set. This crite-
rion can be adapted to the characteristics of the data sets and the needs
of the users and yields decision trees that have smaller sizes and fewer
leaves than the trees built with standard methods and have comparable
or better accuracy.

Keywords: decision tree, generalized conditional entropy, metric, metric
betweenness.

1 Introduction

Decision trees constitute one of the most popular classification techniques in
data mining and have been the subject of a large body of investigation. The
typical construction algorithm for a decision tree starts with a training set of
objects that is split recursively. The successive splits form a tree where the sets
assigned to the leaves consist of objects that belong almost entirely to a single
class. This allows new objects that belong to a test set to be classified into a
specific class based on the path induced by the object in the decision tree which
joins the root of the tree to a leaf.

Decision trees are useful classification algorithms, even though they may
present problems related to overfitting and excessive data fragmentation that
results in rather complex classification schemes.

A central problem in the construction of decision trees is the choice of the
splitting attribute at each non-leaf node. We show that the usual splitting cri-
terion (the information gain ratio, or the similar measure derived from the Gini
index) are special cases of a more general approach. Furthermore, we propose a
geometric criterion for choosing the splitting attributes that has the advantage
of being adaptable to various data sets and user needs.
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2 Partition Entropies

The betweenness relation defined by the metric space (S, d) is a ternary relation
R on the set S defined by (s, u, t) ∈ R if d(s, u) + d(u, t) = d(s, t). We denote
the fact that (s, u, t) ∈ R by [sut] and we say that u is between s and t.

We explore a natural link that exists between random variables and parti-
tions of sets that allows the transfer of certain probabilistic and information-
theoretical notions to partitions of sets.

Let PART(S) be the set of partitions of a set S. The class of all partitions of
finite sets is denoted by PART. The one-block partition of S is denoted by ωS .
The partition {{s} | s ∈ S} is denoted by ιS . If π, π′ ∈ PART(S), then π ≤ π′

if every block of π is included in a block of π′. Clearly, for every π ∈ PART(S)
we have ιS ≤ π ≤ ωS.

π′ covers π if π ≤ π′ and there is no partition θ ∈ PART(S) such that
π < θ < π′. This fact is denoted by π ≺ π′. It is known [1] that π ≺ π′ if and
only if π′ is obtained from π by fusing two blocks of this partition into a new
block.

For every two partitions π, σ both inf{π, σ} and sup{π, σ} in the partial or-
dered set (PART(S),≤) exist and are denoted by π ∧ σ and π ∨ σ, respectively.
It is well known that (PART(S),≤) is an upper semimodular lattice.

If S, T are two disjoint and nonempty sets, π ∈ PART(S), σ ∈ PART(T ),
where π = {A1, . . . , Am}, σ = {B1, . . . , Bn}, then the partition π + σ is the
partition of S ∪ T given by π + σ = {A1, . . . , Am, B1, . . . , Bn}.

Whenever the “+” operation is defined, then it is easily seen to be associative.
In other words, if S,U, V are pairwise disjoint and nonempty sets, and π ∈
PART(S), σ ∈ PART(U), τ ∈ PART(V ), then π+(σ+ τ) = (π+σ)+ τ . Observe
that if S,U are disjoint, then ιS + ιU = ιS∪U . Also, ωS + ωU is the partition
{S,U} of the set S ∪ U .

If π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} are partitions of two arbitrary sets
S,U , respectively, then we denote the partition {Bi×Cj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of S × U by π × σ. Note that ιS × ιU = ιS×U and ωS × ωU = ωS×U .

Let π ∈ PART(S) and let C ⊆ S. Denote by πC the “trace” of π on C given
by πC = {B ∩ C|B ∈ π such that B ∩ C 	= ∅}. Clearly, πC ∈ PART(C); also, if
C is a block of π, then πC = ωC .

A subset T of S is pure relative to a partition π ∈ PART(S) if πT = ωT . In
other words, T is pure relative to a partition π if T is included in some block of π.

In [2] the notion of β-entropy of a probability distribution p = (p1, . . . , pn)
was defined as:

Hβ(p) =
1

21−β − 1

(
m∑

i=1

pβ
i − 1

)
,

where p1 + · · ·+ pn = 1 and pi ≥ 0 for 1 ≤ i ≤ n. In the same reference it was
observed that Shannon’s entropy H(p) can be obtained as limβ→1 Hβ(π).

In [3] we offered a new interpretation of the notion of entropy for finite distribu-
tions as entropies of partitions of finite sets. Our approach took advantage of the
properties of the partial order of the lattice of partitions of a finite set and makes
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use of operations defined on partitions. We defined the Hβ entropy for β ∈ R,
β > 0 as a function Hβ : PART(S) −→ R≥0 that satisfies certain conditions. Un-
der these conditions, we have shown in [3] that if π = {B1, . . . , Bn} ∈ PART(S),
then

Hβ(π) =
1

21−β − 1

(
m∑

i=1

( |Bi|
|S|
)β

− 1

)
.

In the special case, when β → 1 we have:

Hβ(π) = −
m∑

i=1

|Bi|
|S| · log2

|Bi|
|S| .

Note that if |S| = 1, then PART(S) consists of a unique partition (ωS = ιS) and
Hβ(ωS) = 0. Moreover, for an arbitrary finite set S we have Hβ(π) = 0 if and
only if π = ωS .

These facts suggest that for a subset T of S the number Hβ(πT ) can be used
as a measure of the purity of the set T with respect to the partition π. If T is
π-pure, then πT = ωT and, therefore, Hβ(πT ) = 0. Thus, the smaller Hβ(πT ),
the more pure the set T is.

3 Conditional β-Entropy of Partitions and Metrics on
Partitions

The β-entropy defines naturally a conditional entropy of partitions. We note
that the definition introduced here is an improvement over our previous definition
given in [3]. Starting from conditional entropies we will be able to define a family
of metrics on the set of partitions of a finite set and study the geometry of these
finite metric spaces.

Definition 1. Let π, σ ∈ PART(S) and let σ = {C1, . . . , Cn}. The β-conditional
entropy is the function Hβ : PART(S)2 −→ R≥0 defined by:

Hβ(π|σ) =
n∑

j=1

( |Cj |
|S|
)β

Hβ(πCj ),

for π, σ ∈ PART(S).

Observe that Hβ(π|ωS) = Hβ(π) and that Hβ(ωS |π) = Hβ(π|ιS) = 0 for every
partition π ∈ PART(S). Also, we can write:

Hβ(ιS |σ) =
n∑

j=1

( |Cj |
|S|
)β

Hβ(ιCj ) =
1

21−β − 1

⎛⎝ 1
|S|β−1

−
n∑

j=1

( |Cj |
|S|
)β
⎞⎠ , (1)

where σ = {C1, . . . , Cn}. The conditional entropy can be written explicitly as:

Hβ(π|σ) =
1

21−β − 1

m∑
i=1

n∑
j=1

(( |Bi ∩Cj |
|S|

)β

−
( |Cj |
|S|
)β
)
, (2)

where π = {B1, . . . , Bm}.
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Theorem 1. Let π, σ be two partitions of a finite set S. We have Hβ(π|σ) = 0
if and only if σ ≤ π.

It is possible to prove that for every π, σ ∈ PART(S) we have:

Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ) = Hβ(σ|π) + Hβ(π),

which generalizes a well-known property of Shannon’s entropy.
The next result shows that the β-conditional entropy is dually monotonic

with respect to its first argument and is monotonic with respect to its second
argument.

Theorem 2. Let π, σ, σ′ ∈ PART(S), where S is a finite set. If σ ≤ σ′, then
Hβ(σ|π) ≥ Hβ(σ′|π) and Hβ(π|σ) ≤ Hβ(π|σ′).

Since Hβ(π) = Hβ(π|ωS) it follows that if π, σ ∈ PART(S), then Hβ(π) ≥
Hβ(π|σ).

The next statement that follows from the previous theorem is useful in Sec-
tion 5.

Corollary 1. Let ξ, θ, θ′ be three partitions of a finite set S. If θ ≥ θ′, then

Hβ(ξ ∧ θ)−Hβ(θ) ≥ Hβ(ξ ∧ θ′)−Hβ(θ′).

The behavior of β-conditional entropies with respect to the “addition” of parti-
tions is discussed in the next statement.

Theorem 3. Let S be a finite set, π, θ be two partitions of S, where θ =
{D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

( |Di|
|S|
)β

Hβ(πDi |σi).

If τ = {F1, . . . , Fk}, σ = {C1, . . . , Cn} be two partitions of S, and let πi ∈
PART(Fi) for 1 ≤ i ≤ k. Then,

Hβ(π1 + · · ·+ πk|σ) =
k∑

i=1

( |Fi|
|S|
)β

Hβ(πi|σFi) + Hβ(τ |σ).

In [4] L. de Mántaras proved that Shannon’s entropy generates a metric d :
PART(S)2 −→ R2 given by d(π, σ) = H(π|σ) + H(σ|π), for π, σ ∈ PART(S).
We extend his result to a class of metrics that can be defined by β-entropies,
thereby improving our earlier results [5].

Our central result follows.

Theorem 4. The mapping dβ : PART(S)2 −→ R≥0 defined by: dβ(π, σ) =
Hβ(π|σ) + Hβ(σ|π) for π, σ ∈ PART(S) is a metric on PART(S).

It is clear that dβ(π, ωS) = Hβ(π) and dβ(π, ιS) = H(ιS |π).
The behavior of the distance dβ with respect to partition addition is discussed

in the next statement.
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Theorem 5. Let S be a finite set, π, θ be two partitions of S, where θ =
{D1, . . . , Dh}. If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

dβ(π, σ1 + · · ·+ σh) =
h∑

i=1

( |Di|
|S|
)β

dβ(πDi , σi) + Hβ(θ|π).

4 The Metric Geometry of the Partition Space

The distance between two partitions can be expressed using distances relative
to the total partition or to the identity partition. Indeed, we have the following
result:

Theorem 6. Let π, σ ∈ PART(S) be two partitions. We have:

dβ(π, σ) = 2 · dβ(π ∧ σ, ωS)− dβ(π, ωS)− dβ(σ, ωS)
= dβ(ιS , π) + dβ(ιS , σ)− 2 · dβ(ιS , π ∧ σ).

From this result it follows that if θ ≤ τ and we have either dβ(θ, ωS) = dβ(τ, ωS)
or dβ(ιS , θ) = dβ(ιS , τ), then θ = τ for every θ, τ ∈ PART(S).

Theorem 7. Let π, σ ∈ PART(S). The following statements are equivalent:

1. σ ≤ π;
2. we have [σ, π, ωS ] in the metric space (PART(S), dβ);
3. we have [ιS , σ, π] in the metric space (PART(S), dβ).

Metrics generated by β-conditional entropies are closely related to lower valua-
tions of the upper semi-modular lattices of partitions of finite sets. This connec-
tion was established in [6] and studied in [7, 8, 9].

A lower valuation on a lattice (L,∨,∧) is a mapping v : L −→ R such that
v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) for every π, σ ∈ L. If the reverse inequality is
satisfied, that is, if v(π ∨ σ) + v(π ∧ σ) ≤ v(π) + v(σ) for every π, σ ∈ L, then v
is referred to as an upper valuation.

If v ∈ L is both a lower and upper valuation, that is, if v(π ∨ σ) + v(π ∧ σ) =
v(π) + v(σ) for every π, σ ∈ L, then v is a valuation on L. It is known [6] that
if there exists a positive valuation v on L, then L must be a modular lattice.
Since the partition lattice of a set is an upper-semimodular lattice that is not
modular ([6]) it is clear that positive valuations do not exist on partition lattices.
However, lower and upper valuations do exist, as shown next:

Theorem 8. Let S be a finite set. Define the mappings vβ : PART(S) −→ R
and let wβ : PART(S) −→ R be by vβ(π) = dβ(ιS , π) and wβ(π) = dβ(π, ωS),
respectively, for π ∈ PART(S). Then, vβ is a lower valuation and wβ is an upper
valuation on the lattice (PART(S),∨,∧).
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5 Metrics and Data Mining

We begin by defining the notion of object system as a triple S = (S,H,C), where
S is a finite set referred to as the training set, H = {A1, . . . , An} is a finite set
of mappings of the form Ai : S −→ Di called the features of S for 1 ≤ i ≤ n, and
C : S −→ D is the classification function. The sets D1, . . . , Dn are supposed
to contain at least two elements and they are referred as the domains of the
attributes A1, . . . , An.

A set of attributes X , X ⊆ H generates a mapping ℘X : S −→ ⋃′{Di | Ai ∈
X}, defined by ℘X(t) = {(A(t), A) | A ∈ X} for every t ∈ S, where

⋃′ denotes
the disjoint union of a family of sets; we refer to ℘X as the projection on X of S.
Projections define partitions on the set of objects in a natural manner; namely
if X is a set of attributes, a block Bv of the partition πX is a non-empty set of
the form {t ∈ S|℘X(t) = v}, where v is an element of the range of ℘X .

To introduce formally the notion of decision tree we start from the notion of
tree domain. A tree domain is a non-empty set of sequences D, over the set of
natural numbers N such that every prefix of a sequence s ∈ D also belongs to
D, and for every m ≥ 1, if (p1, . . . , pm−1, pm) ∈ D, then (p1, . . . , pm−1, q) ∈ D
for every q ≤ pm. The elements of D are called the vertices of D. The notions
of descendant and ancestor of a vertex have their usual definitions.

Let S be a finite set and let D be a tree domain. An S-tree is a function
T : D −→ P(S) such that T(λ) = S, and if u1, . . . , um are the descendants of a
vertex u, then the sets T(u1), . . . ,T(um) form a partition of the set T(u).

A decision tree for an object system S = (S,H,C) is an S-tree T, such that
if the vertex v has the descendants v0, . . . , vm, then there exists an attribute
A ∈ H (called the splitting attribute in v) such that {T(vi) | 1 ≤ i ≤ m} is the
partition πA

T(v).
Thus, each descendant vi of a vertex v corresponds to a value a of the attribute

A that was used as a splitting attribute in v. If λ = v1, v2, . . . , vk = u is the path
in T that was used to reach the vertex u, Ai1 , Ai2 , . . . , Aik−1 are the splitting
attributes in v0, v1, . . . , vk−1 and a1, a2, . . . , ak−1 are the values that correspond
to v2, . . . , vk, respectively, then we say that u is reached by the selection:

Ai1 = a1 ∧ · · · ∧Aik−1 = ak−1.

It is desirable that the leaves of a decision tree contain C-pure or almost C-
pure sets of objects. In other words, the objects assigned to a leaf of the tree
should, with few exceptions, have the the same value for the class attribute C.
This amounts to asking that for each leaf w of T we must have Hβ(πC

Sw
) as

close to 0 as possible. To take into account the size of the leaves note that the
collection of sets of objects assigned to the leafs is a partition κ of S and that
we need to minimize: ∑

w

( |Sw|
|S|
)β

Hβ(πC
Sw

),
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which is the conditional entropy H(πC |κ). By Theorem 1 we have H(πC |κ) = 0
if and only if κ ≤ πC , which happens when the sets of objects assigned to the
leafs are C-pure.

The construction of a decision tree Tβ(S) for an object system S = (S,H,C)
evolves in a top-down manner according to the following high-level description
of a general algorithm [10]. The algorithm starts with an object system S =
(S,H,C), a value of β and with an impurity threshold ε and it consists of the
following steps:

1. If Hβ(πC
S ) ≤ ε, then return T as an one-vertex tree; otherwise go to 2.

2. Assign the set S to a vertex v, choose an attribute A as a splitting attribute
of S (using a splitting attribute criterion to be discussed in the sequel) and
apply the algorithm to the object systems (Sa1 , H,C), . . . , (Sap , H,C), where
Sai = {t ∈ S | A(t) = ai} 	= ∅. Let T1, . . . ,Tp the decision trees returned for
the systems S1, . . . , Sp, respectively. Connect the roots of these trees to v.

Note that if ε is sufficiently small and if Hβ(πC
S ) ≤ ε, where S = T(u) is the

set of objects at a node u, then there is a block Qk of the partition πC
S that is

dominant in the set S. We refer to Qk as the dominant class of u.
Once a decision tree T is built it can be used to determine the class of a new

object t 	∈ S such that the attributes of the set H are applicable. If Ai1(t) =
a1, . . . , Aik−1(t) = ak−1, a leaf u was reached through the path v1, . . . , vk = u,
and a1, a2, . . . , ak−1 are the values that correspond to v2, . . . , vk, respectively,
then t is classified in the class Qk, where Qk is the dominant class at leaf u.

The description of the algorithm shows that the construction of a decision
tree depends essentially on the method for choosing the splitting attribute. We
focus next on this issue.

Classical decision tree algorithms make use of the information gain criterion
or the gain ratio to choose splitting attribute. These criteria are formulated using
Shannon’s entropy, as their designations indicate.

In our terms, the analogue of the information gain for a vertex w and an
attribute A is: Hβ(πC

Sw
)−Hβ(πC

Sw
|πA

Sw
). The selected attribute is the one that

realizes the highest value of this quantity. When β → 1 we obtain the information
gain linked to Shannon entropy. When β = 2 one obtains the selection criteria
for the Gini index using the CART algorithm [11].

The monotonicity property of conditional entropy shows that if A,B are two
attributes such that πA ≤ πB (which indicates that the domain of A has more
values than the domain of B), then Hβ(πC

Sw
|πA

Sw
) ≤ Hβ(πC

Sw
|πB

Sw
), so the gain

for A is larger than the gain for B. This highlights a well-known problem of
choosing attributes based on information gain and related criteria: these criteria
favor attributes with large domains, which in turn, generate bushy trees. To
alleviate this problem information gain was replaced with the information gain
ratio defined as:

Hβ(πC
Sw

)−Hβ(πC
Sw
|πA

Sw
)

Hβ(πA
Sw

)
,

which introduces the compensating divisor Hβ(πA
Sw

).
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We propose replacing the information gain and the gain ratio criteria by choos-
ing as splitting attribute for a node w an attribute that minimizes the distance
dβ(πC

Sw
, πA

Sw
) = Hβ(πC

Sw
|πA

Sw
) + Hβ(πA

Sw
|πC

Sw
). This idea has been developed by

L. de Mántaras in [4] for the metric d1 induced by Shannon’s entropy. Since one
could obtain better classifiers for various data sets and user needs using values
of β that are different from one, our approach is an improvement of previous
results.

Besides being geometrically intuitive, the minimal distance criterion has the
advantage of limiting both conditional entropies Hβ(πC

Sw
|πA

Sw
) and Hβ(πA

Sw
|πC

Sw
).

The first limitation insures that the choice of the splitting attribute will provide
a high information gain; the second limitation insures that attributes with large
domains are not favored over attributes with smaller domains.

Suppose that in the process of building a decision tree for an object system
S = (S,H,C) we constructed a stump of the tree T that has n leaves and that the
sets of objects that correspond to these leaves are S1, . . . , Sn. This means that
we created the partition κ = {S1, . . . , Sn} ∈ PART(S), so κ = ωS1 + · · ·+ ωSn .
We choose to split the node vi using as splitting attribute the attribute A that
minimizes the distance dβ(πC

Si
, πA

Si
). The new partition κ′ that replaces κ is

κ′ = ωS1 + · · ·+ ωSi−1 + πA
Si

+ ωSi+1 + · · ·+ ωSn .

Note that κ ≥ κ′. Therefore, we have:

dβ(πC ∧ κ, κ) ≥ dβ(πC ∧ κ′, κ′).

This shows that as the construction of the tree advances the current partition
κ gets closer to the partition πC ∧ κ. More significantly, as the stump of the
tree grows, κ gets closer to the class partition πC . Indeed, by Theorem 5 we can
write:

dβ(πC , κ) = dβ(πC , ωS1 + · · ·+ ωSn)

=
n∑

j=1

( |Sj |
|S|
)β

dβ(πC
Sj
, ωSj) + Hβ(θ|πC),

where θ = {S1, . . . , Sn}. Similarly, we can write:

dβ(πC , κ′) = dβ(πC , ωS1 + · · ·+ ωSi−1 + πA
Si

+ ωSi+1 + · · ·+ ωSn)

=
n∑

j=1,j 	=i

( |Sj |
|S|
)β

dβ(πC
Sj
, ωSj) +

( |Si|
|S|
)β

dβ(πC
Si
, πA

Si
) + Hβ(θ|πC).

These equalities imply:

dβ(πC , κ)− dβ(πC , κ′) =
( |Si|
|S|
)β (

dβ(πC
Si
, ωSi)− dβ(πC

Si
, πA

Si
)
)

=
( |Si|
|S|
)β (

Hβ(πC
Si

)− dβ(πC
Si
, πA

Si
)
)
.
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If the choices of the node and the splitting attribute are made such that
Hβ(πC

Si
) > dβ(πC

Si
, πA

Si
), then the distance between πC and the current partition

κ of the tree stump will decrease. Since the distance between πC ∧ κ and κ
decreases in any case when the tree is expanded it follows that the “triangle”
determined by πC , πC ∧ κ, and κ will shrink during the construction of the
decision tree.

6 Experimental Results

We tested our approach on a number of data sets from [12]. Due to space limi-
tations we included only the results shown in Figure 1 which are fairly typical.
Decision trees were constructed using metrics dβ , where β varied between 0.25
and 2.50. Note that for β = 1 the metric algorithm coincides with the approach
of de Mántaras. We also built standard decision trees using the J48 technique of
the well-known WEKA package [13].In all cases, accurracy was assessed through
10-fold cross-validation. The experimental evidence shows that β can be adapted
such that accuracy is comparable, or better than the standard algorithm. The
size of the trees and the number of leaves show that the proposed approach to
decision trees results consistently in smaller trees with fewer leaves.

Audiology
β accuracy size leaves

2.50 53.54 53 36
2.25 54.42 53 36
2.00 54.87 54 37
1.75 53.10 47 32
1.50 76.99 29 19
1.25 78.32 29 19
1.00 76.99 29 19
0.75 76.99 29 19
0.50 76.99 29 19
0.25 78.76 33 21

Hepatitis
β accuracy size leaves

2.50 81.94 15 8
2.25 81.94 9 5
2.00 81.94 9 5
1.75 83.23 9 5
1.50 84.52 9 5
1.25 84.52 11 6
1.00 85.16 11 6
0.75 85.81 9 5
0.50 83.23 5 3
0.25 82.58 5 3

Primary-tumor
β accuracy size leaves

2.50 34.81 50 28
2.25 35.99 31 17
2.00 37.76 33 18
1.75 36.28 29 16
1.50 41.89 40 22
1.25 42.18 38 21
1.00 42.48 81 45
0.75 41.30 48 27
0.50 43.36 62 35
0.25 44.25 56 32

Standard J4.8
Data Set accuracy size leaves
Audiology 77.88 54 32
Hepatitis 83.87 21 11

Primary-tumor 39.82 88 47

Fig. 1. Experimental Results

7 Conclusion and Future Work

We introduced a family of metrics on the set of partitions of a finite set that can
be used for a new splitting criterion for building decision trees. In addition to



44 D.A. Simovici and S. Jaroszewicz

being more intuitive than the classic approach, this criterion results in decision
trees that have smaller sizes and fewer leaves than the trees built with standard
methods, and have comparable or better accuracy.

The value of β that results in the smallest trees seems to depend on the
relative distribution of the class attribute and the values of the feature attributes
of the objects. We believe that further investigations should develop numerical
characteristics of data sets that allow predicting “optimal” values for β, that is,
values that result in the smallest decision trees for data sets.

Another future direction is related to clustering algorithms. Since clusterings
of objects can be regarded as partitions, metrics developed for partitions present
an interest for the study of the dynamics of clusters, as clusters are formed during
incremental algorithms [14], or as data sets evolve.
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Abstract. Naive Bayes (NB) classifier relies on the assumption that
the instances in each class can be described by a single generative model.
This assumption can be restrictive in many real world classification tasks.
We describe RNBL-MN, which relaxes this assumption by constructing
a tree of Naive Bayes classifiers for sequence classification, where each
individual NB classifier in the tree is based on a multinomial event model
(one for each class at each node in the tree). In our experiments on protein
sequence and text classification tasks, we observe that RNBL-MN sub-
stantially outperforms NB classifier. Furthermore, our experiments show
that RNBL-MN outperforms C4.5 decision tree learner (using tests on
sequence composition statistics as the splitting criterion) and yields ac-
curacies that are comparable to those of support vector machines (SVM)
using similar information.

1 Introduction

Naive Bayes (NB) classifiers, due to their simplicity and modest computational
and training data requirements, are among the most widely used classifiers on
many classification tasks, including text classification tasks [1] and macromolec-
ular sequence classification tasks that arise in bio-informatics applications [2].
NB classifiers belong to the family of generative models (a model for generat-
ing data given a class) for classification. Instances of a class are assumed to be
generated by a random process which is modeled by a generative model. The
parameters of the generative model are estimated (in the case of NB) assuming
independence among the attributes given the class. New instances to be classified
are assigned to the class that is the most probable for the instance.

NB classifier relies on the assumption that the instances in each class can be
described by a single generative model (i.e., probability distribution). According
to Langley [3], this assumption can be restrictive in many real world classifica-
tion tasks. One way to overcome this limitation while maintaining some of the
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computational advantages of NB classifiers is to construct a tree of NB classi-
fiers. Each node in the tree (a NB classifier) corresponds to one set of generative
models (one generative model per class), with different nodes in the tree corre-
sponding to different generative models for a given class. Langley described a
recursive NB classifier (RBC) for classifying instances that are represented by or-
dered tuples of nominal attribute values. RBC works analogous to a decision tree
learner [4], recursively partitioning the training set at each node in the tree until
the NB classifier of the node simply cannot partition the corresponding data set.
Unlike in the case of the standard decision tree, the branches out of each node
correspond to the most likely class lebels assigned by the NB classifier at that
node. In cases where each class cannot be accurately modeled by a single Naive
Bayes generative model, the subset of instances routed to one or more branches
belong to more than one class. RBC models the distribution of instances in a
class at each node using a Naive Bayes generative model. However, according to
Langley’s reports of experiments on most of the UC-Irvine benchmark data sets,
the recursive NB classifier did not yield significant improvements over standard
NB classifier [3].

In this paper, we revisit the idea of recursive NB classifier in the context
of sequence classification tasks. We describe RNBL-MN, an algorithm for con-
structing a tree of Naive Bayes classifiers for sequence classification. Each NB
classifier in the tree is based on a multinomial event model [1] (one for each class
at each node in the tree). Our choice of the multinomial event model is influenced
by its reported advantages over the multivariate event model of sequences [1] in
text classification tasks. RNBL-MN works in a manner similar to Langley’s RBC,
recursively partitioning the training set of labeled sequences at each node in the
tree until a stopping criterion is satisfied. The branches out of each node cor-
respond to the most likely class assigned by the NB classifier at that node. As
for the stopping criterion, RNBL-MN uses a conditional minimum description
length (CMDL) score for the classifier [5], specifically adapted to the case of
RNBL-MN based on the CMDL score for the NB classifier using the multino-
mial event model for sequences [6]. Previous reports by Langley [3] in the case of
a recursive NB classifier (RBC) for data sets whose the instances are represented
as tuples of nominal attribute values (such as the UC-Irvine benchmark data),
suggested that the tree of NB classifiers offered little improvement in accuracy
over the standard NB classifier. In our experiments on protein sequence and
text classification tasks, we observe that RNBL-MN substantially outperforms
NB classifier. Furthermore, our experiments show that RNBL-MN outperforms
C4.5 decision tree learner (using tests on sequence composition statistics as the
splitting criterion) and yields accuracies that are comparable to those of SVM
using similar information.

The rest of the paper is organized as follows: Section 2 briefly introduces the
multinomial event model for sequences; Section 3 presents RNBL-MN (recursive
Naive Bayes learner based on the multinomial event model for sequences); Sec-
tion 4 presents our experimental results; Section 5 concludes with summary and
discussion.
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2 Multinomial Event Model for Naive Bayes Sequence
Classification

Consider sequences defined over a finite alphabet Σ = {w1 · · ·wd} where d = |Σ|.
For example, in the case of protein sequences, Σ can be the 20-letter amino acid
alphabet (Σ = {A1, A2, . . . , A20}). In the case of text, Σ corresponds to the
finite vocabulary of words. Typically, a sequence Sj ∈ Σ� is mapped into a finite
dimensional feature space D through a mapping Φ : Σ� → D.

In a multinomial event model, a sequence Sj is represented by a bag of elements
from Σ. That is, Sj is represented by a vector Dj of frequencies of occurrences
in Sj of each element of Σ. Thus, Dj =< f1j , f2j, . . . , fdj, cj >, where fij ∈
Z∗ denotes the number of occurrences of wi (the ith element of the alphabet
Σ) in the sequence Sj . Thus, we can model the sequence Sj as a sequence
of random draws from a multinomial distribution over the alphabet Σ. If we
denote the probability of picking an element wi given the class cj by P (wi|cj),
the probability of sequence Sj given its class cj under the multinomial event
model is defined as follows:

P (X1 = f1j , . . . , Xd = fdj|cj) =

⎧⎨⎩
(∑d

i fij

)
!∏d

i (fij)!

⎫⎬⎭
d∏

i=1

P (wi|cj)fij

(Note: To be fully correct, we would need to multiply the right hand side
of the above equation by P (N |cj), the probability of drawing a sequence of a
specific length N = (

∑d
i fij) given the class cj , but this is hard to do in practice.)

Given a training set of sequences, it is straightforward to estimate the prob-
abilities P (wi|cj) using the Laplace estimator as P̂ (wi|cj) = pij = Countij+1

Countj+d ,
where Countij is the number of occurrences of wi in sequences belonging to class
cj and Countj is the total number of words in training set sequences belonging
to class cj .

3 Recursive Naive Bayes Learner Based on the
Multinomial Event Model for Sequences (RNBL-MN)

3.1 RNBL-MN Algorithm

As noted above, RNBL-MN, analogous to the decision tree learner, recursively
partitions the training data set using Naive Bayes classifiers at each node of the
tree. The root of the tree is a Naive Bayes classifier constructed from the entire
data set. The outgoing branches correspond to the different class labels, assigned
by the Naive Bayes classifier.

For a given input training data set D0(= Dcurrent), we create a Naive Bayes
classifier n0. We compute the CMDL score Scorecurrent for the classifier n0 (See
section 3.2 for details of the calculation of CMDL score for recursive Naive Bayes
classifier based on the multinomial event model). The classifier n0 partitions the
data set D0 into |C| subsets based on the class labels assigned to the sequences by
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RNBL-MN(Dcurrent) :
begin

1. Input : data set D0 = Dcurrent // data set
2. Estimate probabilities given D0 that specify the Naive Bayes classifier n0

3. Add n0 to the current classifier hcurrent if n0 /∈ hcurrent

4. Scorecurrent ← CMDL(hcurrent|D0) // CMDL score of the current classifier
5. Partition Dcurrent into D = {D1, D2, . . . , D|C||∀S∈Di∀j �=i, P (ci|S) > P (cj |S)}
6. For each Di ∈ D, estimate probabilities given Di that specify the corresponding

Naive Bayes classifiers ni

7. hpotential ← refinement of hcurrent with the classifiers corresponding to each ni

based on the corresponding Di in the previous step // see Fig. 2 for details

8. Scorepotential ← CMDL(hpotential| |C|
i=0 Di) // CMDL score resulting from the

refined classifier
9. If Scorepotential > Scorecurrent then // accept the refinement

10. Add each ni to hcurrent

11. For each child node ni

12. RNBL-MN(Di) // recursion
13. End For
14. End If
15. Output : hcurrent

end.

Fig. 1. Recursive Naive Bayes Learner of Multinomial Event Model

the classifier n0. Each such subset is in turn used to train additional Naive Bayes
classifiers. At each step, the CMDL score for the resulting tree of Naive Bayes
classifiers is computed and compared with the CMDL score of the classifier from
the previous step. This recursive process terminates when additional refinements
of the classifier yield no significant improvement in CMDL score. Fig. 1 shows
the pseudo-code of RNBL-MN algorithm.

Analogous to a decision tree, the resulting classifier predicts a class label for
a new sequence as follows: starting at the root of the tree, the sequence is routed
along the outgoing branches of successive Naive Bayes classifiers, at each node
following the branch corresponding to the most likely class label for the sequence,
until a leaf node is reached. The sequence is assigned the label corresponding to
the leaf node.

3.2 Conditional Minimum Description Length (CMDL) Score for
Naive Bayes Classifier Based on the Multinomial Event Model

RNBL-MNemploys theconditionalminimumdescription length (CMDL) score [5],
specifically adapted to the case of RNBL-MN, based on the CMDL score for NB
classifier using the multinomial event model for sequences [6] as the stopping
criterion.
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Recall the definition of a conditional minimum description length (CMDL)
score of a classifier h given a data set D [5]:

CMDL(h|D) = CLL(h|D)−
{

log |D|
2

}
size(h),

where size(h) is the size of the hypothesis h (the complexity of the model),
which corresponds to the number of entries in the conditional probability tables
(CPTs) of h. CLL(h|D) is the conditional log likelihood of the hypothesis h
given the data D, where each instance of the data has a class label c ∈ C.

When h is a Naive Bayes classifier based on a multinomial event model, the
conditional log likelihood of the classifier h given data D can be estimated as
follows [6]:

CLL(h|D) = |D|
|D|∑
j

log

⎧⎪⎪⎨⎪⎪⎩
P (cj)

{
( d

i fij)!
d
i (fij)!

}∏d
i {pfij

i,j }∑|C|
k

{
P (ck)

{
( d

i fik)!
d
i (fik)!

}∏d
i {pfik

i,k }
}
⎫⎪⎪⎬⎪⎪⎭,

where d = |Σ| is the cardinality of the vocabulary Σ, |D| is the number of
sequences in the data set D, cj ∈ C is the class label associated with the instance
Sj ∈ D, fij is the integer frequency of element wi ∈ Σ in instance Sj , and pi,j is
the estimated probability of the element wi occurring in an instance belonging
to class cj .

The size(h) for the multinomial event model is given by size(h) = |C| +
|C|d, where |C| is the number of class labels, and d is the cardinality of the
vocabulary Σ.

3.3 CMDL for a Recursive Naive Bayes Classifier

We observe that in the case of a recursive Naive Bayes classifier, CLL(h|D)
can be decomposed in terms of the CLL scores of the individual Naive Bayes
classifiers at the leaves of the tree of classifiers. Consequently, the CMDL score
for the composite tree-structured classifier can be written as follows:

CMDL(h|D) =
∑

node∈Leaves(h)

CLL(hnode|Dnode)−
{

log |D|
2

}
size(h),

where size(h) = (|C| + |C|d)|h|, denoting |h| the number of nodes in h.
For example, Fig. 2 shows a Recursive Naive Bayes classifier consisting of 5

individual Naive Bayes classifiers. ĉ+ and ĉ− are the predicted outputs of each
hypothesis.

In the figure,

CLL(hcurrent|D) = CLL(n00|D00) + CLL(n01|D01)

and

CLL(hpotential|D) = CLL(n000|D000) + CLL(n001|D001) + CLL(n01|D01),

where |C|=2, |hcurrent| = 3, and |hpotential| = 5.
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Fig. 2. Recursion tree of classifiers. Note that hpotential is the refinement of hcurrent

by adding nodes n000(D000) and n001(D001) as children of n00(D00).

Using the CMDL score, we can choose the hypothesis h that effectively trades
off the complexity, measured by the number of parameters, against the accuracy
of classification. As is described in Fig. 1, the algorithm terminates when none
of the refinements of the classifier (splits of the tree nodes) yields statistically
significant improvement in the overall CMDL score.

4 Experiments

To evaluate RNBL-MN, recursive Naive Bayes learner of multinomial event
model, we conducted experiments using two classification tasks: (a) assigning
Reuters newswire articles to categories, (b) and classifying protein sequences
in terms of their cellular localization. The results of the experiments described
in this section show that the classifiers generated by RNBL-MN are typically
more accurate than Naive Bayes classifiers using the multinomial model, and
that RNBL-MN yields more accurate classifiers than C4.5 decision tree learner
(using tests on sequence composition statistics as the splitting criterion). RNBL-
MN yields accuracies that are comparable to those of linear kernel based SVM
trained with the SMO algorithm [7] on a bag of letters (words) representation
of sequences (text).

4.1 Reuters 21587 Text Categorization Test Collection

Reuters 21587 distribution 1.0 data set1 consists of 12902 newswire articles in
135 overlapping topic categories. We followed the ModApte split [8] in which

1 This collection is publicly available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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9603 stories are used to train the classifier and 3299 stories to test the accuracy
of the resulting classifier. We eliminated the stories that do not have any topic
associated with them (i.e., no class label). As a result, 7775 stories were used for
training and 3019 stories for testing the classifier.

Because each story has multiple topics (class labels), we built binary classifiers
for the top ten most populous categories following the setup used in previous
studies by other authors [9, 1]. In our experiments, stop words were not elimi-
nated, and title words were not distinguished from body words. Following the
widely used procedure for text classification tasks with large vocabularies, we
selected top 300 features based on mutual information with class labels.

For evaluation of the classifiers, following the standard practice in text clas-
sification literature, we report the break-even points, which is the average of
precision and recall when the difference between the two is minimum.

Table 1 shows the break-even points of precision and recall as a performance
measure for the ten most frequent categories. The results in the table show
that, RNBL-MN outperforms the other algorithms, except SVM, in terms of
classification accuracy for Reuters 21587 text data set.

Table 1. Break-even point of precision and recall (a standard accuracy measure for
ModApte split of Reuters 21587 data set) on the 10 largest categories of Reuters 21587
data set

Data NBL-MN RNBL-MN C4.5 SVM
name # train (+/−) # test (+/−) accuracy accuracy accuracy accuracy
earn 2877 / 4898 1087 / 1932 94.94 96.50 95.58 97.24

acq 1650 / 6125 719 / 2300 89.43 93.32 89.29 92.91
money-fx 538 / 7237 179 / 2840 64.80 69.83 69.27 72.07

grain 433 / 7342 149 / 2870 74.50 89.26 85.23 89.26

crude 389 / 7386 189 / 2830 79.89 77.78 76.19 86.77

trade 369 / 7406 117 / 2902 59.83 70.09 61.54 71.79

interest 347 / 7428 131 / 2888 61.07 70.99 64.89 73.28

ship 197 / 7578 89 / 2930 82.02 82.02 65.17 80.90
wheat 212 / 7563 71 / 2948 57.75 73.24 87.32 80.28
corn 181 / 7594 56 / 2963 57.14 67.85 92.86 76.79

4.2 Protein Subcellular Localization Prediction

We applied RNBL-MN to two protein sequence data sets, where the goal is to
predict the subcellular localization of the proteins [10, 2].

The first data set consists of 997 prokaryotic protein sequences derived from
SWISS-PROT database (release 33.0) [11]. This data set includes proteins from
three different subcellular locations: cytoplasmic (688 proteins), periplasmic (202
proteins), and extracellular (107 proteins).
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Table 2. Localization prediction results on Prokaryotic and Eukaryotic protein se-
quences, calculated by 10-fold cross validation with 95% confidence interval

(a) Prokaryotic protein sequences

Algorithm Measure Cytoplasmic Extracellular Peripalsmic
NBL-MN accuracy 88.26±2.00 93.58±1.52 81.85±2.39

specificity 89.60±1.89 65.93±2.94 53.85±3.09
sensitivity 93.90±1.49 83.18±2.32 72.77±2.76

RNBL-MN accuracy 90.67±1.81 94.58±1.41 87.76±2.03
specificity 91.61±1.72 75.73±2.66 73.53±2.74
sensitivity 95.20±1.33 72.90±2.76 61.88±3.01

C4.5 accuracy 84.15±2.27 91.98±1.69 84.65±2.24
specificity 88.58±1.97 63.37±2.99 64.00±2.98
sensitivity 88.32±1.99 59.81±3.04 55.45±3.09

SVM accuracy 87.26±2.07 93.78±1.50 79.74±2.49
specificity 84.67±2.24 89.47±1.91 50.00±3.10
sensitivity 99.56±0.41 47.66±3.1 0.50±0.44

(b) Eukaryotic protein sequences

Algorithm Measure Cytoplasmic Extracellular Mitochondrial Nuclear
NBL-MN accuracy 71.41±1.80 83.11±1.49 71.69±1.79 80.72±1.57

specificity 49.55±1.99 40.23±1.95 25.86±1.74 82.06±1.53
sensitivity 81.29±1.55 53.85±1.98 61.06±1.94 73.38±1.76

RNBL-MN accuracy 78.12±1.64 92.13±1.07 87.72±1.31 83.48±1.48
specificity 60.24±1.95 75.97±1.70 54.44±1.98 84.30±1.45
sensitivity 65.79±1.89 60.31±1.95 43.93±1.97 78.09±1.65

C4.5 accuracy 78.99±1.62 91.18±1.13 86.57±1.36 79.85±1.60
specificity 63.51±1.92 69.89±1.83 49.03±1.99 77.94±1.65
sensitivity 59.80±1.95 60.00±1.95 39.25±1.94 77.30±1.67

SVM accuracy 71.98±1.79 86.69±1.35 86.77±1.35 79.36±1.61
specificity 83.33±1.48 100.00±0.00 N/A 87.53±1.31
sensitivity 0.73±0.34 0.62±0.31 0.00±0.00 63.35±1.92

The second data set contains 2427 eukaryotic protein sequences derived from
SWISS-PROT database (release 33.0) [11]. This data set includes proteins from
the following four different subcellular locations: nuclear (1097 proteins), cy-
toplasmic (684 proteins), mitochondrial (321 proteins), extracellular (325 pro-
teins).

The accuracy, sensitivity, and specificity of the classifiers (estimated using
10-fold cross-validation) on the two data sets 2 are shown in Table 2. The results
show that RNBL-MN generally outperforms C4.5, and compares favorably with
SVM. Specificity of SVM for ‘Mitochondrial’ is “N/A”, because the SVM clas-
sifier always outputs negative when most of the instances in the data set have
negative class label (imbalanced), which leads its specificity to be undefined.

2 These two datasets are available to download at
http://www.doe-mbi.ucla.edu/˜astrid/astrid.html.
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5 Related Work and Conclusion

5.1 Related Work

As noted earlier, Langley [3] investigated recursive Bayesian classifiers for the
instances described by tuples of nominal attribute values. RNBL-MN reported
in this paper works with a multinomial event model for sequence classification.

Kohavi [12] introduced NBTree algorithm, a hybrid of a decision tree and Naive
Bayesclassifiersfor instancesrepresentedusingtuplesofnominalattributes.NBTree
evaluatestheattributesavailableateachnodetodecidewhethertocontinuebuilding
a decision tree or to terminate with a NaiveBayes classifier. In contrast, RNBL-MN
algorithm, like Langley’s RBC, builds a decision tree, whose nodes are all Naive
Bayes Classifiers.

Gama and Brazdil [13] proposed an algorithm that generates a cascade of
classifiers. Their algorithm combines Naive Bayes, C4.5 decision tree and linear
discriminants, and introduces a new attribute at each stage of the cascade. They
performed experiments on several UCI data sets [14] for classifying instances
represented as tuples of nominal attribute values. In contrast, RNBL-MN recur-
sively applies the Naive Bayes classifier based on the multinomial event model
for sequences.

5.2 Summary and Conclusion

RNBL-MN algorithm described in this paper relaxes the single generative model
per class assumption of NB classifiers, while maintaining some of their compu-
tational advantages. RNBL-MN constructs a tree of Naive Bayes classifiers for
sequence classification. It works in a manner similar to Langley’s RBC [3], recur-
sively partitioning the training set of labeled sequences at each node in the tree
until a stopping criterion is satisfied. RNBL-MN employs the conditional mini-
mum description length (CMDL) score for the classifier [5], specifically adapted
to the case of RNBL-MN classifier based on the CMDL score for the Naive
Bayes classifier using the multinomial event model [6] as the stopping criterion.
Previous reports by Langley [3] in the case of a recursive NB classifier (RBC)
on data sets whose instances were represented by tuples of nominal attribute
values (such as the UC-Irvine benchmark data) had suggested that the tree of
NB classifiers offered little improvement in accuracy over the standard NB clas-
sifier. In contrast, we observe that on protein sequence and text classification
tasks, RNBL-MN substantially outperforms the NB classifier. Furthermore, our
experiments show that RNBL-MN outperforms C4.5 decision tree learner (us-
ing tests on sequence composition statistics as the splitting criterion) and yields
accuracies that are comparable to those of SVM using similar information.

Given the relatively modest computational requirements of RNBL-MN rela-
tive to SVM, RNBL-MN is an attractive alternative to SVM in training classifiers
on extremely large data sets of sequences or documents. Our results raise the
possibility that Langley’s RBC might outperform NB on more complex data sets
in which the one generative model per class assumption is violated, especially if
RBC is modified to use an appropriate CMDL criterion.
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Abstract. In many application domains, there is a need for learning algorithms 
that generate accurate as well as comprehensible classifiers. In this paper, we 
present TRIPPER - a rule induction algorithm that extends RIPPER, a widely 
used rule-learning algorithm. TRIPPER exploits knowledge in the form of tax-
onomies over the values of features used to describe data. We compare the per-
formance of TRIPPER with that of RIPPER on benchmark datasets from the 
Reuters 21578 corpus using WordNet (a human-generated taxonomy) to guide 
rule induction by TRIPPER. Our experiments show that the rules generated by 
TRIPPER are generally more comprehensible and compact and in the large ma-
jority of cases at least as accurate as those generated by RIPPER.      

1   Introduction 

Knowledge discovery aims at constructing predictive models from data that are both 
accurate and comprehensible. Use of prior knowledge in the form of taxonomies over 
attribute values offers an attractive approach to this problem.  

Several authors have explored the use of taxonomies defined over attribute values 
to guide learning. Zhang and Honavar developed a Decision Tree [8] and a Naive 
Bayes [9] learning algorithm that exploit user-supplied feature value taxonomies. 
Kang et al [2] introduced WTL, Word Taxonomy Learner for automatically deriving 
taxonomies from data and a Word Taxonomy-guided Naive Bayes (WTNBL-MN) 
algorithm for document classification. Michalski [7] has proposed a general frame-
work of attributional calculus that can be seen as an alternative way of representing 
rules containing abstractions.  Additional references to related work can be found in 
[9,11].  Against this background, we present a rule induction method that exploits 
user-supplied knowledge in the form of attribute value taxonomies to generate rules at 
higher levels of abstraction, named TRIPPER (Taxonomical RIPPER). We report 
results of experiments that demonstrate the promise of the proposed approach on a 
widely used benchmark data set (the Reuters text classification data set [10]). 

2   Method 

RIPPER (Repeated Incremental Pruning to Produce Error Reduction), was proposed 
by Cohen [1]. It consists of two main stages: the first stage constructs an initial ruleset 
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using a rule induction algorithm called IREP* [4]; the second stage further optimizes 
the ruleset initially obtained. These stages are repeated for k times. IREP*[1] is called 
inside RIPPER-k for k times, and at each iteration, the current dataset is randomly 
partitioned in two subsets: a growing set, that usually consists of 2/3 of the examples 
and a pruning set, consisting in the remaining 1/3. These subsets are used for two 
different purposes: the growing set is used for the initial rule construction (the rule 
growth phase) and the pruning set is used for the pruning (the rule pruning phase). 
IREP* uses MDL[5] as a criterion for stopping the process.  

The rule growth phase: The initial form of a rule is just a head (the class value) and 
an empty antecedent. At each step, the best condition based on its information gain is 
added to the antecedent. The stopping criterion for adding conditions is either obtain-
ing an empty set of positive instances that are not covered or not being able to im-
prove the information gain score. 

The rule pruning phase: Pruning is an attempt to prevent the rules from being too 
specific. Pruning is done accordingly to a scoring metric denoted by v*. 

IREP* chooses the candidate literals for pruning based on a score v* which is ap-
plied to all the prefixes of the antecedent of the rule on the pruning data: 

np

np
prunenefpruneposrulev

+
−=),,(*  (1) 

where p / n denote the total number of positive / negative instances covered by the 
rule. The prefix with the highest v* score becomes the antecedent of the final rule. 

 Before introducing TRIPPER, it is helpful to formally define a taxonomy: 

Taxonomy: Let S = {v1, v2, ... vn} be a set of feature values. Let T be a directed tree 
where children(i) denotes the set of nodes that have incoming arrows to the node i. A 
node i is called leaf if it has no children. A taxonomy Tax(T,S) is a mapping which 
assigns to a node i of the tree T a subset S’ of S with the following properties: 

)(

))(,())(,(
ichildrenj

jSTTaxiSTTax
∈

=  (2) 

STLeaves =)(  (3) 

1. TRIPPER(G) - improvement at rule growth phase: Introducing the taxonomical 
knowledge at the rule-growth phase is a straightforward process we call feature 
space augmentation.  The augmentation process takes all the interior nodes of the 
attribute value taxonomy and adds them to the set of candidate literals used for the 
growth phase. 
2. TRIPPER(G+P) - improvement at rule pruning phase: A more general version 
of feature selection than pruning is abstraction: in the case of abstraction, instead of 
casting the problem as a matter of preserving or discarding a feature, we are able to 
choose from a whole range of levels of specificity for the feature under consideration. 

The effect on the resulting rule can be observed in the following example: 
[original rule]  - (rate = t) and (bank = t) and  (dollar = t) => is_interest 
[pruned rule]  - (rate = t) and (bank =t) and (any_concept = t) => is_interest  
[abstracted rule]  - (rate = t) and (bank = t) and (monetary_unit= t) => is_interest  
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Fig. 1. Taxonomy over a set of nouns. Pruning and abstraction on a taxonomy. 

Example 1:  Variants of a classification rule for the class “interest” 

The algorithm Prune_by_abstraction (fig.2.) uses exactly this idea to incrementally search for 
useful abstractions for the literals in the suffix to be pruned according to the v* score of the rule 
prefixes. 

Prune-by-abstraction(Rule,PruneData) 

PrunedRule=PruneRule(Rule,PruneData)  
Score=v*(PrunedRule,PruneData) 
PrunePos=GePrunePos(PrunedRule), Level=0 
While(improvement) 
 Improvement=false, Increase(Level) 
 For j:=PrunePos to size(Rule) 
  AbstrRule=PrunedRule 
  For i:=j to size(Rule) 
    Literal=Rule(i) 
    AbstrRule:=AbstrRule^Abstract(Literal, 
    Level) 
  If(v*(AbstrRule, PruneData)>Score) 
    Update(Score) 
    WinRule=AbstrRule, Improvement=true 
Return WinRule  

Fig. 2. Prune by Abstraction pseudocode 

3   Experiments 

Experimental setup: Experiments were performed on the benchmark dataset Reuters 
21578 using the ModApte split [10] of training and testing data. Following the ex-
perimental setup used in [6], only the ten biggest classes in the dataset were used. As 
in [6], only the 300 best features were used as inputs to the classifier. The experiments 
compare RIPPER with TRIPPER (G+P) . The text-specific taxonomies used for our 
experiments on the Reuters dataset comes from WordNet[3], using only the hy-
pernimy relation that stands for “isa” relation between concepts.  
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Results: Our experiments show that: (a) TRIPPER (G+P) outperforms, or matches 
RIPPER in terms of break-even point on the Reuters dataset  (Table 3-1) in a majority 
(8 out of 10) of classes; (b)  TRIPPER generates more abstract (and often more com-
prehensible) rules than RIPPER: Table 3-2 shows some of the abstract literals discov-
ered to be important for 3 of the 10 classes. Furthermore, the rules generated by 
TRIPPER(G+P) are often more concise than those generated by RIPPER (results not 
shown) [11]. 

Table 3-1. Comparison of performance (break even point) of TRIPPER and RIPPER using WN 

Class Acq Corn Crud Earn Grn. Inter Mon Ship Trd. Wht. 
Trip. 86.3 85.7 82.5 95.1 87.9 71.5 70.4 80.9 58.9 84.5 
Ripp. 85.3 83.9 79.3 94 90.6 58.7 65.3 73 68.3 83 

 Table 3-2. Abstract literals from WordNet 

Class subject Abstract literals 
Crude Oil assets, chemical_phenomenon, chemical_element, finan-

cial_gain, macromolecule, magnitude_relation, process, 
worker 

Money, 
Foreign  
Exchange 

artifact, assets, businessperson, document, institution, loca-
tion, medium_of_exchange, measure, organization, signal, 
social_ event, solid 

Trade assembly, assets, calendar_month, change_of_magnitude, 
mass_unit, outgo, signal 

 

The usefulness of abstraction is confirmed by the prevalence of abstract literals in 
almost all the rules of every ruleset. Both of the phases (growth and pruning) gener-
ated improvements (results not shown) [11], lending empirical support for the idea 
that both of the extensions are useful. 

4   Conclusions 

TRIPPER is a taxonomy-based extension of the popular rule-induction algorithm 
RIPPER [1]. The key ingredients of TRIPPER are: the use of an augmented set of 
features based on taxonomies defined over values of the original features (WordNet in 
the case of text classification) in the growth phase and the replacement of pruning, as 
an overfitting avoidance method, with the more general method of abstraction guided 
by a taxonomy over the features. The experiments briefly summarized in this paper 
show that TRIPPER generally outperforms RIPPER on the Reuters text classification 
task in terms of break-even points, while generating potentially more comprehensible 
rule sets than RIPPER. It is worth noting that on the Reuters dataset, TRIPPER 
slightly outperforms WTNBL [2] in terms of break-even points on 7 out of 10 classes. 

The additional computation cost of TRIPPER is small when compared with 
RIPPER, consisting in an additional multiplicative factor that represents the height of 
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the largest taxonomy, which in the average case scales logarithmically with the num-
ber of feature values.  
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Abstract. The development of data-mining applications such as text-
classification and molecular profiling has shown the need for machine
learning algorithms that can benefit from both labeled and unlabeled
data, where often the unlabeled examples greatly outnumber the labeled
examples. In this paper we present a two-stage classifier that improves its
predictive accuracy by making use of the available unlabeled data. It uses
a weighted nearest neighbor classification algorithm using the combined
example-sets as a knowledge base. The examples from the unlabeled set
are “pre-labeled” by an initial classifier that is build using the limited
available training data. By choosing appropriate weights for this pre-
labeled data, the nearest neighbor classifier consistently improves on the
original classifier.

1 Introduction

The combination of supervised and unsupervised learning [1] is a growing sub-
field of Machine Learning. Applications such as text- or image-mining and molec-
ular profiling have revealed application areas that yield very little (and often
expensive) labeled data but often plenty of unlabeled data. As traditional ma-
chine learning algorithms are not able to use and benefit from the information
available in the unlabeled data, custom built algorithms should be able to outper-
form them. Current research in semi-supervised learning using algorithms such
as Co-Training [2] or more recent approaches based on graph representations [3]
confirms that this is indeed possible.

Most of the semi-supervised learning approaches use the labeled and unlabeled
data simultaneously or at least in close collaboration. Roughly speaking, the
unlabeled data provides information about the structure of the domain, i.e. it
helps to capture the underlying distribution of the data. The challenge for the
algorithms can be viewed as realizing a kind of trade-off between robustness and
information gain [1]. To make use of unlabeled data, one must make assumptions,
either implicitly or explicitly. As reported in [3], the key to semi-supervised
learning is the prior assumption of consistency, that allows for exploiting the
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geometric structure of the data distribution. Close data points should belong to
the same class and decision boundaries should lie in regions of low data density;
this is also called the “cluster assumption”.

In this paper, we introduce a very simple two-stage approach that uses the
available unlabeled data to improve on the predictions made when learning only
from the labeled examples. In a first stage, it uses an off-the-shelf classifier to
build a model based on the small amount of available training data, and in the
second stage it uses that model to transform the available unlabeled data into a
weighted “pre-labeled” data-set that together with the original data is used in a
nearest neighbor classifier. We will show that the proposed algorithm improves
on the classifier built in stage 1, especially in cases where much more unlabeled
data is available compared to the labeled data.

The rest of the paper is structured as follows: in section 2 we describe a few
related semi-supervised learning techniques. Section 3 introduces the proposed
algorithm in detail. In section 4 we show experimental results using an array of
different classifiers used in the first stage. Section 5 concludes and presents some
directions for future work.

2 Learning from Labeled and Unlabeled Data

Early methods in semi-supervised learning were using mixture models (in which
each mixture component represents exactly one class) and extensions of the EM
algorithm [4]. More recent approaches belong to one of the following categories:
self-training, co-training, transductive SVMs, split learning, and graph-based
methods. In the self-training approach, a classifier is trained on the labeled data
and then used to classify the unlabeled ones. The most confident (now labeled)
unlabeled points are added to the training set, together with their predictive
labels, and the process is repeated until convergence [5]. Approaches based on
co-training [2] assume that the features describing the objects can be divided in
two subsets such that each of them is sufficient to train a good classifier, and
that the two sets are conditionally independent given the class attribute. Two
classifiers are iteratively trained, each on one set, and they teach each other with
a respective subset of unlabeled data and their highest confidence predictions.
The transductive SVMs [6] are a ”natural” extension of SVMs to the semi-
supervised learning scheme. They aim at finding a labeling of the unlabeled data
so that the decision boundary has a maximum margin on the original labeled
data and on the (newly labeled) unlabeled data.

Graph-based methods attempt to capture the underlying structure of the
data with a graph whose vertices are the available data (both labeled and un-
labeled) and whose (possibly weighted) edges encode the pairwise relationships
among this data. Examples of recent work in that direction include Markov ran-
dom walks [7], cluster kernels [8], and regularization on graphs [3]. The learning
problem on graphs can generally be viewed as an estimation problem of a classi-
fying function f which should be close to a given function y on the labeled data
and smooth on the whole graph. Different graph-based methods mainly vary by
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their choice of the loss function and the regularizer [9]. For example, the work on
graph cuts [10] minimizes the cost of a cut in the graph for a two-class problem,
while [11] minimizes the normalized cut cost and [12, 3] minimize a quadratic
cost. As noticed in [9], these differences are not actually crucial. What is far
more important is the construction and quality of the graph, which should re-
flect domain knowledge through the similarity function used to assign edges and
their weights.

Collective classification [13] is an ILP approach that uses the relational struc-
ture of the combined labeled and unlabeled data-set to enhance classification
accuracy. With relational approaches, the predicted label of an example will
often be influenced by the labels of related examples. The idea behind collec-
tive classification is that the predicted labels of a test-example should also be
influenced by the predictions made for related test-examples. The algorithm pre-
sented in this paper is closely related to this, but works on non-relational data
by using a distance and the nearest neighbor relation that results from it.

Also related to our approach, although originally not used in a transductive
setting, is the work by [14]. Also using two stages, in the first stage an ensemble
of neural networks is trained on the available data and the resulting model is
used to generate random, extra training examples for a decision tree algorithm
in the second stage. This approach could be easily adapted to the transductive
setting by using the test set instead of randomly generated examples.

3 Yatsi

The Yatsi algorithm1 that we present in this paper will incorporate ideas from
different algorithms that were discussed in the previous section. Since we really
like the idea of giving the user the option to choose from a number of machine
learning algorithms (like it is possible in co-training), we will develop a technique
that builds on top of any standard machine learning algorithm. To incorporate
the general idea behind collective classification, we use a nearest neighbor ap-
proach and the distance between as a way of relating them to each other.

The Yatsi classifier (See Algorithm 1 for high-level pseudo-code) uses both
labeled and unlabeled data in a two-stage set-up2. In the first stage a standard,
off-the-self, classifier (or regression-algorithm) is trained on the available training
data. Since this kind of data is limited in the specific application areas we are
looking at, it is best to choose an algorithm that can learn a model well using
only a small amount of learning data.

In the second stage, the model generated from the learning data is used to
“pre-label” all the examples in the test set. These pre-labeled examples are then

1 Yatsi was developed during a time when we were experimenting with a number of
multi-stage classifiers. At the time, we referred to the presented algorithm as: “Yet
Another Two-Stage Idea”, hence the name Yatsi.

2 We will use the terms labeled, unlabeled and pre-labeled examples for the examples
in the training set, the test set and the test set after it has been temporarily labeled
in stage 1, respectively.
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Algorithm 1 High level pseudo code for the two-stage Yatsi algorithm.
Input: a set of labeled data Dl and a set of unlabeled data Du, an off-the-shelf
classifier C and a nearest neighbor number K; let N = |Dl| and M = |Du|
Step 1:

Train the classifier C using Dl to produce the model Ml

Use the model Ml to “pre-label” all the examples from Du

Assign weights of 1.0 to every example in Dl

and of F × N
M

to all the examples in Du

Merge the two sets Dl and Du into D
Step 2:

For every example that needs a prediction:
Find the K-nearest neighbors to the example from D to produce set NN
For each class:
Sum the weights of the examples from NN that belong to that class

Predict the class with the largest sum of weights.

used together with the original training data in a weighted nearest neighbor
algorithm. The weights used by the nearest neighbor classifier are meant to
limit the amount of trust the algorithm puts into the labels generated by the
model from the first step. As a default value, we set the weights of the training
data to 1.0 and the weights of the pre-labeled test-data to N/M with N the
number of training examples and M the number of test-examples. Conceptually,
this gives equal weights to the whole train- and the whole test-set. By adding a
parameter F to the algorithm that will cause the weight of the test-examples to
be set to F ∗ (N/M), it becomes possible to vary the influence one wants to give
to the unlabeled data and the classifier built in step 1. Values of F between 0.0
and 1.0 will lower the influence on the test-data and the learned model from the
first step, values larger than 1.0 will increase their influence. In the experiments,
we will test values ranging from 0.01 to 10. An F -value of 10.0 will adjust the
weights of the individual examples such as to give the total test-set 10 times the
weight of the total training set.

3.1 Weighted Nearest Neighbor

In the previous section we stated the way we add a label and a weight to every
example in the dataset that will be used for nearest neighbor classification. There
are different ways in which to use weights for nearest neighbor classification. One
way is to make the distance dependent on the weight of the examples. An obvious
way would be to divide the standard distance by the weight of the example [15].
This would make it harder for examples with a small weight to influence the
prediction. However, when using k-nearest-neighbor prediction, this approach
will change the identity of the k selected examples and in a set-up like the one
provided by Yatsi , where only 2 different weights are available, it could prevent
the examples with the lower weight to ever be part of the k closest examples.

Another way of incorporating weights in nearest neighbor predictions is that
once the k nearest neighbors are selected, we choose to use the weights of the
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examples as a measure for their influence on the total vote. Instead of counting
the number of neighbors that belong to each class, we sum their weight and
predict the class with the largest weight. By normalizing the sums of the weights,
so that they all add up to 1, we get an indication of the probability for each of
the available classes. Note though, that the distance to an example does not
influence its contribution in the vote. Once an example makes it into the set of
the k closest examples, its contribution is only influenced by its weight.

For continuous class-values, where predictions are made using the sum∑
j

tj

distij∑
j

1
distij

over all examples in the dataset with tj being the target value of example j and
distij being the distance between examples i and j, both ways of incorporating
the weights of examples are equivalent. As such, although we have not yet im-
plemented this and do not have any experimental results, Yatsi can be used for
predicting continuous target values as well without major changes.

3.2 Other Nearest Neighbor Issues

For our experiments, we fixed the number of nearest neighbor to 10. This is not
a requirement for the Yatsi algorithm. Cross-validation on the labeled training
examples could be used to adapt the number of nearest neighbors. However, the
resulting values of k might be misleading because of the large amount of extra
examples that will be available in the second step of the Yatsi algorithm.

Since the algorithm is designed to work in applications where the amount of
labeled training data is limited, one can get away with less efficient algorithms
in the first step. As we expect the amount of test data to greatly exceed that
of the training data, most of the computational complexity will lie in the search
for nearest neighbors, as this search spans the combined sets of examples.

Yatsi will therefore greatly benefit from using efficient nearest neighbor
search algorithms. Currently, we use KD-trees [16] to speed up the nearest
neighbor search. However, recently a lot of research effort has gone into the
development of more efficient search strategies for nearest neighbors, which can
be directly applied to the Yatsi algorithm. Examples of such search strategies
are cover trees [17] and ball trees [18].

4 Experimental Results

We evaluated Yatsi using a number of datasets from the UCI-repository. We
created labeled and unlabeled sets by splitting the available data into randomly
chosen subsets. We ran experiments with 1%, 5%, 10% and 20% of the available
data labeled (the training set) and the rest available as the test-set. In general,
we collected results from 29 different data set, except for the 1%-99% case split,
where the 8 smallest data-set were removed because a 1% sub-set was not large
enough to train a classifier on.
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The design of Yatsi does not specify any specific algorithm to be used in the
first step. We ran experiments with an array of algorithms that are all available
in WEKA consisting of:

AdaBoostM1: This is a straightforward implementation of the AdaBoostM1
algorithm. In the experiments reported we used J48 both with default pa-
rameter settings and without pruning as a base learner, and performed 10
iterations.

J48: This is Weka’s reimplementation of the original C4.5 algorithm. Default
parameter settings were used except for the confidence, which was set to
the values 0.25, 0.50 and 0.75. We also ran experiments without pruning the
trees.

Logistic: A straightforward implementation of logistic regression run with
Weka’s default parameter settings.

RandomForest: An implementation of Breiman’s RandomForest algorithm,
but based on randomized REPTrees (instead of CART). At each split the
best of log(nattrs) randomly chosen attributes is selected. The ensemble size
was set to 10 and 100.

SMO: Weka’s implementation of the SMO algorithm for training support vector
machines. Linear, quadratic and cubic kernels and a cost value of 1.0 were
used.

IB1: A standard nearest-neighbor algorithm using Euclidean distance with all
attributes being normalized into a [0, 1] range.

We also collected results for different values of the weighting parameter F
ranging from 0.1, i.e., giving 10 times as much weight to the training set as to
the test-set, to 10.0 which does the exact opposite. We also ran some experiments
that used no weights at all. These values used for the weighting parameter are a
bit extreme but will give a good illustration of the behavior of the Yatsi algo-
rithm. These experiments treat all the “pre-labeled” test-set examples exactly
like training examples. Therefore, in the 1%-99% split case, the total weight of
the test-set would be almost 100 times as big as that of the training-set.

We expect the performance of Yatsi to go down with the performance of
the classifier trained on the labeled data in stage 1 as the amount of available
training data decreases, but we expect (and will show) that the performance
degrades slower, i.e., that Yatsi is able to improve on the results obtained by only
learning from the labeled data. To get statistically sound results, we repeated
every experiment 20 times.

Table 1 shows the number of statistically significant wins, draws and losses
of Yatsi versus the classifier trained on the training-set in stage 1. For J48,
we show the results for the experiment with the confidence set to 0.75. This is
higher than normal so this setting generates slightly larger trees, which seems
to be appropriate for the very small training sets that we use. Higher levels of
pruning could even lead to empty trees in extreme cases. Overall, all the J48
experiments showed the same trend. The results shown for the RandomForest
experiments are those with an ensemble size of 100. The ones with ensemble
size 10 were similar with a slightly bigger advantage for Yatsi . On the SMO
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Table 1. Number of statistically significant wins, draws and losses (in that order) in
predictive accuracy of Yatsi vs. the classifier trained in stage 1, for different values of
the weighting parameter.(Tested with a paired t-test, confidence level 0.05, two tailed).

Base Classifier % labeled data F = 0.1 F = 1.0 F = 10.0 No Weights
J48 1% 14/7/0 14/7/0 13/8/0 6/15/0

5% 15/13/1 16/12/1 15/9/5 14/9/6
10% 16/8/5 16/7/6 15/7/7 16/7/6
20% 18/4/7 18/4/7 13/6/10 15/6/8

RandomForest 1% 10/10/1 10/10/1 9/11/1 7/12/2
5% 9/11/9 9/11/9 10/10/9 10/10/9
10% 6/10/13 10/7/12 9/6/14 10/6/13
20% 5/9/15 9/8/12 7/5/17 10/13/16

Logistic 1% 13/7/1 13/7/1 13/7/1 11/8/2
5% 17/9/3 15/11/3 15/12/2 15/11/3
10% 17/8/4 18/7/4 12/13/4 14/11/4
20% 13/8/8 15/9/5 12/6/11 14/7/8

SMO 1% 11/8/2 11/8/2 11/8/2 10/9/2
5% 8/19/2 7/20/2 9/15/5 9/12/8
10% 5/17/7 8/17/4 9/12/8 10/11/8
20% 6/14/9 9/12/8 8/5/16 7/11/11

AdaBoost (J48) 1% 13/8/0 13/8/0 13/8/0 6/15/0
5% 15/13/1 15/13/1 13/12/4 12/13/4
10% 12/10/7 14/7/8 15/7/7 12/10/7
20% 11/10/8 13/8/8 12/7/10 12/8/9

IB1 1% 6/12/3 6/12/3 7/11/3 7/11/3
5% 12/12/5 12/12/5 12/9/8 13/9/7
10% 13/13/3 14/11/4 11/7/11 15/4/10
20% 12/10/7 13/9/7 12/6/11 13/7/9

experiments, we show the results for the linear kernel experiments. For quadratic
and cubic kernels, Yatsi produces less of an advantage, mostly due to the fact
that the SMO predictions get better and Yatsi is not able to improve on them,
but performs equal to the SMO algorithm more often. For AdaBoost, the shown
results are obtained with the standard settings for J48; a range of different
parameter values for AdaBoost produced almost identical results.

Overall, the results show that Yatsi often improves on the results of the base
classifier. Especially when very little of the data is labeled, Yatsi gains a lot
from having the unlabeled data available. When the percentage of labeled data
increases, Yatsi loses some of its advantage, but for the most part performs
comparable if not better than the base classifier. The exception seems to be
when one uses Random Forests. The weighted nearest neighbor approach of
Yatsi loses some of the accuracy obtained by voting over the ensemble of trees.

To give more of an indication of the actual improvements reached by Yatsi
in terms of predictive accuracy, Table 2 shows the actual predictive accuracies
from the experiments with 5%-95% splits when one uses J48 as the classifier in
stage 1. To gain additional insights into the results, we compared error rates for
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Table 2. Predictive accuracies of J48 and Yatsi using J48 as the stage 1 classifier
averaged over 20 runs of the experiments. The data-sets were split into training- and
test-set with a 5%-95% ratio. Significant improvements or degradations were tested
with a two-tailed 5% confidence interval.

Dataset J48 F = 0.1 F = 1.0 F = 10.0 No Weights
iris 75.73 87.18 ◦ 87.15 ◦ 84.52 ◦ 83.79 ◦
ionosphere 76.63 74.60 74.60 72.21 • 72.23 •
lymphography 62.73 63.37 63.41 60.99 60.77 •
labor 60.27 65.88 ◦ 66.25 ◦ 60.27 60.27
hungarian-14-heart-disease 76.73 75.74 75.74 77.00 76.69
cleveland-14-heart-disease 68.72 73.83 ◦ 73.79 ◦ 73.37 ◦ 72.56 ◦
hepatitis 73.77 78.16 78.03 77.93 77.89
heart-statlog 68.50 71.28 ◦ 71.34 ◦ 70.91 ◦ 70.66 ◦
vote 93.80 91.60 • 91.58 • 91.86 • 91.83 •
vehicle 52.41 55.07 ◦ 55.08 ◦ 53.94 ◦ 53.24 ◦
zoo 57.27 72.31 ◦ 72.37 ◦ 59.84 ◦ 59.79 ◦
vowel 33.69 33.55 33.55 29.65 • 28.65 •
sonar 60.83 62.43 62.48 60.76 60.33
primary-tumor 19.72 24.55 ◦ 23.75 ◦ 20.31 20.06
soybean 47.49 65.56 ◦ 65.59 ◦ 53.25 ◦ 52.77 ◦
balance-scale 68.74 74.08 ◦ 74.07 ◦ 69.72 ◦ 69.53 ◦
autos 38.51 40.26 40.31 38.72 38.46
wisconsin-breast-cancer 90.52 94.65 ◦ 94.62 ◦ 94.56 ◦ 94.43 ◦
breast-cancer 64.69 66.52 67.11 ◦ 67.69 ◦ 67.69 ◦
anneal.ORIG 76.38 77.22 76.88 74.80 74.67
anneal 87.69 87.70 87.70 86.81 • 86.81 •
audiology 43.63 43.50 43.69 40.50 • 40.36 •
pima-diabetes 66.86 68.18 ◦ 68.53 ◦ 68.60 ◦ 68.14 ◦
german-credit 65.18 67.55 ◦ 67.53 ◦ 68.27 ◦ 68.46 ◦
Glass 42.94 48.74 ◦ 48.74 ◦ 44.74 ◦ 44.32
ecoli 65.49 73.31 ◦ 73.34 ◦ 71.70 ◦ 71.65 ◦
horse-colic.ORIG 62.79 63.19 63.26 64.08 64.20
horse-colic 75.57 76.12 76.22 78.13 ◦ 78.30 ◦
credit-rating 79.69 81.53 ◦ 81.51 ◦ 82.72 ◦ 82.52 ◦

◦, • statistically significant improvement or degradation

J48 and Yatsi(J48) using different values for the weighting parameter F and
with the percentage of labeled examples varying between 1% and 20%3. General
trends are obvious, like the fact that more labels usually lead to globally better
results, or that with a very small number of labels J48 usually performs worse
than Yatsi but that J48 can outperform Yatsi when given more labeled data.
With regard to the weighting parameter F we see that values of 0.1 and 1.0
consistently perform better than a value of 10 or without using weights, which
indicates the advantage of taking a cautious approach that puts more trust into
the originally supplied labels over the labels generated by the first stage classifier.

3 For plots we refer to an extended version of this paper available online: http://

www.cs.kuleuven.be/~kurtd/papers/2005 pakdd driessens extented.pdf
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As already stated, all previous experiments were run with the number of near-
est neighbors for the second stage fixed to 10. Because of the use of weights and
the large difference in weights between training and test examples, we thought
it might make sense to use a larger number of nearest neighbors, so we also per-
formed experiments with 20 and 50 nearest neighbors in the 1% labeled training
data case. Overall, these experiments showed very little difference with the 10
nearest neighbor ones. When there was a difference, there was a little improve-
ment for low values of F (0.1 or 1.0) and a small loss for the cases where a high
weight was given to the test-examples (F = 10.0 or no weights used at all).

5 Conclusions and Further Work

We have presented a simple two-stage idea that benefits from the availability of
unlabeled data to improve on predictive accuracies of standard classifiers. Yatsi
uses an off-the-shelf classification or regression algorithm in a first step and uses
weighted nearest neighbor on the combined set of training data and “pre-labeled”
test data for actual predictions. Experimental results obtained from both a large
array of different classifiers used in the first step, different amounts of available
unlabeled data and a relatively large selection of data-sets show that Yatsi will
usually improve on or match the predictive performance of the base classifier
used generated in the first stage. These improvements are largest in cases where
there is a lot more unlabeled data available than there is labeled data.

The Yatsi algorithm in its current form is quite simple and therefore a num-
ber of further improvements are possible. Some ideas have already been pre-
sented in section 3 such as the inclusion of a more efficient nearest neighbor
search algorithm or the use of cross validation to determine the best number of
nearest neighbors to use. Also, the current weighting scheme does not allow the
user to stress the relative importance of different classes. Appropriate weight-
ing schemes for cost-sensitive settings could be easily integrated into the Yatsi
algorithm. More elaborate extensions could include some sort of EM-algorithm
that tries to match the “pre-labels” of test-examples with the eventually pre-
dicted values. Distance functions different to simple Euclidean distance could
encode specialized domain knowledge and thus help improving classification per-
formance. These directions would relate Yatsi more closely to both graph-based
and kernel-based methods of semi-supervised learning.
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Abstract. Feature selection is one of key issues related with data pre-
processing of classification task in a data mining process. Although many
efforts have been done to improve typical feature selection algorithms
(FSAs), such as filter methods and wrapper methods, it is hard for
just one FSA to manage its performances to various datasets. To above
problems, we propose another way to support feature selection proce-
dure, constructing proper FSAs to each given dataset. Here is discussed
constructive meta-level feature selection that re-constructs proper FSAs
with a method repository every given datasets, de-composing representa-
tive FSAs into methods. After implementing the constructive meta-level
feature selection system, we show how constructive meta-level feature se-
lection goes well with 32 UCI common data sets, comparing with typical
FSAs on their accuracies. As the result, our system shows the highest
performance on accuracies and the availability to construct a proper FSA
to each given data set automatically.

1 Introduction

Feature selection is one of the key procedures to get a better result from the
data mining process. However, it is difficult to determine the relevant feature
subset before the mining procedure. At practical data mining situations, data
miners often face a problem to choose the best feature subset for a given data set.
If it contains irrelevant or/and redundant features, a data miner can’t get any
satisfactory results from mining/machine learning scheme. Irrelevant features
not only lead to lower performance of the results, but also preclude finding
potentially existing useful knowledge. Besides, redundant features not affect the
performance of classification task, but influence the readability of the mining
result. To choose a relevant feature subset, data miners have to take trial-and-
error testing, expertise for the given feature set, or/and heavy domain knowledge
for the given data set.

Feature selection algorithms (FSAs) have been developed to select a relevant
feature subset automatically as a data pre-processing in a data mining process.

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 70–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The performance of FSA is always affected by a given data set. To keep their per-
formance higher, a user often tries to execute prepared FSAs to his/her dataset
exhaustively. Thus a proper FSA selection is still costly work in a data mining
process, and this is one of the bottle necks of data mining processes.

To above problems, we have developed a novel feature selection scheme based
on constructive meta-level processing. We have developed a system to construct
proper FSAs to each given data set with this scheme, which consists of de-
composition of FSAs and re-construction of them. To de-compose current FSAs
into functional parts called ‘methods’, we have analyzed currently representative
FSAs. Then we have constructed the feature selection method repository, to re-
construct a proper FSA to a given data set.

After constructing the feature selection method repository, we have imple-
mented a system to choose a proper FSA to each given data set, searching
possible FSAs obtained by the method repository for the best one. Taking this
system, we have done a case study to evaluate the performance of FSAs on 32
UCI common data sets. As the result, the performance of FSAs has achieved the
best performance, comparing with representative higher performed FSAs.

2 Related Work

After constructing a feature set to describe each instance more correctly, we take
a FSA to select an adequate feature subset for a prepared learning algorithm.

To improve classification tasks at data mining, many FSAs have been devel-
oped [2, 3, 4]. As shown in the survey done by Hall [5], wrapper methods [6]
such as forward selection and backward elimination have high performance with
high computational costs. Besides, filter methods such as Relief [7, 8], Informa-
tion Gain and FOCUS [9] can be executed more quickly with lower performance
than that of wrapper methods. Some advanced wrapper methods such as CFS
[10], which executes a substitute evaluator instead of a learned evaluator, have
lower computational costs than wrapper methods. However, these performances
are still non-practical, comparing with wrapper methods.

We also developed a novel FSA called ‘Seed Method’ [1]. Seed Method has
achieved both of practical computational cost and practical performance, be-
cause it improves wrapper forward selection method, determining a proper star-
ing feature subset for given feature set. With an adequate starting subset, this
method can reduce the search space of 2n feature subsets obtained by n features.
To determine an adequate starting subset, the method extracts a feature subset
with Relief.F and C4.5 decision tree [11] from given feature set.

Although studies done by [6, 12, 13] have shown each way to characterize
FSAs, they have never discussed any way to construct a proper FSA to a given
data set. So, a data miner still selects FSA with exhaustive executions of prepared
FSAs, depending on his/her expertise. Weka [14] and Yale [15] provide many
feature selection components and frameworks to users. We can construct several
hundred FSAs with these materials. However, they never support to choose a
proper one.
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3 Constructive Meta-level Processing Scheme Based on
Method Repositories

At the field of meta-learning, there are many studies about selective meta-
learning scheme. There are two approaches as selective meta-learning. One in-
cludes bagging [16] and boosting [17], combining base-level classifiers from multi-
ple training data with different distributions. In these meta-learning schemes, we
should select just one learning algorithm to learn base-level classifiers. The other
approach includes voting, stacking [18] and cascading [19], which combines base-
level classifiers from different learning algorithms. METAL [20] and IDA [21] are
also selective meta-learning approach, selecting a proper learning algorithm to
the given data set with a heuristic score, which is called meta-knowledge.

Constructive meta-level processing scheme [22] takes meta-learning approach,
which controls objective process with meta-knowledge as shown in Fig.1. In this
scheme, we construct a meta-knowledge, representing with method repositories.
The meta-knowledge consists of information of functional parts, restrictions of
combinations of each functional part, and the ways to re-construct object algo-
rithms with the functional parts.

Given data set

Algorithm A

Algorithm B

Algorithm C

de-com
position

Base-level algorithms

Given data set

Searching for
 an adequatealgorithm,

re-constructing 
possible algorithms

An adequate algorighm

Constructive meta-processing scheme

identified control structures

identified similar methods,
having similar function

Fig. 1. An overview of constructive meta-level processing scheme

3.1 Issues to Implement a Method Repository

To build up a method repository, we should consider the following three major
issues: how to de-compose prepared algorithms into functional parts, how to
restrict the combinations of the functional parts, and how to re-construct a
proper algorithm to a given data set.

To implement a feature selection method repository, we have considered above
issues to identify feature selection methods(FSMs) in typical FSAs. Fortunately,
FSAs have a nature as a search problem on possible combinations of features,
which is pointed out in some papers [6, 12, 13]. With this nature, we have been
able to identify generic methods in FSAs. Then we have also identified specific
FSMs, which get into each implemented functional parts 1. At the same time,
we have also defined data types which are input/output/referenced for these

1 For example, these functions are corresponded to Java classes in Weka.
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methods. Thus we have organized these methods into a hierarchy of FSMs and
a data type hierarchy. With these hierarchies, the system constructs FSAs to a
given data set, searching possible FSAs obtained by the method repository for
a proper one.

4 Implementation of the Constructive Meta-level Feature
Selection Scheme

To implement constructive meta-level feature selection scheme, we have to build
a feature selection method repository and the system to construct proper FSAs
to given data sets with the feature selection method repository.

4.1 Constructing a Feature Selection Method Repository

Firstly, we have identified the following four generic methods: determining initial
set, evaluating attribute subset, testing a search termination of attribute subsets
and attribute subset search operation. This identification is based on what FSAs
can be assumed one kind of search problems. Considering the four generic meth-
ods, we have analyzed representative FSAs implemented in Weka[14] attribute
selection package2. Then we have build up a feature selection method repository.

After identifying 26 specific methods from Weka, we have described restric-
tions to re-construct FSAs. The restriction has defined with input data type,
output data type, reference data type, pre-method and post-method for each
method. With this description, we have defined control structures with these
generic four methods as shown in Fig.2.

start determining
initial set

evaluating
attribute subset

testing
a search termination
of attribute subset

end

attribute subset
search operation

determining
initial set

start end
(I)

(II)

Fig. 2. Identified control structures on the four generic methods

The control structure (I) corresponds ordinary that of filter approach FSAs.
Besides, with the control structure (II), we can construct hybrid FSAs, which
is combined wrapper and filter FSAs. Of course, we can also construct analyzed
filter and wrapper FSAs with these control structure.

At the same time, we have also defined method hierarchy, articulating each
method. Fig.3 shows us the method hierarchy of feature selection. Each method
has been articulated with the following roles: input data type, output data type,
reference data type, pre-method, and post-method. With these roles, we have
also defined combinations of FSMs.
2 We have taken weka-3-4-5 in this time.
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Best First search

Greedy search

Fig. 3. The feature selection method hierarchy

To articulate data types for input, output and reference of methods, we have
also defined data type hierarchy as shown in Fig.4.

Object

dataset

attribute set

attribute

whole(given) attribute set
attribute subset

nominal attribute
numerical attribute

training dataset
validation dataset
test dataset

null attribute set

Fig. 4. The hierarchy of data types for the feature selection methods

4.2 The System to Construct a Proper FSA with a Feature
Selection Method Repository

To re-construct a proper FSA to given data set, the system have to search possi-
ble FSAs obtained by the FSM repository for the most proper one. This process
is also one of the search problems. Then we have designed the system with the fol-
lowing procedures: construction, instantiation, compilation, test, and refinement.
The system chooses a proper FSA with these procedures as shown in Fig.5.

Each function of procedures is described in detail as follows: Construction
procedure constructs a specification of the initial feature selection algorithm,
selecting each specific method at random. Instantiation procedure transforms
constructed or refined specifications to the intermediate codes. Compilation
procedure compiles the intermediate codes to executable codes such as com-
mands for Weka. Go & Test procedure executes the executable codes to the
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A feature selection
method repository

Construction

Instantiation

come to
the number of refinement?

Refinement

Constructed Feature Selection Application

No
Yes

Compilation

Go & Test

Constructive meta-level feature selection

data sets, a number of refinement

Fig. 5. An overview of constructive meta-level feature selection system

given data set to estimate the performance of FSAs. If the number of refinement
doesn’t come to the given limitation number Refinement procedure refines
specifications of executed FSAs with some search operations.

5 Evaluation on UCI Common Data Sets

After implementing the feature selection method repository and the system to
construct proper FSAs to given data sets, we have done a case study to evaluate
an availability of our constructive meta-level feature selection scheme.

In this case study, we have taken 32 common data sets from UCI ML reposi-
tory [23], which are distributed with Weka. With the implemented feature selec-
tion method repository, the system has been able to construct 292 FSAs. The
system has searched specification space of possible FSAs for the best FSA to
each data set with the following configuration of GA operation at ‘Refinement’
procedure:
Population size. Each generation has τ individuals.
Selection. We take roulette selection to select 60% individuals for parents.
Crossover. Each pair of parents is crossed over single point, which is selected

at random.
Mutation. Just one gene of selected child is mutated, selecting just one child

with the probability 2%.
Elite Preservation. The best individual is preserved on each generation.

5.1 The Process to Select a FSA

Firstly, the system selects proper FSAs to each data set, estimating the actual
performance with the performance of n-fold cross validation. The selection phase
has done at ‘Go & Test’ procedure in Fig.5. This selection phase has been re-
peated multiple times in each construction of FSA with our system. Finally, the
system output just one FSA, which has the highest ‘evaluation score’ as shown
in Fig.6.
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Fig. 6. Computing evaluation scores of each spec for GA in ‘Refinement’ procedure

We have taken averaged predictive accuracy EstAcc(D) of n-fold cross vali-
dation from predictive accuracies acc(evdi) for each validation data set evdi as
the following formulations:

EstAcc(D) =
Σn

i=1acc(evdi)
n

zwacc(evdi) =
crr(evdi)
size(evdi)

× 100

acc(evdi) is a percentage score from the number of correctly predicted instances
crr(evdi) and size of each validation set size(evdi).

According to this evaluation scores, the GA refinement searched for proper
FSAs to each given data set. We have set up population size τ = 10 and max-
imum generation N = 10 in this case study. So this set of GA operations has
repeated maximum 10 times to each data set. Finally, the best FSA included
in a final generation has been selected as output of our constructive meta-level
feature selection system.

5.2 The Process of the Evaluation

We have designed the process of this evaluation for representative FSAs and
constructed FSAs to each data set as shown in Fig.7.

In this evaluation, we have applied each FSA to each whole data set. Then n-
fold cross validation have been performed on each data set with selected feature
subset. The performances of each data set Acc(D) have been averaged predictive
accuracies acc(vdi) from each fold as the following formulations:

Acc(D) =
Σn

i=1 acc(vdi)
n

zwacc(vdi) =
crr(vdi)
size(vdi)

× 100

Where vdi means i-th validation set of the n-fold cross validation.
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Fig. 7. Evaluation framework for the accuracy comparison
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We have compared the performance of our constructive meta-level feature
selection system with the following FSAs: Whole feature set, Seed method,
and Genetic Search[24]. All of them have been evaluated with the same way as
shown in the evaluation phase of Fig.7. We had done wrapper forward selection,
Relief.F, Seed method and ‘Genetic Search’ to the data sets previously. Then
the two methods were selected because of their higher performance.

5.3 Results and Discussions of the Evaluation

Table1 shows us the accuracies from whole feature set, subset selected by seed
method, subset selected by ‘Genetic Search’ and subset selected by FSAs which
constructed with our constructive meta-level feature selection system. Each score
is the averaged accuracy calculated from 10-fold cross validation. The significance
of the average for all of the data sets has tested with t-test. The comparison
between the averages of our system and the other FSAs shows the statistically
significant difference, where p < 0.05 for the other FSAs.

Table1 also shows us the result of the best performances, comparing among per-
formances of the FSAs. To the 17 data sets, FSAs composed by our system have
achieved the best performance. To breast-cancer, colic, hepatitis, ionosphere, iris

Table 1. The performances of the feature selection algorithms on the UCI common
data sets. Each score means averaged accuracies(%) with 10-fold cross validation. ’*’
means the best accuracy within this evaluation.
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Input: Whole feature set  F, training data set Tr
Output: Feature subset for the training data set  Fsub
Prameters: number of backtracks=5

begin:
  Feature set f;
  f = determining_initial_set_with_FA+Seed(F);
  int i=0;
  double[] evaluations;
  while(1){
    evaluations[] = feature_subset_evaluation_with_CFS(f);
    (f,i) = backward_elimination(evaluations,f);
    if(number_of_backtracks(i,5)==true){ break; }
  }
  return f;
end:

Fig. 8. Pseudo-code of the feature selection algorithm for heart-statlog

and kr-vs-kp, whole feature set wins selected feature subsets, because all of the
evaluated FSAs have not been able to select whole feature sets. They tend to out-
put smaller feature subset, because they believe in that there are some irrelevant
features in the given feature set. If we had defined the control structure for filter
method Fig.2, the system would have selected whole feature subset with ‘whole
set’ method in Fig.3.

To anneal, audiology, breast-w, diabetes, heart-h, letter, primary-tumor, splice
and waveform-5000, FSAs composed by our system have not achieved the best
performance, comparing with the other FSAs. The evaluation scores to estimate
actual performances have not worked correctly on these cases. However, these
disadvantages are not significant differences statistically.

Fig.8 shows us the FSA composed by our system to heart-statlog data set.
This algorithm consists of initial set determination with ‘seed method’ & elim-
ination unique features using Factor Analysis result, feature subset evaluation
with CFS method, backward elimination, and stopping with the number of back-
tracks3. Although this algorithm bases on backward elimination method, the
combination of methods has been never seen in any study of FSAs. As this ex-
ample, our system has been also able to construct a novel FSA automatically,
reconstructing feature selection methods on the repository.

6 Conclusion

We present a novel meta-level feature selection approach based on constructive
meta-level processing with method repositories. This scheme chooses a proper
FSA to the given data set, re-constructing the FSA with a FSMs repository.

To evaluate the availability of our approach, we have done an empirical ex-
periment with 32 UCI common data sets. Our constructive meta-level feature
selection system has significantly outperformed than representative FSAs, which
have higher performance compared with the other FSAs. The result also shows
that our constructive meta-level feature selection system have been able to con-
struct a proper algorithm to given feature set automatically.

3 The number has been set up five.
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As feature work, we will improve criterion to choose a proper FSA, consider-
ing search time to select a proper one, execution time of selected FSA and its
performance.

References

[1] Komori, M., Abe, H., Yamaguchi, T.: A new feature selection method based on
dynamic inclemental extension of seed features. In: Proceedings of Knowledge-
Based Software Engineering. (2002) 291–296

[2] John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: International Conference on Machine Learning. (1994) 121–129

[3] John, G.H.: Enhancements to the data mining process. PhD thesis, Computer
Science Department, Stanford University (1997)

[4] Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers (1998)

[5] Hall, M.A.: Benchmarking attribute selection techniques for data mining. Tech-
nical Report Working Paper 00/10, Department of Computer Science, University
of Waikato (2000)

[6] Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97 (1997) 273–324

[7] Kira, K., Rendell, L.: A practical approach to feature selection. In Sleeman, D.,
Edwards, P., eds.: Proceedings of the Ninth International Conference on Machine
Learning. (1992) 249–256

[8] Kononenko, I.: Estimating attributes: Analysis and extensions of relief. In: Pro-
ceedings of the 1994 European Conference on Machine Learning. (1994) 171–182

[9] Alumualim, H., Dietterich, T.G.: Learning boolean concepts in the presence of
many irrelevant features. Artificial Intelligence 69 (1994) 279–305

[10] Hall, M.: Correlation-based Feature Selection for Machine Learning. PhD thesis,
Department of Computer Science, University of Waikato (1998)

[11] Quinlan, J.R.: Programs for Machine Learning. Morgan Kaufmann (1992)
[12] Langley, P.: Selection of relevant features in machine learning. In: Proceedings of

the AAAI Fall Symposium on Relevance. (1994)
[13] Molina, L.C., Beranche, L., Nebot, A.: Feature selection algorithms: A survey and

experimental evaluation. In: Proceedings of the 2002 Internatiolan Conference on
Data Mining. (2002) 306–313

[14] Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques with Java implementations. Morgan Kaufmann (2000)

[15] Mierswa, I., Klinkenberg, R., Fischer, S., Ritthoff, O.: A Flexible Platform for
Knowledge Discovery Experiments: YALE – Yet Another Learning Environment.
In: LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren - Wissen
- Adaptivität. (2003)

[16] Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
[17] Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. In: Proceedings the Second European Conference
on Computational Learning Theory. (1995)

[18] Wolpert, D.: Stacked generalization. Neural Network 5 (1992) 241–260
[19] Gama, J., Brazdil, P.: Cascade generalization. Machine Learning 41 (2000) 315–

343
[20] METAL: http://www.metal-kdd.org/. (2002)



80 H. Abe and T. Yamaguchi

[21] Bernstein, A., Provost, F.: An intelligent assistant for knowledge discovery pro-
cess. In: IJCAI 2001 Workshop on Wrappers for Performance Enhancement in
KDD. (2001)

[22] Abe, H., Yamaguchi, T.: Constructive meta-learning with machine learning
method repositories. In: Proceedings of the seventeenth International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems. (2004) 502–511

[23] Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases.
http://www.ics.uci.edu/̃ mlearn/MLRepository.html (1998)

[24] Vafaie, H., Jong, K.D.: Genetic algorithms as a tool for feature selection in ma-
chine learning. In: Proceedings of the fourth International Conference on Tools
with Artificial Intelligence. (1992) 200–204



Variable Randomness in Decision Tree
Ensembles

Fei Tony Liu and Kai Ming Ting

Gippsland School of Information Technology,
Monash University,

Churchill, 3842, Australia
{Tony.Liu, KaiMing.Ting}@infotech.monash.edu.au

Abstract. In this paper, we propose Max-diverse.α, which has a mech-
anism to control the degrees of randomness in decision tree ensembles.
This control gives an ensemble the means to balance the two conflicting
functions of a random random ensemble, i.e., the abilities to model non-
axis-parallel boundary and eliminate irrelevant features. We find that
this control is more sensitive to the one provided by Random Forests.
Using progressive training errors, we are able to estimate an appropriate
randomness for any given data prior to any predictive tasks. Experi-
ment results show that Max-diverse.α is significantly better than Ran-
dom Forests and Max-diverse Ensemble, and it is comparable to the
state-of-the-art C5 boosting.

1 Introduction

Random tree ensembles utilize randomization techniques such as data perturba-
tion, random sampling and random feature selection to create diverse individual
trees. Examples of such are Bagging [1], Randomized Trees [2], Random Subspace
[3], Decision Tree randomization [4], Random Forests [5], Random Decision Tree
[6] and Max-diverse Ensemble [7]. Based on Breiman’s analysis, randomization
increases ensemble diversity and reduces the strength of individual learners [5].
Many studies suggested that choosing a proper degree of diversity or strength
would greatly enhance the ensemble accuracy [8, 9]. Among the above-mentioned
implementations, Random Forests provides a parameter to vary the degree of
randomness. To some extents the parameter affects the diversity and the average
strength of individual trees. However, Breiman concluded that ensemble accu-
racy is insensitive to the different values of the parameter [5]. This leaves several
open questions to be addressed: (1) What are the effects of different degrees
of randomness? (2) Is there a better way to control the amount of randomness
used? (3) What is the appropriate level of randomness for a given problem?

The spectrum of randomness in the above-mentioned implementations can be
conceptualized as a continuum ranging from highly deterministic to completely
random. Max-diverse Ensemble represents the extreme of complete-randomness.
It completely randomizes the feature selection process which is geared toward
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c© Springer-Verlag Berlin Heidelberg 2006
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maximizing tree diversity. Max-diverse Ensemble has been shown to be compa-
rable to Random Forests in terms of accuracy [7]. Analytically, it has a lower
time-complexity since the feature selection is completely random and does not
require bootstrap sampling. In order to answer the questions listed, a study
into the effect of variable randomness is needed. Due to Max-diverse Ensemble’s
complete-randomness and outstanding performance, we are motivated to use it
as the upper limit to generate variable randomness. The lower limit is simply set
by a conventional deterministic decision tree. In this case, C4.5 [10] is selected.
In this paper, these two limits set the range of the variable randomness and
provide the necessary platform for our study.

The rest of this paper is organized as follows. Section 2 gives a brief account
of contemporary random decision tree ensembles, including the conventional
random tree ensembles and complete-random tree ensemble. In section 3, we in-
vestigate the strengths and weaknesses of Max-diverse Ensemble [7] which serve
as a primer to better understand the effects of variable randomness. Section 4
introduces Max-diverse.α, a novel variable-random approach which is capable
of estimating an appropriate randomness for any given data set. In section 5,
we empirically compare the proposed Max-diverse.α with Max-diverse Ensem-
ble, Random Forests and C5 boosting. This is then followed by discussion and
conclusions in the last two sections.

2 Contemporary Random Decision Tree Ensembles

One of the attractive characteristics of the random decision tree ensembles is the
anti-overfitting property[5]. For decision tree ensembles, the posterior probability
is estimated either by voting or probability averaging. By the Law of Large Num-
bers, voting and probability averaging approach the true posterior probability,
when the number of trees becomes large.

Furthermore, Breiman’s analysis on strength and diversity [5] provides a way
to analyse the performance of different decision tree ensembles. Breiman gives

PE ≥ ρ̄(1 − s2)/s2 (1)

where PE is the generalization error for an ensemble, ρ̄ is the mean correlation
among trees, and s is the average strength of individual trees in an ensemble.
Strength s corresponds to the accuracy of individual trees and correlation ρ̄
corresponds to similarity of tree structures in an ensemble. Correlation is the
opposite of diversity. In essence, equation (1) suggests that diversified and ac-
curate individual trees create accurate ensemble. Also, Buttrey and Kobayashi
conjectured that strength s and correlation ρ̄ form a non-linear relationship in
which diversity increases in the expense of s and vice versa [11]. In a nutshell,
algorithms that build single decision tree strive to build the most accurate one.
To achieve diversity, single decision trees in an ensemble sacrifice some of their
strength to allow for variation. As it stands, finding the right balance of strength
and diversity is the key challenge in developing a good performing random tree
ensemble.
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Random Forests [5] is a popular implementation of random tree ensem-
ble. Building on Bagging [1], Random Forests uses an F parameter to further
randomize the feature selection process. In the tree construction phase, prior to
selecting a feature test for a tree node, Random Forests randomly pre-selects F
number of features. The F number of features are then fed to a deterministic
feature selection to select the best feature test. F is recommended to be the first
integer less than log2m + 1, where m is the total number of features in a train-
ing set [5]. In summary, Bagging makes use of bootstrap sampling to enhance
the accuracy of a single decision tree. Random Forests injects the randomized
feature selection process into Bagging to achieve higher degree of randomness to
further improve ensemble accuracy.

In contrast, algorithms that generate complete-random trees such as Max-
diverse Ensemble [7] do not use any deterministic feature selection at all. It
achieves the highest degree of diversity, as it can generate any possible trees
that have no empty leaves. 1 With complete-random feature selection, the test
feature for each node is randomly selected from available features. Max-diverse
Ensemble grows unpruned trees and combines their predictions by probability
averaging. Explaining using Breiman’s equation in (1), Max-diverse Ensemble
lowers the generalization error PE by lowering correlation ρ̄ through increased
diversity, and compensating poorer performing individual trees.

3 Strengths and Weaknesses of Complete-Random Tree
Ensemble

As complete-random trees are the upper limit of variable randomness, In this
section, we discuss the strengths and weaknesses of complete-random tree en-
semble which will allow us to see the changing effects of variable randomness.
In the first subsection, we reveal Max-diverse’s strengths in modeling non-axis-
parallel boundaries and capturing small details. The problem of small disjuncts
is also covered in this subsection as a side effect of capturing small details. In the
second subsection, we show Max-diverse’s weakness in its inability to eliminate
irrelevant features.

3.1 Modeling Non-axis-parallel Boundary

This section focuses on the relationship between randomness and the ability to
model non-axis-parallel boundaries. For single decision trees, the feature test
separates feature values using a simple logical test, so the decision boundary
must be aligned to one of the feature axes. When constructing a decision tree,
it first looks for the most significant structure in the instance space. With fur-
ther division in the instance space, its accumulated information gain does not
allow it to form certain partitions with less information. Hence, small details are
neglected.
1 Bagging and Random Forests consider a smaller set of trees because the number of

possible trees are further constrained by the feature selection criterion.
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Error 14.2%
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Error 10%

(d)

Error 11.3%

(e)

Fig. 1. Gaussian mixture (a) training data and (b) the optimal boundary. Shaded
area denotes positive class; cleared area denotes negative class. (c) When classifying
using a single unpruned decision tree, C4.5, the decision boundary is rectangular in
shape. (d) The decision boundary of Random Forests (F = 1) retains the rectangularity
from the single decision tree. (e) Max-diverse Ensemble fits a non-axis-parallel decision
boundary to the training data, forming non-rectangular boundaries.

To visualize these limitations, we employ a Gaussian mixture data set from
[12]. The training data 2 and optimal boundary are given in Figure 1a and Figure
1b. Figure 1c shows the classification of a single unpruned decision tree (C4.5).
As expected, the decision boundaries appear to be axis-parallel.

Contemporary random decision tree ensembles overcome this limitation by
overlapping the decision boundaries to model a non-axis-parallel boundary. To be
effective, trees have to be different from each other or to be diverse to model any
non-axis-parallel boundary. This effect is similar to analog-to-digital conversion.
As the quality of the analog-to-digital conversion is dependent on the sampling
rate, the quality of the decision boundary is dependent on the diversity of the
ensemble.

Figure 1 also shows the effects of increasing randomness in feature selec-
tion. The decision boundary of Random Forests in Figure 1d is still far from
the optimal boundary and still exhibits rectangular shapes. On the other hand,
Max-diverse Ensemble’s decision boundary in Figure 1e appears to resemble the
optimal boundary more closely. It captures small details presented in the training
data, though it also suffers from small disjuncts [13], preventing it from reaching
higher accuracy.

3.2 The Effect of Irrelevant Features

One of the consequences of complete-randomness in feature selection is that
there is no means to avoid irrelevant features. In ordinary decision trees, avoiding
irrelevant features is usually done through feature selection. For example, Max-
diverse Ensemble performs poorly on the dna data set with an error rate of
28.8% with an average tree size3 of 2555. It is noteworthy that dna data has
sixty features. On average, an ordinary decision tree only uses four features
to classify a test case. Therefore, an ordinary single decision tree regards the
2 Gaussian mixture data set has 200 training samples and 6831 testing samples.
3 Tree size is the average number of nodes (including internal nodes and leaf nodes)

of single trees in an ensemble.
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other fifty-six features as irrelevant or unnecessary when making a classification.
Random Forests performs well with dna data as it employs an feature selection
which filters out irrelevant features. This results in an error rate of 12.9% and an
average tree size of 421, indicating Random Forests’ ability to filter out irrelevant
features. In contrast, Max-diverse Ensemble has a much larger tree size as a
consequence of its inability to identify irrelevant features.

The question then presents itself as to how best to harness the advantage of
Max-diverse Ensemble which is modeling non-axis-parallel boundaries and yet
manage the effects of small disjuncts and its inability to eliminate irrelevant fea-
tures. One possible approach is to essentially adjust the randomness in such a
way that balances these conflicting requirements. Randomness can be conceptu-
alized as a factor ranging from 0 to 1, where 0 is completely random and 1 is the
most deterministic. Therefore, an ensemble with a more deterministic feature se-
lection will be characterized by rectangular decision boundaries and the ability
to eliminate irrelevant features. An ensemble with a more stochastic approach
to feature selection will be characterized by non-axis-parallel boundaries with a
weaker ability to eliminate irrelevant features. In the following section, we will
introduce a novel mechanism to adjust Max-diverse Ensemble’s randomness in
order to optimize the predictive accuracy; this mechanism is more sensitive to
the existing method used in Random Forests.

4 Variable Randomness

Variable randomness provides the flexibility to produce different kinds of
tree ensembles to suit the different characteristics of individual data sets. It
serves as a mechanism for adjusting the balance of strength and diversity of
individual trees in decision tree construction. To fine tune the randomness in
decision tree ensembles, we introduce a parameter α into Max-diverse Ensemble.
This results in an algorithm called Max-diverse.α, which employs both complete-
random and deterministic feature selections. It splits the feature selection process
into two stages at every node. The first stage of the algorithm decides which
method to use, complete-random or deterministic; the second stage proceeds
with the selected criterion to perform subsequent feature selection. α is the
probability of choosing the deterministic feature selection, used in the first stage,

Error 11.2%

α = 0.1

Error 9.7%

α = 0.3

Error 9.1%

α = 0.5

Error 13%

α = 0.7

Error 14.2%

α = 0.9

Fig. 2. Classify Gaussian mixture using Max-diverse.α with different α values. Notes
the changes in decision boundary rectangularity as α changes.
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Algorithm 1. The feature selection process in Max-diverse.α
INPUT S: Training set, α: probability for using deterministic feature selection
OUTPUT T : tree node
let r be a random value, 0 < r ≤ 1;
if r ≤ α then

T = deterministic feature selection(S);
else

T = complete random selection(S);
end if
return T ;

where 0 ≤ α ≤ 1. Algorithm 1 illustrates the proposed two-stage process. α also
approximates the percentage of deterministic feature selection used in a tree.

To illustrate the effect of α, Figure 2 demonstrates changes in decision bound-
ary. Note that the boundary rectangularity and the effect of small disjuncts (i.e.,
small pockets) change when α changes. When α ranges between 0.3 and 0.5 in
this example, error rates drop below 10%.
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Fig. 3. Test errors versus α using Max-
diverse.α in comparison with C4.5, Random
Forests and Max-diverse Ensemble

Figure 3 shows the testing error
rates when plotting against different
α values for Max-diverse.α and three
other methods. It shows that there is
a relatively wide range of α in which
Max-diverse.α can achieve lower er-
ror rates than C4.5, Random Forests
and Max-diverse Ensemble. More im-
portantly, Figure 3 demonstrates the
sensitivity of ensembles’ accuracy to-
ward different degrees of randomness.

Therefore, picking an effective α
value prior to building an ensemble
is essential for practical applications
as the effective range of α values is
data dependent. We observe from our
initial investigation that most of the
optimal α values were found in 0 ≤
α ≤ 0.5. At this stage, there is no op-

timal way to estimate this α value using any data characteristics from training
data. In this paper, a simple estimation procedure is proposed, based on the
average training errors. There are two difficulties in using training errors to es-
timate or predict the testing errors. First, it is possible for all ensemble training
errors of different α to reach zero, making them very hard to compare. Second,
when α > 0.5, the deterministic test selection fits tree structures to the training
samples, creating exceptionally low training errors which bias the selection. To
overcome these difficulties, we estimate an effective α based on the average of
progressive training errors. When constructing an ensemble, progressive train-
ing errors can be obtained by evaluating training data after adding each decision
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tree into the ensemble. The average progressive training error reflects the rate
of training error convergence from first tree to the last tree. So, the lower the
average progressive training error is the better the performance of an ensemble.
An estimated α̂ for each data set is generated as follows:

α̂ = arg min
0≤α≤0.5

(
1
t

t∑
i=1

err(α, i, S)) (2)

where t is the total number of trees in an ensemble, err() returns the training
error rate of an ensemble of size i, set at α and the training samples S. After
obtaining α̂, Max-diverse.α employs the model with α̂ for actual predictive tasks.

5 Experiment

The experiment compares four different ensemble methods of unpruned trees:
Max-diverse.α, Max-diverse Ensemble, Random Forests and C5 boosting [10],
where the last three are used as benchmark classifiers. One hundred trees are
used in each ensemble for each data set. A ten-fold cross-validation is conducted
for each data set and the average error rate is reported. Note that all ensembles
are given exactly the same folds for training and evaluation. In estimating α̂, we
sample eleven α values from 0 to 0.5 in steps of 0.05, that is α = {0, 0.05, ..., 0.5}.

Forty-five data sets from UCI repository [14] are used in this experiment.
Table 1 presents the data properties and the results from the experiment. Table
2 provides pair-wise comparisons among the four methods in terms of the number
of data sets in which one ensemble wins, loses and draws over the other ensemble.
We summarize the result as follows:

– Compared to Max-diverse Ensemble, Max-diverse.α wins in thirty two data
sets, loses in twelve data sets and draws in one data set. This is significant
in a sign test at 95% confidence level.

– Compared to Random Forests, Max-diverse.α wins in twenty six data sets,
loses in fourteen data sets and draws in five data sets. This is also significant
in a sign test at 95% confidence level.

– Compared to C5 Boosting, Max-diverse.α wins in twenty one data sets, loses
in twenty four data sets and draws in none. C5 Boosting and Max-diverse.α
are comparable to each other.

6 Discussion

In section 4, our analysis shows clearly that varying the degree of randomness
(using α) has a significant impact on the performance of the ensemble. To under-
stand the insensitivity of F parameter in Random Forests, it is thus important to
identify the differences between Max-diverse.α and Random Forests that result
in their different behaviours.
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Table 1. Data sets properties and experimental results reported in average error rate
(%) of ten-fold cross-validation. In each data set, the best error rate among the four
methods is bold faced.

datasets size #att.

#class

labels Max-diverse.α
C5

Boosting
Max-diverse
Ensemble

Random
Forests

abalone 4177 8 2 30.5 31.1 30.2 29.5
anneal 898 38 6 1.1 5.0 1.4 23.8

audiology 226 69 23 15.8 15.0 17.7 33.7
auto 205 25 7 15.7 15.6 22.5 19.0

balance 625 4 3 15.7 18.9 12.3 19.7
breast-w 699 10 2 3.7 3.1 2.4 3.4
breast-y 286 9 2 25.5 26.9 25.9 28.6

chess 3196 35 2 0.5 0.3 1.6 0.9
cleveland 303 13 5 42.9 41.6 41.6 39.6

coding 20000 15 2 16.5 15.4 16.8 17.7
credit-a 690 13 2 12.6 14.3 13.0 14.5
credit-g 1000 24 2 23.5 22.4 25.7 24.3

dna 3186 60 3 5.1 4.8 26.5 3.7
echo 133 7 2 34.9 37.4 34.2 34.3
flare 1066 10 2 18.9 17.5 19.2 18.3
glass 214 9 7 22.8 21.4 22.9 25.3
hayes 160 4 3 18.1 16.9 21.9 14.4

hepatitis 155 19 2 20.0 14.1 15.5 16.7
horse 368 22 2 13.6 22.5 17.9 15.2
hypo 3163 25 2 1.1 0.8 1.7 0.8

ionosphere 351 34 2 5.7 5.4 8.5 6.3
iris 150 4 3 5.3 4.0 4.7 5.3

labor 57 16 2 5.0 15.7 3.3 14.0
led24 3200 24 10 28.3 27.8 30.3 28.3
led7 3200 7 10 26.6 28.1 26.9 26.7
liver 345 6 2 25.8 29.6 27.9 32.5

lymph 148 18 4 15.0 19.1 14.3 18.2
nursery 12960 8 5 0.7 0.9 2.2 1.4

pima 768 8 2 24.3 25.0 24.6 23.4
post 90 8 3 37.8 30.0 36.7 43.3

primary 339 17 22 56.3 56.9 57.2 55.2
satimage 6435 36 7 8.5 8.1 10.4 8.3
segment 2310 19 7 1.6 1.8 3.1 2.3

sick 3163 25 2 2.3 2.2 5.7 2.3
solar 323 12 6 30.0 25.7 30.3 28.8
sonar 208 60 2 15.4 15.9 15.9 18.7

soybean 683 35 19 5.4 6.2 6.0 11.7
threeOf9 512 9 2 0.2 0.0 0.6 1.2

tic-tac-toe 958 9 2 2.1 1.2 9.7 6.3
vehicle 846 18 4 24.2 23.3 27.1 24.2

vote 435 16 2 4.4 4.8 5.3 4.4
waveform21 5000 21 3 15.2 15.6 14.7 15.7
waveform40 5000 40 3 15.8 15.1 17.0 16.0

wine 178 13 3 4.0 5.6 1.1 1.7
zoo 101 16 7 2.0 3.0 2.0 2.9

mean 15.6 15.9 16.8 17.4

Random Forests and Max-diverse.α differ in how the feature selections are
applied in each decision node. Random Forests applies both random and deter-
ministic feature selections in each node; but Max-diverse.α only applies one of
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Table 2. A pair-wise comparison of four ensemble methods in terms of the number of
wins, losses and draws. Scores are read from top to left. Significant scores using a sign
test at 95% confidence are bold faced.

wins, losses,draws Max-diverse.α C5 Boosting Random Forests

Max-diverse Ensemble 32,12,1 26,17,2 24,21,0
Random Forests 26,14,5 30,14,1

C5 Boosting 21,24,0

the two methods in each node. α controls the probability in which the determin-
istic (or random) feature selection is applied in each node; whereas the mixed
application of the two selection processes in each node constrains the ‘amount’
of randomness in Random Forests. To explain this, F only controls the number
of features to be randomly selected. Once the best feature is selected in the first
place, no matter what F is, the deterministic feature selection would choose the
best feature. In effect, the randomness only applies to which of the best fea-
tures are selected in F features. This explains the insensitivity that Breiman has
observed.

When F is set to 1, Random Forests appears to be identical to Max-diverse
Ensemble. However, the deterministic feature selection used in Random Forests
has a second function to stop splitting insensible nodes. It means that trees grown
with Random Forests are restricted by the second function of the deterministic
selection criterion. Complete-random selection, however, ignores any selection
criterion: it keeps on splitting until further split is impossible. Together with the
use of bootstrap samples, these are the fundamental differences between Random
Forests (F = 1) and Max-diverse.α (α = 0).

7 Conclusions and Future Works

We contribute to identify the strengths and weaknesses of complete-random en-
semble. The ability to model non-axis parallel boundary is the key distinctive
strength of complete-random ensemble; but it lacks the ability to eliminate irrel-
evant attributes. Motivated to balance these abilities, we propose Max-diverse.α,
a variable-random model capable of estimating an appropriate randomness for
any given data. This gives the ensemble the ability to overcome the weaknesses
of complete-randomness, i.e., it helps to eliminate irrelevant features and reduce
the effect of small disjuncts.

Our answers to the three questions posted in the introduction are as follows:

1. Using Max-diverse.α, we are able to (i) explore the changes in forming non-
axis-parallel boundaries as α varies and (ii) understand that the ability to
eliminate irrelevant features changes with the degrees of randomness.

2. Max-diverse.α uses the α factor to control the amount of randomness used
in the ensemble generation process. The α factor is a better alternative
to Random Forests’ F parameter in which α covers the full spectrum of
variable randomness from completely random to pure deterministic, which
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gives a fine granularity representing any level of randomness whereas F only
accepts integers limited by the number of features.

3. To choose an appropriate α value for a given task, we introduce an estimation
procedure based on progressive training errors. Using progressive training
errors, Max-diverse.α is able to select an α̂ prior to its predictive tasks.
Our experiment shows that Max-diverse.α is significantly better than Max-
diverse Ensemble and Random Forests. It is also comparable to C5 boosting.

In the near future, we will explore ways to improve the efficiency of α̂ estima-
tion, avoid selecting irrelevant feature in such a way that diversity is preserved,
and reduce further the negative impact of small disjuncts.

Acknowledgement. Special thanks to Julie Murray who helps to make this
paper more readable.
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Abstract. Emerging Patterns (EPs) are those itemsets whose supports in one class
are significantly higher than their supports in the other class. In this paper we inves-
tigate how to “bag” EP-based classifiers to build effective ensembles. We design a
new scoring function based on growth rates to increase the diversity of individual
classifiers and an effective scheme to combine the power of ensemble members.
The experimental results confirm that our method of “bagging” EP-based classi-
fiers can produce a more accurate and noise tolerant classifier ensemble.

Keywords: emerging patterns, classification, bagging, ensemble learning.

1 Introduction

Classification is one of the fundamental tasks in machine learning that has been stud-
ied substantially over decades. Recent studies [1, 8, 9] show that classification ensemble
learning techniques such as Bagging [2] and Boosting [6] are very powerful for increas-
ing accuracy by generating and aggregating multiple classifiers.

Classification based on patterns is a relatively new methodology. Patterns are con-
junctions of simple conditions, where each conjunct is a test of the value of one of the
attributes. Emerging Patterns (EPs) [4] are defined as multivariate features (i.e., patterns
or itemsets) whose supports (or frequencies) change significantly from one class to an-
other. As a relatively new family of classifiers, EP-based classifiers such as the CAEP
classifier [5] and the JEP-classifier [7] are not only highly accurate but also easy to un-
derstand. It is an interesting question how to combine multiple EP-based classifiers to
further improve the classification accuracy.

Bagging of previous EP-based classifiers (such as the CAEP classifier and the JEP-
Classifier) does not work because of the following reasons: (1) these classifiers - us-
ing a scoring function that aggregates supports - heavily biased toward the support of
EPs; (2) the supports remain relatively stable with respect to different samples. These
properties are very similar to the Naive Bayes (NB) classifier, as it is remarked in [1]
that NB is “very stable”. It is well recognized that an important pre-requisite for clas-
sification ensemble learning to reduce test error is to generate a diversity of ensem-
ble members. Therefore, our aim is to produce multiple diverse EP-based classifiers

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 91–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with respect to different bootstrap samples. Our solution is a new scoring function for
EPs-based classifiers. The key idea is to abandon the use of support in the scoring
function, while making good use of the discriminating information (i.e., growth rates)
contained in EPs. Our scoring function not only maintains the high accuracy, but also
makes the classifiers diverse with respect to different bootstrap samples. We also de-
velop a new method for combining the knowledge learned in each individual classifier.
Instead of simply using majority voting, we only consider the votes of member clas-
sifiers that have good knowledge about a specific test - if a classifier does not have
enough knowledge about the test, its right of voting is deprived. We carried out experi-
ments on a number of benchmark datasets to study the performance of our new scoring
function and voting scheme. The results show that our method of creating ensembles
often improve classifier performance vs. learning a classifier over the entire dataset
directly.

We highlight the following contributions. First, we studied bagging of the EP-based
classifiers for the first time. Our analysis shows that CAEP classifier and JEP-Classifier
are stable inducers due to their scoring function favoring EPs’ support rather than EPs’
discriminating power (growth rates). Second, we proposed a new scoring function for
EP-based classifiers, which maintains the excellent accuracy while increasing the di-
versity of ensemble members. Both t-tests and wilcoxon rank sum tests show that the
bagged ensemble of the new-scoring-function based classifiers often significantly im-
proves classification performance over an individual classifier. What is more, our en-
semble classifiers are superior to other ensemble methods such as bagged C4.5, boosted
C4.5 and RandomForest [3]. Lastly, we designed a new scheme to combine the outputs
of ensemble members. Different from the static weighting of bagging and boosting, we
assign weights to member classifiers dynamically – instance-based, based on whether
they have specific knowledge to classify the test. Our scheme can also be applied to
combine the outputs of other rule based classifiers.

2 A New Scoring Function for EP-Based Classifiers

We assume any instance is represented by an itemset. We say an instance S contains
another X , if X ⊆ S. The support of X in a dataset D, suppD(X), is countD(X)/|D|,
where countD(X) is the number of instances in D containing X .

We first use a two-class problem to illustrate the main idea of our scoring function
and then discuss how to generalize it in the case of more than two classes. Let the
training dataset D contain two classes: D = Di ∪ Dī. Suppose X is an EP of class
Ci and S is a test to classify. We define GrowthRatei(X) = suppi(X)/suppī(X).
If X � S, we can not use X to determine whether S belongs to class Ci. However, if
X ⊆ S, we can use it effectively: we predict that S belongs to class Ci with confidence
of GrowthRatei(X)/(GrowthRatei(X) + 1). This is because

GrowthRatei(X)
GrowthRatei(X) + 1

=
suppi(X)/suppī(X)

suppi(X)/suppī(X) + 1
=

suppi(X)
suppi(X) + suppī(X)

.

Similarly, we predict that S does not belong to class Ci (belonging to Cī instead)
with confidence of 1/(GrowthRatei(X)+ 1) = suppī(X)/(suppi(X)+ suppī(X)).
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Note that if X is a JEP (where GrowthRatei(X) = ∞), we let GrowthRatei(X)/
(GrowthRatei(X) + 1) = 1 and 1/(GrowthRatei(X) + 1) = 0.

To determine whether S belongs to class Ci, we may also consider EPs of class Cī.
Let Y be an EP of Cī and Y ⊆ S. Note that GrowthRateī(Y ) = suppī(Y )/suppi(Y ).
Using Y , we predict that S belongs to Ci with confidence of 1/(GrowthRateī(Y ) +
1) = suppi(X)/(suppi(X) + suppī(X)). When Y has large growth rate, the impact
of Y on the final decision is very small and hence negligible. However, when its growth
rate is relatively small (e.g., GrowthRateī(Y ) < 5), its impact should be considered.

For a k-class (k ≥ 2) problem, where D = D1 ∪ D2 ∪ · · · ∪Dk, we use the one-
against-all class binarization technique to handle it. For each class Di, we discover a set
E(Ci) of EPs from (D−Di) to Di, and a set E(C̄i) of EPs from Di to (D−Di), where
C̄i refers to the non-Ci class (D −Di). We then use the following scoring function.

Definition 1. Given a test instance T , a set E(Ci) of EPs of data class Ci and a set
E(C̄i) of EPs of data class non-Ci, the score of T for the class Ci is defined as

score(T, Ci)=
X⊆T,X∈E(Ci)

GrowthRatei(X)
GrowthRatei(X) + 1

+
Y ⊆T,Y ∈E(C̄i)

1
GrowthRateī(Y )+1

.

Note GrowthRate(X) = suppCi(X)/suppC̄i
(X) since X ∈ E(Ci); Growth-

Rate(Y )=suppC̄i
(Y )/suppCi(Y ) since Y ∈E(C̄i).

Then we have the following: score(T,Ci)

=
X⊆T,X∈E(Ci)

suppCi(X)/suppC̄i
(X)

suppCi(X)/suppC̄i
(X) + 1

+
Y ⊆T,Y ∈E(C̄i)

1
1 + suppC̄i

(Y )/suppCi(Y )

=
X⊆T,X∈E(Ci)

suppCi(X)
suppCi(X) + suppC̄i

(X)
+

Y ⊆T,Y ∈E(C̄i)

suppCi(Y )
suppCi(Y ) + suppC̄i

(Y )

∴ score(T, Ci) =
X⊆T, X∈E(Ci) E(C̄i)

suppCi(X)
suppCi(X) + suppC̄i

(X)
.

Let the impact of an EP be its support in class Ci divided by the support across all
classes. The impact measures how much more frequently an EP appear in its home
class than in the whole dataset. The above formula effectively means summing up the
contributions of all EPs that are contained in the test.

3 An Improved Voting Scheme for Classifier Combination

Given a number of independently learned EP-based classifiers, we must combine their
knowledge effectively. A reasonable combining scheme is to simply let all the classifiers
vote equally for the class to be predicted. However, some member classifiers may have
no EPs to use to classify a test instance (where the scores for all classes will be zero).
These classifiers should be deprived of their rights to vote. The ensemble scheme is
formally shown in Definition 2.

Definition 2. Given the ensemble classifier C∗ (the combination of N classifiers built
from N bagged training datasets C1, C2, · · · , CN ) and a test instance T = (xt, yt)
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Table 1. Win/Draw/Loss record

EPbase vs Alternatives
using direct accuracy comparison
EPbase Vs C4.5 SVM JEP-C

Win/Draw/Loss 18, 0, 9 14, 0, 13 18, 1, 8

using t-tests for significance
EPbase Vs C4.5 SVM JEP-C

Win/Draw/Loss 12, 9, 6 7, 11, 9 7, 16, 4

using Wilcoxon signed rank test
EPbase Vs C4.5 SVM JEP-C

Win/Draw/Loss 13, 8, 6 10, 7, 10 11, 9, 7

EPbag vs Alternatives
using direct accuracy comparison
EPbag Vs C4.5bag C4.5boost Forest

Win/Draw/Loss 18, 2, 7 20, 1, 6 17, 2, 8

using t-tests for significance
EPbag Vs C4.5bag C4.5boost Forest

Win/Draw/Loss 12, 11, 4 15, 9, 3 11, 12, 4

using Wilcoxon signed rank test
EPbag Vs C4.5bag C4.5boost Forest

Win/Draw/Loss 17, 6, 4 18, 6, 3 14, 9, 4

with labels yt ∈ Y = {1, 2, · · · , k}, the final classification of the ensemble is C∗(T ) =
argmaxy∈Y

∑TN
i=1 δ(Ci(T ) = y), where Ci(T ) represents the output of classifier Ci

for the test T , δ(true) = 1 and δ(false) = 0. Note that Ci(T ) = −1 when Ci fails to
classify T ; otherwise, Ci(T ) = j, j ∈ Y = {1, 2, · · · , k}.
Our voting scheme is different from the static weighting of bagging and boosting. It
assigns weights to member classifiers dynamically – instance-based, based on whether
they have specific knowledge to classify the test. Our scheme can also be applied to
combine the outputs of other rule based classifiers.

4 Experimental Evaluation

We evaluate the proposed approaches to learning by experiments on 27 well-known
datasets from the UCI Machine Learning Repository. We use WEKA [10]’s Java im-
plementation of C4.5, SVM, RandomForest, bagging and boosting. The accuracy was
obtained by using the methodology of stratified ten-fold cross-validation (CV-10).

Since we will use the newly proposed scoring function (definition 1) as the base
classifier (denoted as EPbase) to create classifier ensembles, we investigate its perfor-
mance first. We do not provide detailed classifier accuracy due to the space constraint.
Instead we present a win/draw/loss summary in Table 1 (left part) to compare overall
performance of EPbase against each other classifier (C4.5, SVM, JEP-Classifier). We
find that EPbase achieves an average accuracy similar to other classifiers (SVM and
JEP-Classifier) and higher than C4.5.

Then we investigate the performance of bagging our new EP-based classifier. We
choose 51 bags, generating 51 diverse ensemble members. The ensemble classifier is
denoted as EPbag. The results clearly show that EPbag is superior to single EP-based
classifier: t-tests show that EPbag is significantly better than EPbase on 14 datasets and
never significantly worse on the remaining 13 datasets. The improvement is due to the
diversity of ensemble members. EPbag is also superior to bagged C4.5, boosted C4.5
and RandomForest, as validated by t-tests and Wilcoxon signed rank test for signifi-
cance (Table 1 right part).

The number of trials TN is equal to the number of classifiers built. We plot the effect
of TN on accuracy in Figure 1. Not surprisingly, as TN increases, the performance of
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the ensemble classifier usually improves, although there are fluctuations. We expect the
ensemble of EP-based classifiers maintains the ability of noise tolerance. From Figure 2,
we see clearly that the EP-ensemble classifier has good noise tolerance and consistently
achieves higher accuracy than C4.5 and RandomForest across all noise levels.

5 Conclusions

In this paper, we discussed why the “bagging” of CAEP and JEP-Classifier produces
no gain. Based on the analysis, we propose a new scoring function to use EPs in clas-
sification. This new EP classifier is not only highly correct, but also give diversified
outputs on different bootstrap samples. The two characteristics of our new EP classifier
are important for the success of creating ensembles of them. We also develop a new,
dynamic (instance based) voting scheme to combine the output. This voting scheme
can be applied to combine the results of other rule-based classifiers. The experiments
show that our method is able to create very effective ensembles of EP-based classifiers.
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Abstract. Bagging is an ensemble learning method that has proved to
be a useful tool in the arsenal of machine learning practitioners. Com-
monly applied in conjunction with decision tree learners to build an
ensemble of decision trees, it often leads to reduced errors in the predic-
tions when compared to using a single tree. A single tree is built from a
training set of size N . Bagging is based on the idea that, ideally, we would
like to eliminate the variance due to a particular training set by com-
bining trees built from all training sets of size N . However, in practice,
only one training set is available, and bagging simulates this platonic
method by sampling with replacement from the original training data
to form new training sets. In this paper we pursue the idea of sampling
from a kernel density estimator of the underlying distribution to form
new training sets, in addition to sampling from the data itself. This can
be viewed as “smearing out” the resampled training data to generate
new datasets, and the amount of “smear” is controlled by a parameter.
We show that the resulting method, called “input smearing”, can lead
to improved results when compared to bagging. We present results for
both classification and regression problems.

1 Introduction

Ensembles of multiple prediction models, generated by repeatedly applying a
base learning algorithm, have been shown to often improve predictive perfor-
mance when compared to applying the base learning algorithm by itself. En-
semble generation methods differ in the processes used for generating multiple
different base models from the same set of data. One possibility is to modify the
input to the base learner in different ways so that different models are generated.
This can be done by resampling or reweighting instances [1, 2], by sampling from
the set of attributes [3], by generating artificial data [4], or by flipping the class
labels [5]. A different possibility is to modify the base learner so that different
models can be generated from the same data. This is typically done by turning
the base learner into a randomized version of itself, e.g. by choosing randomly
among the best splits at each node of a decision tree [6]. This paper investigates
an ensemble learning method that belongs to the former category. We call it
“input smearing” because we randomly modify the attribute values of an in-
stance, thus smearing it out in instance space. We show that, when combined

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 97–106, 2006.
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with bagging, this method can improve on using bagging alone, if the amount
of smearing is chosen appropriately for each dataset. We show that this can be
reliably achieved using internal cross-validation, and present results for classifi-
cation and regression problems.

The motivation for using input smearing is that it may be possible to increase
the diversity of the ensemble by modifying the input even more than bagging
does. The aim of ensemble generation is a set of classifiers such that they are si-
multaneously as different to each other as possible while remaining as accurate as
possible when viewed individually. Independence—or “diversity”—is important
because ensemble learning can only improve on individual classifiers when their
errors are not correlated. Obviously these two aims—maximum accuracy of the
individual predictors and minimum correlation of erroneous predictions—conflict
with each other, as two perfect classifiers would be rather similar, and two max-
imally different classifiers could not at the same time both be very accurate.
This necessary balance between diversity and accuracy has been investigated in
various papers including [7], which among other findings reported that bagged
trees are usually much more uniform than boosted trees. But it was also found
that increasing levels of noise lead to much more diverse bagged trees, and that
bagging starts to outperform boosted trees for high noise levels.

Commonly the attribute values of the examples are not modified in any way in
the ensemble generation process. One exception to this “rule” is called “output
smearing” [5], which modifies the class labels of examples by adding a controlled
amount of noise. In this paper we investigate the complimentary process of ap-
plying “smearing” not to the output variable, but to the input variables. Initial
experiments showed that smearing alone could not consistently improve on bag-
ging. This lead us to the idea of combining smearing and bagging, by smearing
the subsamples involved in the bagging process. The amount of smearing en-
ables us to control the diversity in the ensemble, and more smearing increases
the diversity compared to bagging alone. However, more smearing also means
that the individual ensemble members become less accurate. Our results show
that cross-validation can be used to reliably determine an appropriate amount
of smearing.

This paper is structured as follows. In Section 2 we discuss previous work
on using artificial data in machine learning and explain the process of “input
smearing” in detail. Section 3 presents our empirical results on classification and
regression datasets, and Section 4 discussed related work. Section 5 summarizes
our findings and points out directions for future work.

2 Using Artificial Training Data

One way of viewing input smearing is that artificial examples are generated
to aid the learning process. Generating meaningful artificial examples may seem
straightforward, but it is actually not that simple. The main issue is the problem
of generating meaningful class values or labels for fully artificially generated
examples. Theoretically, if the full joint distribution of all attributes including
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the class attribute were known, examples could simply be drawn according to this
full joint distribution, and their class labels would automatically be meaningful.
Unfortunately this distribution is not available for practical learning problems.

This “labelling” problem is the most likely explanation as to why artificially
generated training examples are rarely used. One exception is the approach re-
ported in [8]. This work is actually not concerned with improving the predictive
accuracy of an ensemble, but instead tries to generate a single tree with similar
performance to an ensemble generated by an ensemble learning method. The
aim is to have a comprehensible model with a similar predictive performance
as the original ensemble. The method generates artificial examples and uses the
induced ensemble to label the new examples. It has been shown that large sets
of artificial examples can lead to a large single tree capable of approximating
the predictive behaviour of the original ensemble.

Another exception is the work presented in [9], which investigates the prob-
lem of very skewed class distributions in inductive learning. One common idea
is oversampling of the minority class to even out the class distribution, and [9]
takes that one step further by generating new artificial examples for the minority
class. This is done by randomly selecting a pair of examples from the minority
class, and then choosing an arbitrary point along the line connecting the original
pair. Furthermore the method makes sure that there is no example from the ma-
jority class closer to the new point than any of the minority examples. The main
drawback of this method is that it is very conservative, and that it relies on near-
est neighbour computation, which is of questionable value in higher-dimensional
settings. In the case of highly skewed class distributions such conservativeness
might be appropriate, but in more general settings it is rather limiting.

Finally, the Decorate algorithm [4] creates artificial examples adaptively as
an ensemble of classifiers is being built. It assigns labels to these examples by
choosing those labels that the existing ensemble is least likely to predict. It is
currently unclear why this method works well in practice [4].

We have chosen a very simple method for generating artificial data to improve
ensemble learning. Our method addresses the labelling problem in a similar
fashion as what has been done for skewed class distributions, taking the original
data as the starting point. However, we then simply modify the attribute values
of a chosen instance by adding random attribute noise. The method we present
here combines bagging with this modification for generating artificial data. More
specifically, as in bagging, training examples are drawn with replacement from
the original training set until we have a new training set that has the same size
as the original data. The next step is new: instead of using this new dataset as
the input for the base learning algorithm, we modify it further by perturbing the
attribute values of all instances by a small amount (excluding the class attribute).
This perturbed data is then fed into the base learning algorithm to generate one
ensemble member. The same process is repeated with different random number
seeds to generate different datasets, and thus different ensemble members.

This method is very simple and applicable to both classification and regres-
sion problems (because the dependent variable is not modified), but we have
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not yet specified how exactly the modification of the original instances is per-
formed. In this paper we make one simplification: we restrict our attention to
datasets with numeric attributes. Although the process of input smearing can
be applied to nominal data as well (by changing a given attribute value with a
certain probability to a different value) it can be more naturally applied with
numeric attributes because they imply a notion of distance. To modify the nu-
meric attribute values of an instance we simply add Gaussian noise to them. We
take the variance of an attribute into account by scaling the amount of noise
based on this variance (using Gaussian noise with the same variance for every
attribute would obviously not work, given that attributes in practical datasets
are often on different scales). More specifically, we transform an attribute value
aoriginal into a smeared value asmeared based on

asmeared = aoriginal + p ∗N(0, σa),

where σa is the estimated global standard deviation for attribute aoriginal, and
p is a user-specifiable parameter that determines the amount of noise to add.
The original class value is left intact.

Usually the value of the smearing parameter is greater than zero but the
optimum value depends on the data. Cross-validation is an obvious method for
finding an appropriate value in a purely data-dependent fashion, and as we
will see in the next section, it chooses quite different values depending on the
dataset. In the experiments reported below we employed internal cross-validation
in conjunction with a simple grid search, evaluating different values for p in a
range of values that is explored in equal-size steps. As it turns out, there are
datasets where no smearing (p = 0) is required to achieve maximum accuracy.

Another view of input smearing is that we employ a kernel density estimate of
the data, placing a Gaussian kernel on every training instance, and then sample
from this estimate of the joint distribution of the attribute values. We choose
an appropriate kernel width by evaluating the cross-validated accuracy of the
resulting ensemble (and combine the smearing process with bagging) but an
alternative approach would be to first fit a kernel density estimate to the data
by some regularized likelihood method, and then use the resulting kernel widths
to generate a smeared ensemble. A potential drawback of our method is that
the amount of noise is fixed for every attribute (although it is adjusted based on
the attributes’ scales). It may be that performance can be improved further by
introducing a smearing parameter for every attribute and tuning those smearing
parameters individually. Using an approach based on kernel density estimation
may make this computationally feasible.

Note that, compared to using bagging alone, the computational complexity
remains unchanged. Modifying the attribute values can be done in time linear in
the number of attributes and instances. The cross-validation-based grid search
for the optimal smearing parameter increases the runtime by a large constant
factor but it may be possible to improve on this using a more sophisticated
search strategy in place of grid search.

Figure 1 shows the pseudo code for building an ensemble using input smear-
ing. The process for making a prediction (as well as the type of base learner
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method inputSmearing(Dataset D, Ensemble size n, Smearing parameter p)

compute standard deviation σa for each attribute a in the data

repeat n times

sample dataset R of size |D| from D using sampling with replacement

S = ∅
for each instance x in R

for each attribute a in R
x′

a = xa + p ∗ N(0, σa)
add x′ to S

apply based learner to S and add resulting model to committee

Fig. 1. Algorithm for generating an ensemble using input smearing

employed) depends on whether we want to tackle a regression problem or a
classification problem. In the case of regression we simply average the predicted
numeric values from the base models to derive an ensemble prediction. In the
case of classification, we average the class probability estimates obtained from
the base models, and predict the class for which the average probability is max-
imum. (In the experiments reported in the next section we use exactly the same
method for bagging.)

3 Experimental Results

In this section we conduct experiments on both classification and regression
problems to compare input smearing to bagging. As a baseline we also present
results for the underlying base learning algorithm when used to produce a single
model. The main parameter needed for input smearing, the noise threshold p,
is set automatically using cross-validation, as explained above. We will see that
this automated process reliably chooses appropriate values. Consequently input
smearing competes well with bagging.

3.1 Classification

Our comparison is based on 22 classification problems from the UCI reposi-
tory [10]. We selected those problems that exhibit only numeric attributes. Miss-
ing values (present in one attribute of one of the 22 datasets, the breast-w data)
are not modified by our implementation of smearing.

Input smearing was applied in conjunction with unpruned decision trees built
using the fast REPTree decision tree learner in Weka. REPTree is a simple tree
learner that uses the information gain heuristic to choose an attribute and a
binary split on numeric attributes. It avoids repeated re-sorting at the nodes
of the tree, and is thus faster than C4.5. We performed ten iterations to build
ten ensemble members. Internal 5-fold cross-validation was used to choose an
appropriate parameter value for the smearing parameter p for each training set.
To identify a good parameter value we used a simple grid search that evaluated
values 0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. This automated parameter estimation
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Table 1. Input smearing applied to classification problems

Dataset Input Bagging Unpruned C4.5 Parameter
smearing tree value

balance-scale 85.8±3.6 81.2±3.8• 78.5±4.4• 78.1±4.1• 0.27±0.05
breast-w 96.0±2.1 95.5±2.0 93.7±2.3• 94.9±2.3 0.19±0.10
ecoli 84.7±5.6 83.1±5.4 82.0±5.5 82.8±5.3 0.22±0.08
glass 74.9±9.3 76.5±9.1 69.7±8.9 68.1±8.2• 0.06±0.07
hayes-roth 81.1±9.3 80.7±9.6 84.1±9.5 79.0±8.4 0.10±0.12
heart-statlog 80.8±6.5 78.8±6.6 74.9±7.3• 78.6±7.1 0.19±0.10
ionosphere 91.6±5.4 91.0±4.6 89.6±5.0 90.0±5.0 0.15±0.09
iris 96.1±5.0 95.3±5.5 94.3±5.6 95.4±5.4 0.17±0.10
letter 92.1±0.7 91.9±0.7 87.9±0.7• 88.1±0.8• 0.14±0.04
liver-disorders 69.0±7.0 69.8±7.7 64.5±8.1 66.2±7.8 0.08±0.08
mfeat 77.6±2.6 73.5±2.6• 68.5±3.1• 71.4±2.7• 0.28±0.03
optdigits 95.9±0.9 94.9±1.1• 90.8±1.2• 90.6±1.1• 0.29±0.02
page-blocks 97.2±0.6 97.3±0.6 96.8±0.6• 97.0±0.7 0.02±0.03
pendigits 98.4±0.4 98.1±0.5• 96.4±0.5• 96.5±0.6• 0.16±0.04
pima-diabetes 75.3±4.4 75.0±4.8 71.1±4.6• 73.8±5.3 0.18±0.09
segment 97.4±1.0 97.5±1.1 96.6±1.3 96.8±1.2 0.01±0.02
sonar 81.5±8.5 81.3±8.2 77.5±9.0 74.3±9.5 0.14±0.09
spambase 94.6±1.0 94.6±1.0 92.8±1.3• 92.7±1.2• 0.00±0.00
spectf 88.5±5.1 89.3±4.7 86.0±5.3 84.8±5.8 0.03±0.05
vehicle 74.9±4.1 75.0±4.5 72.4±4.5 73.4±4.2 0.15±0.09
waveform 82.6±1.8 81.8±1.9 75.3±2.0• 75.3±1.9• 0.25±0.06
wine 95.5±4.5 95.4±4.7 93.9±6.0 92.7±6.6 0.17±0.11
• denotes a statistically significant degradation compared to input smearing

adds a large computational overhead, but prevents the user from bad choices,
and might also provide valuable insights into both the data as well as the example
generation process.

Table 1 lists the estimated classification accuracy in percent correct, obtained
as averages over 100 runs of the stratified hold-out method. In each run 90%
of the data was used for training and 10% was used for testing. The corrected
resampled t-test [11] was used to perform pairwise comparison between algo-
rithms.

Apart from the results for input smearing, the table also lists results for
bagging, unpruned decision trees generated using REPTree, and pruned C4.5
trees. It also shows the average parameter value chosen by the internal cross-
validation, and the standard deviation for each of the statistics across the 100
runs. Bagging was applied in conjunction with the same base learner and the
same number of iterations as input smearing.

Analyzing the results of Table 1, we see that “input smearing” can improve
the predictive accuracy of single trees for about half of all the datasets, and
also significantly outperforms bagging four times. More importantly, it never
performs significantly worse than any of the other algorithms. The average values
chosen for p vary from 0 up to 0.29. Given that the latter value is quite close to
the upper boundary of the range that we searched in our experiments, it may be
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possible that larger values would result in further improvements for the datasets
where such a large value was chosen. For all datasets except one a non-zero
parameter value is chosen, with spambase being the sole exception. We can only
speculate why smearing does not work for this dataset. Most likely the noise
generation process is not appropriate for this dataset, which consists solely of
counts of word occurrences. These are non-negative and generally follow a power
law [12]. A more specialized distribution like the Poisson distribution may be
more appropriate for smearing in this case. Alternatively, the input variables
could also be preprocessed by a logarithmic transformation, which is common
practice in statistics for dealing with counts.

One method for analysing the behaviour of a modelling technique is the so-
called bias-variance decomposition (see e.g. [13]), which tries to explain the total
prediction error as the sum of three different sources of error: bias (i.e. how close
is the average model to the actual function?), variance (i.e. how much do the
models’ guesses “bounce around”?), and intrinsic noise (the Bayes error).

Using the specific approach described in [13], a bias-variance decomposition
was computed for all the classification datasets used above for both input smear-
ing and bagging. We would expect that input smearing exhibits a higher bias
than bagging on average, as it modifies the input distribution of all attributes.
To verify this hypothesis, the relative contribution of bias compared to variance
was computed for both methods on each dataset. More specifically, we computed

relativeBias = bias/(bias+ variance).

In Figure 2 we plot the rela-
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Fig. 2. Relative bias: smearing vs. bagging

tive bias of bagging over the rela-
tive bias of input smearing. Points
below the diagonal indicate cases
where smearing exhibits a higher
relative bias than bagging. This is
the case for most datasets. Some
points are very close to the di-
agonal or exactly on the diago-
nal. One of these points represents
the spambase dataset, where the
threshold value of 0.0 effectively
turns input smearing intobagging.

3.2 Regression

Classification is not the only application of input smearing. In the following we
investigate its performance when applied in conjunction with a state-of-the-art
tree learner for regression problems. This comparison is based on a collection of
23 regression problems [14] that are routinely used as benchmarks for evaluating
regression algorithms.

We employed the same evaluation framework as in the classification case:
ensembles are of size ten and random train/test splits of 90%/10% are repeated
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Table 2. Input smearing applied to regression problems

Dataset Input Bagging Pruned Unpruned Parameter
smearing model trees model trees value

2dplanes 22.9±0.3 23.2±0.3 • 22.7±0.3 ◦ 23.3±0.3 • 0.30±0.00
ailerons 39.2±1.3 39.2±1.3 39.9±1.2 • 41.1±1.3 • 0.00±0.00
bank32nh 68.5±2.3 69.0±2.4 • 67.0±2.5 ◦ 74.5±2.8 • 0.19±0.07
bank8FM 19.4±0.7 19.5±0.7 • 20.0±0.7 • 20.4±0.7 • 0.06±0.02
cal-housing 44.0±1.6 44.0±1.6 48.5±2.1 • 46.4±1.8 • 0.00±0.00
cpu-act 13.2±1.0 13.8±1.2 • 14.7±1.7 • 15.3±2.5 • 0.14±0.04
cpu-small 16.1±1.3 16.2±1.4 17.4±2.0 • 17.7±2.3 • 0.07±0.03
delta-ailerons 53.2±2.1 53.2±2.2 54.4±2.1 • 54.5±2.2 • 0.06±0.03
delta-elevators 59.8±1.4 60.0±1.5 • 60.1±1.4 • 61.0±1.6 • 0.18±0.05
diabetes-numeric 94.4±39.4 94.9±42.0 98.5±49.5• 96.8±44.7 0.13±0.10
elevators 34.1±6.1 33.4±1.2 32.1±1.2 ◦ 35.5±1.3 • 0.01±0.02
fried 25.9±0.4 26.1±0.4 • 27.8±0.5 • 28.1±0.5 • 0.05±0.01
house-16H 62.6±4.6 62.0±4.5 ◦ 68.0±3.2 • 66.7±3.6 • 0.01±0.02
house-8L 57.7±7.0 57.7±7.0 59.7±3.5 • 59.7±3.6 • 0.00±0.01
kin8nm 53.7±1.6 54.4±1.8 • 60.9±2.1 • 59.9±2.1 • 0.10±0.03
machine-cpu 36.0±12.3 35.7±11.8 40.5±18.5• 36.0±14.1 0.14±0.12
pol 13.6±1.0 13.5±1.0 15.2±1.2 • 14.8±1.1 • 0.02±0.02
puma32H 26.0±0.8 26.1±0.8 • 27.1±0.8 • 27.5±0.9 • 0.05±0.01
puma8NH 56.9±1.5 57.7±3.9 • 57.0±1.6 59.1±1.8 • 0.12±0.03
pyrim 58.5±21.3 57.3±21.7 64.9±26.2• 58.8±25.2 0.09±0.11
stock 13.9±1.9 14.2±2.5 14.4±2.5 • 14.3±2.6 • 0.07±0.03
triazines 79.8±13.9 79.6±13.9 84.0±17.4• 81.4±17.8 0.00±0.03
wisconsin 94.4±11.0 95.1±10.4 98.1±12.4• 98.7±12.8• 0.19±0.10
•/◦ denote a statistically significant degradation/improvement wrt input smearing.

100 times (in this case without applying stratification, of course). Performance is
measured based on the root relative squared error. A value of zero would indicate
perfect prediction, and values larger than 100 indicate performance worse than
simply predicting the global mean of the class-values obtained from the training
data. Unpruned M5 model trees [15], generated using the M5’ model tree learner
in Weka [16], were used as the base learner for input smearing and bagging, and
we compare to single unpruned and pruned M5 model trees. Again, the noise
parameter p was determined automatically by internal five-fold cross-validation
using a grid search on the values 0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.

Again, analyzing the results of Table 2, we see that input smearing almost
always improves prediction over single model trees. However, it is significantly
worse than a single pruned tree on three datasets. Compared to bagging, signif-
icant improvements are achieved 39% of the time, with only one significant loss.
As with classification, the average smearing parameter values chosen by cross-
validation are well below 0.3 in most cases, except for one dataset (2dplanes),
where an even larger parameter value may have been chosen if it had been avail-
able. Again there is one dataset where zero is chosen consistently. As we are
not familiar with the actual meaning of the attributes in this dataset (ailerons),
we cannot make such strong claims as for the spambase dataset, but at least
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one third of all attributes in this dataset again appear to be based on counts,
and another third of all attributes is almost constant, i.e. clearly not normally
distributed either. Inspecting the attribute distributions for the only other two
datasets with smearing parameter values close to 0 (house-8L and triazines)
reveals that in both datasets a majority of attributes again is not normally dis-
tributed.

4 Related Work

In this section we discuss related work but restrict our attention to ensemble
generation methods. We do not repeat the discussion of methods that have
already been discussed in Section 2. In terms of ensemble generating methods
we only list and discuss methods that modify the data in some way.

– Bagging [1] has its origin in bootstrap sampling in statistics, which produces
robust estimates of population statistics by trying to simulate averaging over
all possible datasets of a given size. Sets are generated by sampling with
replacement. Bagging can reduce the variance of a learner, but it cannot
reduce its bias.

– Dagging [17] is an alternative to bagging that combines classifiers induced
on disjoint subsets of the data. It is especially appropriate when either the
data originally comes from disjoint sources, or when data is plentiful, i.e.
when the learning algorithm has reached the plateau on the learning curve.
Like bagging, dagging could potentially be combined with input smearing to
increase diversity.

– Output smearing [5] adds a controlled amount of noise to the output or
dependent attribute only. The empirical results in [5] show that is works
surprisingly well as an ensemble generator. An interesting question for future
work is whether input and output smearing can be combined successfully.

– Random feature subsets [3, 18] work particularly well for so-called stable al-
gorithms like the nearest neighbour classifier, where bagging does not achieve
much improvement. Random feature projections [19] may have some poten-
tial in this setting as well.

5 Conclusions

We have described a new method for ensemble generation, called input smear-
ing, that works by sampling from a kernel density estimator of the underlying
distribution to form new training sets, in addition to resampling from the data
itself like in bagging. Our experimental results show that it is possible to obtain
significant improvements in predictive accuracy when applying input smearing
instead of bagging (which can be viewed as a special case of input smearing in our
implementation). Our results also show that it is possible to use cross-validation
to determine an appropriate amount of smearing on a per-dataset basis.
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Input smearing using Gaussian noise is not necessarily the best choice. An
avenue for future work is to investigate the effect of other distributions in input
smearing, and to choose an appropriate distribution based on the data. Such
a more sophisticated approach should also make it possible to generalize input
smearing to other attribute types and structured input.
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Abstract. Learning from imbalanced datasets is inherently difficult due
to lack of information about the minority class. In this paper, we study
the performance of SVMs, which have gained great success in many real
applications, in the imbalanced data context. Through empirical anal-
ysis, we show that SVMs suffer from biased decision boundaries, and
that their prediction performance drops dramatically when the data is
highly skewed. We propose to combine an integrated sampling technique
with an ensemble of SVMs to improve the prediction performance. The
integrated sampling technique combines both over-sampling and under-
sampling techniques. Through empirical study, we show that our method
outperforms individual SVMs as well as several other state-of-the-art
classifiers.

1 Introduction

Many real-world datasets are imbalanced, in which most of the cases belong to a
larger class and far fewer cases belong to a smaller, yet usually more interesting
class. Examples of applications with such datasets include searching for oil spills
in radar images [1], telephone fraudulent detection [2], credit card fraudulent
detection diagnosis of rare diseases, and network intrusion detection. In such
applications, the cost is high when a classifier misclassifies the small (positive)
class instances.

Despite the importance of handling imbalanced datasets, most current clas-
sification systems tend to optimize the overall accuracy without considering the
relative distribution of each class. As a result, these systems tend to misclassify
minority class examples when the data is highly skewed. Techniques have been
proposed to handle the problem. Approaches for addressing the problem can be
divided into two main directions: sampling approaches and algorithm-based ap-
proaches. Generally, sampling approaches include methods that over-sample the
minority class to match the size of the majority class [3, 4], and methods that
under-sample the majority class to match the size of the minority class [1, 5, 6, 7].
Algorithmic-based approaches are designed to improve a classifier’s performance
based on their inherent characteristics.

This paper is concerned with improving the performance of the Support Vec-
tor Machines (SVMs) on imbalanced data sets. SVMs have gained success in

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 107–118, 2006.
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many applications, such as text mining and hand-writing recognition. However,
when the data is highly imbalanced, the decision boundary obtained from the
training data is biased toward the minority class. Most approaches proposed
to address this problem have been algorithm-based [8, 9, 10], which attempt to
adjust the decision boundary through modifying the decision function.

We take a complementary approach and study the use of sampling as well
as ensemble techniques to improve SVM’s performance. First, our observation
indicates that using over-sampling alone as proposed in previous work (e.g.
SMOTE [10]) can introduce excessive noise and lead to ambiguity along de-
cision boundaries. We propose to integrate the two types of sampling strategies
by starting with over-sampling the minority class to a moderate extent, followed
by under-sampling the majority class to the similar size. This is to provide the
learner with more robust training data. We show by empirical results that the
proposed sampling approach outperforms over-sampling alone irrespective of the
parameter selection. We further consider using an ensemble of SVMs to boost
the performance. A collection of SVMs are trained individually on the processed
data, and the final prediction is obtained by combining the results from those
individual SVMs. In this way, more robust results can be obtained by reduc-
ing the randomness induced by a single classifier, as well as by alleviating the
information loss due to sampling.

2 Related Work

Sampling is a popular strategy to handle the class imbalance problem since it
straightforwardly re-balances the data at the data processing stage, and there-
fore can be employed with any classification algorithm [1, 3, 4, 5, 6, 7]. As one of
the successful oversampling methods, the SMOTE algorithm [11] over-samples
the minority class by generating interpolated data. It first searches for the K-
nearest-neighbors for each minority instance, and for each neighbor, randomly
selects a point from the line connecting the neighbor and the instance itself,
which will serve as a new minority instance. By adding the “new” minority in-
stances into training data, it is expected that the over-fitting problem can be
alleviated. SMOTE has been reported to achieve favorable results in many clas-
sification algorithms [11, 12]. Algorithm-based approaches include methods in
which existing learning algorithms are tailored to improve the performance for
imbalanced datasets. For example, some algorithms consider class distributions
or use cost functions for decision tree inductions [6, 13, 14].

SVMs have established themselves as a successful approach for various ma-
chine learning tasks. The class imbalance issue has also been addressed in the
literature. Through empirical study, Wu et al. [9] report that when the data
is highly imbalanced, the decision boundary determined by the training data
is largely biased toward the minority class. As a result, the false negative rate
that associates with the minority class might be high. To compensate for the
skewness, they propose to enlarge the resolution around the decision boundary
by revising kernel functions. Furthermore, Veropoulos et al. [8] use pre-specified
penalty constants on Lagrange multipliers for different classes; Akbani et al.
[10] combine SVMs with SMOTE over-sampling and cost sensitive learning. In
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contrast, Japkowicz et al. [15] argue that SVMs are immune to the skewness of
the data, because the classification decision boundary is determined only by a
small quantity of support vectors. Consequently, the large volume of instances
belonging to the majority class might be considered redundant. In this paper, we
will demonstrate that the decision boundary changes as imbalance ratios vary,
and discuss its implications.

Using an ensemble of classifiers to boost classification performance has also
been reported to be effective in the context of imbalanced data. This strategy
usually makes use of a collection of individually trained classifiers whose predic-
tion results are integrated to make the final decision. The work in this direction
includes that Chen et al. [6] use random forest to unite the results of decision
trees induced from bootstrapping the training data, and that Guo et al [4] apply
data boosting to improve the performance on hard examples that are difficult to
classify. However, most current studies are confined to decision tree inductions
instead of other classifiers, e.g, SVM. Moreover, decision-tree-based algorithms
might be ill-suited for the class imbalance problem as they favor short trees.

3 Background

3.1 Support Vector Machines

In this section we briefly describe the basic concepts in two-class SVM classifi-
cation. Assume that there is a collection of n training instances Tr = {xi, yi},
where xi ∈ RN and yi ∈ {−1, 1} for i = 1, . . . , n. Suppose that we can find some
hyperplane which linearly separates the positive from negative examples in a fea-
ture space. The points x belonging to the hyperplane must satisfy w · x+ b = 0,
where w is normal to the hyperplane and b is the intercept. To achieve this,
given a kernel function K, a linear SVM searches for Lagrange multiplier αi

(i = 1, ..., n) in Lagrangian

Lp ≡ 1
2
||w||2 −

n∑
i=1

αiyi(xi · w + b) +
n∑

i=1

αi (1)

such that the margin between two classes 2
||w|| is maximized in the feature space

[16]. In addition, in the αi optimizing process, Karush Kuhn Tucker (KKT) con-
ditions which require

∑n
i=1 αiyi = 0, must be satisfied.1 To predict the class label

for a new case x, we need to compute the sign of f(x) =
∑n

i=1 yiαiK(x, xi) + b.
If the sign function is greater than zero, x belongs to the positive class, and the
negative otherwise.

In SVMs, support vectors (SVs) are of crutial importance to the training
set. They lie closest to the decision boundary; thus form the margin between
1 In the case of non-separable data, 1-norm soft-margin SVMs minimize the La-

grangian Lp = 1
2
||w||2 + C i ξi − i αi{yi(xi ·w + b)− 1 + ξi}− i μiξi, where ξi,

i ∈ [1, n] are positive slack variables, C is selected by users with a larger C indicat-
ing a higher penalty to errors, and μi are Lagrange multipliers to enforce ξi being
positive. Similarly, corresponding KKT conditions have to be met for the purpose
of optimization.
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two sides. If all other training data were removed, and training was repeated,
the same separating hyperplane would still be constructed. Note that there is a
Lagrange multiplier αi for each training instance. In this context, SVs correspond
to those points for which αi > 0; other training instances have αi = 0. This fact
gives us the advantage of classifying by learning with only a small number of
SVs, as all we need to know is the position of the decision boundary which
lies right in the middle of the margin; other training points can be considered
redundant. Further, it is of prime interest in the class imbalance problem because
SVMs could be less affected by the negative instances that lie far away from the
decision boundary even if there are many of them.

3.2 Effects of Class Imbalance on SVMs

We conducted a series of experiments to investigate how the decision boundaries
are affected by the imbalance ratio, i.e., the ratio between the number of negative
examples and positive examples. We start with classifying a balanced training
dataset, and detect that the real decision boundary is close to the “ideal bound-
ary”, as it is almost of equal length to both sides. We then reform successive new
datasets with different degrees of data skewness by removing instances from the
positive and add instances to the negative. Figure 1 reflects the data distribution
when imbalance ratios vary from 10:1 to 300:1, where crosses and circles repre-
sent the instances from positive and negative classes respectively. From Figure
1 (a), we find that if the imbalance ratio is moderate, the boundary will still
be close to the “ideal boundary”. This observation demonstrates SVMs could
be robust and self-adjusting; and is thus able to alleviate the problem arising
from moderate imbalance. Nonetheless, as the imbalance ratio becomes larger
and larger, as illustrated in Figure 1 (b) and (c), the boundaries get evidently
biased toward the minority class. As a consequence, making predictions with
such a system may lead to a high false negative rate.
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Fig. 1. Boundary changes with different imbalance ratios

4 Re-balancing the Data

We have shown that SVMs may perform well while the imbalance ratio is mod-
erate. Nonetheless, their performance could still suffer from the extreme data
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Fig. 2. Under-sampling majority instances

skewness. To cope with this problem, in this section, we study the use of sampling
techniques to balance the data.

4.1 Undersampling

Under-sampling approaches have been reported to outperform over-sampling ap-
proaches in previous literatures. However, under-sampling throws away poten-
tially useful information in the majority class; it thus could make the decision
boundary trembling dramatically. For example, given the imbalance ratio as
100:1, in order to get a close match for the minority, it might be undesirable
to throw away 99% of majority instances. Figure 2 illustrates such a scenario,
where the majority class is undersampled to keep the same size as the minority,
but a considerable amount of SVs lie far away from the ideal boundary y = 1.
Accordingly, predicting with such SVMs may lead to low accuracies.

4.2 Oversampling

Considering that simply replicating the minority instances tends to induce over-
fitting, using interpolated data is often preferred in the hope of supplying addi-
tional and meaningful information on the positive class. SMOTE is the method
that has been mostly cited along this line.

However, the improvement of integrating SVMs with the SMOTE algorithm
can be limited due to its dependence on the proper selection of the number of
nearest neighbors K as well as imbalance ratios. Basically, the value of K deter-
mines how many new data points will be added into the interpolated dataset.
Figure 3 shows how the decision boundary will change with different K values.
Figure 3 (a) shows the original class distribution while the imbalance ratio is
100:1. Figure 3 (b) demonstrates that the classification boundary is relatively
smoothed when K has a small value; nonetheless, it is still biased toward the
minority class. This is due to SMOTE actually providing little information of
the minority; hence the oversampling in this case should be considered as a type
of “phantom-transduction”. When the interpolated dataset is considerably en-
larged as K increases, as shown in Figure 3 (c), ambiguities could arise along the
current boundary, because SMOTE makes the assumption that the instance be-
tween a positive class instance and its nearest neighbors is also positive. However
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Fig. 3. Using SMOTE with different K values

it may not be always true in practice. As a positive instance is very close to the
boundary, its nearest neighbor is likely to be negative, and this possibility may
increase as K and imbalance ratio become larger. Consequently, the new data
instance, which actually belongs to the negative class, is mis-labeled as positive,
and the induced decision boundary, as shown in Figure 3 (c), could be inversely
distorted to the majority class.

4.3 Combination of Two Types of Samplings

To address the problems arising from using each of the two types of sampling
approaches alone, we integrate them together. Given an imbalance ratio, we
first over-sample the minority instances with SMOTE to some extent, and then
under-sample the majority class so that both sides have the same or similar
amount of instances. To under-sample the majority class, we use the bootstrap
sampling approach with all available majority instances, provided that the size
of the new majority class is the same as that of the minority class after running
SMOTE. The benefit of doing so is that this approach inherits the strength of
both strategies, and alleviates the over-fitting and information loss problems.

In addition, to avoid taking risks of inducing ambuities along the decision
boundary, we choose to filter out the “impure” data firstly before sampling. In
this context, an instance is defined to be “impure”, if and only if two of its three
nearest neighbors provide different class labels other than that of itself. This
idea is motivated by the Edited Nearest Neighbor Rule [7], which was originally
used to remove unwanted instances from the majority. In our work, however, to
further reduce the uncertainty from both classes, such a filtering process is taken
on each side.

5 Ensemble of SVMs

In this section, we present a method that uses an ensemble of SVM classifiers
integrated with a re-balancing technique that combines both over-sampling and
under-sampling. Re-balancing is still necessary in this context since in learning
from extremely imbalanced data, it is very likely that a bootstrap sample used to
train an SVM in the ensemble is composed of few or even none of the minority
instances. Hence, each component learner of the ensemble would suffer from
severe skewness, and the improvement of using an ensemble would be confined.
Our proposed method, called EnSVM, is illustrated in Figure 4. As described in
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Section 4.3, we start re-balancing the data by filtering out impurities which may
induce ambiguities. Then, the minority class is over-sampled with the SMOTE
method to smooth the decision boundary. That is, for each positive instance,
it finds the K nearest neighbors, draws a line between the instance and each
of its K nearest neighbors, and then randomly selects a point on each line to
use as a new positive instance. In this way, K × n new positive instances are
added to the training data, where n is the number of positive instances in the
original training data. After that, we under-sample the majority class instances
N times to generate N bootstrap samples so that each bootstrap sample has
the same or similar size with the over-sampled positive instances. Then, each
bootstrap sample (of the majority class) is combined with the over-sampled
positive instances to form a training set to train an SVM. Therefore, N SVMs can
be obtained from N different training sets. Finally, the N SVMs are combined
to make a prediction on a test example by casting a majority vote from the
ensemble of SVMs. In our experiments reported below, we set N to be 10.

6 Empirical Evaluation

In this section, we first introduce the evaluation measures used in our study, and
then describe the datasets. After that, we report the experimental results that
compare our proposed approach with other methods.

6.1 Evaluation Measures

The evaluation measures used in our experiments are based on the Confusion
Matrix. Table 1 illustrates a confusion matrix for a two class problem with pos-
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Table 1. Two-class confusion matrix

Predicted Positive Predicted Negative
Actual Positive TP(True Positive) FN(False Negative)
Actual Negative FP(False Positive) TN(True Negative)

itive and negative class values. With this matrix, our performance measures are
expressed as follows:

– g-mean =
√

a− × a+, where a− = TN
TN+F P

and a+ = TP
TP+F N

;
– F-measure = 2×Precision×Recall

Precision+Recall
, where precision = TP

TP+F P
and recall = TP

TP+F N
.

G-mean is based on the recalls on both classes. The benefit of selecting this
metric is that it can measure how balanced the combination scheme is. If a
classifier is highly biased toward one class (such as the majority class), the g-
mean value is low. For example, if a+ = 0 and a− = 1, which means none of the
positive examples is identified, g-mean=0. In addition, F-measure combines the
recall and precision on the positive class. It measures the overall performance
on the minority class. Besides, we utilize the ROC analysis [17] to assist the
evaluation. A ROC curve demonstrates a trade off between true positive and
false positive rates provided with different classification parameters. Informally,
one point in ROC space is superior to another if it is closer to the northwest
corner (TP is higher, but FP is lower). Thus, ROC curves allow for a visual
comparison of classifiers: the larger the area below the ROC curve, the higher
classification potential of the classifier.

6.2 Benchmark Data

We use five datasets as our testbeds. Four of the datasets are from the UCI Ma-
chine Learning Repository and another dataset is a medical compound dataset
(mcd) collected by National Cancer Institute (NCI) for discovering new com-
pounds capable of inhibiting the HIV virus. The four UCI datasets are spambase,
letter-recognition, pima-indians-diabetes and abalone. Each dataset in this study
is randomly split into training and test subsets of the same size, where a strati-
fied manner is employed to ensure that the training and test sets have the same
imbalance ratio. Table 2 shows the characteristics of the five datasets. The first

Table 2. Benchmark datasets

Dataset Datapoints Attributes ImbalanceRatio
letter 20000 16 2:1
pima 768 9 2:1
spambase 3068 57 10:1

abalone 4280 8 40:1
mcd 29508 6 100:1

three datasets (letter, pima, and spambase) are mildly imbalanced, while the
next two (abalone and mcd) are very imbalanced. These datasets were carefully
selected to (1) fulfill the requirements that they are obtained in real applications,
(2) distinct from feature characteristics, and vary in size and imbalance ratio,
and (3) maintain sufficient amount of instances in each individual class to keep
the classification performance.
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6.3 Experimental Results

In this section, we compare the performance of our proposed EnSVM method
with those of five other methods: 1) single SVM without re-sampling the data,
2) single SVM with over-sampling using SMOTE [10] (without applying cost
functions), 3) random forest with balanced training data from under-sampling
[6], 4) random forest with our combined sampling method, and 5) single SVM
with our combined sampling method. In our experiments, for all the SVMs, we
employed Gaussian RBF kernels of the form K(xi, xj) = exp(−γ|xi − xj |2) of
C-SVMs. For each method we repeated our experiments ten times, computed
average g-mean values and F-measures.

Table 3. Performance in terms of g-mean

Dataset SVM SMOTE SMOTE RandForest1 RandForest2 AvgSVM EnSVM EnSVM
K=1 K=highest K=1 K=highest

letter 0.9551 0.9552 0.9552 0.9121 0.9281 0.9563 0.9566 0.9566
pima 0.6119 0.7320 0.7320 0.7358 0.7002 0.7419 0.7503 0.7503
spam 0.8303 0.8364 0.8580 0.8593 0.9050 0.8592 0.8616 0.8988
abalone 0.6423 0.6280 0.8094 0.7358 0.7678 0.8041 0.8958 0.8311
mcd 0.4500 0.4496 0.5952 0.5896 0.5968 0.5931 0.5951 0.6039

Results in terms of g-mean are shown in Table 3, where SVM denotes the single
SVM method with the original training data, SMOTE represents oversampling
the minority class and then training a system with single SVMs, RandForest1 de-
notes undersampling the majority class and then making an ensemble with C4.5
decision trees, RandForest2 denotes sampling data with our combined method,
followed by forming an ensemble with C4.5, AvgSVM denotes the average perfor-
mance of 10 single SVMs with our sampling method, and EnSVM is our ensemble
method with the combined sampling method. For the first two datasets, the K
values for SMOTE and EnSVM can only be set to be 1 since their imbalance
ratio is 2:1. For each of other datasets, we test two K values: the smallest value,
which always equals to 1, and the highest value. The latter will depend on the
imbalance ratios of three datasets, which are 9, 39, and 99 respectively. From
the results we can see that EnSVM achieves the best results on all the datasets
except on the spam dataset for which RandForest2 is the best. 2

Table 4 shows the performance for each method in terms of F-measure. We
find that EnSVM deserves the highest value on all five datasets. In particular, a
big improvement is made on the datasets where the imbalance ratios are large.
By comparing the results from the four SVM methods, we can see that (1)
using SMOTE to over-sample the data is better than SVM without sampling;
(2) using our combined sampling method with single SVMs is better than using
only over-sampling with SMOTE; and (3) using the ensemble method together
with the combined sampling method achieve the best results. By comparing the
two Random Forest methods, using the combined sampling method is better than
2 In Table 3, from top to bottom, the optimal γ obtained empirically in using SVMs

is 1.0× 10−2, 5.0× 10−5, 7.0× 102, and 102 respectively. In addition, C is set to be
1000 for each case.
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Table 4. Performance in F-measure

Dataset SVM SMOTE SMOTE RandForest1 RandForest2 AvgSVM EnSVM EnSVM
K=1 K=highest K=1 K=highest

letter 0.9548 0.9549 0.9549 0.9111 0.9268 0.9406 0.9563 0.9563
pima 0.5664 0.7135 0.7135 0.7098 0.6165 0.7259 0.7357 0.7357
spam 0.8164 0.8238 0.8492 0.8512 0.8751 0.7498 0.8553 0.8950

abalone 0.5843 0.5659 0.7938 0.7938 0.7426 0.7875 0.8940 0.8190
mcd 0.3367 0.3364 0.5285 0.5285 0.5286 0.5274 0.5272 0.5415

using only the under-sampling method on most datasets. Moreover, between the
Random Forest method and the ensemble of SVMs method, the latter performs
better.

In addition to the imbalance ratio, the selection of K may also impact on the
prediction accuracy of SMOTE and EnSVM. To make a better understanding,
we present a ROC analysis result with the spambase dataset. This dataset is
considered since it has a moderate imbalance ratio and instance volume. The
original spambase has an imbalance ratio of 10; therefore, in this experiment, we
test K from 1 to 9, and depict the ROC curves of the two approaches in Figure
5. Clearly, compared to simply over-sampling the minority instances, EnSVM
generates a better result. We also test how the g-mean value may change with
different Ks in SMOTE and EnSVM. The abalone and mcd datasets are used in
this case as they hold large imbalance ratios and allow K to vary in relatively
large ranges. We set parameter K to vary from 1 to 39 for the abalone dataset
and from 1 to 99 for the mcd dataset. As shown in Figures 6.3 (a) and (b), the
prediction performance of EnSVM is superior to simply applying the SMOTE
algorithm with respect to each K value. Moreover, we can see that the optimal
K value can be difficult to determine in both SMOTE and EnSVM. For EnSVM,
when K is small, we get better neighbors for the oversampling process, so the
prediction performance can be dramatically improved. Further, when K is big,
more noise is likely to be introduced, but a larger training data set is generated
using EnSVM and less information is lost. Consequently, it becomes a trade
off between inducing more noise and losing less information. Nonetheless, our
method is better than SMOTE with all K values.
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7 Conclusions

This paper introduces a new approach to learning from imbalanced datasets
through making an ensemble of SVM classifiers and combining both over-
sampling and under-sampling techniques. We first show in this study that using
SVMs for class prediction can be influenced by the data imbalance, although
SVMs can adjust itself well to some degree of data imbalance. To cope with
the problem, re-balancing the data is a promising direction, but both undersam-
pling and oversampling have limitations. In our approach, we integrate the two
types of sampling strategies together. Over-sampling the minority class provides
complementary knowledge for the training data, and under-sampling alleviates
over-fitting problem. In addition, we make an ensemble of SVMs to enhance the
prediction performance by casting a majority vote. Through extensive experi-
ments with real application data, our proposed method is shown to be effective
and better than several other methods with different data sampling methods or
different ensemble methods. We are now working on a method for automatically
determining the value of K based on the data set characteristics in order to
optimize the performance of EnSVM.
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Abstract. Hierarchical clustering algorithms, e.g. Single-Link or OPTICS com-
pute the hierarchical clustering structure of data sets and visualize those struc-
tures by means of dendrograms and reachability plots. Both types of algorithms
have their own drawbacks. Single-Link suffers from the well-known single-link
effect and is not robust against noise objects. Furthermore, the interpretability
of the resulting dendrogram deteriorates heavily with increasing database size.
OPTICS overcomes these limitations by using a density estimator for data group-
ing and computing a reachability diagram which provides a clear presentation
of the hierarchical clustering structure even for large data sets. However, it re-
quires a non-intuitive parameter ε that has significant impact on the performance
of the algorithm and the accuracy of the results. In this paper, we propose a novel
and efficient k-nearest neighbor join closest-pair ranking algorithm to overcome
the problems of both worlds. Our density-link clustering algorithm uses a sim-
ilar density estimator for data grouping, but does not require the ε parameter
of OPTICS and thus produces the optimal result w.r.t. accuracy. In addition, it
provides a significant performance boosting over Single-Link and OPTICS. Our
experiments show both, the improvement of accuracy as well as the efficiency
acceleration of our method compared to Single-Link and OPTICS.

1 Introduction

Hierarchical clustering methods determine a complex, nested cluster structure which
can be examined at different levels of generality or detail. The complex cluster struc-
ture can be visualized by concepts like dendrograms or reachability diagrams. The
most well-known hierarchical clustering method is Single-Link [1] and its variants like
Complete-Link and Average-Link [2]. Single-Link suffers from the so-called single-
link effect which means that a single noise object bridging the gap between two actual
clusters can hamper the algorithm in detecting the correct cluster structure. The time
complexity of Single-Link and its variants is at least quadratic in the number of objects.

Another hierarchical clustering algorithm is OPTICS [3], which follows the idea
of density-based clustering [4], i.e. clusters are regions of high data density separated
by regions of lower density. OPTICS solves some of the problems of Single-Link but
only to the expense of introducing new parameters minPts and ε. The latter is not very
intuitive and critical for both, performance of the algorithm and accuracy of the result.
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If ε is chosen too low, fundamental information about the cluster structure is lost, if it
is chosen too high the performance of the algorithm decreases dramatically.

In this paper, we introduce a novel hierarchical clustering algorithm DeLiClu (Den-
sity Linked Clustering) that combines the advantages of OPTICS and Single-Link by
fading out their drawbacks. Our algorithm is based on a closest pair ranking (CPR). The
objective of a CPR algorithm is: given two sets R and S of feature vectors, determine
in a first step that pair of objects (r, s) ∈ (R×S) having minimum distance, in the next
step the second pair, and so on. Well-known CPR algorithms like [5] operate on static
data sets which are not subject to insertions or deletions after initialization of the rank-
ing. Our new DeLiClu algorithm, however, needs a ranking algorithm where after each
fetch operation for a new pair (r, s) the object s is deleted from S and inserted into R.
We show how the ranking algorithm can be modified to allow the required update oper-
ations without much additional overhead and how Single-Link can be implemented on
top of a CPR. This allows the use of an index structure which makes the algorithm more
efficient without introducing the parameter ε like OPTICS does. Finally, we describe
how the density-estimator of OPTICS can be integrated into our solution.

The rest of this paper is organized as follows: Sec. 2 discusses related work. In Sect
3 our novel algorithm is described. Sec. 4 presents an experimental evaluation. Sec. 5
concludes the paper.

2 Related Work

Hierarchical Clustering. Hierarchical clustering algorithms produce a nested sequence
of clusters, resulting in a binary tree-like representation, a so-called dendrogram. The
root of the dendrogram represents one single cluster, containing the n data points of the
entire data set. Each of the n leaves of the dendrogram corresponds to one single cluster
which contains only one data point. Hierarchical clustering algorithms primarily differ
in the way they determine the similarity between clusters. The most common method
is the Single-Link method [1] which measures the similarity between two clusters by
the similarity of the closest pair of data points belonging to different clusters. This
approach suffers from the so-called single-link effect, i.e. if there is a chain of points
between two clusters then the two clusters may not be separated. In the Complete-Link
method the distance between two clusters is the maximum of all pairwise distances
between the data points in the two clusters. Average-Link clustering merges in each
step the pair of clusters having the smallest average pairwise distance of data points in
the two clusters. A major drawback of the traditional hierarchical clustering methods
is that dendrograms are not really suitable to display the full hierarchy for data sets of
more than a few hundred compounds. Even for a small amount of data, a reasonable
interpretation of the dendrogram is almost impossible due to its complexity. The single-
link effect can also be seen in the figure: as an impact of the connection line between
the two clusters Single-Link computes no clearly separated clusters.

OPTICS [3] is another hierarchical clustering algorithm, but uses the concept of den-
sity based clustering and thus reduces significantly the single-link effect. Additionally,
OPTICS is specifically designed to be based on range queries which can be efficiently
supported by index-based access structures. The density estimator used by OPTICS
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Fig. 1. Impact of parameters minPts and ε

consists of two values for each object, the core distance and the reachability distance
w.r.t. parameters minPts ∈ N and ε ∈ R. The clustering result can be displayed in
a so-called reachability plot that is more appropriate for very large data sets than a
dendrogram. A reachability plot consists of the reachability values on the y-axis of all
objects plotted according to the cluster order on the x-axis. The “valleys” in the plot
represent the clusters, since objects within a cluster have lower reachability distances
than objects outside a cluster. Figure 1 shows examples of reachability plots with dif-
ferent parameter settings for ε and minPts. The effect of minPts to the resulting cluster
structure is depicted in the left part of Figure 1. The upper part shows a reachability plot
resulting from an OPTICS run with minPts = 2 where no meaningful cluster structure
has been detected. If the value of minPts is increased as in the lower part of the figure,
the two clusters in the data set can be seen as valleys in the reachability plot. The second
parameter ε is much more difficult to determine but has a considerable impact on the
efficiency and the accuracy of OPTICS. If ε is chosen too small, fundamental informa-
tion about the cluster structure will be lost. The right part of figure 1 shows this effect in
the upper diagram where the information about clusters consisting of data points with
reachability values greater than ε = 12 is no longer existent.

Closest Pair Ranking. The closest pair problem is a classical problem of computational
geometry [6]. The intention is to find those two points from given data sets R and S
whose mutual distance is the smallest. The CPR determines in the first step that pair of
objects in R× S having the smallest distance, in the next step the second pair, etc. The
number of pairs to be reported is a priori unknown. In the database context the CPR
problem was introduced first in [5], calling it distance join. An incremental algorithm
based on the R-Tree family is proposed. For each data set R and S a spatial index is
constructed as input. The basic algorithm traverses the two index structures, starting at
the root of the two trees. The visited pairs of nodes are kept in a priority queue sorted
by their distances. If the first entry of the priority queue exists of a pair of data points,
then the pair is reported as the next closest pair. Otherwise, the pair is expanded and all
possible pairs formed by inspecting the children of the two nodes are inserted into the



122 E. Achtert, C. Böhm, and P. Kröger

priority queue. The algorithm terminates if all closest pairs are reported or the query is
stopped by the user. CPR algorithms operate on static data sets, i.e. they do not support
insertions or deletions of objects after initializing the ranking query. Our new DeLiClu
algorithm, however, needs shifting object s from S to R after reporting pair (r, s). In
Section 3 we propose a solution for this special case.

3 Density-Linked Clustering

Our new algorithm DeLiClu combines the advantages of Single-Link and OPTICS by
fading out the drawbacks mentioned in Section 2. To achieve these requirements we in-
troduce a density-smoothing factor minPts into hierarchical clustering and use as repre-
sentation of the clustering result reachability plots like OPTICS. In contrast to OPTICS
we avoid the introduction of the non-intuitive parameter ε which is critical for both,
performance of the algorithm and completeness of the result. In addition, we improve
the performance over both algorithms by applying powerful database primitives such as
the similarity join and a CPR, and by applying index structures for feature spaces.

3.1 General Idea of DeLiClu

Typical hierarchical clustering algorithms work as follows: They keep two separate sets
of points, those points which have already been placed in the cluster structure and those
which have not. In each step, one point of the latter set is selected and placed in the
first set. The algorithm always selects that point which minimizes the distance to any
of the points in the first set. Assume the algorithm has already done part of its work,
and some of the points have already been placed in the cluster structure. What actually
happens then is that the closest pair is selected between the set R of those points which
are already assigned to clusters and the set S of the points which are not yet processed.
This means, we can also reformulate the main loop of the general algorithm into:

determine the closest pair (r, s) ∈ (R× S);
migrate s from S into R;
append s to cluster structure / reachability plot;

Note that we still have to render more precisely what exactly we mean by the notion
closest pair because we have to integrate the density-based smoothing factor minPts
into this notion. Additionally, since the reachability plot shows for each object its reach-
ability distance we have to define a proper density distance for our DeLiClu algorithm.
However, this will be done in Section 3.3 and until then, we simply mean the closest
pair according to the Euclidean distance and assign each object with its closest pair or
nearest neighbor distance to the reachability plot.

If the closest pair from (R × S) would be determined in each step from scratch, we
would do a lot of unnecessary work. Instead, we like to save the status of processing
from one call of the closest pair determination to the next one. But since we migrate
object s from S to R after the closest pair (r, s) has been reported, we need a ranking
algorithm which supports insertions or deletions after initialization. We show in the next
section how the standard algorithm [5] can be extended to allow the required object
migration during the ranking. The core of our DeLiClu clustering algorithm now is:
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1. Let R contain an arbitrary start object from data set D;
2. Let S be D \R;
3. Initialize the CPR over (R× S);
4. Take the next pair (r, s) from the ranking;
5. Migrate s from S into R;
6. Append s to the reachability plot;
7. Continue with step (4) until all points are handled;

The critical remaining aspects are the migration of point s from S intoR (step 5) and the
introduction of the density-based smoothing factor minPts and a proper density distance
definition.

3.2 Closest Pair Ranking with Object Migration

The original algorithm for CPR without object migration requires the two data sets to be
stored in hierarchical index structures such as R-trees [7]. The algorithm uses a priority
queue into which pairs of nodes and pairs of data objects can be inserted. The entries
in the priority queue are ordered by ascending distances between the pair of objects
(nodes, respectively) in the data space. Upon each request, the algorithm dequeues the
top pair. If it is a pair of data objects, it is reported as the result of the request. Otherwise,
the pair is expanded, i.e. for all pairs of child nodes the distances are determined and the
pairs are inserted into the queue. Several strategies exist to decide which of the elements
of a pair is expanded (left, right, or both). We assume here a symmetric expansion of
both elements of the pair. Further, we assume that both indexes have exactly the same
structure. Although the tree for R initially contains only the arbitrarily chosen start
element, we use a full copy of the directory of S for convenience, because this method
facilitates insertion of any element of S into R. We simply use the same path as in the
tree storing S. No complex insert and split algorithm has to be applied for insertion.

Whenever a new element s is inserted into the index storing the data set R, we have to
determine a suitable path P = (root, node1, ..., nodeh, s) from the root to a leaf node
for this element (including the element itself). Comparing the nodes of this path with
the nodes of the index for S, we observe that some node pairs might already have been
inserted into the priority queue, others may not. Some of the pairs (e.g. (rootR, rootS))
might have even already been removed from the priority queue. We call such removed
pairs processed. Processed pairs are a little bit problematic because they require catch-
up work for migrated objects. Processed pairs can be easily found by traversing the tree
S top-down. A pair should be in the queue if the parent pair has already been processed
(i.e. has a distance smaller than the current top element of the priority queue), but the
pair itself has a distance higher than the top element.

After a pair of objects (r, o) has been processed, the formerly not handled object
o is migrated from S to the set of already processed objects R. The catch-up work
which now has to be done consists of the insertion of all pairs of objects (nodes, re-
spectively) (o, s) ∈ R × S into the priority queue for which the parent pair of nodes
(o.parent, s.parent) has already been processed. The complete recursive method is
called reInsertExpanded and is shown in Figure 2. Initially, reInsertExpanded is
called with the complete path of the migrated object o in R and the root node of S.
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reInsertExpanded(Object[] path, Object o)

if (path[0], o) is a pair of objects then
insert the pair (path[0], o) into priority queue;

if (path[0], o) is a pair of nodes and has not yet been expanded then
insert the pair (path[0], o) into priority queue;

if (path[0], o) is a pair of nodes and has already been expanded then
determine all child nodes ochild of o;
reInsertExpanded(tail(path), ochild);

Fig. 2. Algorithm reInsertExpanded

3.3 The Density Estimator MinPts

Until now, we have re-engineered the Single-Link method without applying any density
estimator for enhancing the robustness. Our re-engineering has great impact on the
performance of the algorithm because now a powerful database primitive is applied to
accelerate the algorithm. We will show in Section 4 that the performance is significantly
improved. But our new implementation also offers an easy way to integrate the idea of
the density estimator minPts into the algorithm without using the difficult parameter ε of
OPTICS. To determine the reachability distance of an object shown in the reachability
plot we consider additionally the k-nearest neighbor distance of the point where k =
minPts. We call this distance density distance and it is formally defined as follows:

Definition 1 (density distance). Let D be a set of objects, q ∈ D and DIST be a
distance function on objects in D. For minPts ∈ N, minPts ≤ |D| let r be the minPts-
nearest neighbor of q w.r.t. DIST. The density distance of an object p ∈ D relative from
object q w.r.t. minPts is defined as

DENDISTminPts (p, q) = max{DIST(q, r), DIST(q, p)}.

The density distance of of an object p relative from object q is an asymmetric distance
measure that takes the density around p into account and is defined as the maximum
value of the minPts-nearest neighbor distance of p and the distance between p and q.
Obviously, the density distance of DeLiClu is equivalent to the reachability distance of
OPTICS w.r.t. the same parameter minPts and parameter ε = ∞. Our algorithm DeLi-
Clu can adopt the density-based smoothing factor minPts by ordering the priority queue
using the density distance rather than the Euclidean distance. The rest of the algorithm
remains unchanged. Obviously, this modification can be done without introducing the
parameter ε. The cluster hierarchy is always determined completely, unlike in OPTICS.
And in contrast to OPTICS a guaranteed complete cluster result is not payed with per-
formance deterioration.

The k-nearest neighbor distance where k = minPts can be determined for all points
in a preprocessing step which applies a k-nearest neighbor join of the data set. Some
methods have been proposed for this purpose [8, 9] but unfortunately none for the sim-
ple R-tree and its variants. Therefore, we apply a new algorithm which is described in
the next section.
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3.4 The k-NN Join on the R-Tree

The k-nn join combines each of the points of R with its k nearest neighbors in S.
Algorithms for the k-nn join have been reported in [8] and in [9]. The first algorithm is
based on the MuX-index structure [10], the latter is on top of a grid order. Unfortunately,
there is no k-nn join algorithm for the R-tree family. Thus, in the following we present
a k-nn join algorithm based on the R-tree [7] and its variants, e.g. R*-tree[11].

Formally we define the k-nn join as follows:

Definition 2 (k-nn join R�S). Let R and S be sets of objects, and DIST be a distance
function between objects in R and S. R�S is the smallest subset of R×S that contains
for each point of R at least k points of S and for which the following condition holds:

∀(r, s) ∈ R � S, ∀(r, s′) ∈ R× S \R � S : DIST(r, s) < DIST(r, s′)

Essentially, the k-nn join combines each point of the data set R with its k-nearest neigh-
bors in the data set R. Each point of R appears in the result set exactly k times. Points
of S may appear once, more than once (if a point is among the k-nearest neighbors of
several points in R) or not at all (if a point does not belong to the k-nearest neighbors
of any point in R).

For the k-nn join R � S based on the R-tree it is assumed that each data set R
and S is stored in an index structure belonging to the R-tree family. The data set R of
which the nearest neighbors are searched for each point is denoted as the outer point set.
Consequently, S is the inner point set. The data pages of R and S are processed in two
nested loops whereas each data page of the outer set R is accessed exactly once. The
outer loop iterates over all data pages pr of the outer point set R which are accessed in
an arbitrary order. For each data page pr, the data pages ps of the inner point set S are
sorted in ascending order to their distance to pr. For each point r stored in the data page
pr, a data structure for the k- nearest neighbor distances, short a k-nn distance list, is
allocated. The distances of candidate points are maintained in these k-nn distance lists
until they are either discarded and replaced by smaller distances of better candidate
points or until they are confirmed to be the actual nearest neighbor distances of the
corresponding point. A distance is confirmed if it is guaranteed that the database cannot
contain any points being closer to the given object than this distance. The last distance
value in the k-nn distance list belonging to a point r is the (actual) k-nn distance of
r: points and data pages beyond that distance need not to be considered. The pruning
distance of a data page is the maximum (actual) k-nn distance of all points stored in
this page. All data pages ps ∈ S having a distance from a given data page pr ∈ R
that exceeds the pruning distance of the data page pr can be safely neglected as join-
partners of that data page pr. Thus, in the inner loop only those data pages ps have to be
considered having a distance to the current data page pr less or equal than the pruning
distance of pr. Analogous, all points s of a data page ps having a distance to a current
point r greater than the current k-nn distance of r can be safely pruned and do not have
to be taken into consideration as candidate points.

3.5 Algorithm DeLiClu

The algorithm DeLiClu is given in Figure 3. In a preprocessing step, the k-nearest
neighbor distance for all points is determined as described in Section 3.4. In the follow-
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DeLiClu(SetOfObjects S)

kNNJoin(S,S);
copy the index storing S to the index storing R;
s := start object ∈ S;
write (s, ∞) to output;
migrate s from S to R;
add pair (S.root, R.root) to priority queue;
while S �= ∅ do

p:= minimum pair in priority queue;
if p = (nS, nR) is a pair of nodes then

insert all combinations of (nS .children, nr.children) into priority queue;
else p = (s, r) is a pair of objects

write (s, denDist(s, r)) to output;
reInsertExpanded(path(s), root);

Fig. 3. Algorithm DeLiClu

ing R, denotes the set of objects already processed and S indicates the set of objects
which are still not yet handled. The algorithm starts with an arbitrary chosen start object
s ∈ S, migrates s from S to R and writes s with a density distance of infinity to output.
Note that migration of s from S to R means, that s is stored in the index structure of
R in the same path as in S. Thus, we do not need any complex insert or split algorithm
upon object migration. The two index structures of R and S only need to have the same
structure, i.e. the same directory and data nodes although the tree for R initially contains
no point.

The algorithm uses a priority queue into which pairs of nodes and pairs of data
objects from S × R can be inserted. The entries in the priority queue are sorted in
ascending order by the distance between the nodes of the pair or the density distance
between the objects of the pair. The first pair inserted into the queue is the pair of
nodes existing of the root of the index of S and the root of the index of R. In each
step, the top pair having minimum distance is dequeued from the priority queue. If
it is a pair (ns, nr) of nodes, the pair will be expanded, i.e. all combinations of the
children of ns with the children of nr are inserted into the priority queue. Otherwise,
if the top pair of the priority queue consists of a pair (s, r) of data objects from S ×
R, the not yet processed object s ∈ S is written to output with the density distance
DENDISTminPts(s, r). Afterwards, s is migrated from S to R. As described in Section
3.2, objects belonging to already expanded nodes of the path of s have to be reinserted
into the priority queue by invoking the algorithm reinsertExpanded (see Figure 2). The
algorithm terminates if all objects are moved from S to R.

4 Experimental Evaluation

All experiments have been performed on Linux workstations with two 64-bit 1.8 GHz
CPU and 8 GB main memory. We used a disk with a transfer rate of 45 MB/s, a seek
time of 4 ms and a latency delay of 2 ms. For either technique a LRU cache of about
50% of the data set size was allocated. The OPTICS algorithm was supported by an
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Fig. 5. Comparison of accuracy on real-world data set (El Nino data set)

R-tree index structure. Unless otherwise specified, the minPts parameter of DeLiClu
and OPTICS was set to 5. The ε-parameter of OPTICS was set to the optimal value
w.r.t. accuracy. Performance is presented in terms of the elapsed time including I/O and
CPU-time. Beside synthetic data sets, we used a data set containing 500,000 5D feature-
vectors generated from the SEQUOIA benchmark and the El Nino data set from the UCI
KDD data repository, containing about 800 9D data objects.

Performance speed-up. We first compared the performance of the methods. As it can
be seen in Figure 4(a) DeLiClu significantly outperforms OPTICS and SLINK w.r.t.
the dimensionality of the database. In Figure 4(b), we can observe that DeLiClu also
outperforms SLINK and OPTICS w.r.t. the number of data objects is. Obviously, the
speed-up of DeLiClu grows significantly with increasing database size. Similar results
can be made on the SEQUOIA benchmark (results are not shown due to space lim-
itations). DeLiClu achieved a speed-up factor of more than 20 over OPTICS and a
speed-up factor of more than 50 over SLINK.

Improvement of accuracy. The significant effect of parameter ε on the results of the
OPTICS algorithm is shown in Figure 5 (El Nino data). The left part of the figure shows
a reachability plot resulting from the new algorithm DeLiClu, the middle part of the
figure shows a reachability plot resulting from an OPTICS run with parameter ε chosen
too small. For this experiment, ε was set to a value for which the runtime of OPTICS
was approximately the same as for DeLiClu. Apparently, OPTICS lost a significant part
of the whole cluster information due to the wrongly chosen ε. The interpretability of
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the dendrogram depicted in the right part of the figure is very weak in comparison with
the reachability plot resulting from the DeLiClu algorithm. DeLiClu generates strongly
separated clusters which cannot be seen in the dendrogram. Similar results have been
achieved on the SEQUOIA benchmark.

5 Conclusions

We proposed the new algorithm DeLiClu based on a novel closest pair ranking algo-
rithm that efficiently computes the hierarchical cluster structure. DeLiClu shows im-
proved robustness over Single-Link w.r.t. noise and avoids the single-link effect by us-
ing a density estimator. In contrast to OPTICS it guarantees the complete determination
of the cluster structure. It has an improved usability over OPTICS by avoiding the non-
intuitive parameter ε. Our experimental evaluation showes that DeLiClu significantly
outperforms Single-Link and OPTICS in terms of robustness, completeness, usability
and efficiency.
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10. Böhm, C., Kriegel, H.P.: A cost model and index archtecture for the similarity join. In: Proc.

ICDE. (2001)
11. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust

access method for points and rectangles. In: Proc. SIGMOD. (1990)



Iterative Clustering Analysis for Grouping
Missing Data in Gene Expression Profiles

Dae-Won Kim1,� and Bo-Yeong Kang2

1 School of Computer Science and Engineering, Chung-Ang University,
Heukseok-dong, Dongjak-gu, 155-756, Seoul, Korea

dwkim@cau.ac.kr
2 Center of Healthcare Ontology R&D, Seoul National University,

Yeongeon-dong, Jongro-gu, Seoul, Korea

Abstract. Clustering has been used as a popular technique for finding
groups of genes that show similar expression patterns under multiple ex-
perimental conditions. Because a clustering method requires a complete
data matrix as an input, we must estimate the missing values using an im-
putation method in the preprocessing step of clustering. However, a com-
mon limitation of these conventional approach is that once the estimates
of missing values are fixed in the preprocessing step, they are not changed
during subsequent process of clustering. Badly estimated missing values
obtained in data preprocessing are likely to deteriorate the quality and
reliability of clustering results. Thus, a new clustering method is required
for improving missing values during iterative clustering process.

1 Introduction

Since Eisen et al. first used the hierarchical clustering method to find groups
of coexpressed genes [16], numerous methods have been studied for clustering
gene expression data: self-organizing map [23], k-means clustering [24], graph-
theoretic approach [25], mutual information approach [22], fuzzy c-means clus-
tering [14], diametrical clustering [15], quantum clustering with singular value
decomposition [8], bagged clustering [9], CLICK [21], and GK [20]. However, the
analysis results obtained by clustering methods will be influenced by missing
values in microarray experiments, and thus it is not always possible to correctly
analyze the clustering results due to the incompleteness of data sets. The prob-
lem of missing values have various causes, including dust or scratches on the
slide, image corruption, spotting problems [2, 5]. Ouyang et al. [3] pointed out
that most of the microarray experiments contain some missing entries and more
than 90 % of rows (genes) are affected.

To convert incomplete microarray experiments to a complete data matrix that
is required as an input for a clustering method, we must handle the missing values
before calculating clustering. To this end, typically we have either removed the
genes with missing values or estimated the missing values using an imputation
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prior to cluster analysis. Of the methods proposed, several imputation methods
have been demonstrating their effectiveness in building the complete matrix of
clustering: missing values are replaced by zeros [4] or by the average expression
value over the row (gene). Troyanskaya et al. [2] presented two correlation-based
imputation methods: a singular value decomposition based method (SVDimpute)
and weighted K-nearest neighbors (KNNimpute). Besides, a classical Expecta-
tion Maximization approach (EMimpute) exploits the maximum likelihood of
the convariance of the data for estimating the missing values [5, 3]. However, a
common limitation of existing approaches for clustering incomplete microarray
data is that the estimation of missing values must be calculated in the prepro-
cessing step of clustering. Once the estimates are found, they are not changed
during the subsequent steps of clustering. Thus badly estimated missing values
during data preprocessing can deteriorate the quality and reliability of clustering
results, and therefore drive the clustering method to fall into a local minimum;
it prevents missing values from being imputed by better estimates during the
iterative clustering process.

To minimize the influence of bad imputation, in the present study we devel-
oped a method for clustering incomplete microarray data, which iteratively finds
better estimates of missing values during clustering process. Incomplete gene ex-
pression data is used as an input without any prior imputation. This method
preserves the uncertainty inherent in the missing values for longer before final
decisions are made, and is therefore less prone to falling into local optima in com-
parison to conventional imputation-based clustering methods. To achieve this,
a method for measuring the distance between a cluster centroid and a row (a
gene with missing values) is proposed, along with a method for estimating the
missing attributes using all available information in each iteration.

2 The Proposed Method

The objective of the proposed method is to classify a data set X={x1, x2, . . . , xn}
in p-dimensional space into k disjoint and homogeneous clusters represented as
C = {C1, C2, . . . , Ck}. Here each data point xj = [xj1, xj2, . . . , xjp] (1 ≤ j ≤ n)
is the expression vector of the j-th gene over p-different environmental conditions
or samples. A data point with some missing conditions or samples is referred to
as an incomplete gene; a gene xj is incomplete if xjl is missing for ∃1 ≤ l ≤ p,
i.e., an incomplete gene x1 = [0.75, 0.73, ?, 0.21] where x13 is missing. A gene
expression data set X is referred to as an incomplete data set if X contains at
least one incomplete gene expression vector.

To find better estimates of missing values and improve the clustering result
during iterative clustering process, in each iteration we exploit the information of
current clusters such as cluster centroids and all available non-missing values. For
example, a missing value xjl is estimated using the corresponding l-th attribute
value of the cluster centroid to which xj is closest in each iteration. To improve
the estimates during each iteration, the proposed method attempts to optimize
the objective function with respect to the missing values, which is often referred



Iterative Clustering Analysis for Grouping Missing Data 131

to as the alternating optimization (AO) scheme. The objective of the proposed
method is obtained by minimizing the function Jm:

min

⎧⎨⎩Jm(U, V ) =
k∑

i=1

n∑
j=1

(μij)mDij

⎫⎬⎭ (1)

where
Dij = ‖xj − vi‖2 (2)

is the distance between xj and vi,

V = [v1, v2, . . . , vk] (3)

is a vector of the centroids of the clusters C1, C2, . . . , Ck,

U = [μij ] =

⎡⎢⎢⎢⎣
μ11 μ12 . . . μ1n

μ21 μ22 . . . μ2n

...
...

...
...

μk1 μk2 . . . μkn

⎤⎥⎥⎥⎦ (4)

is a fuzzy partition matrix of X satisfying the following constraints,

μij ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ n,∑k
i=1 μij = 1, 1 ≤ j ≤ n,

0 <
∑n

j=1 μij < n, 1 ≤ i ≤ k.

(5)

and
m ∈ [1,∞) (6)

is a weighting exponent that controls the membership degree μij of each data
point xj to the cluster Ci. As m→ 1, J1 produces a hard partition where μij ∈
{0, 1}. As m approaches infinity, J∞ produces a maximum fuzzy partition where
μij = 1/k. This fuzzy k-means-type approach has advantages of differentiating
how closely a gene belongs to each cluster [14] and being robust to the noise in
microarray data [7] because it makes soft decisions in each iteration through the
use of membership functions.

Under this formulation, missing values are regarded as optimization parame-
ters over which the functional Jm is minimized. To obtain a feasible solution by
minimizing Eq. 1, the distance Dij between an incomplete gene xj and a cluster
centroid vi must be calculated as:

Dij =
p∑p

l=1 ωjl

p∑
l=1

(xjl − vil)2ωjl (7)

where

ωjl =
{

1 if xjl is non-missing
1− exp(−t/τ) if xjl is missing (8)
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We differentiate the missing attribute values from the non-missing values in
calculating Dij . The fraction part in Eq. 7 indicates that Dij is inversely pro-
portional to the number of non-missing attributes used where p is the number
of attributes. ωjl indicates the confidence degree with which l-th attribute of xj

contributes to Dij ; specifically, ωjl = 1 if xjl is non-missing and 0 ≤ ωjl < 1
otherwise. The exponential decay, exp(−t/τ), represents the reciprocal of the
influence of the missing attribute xjl on discrete time t where τ is a time con-
stant. At the initial iteration (t = 0), wjl has a value of 0. As time t (i.e., the
number of iterations) increases, the exponent part decreases fast, and thus wjl

approaches 1. Let us consider an incomplete data point x1 = [0.75, 0.73, ?, 0.21]
where initially x13 is missing. Suppose that x13 is estimated as a value of 0.52
after two iterations; then x1 has a vector of [0.75, 0.73, 0.52, 0.21]. From this vec-
tor, we see that x13 participates in calculating the distance to cluster centroids
less than the other three values because it is now being estimated. Besides, the
influence of x13 to Di1 is increased as the iteration continues because its estimate
is improved by an iterative optimization.

Using Dij in Eq. 7, the saddle point of Jm is obtained by considering the
constraint Eq. 5 as the Lagrange multipliers:

∇Jm(U, V, λ)

=
k∑

i=1

n∑
j=1

(μij)mDij +
n∑

j=1

λj

[
k∑

i=1

μij − 1

]
(9)

and by setting ∇Jm = 0. If Dij > 0 for all i, j and m > 1, then (U, V ) may
minimize Jm only if,

μij =

[
k∑

z=1

(
Dij

Diz

)2/(m−1)
]−1

, (10)

1 ≤ i ≤ k; 1 ≤ j ≤ n,

and

vi =

∑n
j=1(μij)mxj∑n

j=1(μij)m
, 1 ≤ i ≤ k. (11)

This solution also satisfies the remaining constraints of Eq. 5. Along with the
optimization of the cluster centroids and membership degrees in Eqs. 10 and 11,
missing values are optimized during each iteration to minimize the functional
Jm. In this study, we optimize the missing values by minimizing the function
J(xj) presented by [1]:

J(xj) =
k∑

i=1

(μij)m‖xj − vi‖2A (12)
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Table 1. Comparison of the clustering performance of the KNNimpute, EMimpute-
based clustering methods and proposed method for the yeast cell-cycle data set of [12].
For the data sets with different percentages of missing values, the z-scores [19] of all
methods are specified. The number of clusters is k = 5, and the k-means, SOM, bclust
methods were tested based on the data obtained by KNNimpute using K = 10, 15, 20.

Cell-cycle data
Method \ %missing 5% 10% 15% 20% 25%
KNNimpute(K=10)+k-means 23.0 19.7 21.9 26.6 24.8
KNNimpute(K=15)+k-means 23.7 21.6 21.1 24.8 21.2
KNNimpute(K=20)+k-means 26.5 21.3 22.6 24.6 22.2
KNNimpute(K=10)+SOM 15.8 17.9 14.4 21.9 14.8
KNNimpute(K=15)+SOM 27.0 17.9 14.4 21.9 14.8
KNNimpute(K=20)+SOM 20.0 22.2 16.5 15.8 22.6
KNNimpute(K=10)+BagClust 27.7 40.7 24.2 24.2 20.8
KNNimpute(K=15)+BagClust 31.2 20.8 27.0 22.8 30.6
KNNimpute(K=20)+BagClust 26.7 28.1 24.8 21.4 23.4
EMimpute+k-means 23.2 20.3 22.7 20.0 21.1
EMimpute+SOM 18.1 17.3 17.3 18.8 16.0
Proposed 35.5 32.2 27.3 19.5 14.5

By setting ∇J = 0 with respect to the missing attributes of xj , a missing value
xjl is calculated as:

xjl =
∑k

i=1(μij)mvil∑k
i=1(μij)m

, 1 ≤ i ≤ k. (13)

By Eq. 13, xjl is estimated by the weighted mean of all cluster centroids in
each iteration. At the initial iteration, xjl is initialized with the corresponding
attribute of the cluster centroid to which xj has the highest membership degree.

This method iteratively improves a sequence of sets of clusters until no further
improvement in Jm(U, V ) is possible. It loops through the estimates for Vt →
Ut+1 → Vt+1 and terminates on ‖Vt+1 − Vt‖ ≤ ε. Equivalently, the initialization
of the algorithm can be done on U0, and the iterates become Ut → Vt+1 →
Ut+1, with the termination criterion ‖Ut+1 − Ut‖ ≤ ε. This way of alternating
optimization using membership computation makes the present method be less
prone to falling into local minima than conventional clustering methods.

3 Experimental Results

3.1 Data Sets and Implementation Parameters

To test the effectiveness with which the proposed method clusters incomplete
microarray data, we applied the proposed method and conventional imputation-
based clustering methods to three published yeast data sets and compared the
performance of each method.
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Table 2. Comparison of the clustering performance of the KNNimpute, EMimpute-
based clustering methods and proposed method for the yeast sporulation data set
of [13]. For the data sets with different percentages of missing values, the z-scores [19]
of all methods are specified. The number of clusters is k = 5, and the k-means, SOM,
bclust methods were tested based on the data obtained by KNNimpute using K =
10, 15, 20.

Sporulation data
Method \ %missing 5% 10% 15% 20% 25%
KNNimpute(K=10)+k-means 2.1 0.8 2.9 1.7 0.1
KNNimpute(K=15)+k-means 2.0 1.2 2.5 3.3 0.5
KNNimpute(K=20)+k-means 2.2 0.9 2.4 2.8 0.4
KNNimpute(K=10)+SOM 1.2 1.7 1.8 1.5 3.0
KNNimpute(K=15)+SOM 0.9 1.9 1.5 2.0 2.4
KNNimpute(K=20)+SOM 1.7 1.7 1.7 1.6 2.7
KNNimpute(K=10)+BagClust 1.2 1.2 0.5 1.1 0.1
KNNimpute(K=15)+BagClust 0.9 1.2 1.3 1.5 0.1
KNNimpute(K=20)+BagClust 0.6 0.7 0.9 1.2 0.8
EMimpute+k-means 1.8 2.1 1.7 2.3 1.3
EMimpute+SOM 0.5 0.9 1.4 2.7 1.9
Proposed 51.1 46.7 49.0 34.3 46.5

The data sets employed were the yeast cell-cycle data set of Cho et al. [12], the
yeast sporulation data set of Chu et al. [13], and the yeast Calcineurin-regulation
data set of Yoshimoto et al. [11]. The Cho data set contains the expression
profiles of 6,200 yeast genes measured at 17 time points over two complete cell
cycles. We used the same selection of 2,945 genes made by Tavazoie et al. [24]
in which the data for two time points (90 and 100 min) were removed. The Chu
data set consists of the expression levels of the yeast genes measured at seven
time points during sporulation. Of the 6,116 gene expressions analyzed by Eisen
et al. [16], 3,020 significant genes obtained through two-fold change were used.
The Yoshimoto’s Calcineurin data set contains the expression profiles of 6,102
yeast genes at 24 experiments by the presence and absence of Ca2+, Na+, CRZ1,
and FK506. These three data sets were preprocessed for the test by randomly
removing 5–25% (5, 10, 15, 20 and 25) of the data in order to create incomplete
matrices.

To cluster these incomplete data sets with conventional methods, we first
estimated the missing values using the widely used KNNimpute [2] and EMim-
pute [5, 3]. For the estimated matrices yielded by each imputation method, we
used EXPANDER [21] software that implements many clustering methods, of
which we investigated the results of the k-means and SOM methods, along with
the results of the bagged clustering (BagClust) [9]. In these experiments, the
parameters used in the proposed method were ε = 0.001,m = 2.5, and τ = 100.
The KNNimpute was tested with K = 10, 15, 20; these values were chosen be-
cause they have been overwhelmingly favored in previous studies [2]. In the tests
reported here, we analyzed the performance of each approach at the number of
clusters of k = 5.
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Table 3. Comparison of the clustering performance of the KNNimpute, EMimpute-
based clustering methods and proposed method for the yeast Calcineurin data set
of [11]. For the data sets with different percentages of missing values, the z-scores [19]
of all methods are specified. The number of clusters is k = 5, and the k-means, SOM,
bclust methods were tested based on the data obtained by KNNimpute using K =
10, 15, 20.

Calcineurin data
Method \ %missing 5% 10% 15% 20% 25%
KNNimpute(K=10)+k-means 30.0 32.8 32.2 25.6 28.2
KNNimpute(K=15)+k-means 30.1 32.3 23.0 26.4 27.9
KNNimpute(K=20)+k-means 32.1 32.2 24.6 29.5 29.7
KNNimpute(K=10)+SOM 50.9 49.0 55.6 49.0 49.7
KNNimpute(K=15)+SOM 44.6 50.5 48.9 49.6 49.0
KNNimpute(K=20)+SOM 48.3 53.3 59.4 56.9 46.2
KNNimpute(K=10)+BagClust 4.6 44.3 47.4 48.3 34.3
KNNimpute(K=15)+BagClust 40.5 22.4 37.4 53.1 38.4
KNNimpute(K=20)+BagClust 44.6 37.4 38.5 38.2 10.1
EMimpute+k-means 31.9 31.5 27.6 23.5 23.4
EMimpute+SOM 41.5 49.7 49.1 51.3 57.9
Proposed 79.0 77.5 71.0 70.7 66.4

3.2 Comparison of Clustering Performance

To show the performance of imputation, most of imputation methods proposed
to date, including KNNimpute and EMimpute, have examined the the root mean
squared error (RMSE) between the true values and the imputed values. However,
as Bo et al. pointed out [5], the RMSE is limited to study the impact of miss-
ing value imputation on cluster analysis. To make this study more informative
regarding how large an impact the imputation method has on cluster analysis,
in the present work the clustering results obtained using the alternative impu-
tations were evaluated by comparing gene annotations using the z-score [19, 5].
Besides, we analyzed the cluster qualities using the figure of merits (FOMs) for
an internal validation [26]. Firstly, the z-score [19] is calculated by investigating
the relation between a clustering result and the functional annotation of the
genes in the cluster. To achieve this, this score uses the Saccharomyces Genome
Database (SGD) annotation of the yeast genes, along with the gene ontology
developed by the Gene Ontology Consortium [17, 18]. A higher score of z indi-
cates that genes are better clustered by function, indicating a more biologically
significant clustering result.

Table 1 shows the clustering results of the KNNimpute/EMimpute-based clus-
tering methods and proposed method for the yeast cell-cycle data set. The z-score
of each method is listed with respect to the percentages of missing values (5-25%).
The number of neighbors in the KNNimpute was K = 10, 15, 20. The k-means
method using KNNimpute gave z-scores from 19.7% to 26.6%. The z-scores of
the SOM using KNNimpute were ranged from 14.4 to 27.0. The BagClust using
KNNimpute outperformed the other methods at 10% missing values. Compared
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Table 4. Comparison of clustering performance of the KNNimpute, EMimpute-based
methods and proposed method for the yeast cell-cycle data set. The number of clusters
is k = 5. The figure of merits (FOMs) of each method at 5-25% missing data are
specified. The KNNimpute are tested with K = 10.

Method \ %missing 5% 10% 15% 20% 25%
KNNimpute(K=10)+k-means 6.95 6.87 6.60 6.64 5.95
KNNimpute(K=10)+SOM 6.80 6.84 6.67 6.75 6.60
KNNimpute(K=10)+BagClust 7.15 7.13 6.89 6.86 6.93
EMimpute+k-means 7.10 6.69 6.77 6.56 6.86
EMimpute+SOM 6.73 6.75 6.75 6.72 6.43
Proposed 3.69 3.90 3.74 3.98 3.32

to these methods, the proposed method provided better clustering performance
at low missing values; the z-scores were varied from 14.5 to 35.5. At 5% miss-
ing value, it is observed that the proposed method showed its best z-score of
35.5. Of the other methods, the EMimpute-based SOM method provided the
best z = 18.1, whereas the BagClust method using KNNimpute yielded the best
z = 31.2 at K = 15.

Table 2 shows the clustering performance of the KNNimpute/EMimpute-
based clustering methods and proposed method for the yeast sporulation data
set. On the whole, the three KNNimpute-based clustering methods showed simi-
lar tendency for all missing values. In comparison to these methods, it is evident
that the proposed clustering method shows markedly better performance, giving
z-scores of more than 34.0 for all missing values; it provided significantly better
clustering performance than other methods, giving z = 51.1 at 5% and z = 46.7
at 10%. The best z-values of the KNNimpute-based and EMimpute-based meth-
ods were z = 2.2 and z = 1.8 at 5% missing value respectively.

Table 3 shows the clustering results of the KNNimpute/EMimpte-based clus-
tering methods and proposed method for the yeast Calcineurin data set. The pro-
posed method also gave improved and more stable performance compared to the
imputation-based clustering methods, with z-scores of more than 70 for all miss-
ing values. Of the conventional methods, the KNNimpute-based SOM method
using K = 10 achieved its best z-scores of z = 50.9 and z = 49.0 at 5% and
10% missing values respectively. From the three tests, we see that the proposed
method is the most effective of the methods considered; it provides the highest z-
value for most cases. The KNNimpute-based clustering methods achieved better
z-scores than the EMimpute-based methods; the KNNimpute-based BagClust
showed better z-scores for the cell-cycle data set and the KNNimpute-based
SOM for the Calcineurin data set.

Besides the assessment using the z-score, we quantified the clustering re-
sult of each method using the figure of merit (FOM) that is an estimate of
the predictive power of a clustering method [26]. A lower value of FOM rep-
resents a well clustered result, indicating that a clustering method has high
predictive power. Table 4 lists the results of FOMs of six clustering methods for
the yeast cell-cycle data set. Of the methods considered, the proposed method
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provides the lowest FOMs for 5-25% missing of data. The KNNimputed-based
k-means method showed better FOMs than other methods for 15-20% of missing
data, whereas the EMimpute-based SOM gave lower scores at 5% and 10% miss-
ing. The KNNimputed-based BagClust proved the most ineffective of the meth-
ods considered. The results of the comparison tests indicate that the proposed
method gave markedly better clustering performance than the other imputation-
based methods considered, highlighting the effectiveness and potential of the
proposed method.

4 Conclusion

Clustering has been used as a popular technique for analysis of large amounts
of microarray gene expression data, and many clustering methods have been
developed in biological research. However, conventional clustering methods have
required a complete data matrix as input even if many microarray data sets are
incomplete due to the problem of missing values. In such cases, typically either
genes with missing values have been removed or the missing values have been
estimated using imputation methods prior to the cluster analysis. In the present
study, we focused on the bad influence of the earlier imputation on the subse-
quent cluster analysis. To address this problem, we have presented the proposed
method of clustering incomplete gene expression data. By taking the alternative
optimization approach, the missing values are considered as additional param-
eters for optimization. The evaluation results based on gene annotations have
shown that the proposed method is the superior and effective method for clus-
tering incomplete gene expression data. Besides the issues mentioned in present
work, we initialized missing values with the corresponding attributes of the clus-
ter centroid to which the incomplete data point is closest. Although this way
of initialization is considered appropriate, further work examining the impact of
different initializations on clustering performance is needed.
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Abstract. In many data mining applications the data objects are mod-
eled as sets of feature vectors or multi-instance objects. In this paper,
we present an expectation maximization approach for clustering multi-
instance objects. We therefore present a statistical process that models
multi-instance objects. Furthermore, we present M-steps and E-steps for
EM clustering and a method for finding a good initial model. In our
experimental evaluation, we demonstrate that the new EM algorithm
is capable to increase the cluster quality for three real world data sets
compared to a k-medoid clustering.

1 Introduction

In modern data mining applications, the complexity of analyzed data objects is
increasing rapidly. Molecules are analyzed more precisely and with respect to all
of their possible spatial conformations [1]. Earth observation satellites are able
to take images with higher resolutions and in a variety of spectra which was not
possible some years before. Data mining started to analyze complete websites
instead of single documents [2]. All of these application domains are examples for
which the complexity demands a richer object representation than single feature
vectors. Thus, for these application domains, an object is often described as a set
of feature vectors or a multi-instance (MI) object. For example, a molecule can
be represented by a set of feature vectors where each vector describes one spatial
conformation or a website can be analyzed as a set of word vectors corresponding
to its HTML documents.

As a result the research community started to develop techniques for multi-
instance learning that where capable to analyze multi-instance objects. One of
the first publications in this area [1, 3] was focussed to a special task called
multi-instance learning. In this task the appearance of one positive instance
within a multi-instance object is sufficient to indicate that the object belongs to
the positive class. Besides classical multi-instance learning, some approaches like
[4, 5] aim at more general problems. However, all of the mentioned approaches
are based on a setting having a set of labeled bags to train a learning algorithms.

In this paper, we focus on clustering unlabeled sets of feature vectors. To
cluster those objects, the common approach so far is to select some distance
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measures for point sets like [6, 7] and then apply a distance-based clustering al-
gorithm e.g. k-medoid methods like CLARANS [8] or a density-based algorithm
like DBSCAN[9]. However, this approach does not yield expressive cluster mod-
els. Depending on the used algorithm, we might have some representative for
some cluster, but we do not have a good model for describing the mechanism
behind this clustering. To overcome this problem, we will refer to the model of
multi-instance objects that was introduced in [5] stating that a multi-instance
object of a particular class (or in our problem each cluster) needs to provide
instances belonging to a certain concept or several concepts. We will adapt this
view of multi-instance objects to clustering. Therefore, we propose a statistical
model that is based on 2 steps. In the first step, we use a standard EM Cluster-
ing algorithm on the union set of all multi-instance objects. Thus, we determine
a mixture model describing the instances of all multi-instance objects. Assum-
ing that each of the found clusters within each mixture model corresponds to
some valid concept, we now can derive distributions for the clustering of multi-
instance objects. For this second step, we assume that a multi-instance object
containing k instances can be modeled as k draws from the mixture model over
the instances. Thus, each cluster of multi-instance objects is described by a
distribution over the instance clusters derived in the first step and some prior
probability. For example, for the classical multi-instance learning task, it can
be expected that there is at least one instance cluster that is very unlikely to
appear in the multi-instance clusters corresponding to the negative bags.

The rest of the paper is organized as following: In section 2, we will survey
previous work in data mining with multi-instance objects and give a brief in-
troduction to EM clustering. Section 3 will describe our statistical model for
multi-instance data. In section 4, this model is employed for EM clustering. To
demonstrate the usefulness of our approach, section 5 contains the results on
several real world data sets. Section 6 concludes the paper with a summary and
directions for future work.

2 Related Work

Data Mining in multi-instance objects has so far been predominantly examined
in the classification section. In [1] Dietterich et al. defined the problem of multi-
instance learning for drug prediction and provided a specialized algorithm to
solve this particular task by learning axis parallel rectangles. In the following
years, new algorithms increasing the performance for this special task were in-
troduces [3]. In [5] a more general method for handling multi-instance objects
was introduced that is applicable for a wider variety of multi-instance problems.
This model considers several concepts for each class and requires certain cardi-
nalities for the instances belonging to the concepts in order to specify a class
of MI objects. Additionally, to this model [10] proposes more general kernel
functions for MI comparing MI objects.

For clustering multi-instance objects, it is possible to use distance functions
for sets of objects like [6, 7]. Having such a distance measure, it is possible to
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cluster multi-instance objects with k-medoid methods like PAM and CLARANS
[11] or employ density-based clustering approaches like DBSCAN [9]. Though
this method yields the possibility to partition multi-instance objects into clus-
ters, the clustering model consists of representative objects in the best case.
Another problem of this approach is that the selection of a meaningful dis-
tance measure has an important impact of the resulting clustering. For example,
netflow-distance [7] demands that all instances within two compared objects are
somehow similar, whereas for the minimal Hausdorff [12] distance the indication
of similarity is only dependent on the closest pair.

In this paper, we introduce an algorithm for clustering multi-instance objects
that optimizes probability distributions to describe the data set. Part of this
work is based on expectation maximization (EM) clustering for ordinary feature
vectors using Gaussians. Details about this algorithm can be found in [13]. In
[14], a method for producing a good initial mixture is presented which is based
on multiple sampling. It is empirically shown that using this method, the EM
algorithm achieves accurate clustering results.

3 A Statistical Model for Multi-Instance Objects

In this section, we will introduce our model for multi-instance clustering. There-
fore, we will first of all define the terms instance and multi-instance (MI) object.

Definition 1 (instance and MI object). Let F be a feature space. Then,
i ∈ F is called an instance in F . A multi-instance (MI) object o in F is given by
an arbitrary sized set of instances o = i1, .., ik with ij ∈ F . To denote the unique
MI object an instance i belongs to, we will write M iObj(i).

To cluster multi-instance objects using an EM approach, we first of all need a sta-
tistical process that models sets of multi-instance objects. Since multi-instance
objects consist of single instances in some feature space, we begin with modeling
the data distribution in the feature space of instances. Therefore, we first of all
define the instance set of a set of multi-instance objects:

Definition 2 (Instance Set). Given a database DB of multi-instance Objects
o = i1, . . . , ik, the corresponding instance set IDB =

⋃
DB o is the union of all

multi-instance objects.

To model the data distribution in the instance space, we assume a mixture model
of k independent statistical processes. For example, an instance set consisting of
feature vectors could be described by a mixture of Gaussians.

Definition 3 (Instance Model). Let DB be a data set consisting of multi-
instance objects o and let IDB be its instance set. Then, an instance model IM
for DB is given by a mixture model of k statistical processes that can be described
by a prior probability Pr[kj ] for each component kj and the necessary parameters
for the process corresponding to kj , e.g. a mean vector μj and co-variance matrix
Mj for Gaussian processes.
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After describing the instance set, we can now turn to the description of multi-
instance objects. Our solution is based on the idea of modeling a cluster of
multi-instance objects as a multinomial distribution over the components of the
mixture model of instances. For each instance and each concept, the probability
that the instance belongs to this concept is considered as result of one draw. If the
number n of instances within an object o is considered to be important as well,
we can integrate this into our model as well by considering some distribution over
the number of draws, e.g. a binomial distribution. To conclude, a mixture model
of multi-instance clusters can be described by a set of multinomial distributions
over the components of a mixture model of instances. A multi-instance object is
thus derived in the following way:

1. Select a multi-instance cluster ci w.r.t. some prior distribution over the set
of all clusters C.

2. Derive the number of instances n within the multi-instance object w.r.t some
distribution depending on the chosen cluster ci.

3. Repeat n-times:
(a) Select some model component kj within the mixture model of instances

w.r.t. the multi-instance cluster specific distribution.
(b) Generate an instance, w.r.t. to the distribution corresponding to com-

ponent kj .

Formally, the underlying model for multi-instance data sets can be defined as
follows:

Definition 4 (Multi-Instance Model). A multi-instance model M over the
instance model IM is defined by a set C of l processes over IDB. Each of these
processes ci is described by a prior probability Pr[ci], a distribution over the
number of instances in the bag Pr[Card(o) |ci] and an conditional probability
describing the likelihood that a multi-instance object o belonging to process ci

contains an instance belonging to the component kl ∈ IM . The probability of an
object o in the model M is calculated as following:

Pr[o] =
∑
ci∈C

Pr[ci] · Pr[Card(o)|ci] ·
∏
i∈o

∏
k∈MI

Pr[k|ci]Pr[k|i]

The conditional probability of process ci under the condition of a given multi-
instance object o can be calculated by:

Pr[ci|o] =
1

Pr[o]
· Pr[ci] · Pr[Card(o)|ci] ·

∏
i∈o

∏
k∈MI

Pr[k|ci]Pr[k|i]

Let us note that the occurrence of an instance within the data object is only
dependent on the cluster of instances it is derived from. Thus, we do not assume
any dependencies between the instances of the same objects. Another important
characteristic of the model is that we assume the same set of instance clusters
for all multi-instance clusters. Figure 3 displays an example of a two dimensional
multi-instance data set corresponding to this model. This assumption leads to
the following 3 step approach for multi-instance EM clustering.
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4 EM-Clustering for Multi-Instance Objects

After introducing a general statistical process for multi-instance objects, we will
now introduce an EM algorithm that fits the distribution parameters to a given
set of multi-instance objects. Our method works in 3 steps:

1. Derive a Mixture Model for the Instance Set.
2. Calculate a start partitioning.
3. Use the new EM algorithm to optimize the start partitioning.

4.1 Generating a Mixture Model for the Instance Set

To find a mixture of the instance space, we can employ a standard EM approach
as proposed in section 2. For general feature vectors, we can describe the instance
set as a mixture of Gaussians. If the feature space is sparse using a mixture of
multinomial processes usually provides better results. If the number of clusters
in the instance is already known, we can simply employ EM clustering. However,
if we do not know how many clusters are hidden within the instance set, we need
to employ a method for determining a suitable number of processes like [15].

4.2 Finding a Start Partitioning of Multi-Instance Objects

After deriving a description of the instance space, we now determine a good
start partitioning for the final clustering step. A good start partitioning is very
important for finding a good cluster model. Since EM algorithms usually do
not achieve a global maximum likelihood, a suitable start partitioning has an
important impact on both, the likelihood of the cluster and the runtime of the
algorithm. The versions for EM in ordinary feature spaces often use k-means
clustering for finding a suitable start partitioning. However, since we cluster sets
of instances instead of single instances, we cannot use this approach directly.

To overcome this problem, we proceed as follows. For each multi-instance
object we determine a so-called confidence summary vector in the following way.

Definition 5 (Confidence Summary Vector). Let IM be an instance model
over database DB containing k processes and let o be a multi-instance object.
Then the confidence summary vector −→csv(o) of o is a k dimensional vector that
is calculated as follows:

csvj(o) =
∑
i∈o

Pr[kj ] · Pr[i|kj ]

After building the confidence summary vector for each object, we can now em-
ploy k-means to cluster the multi-instance objects. Though the resulting clus-
tering might not be optimal, the objects within one cluster should yield similar
distributions over the components of the underlying instance model.
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4.3 EM for Clustering Multi-Instance Objects

In this final step, the start partitioning for the data set is optimized using the
EM algorithm. We therefore describe a suitable expectation and maximization
step and then employ an iterative method. The likelihood of the complete model
M can be calculated by adding up the log-likelihoods of the occurrence of each
data object in each clusters. Thus, our model is (locally) optimal if we obtain a
maximum for the the following log-likelihood term.

Definition 6 (Log-Likelihood for M).

E(M) =
∑

o∈DB

log
∑

ci∈M

Pr[ci|o]

To determine Pr[ci|o], we proceed as mentioned in definition 4. Thus, we can
easily calculate E(M) in the expectation step for a given set of distribution
parameters and an instance model. To improve the distribution parameters, we
employ the following updates to the distribution parameters in the maximization
step:

Wci = Pr[ci] =
1

Card(DB)

∑
o∈DB

Pr[ci|o]

where Wci denotes the prior probability of a cluster of multi-instance objects.
To estimate the number of instances contained in an MI object belonging to

cluster ci, we can employ a binomial distribution determined by the parameter
lci . The parameters are updated as follows:

lci =
∑

o∈DB Pr[ci|o] · Card(o)
Card(DB)

· 1
MAXLENGTH

where MAXLENGTH is the maximum number of instances for any MI object
in the database.

Finally, to estimate the relative number of instances drawn from concept kj

for MI objects belonging to cluster ci, we derive the parameter updates in the
following way:

Pkj ,ci = Pr[kj |ci] =
∑

o∈DB (Pr[ci|o] ·
∑

u∈o Pr[u|kj ])∑
o∈DB

∑
u∈o Pr[u|kj ]

Using these update steps, the algorithm is terminated after the improvement
of E(M) is less than a given value σ. Since the last step of our algorithm is
a modification of EM clustering based on multinomial processes, our algorithm
always converges against a local maximum value for E(M).

5 Evaluation

All algorithms are implemented in Java 1.5. The experiments described below
are carried out on a work station that is equipped with two 1.8 GHz Opteron
processors and 8 GB main memory.
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Table 1. Details of the test environments

Data Set 1 (DS1) Data Set 2 (DS2) Data Set 3 (DS3)

Name Brenda MUSK 1 MUSK 2
Number of MI-Objects 6082 92 102
Average Number of In-
stances per MI-Object

1.977 5.2 64.7

Number of MI-Object
classes

6 2 2

Our experiments were performed on 3 different real world data sets. The prop-
erties of each test bed are illustrated in Table 1. The Brenda data set contains
of enzymes taken from the protein data bank (PDB) 1. Each enzyme comprises
several chains given by amino acid sequences. In order to derive feature vectors
from the amino acid sequences, we employed the approach described in [16].
The basic idea is to use local (20 amino acids) and global (6 exchange groups)
characterization of amino acid sequences. In order to construct a meaningful fea-
ture space, we formed all possible 1-grams for each kind of characteristic. This
approach provided us with 26 dimensional histograms for each chain. To obtain
the class labels for each enzyme we used a mapping from PDB to the enzyme
class numbers from the comprehensive enzyme information system BRENDA 2.

MUSK 1 and MUSK 2 data sets come from UCI repository [17] and describe a
set of molecules. The MI-objects in MUSK 1 and MUSK 2 data sets are judged
by human experts to be in musks or non-musks class. The feature vectors of
MUSK data sets have 166 numerical attributes that describe these molecules
depending on the exact shape or conformation of the molecule.

To measure the effectiveness, we considered the agreement of the calculated
clusterings to the given class systems. To do so, we calculated three quality
measures namely precision, F-measure and average entropy. In order to calculate
the precision and F-Measure, we proceeded as follows. For each cluster ci found
by a clustering algorithm, its class assignment Class(ci) is determined by the
class label of objects belonging to ci that are in the majority. Then, we calculated
the Precision within all clusters w.r.t. the determined class assignments by using
the following formulas.

Precision =

∑
ci∈C Card({o|(ci =argmaxcj∈C Pr [cj |o]) ∧ Class(o) = Class(ci)})

Card(DB)

Avg.Entropy =
∑
ci∈C

(Card(ci) ∗ (−
∑

Classj

pj,ilog(pj,i)))/Card(DB)

In addition, we measured the average entropy over all clusters. This quality
measure is based on the impurity of a cluster ci w.r.t. the class labels of objects
1 http://www.rcsb.org/pdb/
2 http://www.brenda.uni-koeln.de/
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Fig. 1. Effectiveness evaluation on DS2 and DS3 where no. of clusters is 2
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Fig. 2. Effectiveness evaluation on DS1, DS2 and DS3 where no. of clusters is 8

belonging to ci. Let pj,i be the relative frequency of the class label Classj in the
cluster ci. We calculate average entropy as following.

In order to demonstrate that the proposed clustering approach for multi-
instance objects outperforms standard clustering algorithms working on a suit-
able distance functions, we compared precision, F-Measure and average entropy
of the MI-EM with that of k-medoid clustering algorithm (PAM). To enable clus-
ter analysis of multi-instance objects by PAM, we used the Hausdorff distance
(HD)[6], the minimum Hausdorff distance (mHD)[12] and the Sum of Minimum
Distances (SMD)[6]. Due to the fact that the data set DS1 has 6 classes and
the data sets DS2 and DS3 have 2 classes, we investigated the effectiveness of
the cluster analysis where the number of clusters is equal to or slightly than the
number of the desired classes. Thus, we set in our experiments the number of
clusters equal to 6 and 8 for DS1, and equal to 2, 6 and 8 for the data sets DS2
and DS3. The results of our comparison are illustrated in Figures 1,3 and 2.

In all our experiments, PAM working on distance functions suitable for multi-
instance objects achieved a significantly lower precision than MI-EM. For exam-
ple, the MI-EM algorithm reached a precision of 0.833 on DS1 and the number
of clusters equal to 8 (cf. Figure 2(a)). In contrast to the result of MI-EM, the
precision calculated for clusterings found by all competitors lies between 0.478
and 0.48. Furthermore, MI-EM obtained in all experiments higher or compara-
ble values of F-Measures. This fact indicates that the cluster structure found by
applying of the proposed EM-based approach is more exact w.r.t. precision and
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Fig. 3. Effectiveness evaluation on DS1, DS2 and DS3 where no. of clusters is 6

recall than that found by PAM with 3 different MI distance functions. For ex-
ample, the F-Measure calculated for MI-EM clustering of DS2 with 8 clusters is
0.63 whereas PAM clustering with different MI distance functions shows values
between 0.341 and 0.41 (cf. Figure 2(b)). Finally, the values of average entropy
observed by the MI-EM results are considerably lower than those of PAM on
HD, mHD and SMD. The lower values of average entropy imply a lower level of
impurity in the cluster structures detected by applying MI-EM.

To summarize, the values of the different quality measures observed on real
world data sets when varying the number of clusters show that the proposed EM-
based approach for cluster analysis of MI-objects outperforms the considered
competitors w.r.t. effectiveness.

6 Conclusions

In this paper, we described an approach for statistical clustering of MI objects.
Our approach models instances as members of concepts in some underlying fea-
ture space. Each concept is modeled by a statistical process in this feature space,
e.g. a Gaussian. A multi-instance object can now be considered as the result of
selecting several times a concept and generating an instance with the corre-
sponding process. Clusters of multi-instance objects can now be described as
multinomial distributions over the concepts. In other words, different clusters
are described by having different probabilities for the underlying concepts. An
additional aspect is the length of the MI object. To derive MI clusters corre-
sponding to this model, we introduce a three step approach. In the first step we
derive a mixture model describing concepts in the instance space. The second
step finds a good initialization for the target distribution by subsuming each MI
object by a so-called confidence summary vector (csv) and afterwards cluster-
ing these csvs using the k-means method. In the final, step we employ a final
EM clustering step optimizing the distribution for each cluster of MI objects.
To evaluate our method, we compared our clustering approach to clustering MI
objects with the k-medoid clustering algorithm PAM for 3 different similarity
measures. The results demonstrate that the found clustering model offers better
cluster qualities w.r.t. to the provided reference clusterings.
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Abstract. Mining high dimensional data is an urgent problem of great practical 
importance. Although some data mining models such as frequent patterns and 
clusters have been proven to be very successful for analyzing very large data 
sets, they have some limitations. Frequent patterns are inadequate to describe 
the quantitative correlations among nominal members. Traditional cluster 
models ignore distances of some pairs of members, so a pair of members in one 
big cluster may be far away. As a combination and complementary of both 
techniques, we propose the Maximal-Correlated-Member-Cluster (MCMC) 
model in this paper. The MCMC model is based on a statistical measure 
reflecting the relationship of nominal variables, and every pair of members in 
one cluster satisfy unified constraints. Moreover, in order to improve 
algorithm’s efficiency, we introduce pruning techniques to reduce the search 
space. In the first phase, a Tri-correlation inequation is used to eliminate 
unrelated member pairs, and in the second phase, an Inverse-Order-
Enumeration-Tree (IOET) method is designed to share common computations. 
Experiments over both synthetic datasets and real life datasets are performed to 
examine our algorithm’s performance. The results show that our algorithm has 
much higher efficiency than the naïve algorithm, and this model can discover 
meaningful correlated patterns in high dimensional database. 

1   Introduction 

Information system generates a lot of data in different industries, such as 
manufacturing, retail, financial services, transportation, telecommunication, utilities, 
and healthcare. Many of these historical data are high dimensional data, which have a 
large number of dimensions. There are needs to analyze and mine these high 
dimensional data to find patterns, general trends and anomalies for many applications. 
But the curse of dimensionality makes many existing data mining algorithms become 

*  This work is Supported by the National Natural Science Foundation of China under Grant 
No.60473072 and Grant No. 60473051. 
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computationally intractable and therefore inapplicable in many real applications. In 
this paper, we try to design a novel model to mine correlated member clusters in the 
high dimensional database environment. 

We use an example to explain some concepts. 

Example: Analysis of economic data. 
We will analyze Chinese industrial production statistical data. The data is 

organized in a multidimensional database that has 3 dimensions: Product, City, and 
Month, and 1 measure: Production. The measure is the total production amount for 
(Product, City, Month). 

 

Fig. 1. Original production 
series 

Fig. 2. Correlated product 
series 

Fig. 3. Correlated city series 

Fig1 plots the production series of 8 products (computer, tobacco, office-machine, 
etc.) in different cities (BeiJing, TianJin, ShangHai, etc.). Among these series, some 
of them are correlated. Two correlated product series (Computer and Office Machine) 
are shown in Fig2, and correlated city series (BeiJing, ShangHai, and TianJin) are 
shown in Fig3. These correlated series exhibit similar patterns. The curve goes up as 
its correlated series increases, and it goes down as its correlated series decreases. 

As we have seen, some products or cities may have correlated patterns. Their 
production levels rise and fall coherently under a subset of conditions, that is, they 
exhibit fluctuation of a similar shape when conditions change. Discovering these 
correlated products or cities is helpful for us to perform more intensive research work. 
The question is how to find such correlated patterns among a great number of series. 

Pearson’s coefficient is a statistical measure that represents the degree of linear 
correlation between variable vectors, which is used in many kinds of applications. In 
this example, we use Pearson’s coefficient to define the similarity of datasets 
corresponding to members . 

Our work is first related to correlation mining. Correlation analysis and mining has 
played an important role in data mining applications. A common data-mining task is 
the search for associations of item sets in a database of transactions. There have been 
many works about association relations, since Agrawal et al. proposed association 
rule mining [1]. The works in first category are about fast algorithms for association 
rule mining, such as Apriori algorithm to generate frequent item sets [2] and frequent-
pattern tree approach to mine frequent patterns without generating candidate item sets 
[4]. The works in the second category adopt other interesting measure to mine 
association rules of specific interest, or employ artful methods to reduce the number 
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of rules. These works include constraint-based association pattern mining [8] [10], 
frequent closed patterns [11], maximal frequent patterns [3], and condensed frequent 
pattern base [7]. In nature, association rules generated by frequent item sets represents 
the relationships of concurrence in historical transactions. It reflects the relationships 
of binary variables, but doesn’t describe relationships among nominal variables. 

In the second place, our work is related to pair-wise clustering models based on 
pattern similarity. In paper [9], Wang et al. defined the similarity of objects by pscore,
and proposed the p-cluster model to discover clusters that exhibited similarity of 
patterns. Because pscore only considered strict shifting patterns or strict scaling 
patterns, Liu et al. [6] designed a more flexible op-cluster model to find patterns that 
preserved orders in attributes. Paper [5] chose Pearson’s correlation coefficient as a 
coherence measure to mine coherent patterns in the GST(Gene-Sample-Time) micro-
array data. All these models calculate the similarity of every pair of members. The 
weak is that these algorithms have low efficiency for high dimensional data. 

Given m objects, pair-wise clustering models calculate Pearson’s coefficients for 

all
2

)1*(2 −= mm
mC  pairs of objects. In this paper, as an optimizing technique, we prove a 

Tri-correlation inequation and design a heuristic approach to prune the unrelated 
member pairs. 

Generating Maximal-Correlated-Member-Cluster (MCMC) algorithm is similar to 
Max-miner [3] that uses a set-enumeration tree algorithm to mine maximal frequent 
item sets. In Max-miner, the maximal height of set-enumeration tree is m, and the 
maximal number of tree branches is O(2m). Ordinary set-enumeration tree is infeasible 
for high dimensional data. Instead, we design an Inverse-Order-Enumeration-Tree 
(IOET) algorithm, in which the tails of MCMC are generated first, and then the heads 
are added to them. Two advantages will benefit the IOET algorithm. The first one is 
that we start from a small member set and then expand it. The second one is that 
redundant sub branches can be detected and pruned as soon as possible. 

In summary, our work has the following contributions. 

1. This paper proposes a MCMC model to mine correlated member sets  from high 
dimensional database. MCMC model borrows Pearson’s Correlation coefficient as 
the similarity measure of members, which is applicable to not only binary variables, 
but also nominal variables. 

2. In order to compute correlated member pairs efficiently, we prove a tri-
correlation inequation (Lemma2) in theory, which can be used to prune a lot of 
unrelated member pairs without calculating their coefficients. 

3. We design an IOET algorithm to generate complete MCMCs from correlated 
member pairs. Compared to the set-enumeration tree algorithm in Max-Miner, IOET 
algorithm will reduce the search space dramatically. 

The rest of the paper is organized as the following. Section 2 describes our model 
and gives some relative definitions. Algorithms are explained in section 3. Section 4 
presents our experiment results. Section 5 summarizes our work. 
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2   Problem Description and Formulation 

In statistics, a measure of correlation is a numerical grade, which describes the degree 
of a relationship among variables. Support of frequent item sets and Jaccard 
coefficient are measures for binary variables. Kendall’s Tau and Spearman’s Rank 
Correlation Coefficient represents relationships among ordinal variables. Pearson’s 
Correlation Coefficient measures relationships among nominal variables. 

2.1   Pearson’s Correlation Coefficient and Its Property 

Pearson’s coefficient describes the linear relationship between two variables. Given 
two vectors X=(x1, x2, … , xn), Y=(y1, y2, …, yn), their Pearson’s coefficient is: 
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Lemma 1 (Linear invariability): given two variable series X=(x1, x2, … , xn), Y=(y1, 
y2, …, yn) and any nonzero constants k1, k2, k1X=(k1x1, k1x2, … , k1xn ), k2Y=(k2y1, k2y2, 
…, k2yn), we have r(k1X,k2Y)=r(X,Y). 

Proof: obvious. 
 
Lemma 2 (Tri-correlation inequation): given variable series X=(x1, x2, … , xn), 
Y=(y1, y2, …, yn), and Z=(z1, z2, … , zn), for any 0< 1, if r(x, y) , r(x, z) , we have 
r(y, z) 2 2-1. 

Proof: We transform variable series X=(x1, x2, … , xn), Y=(y1, y2, …, yn), and Z=(z1, 

z2, … , zn) to new variable series X’=(x1- x , x2- x , … , xn- x ), Y’=(y1- y , y2- y , … , 

yn- y ), and Z’=(z1- z , z2- z , … , zn- z ). For the purpose of simplicity, we won’t 
distinguish X, Y, and Z from X’, Y’ and Z’.  

For any number x, y, z, w1, w2, and w3, we have 
(w1x-w2y-w3z)2= (w1x)2-2w1w2xy-2w1w3xz+2w2w3yz+(w2y)2+(w3z)2  0. 
2w2w3yz  2w1w2xy+2w1w3xz-(w1x)2-(w2y)2-(w3z)2. 
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, because r(x, y) , r(x, z) , we have 
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Let k=2 , r(y, z) 2 2-1.  
So the lemma is proven.  
 
 

2.2   Correlated Member Clusters 

Let A ={A1, A2, . . . , Am}be a set of attributes, and a database DB is a m*n relational 
table DB= { R1, R2, . . . , Rn }, where Ri(i [1 . . n]) is a record (row), which contains 
a set of values in attributes, Ri=(ai1,ai2,…, aim), aij Domain(Aj). Database DB can 
also be viewed as a set of columns DB={ A1, A2, . . . , Am }, where Aj(j [1 . . m]) is a 
value series for attribute Aj in records (column),Aj=(a1j,a2j,…, anj). Members may be 
rows or columns depending on the analyzer’s view. In this paper, we choose columns 
as members, and rows as features of members. 

Given a user-specified minimum correlation threshold and a database with m 
members and n features, DB={A1 ,A2, . . . , Am}, the member set is A={A1, A2, . . . , 
Am}, we define the following terminologies. 

Definition 1: Correlated-Member-Pair (CMP) 
A member pair P={As, At} AP ⊆  is a Correlated-Member-Pair, if their Pearson’s 

coefficient is above the threshold , r(As, At) . 

Definition 2: Correlated-Member-Cluster (CMC) 
A member set K={Ap, …, Aq} AK⊆  is a Correlated-Member-Cluster, if 

KtA,KsA ∈∈∀ , their Pearson’s coefficient is above the threshold , r(As, At) . 

Definition 3: Maximal-Correlated-Member-Cluster (MCMC) 
If a member set J={Au, …, Av} AJ ⊆  is a Correlated-Member-Cluster, and for its 

any super set S ASJ ⊆⊂ , S is not a Correlated-Member-Cluster, J is a Maximal-
Correlated-Member-Cluster. 

From the definitions, we have the following facts: 
(1) A member pair {As, As} that is represented by {As} is a trivial CMP. In this 

paper we won’t consider these trivial CMP. 
(2) A CMP is also a CMC. 
(3) The MCMC is a concise representation of many CMC. For a t-member 

MCMC, it contains 2t-1 different sub CMC. 

Problem definition: 
Given a user-specified minimum correlation threshold , the problem is to mine all 
MCMCs with correlations above predefined threshold from database DB. 

3   MCMC Algorithms 

In this section, we present the algorithm to mine the complete MCMCs from 
databases. It’s a two-phase method. In the first phase, procedure Calculate-CMP() 
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calculates Pearson’s coefficient for member pairs one by one and gets all CMP. The 
members are sorted by the number of their correlated members in descending order. 
In the second phase, according to the result members’ order, procedure Construct-
MCMC-Tree() constructs a MCMC-Tree in an inverse order, and then travel the 
MCMC-Tree to generate the complete MCMCs. 

3.1   Calculate Correlated Member Pairs 

Procedure Calculate-CMP() scans database and calculates Pearson’s coefficient for 
member pairs. The processing order of members in the member set A={A1, A2, ..., 
Am} is originally defined to be A1-A2- . . . - Am. Member A1 is first processed, and the 
Pearson’s coefficients of pairs, (A1, A2), …, (A1, Am) are calculated. Given a user 
defined threshold , we partition the set {A2, A3, …, Am} into 3 groups G1, G2, and G3 
by rule (2).  

For any member Ap being processed currently,  

If r(Ap,Ai) , Ai G1;  
if >r(Ap,Ai) 2 2-1, or (Ap,Ai)  is marked unrelated , Ai G2;  
if 2 2-1>r(Ap,Ai), Ai G3.                                                                                                                    (2) 

Member Ap
’s correlated members are in group G1. According to Lemma2, for any 

member in G1, members in group G3 are its unrelated members. We mark member 
pairs in G1XG3 as unrelated pairs to indicate that it’s unnecessary to calculate their 
coefficients in the following steps.  This technique will prune some member pairs.  

We process members A1, A2, ..., Am one by one. 
For each member Ai A, its possible correlated member set is S(Ai). Card(S(Ai)) is 

the number of members in set S(Ai). We sort members of set A={A1, A2, ..., Am} in 
descending order according to Card(S(Ai)). A* is the sorted member set, which 
defines the member’s order that we will follow in the procedure of Construct-MCMC-
Tree(). Members in S(Ai) are sorted in the same order, and S(Ai) contains members 
correlated to the member Ai. Only members after Ai are included in S(Ai), while 
others before Ai are eliminated. 

 
 
 
1 
2 
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4 
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Procedure Calculate-CMP() 
Input: database DB, threshold ;; 
Output: sorted member set A*, S(A1), …, S(Am); 
{A={A1,A2,...,Am}; 
For i=1 to m do 
{find possible corr member pairs (A[i],At) and put it to CS; 
   Scan database(DB); 
   Calculate r(A[i],At) for pairs in CS using formula (1); 
   Partition set {A[i+1],…,A[m]} to G1,G2,and G3 by rule (2); 
   Mark member pair (Aj,Ak) G1XG3 as unrelated; 
   For each member As in G1 {S(Ai)=S(Ai) {As}; S(As)=S(As) {A1};} 
} 
A*=sort(A); /*in descending order according to card(S(Ai))*/ 
For each member Ai in A* do 
{ sort S(Ai) according to the order of A*; 
  delete members before Ai from S(Ai); 
} 
} 

3.2   IOET Algorithm 

A CMC is a member set, and in the given members’ order, it can be represented by a 
sequence. For an example, the member set {b,c,g,h} is a CMC, and its sequence is 
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={bcgh}. The sequence can be divided to two parts: head and tail. Its head part 
head( )={b}, and its tail part tail( )={cgf}. We enumerate all MCMCs by their heads 
in a Maximal-Correlated-Member-Cluster-Tree (MCMC-Tree).  

Definition 4: Maximal-Correlated-Member-Cluster-Tree (MCMC-Tree) 
Given a member set A={A1, A2, . . . , Am}, a MCMC-Tree is a 3 levels tree. Nodes 

in different levels are defined as the following: 

(1) In level-1, there’s only one {root} node that has pointers to level-2 nodes.  
(2) In level-2, nodes are indexed by members in set A. Each member Ai refers to a 

node Node(Ai). Node(Ai) contains all possible members correlated with Ai. 
Node(Ai).content=S(Ai). Node(Ai).index=Ai. There are m nodes in level-2. 

(3) In level-3, nodes are indexed by members as the same as their fathers’ indexies.  
Node(At) contains Local-MCMC sequences { 1,… k}, head( i)= At, and i 
is a Local-MCMC in sub set {At, …, Am}. 

 
Constructing MCMC-Tree 
In procedure Calculate-CMP(), we get the possible correlated members set S(Ai) for 
each member Ai. S(Ai) contains  the possible members that immediately follows Ai in 
the MCMC sequence. We can use S(Ai) to expand MCMC sequence headed by Ai. 
Similar works in paper [3] proposed a set-enumeration tree technique to expand sets 
over an ordered and finite member domain. It appends possible suffix one by one 
from a head to get the maximal sets. Noted that the max number of combinations is 
2m-1 in worst, it will be expensive for a big m. This technique isn’t applicable to high 
dimensional data. Here, we design an Inverse-Order-Enumeration-Tree (IOET) 
algorithm to construct the MCMC-Tree and get the complete MCMC. 

The output of procedure Calculate-CMP() A* defines the members sequential 
order, which is the order of MCMC sequences, and set S(Ai) is also sorted  by this 
order. For the expression simplicity, the members order in A* is assumed to be A1-A2- 
. . . - Am. In the MCMC-Tree, nodes in level-2 are constructed in the same order. 
When we construct nodes in level-3, we won’t follow the order A1-A2- . . . - Am, but 
in an inverse order Am-Am-1- . . . – A1. We generate Local-MCMCs headed by Am, Am-

1, . . ., A1 one by one. The advantage of inverse order algorithm is that when we 
generate a Local-MCMC  headed by Ai, tail( ) are already calculated. 

We use an example to illustrate the MCMC-Tree construction procedure. 
A sorted member set is A={a,b,c,d,e,f,g,h}. Inverse order set A*={h,g,f,e,d,c,b,a}. 

Table 1. 

Member (Head) Correlated members Local-MCMC 
{h} Null {h} 
{g} Null {g} 
{f} {g,h} {fg, fh} 
{e} {f,g,h} {efg, efh, eg, eh} 
{d} {e,f,g} {defg, dfg, dg} 
{c} {e,f} {cef, cf} 
{b} {c,d,f,g} {bcf, bdfg, bfg, bg} 
{a} {b,d,f,h} {abf, abdf, adf, afh, ah} 



156 L. Jiang et al. 

Considering member b as an example, S(b)={c,d,f,g}, when we construct node(b) 
in level-3, all Local-MCMC headed by {c}, {d}, {f}, {g} are already generated. In 
order to generate MCMC sequences  headed by {b}, tails of  are: 
S(b) {c}.content={cf}, S(b) {d}.content={dfg}, S(b) {f}.content={fg}, and 
S(b) {g}.content={g}. Finally, we get {bcf,bdfg,bfg,bg} after we add {b} as the 
head. Sequences {bfg, bg} are eliminated, because they are subsequence of {bdfg}. 

After we generate all nodes in level-3, we travel these nodes in ordinary order, and 
output MCMC. Local-MCMC that is a subset of MCMC is eliminated, such as {h},
{g}, {fg, fh} etc. 

1
2
3
4
5
6
7
8
9
10
11
12
13
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21 

Procedure Construct-MCMC-Tree() 
Input: ordered member set A*, S(A1), …, S(Am); 
Output: all MCMC; 
{ MCMC-Tree={root};  
  For i=1 to m do /*generate level-2 nodes*/ 
  { K.index=A*[i]; K.content=S(A*[i]);Insert(K, CMC-Tree);} 
  For each Node K in level-2 do /*by inverse order*/ 
  { create empty node T; T.index=K.index; 
    For each member B in K.content do 
    { find node L in level-3 that L.index=B; 
      For each seq in L.content do 
      { seq1=Sequence(S(T.index)•Set(Set(seq)); 
        seq2=Catenate(T.index,seq1); 
        Append(T.content,seq2); 
      } 
    } 
    For each seq in T.content do 
      If (seq isn’t Local-MCMC) {elminate seq}; 
    Insert(T,K); 
  } 
  For each Node K in level-3 do /*K.index in Ordinary order*/ 
    For each seq in K.content do 
      If (seq is a MCMC) {output seq}; 
} 

4   Experiments and Analysis 

We implement the algorithm in Microsoft visual c++ 6.0 on the windows2000 
platform with a 1.7 GHz CPU and 512 MB main memory. First, we generate the 
synthetic data sets in tabular forms. A data set is a relational table that has m columns 
(members) and n rows (records). In order to evaluate the performance of the 
algorithm, we test the algorithm on these synthetic data sets as we change numbers m,
n, and user predefined threshold .

As the main algorithm contains 2 major subroutines Calculate-CMP() and 
Construct-MCMC-Tree(), we will examine their performance separately. 

Performance of procedure Calculate-CMP() 
For procedure Calculate-CMP() and the original algorithm without pruning, Fig4a 
illustrates the CPU time cost when the number of columns increases from 100 to 10k, 
and Fig4b shows the CPU time cost when the number of rows increases from 200 to 
10k. Form experiment results, we can see that procedure Calculate-CMP() 
outperforms the original algorithm, and has a good scalability with the number of 
columns and rows. 
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Fig. 4a.  Fig. 4b. Fig. 4c. 

Fig4c shows the percentage of unrelated member pairs being pruned for different 
user predefined threshold . We can see that about 80% member pairs are pruned 

when =0.9. The percentage is defined to be: 2
mC

ber pairspruned memnumber of 
. 

Performance of procedure Construct-MCMC-Tree() 
Fig5a compares the CPU time cost of IOET algorithm with the original enumeration-
tree algorithm. Using the original algorithm, the CPU time cost rises rapidly when the 
number of columns is above 100. Because the time cost of enumeration-tree algorithm 
is (2m) in nature, m is quite a bottleneck for such algorithms. However, the IOET 
algorithm shows extraordinary scalability when the number members over 1k. Fig5b 
displays the number of MCMCs generated when the number of columns increases. 
We notice that the number of result MCMCs is in a reasonable range (about 1400 
when m=9k and =0.7). 

 

Fig. 5a. Fig. 5b. Fig. 5c. 

Although there’re not other works exactly as the same as ours, we compare the 
IOET algorithm with the traditional enumeration-tree algorithm. Works in [5][3][9] 
use the similar enumeration-tree algorithms, and we notice that the column number of 
data set in their experiments is about 100. Our experiment tests IOET algorithm on 
data sets of 1k-9k columns. In our experiments, there are a quite large number of 
eliminated sub CMCs (more than 8M in Fig5c), and IOET cut these branches in 
search space as soon as possible in order to prevent them from growing exponentially. 
It will help to explain the reason that IOET has an excellent performance. 
 
Experiment on real life data set 
Back to the example, we experiment on economic data set that has 99 columns and 29 
rows. The results are shown below. Tab2 illustrates the effectiveness of our pruning 
techniques. 
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Table 2. 

Pruned
Member pairs

Number of
Pruned CMC

Number of
MCMC

Max length of
MCMC

0.7 1877 1343 28 26

0.8 2914 569 10 18

0.9 3665 562 16 18
 

 

 

Fig. 6a.  

 

Fig. 6b. 

Fig6a plots a result MCMC series that include 18 members, and Fig6b plots 
another result MCMC series that include 8 members. It is clear that correlated 
members in a MCMC exhibit similar trend patterns, while different MCMCs show 
different patterns. 

5   Conclusion 

Correlation mining has been studied widely and intensively since association rule 
mining was first proposed in 1993, and now it attracts more attentions than ever time 
before. Another useful tool for similarity search, pattern recognition, and trend 
analysis is clustering model, which defines closeness of nominal variables by distance 
(Minkowski, Manhattan or Euclidean) or similarity (cosine) measures. In this paper, 
we propose the MCMC model for the first time to find correlated member clusters 
based on a statistical measure. This extended model will discover patterns of rise and 
fall among data series, which will benefit a lot of applications.  

Mining MCMCs from high dimensional database is an interesting and challenging 
problem. Just as the Frequent Item Set model and the pair-wise cluster model based 
on pattern similarity, the MCMC model considers all combinations of members. Its 
computational complexity problem is getting worse than traditional clustering models. 
For this reason, we design optimizing algorithms to make the MCMC model be 
applicable to high dimensional data (more than 1k members). 

Discovering MCMCs is the first stage of data analyzing. From MCMCs, we will 
deduce the hierarchy of members naturally. Then we will employ other methods to 
inspect those correlated data intensively to find trends or anomalies. Generally, the 
MCMC model is a very useful tool in correlation mining, and can be used in a wide 
range of applications. 
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Abstract. In this paper a novel optimization model for bilevel hierar-
chical clustering has been proposed. This is a hard nonconvex, nons-
mooth optimization problem for which we investigate an efficient tech-
nique based on DC (Difference of Convex functions) programming and
DCA (DC optimization Algorithm). Preliminary numerical results on
some artificial and real-world databases show the efficiency and the su-
periority of this approach with respect to related existing methods.

Keywords: nonconvexe optimization, nonsmooth optimization, DC pro-
gramming, DCA, Bilevel hierarchical clustering, K-means.

1 Introduction

Multilevel hierarchical clustering consists of grouping data objects into a hi-
erarchy of clusters. It has a long history (see e.g. [2], [5], [15]) and has many
important applications in various domains, since many kinds of data, includ-
ing observational data collected in the human and biological sciences, have a
hierarchical, nested, or clustered structure. Hierarchical clustering algorithms
are useful to determine hierarchical multicast trees in the network topology
identification, Grid computing using in e-Science, e-Medicine or e-Commerce,
Multimedia conferencing, Large-scale dissemination of timely information, ...

A hierarchical clustering of a set of objects can be described as a tree, in which
the leaves are precisely the objects to be clustered. A hierarchical clustering
scheme produces a sequence of clusterings in which each clustering is nested into
the next clustering in the sequence. Standard existing methods for Multilevel
hierarchical clustering are often based upon nonhierarchical clustering algorithms
coupled with several iterative control strategies to repeatedly modify an initial
clustering (reordering, and reclustering) in search of a better one.

To our knowledge, while mathematical programming is widely used for non-
hierarchical clustering problems there exist a few optimization models and tech-
niques for multilevel hierarchical clustering ones. Except the work in [14] we
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have not found other approaches using mathematical programming model for
multilevel hierarchical clustering.

In this paper we investigate an efficient optimization approach for a model of
this class, that is bilevel hierarchical clustering. The problem can be stated as
follows. Given a set A of p objects A : = {aj ∈ IRn : j = 1, ..., p}, a measured
distance, and an integer k. We are to choose k + 1 members in A, one as the
total centre (the root of the tree) and others as centres of k disjoint clusters, and
assign other members of A to their closest centre. The total centre is defined as
the closest object to all centres (in the sense that the sum of distances between
it and all centres is the smallest).

Our approach is based on mathematical optimization via DC (Difference of
Convex functions) programming - which deals with DC programs, i.e., the min-
imization of a DC function over a convex set - and DC optimization Algorithm
called DCA. They were introduced by Pham Dinh Tao in their preliminary form
in 1986 and have been extensively developed since 1994 by Le Thi Hoai An and
Pham Dinh Tao to become now classic and more and more popular (see e.g. [7],
[8] - [12], [16], [17] and references therein ). DCA has been successfully applied
to many large-scale (smooth or nonsmooth) nonconvex programs in various do-
mains of applied sciences, in particular in data analysis and data mining ([1],
[6], [11], [19], [20]), for which it provides very often a global solution and proves
to be more robust and efficient than standard methods.

We propose in this work a new optimization formulation that seems to be
appropriate for hierarchical clustering. This is a nonsmooth, nonconvex prob-
lem and can be reformulated as a DC program which we then suggested using
DC programming approach and DCA to solve. Preliminary numerical results
on some artificial and real-world databases demonstrate that the proposed al-
gorithm is very promising and more efficient than some existing optimization
based clustering algorithms.

The paper is organized as follows. Section 2 introduces a novel optimization
model for the bilevel hierarchical clustering problem. Section 3 deals with DC
programming and DCA for solving the underlying bilevel hierarchical clustering
problem. For the reader’s convenience, at the beginning of this section we provide
a brief introduction to DC programming and DCA. Computational results are
reported in the last section.

2 Optimization Formulation

In [14] the authors have proposed two nonsmooth, nonconvex optimization mod-
els for the bilevel hierarchical clustering problem in the context of determining
a multicast group. They considered the set A as the set of p nodes in the plane,
and the measured distance is the Euclidean distance. The disadvantages of their
models are the following:

– first, the total centre is determined according to other centres - this is not
natural for bilevel clustering;
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– second, in their approach using the artificial centres the constraints do not
ensure that the total centre is in the set A;

– third, these problems can be formulated as DC programs, but it is not suit-
able for the search of resulting DCA in explicit form.

In this work we introduce a novel model that seems to be more appropri-
ate: we search simultaneously the total centre and other centres. Moreover, by
considering the squared Euclidean distance as the measured distance we get a
DC program for which DCA is explicitly determined and very inexpensive.

Denoting by xi, i = 1, . . . , k the centre of clusters in the second level and xk+1

the total centre we can formulate the problem in the form

min

⎧⎨⎩
p∑

j=1

min
i=1...k

‖xi − aj‖2 +
k∑

i=1

‖xk+1 − xi‖2 s.t.
k+1∑
i=1

min
j=1...p

‖xi − aj‖2 =0

⎫⎬⎭.

(1)
The objective function containing the two terms is nonsmooth and nonconvex.
The first term is a cluster function while the second term presents the distance
between the total centre and the other centres. The constraint ensures that all
centres are in the set A. The advantage of this formulation is that all centres are
found in the same time.

This is a hard constrained global optimization problem. Using penalty tech-
nique in DC programming ([8], [12]) leads us to the more tractable unconstrained
nonsmooth nonconvex optimization problem (τ > 0 is the penalty parameter):

min

⎧⎨⎩1
2

p∑
j=1

min
i=1..k

‖xi − aj‖2 +
1
2

k∑
i=1

‖xk+1 − xi‖2

+
τ

2

k+1∑
i=1

min
j=1...p

‖xi − aj‖2 s.t. xi ∈ IRn

}
. (2)

We will prove in Section 3 that this problem can be reformulated as a DC
program and show how to use DCA for solving it.

3 DC Programming and DCA for Bilevel Hierarchical
Clustering

3.1 A Brief Presentation of DC Programming and DCA

To give the reader an easy understanding of the theory of DC programming
& DCA and our motivation to use them for solving Problem (2) , we briefly
outline these tools in this section. Let Γ0(IRn) denote the convex cone of all
lower semicontinuous proper convex functions on IRn. The vector space of DC
functions, DC(IRn) = Γ0(IRn) − Γ0(IRn), is quite large to contain almost real
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life objective functions and is closed under all the operations usually considered
in optimization.

Consider the general DC program

α = inf{f(x) := g(x)− h(x) : x ∈ IRn} (Pdc)

with g, h ∈ Γ0 (IRn). Such a function f is called DC function, and g − h, DC
decomposition of f while the convex functions g and h are DC components of f.

If g or h are polyhedral convex functions then (Pdc) is called a polyhedral DC
program.

It should be noted that a constrained DC program whose feasible set C is
convex can always be transformed into an unconstrained DC program by adding
the indicator function χC of C (χC (x) = 0 if x ∈ C,+∞ otherwise) to the first
DC component g.

Let
g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRn}

be the conjugate function of g. By using the fact that every function h ∈ Γ0(IRn)
is characterized as a pointwise supremum of a collection of affine functions, say

h(x) := sup{〈x, y〉 − h∗(y) : y ∈ IRn},
we have

α = inf
x∈IRn

{g(x)− sup
y∈IRn

{〈x, y〉 − h∗(y)}} = inf{α(y) : y ∈ IRn}

with α(y) := infx∈IRn{g(x)− [〈x, y〉 − h∗(y)]} (Py).
It is clear that (Py) is a convex program and

α(y) = h∗(y)− g∗(y) if y ∈ dom h∗,+∞ otherwise.

Finally we state the dual program of (Pdc)

α = inf{h∗(y)− g∗(y) : y ∈ dom h∗}
that is written, in virtue of the natural convention in DC programming, say
+∞ = +∞− (+∞):

α = inf{h∗(y)− g∗(y) : y ∈ Y }. (Ddc)

We observe the perfect symmetry between primal and dual DC programs: the
dual to (Ddc) is exactly (Pdc).

DC programming investigates the structure of the vector space DC(IRn),
DC duality and optimality conditions for DC programs. The complexity of DC
programs resides, of course, in the lack of practical optimal globality conditions.
We developed instead the following necessary local optimality conditions for DC
programs in their primal part, by symmetry their dual part is trivial (see [8] -
[12], [16], [17] and references therein):
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∂h(x∗) ∩ ∂g(x∗) 	= ∅ (3)

(such a point x∗ is called critical point of g − h or for (Pdc)), and

∅ 	= ∂h(x∗) ⊂ ∂g(x∗). (4)

The condition (4) is also sufficient for many classes of DC programs. In particular
it is sufficient for the next cases quite often encountered in practice:

– In polyhedral DC programs with h being a polyhedral convex function (see
[8] - [12], [16], [17] and references therein). In this case, if h is differentiable
at a critical point x∗, then x∗ is actually a local minimizer for (Pdc). Since
a convex function is differentiable everywhere except for a set of measure
zero, one can say that a critical point x∗ is almost always a local minimizer
for (Pdc).

– In case the function f is locally convex at x∗ ([10], [12]).

Based on local optimality conditions and duality in DC programming, the
DCA consists in the construction of two sequences {xk} and {yk}, candidates
to be optimal solutions of primal and dual programs respectively, such that the
sequences {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)} are decreasing, and {xk} (resp.
{yk}) converges to a primal feasible solution x̃ (resp. a dual feasible solution ỹ)
verifying local optimality conditions and

x̃ ∈ ∂g∗(ỹ), ỹ ∈ ∂h(x̃). (5)

These two sequences {xk} and {yk} are determined in the way that xk+1 (resp.
yk) is a solution to the convex program (Pk) (resp. (Dk)) defined by

inf
x∈IRn

{g(x)− h(xk)− 〈x− xk, yk〉} (Pk)

inf
y∈IRn

{h∗(y)− g∗(yk−1)− 〈y − yk−1, xk〉} (Dk).

The interpretation of DCA is simple: at each iteration one replaces in the
primal DC program (Pdc) the second component h by its affine minorization
hk(x) := h(xk) + 〈x − xk, yk〉 at a neighbourhood of xk to give birth to the
convex program (Pk) whose the solution set is nothing but ∂g∗(yk). Likewise,
the second DC component g∗ of the dual DC program (Ddc) is replaced by its
affine minorization (g∗)k(y) := g∗(yk) + 〈y − yk, xk+1〉 at a neighbourhood of
yk to obtain the convex program (Dk) whose ∂h(xk+1) is the solution set. DCA
performs so a double linearization with the help of the subgradients of h and g∗

and the DCA then yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk). (6)

First of all, it is worth noting that our works involve the convex DC components g
and h but not the DC function f itself. Moreover, a DC function f has infinitely
many DC decompositions which have crucial impacts on the qualities (speed of
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convergence, robustness, efficiency, globality of computed solutions,...) of DCA.
For a given DC program, the choice of optimal DC decompositions is still open.
Of course, this depends strongly on the very specific structure of the problem
being considered. In order to tackle the large scale setting, one tries in practice
to choose g and h such that sequences {xk} and {yk} can be easily calculated,
i.e. either they are in explicit form or their computations are inexpensive.

It is proved in [8] - [12], [16], [17]) that DCA is a descent method without
linesearch which enjoys the following properties:

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing.
ii) If the optimal value α of problem (Pdc) is finite and the infinite sequences
{xk} and {yk} are bounded, then every limit point x̃ (resp. ỹ) of the sequence
{xk} (resp. {yk}) is a critical point of g − h (resp. h∗ − g∗).

iii) DCA has a linear convergence for general DC programs.
iv) DCA has a finite convergence for polyhedral DC programs.

For a complete study of DC programming and DCA the redear is referred
to [7], [8] - [12], [16], [17] and references therein. The solution of a nonconvex
program by DCA must be composed of two stages: the search of an appropriate
DC decomposition and that of a good initial point. We shall apply all these DC
enhancement features to solve problem (2) in its equivalent DC program given
in the next.

3.2 Solving Problem (2) by DCA

To simplify related computations in DCA for solving problem (2) we will work
on the vector space IR(k+1)×n of ((k + 1) × n) real matrices. The variables are
then X ∈ IR(k+1)×n whose ith row Xi is equal to xi for i = 1, ..., k + 1:

IR(k+1)×n � X ↔ (X1, X2, . . . , Xk+1) ∈ (IRn)k+1, Xi ∈ IRn, (i = 1, .., k + 1).

The Euclidean structure of IR(k+1)×n is defined with the help of the usual scalar
product and its Euclidean norm:

〈X,Y 〉 := Tr(XTY ) =
k∑

i=1

〈Xi, Yi〉, ‖X‖2 :=
k∑

i=1

〈Xi, Xi〉 =
k+1∑
i=1

‖Xi‖2

(Tr denotes the trace of a square matrix). We will reformulate problem (2) as a
DC program in the matrix space IR(k+1)×n and then describe DCA for solving it.

DC Formulation of (2). According to the property

min
i=1,...,k

‖xi − aj‖2 =
k∑

i=1

‖xi − aj‖2 − max
r=1,...,k

i	=r∑
i=1

‖xi − aj‖2
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we can write the objective function of (2), denoted F , as

F (X) =
1
2

p∑
j=1

k∑
i=1

‖Xi−aj‖2−1
2

p∑
j=1

max
i=1..k

k∑
r=1,r 	=i

‖Xr−aj‖2+τ

2

k+1∑
i=1

p∑
j=1

‖Xi−aj‖2

−τ

2

k+1∑
i=1

max
j=1..p

p∑
s=1,s	=j

‖Xi − as‖2 +
1
2

k∑
i=1

‖Xk+1 −Xi‖2

=
τ + 1

2

p∑
j=1

k+1∑
i=1

‖Xi−aj‖2 +
1
2

k∑
i=1

‖Xk+1−Xi‖2

−1
2

p∑
j=1

max
i=1..k

k∑
r=1,r 	=i

‖Xr−aj‖2−τ

2

k+1∑
i=1

max
j=1..p

p∑
s=1,s	=j

‖Xi − as‖2

−1
2

p∑
j=1

‖Xk+1−aj‖2 = G(X)−H(X),

where

G(X) =
τ + 1

2

p∑
j=1

k+1∑
i=1

‖Xi−aj‖2+1
2

k∑
i=1

‖Xk+1−Xi‖2,

H(X) =
1
2

p∑
j=1

max
i=1..k

k∑
r=1,r 	=i

‖Xr−aj‖2+τ

2

k+1∑
i=1

max
j=1..p

p∑
s=1,s	=j

‖Xi−as‖2

+
1
2

p∑
j=1

‖Xk+1−aj‖2. (7)

It is easy to see that G and H are convex functions and then (2) is DC program
in the form

min
{
G(X)−H(X) : X ∈ IR(k+1)×n

}
. (8)

According to Section 3.1, determining the DCA scheme applied to (8) amounts
to computing the two sequences {X(l)} and {Y (l)} in IR(k+1)×n such that

Y (l) ∈ ∂H(X(l)), X(l+1) ∈ ∂G∗(Y (l)).

We shall present below the computation of ∂H(X) and ∂G∗(Y ).

Computing of ∂H(X). We have

∂H(X) = ∂H1(X) + ∂H2(X) + ∂H3(X) (9)

where

H1 :=
p∑

i=1

h1
j , h1

j := max
i=1,...,k

h1
j,i, h1

j,i(X) :=
1
2

k∑
r=1,r 	=i

‖Xr − aj‖2 (10)
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H2 :=
k+1∑
i=1

h2
i , h

2
i := max

j=1,...,p
h2

i,j , h
2
i,j(X) :=

τ

2

p∑
s=1,s	=j

‖Xi − as‖2 ,

H3(X) :=
1
2

p∑
j=1

‖Xk+1 − aj‖2. (11)

The functions h1
j,i are differentiable and

[∇h1
j,i(X)]l = 0 if l ∈ {i, k + 1}, Xl − aj otherwise. (12)

Hence the subdifferential of H1 can be explicitly determined as follows: (co de-
notes the convex hull)

∂H1(X) =
p∑

i=1

∂h1
j(X), ∂h1

j(X) = co{∂h1
j,i(X) : h1

j,i(X) = h1
j(X)}. (13)

Likewise we have

∂H2(X) =
k+1∑
j=1

∂h2
i (X), ∂h2

i (X) = co{∂h2
i,j(X) : h2

i,j(X) = h2
i (X)}, (14)

and the functions h2
i,j are differentiable of which the derivative is computed as

[∇h2
i,j(X)]l = (p− 1)Xl −

p∑
s=1,s	=j

as if l = i, 0 otherwise. (15)

The subdifferential of H2(X) is therefore also explicitly determined.Finally for
H3 we get

[∇H3(X)]l = pXk+1 −
p∑

j=1

aj if l = k + 1, 0 otherwise. (16)

Computing of ∂G∗(X). Let G1 and G2 be the functions defined by

G1(X) :=
τ + 1

2

p∑
j=1

k+1∑
i=1

‖Xi − aj‖2, G2(X) :=
1
2

k∑
i=1

‖Xk+1 −Xi‖2. (17)

Then, according to (7):

G(X) = (τ + 1)G1(X) + G2(X). (18)

Let A(j) ∈ IR(k+1)×n be the matrix whose all rows are equal to aj . We can write
G1 in the form

G1(X) =
1
2

p∑
j=1

k+1∑
i=1

‖Xi − aj‖2 =
1
2

p∑
j=1

‖X −Aj‖2. (19)
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On the other hand we can express G2 as

G2(X) = 1
2

k∑
i=1

‖Xk+1 −Xi‖2 = 1
2

k+1∑
i=1

‖Xk+1 −Xi‖2 = 1
2‖WX‖2, (20)

where W = (wij) ∈ IR(k+1)×(k+1) is the matrix defined by

wij = −1 if i = j, for j = 1, . . . , k, 1 if j = k + 1, for i = 1, . . . , k,
0 otherwise. (21)

The convex function G is then a positive definite quadratic form on IR(k+1)×n

and its gradient is given by

∇G(X)=(τ + 1)
p∑

j=1

(X −Aj) + WTWX=[(τ + 1)pI + WTW ]X − (τ + 1)A

(22)

with A :=
∑p

j=1 A
(j), i.e., Ai =

∑p
j=1 aj , i = 1, ..., k + 1. Since X = ∇G∗(Y )

iff Y = ∇G(X), we get

Y = [(τ+1)pI+WTW ]X−(τ+1)A or [(τ+1)pI+WTW ]X = Y +(τ+1)A.

This permits us to compute explicitly X as follows:

Xi =
Bi + Xk+1

1 + c
for i = 1...k, Xk+1 =

(1 + c)Bk+1 +
k∑

l=1

Bl

(1 + c)(k + c)− k
, (23)

with B = Y + (τ + 1)A and c = (τ + 1)p.
In the matrix space IR(k+1)×n, according to (7), (18), (19) and (20) the DC

program (8) then is minimizing the difference of the simple convex quadratic
function and the nonsmooth convex function. This nice feature is very convenient
for applying DCA, which consists in solving a sequence of approximate convex
quadratic programs whose solutions are explicit.

We can now describe our DCA scheme for solving (2).

Algorithm DCA Initialization.
Let X(0) ∈ IR(k+1)×n and ε > 0 be small enough. Set l = 0.

Repeat

– Compute Y (l) ∈ ∂H(X((l)) with the help of the formulations ((9) - (16));
– Compute X(l+1) ∈ ∂G∗(Y (l)) via (23) ;
– Set l = l + 1

Until
∥∥X(l)−X(l−1)

∥∥ ≤ ε(
∥∥X(l) + 1

∥∥) or
∣∣F (X(l))−F (X(l−1))

∣∣ ≤ ε(
∣∣F (X(l))

+1|).
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Find again the real centres. Let X∗ be the solution obtained by DCA and
let x∗

i = (X∗)i, i = 1, ..., k + 1. Then the real centres xi for i = 1, ..., k + 1
(corresponding to a solution of problem (1) are determined by

xi = argmin {‖x∗
i − aj‖2 : j = 1, ..., p}. (24)

How to find a good initial point for DCA. Finding a good starting point is
important for DCA to reach global solutions. For this, we combine alternatively
the two procedures by exploiting simultaneously the efficiency of DCA and the K-
means algorithm. More precisely, starting with a point X(0) with X

(0)
i randomly

chosen among the points in A we perform one iteration of DCA, namely set
Y (0) ∈ ∂H(X(0)) and Z(1) ∈ ∂G∗(Y (0)), and then improve Z(1) by one iteration
of K-means to obtain X(1). We note that at each iteration DCA returns k + 1
”centres” while K-means return k ”centres” of clusters from which the ”total
centre” is determined via the formula (25) below. This procedure can then be
repeated some times to provide a good initial point for the main DCA as will be
shown in numerical simulations.

The combined DCA - K-means procedure, denoted IP, to find a good initial
point for the main DCA is described as follows:

Procedure IP: let q be a positive integer.
Let X(0) ∈ IRk×n such that X(0)

i is randomly chosen among the points of A.
For t = 0,1, ...,q do

t1. Compute Y (t) by the formulations ((9) - (16)) and X(t+1) by (23);
t2. Assign each point aj ∈ A into the cluster that has the closest centre

X
(t+1)
1 , . . . , X

(t+1)
k . Let πi the cluster of the centre X

(t+1)
i , i = 1, ...k.

t3. For each i ∈ {1, . . . , k} recompute Zi as the centres of the cluster πi:

Zi := arg min

⎧⎨⎩∑
aj∈πi

‖y − aj‖2 : y ∈ IRn

⎫⎬⎭ ,

and set Zk+1 = arg min aj∈A
k∑

i=1

‖Zi − aj‖2.

Update X
(t+1)
i := Zi for i = 1, ...k + 1.

enddo
Ouput: set X(0) := X(q).

We note (from several numerical tests) that the alternative DCA - K-means
procedure is better than the combination of the complete K-means (until the
convergence) and DCA.

4 Numerical Experiments

Our experiments are composed of two sets of data. The first data set is the
geographical locations of 51 North American cities studied in [3], [4], [14] with
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k = 6. Those works consist in investigating the hierarchical clustering algorithms
for multicast group hierarchies. We got this data from the picture included in [3].

In the first numerical experiment we compare our algorithm DCAIP (DCA
with the procedure IP for finding the initial point) with an optimization method
based on K-means algorithm denoted OKM. We take q = 5 in the procedure
IP, ε = 10−6, and τ = 2 (the penalty parameter in (2)).

In OKM we used the code of K-means algorithm which is available on the
web site: “http://www.fas.umonteral.ca/biol/legendre/” for finding the centres
of clusters at the second level. The nearest city to this ”centre” is then taken as
the real centre (xi for i = 1, ..., k) that serves the other cities in the cluster. The
total centre x̄k+1 is determined by the next way:

xk+1 = arg min
j=1,...,p

k∑
i=1

‖xi − aj‖2. (25)

Since the K-means clustering algorithm is a heuristic technique and is influenced
by the choice of initial centres, we have run DCAIP and OKM ten times from
the same initial centres that are randomly chosen from the set . The total costs
given by the algorithms are reported in Table 1 (left). The total cost of the tree
is computed as

k∑
i=1

∑
j∈Ai

‖xi − aj‖+
k∑

i=1

‖xk+1 − xi‖, (26)

where Ai is the cluster with the centre xi for i = 1, . . . , k.
In Table 1 (right) we present the best results given by the algorithms pro-

posed in [3] (KMC) and in [14] (1-km) and DCAIP for this dataset. In [3] the
algorithm KMC has been proposed for multilevel hierarchical clustering where

Table 1. Results for geographical locations, DCAIP and OKM (left), the best result
of DCAIP, OKM, 1-km and KMC (right)

Initial point DCAIP OKM
1 298 318
2 317 320
3 314 357
4 312 318
5 310 368
6 317 320
7 314 320
8 314 318
9 305 334
10 303 318

DCAIP OKM 1-km([14]) KMC ([3])

298 318 308 345
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the hierarchical trees are formed by repeated application of K-means algorithm
at each hierarchical level. The procedure is beginning at the top layer where all
members are partitioned into k clusters. From each of the k clusters found, a
representative member is chosen to act as a server. The top-level servers become
children of the source (the root of the tree). Each cluster is then again decom-
posed using clustering algorithms to form a new layer of sub-clusters, whose
servers become children of the server in the cluster just partitioned. And so on,
until a suitable terminating condition is reached. Some variants of KMC have
been proposed in [4]. We note that KMC is a variant of OKM in which the
K-means algorithm returns the ”Euclidean centre” and the root of the tree is the
Euclidean centre of the six servers.

In [14] the authors have proposed four variants of their optimization algo-
rithms, based on the derivative-free discrete gradient method, for two nonsmooth
nonconvex problems. They have compared their algorithms and the optimization
algorithm based on K-means with the same initial points. The 1-km algorithm (a
version of their optimization algorithm with the initial point given by K-means)
provides the best results among their four variants algorithms.

The best total cost given by DCAIP, OKM and 1-km among ten tests
with different initial points and the one of KMC among two tests (6 distributed
throughout the data set, and 6 in South West) is reported in Table 1 (right).

In the second numerical experiment we use a randomly generated database
with up to 50000 objects in higher dimensional spaces. We first generate k centres
of clusters. The points of each cluster are randomly generated in a circle whose
centre is the centre of this cluster. The numbers of points in clusters are randomly
chosen. In Table 2 (left) we present the total cost given by DCAIP and OKM
with the same initial point.

For testing the efficiency of procedure IP we perform two versions of DCA
with and without procedure IP. We run DCAIP and DCA on ten test prob-

Table 2. Numerical results on the random data, comparison between DCAIP and
OKM (left), DCAIP and DCA (right)

Data DCAIP OKM
(p,n,k)

(100,2,5) 322 330
(500,2,8) 333 348

(1000,8,10) 183 228
(2000, 3, 20) 1965 2391
(5000,5, 10) 3851 4428
(5000, 20, 6) 18244 21612
(10000, 20, 7) 43699 45239
(20000, 30, 12) 107987 119829
(50000, 20, 20) 282099 345553

Data DCAIP DCA
(p , n ,k ) Cost iter CPU Cost iter CPU
(51,2,6) 298 80 0.010 320 75 0.010

(100,2, 5) 322 10 0.010 323 10 0.010
(500, 2, 8) 333 80 0.053 333 82 0.060

(1000, 8, 10) 183 10 0.086 196 12 0.092
(2000, 3, 20) 1965 10 0.1 2024 15 0.16
(5000, 5, 10) 3851 72 0.74 4108 87 0.99
(5000, 20, 6) 18244 46 2,4 19342 50 2.6
(10000, 20, 7) 43699 66 7,80 43879 63 7.8
(20000, 30, 12) 107987 74 37 108124 74 37
(50000, 20, 20) 282099 182 351 289987 189 371
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lems. The results are reported in Table 2 (right). Here ”iter” denotes the number
of iterations of the algorithm and all CPU are computed in seconds.

From numerical experiments we see that DCA is always the best for both
dataset, and it is very inexpensive: it solves problems with large dimension in
a short time. On the other hand, Procedure IP is efficient for finding a good
starting point for DCA.

5 Conclusion

We have proposed, for solving a bilevel clustering problem with the squared Eu-
clidean distance, a new and efficient approach based on DC programming and
DCA. The considered hierarchical clustering problem has been formulated as
a DC program in the suitable matrix space and with a natural choice of DC
decomposition in order to make simpler and so much less expensive the compu-
tations in the resulting DCA. It fortunately turns out that our algorithm DCA
is explicit, and very inexpensive. An interesting procedure that combines DCA
and K-means is introduced for initializing DCA. Preliminary numerical simu-
lations show the robustness, the efficiency and the superiority of our algorithm
with respect to other optimization based clustering algorithms. The efficiency of
our approach comes from two facts:

– The optimization model is appropriate for multilevel clustering : it requires
the search for all centres in the same time;

– The optimization algorithm DCA is very suitable to this model.

The efficiency of DCA suggests to us investigating it in the solution of other
models of bilevel clustering problems as well as the higher level for hierarchical
clustering. Works in these directions are in progress.
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Abstract. When clustering complex objects, there often exist various
feature transformations and thus multiple object representations. To
cluster multi-represented objects, dedicated data mining algorithms have
been shown to achieve improved results. In this paper, we will introduce
combination trees for describing arbitrary semantic relationships which
can be used to extend the hierarchical clustering algorithm OPTICS to
handle multi-represented data objects. To back up the usability of our
proposed method, we present encouraging results on real world data sets.

1 Introduction

In modern data mining applications, there often exists no universal feature repre-
sentation that can be used to express similarity between all possible objects in a
meaningful way. Thus, recent data mining approaches employ multiple represen-
tations to achieve more general results that are based on a variety of aspects. In
this paper, we distinguish two types of representations and show how to combine
sets of representations containing both types using so-called combination trees.
The combination trees are build with respect to domain knowledge and describe
multiple semantics. To employ combination trees for clustering, we introduce a
multi-represented version of the hierarchical density-based clustering algorithm
OPTICS. OPTICS derives so-called cluster orderings and is quite insensitive to
the parameter selection. The introduced version of OPTICS is capable to derive
meaningful cluster hierarchies with respect to an arbitrary combination tree.
The rest of this paper is organized as follows. Section 2 surveys related work. In
Section 3, we define combination trees. Section 4 describes a multi-represented
version of OPTICS which is based on combination trees. In Section 5, we provide
encouraging experimental results.

2 Related Work

In [1] an algorithm for spectral clustering of multi-represented objects is pro-
posed. [2] introduces Expectation Maximization (EM) clustering and agglomer-
ative clustering for multi-represented data. Finally, [3] introduces the framework
of reinforcement clustering, which is applicable to multi-represented objects.

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 174–178, 2006.
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However, these three approaches do not consider any semantic aspects of the un-
derlying data spaces. In [4], DBSCAN [5] has been adapted to multi-represented
objects distinguishing two possible semantics. However, DBSCAN has several
drawbacks leading to the development of OPTICS[6] which is the algorithm the
method proposed in this paper is based on.

3 Handling Semantics

In [4], there were two general methods to combine multiple representation for den-
sity based clustering, called union and intersection method. The union method
states that an object is an union core-object if there are at least k data objects
in the union of the local ε-neighborhoods. The intersection method was defined
analogously. However, it is not clear which method is better suited to compare an
arbitrary set of representations. In [7], the suitability of representations for one
or the other combination method is discussed. As a result, two aspects of a data
space can be distinguished, the precision space and recall space property. An ex-
amples for a good precision space are word vectors because documents containing
the same set of words usually describe the same content. An example for a recall
space are color histograms because two images having a similar content usually
have similar color distributions. Furthermore, we can state that precision spaces
should be combined using the union method and recall spaces should be combined
using the intersection method. The result of combining recall spaces improves the
precision and the result of combining precision spaces improves the recall. Thus,
we can successively group representation of both types and construct a so-called
combination tree according to the following formalization:

Definition 1 (Combination Tree). Let R = {R1, . . . , Rm}. A combination
tree CT for R is a tree of arbitrary degree fulfilling the following conditions:

– CT.root denotes the root of the combination tree CT.
– Let n be a node of CT, then n.label denotes the label of n and n.children

denotes the children of n.
– The leaves are labeled with representations, i.e. for each leaf n ∈ CT :

n.label ∈ {R1, . . . , Rm}.
– The inner nodes are labeled with either the union or the intersection operator,

i.e. for each inner node n ∈ CT : n.label ∈ {∪,∩}.

4 Hierarchical Clustering of Multi-represented Objects

In order to obtain the comparability of distances, we normalize the distance in rep-
resentation Ri with respect to the mean value μorig

i of the original distance dorig
i .

The algorithm OPTICS [6] works like an extended DBSCAN algorithm, comput-
ing the density-connected clusters w.r.t. all parameters εi that are smaller than a
generic value of ε. OPTICS does not assign cluster memberships, but stores the
order in which the objects have been processed and the information can be used
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to assign cluster memberships. This information consists of two values for each
object, its core distance and its reachability distance. To compute these informa-
tion during a run of OPTICS on multi-represented objects, we must adapt the core
distance and reachability distance predicates of OPTICS to our multi-represented
approach. In the following, we will show how we can use a combination tree CT for
a given set of representations R to cluster multi-represented objects. The (global)
distance between two objects o, p ∈ D w.r.t. a combination tree CT is defined as
the combination of the distances of the nodes of CT.

Definition 2 (distance w.r.t. CT). Let o, p ∈ D, R = {R1, . . . , Rm}, di be
the distance function of Ri, CT be a combination tree for R, and let n be a node
in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The distance between o and p w.r.t. node n ∈ CT, denoted by dn(o, p), is
recursively defined by

dn(o, p) =

⎧⎪⎪⎨⎪⎪⎩
min

c∈n.children
{dc(o, p)} if n.label = ∪

max
c∈n.children

{dc(o, p)} if n.label = ∩
di(o, p) if n.label = Ri

The distance between o and p w.r.t. CT, denoted by dCT(o, p), is defined by

dCT(o, p) = dCT.root(o, p)

The (global) ε-neighborhood of an object o ∈ D w.r.t. a combination tree CT is
defined as the combination of the ε-neighborhoods of the nodes of CT.

Definition 3 (ε-neighborhood w.r.t. CT). Let o ∈ D, ε ∈ IR+, R =
{R1, . . . , Rm}, CT be a combination tree for R, and let n be a node in CT,
i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The ε-neighborhood of o w.r.t. node n ∈ CT, denoted by Nn
ε (o), is recursively

defined by

Nn
ε (o) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋃

c∈n.children
N c

ε (o) if n.label = ∪⋂
c∈n.children

N c
ε (o) if n.label = ∩

NRi
ε (o) if n.label = Ri

The ε-neighborhood of o w.r.t. CT, denoted by NCT,ε(o), is defined by

NCT,ε(o) = NCT.root
ε (o)

Since the core distance predicate of OPTICS is based on the concept of k-nearest
neighbor (k-NN) distances, we have to redefine the k-nearest neighbor distance
of an object o w.r.t. a combination tree CT.

Definition 4 (k-NN distance w.r.t. CT). Let o ∈ D, k ∈ IN , |D| ≥ k,
R = {R1, . . . , Rm}, CT be a combination tree for R, and let n be a node in CT,
i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.
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The k-nearest neighbors of o w.r.t. CT is the smallest set NNCT,k(o) ⊆ D
that contains (at least) k objects and for which the following condition holds:

∀p ∈ NNCT,k(o), ∀q ∈ D −NNCT,k(o) : dCT(o, p) < dCT(o, q).

The k-nearest neighbor distance of o w.r.t. CT, denoted by nn-distCT,k(o),
is defined as follows:

nn-distCT,k(o) = max{dCT(o, q)} | q ∈ NNCT,k(o)}.
Now, we can adopt the core distance definition from OPTICS to our combination
approach: If the ε-neighborhood w.r.t. CT of an object o contains at least k
objects, the core distance of o is defined as the k-nearest neighbor distance of o.
Otherwise, the core distance is infinity.

Definition 5 (core distance w.r.t. CT). Let o ∈ D, k ∈ IN , |D| ≥ k,
R = {R1, . . . , Rm}, CT be a combination tree for R, and let n be a node in CT,
i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The core distance of o w.r.t. CT, ε and k, denoted by CoreCT,ε,k(o), is
defined by

CoreCT,ε,k(o) =
{

nn-distCT,k(o) if |NCT,ε(o)| ≥ k
∞ otherwise.

The reachability distance of an object p ∈ D from o ∈ D w.r.t. CT is an asymmet-
ric distance measure that is defined as the maximum value of the core distance
of o and the distance between p and o.

Definition 6 (reachability distance w.r.t. CT). Let o, p ∈ D, k ∈ IN ,
|D| ≥ k, R = {R1, . . . , Rm}, CT be a combination tree for R, and let n be a node
in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The reachability distance of o to p w.r.t. CT, ε, and k, denoted by
ReachCT,ε,k(p, o), is defined by

ReachCT,ε,k(p, o) = max{CoreCT,ε,k(p), dCT(o, p)}

5 Performance Evaluation

We implemented the proposed clustering algorithm in Java 1.5 and ran several
experiments on a work station with two 1.8 GHz Opteron processors and 8 GB
main memory. The experiments were performed on protein data that is described
by text descriptions (R1) and amino-acid sequences (R2). We employed entries of
the Swissprot protein database 1 belonging to 5 functional groups (cf. Table 1).
As reference clustering, we employed the classes of Gene Ontology 2. To evaluate
the derived cluster structure C, we extracted flat clusters from OPTICS plots
1 http://us.expasy.org/sprot/sprot-top.html
2 www.geneontology.org
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Table 1. Description of the protein data sets and results

Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal
Transducer

Oxidore-
ductase

Transferase

No. of Classes 16 35 39 49 62
No. of Objects 501 1640 2208 3399 4086
R1 ∪ R2 0.66 0.56 0.43 0.50 0.38

R1 0.61 0.54 0.32 0.46 0.35
R2 0.31 0.25 0.36 0.39 0.24
CFS 0.62 0.46 0.28 0.41 0.29
RCL 0.55 0.43 0.25 0.33 0.19

and applied the following quality measure for comparing different clusterings
w.r.t. the reference clustering K: QK(C) =

∑
Ci∈C

|Ci|
|DB| · (1− entropyK(Ci)).

We employed an combination tree describing the union of both representations.
As first comparison partners, we clustered text and sequences separately using
only one of the representations. A second approach combines the features of
both representations into a common feature space (CFS) and employs the co-
sine distance to relate the resulting feature vectors. Additionally, we compared
reinforcement clustering (RCL) using DBSCAN as underlying cluster algorithm.
For reinforcement clustering, we ran 10 iterations and tried several values of
the weighting parameter α. The ε-parameters were set sufficiently large and we
chose k = 2. Table 1 displays the derived quality for our method and the four
competitive methods mentioned above. As it can be seen, our method clearly
outperforms any of the other algorithms.

Another, set of experiments were performed on a data set of images being
described by 4 representations. The OPTICS clustering based on a 2 level com-
bination trees achieved encouraging results as well. More information about these
experiments can be found in [7].
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Abstract. In many scientific, engineering or multimedia applications,
complex distance functions are used to measure similarity accurately.
Furthermore, there often exist simpler lower-bounding distance func-
tions, which can be computed much more efficiently. In this paper, we
will show how these simple distance functions can be used to parallelize
the density-based clustering algorithm DBSCAN. First, the data is parti-
tioned based on an enumeration calculated by the hierarchical clustering
algorithm OPTICS, so that similar objects have adjacent enumeration
values. We use the fact that clustering based on lower-bounding distance
values conservatively approximates the exact clustering. By integrating
the multi-step query processing paradigm directly into the clustering al-
gorithms, the clustering on the slaves can be carried out very efficiently.
Finally, we show that the different result sets computed by the various
slaves can effectively and efficiently be merged to a global result by means
of cluster connectivity graphs. In an experimental evaluation based on
real-world test data sets, we demonstrate the benefits of our approach.

1 Introduction

Density-based clustering algorithms like DBSCAN [1] are based on ε-range que-
ries for each database object. Thereby, each range query requires a lot of distance
calculations. When working with complex objects, e.g. trees, point sets, and
graphs, often complex time-consuming distance functions are used to measure
similarity accurately. As these distance calculations are the time-limiting factor
of the clustering algorithm, the ultimate goal is to save as many as possible of
these complex distance calculations.

Recently an approach was presented for the efficient density-based clustering
of complex objects [2]. The core idea of this approach is to integrate the multi-
step query processing paradigm directly into the clustering algorithm rather
than using it “only” for accelerating range queries. In this paper, we present a
sophisticated parallelization of this approach. Similar to the area of join process-
ing where there is an increasing interest in algorithms which do not assume the
existence of any index structure, we propose an approach for parallel DBSCAN
which does not rely on the pre-clustering of index structures.

First, the data is partitioned according to the clustering result carried out on
cheaply computable distance functions. The resulting approximated clustering
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Fig. 1. Basic idea of parallel density-based clustering

conservatively approximates the exact clustering. The objects of the conservative
cluster approximations are then distributed onto the available slaves in such a
way that each slave has to cluster the same amount of objects, and that the
objects to be clustered are close to each other. Note that already at this early
stage, we can detect some noise objects which do not have to be transmitted
to the local clients. In addition to the objects to be clustered by a client, we
send some filter merge points to this client. These filter merge points are also
determined based on approximated distance functions. (cf. Figure 1a).

Second, each client carries out the clustering independently of all the other
clients. No further communication is necessary throughout this second step. The
presented local clustering approach also takes advantage of the approximating
lower-bounding distance functions. The detected clusters and the detected exact
merge point sets are then transmitted to the server (cf. Figure 1b).

Finally, the server determines the correct clustering result by merging the
locally detected clusters. This final merging step is based on the exact merge
points detected by the clients. Based on these merge points, cluster connectivity
graphs are created. In these graphs, the nodes represent the locally detected
clusters. Two local clusters are connected by an edge if a merge point of one
cluster is a core object in the other cluster (cf. Figure 1c).

The remainder of this paper is organized as follows. In Section 2, we shortly
sketch the work from the literature related to our approach. In Sections 3, 4 and
5, we explain the server-side partitioning algorithm, the client-side clustering al-
gorithm, and the server-side merging of the results from the clients, respectively.
In Section 6, we present a detailed experimental evaluation based on real world
test data sets. We close the paper in Section 7 with a short summary and a note
on future work.
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2 Related Work

Complex Object Representations. Complex object representations, like high-
dimensional feature vectors [3], vector sets [4], trees or graphs [5], are helpful
to model real world objects accurately. The similarity between these complex
object representations is often measured by means of expensive distance func-
tion, e.g. the edit distance. For a more detailed survey on this topic, we refer the
interested reader to [6].
Clustering. Given a set of objects with a distance function on them, an interest-
ing data mining question is, whether these objects naturally form groups (called
clusters) and what these groups look like. Data mining algorithms that try to
answer this question are called clustering algorithms. For a detailed overview on
clustering, we refer the interested reader to [7].
Density-Based Clustering. Density based clustering algorithms apply a local
cluster criterion to detect clusters. Clusters are regarded as regions in the data
space in which the objects are dense, and which are separated by regions of
low object density (noise). One of the most prominent representatives of this
clustering paradigm is DBSCAN [1].
Density-Based Clustering of Complex Objects. In [2] a detailed overview can
be found describing several approaches for the efficient density-based clustering
of complex object. Furthermore, in [2] a new approach was introduced which
performs expensive exact distance computations only when the information pro-
vided by simple distance computations is not enough to compute the exact clus-
tering. In Section 4, we will use an adaption of this approach for the efficient
clustering on the various slaves.
Parallel Density-Based Clustering of Complex Objects. To the best of our knowl-
edge there does not exist any work in this area.

3 Server-Side Data Partitioning

The key idea of density-based clustering is that for each object of a cluster the
neighborhood of a given radius ε has to contain at least a minimum number of
MinPts objects, i.e. the cardinality of the neighborhood has to exceed a given
threshold. An object p is called directly density-reachable from object q w.r.t.
ε and MinPts in a set of objects D, if p ∈ Nε(q)) and |Nε(q)| ≥ MinPts ,
where Nε(q) denotes the subset of D contained in the ε-neighborhood of q. The
condition |Nε(q)| ≥ MinPts is called the core object condition. If this condition
holds for an object q, then we call q a core object. Other objects can be directly
density-reachable only from core objects. An object p is called density-reachable
from an object q w.r.t. ε and MinPts in the set of objects D, if there is a chain
of objects p1, . . . , pn, p1 = q, pn = p, such that pi ∈ D and pi+1 is directly
density-reachable from pi w.r.t. ε and MinPts . Object p is density-connected to
object q w.r.t. ε and MinPts in the set of objects D, if there is an object o ∈ D
such that both p and q are density-reachable from o. Density-reachability is the
transitive closure of direct density-reachability and is not necessarily symmetric.
On the other hand, density-connectivity is a symmetric relation.
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DBSCAN. A flat density-based cluster is defined as a set of density-connected
objects which is maximal w.r.t. density-reachability. Thus a cluster contains not
only core objects but also border objects that do not satisfy the core object
condition. The noise is the set of objects not contained in any cluster.

OPTICS. While the partitioning density-based clustering algorithm DBSCAN
can only identify a flat clustering, the newer algorithm OPTICS [8] computes
an ordering of the points augmented by the so-called reachability-distance. The
reachability-distance basically denotes the smallest distance of the current object
q to any core object which belongs to the current cluster and which has already
been processed. The clusters detected by DBSCAN can also be found in the OP-
TICS ordering when using the same parametrization, i.e. the same ε and MinPts
values. For an initial clustering with OPTICS based on the lower-bounding filter
distances the following two lemmas hold.

Lemma 1. Let Cexact
1 , . . . , Cexact

n be the clusters detected by OPTICS based on
the exact distances, and let Cfilter

1 , . . . , Cfilter
m be the clusters detected by OPTICS

based on the lower-bounding filter distances. Then the following statement holds:

∀i ∈ {1, . . . , n}∃j ∈ {1, . . . ,m} : Cexact
i ⊆ Cfilter

j .

Proof. Let Nfilter
ε (o) denote the ε-neighborhood of o according to the filter dis-

tances, and let Nexact
ε (o) denote the ε-neighborhood according to the exact dis-

tances. Due to the lower-bounding filter property Nexact
ε (o) ⊆ Nfilter

ε (o) holds.
Therefore, each object o which is a core object based on the exact distances is
also a core object based on the lower-bounding filter distances. Furthermore,
each object p which is directly density-reachable from o according to the exact
distances is also directly density-reachable according to the filter functions. In-
duction on this property shows that if p is density-reachable from o based on
the exact distances, it also holds for the filter distances. Therefore, all objects
which are in one cluster according to the exact distances are also in one cluster
according to the approximated distances.

Lemma 2. Let noiseexact denote the noise objects detected by OPTICS based
on the exact distances and let noisefilter denote the noise objects detected by OP-
TICS based on the lower-bounding filter distances. Then the following statement
holds:

noisefilter ⊆ noiseexact .

Proof. An object p is a noise object if it is not included in the ε-neighborhood of
any core object. Again, let Nfilter

ε (o) and Nexact
ε (o) denote the ε-neighborhood

of o according to the filter distances and the exact distances, respectively. Due
to the lower-bounding filter property Nexact

ε (o) ⊆ Nfilter
ε (o) holds. Therefore, if

p /∈ Nfilter
ε (o), it cannot be included in Nexact

ε (o), proving the lemma.

Both Lemma 1 and Lemma 2 are helpful to partition the data onto the different
slaves. Lemma 1 shows that exact clusters are conservatively approximated by
the clusters resulting from a clustering on the lower-bounding distance functions.
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On the other hand, Lemma 2 shows that exact noise is progressively approxi-
mated by the set of noise objects resulting from an approximated clustering.
For this reason, noise objects according to the filter distances do not have to
be transmitted to the slaves, as we already know that they are also noise ob-
jects according to the exact distances. All other N objects have to be refined
by the P available slave processors. Let Cfilter

1 , . . . , Cfilter
m be the approximated

clusters resulting from an initial clustering with OPTICS. In this approach, we
assign Pslave =

∑m
i=1 |Cfilter

i |/P objects to each of the P slaves. We do this
partitioning online while carrying out the OPTICS algorithm. At each time dur-
ing the clustering algorithm, OPTICS knows the slave j having received the
smallest number Lj of objects up to now, i.e. the client j has the highest free
capacity Cj = Pslave −Lj. OPTICS stops the current clustering at two different
event points: In the first case, a cluster Cfilter

i of cardinality |Cfilter
i | ≤ Cj was

completely determined. This cluster is sent to the slave j. In the second case,
OPTICS determined Cj more points belonging to the current cluster Cfilter

i .
These points are grouped together to a filter cluster Cfilter

i,j . Then, we transmit
the cluster Cfilter

i,j along with the filter merge points Mfilter
i,j to the slave j. The

set Mfilter
i,j can be determined throughout the clustering of the set Cfilter

i,j and
can be defined as follows.

Definition 1 (filter merge points). Let Cfilter
i be a cluster which is split

during an OPTICS run into n clusters Cfilter
i,1 , . . . , Cfilter

i,n . Then, the filter merge
points Mfilter

i,j for a partial filter cluster Cfilter
i,j are defined as follows: Mfilter

i,j =
{q ∈ Cfilter

i − Cfilter
i,j | ∃p ∈ Cfilter

i,j : q is directly density-reachable from p}.

The filter merge points Mfilter
i,j are necessary in order to decide whether objects

o ∈ Cfilter
i,j are core objects. Furthermore, a subset Mexact

i,j ⊆ Mfilter
i,j is used to

merge exact clusters in the final merge step (cf. Section 5).

4 Client-Side Clustering

Each of the filter clusters Cfilter
i,j is clustered independently on the exact distances

by the assigned slave j. For clustering these filter clusters, we adapt the approach
presented in [2], so that it can also handle the additional merge points Mfilter

i,j .
The main idea of the client-side clustering approach is to carry out the range
queries based on the lower-bounding filter distances instead of using the expen-
sive exact distances. Thereto, we do not use the simple seedlist of the original
DBSCAN algorithm, but we use a list of lists, called Xseedlist . The Xseedlist
consists of an ordered object list OL. Each entry (o, T,PL) ∈ OL contains a flag
T indicating whether o ∈ Cfilter

i,j (T = C) or o ∈Mfilter
i,j (T = M). Each entry of

the predecessor list PL consists of the following information: a predecessor op of
o, which is a core object already added to the current cluster, and the predecessor
distance, which is equal to the filter distance df (o, op) between the two objects.
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Fig. 2. Server-side partitioning step (a) and merge step (b)

The result of the extended DBSCAN algorithm is a set of exact clusters
Cexact

i,j,l ⊆ Cfilter
i,j along with their additional exact merge points Mexact

i,j,l ⊆Mfilter
i,j .

To expand a cluster Cexact
i,j,l we take the first element (o, T,PL) from OL and set

op to the nearest predecessor object in PL.
Let us first assume that T = C holds. If PL = NIL holds, we add o to Cexact

i,j,l ,
delete o from OL, carry out a range query around o, and try to expand the
cluster Cexact

i,j,l . If PL 	= NIL holds, we compute do(o, op). If do(o, op) ≤ ε, we
proceed as in the case where PL = NIL holds. If do(o, op) > ε and length of
PL > 1 hold, we delete the first entry from PL. If do(o, op) > ε and length of
PL = 1 hold, we delete o from OL. Iteratively, we try to expand the current
cluster Cexact

i,j,l by examining the first entry of OL until OL is empty.
Let us now assume that T = M holds. If PL = NIL holds, we add o to

M exact
i,j,l , delete o from OL, and try to expand the exact merge point set Mexact

i,j,l .
If PL 	= NIL holds, we compute do(o, op). If do(o, op) ≤ ε, we proceed as in the
case where PL = NIL holds. If do(o, op) > ε and length of PL > 1 hold, we delete
the first entry from PL. If do(o, op) > ε and length of PL = 1 hold, we delete o
from OL. Iteratively, we try to expand the current exact merge point set Mexact

i,j,l

by examining the first entry of OL until OL is empty.

5 Server-Side Merging

Obviously, we only have to carry out the merge process for those clusters Cfilter
i

which were split in several clusters Cfilter
i,j . The client detects that each of these

clusters Cfilter
i,j contains t clusters Cexact

i,j,1 , . . . , Cexact
i,j,t . Note that t can also be

equal to 0, i.e. no exact cluster is contained in the cluster Cfilter
i,j . For each of

the t exact clusters Cexact
i,j,l there also exists a corresponding set of exact merge

points Mexact
i,j,l ⊆Mfilter

i,j (cf. Figure 2) defined as follows.
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Definition 2 (exact merge points). Let Cfilter
i,j be a cluster to be refined on

the slave with the corresponding merge point set Mfilter
i,j . Let Cexact

i,j,l ⊆ Cfilter
i,j be

an exact cluster determined during the client-side refinement clustering. Then,
we determine the set Mexact

i,j,l ⊆ Mfilter
i,j of exact merge points where Mexact

i,j,l =
{q ∈Mfilter

i,j | ∃p ∈ Cexact
i,j,l : q is directly density-reachable from p}.

Based on these exact merge point sets and the exact clusters, we can define a
“cluster connectivity graph”.

Definition 3 (cluster connectivity graph). Let Cfilter
i be a cluster which

was refined on one of the s different slaves. Let Cexact
i,j,l ⊆ Cfilter

i,j ⊆ Cfilter
i be an

exact cluster determined by slave j along with the corresponding merge point sets
Mexact

i,j,l ⊆ Mfilter
i,j . Then a graph Gi = (Vi, Ei) is called a cluster connectivity

graph for Cfilter
i iff the following statements hold:

– Vi = {Cexact
i,1,1 , . . . , Cexact

i,1,n1
, . . . , Cexact

i,s,1 , . . . , Cexact
i,s,ns

}.
– Ei = {(Cexact

i,j,l , Cexact
i,j′,l′ ) | ∃p ∈Mexact

i,j,l : p ∈ Cexact
i,j′,l′ ∧ p is a core point}.

Note that two clusters Cexact
i,j,l and Cexact

i,j′,l′ from the same slave j = j′ are never
connected by an edge. Such a connection of the two clusters would already have
taken place throughout the refinement clustering on the slave j. Based on the
connectivity graphs Gi for the approximated clusterings Cfilter

i , we can determine
the database connectivity graph.

Definition 4 (database connectivity graph). Let Cfilter
i be one of n ap-

proximated clusters along with the corresponding cluster connectivity graph Gi =
(Vi, Ei). Then we call G = (

⋃n
i=1 Vi,

⋃n
i=1 Ei) the database connectivity graph.

The database connectivity graph is nothing else but the union of the connectivity
graphs of the approximated clusters. Based on the above definition, we state the
central lemma of this paper.

Lemma 3. Let G be the database connectivity graph. Then the determination
of all maximal connected subgraphs of G is equivalent to a DBSCAN clustering
carried out on the exact distances.

Proof. For each object o the client-side clustering determines correctly, whether
it is a core object, a border object, or a noise object. Note, that we assign a border
object which is directly density-reachable from core objects of different clusters
redundantly to all of these clusters. Therefore, the only remaining issue is to show
that two core objects which are directly density-reachable to each other are in the
same maximal connected subgraph. By induction, according to the definition of
density-reachability, two clusters then contain the same core objects. Obviously,
two core objects o1 and o2 are directly density-reachable if they are either in the
same exact cluster Cexact

i,j,l or if o1 ∈ Cexact
i,j,l and o2 ∈ Mi,j,lexact resulting in an

edge of the database connectivity graph. Therefore, depth-first traversals through
all of the connectivity graphs Gi corresponding to a filter cluster Cfilter

i create
the correct clustering result where each subgraph corresponds to one cluster.
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6 Experimental Evaluation

In this section, we present a detailed experimental evaluation based on real-world
data sets. We used CAD data represented by 81-dimensional feature vectors [3]
and vector sets where each element consists of 7 6D vectors [4]. Furthermore,
we used graphs [5] to represent image data. The used distance functions can
be characterized as follows: (i) The exact distance computations on the graphs
are very expensive. On the other hand, the filter is rather selective and can
efficiently be computed. (ii) The exact distance computations on the feature
vectors and vector sets are also very expensive as normalization aspects for the
CAD objects are taken into account [4, 3]. As a filter for the feature vectors we
use their Euclidean norms [9] which is not very selective, but can be computed
very efficiently. The filter used for the vector sets is more selective than the
filter for the feature vectors, but also computationally more expensive. If not
otherwise stated, we used 3,000 complex objects from each data set.

The original OPTICS and DBSCAN algorithms, their extensions introduced
in this paper, and the used filter and exact distances functions were implemented
in Java 1.4. The experiments were run on a workstation with a Xeon 2.4 GHz
processor and 2 GB main memory. All experiments were run sequentially on one
computer. Thereby, the overall time for the client-side clustering is determined
by the slowest slave. If not otherwise stated, we chose an ε-parameter yielding
as many flat clusters as possible, and the MinPts-parameter was set to 5.

Characteristics of the partitioning step. Figure 3 compares the number of merge
points for different split techniques applied to filter clusters. As explained in
Section 3, we split a filter cluster during the partitioning step along the order-
ing produced by OPTICS. Note that OPTICS always walks through a cluster
by visiting the densest areas first. Figure 3 shows that this kind of split strat-
egy yields considerably less merge points than a split strategy which arbitrarily
groups objects from a filter cluster together. Thus, the figure proves the good
clustering properties of our metric space filling curve OPTICS.

Dependency on the Number of Slaves. Figure 4 shows the absolute runtimes of
our parallel DBSCAN approach dependent on the number of available slaves for
the vector sets and for the graph dataset. The figure shows the accumulated times
after the partitioning, client-side clustering, and the merge step. The partitioning
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times also include simulated communication times for the transfer of the objects
to the slaves in a 100 Mbit LAN. No communication costs arise from the client-
side clustering step, as each client already received all needed filter merge points.
A growing number of slaves leads to a significant speedup of the client-side
clustering. A lower bound of the achievable total runtime is given by the time
needed for the initial partitioning step. It is worth to note the time needed for
the final merging step is negligible even for a high number of slaves. Although
the number of exact merge points grows with an increasing number of slaves (cf.
Figure 3), the merge step remains cheap.

Speedup. Finally, Figure 5 depicts the speedup achieved by our new parallel DB-
SCAN approach based on a server-side partitioning with OPTICS. We compared
this approach to a DBSCAN approach based on a full table scan and compared
to a DBSCAN approach based on the traditional multi-step query processing
paradigm. The figure shows that for the feature vectors we achieve a speedup
of one order of magnitude already when only one slave is available. In the case
of the graph dataset we have a speedup of 67 compared to DBSCAN based
on a full table scan. These results demonstrate the suitability of the client-side
clustering approach. For the vector sets the benefits of using several slaves can
clearly be seen. For instance, our approach achieves a speedup of 4 for one slave
and a speedup of 20 for eight slaves compared to DBSCAN based on traditional
multi-step range queries.
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7 Conclusions

In this paper, we applied the novel concept of using efficiently computable lower-
bounding distance functions for the parallelization of data mining algorithms
to the density-based clustering algorithm DBSCAN. For partitioning the data,
we used the hierarchical clustering algorithm OPTICS as a kind of space fill-
ing curve for general metric objects, which provides the foundation for a fair
and suitable partitioning strategy. We showed how the local clients can carry
out their clustering efficiently by integrating the multi-step query processing
paradigm directly into the clustering algorithm. Based on the concept of merge
points, we constructed a global cluster connectivity graph from which the fi-
nal clustering result can easily be derived. In the experimental evaluation, we
demonstrated that our new approach is able to efficiently cluster metric objects.
We showed that if several slaves are available, the benefits achieved by the full
computational power of the slaves easily outweigh the additional costs of par-
titioning and merging by the master. In our future work, we will demonstrate
that also other data mining algorithms can beneficially be parallelized based on
lower-bounding distance functions.
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Abstract. This paper presents a new method for effectively selecting
initial cluster centers in k-means clustering. This method identifies the
high density neighborhoods from the data first and then selects the cen-
tral points of the neighborhoods as initial centers. The recently published
Neighborhood-Based Clustering (NBC ) algorithm is used to search for
high density neighborhoods. The new clustering algorithm NK-means in-
tegrates NBC into the k-means clustering process to improve the perfor-
mance of the k-means algorithm while preserving the k-means efficiency.
NBC is enhanced with a new cell-based neighborhood search method to
accelerate the search for initial cluster centers. A merging method is em-
ployed to filter out insignificant initial centers to avoid too many clusters
being generated. Experimental results on synthetic data sets have shown
significant improvements in clustering accuracy in comparison with the
random k-means and the refinement k-means algorithms.

Keywords: Clustering, k-means, Neighborhood-Based Clustering, Ini-
tial Cluster Center Selection.

1 Introduction

k-means clustering [1, 2] is one of the most widely used clustering methods in
data mining, due to its efficiency and scalability in clustering large datasets. One
well known problem of using k-means is selecting initial cluster centers for the
iterative clustering process. Given a proper k, the clustering result of k-means
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is very sensitive to the selection of initial cluster centers because different ini-
tial centers often result in very different clusterings. In k-means clustering and
other clustering methods, it is assumed that clusters distribute with certain high
density in the data. Therefore, the k-means clustering process would produce a
better clustering result if the initial cluster centers were taken from each high
density area in the data. However, the currently used initial cluster center selec-
tion methods can hardly achieve this. Better selection of initial cluster centers
for k-means clustering is still an interesting research problem because of the
importance of k-means clustering in real word applications [3, 4, 5, 6, 7, 8, 9]

In this paper, we propose a neighborhood density method for effectively select-
ing initial cluster centers in k-means clustering. The method is to use the recently
published Neighborhood-Based Clustering (NBC ) algorithm [10] to search for
high density neighborhoods from the data. NBC not only identifies all high
density neighborhoods but also gives the central points of each neighborhood.
Therefore, the neighborhood central points are used as the initial cluster centers.
Since NBC determines neighborhoods based on local density, clusters of different
densities are taken into account. A new clustering algorithm called NK-means is
developed to integrate NBC into the k-means clustering process to improve the
performance of the k-means algorithm while preserving the k-means efficiency.
To enhance NBC ’s search for dense neighborhoods, we have developed a new
cell-based neighborhood search method to accelerate the search for initial clus-
ter centers. A merging method is also employed to filter out insignificant initial
centers to avoid too many clusters to be generated. Because the initial cluster
centers are taken from the dense areas of the data, NBC enables the k-means
clustering process to take less iterations to arrive at a near optimal solution,
therefore, improving k-means clustering accuracy and efficiency.

We experimented NK-means with synthetic data. In comparison with the
simple k-means and the refinement k-means algorithms [6], NK-means produced
more accurate clustering results. It also showed a linear scalability in clustering
data with varying sizes and dimensions. These results demonstrated that using
the neighborhood density method to select initial cluster centers can significantly
improve the performance of the k-means clustering process.

The rest of this paper is organized as follows. Section 2 describes NBC for
initial cluster center selection, and the enhancement of NBC on search method.
The merging process of insignificant initial clusters is also discussed. Section
3 defines the NK-means algorithm. Experimental results and analysis are pre-
sented in Section 4. In Section 5, we summarize this work and point out the
future work.

2 Neighborhood Density Based Selection for Initial
Cluster Centers

2.1 Search for Initial Cluster Centers with NBC

The Neighborhood Based Clustering algorithm, or NBC, is a density based clus-
tering method [10]. Unlike other density based methods such as DBSCAN [11],
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NBC finds clusters from data with respect to the local density instead of the
global density. As such, it is able to discover clusters in different densities.

The locally dense neighborhood of a given point p is identified by the Neigh-
borhood Density Factor (NDF ), defined as:

NDF (p) =
|R− kNB(p)|
|kNB(p)| (1)

where kNB(p) is the set of p’s k-nearest neighbor points, and R−kNB(p) is the
set of the reverse k-nearest neighbor points of p. R − kNB(p) is defined as the
set of points whose k-nearest neighborhoods contain p. The value of NDF (p)
measures the local density of the object p. Intuitively, the larger |R−kNB(p)| is,
the more neighborhoods that contain p in their k-nearest neighbors, the denser
p’s neighborhood is. Generally speaking, NDF (p) > 1 indicates that p is located
in a dense area. NDF (p) < 1 indicates that p is in a sparse area. If NDF (p) = 1,
then p is located in an area where points are evenly distributed in space. The
details of the (NBC ) algorithm is given in [10].

Given a data set X, we can use NBC to find all locally dense areas. In each
dense area, we select its center as the candidate initial cluster center in k-means
clustering.

2.2 Merging Candidate Clusters

In the original NBC algorithm, the size of a neighborhood is specified by an input
parameter. We use knbc for this parameter here to distinguish the k parameter
of the k-means algorithm. knbc specifies the minimal number of points in a
neighborhood and controls the granularity of the final clusters by NBC. If knbc

is set large, a few large clusters are found. If knbc is set small, many small clusters
will be generated.

Let {C ′
1, C

′
2, . . . , C

′
i , . . . , C

′
k′} be k′ candidate clusters generated from a sample

data by NBC. Assume k′ is greater than the expected cluster number k. Each
cluster Ci contains a set of points {x1, x2, . . . , xj , . . . , xni}. The radius of cluster
Ci is defined as:

ri = maxni

j=1‖xj − zi‖2, xj ∈ Ci (2)

where zi is the center of cluster Ci and ‖xj−zi‖2 represents the distance between
the object xj and zi. The similarity between two clusters ci and cj is calculated
as

d(ci, cj) =
‖zj − zi‖2
ri + rj

(3)

To reduce the number of candidate clusters k′ to the expected number k, we
can iteratively merge the two most similar clusters according to Formula (3).
One merging procedure of the entire merging process is given in Table 1.

Each run of the merging procedure merges two most similar clusters. To get
the final k clusters the merging procedure is repeated k′− k times in the NK −
means algorithm (see Table 2). Steps 1-6 of this procedure allocate the data
points of the entire data set into k′ initial clusters. Steps 7-10 recompute k′ new
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Table 1. The pseudo-code of the cluster merging procedure

Input: X -original data set, Z′- Centroids before merging,

Output: C′-the resulted clusters after merging, where |C| − |C′| = 1
1. for each object xj ∈ X do {
2. for each zi ∈ Z′ do {
3. dj,i=calculateDistance(xj , Zi);

4. }
5. assign xj to the cluster Ci with minimal dj,i;

6. } //The step 1-6 will build a set of new clusters C

7. for each cluster Ci ∈ C do {
8. recomputed the centroid zi for the cluster Ci;

9. calculate the cluster radius ri according to formula (2);

10. }
11. for i=1 to |C|+1

12. for j=1 to |C|+1

13. compute the cluster dissimilarity d(ci, cj) based on formula (3);

14. merge the two clusters with lowest d(ci, cj) to build C′;

15. end;

cluster centers and radius. Steps 11-15 merges the most similar clusters according
to Formula (3).

2.3 Enhancement of NBC for Neighborhood Search

To identify the dense neighborhoods in data requires to calculate the NDF value
for every point. This is a very time-consuming process. In NBC, a cell-based
approach is adopted to facilitate the calculation of NDF and the k-nearest
neighborhood search [10]. In this approach, the data space is divided into hy-
percube cells of equal sides in each dimension. Search for dense neighborhoods
is conducted in the cells instead of the entire space, so that the search time is
reduced.

Let n be the number of points in the data set and m the number of dimensions
of the data space. Given knbc as the number of points in a neighborhood, the ideal
way is to divide the data space into n/knbc cells and each cell contains only one
dense neighborhood with knbc points. To obtain the same number of divisions
in each dimension, the number of intervals in each dimension is calculated as:

γ = � m

√
n/knbc�+ 1 (4)

Each dimension can be divided into γ equal intervals, and the n points will
be divided by each dimension into γ subsets, {pi1, pi2, . . . , pij , . . . , piγ} where
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γ ≥ 2. Because each dimension is equally divided, the data density in each
subset pij will be very different, depending on the distribution of the data. The
problems of this approach are that it results in more cells to search because
γm >> n/knbc in high dimensional data and that it is still time consuming in
searching dense neighborhoods in high density cells. To solve these two problems,
we use a density-aware approach to divide the dense areas into more cells and
the sparse areas into few cells. In this way, we can obtain a division with the
number of cells close to n/knbc. The search efficiency is improved significantly.

From the initial equal division of γm cells, we define a distribution balance
factor for each dimension as:

ξi = γ

√√√√ γ∏
j=1

s(pij) + σ

n
(5)

where ξi denotes the distribution balance factor for dimension i, s(pij) is the
number of points in cell(i, j), n is the number of points in the data set, σ is a
normalization factor to avoid the zero value of s(pij).

After sorting the distribution balance factors for all dimensions as ξ
′
1 ≥ ξ

′
2 ≥

· · · ≥ ξ
′
m, we calculate the relative division rate for each dimension as:

μi =

⎧⎨⎩θ i=m
ξ
′
i

ξ′
m

1 ≤ i < m
(6)

where θ is the base number, defined as:

θ = max{1, m

√
n/knbc∏m−1

i=1 μi

} (7)

According to the relative division rate μ, each dimension will be divided into
μi · θ intervals, and the total number of cells will be:

ω =
L∏

i=1

μi · θ (8)

We only select the first L dimensions to divide, which makes
∏L

i=1 μi · θ ≥
n/knbc and

∏L−1
i=1 μi · θ < n/knbc. Therefore, the total number of cells will be

close to n/knbc.
Based on the above calculations, we can obtain a set of new cells based on

merging the sparse cells and redividing the dense cells of the initial division. We
scan all the cells to calculate the number of points in each cell. The cells with few
points will be merged with adjacent cells, while the cells with too many points
(more than knbc) will be recursively re-divided using a cell adjustment method.

Fig. 1 illustrates the process of this approach. The left figure is a data set
with 1600 points. The middle figure is the initial division (first step). As the
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Data set First step Second step

Fig. 1. Illustration of the enhancement of the data space division

data set distributes more evenly on the vertical dimension than on the horizontal
dimension, the vertical dimension is divided into 20 intervals (knbc = 10) while
the horizontal dimension into 9 intervals. In the readjustment (second step),
the dense areas are re-divided into more cells while sparse areas are merged
into fewer cells. Because the dense cells contain less points, the search for dense
neighborhoods can be improved. Searching the kNB in sparse and wide cells will
consider the neighbor cells, which is also very efficient.

3 The NK-Means Clustering Algorithm

The NK-means clustering algorithm combines the enhanced NBC algorithm
with the k-means algorithm to cluster larger high dimensional data. The en-
hanced NK-means is used to select initial cluster centers from the sample data
for the k-means algorithm to cluster the large data. Since the enhanced NK-
means produces better initial cluster centers that are taken from the high density
areas of the data, starting from these initial clusters, the k-means algorithm will
produce better clustering results. Because sample data is used and the search
method is enhanced, the initial cluster selection does not add too much com-
putation burden to the entire clustering process but significantly improve the
k-means clustering results. This has been demonstrated by our experiments.

Table 2 gives the pseudo-code of the NK-means algorithm. Given an input
data set X , a sample rate and an expected cluster number k, the algorithm
first takes a sample from X . Then, the sample is fed to the enhanced NBC
algorithm to produce a set of initial candidate clusters. The third step is to
calculate the centers of the candidate clusters. After the centers are calculated,
they are readjusted with the entire data set X and the cluster merging process
starts in Steps 4-7 (note that the merging procedure in Table 1 is executed for
k′ − k times). After the merging process, a new set of initial cluster centers
are obtained and used in the k-means algorithm in Step 9 as the initial cluster
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Table 2. The pseudo-code of NK-means

Input: X -data set, rs-sample rate, k -expected cluster number

Output: C -the resulted clusters
1. X ′= sample(X, rs);

2. C′ = NBC(X ′, k);

3. Z′ = calculateCentroid(X ′, C′);

4. while (|C′| > k){ //the merging procedure runs (k′ − k) times

5. C′=mergeClusters(X, Z′); //the merging procedure, see Table 1

6. Z′= calculateCentroid(X, C′);

7. }
8. Z = Z′;

9. C =k-means(k, Z, X);

10. end;

centers to cluster the entire data set X . In the next section, we will show the
experiment results of the NK-means algorithm.

4 Experiments

We have implemented the NK-means clustering algorithm in Java and conducted
experiments with synthetic data. In these experiments, we compared NK-means
with two other k-means algorithms with different initial cluster center selec-
tion methods: random k-means using the simple initial cluster center selection
method [12], and Bradly’s refinement k-means algorithm [6]. We also conducted
scalability tests of NK-means against different data sizes and dimensions.

We used Matlab to generate synthetic data sets with mixture Gaussian dis-
tributions. We first carried out experiments on a two-dimension data set that
contained 8,000 objects in eight inherent clusters. To test the robustness of the
algorithm, we also added some noise into the data set. Fig. 2(a) shows the dis-
tribution of this data set with a noise rate of 10%. The solid cycles are the real
centers of the clusters.

Fig. 2(b), 2(c) and 2(d) show the clustering results from the random k-means,
the refinement k-means and the NK-means respectively. The solid cycles repre-
sent the inherent cluster centers while the star symbols in these figures give the
initial cluster centers selected by the three clustering algorithms. We can observe
from the figures that the initial cluster centers selected by the NK-means are
very close to the inherent cluster centers in the data. Some of the initial cluster
centers selected by the random k-means, the refinement k-means were located
outside of some inherent clusters. For example, no initial cluster centers were
selected from the two middle inherent clusters in Fig. 2(b). Because of this, the
two inherent clusters were clustered into one cluster by the random k-means.
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(a) Original data set
 

(b) Results of random k-means

 

(c) Results of refinement k-means

 

(d) Results of NK-means

Fig. 2. Comparisons of three clustering results from a 2D data set

Four initial cluster centers were selected from the large inherent cluster on the
upright corner of Fig. 2(b). This cluster was clustered into 3 clusters. Therefore,
the random k-means could not recover the eight inherent clusters because of the
bad selection of the initial cluster centers.

Fig. 2(c) shows that the refinement k-means could not recover the inherent
clusters neither, because of the improper selection of the initial cluster centers. In
this case, the two large clusters on the top were clustered into four small clusters,
while the two middle small inherent clusters were clustered as one cluster. From
Fig. 2(d), we can see that all eight inherent clusters were completely recovered
by NK-means, due to the good selection of the initial cluster centers.

Table 3 lists the locations of real cluster centers and the final centers found by
the three clustering algorithms. The final cluster centers by the three algorithms
were calculated as the average values of 100 runs on the same data set. The
final cluster centers by the NK-means were clearly very close to the real cluster
centers, while the final cluster centers by other two algorithms were different.

To test the scalability of NK-means, we generated one data set with 600,000
normally distributed points in six clusters, and with additional 60,000 noise
points. Each point is described in 10 dimensions.

Fig. 3 shows the scalability test results against the number of points and
the number of dimensions in data. Fig. 3(a) plots the running time against
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Table 3. The final cluster centers found by the three algorithms

Cluster Center Real Center Center by Center by Center by

NK-means Random K-means Refinement K-means

Center 1 (10.129,-9.950) (10.121,-9.988) (8.010,-6.184) (10.141,-9.279)

Center 2 (2.796,-9.995) (-0.238,-9.680) (-0.954,-5.468) (-0.820,-4.784)

Center 3 (-9.945, -10.046) (-9.938,-10.201) (-9.267,-7.514) (-9.829,-9.690)

Center 4 (2.937, -0.022) (2.945,-0.234) (3.302,2.515) (2.029,2.670)

Center 5 (-2.974, 0.065) (-2.691,-0.068) (-3.240,1.521) (-2.320,3.069)

Center 6 (12.003, 10.062) (11.778,9.954) (11.653,9.106) (12.264,10.179)

Center 7 (0.069, 10.079) (0.011,10.053) (0.854,9.243) (0.511,10.409)

Center 8 (-13.027, 7.991) (-12.799,8.071) (-11.140,6.751) (-13.095,7.977)

Deviation - 1.984 4.352 3.781
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Fig. 3. Scalability against the data size and dimensions

different numbers of points, while Fig. 3(b) is the running time against different
dimensions. These results show that the running time of NK-means linearly
increased with the number of points and the number of dimensions. This property
indicates that NK-means is scalable to large high-dimensional data.

5 Conclusions

In this paper, we have proposed a new neighborhood density method for selecting
initial cluster centers for k-means clustering. We have presented the NK-means
algorithm that makes use of the neighborhood-based clustering algorithm to
select initial cluster centers and use the centers as input to the k-means clustering
algorithm to improve the clustering performance of k-means. We have shown the
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experiments on both synthetic and real data to demonstrate that NK-means was
superior to the other two algorithms: the random k-means and the refinement
k-means.

We have also discussed the enhancement ofNBC ’s neighborhood searchmethod
and the merging process to generate the initial cluster centers. This enhancement
enables NBC to take a larger sample which can result in better initial cluster cen-
ters. The next stage is to develop a termination method in the merging process to
automatically generate the expected number of clusters k which has been a long
standing problem in k-means clustering.
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Abstract. Data uncertainty is an inherent property in various applications due 
to reasons such as outdated sources or imprecise measurement. When data min-
ing techniques are applied to these data, their uncertainty has to be considered 
to obtain high quality results. We present UK-means clustering, an algorithm 
that enhances the K-means algorithm to handle data uncertainty. We apply UK-
means to the particular pattern of moving-object uncertainty. Experimental re-
sults show that by considering uncertainty, a clustering algorithm can produce 
more accurate results. 

1   Introduction 

In applications that require interaction with the physical world, such as location-based 
services [6] and sensor monitoring [3], data uncertainty is an inherent property due to 
measurement inaccuracy, sampling discrepancy, outdated data sources, or other er-
rors. Although much research effort has been directed towards the management of 
uncertain data in databases, few researchers have addressed the issue of mining uncer-
tain data. We note that with uncertainty, data values are no longer atomic. To apply 
traditional data mining techniques, uncertain data has to be summarized into atomic 
values. Unfortunately, discrepancy in the summarized recorded values and the actual 
values could seriously affect the quality of the mining results. Figure 1 illustrates this 
problem when a clustering algorithm is applied to moving objects with location un-
certainty. If we solely rely on the recorded values, many objects could possibly be put 
into wrong clusters. Even worse, each member of a cluster would change the cluster 
centroids, thus resulting in more errors.  

We suggest incorporating uncertainty information, such as the probability density 
functions (pdf) of uncertain data, into existing data mining methods so that the mining 
results could resemble closer to the results obtained as if actual data were used in the 
mining process [2]. In this paper we study how uncertainty can be incorporated in 
data mining by using data clustering as a motivating example. In particular, we study 
one of the most popular clustering methods – K-means clustering. 



200 M. Chau et al. 

 

Fig. 1. (a) The real-world data are partitioned into three clusters (a, b, c). (b) The recorded 
locations of some objects (shaded) are not the same as their true location, thus creating clusters 
a’, b’, c’ and c’’. (c) When line uncertainty is considered, clusters a’, b’ and c are produced. 
The clustering result is closer to that of (a) than (b) is. 

2   Related Work 

There is significant research interest in data uncertainty management in recent years. 
Most work has been devoted to “imprecise queries”, which provide probabilistic guar-
antees over correctness of answers. For example, in [4], indexing solutions for range 
queries over uncertain data have been proposed. The same authors also proposed 
solutions for aggregate queries such as nearest-neighbor queries in [3]. Notice that all 
these works have applied the study of uncertain data management to simple database 
queries, instead of to the more complicated data analysis and mining problems. 

Clusterization has been well studied in data mining research. However, only a few 
studies on data mining or data clustering for uncertain data have been reported. Ham-
dan and Govaert have addressed the problem of fitting mixture densities to uncertain 
data for clustering using the EM algorithm [5]. However, the model cannot be readily 
applied to other clustering algorithms and is rather customized for EM. Clustering on 
interval data also has been studied. However, the pdf of the interval is not taken into 
account in most of the metrics used. Another related area of research is fuzzy cluster-
ing. In fuzzy clustering, a cluster is represented by a fuzzy subset of a set of objects. 
Each object has a “degree of belongingness” for each cluster. In other words, an ob-
ject can belong to more than one cluster, each with a different degree. The fuzzy c-
means algorithm was one of the most widely used fuzzy clustering method [1].  

3   Clustering on Data with Uncertainty 

Problem Definition: Let S be a set of V-dimensional vectors xi, where i = 1 to n, 
representing the attribute values of all the records in the clustering application. Each 
record oi is associated with a probability density function (pdf), fi(x), which is the pdf 
of oi’s attribute values x at time t. The clustering problem is to find a set C of clusters 
Cj, where j = 1 to K, with cluster means cj based on similarity. Different clustering 
algorithms have different objective functions, but the general idea is to minimize the 
distance between objects in the same cluster while maximizing the distance between 
objects in different clusters. Minimization of intra-cluster distance can also be viewed 
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as the minimization of the distance between each data xi and the cluster means cj of 
the cluster Cj that xi is assigned to.  
 
To consider data uncertainty in the clustering process, we propose a clustering algo-
rithm with the goal of minimizing the expected sum of squared errors E(SSE). Note 
that a data object xi is specified by an uncertainty region with an uncertainty pdf f(xi). 
Given a set of clusters, Cj’s the expected SSE can be calculated as follow: 
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where || . || is a distance metric between a data point xi and a cluster mean cj. 
Cluster means are given by: 
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We propose a new K-means algorithm, called UK-means, for clustering uncertain 
data: 

1. Assign initial values for cluster means c1 to cK 
2. repeat  
3.  for i = 1 to n do 
4.  Assign each data xi  to cluster Cj where E(|| cj - xi ||) is the minimum 
5. end for 
6.  for j = 1 to K do 
7.   Recalculate cluster mean cj  of cluster Cj 
8. end for 
9. until convergence 
10. return C 

The main difference between UK-mean clustering and the traditional K-means clus-
tering lies in the computation of distance and clusters. In particular, UK-means com-
pute the expected distance and cluster centroids based on the data uncertainty model. 
Convergence can be defined based on different criteria.  

 In Step 4, it is often difficult to determine E(|| cj - xi ||) algebraically. In particular, 
the variety of geometric shapes of uncertainty regions (e.g., line, circle) and different 
uncertainty pdf imply that numerical integration methods are necessary. We propose 
to use the squared expected distance E(|| cj - xi ||

2), which is much easier to obtain. 

4   UK-Means Clustering for Moving Objects with Uncertainty 

The UK-means algorithm presented in the last section is applicable to any uncertainty 
region and pdf. In this section, we describe how the proposed algorithm can be ap-
plied to uncertainty models specific to moving objects that are moving in a two-
dimensional space. According to [4] and [6], there are two types of moving-object 
uncertainty, namely line-moving uncertainty and free-moving uncertainty. In line-
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moving uncertainty, an object moves at a velocity vector, which is smaller than Vmax, 
along a fixed direction. Line-moving uncertainty can be unidirectional or bidirec-
tional. The free-moving uncertainty model assumes that an object cannot move be-
yond a certain speed, Vmax. Given that the current position of the object is (h,k) at time 
t0, the object’s location is uniformly distributed within a circle of radius Vmax × (t-t0).  

Suppose we have a centroid c = (p, q) and a data object x specified by a line uncer-
tainty region with a uniform distribution. Let the end points of the line segment uncer-
tainty be (a,b) and (c,d). The line equation can be parametrized by (a + t (c - a), b + t 
(d - b)), where t is between [0,1].  Let the uncertainty pdf be f(t). Also, let the distance 
of the line segment uncertainty be 22 )()( bdacD −+−= . We have: 

( ) ++=−
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))(( dtCBttDtfE xc                                      (3) 

where  B = 2[(c - a) (a - p) + (d - b) (b - q)], C = (p - a) 2 + (q - b) 2 
If f(t) is uniform, then f(t) = 1, and the above becomes: 

E(distance of line uncertainty from centroid2)= C
BD ++
23

2

  (4) 

For free-moving uncertainty, suppose we have a centroid c = (p, q) and a data object x 
specified by a circle uncertainty region with a uniform distribution. Suppose the circle 
uncertainty has center (h, k) and radius R. Let the uncertainty pdf of the circle be 
f(r,θ). Then we have: 
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where  A = 2r (h - p), B = 2r (k - q), C = r2 + (h - p)2 + (k - q)2 

We are thus able to compute the expected squared distance easily for line-moving 
and free-moving object uncertainty. The use of uniform distribution is only a specific 
example here. When the pdf’s are not uniform (e.g., Gaussian), sampling techniques 
can be used to estimate E(|| cj - xi ||). 

5   Experiments 

In our experiments, we simulate a scenario in which a system that tracks the locations 
of a set of moving objects has taken a snapshot of these locations [2]. This location 
data is stored in a set called recorded. Each object assumes an uncertainty model 
captured in uncertainty. We compare two clustering approaches: (1) apply K-means 
to recorded and (2) apply UK-means to recorded + uncertainty. We first generated 
a set of random data points in a 100 x 100 2D space as recorded. For each data point, 
we then randomly generated its uncertainty according to a chosen uncertainty model. 
We also generated actual ⎯ the actual locations of the objects based on recorded 
and uncertainty, simulating the scenario that the objects have moved away from their 
original locations as registered in recorded. We remark that ideally, a system should 
know actual and apply K-means on the actual locations. Hence, we compute and 
compare the cluster outputs of the following data sets:  
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 (1) recorded (using classicial K-means) 
 (2) recorded + uncertainty (using UK-means) 
 (3) actual (using classical K-means) 

We use the Adjusted Rand Index (ARI) to measure the similarity between the cluster-
ing results [7]. A higher ARI value indicates a higher degree of similarity between 
two sets of clusters. We compare the ARI between the sets of clusters created in (2) 
and (3) and the ARI between those created in (1) and (3). Due to limited space, only 
the results of unidirectional line uncertainty are reported here.  

The number of objects (n), number of clusters (K), and the maximum distance an 
object can move (d) were varied during the experiment. Table 1 shows the different 
experiment results by varying d while keeping n = 1000 and K = 20. Under each set of 
different parameter settings, 500 rounds were run and the results were averaged. In 
each round, the sets of recorded, uncertainty, and actual were first generated and 
the same set of data was used for the three clustering processes. The same set of initial 
centroids were also used in each of the three processes in order to avoid any bias.  

The UK-means algorithm consistently showed a higher ARI than the traditional K-
means algorithm applied on the recorded data. Pairwise t-tests were conducted and the 
results showed that the difference in the ARI values of the two methods was signifi-
cant (p < 0.000001 for all cases). The results demonstrated that the UK-means algo-
rithm can give a set of clusters that could be a better prediction of the clusters that 
would be produced if the real-world data were available. 

Table 1. Experiment results 

 d 1.5 2.5 5 7.5 10 20 50 
ARI (UK-means) 0.740 0.733 0.689 0.652 0.632 0.506 0.311 
ARI (K-means) 0.715 0.700 0.626 0.573 0.523 0.351 0.121 
% of improvement 3.58% 4.77% 10.03% 13.84% 20.82% 44.34% 155.75% 

 

6   Conclusions and Future Work 

In this paper we present the UK-means algorithm, which aims at improving the accu-
racy of clustering by considering the uncertainty associated with data. Although in 
this paper we only present clustering algorithms for uncertain data with uniform dis-
tribution, the model can be generalized to other distribution (e.g., by using sampling 
techniques). We also suggest that our concept of using expected distance could be 
applied to other clustering approaches (such as nearest neighbor clustering and self-
organizing maps) and other data mining techniques (such as data classification).  
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Parallel Randomized Support Vector Machine
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Abstract. A parallel support vector machine based on randomized sam-
pling technique is proposed in this paper. We modeled a new LP-type
problem so that it works for general linear-nonseparable SVM training
problems unlike the previous work [2]. A unique priority based sampling
mechanism is used so that we can prove an average convergence rate that
is so far the fastest bounded convergence rate to the best of our knowl-
edge. The numerical results on synthesized data and a real geometric
database show that our algorithm has good scalability.

1 Introduction

Sampling theory has a long successful history in optimization [6, 1]. The appli-
cation to the SVM training problem is first proposed by Balcazar et al. in 2001
[2]. However, Balcazar assumed that the SVM training problem is a separable
problem or a problem that can be transformed to an equivalent separable prob-
lem by assuming an arbitrary small regularization factor γ (D and 1/k in [2]
and [3]). They also stated that there were number of implementation difficulties
so that no relevant results could be provided [3].

We model a LP-type problem such that the general linear nonseparable prob-
lem can be covered by our randomized support vector machine (RSVM). In order
to take advantage of distributed computing facilities, we proposed a novel par-
allel randomized SVM (PRSVM) in which multiple working sets can be worked
on simultaneously. The basic idea of the PRSVM is to randomly shuffle the
training vectors among a network based on a carefully designed priority and
weighting mechanism and to solve the multiple local problems simultaneously.
Unlike the previous works on parallel SVM [7, 10] that lacks of a convergence
bound, our algorithm, the PRSVM, on average, converges to the global opti-
mum classifier/regressor in less than (6δ ln(N +6r(C − 1)δ)/C iterations, where
δ denotes the underlying combinatorial dimension, N denotes the total number
of training vector, C denotes the number of working sites, and r denotes the
size for a working set. Since the RSVM is a special case of PRSVM, our proof
naturally works for the RSVM. Note that, when C = 1, our result reduces to
Balcazar’s bound [3].

This paper is organized as follows. The support vector machine is introduced
and formulated in the next section. Then, we present the parallel randomized
support vector machine algorithm. The theoretical global convergence is given
in the fourth section followed by a presentation of a successful application. We
conclude our result in Section 6.
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2 Support Vector Machine and Randomized Sampling

We prepare fundamentals and basic notations on SVM and randomized sampling
technique in this section.

2.1 Support Vector Machine

Let us first consider a simple linear separation problem. We are seeking a hyper-
plane to separate of a set of positively and negatively labeled training data. The
hyperplane is defined by wTxi − b = 0 with parameter w ∈ Rm and b ∈ R such
that yi(wTxi − b) > 1 for i = 1, ..., N where xi ∈ Rm is a training data point
and yi ∈ {+1,−1} denotes the class of the vector xi. The margin is defined by
the distance of the two parallel hyperplanes wTx − b = 1 and wTx − b = −1,
i.e. 2/||w||2. The margin is related to the generalization of the classifier [12].
The support vector machine (SVM) is in fact a quadratic programming prob-
lem, which maximizes the margin over the parameters of the linear classifier.
For general nonseparable problems, a set of slack variables μi, i = 1, . . . , N are
introduced. The SVM problem is defined as follows:

minimize (1/2)wTw + γ1Tμ
subject to yi(wTxi − b) ≤ 1− μi, i = 1, ..., N

μ ≥ 0
(1)

where the scalar γ is usually empirically selected to reduce the testing error rate.
To simplify notations, we define vi = (xi,−1), θ = (w, b), and a matrix X as

Z = [(y1v1) (y2v2) ... (yNvN )]T .

The dual of problem (1) is shown as follows:

maximize −(1/2)αTZZTα + 1Tα
subject to 0 ≤ α ≤ γ1. (2)

A nonlinear kernel function can be used for nonlinear separation of the train-
ing data. In that case, the gram matrix ZZT is replaced by a kernel matrix
k(x, x̃) ∈ RN×N . Our PRSVM that is described in the following section can be
kernelized and therefore is able to keep the full advantages of the SVM.

2.2 The Sampling Lemma, LP-Type Problem and KKT Condition

An abstract problem is denoted by (S, φ). Let X be the set of training vector.
That is, each element of X is a row vector of the matrix X . Throughout this
paper, we use CALLIGRAPHIC style letters to denote sets of the row vectors
of a matrix denoted by the same letter with italian style. Here, φ is a mapping
from a given subset XR of X to the local solution of problem (1) with constraints
corresponding to XR and S is of size N . Define

V(R) := {s ∈ S\R|φ(R ∪ {s}) 	= φ(R)},
E(R) := {s ∈ R|φ(R\{s}) 	= φ(R)}.
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The elements of V(R) are called violators of R and the elements of E(R) are
called extremes in R. By definition, we have

s violates R ⇔ s is extreme in R∪ {s}.
For a random sample R of size r, we consider the expected values

vr := E|R|=r(|VR|)
er := E|R|=r(|ER|)

Gartner proved the following sampling lemma [9]:

Lemma 1. (Sampling Lemma). For 0 ≤ r < N ,

vr

N − r
=

er+1

r + 1
.

Proof. By definitions, we have(
N
r

)
vr =

∑
R
∑

s∈S\R[s violates R]

=
∑

R
∑

s∈S\R[s is extreme in R∪ {s}]
=
∑

Q
∑

s∈Q[s is extreme in Q]

=
(

N
r + 1

)
er+1,

where [.] is the indicator variable for the event in brackets and the last row
follows the fact that the set Q has r + 1 elements. The Lemma immediately
follows. ��
The problem (S, φ) is said to be a LP-type problem if φ is monotone and local
(see Definition 3.1 in [9]). Balcazar proved that the problem (1) is a LP-type
problem [2]. So is the problem (2). We use the same definitions given by [9] to
define the basis and combinatorial dimension as follows. For any R ⊆ S, a basis
of R is a inclusion-minimal subset B ⊆ R with φ(B) = φ(R). The combinatorial
dimension of (S,φ), denoted by δ, is the size of a largest basis of S. For a LP-type
problem (S,φ) with combinatorial dimension δ, the sampling lemma yields

vr ≤ δ
N − r

r + 1
. (3)

This follows that |E(R)| ≤ δ.
Then, we are able to relate the definitions of the extremes, violators and the

basis to our general SVM training problem (1) or (2). For any local solution θp

or αp of problem (Xp, φ), the basis is the support vector set, SVp. The violators
of the local solutions will be the vectors that violate the Karush-Kuhn-Tucker
(KKT) necessary and sufficient optimality conditions. The KKT conditions for
the problem (1) and (2) are listed as follows:

Zθ� ≥ 1− μ�, μ� ≥ 0, 0 ≤ α� ≤ γ1,
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θ� = ZTα�, (γ − α�
i )μ

�
i = 0, i = 1, . . . , N.

Since the μi and αi for the training vector xi is always 0 for xi ∈ X\Xp, the
only condition needed to be tested is

θpT

zi ≥ 1

or
αpT

Zpzi ≥ 1.

Any training vector that violates the above condition is called a violator to (Xp,
φ). The size of the largest basis, δ is naturally the largest number of support vec-
tors for all subproblems (Xp, φ), Xp ⊆ X . For separable problems, δ is bounded
by one plus the lifted dimension, i.e., δ ≤ n+ 1. For general nonseparable prob-
lems, we do not know the bound for δ before we actually solve the problem.
What we can do is to set a sufficiently large number to bound δ from above.

3 Algorithm

We consider the following problem: the training data are distributed in C + 1
sites, where there are C working sets and 1 nonworking set. Each working site
is assigned a priority number p = 1, 2, ..., C. We also assume that each working
site contains r training vectors, where r ≥ 6δ2 and δ denotes the combinatorial
dimension of the SVM problem.

Define a function u(.) to record the number of copies of elements of a training
set. For training set X , we define a set W such that W contains the virtually
duplicated copies of the training vectors. We have |W | = u(X ). We also define
the virtual set Wp corresponding to training set Xp at site p.

Our parallel randomized support vector machine (PRSVM) works as follows.

Initialization Training vectors X are randomly distributed to C + 1 sites.
Assign priorities to all sites such that each site gets a unique priority number.
Set u({xi}) = 1, ∀i. Hence, u(X ) = N . We have |Xp| = |Wp| for all p. Set t = 0.

Iteration Each iteration consists of the following steps.
Repeat for t = 1, 2, ...

1. Randomly distribute the training vectors over the working sites according
to u(X ) as follows. Let S1 = W .
For p = 1 : C
Choose r training vectors, Wp from Sp uniformly (and make sure r ≥ 6δ2);
Sp+1 := Sp\Wp;
End For

2. Each site with priority p, p ≤ C solves the local partial problem and record
the solution θp. Send this solution to all other sites q, q 	= p.
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3. Each site with priority q, q = 1, ..., C + 1, checks the solution θp from site
with higher priority p, p < q. Define Vq,p to be the training vectors in the
site with priority q that violate the KKT condition corresponding to solution
(wp, bp), q 	= p. That is,

Vq,p := {xi|θpT

([xi; 1])yi < 1, xi ∈ Xq, xi /∈ Xp}
.4. If
∑C+1

q=p+1 u(Vq,p) ≤ |Sp|/(3δ) then u({xi}) = 2u({xi}), for all xi ∈ Vq,p,
∀q 	= p, ∀p;

until ∪q 	=pVq,p = ∅ for some p.
Return the solution θp.

The priority setting of working sets actually defines the order of sampling.
The highest priority server gets the first sampled batch of data, lower one gets
the second batch and so on. This kind of sequential behavior is designed to help
define violators and extremes clearly under a multiple working site configuration.

Step 2 involves a merging procedure. If u({xi}) copies of vector xi are sampled
to a working setWp, only one copy of xi is included in the optimization problem
(Xp, φ) that we are solving, while we record this number of copies as a weight
of this training vector.

The merging procedure has two properties:

Property 1. A training vector that is not in working set Xp must not be a violator
of the problem (Xp, φ) if one or more copies of this vector are included in the
working set Xp. That is, xi /∈ V(Xp), if xi ∈ Xp.

Property 2. If multiple copies of a vector xi are sampled to a working set Xp,
none of those of vectors can be the extreme of the problem (Xp, φ). That is,
xi /∈ E(Xp) if u({xi}) > 1 at site p.

The above two properties follow immediately by definitions of violators and
extremes.

One may note that the merging procedure actually constructs an abstract
problem (Wp, φ′) such that φ′(Wp) = φ(Xp). By definition, (Wp, φ′) is a LP-
type problem and has the same combinatorial dimension, δ, as the problem (Xp,
φ). If the set of violators of (Xp, φ) is Vp, the number of violators of (Wp, φ′) is
u(Vp).

Step 4 plays the key role in this algorithm. It says that if the number of
violators of the LP-type problem (Wp, φ

′) is not too large, we double the weights
of the violators of (Wp, φ

′) in all sites. Otherwise, we keep the weights untouched
since the violators already have enough weights to be sampled to a working site.

One may note when C = 1, the PRSVM is reduced to the RSVM. However,
our RSVM is different from the randomized support vector machine training
algorithm in [2] in several ways. First, our RSVM is capable of solving general
nonseparable problems, while Balcazar’s method has to transfer nonseparable
problems to an equivalent separable problems by assuming an arbitrarily small γ.
Second, our RSVM merges examples after sampling them. Duplicated examples
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are not allowed in the optimization steps. Third, we test the KKT conditions to
identify a violator instead of identifying a misclassified point. In our RSVM, a
correctly classified example may also be a violator if this example violates the
KKT condition.

4 Proof of the Average Convergence Rate

We prove the average number of iterations executed in our algorithm, PRSVM,
is bounded by (6δ/C) ln(N + 6r(C − 1)δ) in this section. This proof is a gener-
alization of the one given in [2]. The result of the tradition RSVM becomes a
special case of our PRSVM.

Theorem 1. For general SVM training problem the average number of itera-
tions executed in the PRSVM algorithm is bounded by (6δ/C) ln(N+6r(C−1)δ).

Proof. We consider an update to be successful if the if-condition in the step 4
holds in an iteration. One iteration has C updates, successful or not.

We first show the bound of the number of successful updates. Let Vp denote
the set of violators from site with priority q ≥ p for the solution θp. By this
definition, we have

u(Vp) =
C+1∑

q=p+1

u(Vq,p)

Since the if-condition holds, we have

C+1∑
q=p+1

u(Vq,p) ≤ u(Sp)/(3δ) ≤ u(X )/(3δ).

By noting that the total number of training vectors including duplicated ones in
each working sites is always r for any iterations, we have

p−1∑
q=1

u(Vq,p) ≤ r(p− 1) ≤ r(C − 1)

and ∑
q 	=p u(Vq,p) =

∑C+1
q=p+1 u(Vq,p) +

∑p−1
q=1 u(Vq,p)

= u(Vp) +
∑p−1

q=1 u(Vq,p)

Therefore, at each successful update, we have

uk(X ) ≤ uk−1(X )(1 +
1
3δ

) + 2r(C − 1).

where k denotes the number of successful updates. Since u0(X ) = N , after k
successful updates, we have

uk(X ) ≤ N(1 + 1
3δ )k + 2r(C − 1)3δ[(1 + 1

3δ )k − 1]
< (N + 6r(C − 1)δ)(1 + 1

3δ )k
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Let X0 be the set of support vectors of the original problem (1) or (2). At
each successful iterations, some xi of X0 must not be in Xp. Hence, u({xi}) gets
doubled. Since, |X0| ≤ δ, there is some xi in X0 that gets doubled at least once
every δ successful updates. That is, after k successful updates, u({xi}) ≥ 2k/δ.

Therefore, we have

2
k
δ ≤ u(X ) ≤ (N + 6r(C − 1)δ)(1 +

1
3δ

)k.

By simple algebra, we have

k ≤ 3δ ln(N + 6r(C − 1)δ).

That is, the algorithm terminates within less than 3δ ln(N+6r(C−1)δ) successful
updates.

The rest is to prove that the probability of a successful update is higher than
one half. By sampling lemma, the bound (3), we have

Exp(u(Vp)) ≤ (u(Sp)−r)δ
r+1

< u(Sp)
6δ

By Markov equality, we have

Pro{u(Vp) ≤ u(Sp)
3δ }

≥ Pro{u(Vp) ≤ 2Exp(u(Vp))}
≥ 1

2 .

This implies that the expected number of updates is at most twice as large as
the number of successful updates, i.e., K ≤ 6δ ln(N + 6r(C − 1)δ), where K
denotes the total number of updates. Note that, at the end of each iteration, we
have

K = Ct.

Therefore, the PRSVM algorithm guarantees, on average, within (6δ/C) ln(N +
6r(C − 1)δ) steps, that all the support vectors are contained by one of the C
working sites. For separable problems, we have δ ≤ n + 1. For general nonsepa-
rable problems, we have δ is bounded by the number of support vectors. ��
The bound of average convergence rate (6δ/C) ln(N +6r(C− 1)δ) clearly shows
the linear scalability if N >> δ. This can be true if the number of support vector
is very limited.

5 Simulations and Applications

We analysis our PRSVM by using synthesized data and a real-world geographic
information system (GIS) database.

Through out this section, the machine we used has a Pentium IV 2.26G CPU
and 512M RAM. The operation system is Windows XP. The SVMlight [11] ver-
sion 6.01 was used as the local SVM solver. Parallel computing is virtually sim-
ulated in a single machine. Therefore, we ignore any communication overhead.
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5.1 Synthesized Demonstration

We demonstrate our RSVM (reduced PRSVM when C = 1) training procedure
by using a synthesized two-dimensional training data set. This data set consists
of 1000 data points: 500 positive and 500 negative. Each class is generated from
an independent Gaussian distribution. Random noise is added.
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Fig. 1. Weights of training vectors in iterations. Darker points denote higher weights.

We set the sample size r to be 100 and the regularization factor γ to be 0.2.
The RSVM converges in 13 iteration. In order to demonstrate the weighting pro-
cedure, we choose three iterations (iteration 1, iteration 6 and iteration 13) and
plot the weights of the training vectors in Fig. 1. The darker a point appears, the
higher weight the training sample has. Fig. 1 shows that how those ”important”
points stand out and get higher and higher probability to be sampled.

5.2 Application in a Geographic Information System Database

We select covtype, a geographic information system database, from the UCI
Repository of machine learning databases as our PRSVM applications [5]. The
covtype database consists of 581,012 instances. There are 12 measures but 54
columns of data: 10 quantitative variables, 4 binary wilderness areas and 40
binary soil type variables [4]. There are totally 7 classes. We scale all quantitative
variables to [0,1] and keep binary variable unchanged. We select 287831 training
vectors and use our PRSVM to classify class 4 against the rest. This is a very
suitable database for testing PRSVM since the database has huge number of
training data and the number of SVs is limited.

We set the size of working size r to be 60000, the regularization factor γ to be
0.2. We try three cases with C = 1, C = 2 and C = 4 and compare the learning
time with the SVMlight in Table 1. The results show that our implementation
of RSVM and PRSVM achieves comparable result with the reported fastest
algorithm SVMlight, though they cannot beat SVMlight in terms of computing
speed for now. However, the lack of a theoretical convergence bound makes
SVMlight not always preferable.
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Table 1. Algorithm performance comparison of SVMlight, RSVM and PRSVM

Algorithm C Number of Iterations Learning Time
(CPU Seconds)

SV M light 1 - 11.7
RSVM 1 27 47.32

PRSVM 2 10 20.81
4 7 15.52

We plot the number of violators and support vectors (extremes) in each itera-
tions in Fig. 2 to compare the performance of different number of working sites.
The results show the scalability of our method. The numerical results match the
theoretical result very well.
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Fig. 2. Number of violators and SVs found in each iterations of PRSVM

This figure shows the effect of adding more servers. The system with more
servers will find the support vectors much faster than that with less servers.

6 Conclusions

The proposed PRSVM has the following advantages over previous works. It
is able to solve general nonseparable SVM training problems. This is achieved
by using KKT condition as the criterion of identifying violators and extremes.
Second, our algorithm supports multiple working sets that may work parallel.
Multiple working sets have more freedom than normal gradient based paral-
lel algorithms since no synchronization and no special solver is required. Our
PRSVM also has a provable and fast average convergence bound. Last, our nu-
merical results show that multiple working sets have scalable computing advan-
tage. The provable convergence bound and scalable results make our algorithm
more preferable in some applications.
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Further research is going to be conducted to accelerate the performance of
the PRSVM. Intuitively, the weighting mechanism may be able to be improved
so that the initial iterations play a more determinant role.
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Abstract. The training time complexity of Support Vector Regression (SVR) is 
O(N3). Hence, it takes long time to train a large dataset. In this paper, we pro-
pose a pattern selection method to reduce the training time of SVR. With multi-
ple bootstrap samples, we estimate ε-tube. Probabilities are computed for each 
pattern to fall inside ε-tube. Those patterns with higher probabilities are se-
lected stochastically. To evaluate the new method, the experiments for 4 data-
sets have been done. The proposed method resulted in the best performance 
among all methods, and even its performance was found stable. 

1   Introduction 

Support Vector Machine (SVM), developed by Vapnik based on the Structural Risk 
Minimization (SRM) principle [1], has performed with a great generalization accu-
racy [2]. SVR, a modified version of SVM, was developed to estimate regression 
functions [3]. Both SVM and SVR are capable of solving non-linear problems.  

For a brief review of SVR, consider a regression function f(x) to be estimated with 
training patterns {(xi, yi)} 

( )f x w x b= ⋅ +  with , Nw x R∈ , b R∈  (1) 

where 1 1{( , ), , ( , )} N

n nx y x y R R⋅ ⋅⋅ ⊂ × . (2) 

SVR is moved around to include training patterns inside -insensitive tube ( -tube). 
By the SRM principle, the generalization accuracy is optimized by the flatness of the 
regression function. Since the flatness is guaranteed on small w, SVR is moved to 
minimize the norm, ||w||2. An optimization problem could be formulated with con-
straints where C, and ξ, ξ* are trade-off cost between empirical error and the flat-
ness, size of -tube and slack variables, respectively, for the following soft margin 
problem. 

Minimize 
2

1

1
)

2

n

i i
i

w C ∗

=
+ (ξ + ξ∑  (3) 

                                                           
* Corresponding author. 
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Subject to   i i iy w x b− ⋅ − ≤ ε + ξ  

           
*

0
i i i

i i

w x b y
∗

⋅ + − ≤ ε + ξ
ξ ,ξ ≥

 

Hence, SVR is trained by minimizing ||w||2 with including training patterns inside the 
-tube. 

It takes O(N3) to solve the optimization problem of Eq. (3), thus the training time 
complexity of SVR is also O(N3). If the number of training patterns increases, the 
training time increases more radically, i.e. in a cubic proportion. 

So far, many algorithms such as Chunking, SMO, SVMlight and SOR have been 
proposed to reduce the training time with time complexity T  where T is 
the number of iterations and q is the size of working set. However, their training time 
complexity is still strongly related to the number of training patterns [4]. 

Another direction of research efforts focuses on reducing the number of patterns. 
But reducing the number of training patterns is likely to result in information loss, 
i.e. the generalization performance of SVM deteriorates. What is desired is to reduce 
the number of training patterns without accuracy loss. Instead of training SVM with 
all the patterns, only those with “more information” can be selected and used for 
training. Such methods include NPPS (O(N2)) [5] and Fast NPPS (O(vN)) [6]. How-
ever, NPPS approaches were developed for classification problem, not regression 
problem. 

In 2004, a pattern reduction method for regression tasks was proposed, which is 
called HSVM [7]. The training patterns are split into k groups. Then the similarity is 
calculated between every pattern with the center pattern of each group. The pattern is 
selected if similarity (i.e. reverse of their euclidean distances) of the pattern is larger 
than a pre-fixed threshold. Finally, patterns that are far away from each group’s cen-
ter are rejected from a training pattern set. However, too much accuracy loss  
occurred. 

The k-NN based pattern selection method was also proposed that employed en-
tropy and variability. It has reduced the number of patterns while keeping accuracy 
more or less same [8]. 

 

 

Fig. 1. -tube and -loss Foundation of SVR [9] 
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In this paper, we propose an -tube based pattern selection method for SVR with a 
goal of minimum or no loss of accuracy. SVR makes -tube on training patterns, and-
the center-line of -tube is estimated on the regression function (see Fig. 1). Thus, by 
employing those patterns inside -tube, which preserve the shape of -tube, we can 
get the same regression function with a significantly smaller number of patterns (see 
Fig. 2). Of course, before training, we do not know the exact -tube. Thus -tube is 
estimated from multiple bootstrap samples. 
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Fig. 2. (a) The regression function after training original pattern set, and (b) The regression 
function after training ONLY patterns inside estimated -tube 

Two artificial datasets and two real-world datasets were used for experiments. 
HSVM and random sampling method were used on benchmark methods. We com-
pared the respective results in terms of the training time and mean squared regression 
error. 

The remaining of this paper is organized as follows. In Section 2, we provide the 
main idea of the proposed method and state the algorithm. In Section 3, we present 
details of datasets and parameters for experiment as well as the result. In Section 4, 
we summarize the result and conclude the paper with a remark on limitations and fu-
ture research directions. 

2   Stochastic Pattern Selection Method 

SVR trains patterns based on –loss function foundation. SVR makes –tube on the 
training patterns. The patterns in –tube are not counted as error, and patterns out of 
–tube, i.e. Support Vectors (SVs), are used for training. In addition, SVR estimates 

the regression function as the center-line of –tube. Hence, if –tube can be estimated 
before training, we can find the regression function with only those patterns inside –
tube. However, removing all patterns outside –tube could lead to reduction of –tube 
itself, thus it is desirable to keep some of “outside” patterns for training. Hence, we 
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Fig. 3. (a) Original dataset and an SVR trained on it, (b) A bootstrap sample and an SVR 
trained on it, (c) Original dataset and –tube of (b)’s SVR, and (d) Selected patterns and an 
SVR trained on them 

defined a “fitness” probability for each pattern based on its location with respect to –
tube and then selected patterns stochastically. 

We made k bootstrap samples of size l (l<n) from original training pattern set (D). 
We trained an SVR with each bootstrap sample and obtained k SVR regression func-
tions. Each regression function was used to see if a training pattern is located inside 
–tube. Each training pattern in D is located inside a minimum of zero –tubes to a 

maximum of k –tubes. Let mj denote the number of times that pattern j is found in-
side an –tube. We use mj as the likelihood that pattern j is actually located inside the 
real –tube. Each mj is converted to a probability, pj as in Eq. (4). Since we want to se-
lect patterns inside –tube, pattern j is selected with a probability of pj (see Fig. 3) 

1

j
j n

i
i

m
p

m
=

=
∑

 
 
. (4) 

The algorithm is presented in Fig. 4. 
 



 ε-Tube Based Pattern Selection for Support Vector Machines 219 

 
1. Initialize the number of bootstrap samples, k 

Initialize the number of patterns in each bootstrap sample, l 
Initialize the number of patterns to be selected, s 

2. Make k bootstrap samples, Di (i=1…k), from 
the original dataset D by random sampling without replacement 

3. Train SVR fi with Di, i 
4. Count the number of times mj that pattern j is found  

inside  –tube of fi 
5. Convert mj to pj according to Eq. (4) 
6. Select s patterns stochastically from D without replacement based 

on pj 
7. Train final SVR with s selected patterns 

 

Fig. 4. –tube based pattern selection algorithm 

3   Experiment Results 

We used two artificial datasets and two real-world datasets to show the performance 
of the proposed method. Artificial dataset 1 (Fig. 5 (a)) was sampled from a math 
function given in Eq. (5) used in [10]. The input variable x was drawn uniformly from 
the interval [-3, 3] and additive noise ξ was sampled from N(0,0.52). The pattern set 
consists of 1,000 training patterns and 1,000 testing patterns. 

(sin ) /y x xπ π= + ξ  (5) 

A more realistic artificial dataset 2 (Fig. 5 (b)) was sampled from a math function 
given in Eq. (6). The input variable x was drawn from the interval [0, 10] under 
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Fig. 5. (a) Artificial dataset1, and (b) Artificial dataset2 
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Beta(1.5, 1).  A additive noise  ξ1 was sampled from N(0,0.52),  and the other addi-
tive noise ξ2 was sampled from N(0,sin2(x+1)2). In short, the variance of noise varied 
with x. Artificial dataset 2 consists of 1,000 training patterns and 1,000 testing pat-
terns. 

22cos(15 ) ( )y x 1= + ξ + ξ  (6) 
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Fig. 6. (a) The SantaFe E dataset, and (b) The KOSPI200 dataset 

One of real-world datasets came from Santa Fe competition (Fig. 6 (a)) [11]. We 
used 1,500 patterns for training and 500 patterns for testing. We used another real-
world dataset, KOSPI200 dataset (Fig. 6 (b)) [12]. KOSPI200 is a weighted average 
of 200 stock prices of Korean stock market. We gathered 2,500 daily patterns between 
1995~2004. The first 2,000 patterns were used for training, while the last 500 patterns 
were used for testing. Both real-world datasets are time series datasets. Hence, we re-
formulated the problem as a regression problem by using 10 previous values to esti-
mate the following one value, which is a typical way to solve time series problems. 
Real-world datasets were normalized. 

We set hyper-parameters of SVR, the trade-off cost C and the size of –tube 
based on [13]. The functions of the parameter setting are given in Eq. (7) and Eq. (8). 
RBF kernel was used as a kernel function and kernel parameter  was fixed to 1.0 for 
all experiments. 

max[( 3 3 )]y yc y y= + σ ), ( − σ  (7) 

ln( )
noise

n

n
ε = 3σ  (8) 

The parameters of the proposed method were set as follows. The number of boot-
strap samples k was set to two values : 10 and 100. The other parameter that controls 
the number of patterns in a bootstrap sample l was set to 10% of the number of pat-
terns in dataset, n. The number of selected patterns s was set to 10%, 30%, 50%, and 
70% of n. 
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HSVM and random sampling were also implemented to be compared with the pro-
posed method. HSVM has a threshold parameter to set. So, we tried various threshold 
values and found the appropriate thresholds that resulted in a similar number of pat-
terns as s mentioned above for comparison. We tried to keep the same interval of 
thresholds for each experiment. Mean Squared Error (MSE) was used as a measure of 
accuracy. Each setting was repeated 10 times and the result is an average of these. 
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Fig. 7. The Result of Artificial Dataset 1 (c=1.5058, =0.1247) 
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Fig. 8. The Result of Artificial Dataset 2 (c=4.6723, =0.1643) 
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Fig. 7 shows the experimental result of artificial dataset 1. The MSE and training 
time in seconds pairs are plotted that correspond to 70, 50, 30 and 10 percents of pat-
terns selected, respectively. Results from different methods are shown by different 
shapes of dots. The proposed method was more accurate than HSVM and random 
sampling given a same amount of training time. The SVRs trained with as low as 30% 
of the patterns selected by the proposed method resulted in a smaller MSE than SVR 
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Fig. 9. The Result of Santa Fe E Dataset (c=2.6553, =0.2974) 
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Fig. 10. The Result of KOSPI200 Dataset (c=3.3112, =0.0631) 
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trained with 100% of patterns. Many of noisy patterns seemed to be removed. Fig. 8 
shows the experimental result of artificial dataset 2. The proposed method clearly 
outperformed HSVM and random sampling.  

The experimental result of Santa Fe E dataset is shown in Fig. 9. The SVRs trained 
by the proposed sampling method did better than those by random sampling for all 
percentages and than HSVM for 70% and 10%. The SVR trained by HSVM did very 
well for some percentages but not for others. Its results seem rather unstable. The ex-
perimental result of KOSPI200 dataset is shown in Fig. 10. Similar results were ob-
tained. 

4   Conclusion 

This paper provides a new pattern selection method to reduce training time of SVR. 
We selected a subset of patterns that are important for training and accomplished re-
ducing the training time without accuracy loss. Two artificial datasets and two real-
world datasets, Santa Fe E dataset and KOSPI200 dataset were employed for com-
parison. The results showed that the generalization performance of the proposed 
method was better than HSVM and random sampling. In addition, the proposed 
method was found quite stable.  

There are some limitations of the current work. First, there is no guideline in de-
termining parameters k and l. “Reasonable” numbers were set in the experiments. But, 
some guideline should be obtained from more experiments. Second, SVR’s  
hyper-parameters could be set differently after pattern selection. A better generaliza-
tion performance could have been obtained. Finally, a more extensive experiment in-
volving large scale datasets is due. Pattern selection is most useful when a huge data-
set is available which simply prevents powerful SVR from being used due to time 
complexity. 

References 

1. Vapnik, V., The Nature of Statistical Learning Theory, Springer, New York (1995) 
2. Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines, Cambridge 

University Press, Cambridge, UK (2000) 
3. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., Vapnik, V., Support Vector Re-

gression Machines, In: Mozer, M. C., Jordan, M. I., Petsche, T.(eds.): Advances in Neural 
Information Processing System 9, MIT Press, Cambridge, MA (1997) 155-161 

4. Platt, J. C., Fast Training of Support Vector Machines Using Sequential Minimal Optimi-
zation, Advanced in Kernel Methods; Support Vector Machines, MIT Press, Cambridge, 
MA (1999) 185-208 

5. Shin, H., Cho, S., Pattern Selection for Support Vector Classifiers, Lecture Notes in Com-
puter Science 2412 (2002) 469-474 

6. Shin, H., Cho, S., Fast Pattern Selection Algorithm for Support Vector Classifiers: Time 
Complexity Analysis, Lecture Notes in Computer Science 2690 (2003) 1008-1015 

7. Wang, W., Xu, Zongben., A Heuristic Training for Support Vector Regression, Neuro-
computing 61 (2004) 259-275 



224 D. Kim and S. Cho 

8. Sun, J., Cho, S., Pattern Selection for Support Vector Regression based on Sparseness and 
Variability, Submitted (2005) 

9. Smola, A., Schölkopf, B., A Tutorial on Support Vector Regression, NeuroCOLT Techni-
cal Report NC-TR-98-030, Royal Holloway College, University of London, UK (2002) 

10. Chalimourda, A., Sch lkopf, B., Smola, A., Experimentally Optimal ν in Support Vector 
Regression for Different Noise Models and Parameter Settings, Neural Networks 17 
(2004) 127-141 

11. Santa Fe Dataset : http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html 
12. KOSPI200 Dataset from Korea Stock Market : http://sm.krx.co.kr 
13. Cherkassky, V., Ma, Y., Practical Selection of SVM Parameters and Noise Estimation for 

SVM Regression, Neural Networks 17 (2004) 113-126 



 

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006,  LNAI 3918, pp. 225 – 229, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Self-adaptive Two-Phase Support Vector Clustering for 
Multi-Relational Data Mining 

Ping Ling1,2, Yan Wang1, and Chun-Guang Zhou 1,* 

1 College of Computer Science, Jilin University, Key Laboratory of Symbol Computation 
and Knowledge Engineering of the Ministry of Education, Changchun 130012, China 

cgzhou@jlu.edu.cn 
2 School of Computer Science, Xuzhou Normal University, Xuzhou, 221116, China 

lingicehan@yahoo.com.cn 

Abstract. This paper proposes a novel Self-Adaptive Two-Phase Support Vec-
tor Clustering algorithm (STPSVC) to cluster multi-relational data. The algo-
rithm produces an appreciate description of cluster contours and then extracts 
cluster centers information by iteratively performing classification procedure. 
An adaptive Kernel function is designed to find a desired width parameter for 
diverse dispersions. Experimental results indicate that the designed Kernel can 
capture multi-relational features well and STPSVC is of fine performance. 

1   Introduction 

Multi-Relational Data Mining (MRDM) [1] looks for patterns in Multi-Relational 
(MR) environment, namely multi connected table scenario. It requires mining from 
multi tables directly. Kernel function is often used in MRDM due to its fine quality of 
defining a nonlinear map from original space to feature space. For example, Support 
Vector Clustering (SVC) [2] uses non-bounded Support Vector (nbSV) to describe 
cluster contours. Support Vector Machine (SVM) [3] finds the optimal decision inter-
face for highly structured data.  

This paper presents an algorithm STPSVC that is equipped with a multi-relational 
version Kernel to solve MRDM clustering task. STPSVC produces cluster contours 
firstly. Then a classification procedure is executed to find cluster centers information. 
The final cluster assignment is determined according to the affinity between data and 
cluster centers without suffering the expensive operations used in traditional SVC. 

2   STPSVC Algorithm 

STPSVC performs SVC procedure firstly to produce nbSVs and bSVs that are used to 
describe cluster contour bands. Then an iterative classification procedure to separate 
set of SVs from set of inner-clusters points is appended so as to extract cluster center 
information. The final cluster assignment is finished by computing similarity between 
point and each cluster center. Algorithm pseudocodes are as following: 

                                                           
* Corresponding author. 
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1)    SVC produces { }nbSV  and { }bSV ; 

2)   { } { } { }A data nbSV bSV= − − ; { } { }B nbSV bSV= + ; 

3)   While ( _iteration condition ; 

4)    SVM (A, B); 
5) { } { }A A B new nbSV new bSV= + − − ; { } { }B new nbSV new bSV= + ; 

6)   End 
7)  Aggregate centers according to ( _ , _ )Affinity Cen i Cen j ; 

8)  Clusters’ assignment according to ( , _ )Affinity x Cen i . 

Line 1 is Phase 1. It executes SVC process. Both nbSVs and bSVs are united to-
gether to give a broad description for decision bands. Phase 2 is from Line 2 to Line 
6. It iteratively performs SVM classification between the set of points located inside 
clusters, A, and the set of SVs, B. Update A as the new cluster contents, and B as the 
new decision bands. This makes dividing interfaces generated in each run move closer 
and closer to central zones. We give the heuristic of the upper limit of runs of SVM as 

MinSize

coef
i ≤ , where MinSize is the size estimate of the minimum cluster. MinSize is 

evaluated by following steps: a) Sort rows of Kernel matrix in a descending order. b) 
Find  gap(i) =  maxj{k(i ,j)-k(i,j-1)}. c) MinSize = min {gap(i)}. Clearly, gap(i) is the 
natural size estimate of the inherent cluster that contains point xi, and MinSize is the 
rough approximation of the smallest cluster size. Parameter coef indicates the width of 
decisive bands. It is set as 2 in this paper. For two cluster centers: 
Cen_i={si1,si2,…sin} and  Cen_i={sj1,sj2,…sjm} , where sit and sjt, are SVs, their affin-

ity is: 
1 1

( , )
( _ , _ )

n m
u v

u v

k si sj
Affinity Cen i Cen j

m n= =
=

⋅
. Cluster assignment is decided 

according to: 
1

( , )
( , _ )

n
u

u

k x si
Affinity x Cen i

n=
= . 

3   Kernel Definition 

In MR environment a main table is mainly investigated. Its relational information is 
implicated by association keys (AK). AK includes foreign key (FK) and referenced 
key (RK). We think each key stands one expanding direction of data description, and 
affinity produced by each key can be considered as a local affinity. All local affinities 
are collected in a desirable way that:   

_ _ _ _
_ _ _ _

( , ) ( , )
( , ) ( , )

| | | |

FK i j RK i j
i j ci cj

k R R k R R
K R R k R R

FK RK

+
= ⋅

+
. (1) 

In (1), 
| |

_ _ _ _1
( , ) ( , )

FK

FK i j ui uj
u

k R R k R R+ +

=
= Σ  

| |

_ _ _ _1
( , ) ( , )

RK

RK i j vi vj
v

k R R k R R+ +

=
= Σ .     (2) 

In (2), where          
| |

_ _ _ _1
( , ) ( , )

Hv

vi vj set vi m vj mm
k R R k R R+ + + +

=
= Π .                                        (3) 
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In (3), where           1 2,
1 2

1 2

( , )
( , )

| |

x S y S
set

k x y
k S S

S S

∈ ∈
Σ

=
×

.                                               (4) 

The global Kernel affinity is expressed by the product of affinity coming from 
Main table and the affinities from expanding information descriptions. More in de-
tails, for the map from FK to RK, an object corresponds to a single expanding in-
stance. To measure local affinity between two objects in this expanding direction, 
their respective expanding instances can be introduced into the elementary Kernel 
directly. As to the map from RK to FK, there might be multi expanding tables because 
a RK might correspond to multi FKs of tables. If we denote by Hv the set of tables that 
a RK v corresponds to, then the affinity produced by v  is the product of local affini-
ties generated by each table in Hv. This point is shown in (3), where 

_ _( , )set vi m vj mk R R+ +  is to compute the local affinity from table m. Moreover, under the 

map from a RK to a FK, one object could correspond to multi instances. So the local 
affinity of two objects reduces to affinity of their expanding instances sets, which is 
shown in (4). Gaussian Kernel serves as the elementary Kernel. According to the 
theorem of Kernel construction, formula (1) is of positive semi-definite property. 

Here, for each expanding table, we find q that satisfies the following constrain: 

2 2max(exp( || || ) exp( || || ))p in out pq x x q x x− − − − −  .                     (5) 

In objection function (5), xp is found according to below steps: a) Sort rows of dis-
tance matrix D in an ascending order. b) Find the maximum gap between adjacent 
entries: D(i,j) and D(i,j+1) for each row, and denote the column index j as 
gap(i)=maxj{D(i,j+1)-D(i,j)}. c) Let p=mini {gap(i)}, then xp is the point that pro-
duces max gap feature. Find xout that produces D(p,gap(p)) with xp, namely || xp - xout 
||= D(p,gap(p)). xout is considered as the nearest point outside its group. Find xin that 
fulfills || xp - xin ||= D(p,gap(p)-1). xin is considered as the furthest point within its 
same group. Formula (5) tries to find the top gap between inner-cluster affinity and 
inter-cluster affinity. If this gap arrives at maximum, there would produce high intra-
cluster affinity and low inter-cluster affinity, and cluster contours can be revealed 
more apparently. And width parameter q under this setting is expected to be suitable. 

4   Experimental Results 

Firstly, STPSVC is applied on some real datasets: IRIS [4], WINE [4], and Breast 
Cancer (BC) [4]. The performance of STPSVC is compared in Table 1 with some 
other clustering algorithms: classical K-means; traditional SVC, Girolami method [5] 
and NJW [6]. For each algorithm, the minimum number of incorrectly clustered 
points is documented. Note that the errors of SVC in WINE and BC datasets are of-
fered by us under the same experiment conditions. There, pure TPSVC just performs 
the two phases without the tuning approach. Its scale q in Gaussian Kernel is set by 
searching in some space. (With 2G P4 CPU PC, 256M memory, WinXP, MatLab7.0) 

For two TPSVC algorithms, TPSVC is a little better than STPSVC. And STPSVC 
shows finer quality in IRIS and BC dataset. But as far as WINE dataset is concerned. 
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Table 1. Empirical error comparison on real datasets (N is dataset size. D is the dimensionality. 
To STPSVC and TPSVC, we set Csvc= 0.8, Csvm= 0.8, and 2 runs of SVM.) 

Dataset Properties K-means Girolami SVC NJW STPSVC TPSVC 

IRIS 
N = 150 

D = 4 
16 8 14 14 6 

(q=0.2603) 
4 

(q=0.512) 

WINE 
N = 178 
D = 13 

5 3 12 3 9 
(q=0.0573) 

5 
(q=0.317) 

BC 
N = 638 

D = 9 
26 20 32 22 24 

(q=0.01) 
21 

(q=0.405) 

Table 2. Classification Accuracy Comparison on MUSK1 (%) 

Dataset TILDE SVM-MM SVM-MI SVM 
MUSK1 87.00 91.60 86.40 92.3  (Csvm = 2.3) 

Table 3. Clustering Accuracy on MUSK1 (%) (Csvc= 0.8, Csvm= 0.8, and 2 runs of SVM) 

STPSVC TPSVC 
90.87   (q = 4.5455) 93.12   (q = 5.146) 

Table 4. Clustering on Student database(Csvc = 0.8, Csvm = 5.8 and 3 runs SVM) 

 Settings Number of clusters Number of SVs Cluster size 
STPSVC q = 0.425 4 6,12,11,8 36,130,189,32 
TPSVC q = 0.6311 4 8,13,11,7 43,140,176,28 

The fact that 178 points cover 13 dimensions leads to the weak connection informa-
tion in neighboring context. So of STPSVC has a higher error than others. 

Now STPSVC is applied on a relational problem: MUSK [7]. We use MUSK1 ver-
sion. We fix the data and develop a two-level relation frame for it. To test quality of 
the designed Kernel, we employ it into classical SVM and compare it with other clas-
sifiers: TILDE [8], SVM-MM and SVM-MI [9]. Their accuracy ratios with ten fold 
cross-validation are in Table 2. Our SVM procedure achieves better result, which 
shows the designed Kernel can grasp relational features effectively. Then, STPSVC 
and TPSVC are performed, with comparison in Table 3.  It is easy to see the tuning 
approach is competitive with the searching one but with ease of parameterization. 

Finally, STPSVC is conducted on the document data of 387 students coming from 
some grade of Software College, Jilin University. This database contains six tables, 
Student, Rank, Classtype, Agegroup, Work and Activities, where Student Main table. 
The relationship among tables is shown in Fig 1. Table 4 gives clustering results pro-
duced by STPSVC and TPSVC. To examine the effect of algorithm, in Fig 2, the 
statistics information of Main table, score data, is demonstrated after being processed 
by a weighted averaging method. Based on it, all students can be divided into four 
groups, which can be referred as 4 groups. And this intuitive analysis coincides with 
the results of STPSVC by and large, which forms 4 clusters. But when we investigate 
the content of corresponding clusters and group, we find that their content details 
differ and STPSVC provides result that is more agreed with the true comments. 
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Fig. 1.  Relation Schema of Student Database             Fig. 2. Statistics on Weighted Score 

5   Conclusion and Prospect 

A novel STPSVC algorithm is presented in this paper. It obtains contour descriptions 
of clusters in Phase 1, and then performs SVM iterations between set of SVs and set 
of points inside clusters to find SVs that are located closer to cluster core zones. Fu-
ture working directions is to utilize Kernel further to design suitable expression of 
relational schema and to develop potent algorithms. 
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Abstract. The present paper proposes new approaches for recommen-
dation tasks based on one-class support vector machines (1-SVMs) with
graph kernels generated from a Laplacian matrix. We introduce new
formulations for the 1-SVM that can manipulate graph kernels quite ef-
ficiently. We demonstrate that the proposed formulations fully utilize the
sparse structure of the Laplacian matrix, which enables the proposed ap-
proaches to be applied to recommendation tasks having a large number
of customers and products in practical computational times. Results of
various numerical experiments demonstrating the high performance of
the proposed approaches are presented.

1 Introduction

Recently, the importance of recommender systems has increased rapidly with
the growing availability of online information on the Web. Customers visiting
the largest e-commerce sites often have difficulty in finding a particular item
among the enormous number of products for sale. Many recommender systems
[5, 8] have been installed to filter out irrelevant products and locate products
that might be of interest to individual customers.

Collaborative filtering is one of the most successful technologies for recom-
mendation tasks, in which customer ratings on products or historical records
of purchased products are exploited to extract the preferences of individuals.
Collaborative filtering calculates similarities between customers based on the
customer rating, or the purchased products patterns of each individual. Col-
laborative filtering then finds a set of the most similar patterns, and recom-
mends products for a particular individual. In the present paper, we provide
new approaches for recommendation tasks using kernels defined on a graph that
represents the relationships between the products.

Very recently, Fouss et al. [3] introduced a graph kernel, referred to as the
commute time kernel and directly applied the kernel-based dissimilarities to the
recommendation task. More precisely, they defined the kernel over a bipartite
graph with two sets of nodes corresponding to a set of customers and products.
They placed edges between the customer nodes and the product nodes when the
customer has purchased the product. They defined a random walk model over

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 230–239, 2006.
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this graph by assigning the transition probabilities over the edges. They showed
that the average commute time between the two nodes is given by the kernel and
that it can be used as a distance measure between the corresponding customer
and product.

In the present paper, we use the 1-SVM with graph-based kernels to select
relevant products for each customer. We introduce new formulations for the 1-
SVM that can efficiently manipulate several recently developed graph kernels,
such as [11, 10, 1, 4]. In addition, we show that a special case of our formula-
tion does not require any optimization calculations. More importantly, the new
kernel matrix is significantly smaller than that of the method reported in [3],
which enables us to apply the present approach to large e-commerce sites with
a practical amount of computation.

In Sect. 2, we briefly review the standard formulation of the 1-SVM and its ba-
sic settings for recommendation tasks. In Sect. 3, we describe various graph ker-
nels, and in Sect. 4, we introduce new formulations for the 1-SVM. Experiments
using a movie dataset are presented in Sect. 5, and conclusions are presented in
Sect. 6.

2 1-SVM for Recommendation

The SVM was originally designed as a method for two-class classification prob-
lems. In this section, we will describe a variant of the SVM, called the one-class
SVM (1-SVM) [7], which can handle problems that consider a single class of
data points.

Suppose that we have a set of N -dimensional data points xj ∈ RN (j =
1, 2, . . . , l). Also, assume that we have a function φ(·) : RN �→ F that maps the
data points into a higher-dimensional feature space, denoted by F . Hereinafter,
for simplicity, we denote the mapped image φ(xj) as φj . Let w ∈ F and ρ ∈ R.
Also, the inner product in F is denoted as 〈 · , · 〉. The purpose of the 1-SVM is
to calculate a hyperplane that holds most of the data points in its positive side,
i.e., 〈w , φj 〉 − ρ > 0.

Introducing additional variables ξ = (ξ1, ξ2, . . . , ξl)T , w and ρ are obtained
by solving the following quadratic programming problem:∣∣∣∣Min. 1

2 〈w , w 〉+ 1
νl

∑l
j=1 ξj − ρ

s.t. 〈w , φj 〉+ ξj ≥ ρ, ξj ≥ 0, j = 1, . . . , l,
(1)

where ν ∈ (0, 1] is a predefined positive parameter. Let (w∗, ρ∗) denote an op-
timal solution of the problem (1). When a data point, the mapped image of
which is denoted by φ, belongs to the negative side of the hyperplane, i.e.,
〈w∗ , φ 〉+ ρ∗ < 0, the pattern can be considered to be different from the given
single class of data points.

The objective of the recommendation task is to find products that have not
yet been purchased but that would likely be purchased by a specific customer,
hereinafter referred to as an active customer. Suppose that we are given a set of
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products P = {1, 2, . . . ,M} and that, for each product j ∈ P , the associated fea-
ture vectors φj ∈ F are obtained. In addition, let P (a) ⊆ P be a subset of indices
that are rated as preferable products, or that have actually been purchased by
the active customer a. For simplicity, let us assume that P (a) consists of l prod-
ucts and is denoted as P (a) = {1, 2, . . . , l}, which is treated as a set of the single
class of data points in the problem (1). Let (w∗, ρ∗) denote an optimal solution
of (1). Then, for each product i that has not been purchased, i.e., i ∈ P \ P (a),
the distance from the hyperplane calculated as (〈w∗ , φi 〉+ ρ∗) /〈w∗ , w∗ 〉 can
be used as a preference score of the product i. Ignoring the constants, one can
use the inner product 〈w∗ , φi 〉 as a score to rank the product i for the specific
active customer a.

Generating a nonlinear map φ(·) is quite important in SVM. Usually, this is
done implicitly by kernels that are naturally introduced by the following dual
formulation of the problem (1).∣∣∣∣∣Max. − 1

2

∑l
i=1

∑l
j=1 〈φi , φj 〉αiαj

s.t.
∑l

j=1 αj = 1, 0 ≤ αj ≤ 1
νl , j = 1, 2, . . . , l,

(2)

where α1, α2, · · · , αl are dual variables. Note that the dual formulation can
be defined using only the values of the inner products, without knowing the
mapped image φi, explicitly. In addition, let (α∗

1, α
∗
2, · · · , α∗

l ) be the solution
to the dual problem. Then, the associated optimal primal solution is given as
w∗ =

∑l
j=1 α

∗
jφj , which immediately implies that the score of the product i is

given by 〈w∗ , φi 〉 =
∑l

j=1 α
∗
j 〈φi , φj 〉.

Let K = {Kij} be a symmetric matrix called a kernel matrix, which consists
of the inner products 〈φi , φj 〉 as the i − j element. Any positive semidefinite
matrices K can be used as kernel matrices. It has been shown that positive
semidefiniteness ensures the existence of the mapped points, φis (see, for exam-
ple, [9]).

3 Laplacian of a Graph and Associated Kernel

Recently, several studies [11, 10, 1, 4] have reported the development of kernels
using weighted graphs. In this section, we will review such kernels.

First, let us introduce a weighted graph G(V,E) having a set of nodes V and
a set of undirected edges E. The set of nodes V corresponds to a set of data
items such as products in a recommendation task. For each edge (i, j) ∈ E, a
positive weight bij > 0 representing the similarity between the two nodes i, j ∈ V
is assigned. We assume that the larger the weight bij , the greater the similarity
between the two nodes. Let M be the number of nodes in V , and let B be an
M ×M symmetric matrix with elements bij for (i, j) ∈ E. Note that if there
exists no edge between i and j, then we set bij = 0.

Next, let us introduce the Laplacian matrix L of the graph G(V,E) as L =
D−B, where D is a diagonal matrix, the diagonal elements dii of which are the
sum of the ith row of B, i.e., dii =

∑
j bij . Throughout this paper, we assume

that the graph G(V,E) is connected.
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There are several methods for generating kernel matrices based on L. Fouss
et al. [3] considered a random walk model on the graph G, in which, for each
edge (i, j), the transition probability pij is defined as pij = bij/

∑M
k=1 bik. They

considered the average commute time n(i, j), which represents the average num-
ber of steps that a random walker, starting from node i, will take to enter node
j for the first time and then return to node i. They indicated that the average
commute time n(i, j) can be used as a dissimilarity measure between any two
data points corresponding to the nodes of the graph, and that n(i, j) is given as
n(i, j) = VG

(
l+ii + l+jj − 2l+ij

)
, where VG =

∑
i,j bij and l+ij is the i − j element

of the Moore-Penrose pseudoinverse of L, which is denoted by L+. Fouss et al.
[3] also showed that as long as the graph is connected, the pseudoinverse L+ is
explicitly given as follows:

L+ =
(
L− eeT /M

)−1
+ eeT /M, (3)

where e is a vector of all ones. Since L is positive semidefinite [2], so is its
pseudoinverse L+, which implies that L+ can act as a kernel matrix [3].

Here, L and L+ share the common eigenvectors. Let v1,v2, . . . ,vM and
λ1, λ2, . . . , λM be the eigenvectors and the corresponding eigenvalues of L, re-
spectively. It is well-known that L is decomposed into L =

∑M
i=1 λi(vT

i vi), and
that the pseudoinverse is also given as

L+ =
M∑
i=1

λ+
i (vT

i vi), where λ+ =
{
λ−1 if λ 	= 0
0 if λ = 0. (4)

Several variants of the above equation have been proposed. Smola & Kondor
[10] introduced the following regularized Laplacian kernel matrix

K1 =
M∑
i=1

(1 + tλi)−1vT
i vi =

∞∑
k=0

tk (−L)k = (I + tL)−1
. (5)

Moreover, by introducing the modified Laplacian Lγ = γD−B with a parameter
0 ≤ γ ≤ 1, Ito et al. [4] defined the modified Laplacian regularized kernel matrix
as

K2 = (I + tLγ)−1
. (6)

In particular, when γ = 0 this kernel matrix is the von Neumann diffusion kernel,
which is defined as

K3 =
∞∑

k=0

tkBk = (I − tB)−1
. (7)

4 Learning 1-SVMs with Graph Kernels

Next, we will describe recommendation methods based on the 1-SVM using the
kernel matrices K described in the previous section. Recall that we are given a
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set of M products P = {1, 2, . . . ,M} and a subset P (a) ⊆ P , which have been
purchased by the active customer a. We assume that P (a) = {1, 2, . . . , l}. In
addition, the elements of the kernel matrix K represent the inner products of
the feature vectors corresponding to the products.

Let us first rewrite the primal formulation. To this end, introducing M vari-
ables α = (α1, · · · , αM )T

, let us assume that w ∈ F is given as a linear com-
bination of M points as w =

∑M
j=1 αjφj satisfying

∑M
j=1 αj = 1. Substituting

these equations into the primal problem (1), the following is obtained:∣∣∣∣∣∣∣
Min. 1

2αTKα + 1
νl

∑l
i=1 ξi − ρ

s.t.
〈∑M

i=1 αiφi , φj

〉
+ ξj ≥ ρ, ξj ≥ 0, j = 1, 2, . . . , l,

eT α = 1.

(8)

Let α∗ be an optimal solution of this problem, the preference score of the product
i is given as the ith element of the vector Kα∗, i.e.,

∑M
j=1 α

∗
j 〈φi , φj 〉 = (Kα∗)i .

Here, generating the kernel matrices given in Sect. 3 requires calculation of
the inverse of the matrices as described in (3) and (5) through (7). The inverse
operations require a significant computational effort, which prevents us from
using these kernel matrices for the recommendation tasks when the number of
products is large. Moreover, in general, these kernel matrices become fully dense,
which causes difficulty in holding the kernel matrices in memory during the time
required for solving the problem (8). In the subsequent subsections, however, we
will propose new formulations of 1-SVMs which can handle the kernel matrices
defined by (3) and (6) efficiently.

4.1 Modified Laplacian Regularized Kernel

Suppose that the kernel matrix K is the modified Laplacian regularized kernel
matrix given by (6), which includes the regularized Laplacian kernel matrix (5)
and the von Neumann diffusion kernel matrix (7) as the special cases.

Let us first introduce a new vector of variables β = (β1, β2, . . . , βM )T ∈ RM ,
and define β ≡ Kα. Note that βj = (Kα)j =

〈∑M
i=1 αiφi , φj

〉
holds for

each j. It follows that α = K−1β = (I + tLγ) β holds. The equality constraint
eT α = 1 in (8) can then be verified to be (e− t(γ − 1)d)T β = 1 where d =
De = Be. Furthermore, a straightforward calculation reveals that αTKα =
βT (I + tLγ) β.

Therefore, the problem (8) can be equivalently formulated with respect to the
new variable β as follows:∣∣∣∣∣∣

Min. 1
2 βT (I + tLγ)β − ρ + 1

νl

∑l
i=1 ξi

s.t. βj + ξj ≥ ρ, ξj ≥ 0, j = 1, 2, . . . , l,
(e− t(γ − 1)d)T

β = 1.
(9)

Here, it should be emphasized that we can formulate the 1-SVM without the
inversion calculations.
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4.2 Commute Time Kernel

When we use the commute time kernel matrix L+ as K in (8), a simpler formu-
lation can also be derived. First, as in the previous section, let us introduce a
vector of variables β = (β1, β2, . . . , βM )T , and let us define

β ≡ (L+ − eeT /M
)
α + e/M. (10)

For each j, if α satisfies the constraint eT α = 1 of the problem (8), then
βj =

〈
φj ,

∑M
i=1 αiφi

〉
holds. Therefore, it follows from (3) and (10) that

α =
(
L− eeT

M

) (
β − e

M

)
holds. In addition, we can easily verify that the con-

straint eT α = 1 in (8) is written as eT β = 0. Furthermore, αTL+α = βTLβ
holds if β satisfies eT β = 0. Therefore, the primal problem (8) can be equiva-
lently formulated as follows:∣∣∣∣∣∣

Min. 1
2 βTLβ − ρ + 1

νl

∑l
i=1 ξi

s.t. βj + ξj ≥ ρ, ξj ≥ 0, j = 1, 2, . . . , l,
eT β = 0.

(11)

Let (β∗, ξ∗, ρ∗) be an optimal solution of the problem (11). We have the
following lemma.

Lemma 1. The optimal solution (β∗, ξ∗, ρ∗) satisfies β∗
j ≤ ρ∗ for all j =

1, . . . ,M .

Proof. Let β̄ ≡ max
{
β∗

j | j = 1, 2, . . . ,M
}
. For the purpose of contradiction, let

us assume that β̄ > ρ∗. We will show that a better solution can be constructed.
Let I ≡ {i|β∗

i = β̄
}
. Note that ξ∗i = 0 for any i ∈ I. In addition, for a

sufficiently small ε > 0, let us define a new solution β̂ = (β̂1, β̂2, · · · , β̂M ), where
β̂i ≡ β̄ − ε if i ∈ I, and β̂i ≡ β∗

i + |I|
M−|I| ε if i 	∈ I. Here, β̂ satisfies eT β̂ = 0

and, for all i = 1, 2, . . . , l, when ε is sufficiently small, β̂i + ξ∗i ≥ ρ∗ holds true.
Therefore, (β̂, ξ∗, ρ∗) is a feasible solution of the problem (11). It is easy to
verify that the objective value of the solution (β̂, ξ∗, ρ∗) is better than that of
(β∗, ξ∗, ρ∗), which is a contradiction. ��
From Lemma 1, the following corollary can be obtained.

Corollary 1. The optimal solution (β∗, ξ∗, ρ∗) of the problem (11) satisfies β∗
j +

ξ∗j = ρ∗ for all j = 1, 2, . . . , l.

Consequently, by substituting ξj = ρ−βj, the problem (11) can be simplified as
follows: ∣∣∣∣∣∣

Min. 1
2 βTLβ + 1−ν

ν ρ− 1
νl

∑l
i=1 βi

s.t. βj ≤ ρ, j = 1, 2, . . . , l,
eT β = 0.

(12)



236 Y. Yajima

4.3 Some Special Cases

It has been shown that the 1-SVM formulation given in (1) can be solved an-
alytically when ν = 1.0. This is also true for our formulation given in (8). We
have the following lemma:

Lemma 2. Let (α∗, ξ∗, ρ∗) be an optimal solution of (8) with ν = 1.0, i.e.,∣∣∣∣∣∣∣
Min. 1

2αTKα + 1
l

∑l
j=1 ξj − ρ

s.t.
〈∑M

i=1 αiφi , φj

〉
+ ξj ≥ ρ, ξj ≥ 0, j = 1, . . . , l,

eT α = 1.

(13)

Then, for all j = 1, 2, . . . , l, the inequalities
〈∑M

i=1 α
∗
i φi , φj

〉
≤ ρ∗ hold true.

Proof. Let us assume, to the contrary, that there exists an index k such that〈∑M
i=1 α

∗
iφi , φk

〉
> ρ∗. It should be noted that ξ∗k = 0.

Next, let Δ ≡
〈∑M

i=1 α
∗
i φi , φk

〉
−ρ∗ > 0. Then, we can define a new solution

ξ̂ = (ξ̂1, . . . , ξ̂l) and ρ̂ as follows:

ξ̂j =
{
ξ∗j + Δ if j 	= k,
ξ∗k if j = k,

and ρ̂ = ρ∗ + Δ.

The solution (α∗, ξ̂, ρ̂) also satisfies the constraints of the problem (13). In par-
ticular, we note that the equality

〈∑M
i=1 α

∗
i φi , φk

〉
+ ξ̂k = ρ̂ holds true because

ξ̂k = 0. Straightforward calculations show that the objective value of (α∗, ξ̂, ρ̂)
is better than that of (α∗, ξ∗, ρ∗), which is a contradiction. This completes the
proof. ��

This lemma also ensures that ξ∗j = ρ∗ −
〈∑M

i=1 α
∗
i φi , φj

〉
holds for each j =

1, 2, . . . , l. Then, substituting these equations into the objective function of the
problem (13), the following formulation is obtained:∣∣∣∣Min. W (α) = 1

2αTKα− 1
l y

TKα
s.t. eT α = 1, (14)

where y = (y1, y2, . . . , yM )T is an M -dimensional vector such that y1 = y2 =
· · · = yl = 1 and yl+1 = yl+2 = · · · = yM = 0. Note that y is a binary vector
representing the purchased products by the active customer.

The problem (14) can be solved analytically. Since the gradient of the objec-
tive function W (α) is described as ∇W (α) = Kα − 1

l Ky, a stationary point
of W (α) is given as α = 1

l y, which happens to satisfy the constraint eT α = 1.
Therefore, the problem (14) is solved.
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5 Computational Experiments

To evaluate the performances of the proposed approaches, numerical experi-
ments are conducted using a real-world dataset. We use the MovieLens dataset
developed at the University of Minnesota. This dataset contains 1,000,209 rat-
ings of approximately 3,900 movies made by 6,040 customers. We use 100,000
randomly selected ratings [6] containing 943 customers and 1682 movies. This
set of ratings is divided into five subsets to perform five-fold cross-validation.
The divided dataset can be retrieved from http://www.grouplens.org/data/.
Moreover, in order to demonstrate the scalability of the proposed approach, we
use the original full dataset, which is also randomly divided into five subsets to
perform the cross-validation.

In these experiments, all of the rating values are converted into binary values,
indicating whether a customer has rated a movie. This conversion has been used
in several papers, including [6, 3]. Let M and N be the number of products and
customers, respectively. Then the dataset is represented as an N × N binary
matrix A, where the i− j element Aij = 1 if customer i has watched movie j.

In order to generate the graph-based kernels, we first construct a k-nearest
neighbor graph G(V,E) where the set of nodes V corresponds to that of the
movies. For each node j ∈ V , let Aj denote the jth column vector of matrix A.

Based on the cosine similarities AT

i Aj

‖|Ai‖‖Aj‖ between movie i and movie j, when
movie i is among the k nearest neighbors of movie j, or when movie j is among
those of movie i, we place an edge (i, j) ∈ E and assign a unit weight bij = 1.
We report the results obtained by the kernel matrices given in (3) and (5).

For each kernel matrix, we solve the 1-SVM with the parameter ν = 1 for
generating the preference scores, which can be achieved by solving a system of
linear equations as described in Sect. 4.3. More precisely, for each active customer
a, let ya ∈ RM be an M -dimensional binary vector representing the purchased
products by active customer a. Then, the preference score of each product i is
given as the ith element of the vector

(
L− eeT /M

)−1
ya when we use the kernel

matrix (3), or of the vector (I + tL)−1
ya when we use (5).

The cross-validation is conducted using the training and test set splits de-
scribed above. We first calculate the score using the training set. Note that, for
each active customer, the movies contained in the corresponding test set are not
contained in the training set. Then, if the score is ideally correct, these movies
have to be ranked higher than any other movies not watched in the training set.
For comparison, the performance of the proposed method is evaluated in the
manner described in [3] using the degree of agreement, which is the proportion
of pairs ranked in the correct order with respect to the total number of pairs.
Therefore, a degree of agreement of 0.5 will be generated by the random ranking,
whereas a degree of agreement of 1.0 is the correct ranking.

The average degrees of agreement of the five-fold cross validation are given
in Figs. 1 through 3. Figures 1 and 2 show the results for the 100,000 selected
ratings, and Fig. 3 shows the results for the full MovieLens dataset with more
than one million ratings. Figure 1 shows the results obtained by the kernel matrix
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Fig. 1. Results obtained by kernel (3)
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Fig. 2. Selected dataset with kernel (5)
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Fig. 3. Full dataset with kernel (5)

(3), and Figs. 2 and 3 show the results by (5). The kernel matrices are constructed
by changing the number of neighbors ranging from k = 4 to k = 100, as well as
the parameter t in (5), which ranges from t = 2−10 to t = 210. Note that contour
lines that are less than 0.893 are omitted from Fig. 2, and those that are less
than 0.911 are omitted from Fig. 3.

For comparison, we also perform the same five-fold cross-validation using
a previously proposed scoring method [3]. In this case, the average degree of
agreement is 0.8780, which is approximately the same as the results of the kernel
matrix (3), but is significantly less than that obtained by (5). It should be
emphasized that the proposed method offers better performance in a wide range
of parameter settings (See Fig. 2). Furthermore, the kernel matrix used in [3]
is generated from a large graph, the nodes of which corresponds to all of the
product and customers. When the full movie dataset is considered, the size of
the kernel matrix is approximately 10, 000× 10, 000, which can not be handled
due to memory constraints. The present kernel matrix, however, is defined by
a graph with nodes corresponding only to the products and does not depend
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on the number of the customers, which is another advantage of the proposed
method.

6 Conclusion

We have introduced a new method for recommendation tasks based on the 1-
SVM. Using special structures of graph kernels, we show that the 1-SVM can
be formulated as rather simple quadratic programming problems. In addition,
the formulations can take advantage of the sparsity of the Laplacian matrix.
Numerical experiments indicate that the quality, of our recommendations is high,
as is the scalability of the method, which can handle tasks with over one million
ratings.
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Abstract. Previous work has shown that considering the category distance in 
the taxonomy tree can improve the performance of text classifiers. In this paper, 
we propose a new approach to further integrate more categorical information in 
the text corpus using the principle of multi-objective programming (MOP). That 
is, we not only consider the distance between categories defined by the 
branching of the taxonomy tree, but also consider the similarity between 
categories defined by the document/term distributions in the feature space. 
Consequently, we get a refined category distance by using MOP to leverage 
these two kinds of information. Experiments on both synthetic and real-world 
datasets demonstrated the effectiveness of the proposed algorithm in 
hierarchical text classification. 

1   Introduction 

Text Classification (TC) is a process of assigning text documents into one or more 
topical categories. It is an important research problem in information retrieval and 
machine learning. In the past two decades, TC has attracted a lot of research efforts 
from different research communities. As a result, many TC algorithms have been 
proposed, such as Naïve Bayes, Support Vector Machines (SVM) and their variations  
[6][11].  

More recently, with the explosive growth of the World Wide Web, hierarchical 
classification [3][7][10] has been widely used to facilitate the browsing and 
maintaining of large-scale Web page corpora such as the Yahoo! Directory and the 
Open Directory Project (ODP). Other than simply using the hierarchical taxonomy to 
organize classifiers, empirical studies also showed that by exploiting the distance 
between categories (i.e. the path length between categories) in the taxonomy tree, the 
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classification performance can be improved [2][4][5]. For example, [2] showed that 
bounding the margin between two classifiers as a function of the corresponding 
category distance can achieve obvious performance increase. Inspired by this result, 
we propose to use more categorical information in the data corpus to further improve 
the classification performance.  

Actually, as we know, the path length in the taxonomy tree is totally based on the 
prior knowledge of the human editors. Therefore it is not necessarily consistent with 
the real data distribution. This phenomenon is especially serious for those multi-label 
datasets. So, to further improve the performance, we should also leverage the 
document distribution of a category in the feature space. For this purpose, we propose 
an algorithm to integrate these two types of category relations, by using the principle 
of multi-objective programming (MOP). In particular, we embed the categories into a 
new Euclidean space in order that their distance in this new space can preserve the 
similarities defined both in the taxonomy tree and by the document/term distributions 
as much as possible. To get this embedding, we construct a two-objective 
optimization problem: one objective is to minimize the difference between the 
category distance in the new space and the corresponding path length in the taxonomy 
tree, while the other is to minimize the difference between the category similarity in 
the new space and in the original feature space. By solving this MOP problem, we 
eventually get a refined category distance (RCD) to improve existing hierarchical 
classifiers such as Hieron [2]. In addition, if the dimension of this embedded 
Euclidean space is equal to the dimension of term space, we can regard it as a 
translation of the categories in the original term space. Thus we actually derive a new 
vector space model (called refined text vectors (RTV)), which can also help improve 
the hierarchical classifiers. Experiments on both synthetic and real-world datasets 
showed the effectiveness of the refined category distance and refined text vectors.  

The rest of this paper is organized as follows: In Section 2, the basic idea of our 
algorithm is proposed. Then a trick for complexity reduction is discussed in Section 3. 
In Section 4, experimental results are presented to evaluate our algorithm. Concluding 
remarks and future work are discussed in the last section. 

2   Heterogeneous Information Integration 

2.1   General Approach  

As mentioned in the introduction, there are two types of relations between categories 
in hierarchical classification, which can be illustrated as in Fig.1. The first type of 
relation is the hierarchy of categories, while the second is category-document and 
document-term relations. Our basic idea is to integrate these two types of category 
relations by using multi-objective optimization. In particular, we propose to embed 
the categories into a new space in which they preserve the similarities defined both by 
the path length in the taxonomy tree and by the document/term distributions in the 
feature space as much as possible.  
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Fig. 1. Heterogeneous relations in a text corpus. The relationships between categories and terms 
are indirect and can be obtained by combining category-document and document-term 
relationships. 

Mathematically, for any pair of nodes (representing categories) i and j in the 
taxonomy tree, let d(i, j) denote the path length (the number of edges in the path) from 
i to  j  in Γ . Denote A = [d(i, j)] the corresponding path length matrix. Let n be the 
number of categories and m be the number of terms. Let B denote the relationship 
(n*m) matrix between categories and terms and let b(i) be the i-th row of B1. Suppose 
there is a (k-dimension) Euclidean space, in which the representations of the 
categories are X = [x1, x2, …, xn]

T, where n is the number of categories and each xi is a 
k-dimension vector. Then our proposed algorithm can be written as in (1), where the 
first objective is to minimize the difference between the distance of categories 
calculated in the new Euclidean space and the path length in the taxonomy tree, while 
the second objective is to minimize the difference between the distance of categories 
calculated in the original feature space and the new Euclidean space. 

2

2

min || ||

min || ||

where [|| || ] , and || || is the -norm

X X F

T T
X F

X i j F n n F

A D

BB XX

D x x F×

−

−

= − ⋅

 

(1) 

It is clear that this is a multi-objective programming (MOP) problem. Without loss of 
generality and for simplicity, we convert this MOP problem to a single-objective one 
by means of linear combination as follows. 

2 2min || || (1 ) || ||T T
X X F FA D BB XXα α− + − −  (2) 

                                                           
1  In our definition, each row b(i) of B is simply calculated as the mean vector of all the 

documents in category i. 
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Note that the optimization problem (2) is of very large scale because there are nk 
variables to tune and n may be as large as hundreds of thousands2. Many existing 
optimization algorithms [1] can hardly handle such kind of large-scale problems 
because they need second-order information in the optimization process, which 
corresponds to space complexity of O(n2k2). To tackle this problem, we use a 
recently-proposed method, named Global Barzilai and Borwein (GBB) algorithm [9] 
in our approach, which has been proven to require space complexity of only O(nk) . 
By solving (2) in this way, actually we get a new distance matrix (DX), called the 
refined category distance (RCD) matrix. This matrix can be used directly as the 
category distances in hierarchical classifier such as Hieron [2]. 

2.2   Further Discussion 

As discussed in the above subsection, by solving (2), we embed the categories into a 
new (k-dimension) Euclidean space and k is usually smaller than the dimension of the 
original term space. However, it may be interesting to discuss what will happen if k is 
equal to the dimension of the original term space (m). Actually, in such a special case, 
we can regard the new embedding space as just a translation of the categories in the 
original term space. And accordingly, we can come out another approach to improve 
hierarchical classifiers as follows.  

Denote x(i)  the embedding of category i in the new space, denote vj(i)
 the j-th 

document belonging to category i in the original term space, and denote b(i) the row 
vector in B corresponding to category i. Then, we can refine the document vectors as 
follows, 

*( ) ( ) ( ( ) ( ))j jv i v i b i x i= + −  (3) 

Actually (3) can be explained as that we shift the mean of all the documents in a 
category by considering the information contained in the hierarchical taxonomy. After 
this shift, the resultant refined text vectors (RTV) can be used as the new feature 
representations fed to the hierarchical classifiers for training. Then for testing, the 
instance will be shifted by b(i)-x(i) before being tested by the classifier for category i. 

To sum up, we take RCD and RTV as two manners of information integration in 
hierarchical text classification. Both their effectiveness was tested in our experiments. 

3   Complexity Reduction 

Considering that many real hierarchical text corpora have tens of thousands of 
categories, the complexity is still very high even if we use the GBB algorithm. To 
further reduce the complexity, in this section, we will propose some tricks based on 
matrix decomposition. Note that the following discussions are meaningful only if 
k n. Otherwise, we assume that the complexity has not been high enough and the 
corresponding optimization problem can be solved efficiently already. 

                                                           
2 There are about 300,000 categories in the Yahoo! Directory. 
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First of all, we will conduct eigenvalue decomposition (EVD) for BBT. Actually if 
we only calculate k eigenvalues and their associated eigenvectors of BBT, we will 
have the following approximation of BBT 

2T T
k k kBB U U≈ Σ  (4) 

Where Uk is an nxk matrix, kΣ is a kxk square matrix and k kU Σ is also an nxk matrix 

which has the same dimension with X. 

Then if we can make 2|| ||k k FU XΣ −  sufficiently small,3 we are able to guarantee 

that 2|| ||T T
FBB XX− is also very small due to the characteristics of eigenvalue 

decomposition. With this fact, we can simplify our second objective function from 
2min || ||T T

X FBB XX−  to 2min || ||X k k FU XΣ − , and the overall objective turns 

to be 

2 2min || || (1 ) || ||X X F k k FA D U Xα α− + − Σ −  (5) 

In practical, Uk and kΣ can be calculated through the singular value decomposition 

(SVD) of B as well, which can be much more efficiently computed than the EVD of 
BBT. 

T
k k kB U V≈ Σ  (6) 

One may find that the above singular value decomposition can actually be regarded as 
the spectral embedding of the category-term bipartite graph (See Fig.2). This implies 
some problem of our aforementioned method for computation reduction because the 
graph shown in Fig.2 sometimes is too sparse and even unconnected. In such a case, 
the SVD will not be as robust as we expect.  

 

Fig. 2. Bipartite graph of category-term relationship 

 
To tackle this problem, we add a smoothing item to matrix B before conducting 

SVD, so as to improve the connectivity of its corresponding bipartite graph: 

1
(1 )new TB B ee

n
β β= + −  (7) 

                                                           
3 Where k is the dimension of our embeddings of X in the new space. 
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where e = [1,1,..,1]T. Actually the same trick as above has been widely used in many 
other works such as PageRank [8] and so on.  

4   Experiments 

4.1   Experiment Setting 

In this section, we present our experimental evaluation of the proposed algorithms. 
First of all, we will introduce the experimental settings.  

In our experiments, Hieron was used as the baseline for testing the effectiveness of 
refined category distance (RCD) and refined text vectors (RTV). Hieron is a large 
margin hierarchical classifier, which enforces a margin among multiple categories. 
The basic optimization formulation of Hieron is as given in (8).  
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where ˆiy  is the predicted category label of training example xi, yi is the real category 

label, dist( yi, ˆ iy ) is a distance measure between these two categories. In [2], two 

versions of Hieron were proposed. The first one simplified the distance between any 
two categories to 1 (denoted by Flat Hieron) and the second used the path length 
between two categories in the taxonomy tree (or the tree distance) as the category 
distance (denoted by Tree-Hieron).  

To evaluate the performance of our first method, we replaced the tree distance in 
the Tree-Hieron by the refined category distance and other elements remained the 
same as the standard Tree-Hieron classifier. Note that in this evaluation, we set 
k=1000 for the RCD method. And to evaluave our second method, we used the 
refined text vectors as the training input, and other elements remained the same as the 
standard Tree-Hieron classifier. Note that in this evaluation, we set k equal to the 
dimension of the original term space. For the evaluation, we used both Micro-
averaged F1 and Macro-averaged F14 (denoted by MicroF1 and MacroF1 in brief) as 
the metrics. 

In our experiments, both synthetic and real-world data sets were used. The 
synthetic datasets are very similar to that used in [2], which were generated as 
follows. First, a symmetric ternary tree of depth 4 was constructed as the taxonomy 
hierarchy. This hierarchy contains 121 vertices, each of which was assigned a base 
vector wu (where u represents a vertex). Then each example was generated by 

                                                           
4  MicroF1 and MacroF1 are two popular evaluation criteria for multi-class text classification, 

which definitions are 1
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where TPi is the number of documents correctly classified into category i ;  FPi is the number 
of documents wrongly classified into category i. [10] [12] 
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setting
( )

( , ) ( , )u

u P y
x y w yη

∈
= + , where P(y) represents the path from the root 

to a leaf node y, and η  is a random vector sampled from the distribution N(0, 0.16). 

Furthermore, we “disturbed” the above synthetic dataset by randomly selecting 20 
pairs of category centers, and pulling them closer to each other by 30 percent. With 
this strategy, we generated two synthetic datasets of different sizes. Each category in 
the first dataset (denoted by DS1) contains 10 training documents and 5 test 
documents, while that in the second dataset (denoted by DS2) contains 20 training 
documents and 10 test documents. For the real-world dataset, the 20NG [13] dataset 
was used. We randomly divided the documents in each category of the 20NG dataset 
into a training set and a test set with a ratio of 6:4. To avoid the bias of one single 
training/test set partitioning, we partitioned the dataset for 10 times and reported the 
average performance accordingly. As can be seen, for either the synthetic or the real-
world data set, the number of categories is only tens or hundreds. Since this number is 
smaller than k, we actually did not apply the tricks described in Section 3. However, 
those deductions are surely meaningful for those who want to conduct experiments 
with much larger scales. 

4.2   Experimental Results on the Synthetic Datasets 

In this subsection, we report the performance of our methods on the synthetic 
datasets. As can be seen in Fig.3, the curve for the RCD method is very smooth, 
indicating that the classification performance does not depend heavily on the 
parameter α . Without loss of generality, we set α = 0.5 in our further experiments. 
And comparatively speaking, the curve for RTV drops significantly when α  is very 
close to 1. This is because it is not reasonable to modify the original document vectors 
too much with the human-defined taxonomy tree which is very subjective and not 
data dependent. 
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Fig. 3. Classification performance of RCD and RTV with respect to differentα  
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Further comparisons with the Hieron baselines are shown in Table 1. From this 
table, we can see that by utilizing the tree distance, Tree-Hieron outperformed Flat 
Hieron. And both RCD and RTV led to much higher classification performances. 
This improvement is consistent regardless of the size of the data set. 

Table 1. Comparison of different methods on the sythetic data sets 

Method DS1 DS2 
 MicroF1 MacroF1 MicroF1 MacroF1 

Flat Hieron 0.34321 0.31023 0.51234 0.48993 
Tree-Hieron 0.35802 0.33310 0.52839 0.51420 

RCD 0.40246� 0.37016� 0.54691 0.53398 
RTV 0.36049 0.33291 0.56543 0.54857 

4.3   Experimental Results on the 20NG Dataset 

In this subsection, we report the experimental results on the 20NG dataset. 
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Fig. 4. The classification performance of RCD and RTV with respect to differentα  

From Fig.4 we can draw very similar conclusion to what we have got in Section 
4.2. That is, the performance of the RCD method does not depend heavily on the 
value of α , while RTV prefers a smaller  α  to guarantee its high classification 
accuracy. Furthermore, from the comparison listed in Table 2 we can see that the 
improvement of classification accuracy is even more significant as compared to that 
on the synthetic dataset. For example, the MicroF1 of flat Hieron and Tree-Hieron are 
only 0.78 and 0.83 respectively, while the MicroF1 of RTV is about 0.89 and the 
MicroF1 of  RCD is even more than 0.91.  
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Table 2. The comparison of different methods on the 20NG dataset with different training/test 
set partitions 

Method Mean   
of MicroF1 

Variance  
of MicroF1 

Mean  
of MacroF1 

Variance   
of MacroF1 

Flat Hieron 0.78130 0.00288 0.76593 0.00277 
Tree-Hieron 0.83402 0.00192 0.81796 0.00248 
RCD 0.91091 0.00038 0.90793 0.00053 
RTV 0.89197 5.62E-05  0.88976 8.64E-05 

 

Besides, we have another interesting observation from Table 2: when we 
conducted our experiments for 10 times, the variances of the classification 
performance for different classifiers are quite different. As can be seen, our RCD and 
RTV methods performed stable with very small variances, while the variances of Flat 
Hieron and Tree-Hieron are much larger. Our explanation to this is as follows. Since 
we randomly sampled the training and test set, in some cases the tree distance used in 
Tree-Hieron (or the identical distance in Flat Hieron) may be consistent with the 
training data while in other cases it may be rather inconsistent. Comparatively 
speaking, by introducing our MOP formulation, we can better adapt to the real data 
distribution thus the corresponding classification becomes much more robust.  

To sum up, our experiments show that it is very benefitcial to leverage the 
infotmation contained in both the taxonomy tree and the data distriution, either in 
terms of classification performance, or in terms of the robustness of the classifiers. 

5   Conclusion and Future Work 

In this paper, we proposed an algorithm for the integration of heterogeneous 
information in the application of hierarchical text classification, which is based on 
multi-objective optimization. Experiments on both synthetic and real-world datasets 
showed that the proposed approach can improve both the classification performance 
and the robustness of the classifiers. For the future work, we plan to investigate 
whether the same idea can be used in other applications, such as the mining of click-
through data, and the analysis of scientific citation graph.  
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Abstract. Support Vector Machines (SVM) classifiers are widely used
in text classification tasks and these tasks often involve imbalanced train-
ing. In this paper, we specifically address the cases where negative training
documents significantly outnumber the positive ones. A generic algorithm
known as FISA (Feature-based Instance Selection Algorithm), is proposed
to select only a subset of negative training documents for training a SVM
classifier. With a smaller carefully selected training set, a SVM classifier
can be more efficiently trained while delivering comparable or better clas-
sification accuracy. In our experiments on the 20-Newsgroups dataset, us-
ing only 35% negative training examples and 60% learning time, methods
based on FISA delivered much better classification accuracy than those
methods using all negative training documents.

1 Introduction

Studies have shown that imbalanced training data can adversely affect classifica-
tion accuracy of a classifier [7]. In particular, SVM classifiers are known to favor
negative decisions when trained with significantly larger proportion of nega-
tive examples [1, 11]. In multi-label classification problem using SVM classifiers,
imbalanced training data can often be caused by the one-against-all learning
strategy. That is, with positive training examples given for each category, the
one-against-all strategy trains SVM classifier of the category using the training
examples belonging to the category as positive examples, and all training ex-
amples not belonging to the category as negative examples. In our study, we
address the problem of imbalanced text classification using SVM classifiers with
one-against-all strategy.

We focus on the under-sampling approach and propose a generic algorithm
known as FISA (Feature-based Instance Selection Algorithm), to select only a
subset of negative training documents for training SVM classifier. FISA operates
in two steps: feature discriminative power computation and instance selection.
In the first step, the discriminative power of each feature is computed using
some feature selection technique. In the second step, for each negative training
document, a representativeness score is computed based on both the number of

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 250–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



FISA: Feature-Based Instance Selection 251

discriminative features appearing in the document and their discriminative pow-
ers. The higher the score, the more significant the document in representing the
negative training examples, and hence more useful in learning SVM classifiers.
Given a smaller training set consisting of only negative training documents with
high representativeness scores, a SVM classifier will take a much shorter time to
learn while delivering comparable or even better classification accuracy.

We evaluated FISA on the 20-Newsgroups dataset. Two FISA methods us-
ing feature selection techniques Odds Ratio and Information Gain have been
evaluated, known as FOR and FIG respectively. FOR and FIG were compared
with baseline SVM, Different Error Cost (DEC) method and Stratified Random
Instance Selection (SRIS) method. Both FOR and FIG delivered significantly
better classification accuracies than DEC using only 35% negative training ex-
amples and 60% learning time required by DEC. Our experiments also showed
that random selection of negative training examples compromised the classifica-
tion accuracy.

The rest of the paper is organized as follows. We survey related work in
Section 2 and discuss FISA in Section 3, followed by experiments and results in
Section 4. We finally conclude this paper in Section 5.

2 Related Work

The two main approaches to address the imbalanced classification problems
are the data-level approach and the algorithmic-level approach. Data-level ap-
proach includes under-sampling methods that select only a subset of negative
instances for training [3, 5, 6], and over-sampling methods that synthetically gen-
erate positive training instances [2]. Nevertheless, studies have shown that over-
sampling with replacement does not significantly improve the classification accu-
racy. For methods using the algorithmic-level approach, one can assign different
classification-error costs on positive/negative training instances, or modify the
classifier-specific parameters [1, 11].

One extreme case in imbalanced text classification is to use one-class SVM
classifiers [8, 10]. One-class SVM learns from positive training documents only
and totally ignore the negative training documents. However, Manevitz and
Yousef [8] demonstrated that one-class SVM is very sensitive to the choice of
feature representation (e.g., binary or tfidf) and SVM kernels.

3 Feature-Based Instance Selection

Given a target category ci, a set of positive training documents Tr+
i and a much

larger set of negative training documents Tr−i , say |Tr−i | ≥ 10 × |Tr+
i |, the

problem is to select a subset of negative training documents from Tr−i , denoted
by Ts−i , such that the classification accuracy of a SVM classifier learned using
Tr+

i and Ts−i is comparable with (or hopefully better than) the one learned
using Tr+

i and Tr−i while reducing the learning time. Note that, in this paper,
|S| denotes the number of elements in the set S.
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The training of a SVM classifier involves finding a hyperplane that separates
positive training examples from the negative ones with the widest margin. As
the hyperplane is defined by both the positive and negative training examples,
intuitively, the hyperplane lies in the boundaries between the positive and neg-
ative training examples; most importantly, the negative training examples used
to define the hyperplane (i.e., the support vectors) are the ones that are close
to the positive examples. Given the large set of negative training documents,
many of them are expected to be far away from the positive ones and are less
useful in SVM classifier traning. These negative training documents are known
as less representative examples with respect to the target category. We there-
fore try to remove these less representative examples to obtain more balanced
positive/negative training examples and to achieve comparable or better classi-
fication accuracy using shorter learning time.

The proposed FISA algorithm includes a feature discriminative power com-
putation step and an instance selection step. In the first step, a feature selection
technique is applied to compute the discriminative power of each term feature.
Most feature selection techniques rooted in information theory can be used. For
each category ci, a feature selection technique computes the discriminative power
of term tk, denoted by δ(tk|ci). Note that δ(tk|ci) needs to be computed only if
tk appears in at least one positive training document in ci. In the second step,
the representativeness of each negative training document is computed. Those
with representativeness scores larger than a threshold rθ will be selected to learn
a SVM classifier. The representativeness of a document dj with respect to a
category ci, denoted by r(ci|dj), is defined as the average discriminative powers
of the features found in dj (see Equation 1 where wjk is the weight of term
feature tk in document dj).

r(ci|dj) =

∑
tk∈dj,tk∈Fi

wjk × δ(tk|ci)∑
tk∈dj

wjk
(1)

To determine the document representativeness threshold, we adopt the con-
cept of quality control from statistics [9].

rθ =
1

|Tr−i |
∑

dj∈Tr−
i

r(ci|dj) + z × σ√
|Tr−i |

(2)

In Equation 2, σ is the standard deviation of representativeness scores of all
negative training documents. Given a huge number of negative training docu-
ments, we can assume that their representativeness scores follow a normal dis-
tribution and the z parameter determines the proportion of documents to be
selected.

Note that, feature selection technique is applied in FISA for feature discrim-
inative power computation only; the final training of SVM classifiers actually
involves all the features of positive training and the selected negative train-
ing instances. This is because SVM is known to perform well without feature
selection [4].
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Fig. 1. SVM, DEC, SRIS, FIG and FOR against different z values

4 Experiments

We evaluated FISA with two well-studied feature selection techniques, namely,
Odds Ratio (OR) and Information Gain (IG). Those two FISA methods are
therefore known as FOR and FIG respectively. FOR and FIG were compared
with baseline SVM, Different Error Cost (DEC), and Stratified Random Instance
Selection (SRIS) methods. In our experiments, SVM light was used as the base-
line classifier for those five methods. DEC method was implemented by adjusting
the cost-factor (parameter j) in SVM light to be the ratio of the number of neg-
ative training examples over positive ones. The same cost-factor setting was also
applied to FOR, FIG, and SRIS after instance selection in these methods. For
a fair comparison, the number of instances selected by SRIS was the larger one
selected by FOR and FIG.

The experiments were conducted on 20-Newsgroups1 dataset with different z
values from -0.4 to 1.0. Binary document representation was used after stopword
removal and term stemming. The percentage of the selected negative training
documents (e.g., selection ratio), training time2 and micro-averaged F1 (denoted
by Fμ

1 ) of these five methods are shown in Figures 1(a), 1(b), and 1(c) respec-
tively.

The larger the z the fewer negative examples were selected in training as ex-
pected (see Figure 1(a)). Particularly, when z = 0.4, only about 35% of negative
training examples were used for FOR, FIG and SRIS. In terms of training time,
SRIS was clearly the winner as no document representativeness computation
was required. Figure 1(b) also shows that smaller number of training documents
led to less training time. When z = 0.4, FIG and FOR used about only 60%
of training time required by DEC or baseline SVM. In terms of classificatoin
accuracy, baseline SVM was clearly the worst. The Fμ

1 of SRIS decreases as z
increases. An incease of z, on the other hand, had little effect on FOR and FIG
when z was not greater than 0.4. When z = 0.4, the two FISA methods deliev-
ered better Fμ

1 than DEC using 35% of the latter’s negative training documents

1 http://www.gia.ist.utl.pt/˜acardoso/datasets/
2 Training time includes I/O time, CPU time for instance selection, and SVM training

time. PC configuration: CPU 3GHz, RAM 1GB, OS Windows 2000 SP4.
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and 60% of its training time. This experiment shows that with carefully selected
less number of training instances, faster and better classification results can be
achieved.

5 Conclusion and Future Work

In this paper, we studied imbalanced text classification using SVM classifiers
with one-against-all learning strategy. We proposed a generic algorithm known
as FISA to select instances based on well-studied feature selection methods.
Our experiment results on the 20-Newsgroups dataset confirmed that instance
selection was useful for efficient and effective text classification using SVM clas-
sifiers. The major limitation of the proposed FISA algorithm is that duplicates
or nearly duplicated documents receive similar representativeness scores and
therefore could all be selected. However, the training of a SVM classifier does
not benefit much from duplicated documents. Addressing this limitation will be
part of our future research.
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Abstract. Information is often represented in text form and classified into cate-
gories for efficient browsing, retrieval, and dissemination. Unfortunately, auto-
matic classifiers may conduct many misclassifications. One of the reasons is 
that the documents for training the classifiers are mainly from the categories, 
leading the classifiers to derive category profiles for distinguishing each cate-
gory from others, rather than measuring the extent to which a document’s con-
tent overlaps that of a category. To tackle the problem, we present a technique 
DP4FC to help various classifiers to improve the mining of category profiles. 
Upon receiving a document, DP4FC helps to create dynamic category profiles 
with respect to the document, and accordingly helps to make proper filtering 
and classification decisions. Theoretical analysis and empirical results show 
that DP4FC may make a classifier’s performance both better and more stable. 

1   Introduction 

Information is often represented in text form and classified into multiple categories 
for efficient browsing, retrieval, and dissemination. In such an information space, 
each category often contains several documents about a specific topic, and hence lots 
of documents may be entered at any time, but only a small portion of the documents 
may be classified into some categories. Therefore, text filtering (TF) and text classifi-
cation (TC) should be integrated together to autonomously classify suitable docu-
ments into suitable categories. 

One of the popular ways to achieve integrated TF and TC was to delegate a classi-
fier to each category. The classifier was associated with a threshold, and upon receiv-
ing a document, it could autonomously make a yes-no decision for the corresponding 
category. Conceptually, a document was “accepted” by the classifier if its degree of 
acceptance (DOA) with respect to the category (e.g. similarity with the category or 
probability of belonging to the category) was higher than or equal to the correspond-
ing threshold; otherwise it was “rejected.” With the help of the thresholds, TF was 
actually achieved in the course of TC. Each document could be classified into zero, 
one, or several categories. 

Unfortunately, perfect estimation of DOA values could not be expected [1] [7] 
[15], since no classifiers may be perfectly tuned. Therefore, a document that is be-
lieved to be similar to (different from) a category could not always get a higher 
(lower) DOA value with respect to the category. Obviously, improper DOA estima-
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tions may heavily deteriorate the performance of both TF and TC. Traditionally, DOA 
values were often estimated in the space whose dimensions were specified by a set of 
features (keywords). Therefore, a document that gets a higher DOA value with re-
spect to a category under a feature set may get a very low DOA value with respect to 
the category under another feature set. Feature selection is thus one of the most im-
portant issues related to the tackling of improper DOA estimations. 

In this paper, we explore how various classifiers’ performances may be improved 
by employing more suitable features to distinguish relevant documents from non-
relevant documents for each category. This goal differs from many previous related 
attempts, which aimed at improving the thresholding process (e.g. [7]) and the docu-
ment selection process such as boosting [10], adaptive resampling ([4]), and query 
zoning [11]. The research result of the paper may be used to complement the previous 
techniques for integrated TF and TC. 

In the next section, we present an observation that provides significant hints to 
tackle the problem. Accordingly, we develop a novel approach DP4FC (Dynamic 
Profiling for Filtering Classification) that helps to dynamically create the profile of 
each category so that the performance of TC and TF may be improved (ref. Section 
3). Empirical evaluation was conducted to evaluate DP4FC under different circum-
stances (ref. Section 4). DP4FC was shown to be competent in helping the underlying 
classifier to achieve both better and stable performances in TF and TC. 

2   Misclassifications of Documents: An Observation 

Feature selection, which is an important issues related to DOA estimations, was often 
an experimental issue in previous studies [8] [9] [14]. There was no standard guide-
line to construct a perfect feature set. Some studies maintained an evolvable feature 
set covering all features currently seen (e.g. [2]). However, inappropriate features 
may introduce inefficiency [14] and poor performance [9] in TC.  

Moreover, even a feature set may be perfectly tuned to distinguish among the cate-
gories, it is not necessarily suitable to filter out those documents not belonging to all 
the categories. This is due to the goal of feature selection: selecting those features that 
may be used to distinguish a category from others. Under such a goal, whether a fea-
ture may be selected mainly depends on the content relatedness among the categories, 
without paying much attention to how the contents of a category c and a document d 
overlap with each other. If d (c) talks too much information not in c (d), d should not 
be classified into c, even though d mentions some content of c. To tackle the problem, 
features should be dynamically selected in response to each individual input docu-
ment (rather than training documents in the categories). This task motivates the re-
search in the paper. 

More specially, the observation suggests a dynamic profiling strategy to avoid mis-
classifying a document d into a category c: (1) selecting those terms that have occur-
rences in c but not in the document, and conversely (2) selecting those terms that have 
occurrences in the document but not in c. Therefore, each category should have a 
feature set, which is dynamic in the sense that it is reconstructed once a test document 
is entered.  
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Dynamic profiling may complement the functionality of those classifiers that aim 
to distinguish c from other categories by building a static profile for each category. 
The profile is static in the sense that it is often composed of those terms that are dis-
criminative for the categories, and hence does not vary for each input document. Dy-
namic profiling complements the classifiers by considering another issue: how d (c) 
talks about those contents not in c (d). If d lacks important contents of c or talks much 
information not about c, it could not be classified into c, even though it mentions 
some discriminative contents of c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   Dynamic Profiling for Filtering and Classification 

Based on the above analysis, we develop a dynamic profiling technique DP4FC  
(Dynamic Profiling for Filtering Classification) to complement various classifiers to 
improve the performances of integrated TF and TC. Figure 1 illustrates the introduc-
tion of DP4FC to a classifier. In training, DP4FC joins the thresholding process, while 
in testing, DP4FC joins the process of making TF and TC decisions. 

Both the underlying classifier and DP4FC estimate each document’s DOA with re-
spect to each category. The key point is that DOA values estimated by DP4FC are 
based on dynamic profiling, which aims to measure the extent to which a document’s 
content overlaps that of a category. The algorithm is depicted in Table 1. Given a 
category c and a document d, it considers tow kinds of terms: those terms that occurs 
in c but not in d (ref. Step 2), and those terms that occur in d but not in c (ref. Step 3). 
Once a term t of the two kinds is found, the DOA value is reduced by its strength, 
which is estimated by a modified tf×idf (term frequency × inverse document fre-
quency) technique (ref. Steps 2.1 and 3.1). The term frequency is replaced by the 
support of t in c (i.e. P(t|c) if t only occurs in c, ref. Step 2.1) or d (i.e. P(t|d) if t only 
occurs in d, ref. Step 3.1). P(t|c) is computed by [times t appears in c / total number of 
terms in c], and P(t|d) is computed by [times t appears in d / total number of terms in 

Fig. 1. Associating various classifiers with DP4FC 
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d]. On the other hand, the inverse document frequency (IDF) of t is modified to con-
sider d as an additional training document, or more specially, IDF of t is computed by 
[(total number of training documents + 1) / number of documents (including d and 
training documents) in which t appears]. Therefore, a smaller DOA value indicates 
that d (c) talks more important information not in c (d), and hence indicates that we 
have a lower confidence to classify d into c, no matter whether c is the most suitable 
category for d or not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the DOA estimation, DP4FC may join the thresholding process to help the 

underlying classifier to derive proper thresholds for each individual category. The 
basic idea is that, each category has two thresholds: one for thresholding the DOA 
values produced by DP4FC, while the other is for thresholding the original DOA 
values produced by the underlying classifier. The former helps to filter out those ir-
relevant documents that would otherwise be noises for the setting the latter. The two 
thresholds work together in the hope to optimize the category’s performance in a 
predefined criterion (e.g. F1 = [2PR] / [P+R]). 

Upon receiving a document to be filtered or classified, its two DOA values (i.e. by 
DP4FC and the underlying classifier) are produced, and the corresponding thresholds 
are consulted. The document may be classified into a category only if both DOA 
values are higher than or equal to their corresponding thresholds. That is, DP4FC and 
the underlying classifier actually work together to complement each other to make 
proper TF and TC decisions. 

Time-complexity of dynamic profiling deserves analysis. The realization of 
DP4FC requires two main components: thresholding (conducted in training only) and 
DOA estimation (conducted in both training and testing, ref. Figure 1). As noted 
above, in thresholding, each document receives two DOA values, which are produced 
by DP4FC and the underlying classifier, respectively. Therefore, suppose a category 
has n documents used for thresholding, DP4FC needs to compute n×n combinations 
of DOA values. On the other hand, in DOA estimation, DP4FC needs to check those 
terms in category c but not in document d (ref. Step 2 in Table 1), and vice versa (ref. 

Table 1. DOA estimation by dynamic profiling 

Procedure DOAEstimationByDP(c, d), where  
(1) c is a category, 
(2) d is a document for thresholding or testing 

Return: DOA value of d with respect to c 
Begin 

(1) DOAbyDP = 0; 
(2) For each term t in c but not in d, do 

(2.1) DOAReduction = Support(t, c) × log2(IDF of t in training data and d); 
(2.2) DOAbyDP = DOAbyDP - DOAReduction; 

(3) For each term t in d but not in c, do 
(3.1) DOAReduction = Support(d, c) × log2(IDF of t in training data and d); 
(3.2) DOAbyDP = DOAbyDP - DOAReduction; 

(4) Return DOAbyDP; 
End. 
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Step 3 in Table 1). Therefore, there are at most x + y computations, where x is the 
number of terms in c and y is the number of terms in d. DP4FC is thus efficient 
enough to realize the idea of dynamic profiling. 

4   Experiments 

Experiments were designed to investigate the contributions of DP4FC. To conduct 
objective and thorough investigation, DP4FC was evaluated under different circum-
stances, including (1) different sources of experimental data, (2) different kinds of test 
data, (3) different settings of training data, and (4) different settings for the classifier. 
Table 2 summarizes the different circumstances, which are to be explained in the 
following subsections. 

 
Table 2. Experimental designs for thorough investigation 

Aspects Settings 
(1) Source of experimental data  (A) Reuter-21578 

(B) Yahoo text hierarchy 
(2) Split of test data  (A) In-space test data (for evaluating TC) 

(B) Out-space test data (for evaluating TF) 
(3) Split of the training data for classifier 
building (CB) and threshold tuning (TT) 

(A) 50% for CB; 50% for TT (with 2-fold cross validation) 
(B) 80% for CB; 20% for TT (with 5-fold cross validation) 

(4) Parameter settings for the classifier Different sizes of feature sets on which the classification 
methodologies were built 

4.1   Experimental Data 

Experimental data came from Reuter-21578, which was a public collection for related 
studies (http://www.daviddlewis.com/resources/testcollections/reuters21578). There 
were 135 categories (topics) in the collection. We employed the ModLewis split, 
which skipped unused documents and separated the documents into two parts based 
on their time of being written: (1) the test set, which consisted of the documents after 
April 8, 1987 (inclusive), and (2) the training set, which consisted of the documents 
before April 7, 1987 (inclusive). The test set was further split into two subsets: (1) the 
in-space subset, which consisted of 3022 test documents that belong to some of the 
categories (i.e. fall into the category space), and (2) the out-space subset, which con-
sisted of 3168 documents that belong to none of the categories. They helped to inves-
tigate the systems’ performances in TC and TF, respectively. An integrated TF and 
TC system should (1) properly classify in-space documents, and (2) properly filter out 
out-space documents. 

As suggested by previous studies (e.g. [13]), the training set was randomly split 
into two subsets as well: the classifier building subset and the threshold tuning (or 
validation) subset. The former was used to build the classifier (to be described later), 
while the latter was used to tune a threshold for each category. Therefore, to guaran-
tee that each category had at least one document for classifier building and one docu-
ment for threshold tuning, we removed those categories that had fewer than 2 training 
documents, and hence 95 categories remained. Among the 95 categories, 12 catego-
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ries had no test documents. From both theoretical and practical standpoints, these 
categories deserve investigation [5], although they were excluded by several previous 
studies (e.g. [13]). After removing those documents to which no categories were as-
signed (i.e. not belonging to any of the 95 categories), the training set contained 7780 
documents. Moreover, since previous studies did not suggest the way of setting the 
documents for classifier building and threshold tuning, we will try different settings to 
conduct more thorough investigation: 50%-50% and 80%-20%, in which 2-fold and 
5-fold cross validation were conducted, respectively. That is, 50% (80%) of the data 
was used for classifier building, and the remaining 50% (20%) of the data was used 
for threshold tuning, and the process repeated 2 (5) times so that each training docu-
ment was used for threshold tuning exactly one time. 

Moreover, to test those out-space documents that are less related to the categories, 
we randomly sample 370 documents from a text hierarchy extracted from 
http://www.yahoo.com [6]. The documents were randomly extracted from the catego-
ries of science, computers and Internet, and society and culture, and hence were less 
related to the content of the Reuters categories. With the help of the Yahoo out-space 
documents, we may measure the system’s TF performance in processing those out-
space documents with different degrees of relatedness to the Reuters categories. 

4.2   Evaluation Criteria 

The classification of in-space test documents and the filtering of out-space test docu-
ments require different evaluation criteria. For the former, we employed precision (P) 
and recall (R). Both P and R were common evaluation criteria in previous studies. P 
was estimated by [total number of correct classifications / total number of classifica-
tions made], while R was estimated by [total number of correct classifications / total 
number of correct classifications that should be made]. To integrate P and R into a 
single measure, the well-known F-measure was employed: Fβ = [(β2+1)PR] / [β2P+R], 
where β is a parameter governing the relative importance of P and R. As in many 
studies, we set β to 1 (i.e. the F1 measure), placing the same emphasis on P and R. 

Note that P, R, and F1 were “micro-averaged” rather than “macro-averaged”. 
Macro-averaged Fβ was the average of the Fβ values for individual categories, where 
the Fβ value for a category c was computed based on precision and recall for c [13]. It 
was not employed in the experiment, since we included those categories that had no 
test documents (for the reasons noted above, ref. Section 4.1), making precision and 
recall values for these categories incomputable (since the denominators for computing 
the values could be zero). 

On the other hand, to evaluate the filtering of out-space test documents, we em-
ployed two criteria: filtering ratio (FR) and average number of misclassifications for 
misclassified out-space documents (AM). FR was estimated by [number of out-space 
documents filtered out / number of out-space documents], while AM was estimated 
by [total number of misclassifications / number of out-space documents misclassified 
into the category space]. An integrated TF and TC system should reject more out-
space documents (i.e. higher FR) and avoid misclassifying out-space documents into 
many categories (i.e. lower AM). As P and R, FR and AM complemented each other 
by focusing on different aspects. For example, suppose there are M out-space docu-
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ments, and system A misclassifies 1 out-space document into 2 categories, and system 
B misclassifies 2 out-space documents into 2 categories. Although both systems make 
2 misclassifications, system A is better in FR ([M-1]/M vs. [M-2]/M), while system B 
is better in AM (2/1 vs. 2/2). FR and AM may thus support more in-depth comparison 
of system performances. 

4.3   The Underlying Classifier 

Each category c was associated with a classifier, which was based on the Rocchio 
method (RO). Upon receiving a document d, the classifier estimated the similarity 
between d and c (i.e. DOA of d with respect to c) in order to make a binary decision 
for d: accepting d or rejecting d. The system that applied DP4FC to RO was named 
RO+DP4FC. By comparing the performances of RO and RO+DP4FC, we may iden-
tify the contributions of DP4FC. 

RO was commonly employed in TC (e.g. [12]), TF (e.g. [10] [11]), and retrieval 
(e.g. [3]). Some studies even showed that its performances were more promising in 
several ways (e.g. [6] [7]). RO constructed a vector for each category, and the similar-
ity between a document d and a category c was estimated using the cosine similarity 
between the vector of d and the vector of c. More specially, the vector for a category c 
was constructed by considering both relevant documents and non-relevant documents 
of c: η1* Doc∈PDoc/|P| − η2* Doc∈NDoc/|N|, where P was the set of vectors for relevant 
documents (i.e. the documents in c), while N was the set of vectors for non-relevant 
documents (i.e. the documents not in c). We set η1=16 and η2=4, since the setting was 
shown to be promising in previous studies (e.g. [12]). 

RO required a fixed (predefined) feature set, which was built using the documents 
for classifier building. The features were selected according to their weights, which 
were estimated by the χ2 (chi-square) weighting technique. The technique has been 
shown to be more promising than others [14]. As noted above, there is no perfect way 
to determine the size of the feature set. Therefore, to conduct more thorough investi-
gation, we tried 5 feature set sizes, including 1000, 5000, 10000, 15000, and 20000 
(there were about 20000 different features in the 2-fold training data). 

To make TF and TC decisions, RO also required a thresholding strategy to set a 
threshold for each category. As in many previous studies (e.g. [10] [13] [15]), RO 
tuned a relative threshold for each category by analyzing document-category similari-
ties. The threshold tuning documents were used to tune each relative threshold. As 
suggested by many studies (e.g. [13]), the thresholds were tuned in the hope to opti-
mize the system’s performance with respect to F1. 

4.4   Result and Discussion 

Figure 2 illustrates the performance (in F1) for in-space documents, while Figure 3 
and Figure 4 illustrates the performance for out-space documents (FR and AM, re-
spectively). The results indicate the following contributions provided by DP4FC: 
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Fig. 2. Performance (in F1) in processing in-space documents 
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Fig. 4. Performance (in AM) in processing out-space documents 

(1) For in-space documents, DP4FC helped RO to achieve better performances. As 
shown in Figure 2, RO+DP4FC outperformed RO under all different circum-
stances (i.e. different folds and feature set sizes). When comparing the average 
performances under all the circumstances, it provided 4.2% improvement in F1 
(0.6383 vs. 0.6127). 

(2) For out-space documents from Reuters, DP4FC helped RO to achieve both better 
and stable performances. As shown in Figure 3, under all different circumstances, 
DP4FC+RO filtered out more Reuters out-space documents than RO. When com-
paring the average performances under all the circumstances, DP4FC provided 
38.1% improvement in FR (0.4039 vs. 0.2924). Moreover, as shown in Figure 4, 
DP4FC also provided contributions in reducing AM (9.3% improvement, 1.5080 
vs. 1.6617). 

(3) For out-space documents from Yahoo, DP4FC helped RO to achieve both better 
and stable performances as well. As shown in Figure 3, under all different circum-
stances, DP4FC successfully filtered out almost all out-space documents from Ya-
hoo (recall that the documents from Yahoo were less related to the categories). On 
the other hand, the performance of RO dramatically oscillated under different cir-
cumstances. When comparing the average performances under all the circum-
stances, DP4FC provided 95.9% improvement in FR (0.9637 vs. 0.4920). As 
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shown in Figure 4, both systems achieved a similar performance in AM (1.1504 
vs. 1.1364). 

(4) In the 2-fold experiment, even under the setting that leads RO to achieve the best 
performance in processing in-space documents, DP4FC provided significant con-
tributions. RO achieved its best performance in F1 when the feature set size was 
5000 in the 1st fold. Under such a setting, DP4FC provided (A) 5.5% improvement 
in F1 (0.6609 vs. 0.6267), (B) 46.4% improvement in Reuters FR (0.5073 vs. 
0.3466), and (C) 204.2% improvement in Yahoo FR (0.9784 vs. 0.3216).  

(5) In the 5-fold experiment, even under the setting that leads RO to achieve the best 
performance in processing in-space documents, DP4FC provided significant con-
tributions as well. RO achieved its best performance in F1 when the feature set 
size was 5000 in the 3rd fold. In this case, DP4FC provided (A) similar perform-
ance in F1 (0.7222 vs. 0.7245), (B) 8.3% improvement in Reuters FR (0.5290 vs. 
0.4886), and (C) 2.5% improvement in Yahoo FR (0.9784 vs. 0.9541).  

5   Conclusion 

Given an information space spanned by a set of categories, lots of documents may be 
entered at any time, but only a small portion of them may be classified into the infor-
mation space. Misclassification of documents into the information space may deterio-
rate the management, dissemination, and retrieval of information. We thus present a 
technique DP4FC to complement and enhance a classifier’s capability in mining cate-
gory profiles. Instead of distinguishing a category from other categories, DP4FC 
measures whether a document d (a category c) talks too much information not in a 
category c (d), since in that case d could not be classified into c, even though d men-
tions some discriminative content of c. To achieve that, DP4FC helps the underlying 
classifier to create dynamic category profiles with respect to each individual docu-
ment. It then works with the classifier to set proper thresholds, and accordingly make 
proper TF and TC decisions. Empirical results show that DP4FC may help the under-
lying classifier to achieve both better and more stable performances. The contribu-
tions are of both theoretical and practical significance to the classification of suitable 
information into suitable categories.  
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Abstract. This paper presents a method to extract citation types from
scientific articles, viewed as an intrinsic part of emerging trend detection
(ETD) in scientific literature. There are two main contributions in this
work: (1) Definition of six categories (types) of citations in the literature
that are extractable, human-understandable, and appropriate for build-
ing the interest and utility functions in emerging trend detection models,
and (2) A method to classify citation types using finite-state machines
which does not require user-interactions or explicit knowledge. The ex-
perimental comparative evaluations show the high performance of the
method and the proposed ETD model shows the crucial role of classified
citation types in the detection of emerging trends in scientific literature.

1 Introduction

Emerging trend detection (ETD) is a new and challenging problem in text min-
ing. ETD is commonly defined as “detecting topic areas which are growing in
interest and utility over time” [1]. Recently, several ETD models have been pro-
posed [2, 3] in which the ETD process can be viewed in three phases: topic
representation, identification, and verification. Each topic — the ETD central
notion — is usually represented by a set of temporal features in the phase of
topic representation. These features are then extracted from document databases
using text-processing methods in the topic identification phase. After that, the
topic verification phase plays the role of monitoring these features over time and
classifying the topic by using interest and utility functions [1].

One very significant task for ETD is to find emerging research trends from a
collection of scientific articles. This can help researchers quickly understand the
occurrence and the tendency of a scientific topic, and thus they can, for example,
find the most recent, related topics in the research domain. However, existing
ETD models are still poor in representing research topics and inappropriate
for determining and ranking interest and utility. Motivated by the need of a
more appropriate model for emerging trend detection from scientific corpora,
our ultimate target is to build an ETD model which has a richer representation

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 265–274, 2006.
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scheme for topics, and to use citation information as one of the characteristics
of the ETD model.

Citations appear very frequently in scientific articles and most of digital li-
braries now organize their papers in the structure of citation indexes [4]. By
examining the citations inside an article, we can reveal relationships between
articles, draw attention to important corrections of published work and identify
significant improvements or criticisms of earlier work [5, 6]. However, this is still
very difficult for researchers because the large and increasing number of arti-
cles prevents them from reading everything in the published literature. There
is a clear need for new tools to identify the types of citation relationships that
indicate the reasons for citation in a human-understandable way [7].

The purpose of identifying the reasons for citations (citation type detection
- CTD) varies according to the main objective of each research. The method
of Nanba and Okumura [8] uses an heuristic sentence selection and pre-defined
cue phrases to classify citations into three categories for supporting a system
of automatic review articles. To extend the usage of linguistic patterns, Teufel
[9] uses formulaic expressions, agent patterns and semantic verb classes instead
of cue phrases to determine the corresponding class for a sentence. Although
both these works show the usefulness of linguistic patterns in citation type de-
tection, the manual construction of linguistic patterns is obviously a rather
time-consuming task. It also involves some conflicts that are difficult to be
resolved. For example, the method of Pham and Hoffmann [10] has to elimi-
nate such conflicts and send to human experts for providing rules that resolved
them.

The available methods do not appear to be integrated into an ETD process
because of two main limitations: the first is their definitions of citation types are
not appropriate for evaluating the interest and utility of topics; the second reason
is the manual construction of linguistic patterns must depend on the corpus. This
makes the detection process become inflexible when applying to other corpora.
The work presented in this paper is an intrinsic part of the construction of
an emerging trend detection model for scientific corpora, for that we propose
an automatic method for detecting citation types. The significant differences of
our method compared to other works are: (1) the defined six categories of the
reasons for citations which support the detection of emerging trends by tracing
the development of a topic and clarify the relationship between articles; (2) our
method using finite-state machines can detect citation types without any need for
user-interactions or explicit knowledge about linguistic patterns as were required
in [8, 9, 10].

In the following section, we first define the six citation types and then propose
a method for detecting citation types using two kinds of finite-state machines:
HMMs and MEMMs. Section 3 describes the experimental comparative eval-
uations. In Section 4, we briefly introduce our proposed ETD model and the
integration of citation types into the interest and utility functions. Conclusions
and future works are given in the last section.
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2 A Method for Citation Type Detection

2.1 Definition of Citation Types

Given a paragraph containing citations (we call this paragraph the citing area),
we want to detect why the cited paper is mentioned in the purpose of the authors
written in this paragraph. It is well known that there are many reasons for
citations (citation types). To classify citing areas using citation relationships,
we also have to consider the citation types. For example, in [11], Weinstock
proposed 15 categories for the common reasons of citations, to build a system
for the automatic generation of review articles, Nanba and Okumura [8] classified
the reasons for citations into three categories while Pham and Hoffmann [10] used
four types of citations for building a citation map between articles.

In order to support researchers in tracing the development of a topic over
time as well as clarify the relationship between articles, we classified citation
types into the following six main categories (or classes), which are important for
emerging trend detection:

Type 1: The paper is based on the cited work; it means that the citation shows
other researchers’ theories or methods as the theoretical basis for the current
work. (corresponding to Nanba’s type B)

Type 2: The paper is a part of the cited work
Type 3: The cited work supports this work
Type 4: The paper points out problems or gaps in the cited work (correspond-

ing to Nanba’s type C, Pham’s type Limitation)
Type 5: The cited work is compared with the current work
Type 6: Other citations

Note that these classes are overlapping, meaning that a citation area may
belong to two or more classes. We will choose the most suitable class label for
a citation area and also measure the likelihood of each citing area on a class.
Details of technique are discussed in the following sections.

2.2 Citation Type Detection Using Finite-State Machines

In this section, we describe the method for detecting citation types. The detec-
tion process can be described as follows: Given a citing area consisting of several
sentences, we apply finite-state machines to compute the likelihood of each sen-
tence on each class. After that, we evaluate the importance of each sentence and
combine these values to identify the corresponding class for this citing area. We
present here two methods to evaluate the above likelihood using hidden Markov
models and maximum-entropy Markov models, after that we will introduce the
sentence-weighting strategy to identify class label for a given citing area.

Sentence Evaluation Using Hidden Markov Models. A hidden Markov
model (HMM) is a finite-state automaton with stochastic state transitions and
observations whereby a sequence of observations is emitted along the transitions
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of states over time [12]. A HMM λ = (A,B,Π) is defined on a set of states
S, a set of possible observations O and three probability distributions: a state
transition probability to sj ∈ S from si ∈ S: aij = P (sj |si); an observation
probability distribution bj (o) = P (o|sj) for o ∈ O, sj ∈ S; and an initial state
distribution for each state si ∈ S: πi = P (q1 = si).

In most text-processing tasks using HMMs, people often use word-based mod-
els, i.e, each word (or n-gram) is one observation. The main drawback of these
methods is the machine cannot accept unknown observation symbols or accepts
them with a very low probability of emission functions. For example, if we con-
sider each English word as an observation, the model trained by the sentence
“The man walks so fast” may produce 0 or a small value depending on the train-
ing algorithm when computing the likelihood of the sentence “The man goes so
fast” even though the meaning of the second sentence can be implied from the
semantics of the trained sentence. This problem occurs not only with finite-state
machines, but also with all word-based methods.

One solution to this problem is enlarging the training set so as to cover all
possible cases of synonymy and hyponymy. However, it is difficult to build a large
training set and it also increases the complexity of training phase. For example,
the method using cue phrases [8] has to construct a very long list of cue phrases;
the rule-based method [10] has to add many rules to the rule set in order to
achieve high accuracy.

To overcome the drawback of the aforementioned solution, we still use word-
based models, but after the training phase, we re-adjust the emission functions
of the HMMs so as to deal with the synonym and hyponym of words by:

bj (o) = max
o′⊆o

bj(o′) (1)

where o′ ⊆ o means the word o′ is a hyponym or synonym of the word o.
For detecting citation types, we used six HMMs, each HMM consisting of

n states: S = {s1, s2, ..., sn} and accepting the set of English words including
“\cite” as the set of observations O. In the following explanation, we denoted qt

and ot as the state of the model and the observation at time t, respectively.
In the training phase, we have a number of training sentences for each class.

These sentences are used as the input of the training algorithm for estimating
model parameters. The standard method to train HMMs is the EM algorithm,
also known in HMM context as the Baum-Welch algorithm [12]. However, we
use the Viterbi training (VT) algorithm instead of EM to avoid expensive com-
putation in practice. The VT algorithm just takes the single most likely path
and maximize the probability of emitting the observation sequence along its cor-
responding path. The details of the Viterbi Training Algorithm is described in
[12].

Given an unknown sentence O and six trained HMMs corresponding to six
classes, we compute how well the sentence O matches these HMMs by calculating
the probability of generating sentence O along its best path on each HMM:
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P ∗ (O|λ) = arg max
Q

P (O,Q|λ) = P
(
O,Q(O)|λ

)
(2)

where Q(O) is the state sequence found by Viterbi algorithms.

Sentence Evaluation Using Maximum-Entropy Markov Models. The
structure of maximum-entropy Markov models (MEMMs) is similar to that of
hidden Markov models, but instead of transition and observation probabilities,
we have only one single function P (s|s′, o) which provides the probability of the
current state s given the previous state s’ and the current observation o. This
complex function is often separated in to ‖S‖ transition functions Ps′ (s|o). In
contrast to HMMs, in which the current observation only depends on the current
state, in MEMMs, the current observation may also depend on the previous state.
It means the observations is associated with state transition rather than with
states [13].

In MEMMs, each transition function Ps′ (s, o) is often represented in expo-
nential form:

Ps′ (s, o) =
1

Z (o, s′)
exp

(∑
a

γafa (o, s)

)
(3)

where fa is a feature, γa is a parameter to be learned and Z (o, s′) is the nor-
malizing factor that makes the distribution sum to one across all next state
s.

To find the corresponding state sequence to an observation sequence, we can
still use an efficient dynamic programming algorithm by modifying some equa-
tions of the Viterbi algorithm for HMMs [13]. To train a MEMM, we first split
the training data into (state-observation) pairs relevant to the transitions from
each state s′, then apply the Generalized Iterative Scaling method (GIS) [14] to
estimate the transition function for state s′ (f ′

s).
To measure how well a sentence matches a MEMM, we first organize all word

concepts in a concept hierarchy, in which each node in the hierarchy consists of
a word and its synonyms and a sub-concept is represented by a descendant of
its parent concepts. The synonymy and hyponymy relationships between words
are represented by feature functions of MEMMs:

f(c,q) (w, s) =
{

1, if (s = q) ∧ (w ∈ c)
0, otherwise

(4)

where c represented for a node in the concept hierarchy, w is a word and w ∈ c
means the concept c accepts the word w as its synonym or hyponym.

Similar to HMMs we can find the best path for a given sentence O and use
P ∗ (O|λ) to measure how well the sentence O matches the MEMM λ

Weighting Sentences and Classification of Citing Areas. Consider a
kind of finite-state machine, HMM or MEMM. We have a total of six machines
{λi}6i=1 corresponding to six classes. Given an unknown sentence O, we find the
best state sequence QO

i corresponding to O in each machine λi and compute
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the likelihood P ∗(O|λi) = P
(
O,QO

i |λi

)
to measure how closely the sentence O

matches the machine λi.
A citing area might consist of many sentences; each sentence can match all

six machines with different levels. We need to combine these likelihoods in order
to determine which class is suitable for the entire citing area. To this end, we
want to determine the importance of each sentence in evaluating the citing area.

Given a sentence O, and a finite-state machine λi, we compute P ∗ (O|λi) and
define:

P (O) (λi) =
P ∗ (O |λi )

6∑
j=1

P ∗ (O |λj )
(5)

as the probability of selecting the model λi given the sentence O. The entropy
of this probability distribution is:

H(O) = −
6∑

i=1

P (O) (λi) log2 P
(O) (λi) (6)

As the entropy H(O) becomes larger, the chance of selecting the model cor-
responding to sentence O becomes more uncertain, and the the role O plays in
determining class label for the citing area becomes less important. Thus, we can
weight each sentence O in the citing area by

Weight (O) =
log2 6−H(O)

log2 6
; (0 ≤Weight (O) ≤ 1) (7)

If the citing area C consists of m sentences: O1, O2, . . . Om. The corresponding
citation type for this citing area is:

Type (C) = arg max
1≤i≤6

m∑
j=1

Weight
(
Oj
)
.P ∗ (Oj |λi

)
(8)

To use citation types more flexibly, instead of assigning a class label for a
given citing area, we can compute how closely a given citing area matches a
category i by measuring the likelihood:

L (C |i) =

m∑
j=1

Weight
(
Oj
)
.P ∗ (Oj |λi

)
6∑

i′=1

m∑
j=1

Weight (Oj) .P ∗ (Oj |λi′ )
(9)

Making a model that analyzes the entire citing area requires many com-
plicated computations and a very large training set. Like other methods, our
method segments the citing area into sentences and classifies it by evaluating
the sentences. However, instead of selecting only one sentence for evaluating the
whole citing area, we evaluate the likelihood of each sentence on each class, and
use the weight of each sentence to combine these likelihoods in a reasonable way.
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From theoretical viewpoint, before doing experiments, it is worth noting that
our method can be extended to deal with more citation types. It takes into
account the problem of word synonymy and hyponymy, allows overlapping be-
tween classes and works without any user-interactions or pre-defined linguistic
patterns. That can be viewed as a significant difference between our citation
type detection method and previous works.

3 Experiments

We designed two experiments for two purposes: first, we want to evaluate if
the model using FSMs is more appropriate than other methods using linguistic
patterns in the task of detecting citation types; secondly we want to compare two
methods using HMMs and MEMMs and discuss the advantages and drawbacks
of each model in practice.

The concept hierarchy is built from WordNet [15] in which each node – a con-
cept – consists of a word and its synonyms, a sub concept (hyponym) is placed
in the hierarchy as a descendant of its parent concepts. These experiments used
HMMs and MEMMs with 25 states (This is the average of number of words
in each sentence). Increasing the number of states may improve the classifica-
tion results, but requires longer computational time in the training and testing
phases.

3.1 Experiment 1

This experiment is used to evaluate if our method achieves higher accuracy com-
pared to Nanba and Okumura’s method when running in the same conditions.
The data set provided by Nanba and Okumura in [8] consists of 282 citing area
for training and 100 citing area for testing. We use the same definition of cita-
tion types as they defined: B, C and O and select training sentences according
to their sentence selection strategy. Table 1 shows the accuracy of Nanba and
Okumura’s method comparing to our methods.

Table 1. The accuracies of Nanba and Okumura’s method, HMMs, and MEMMs

Nanba HMMs MEMMs
C B O (%) C B O (%) C B O (%)

16 citations type C 12 0 4 75.0 14 0 2 87.5 14 0 2 87.5
32 citations type B 2 25 5 78.1 0 25 7 78.1 0 26 6 81.3
52 citations type O 1 5 46 88.5 3 1 48 92.3 1 1 50 96.1

Running under the same conditions, our method using HMMs and MEMMs
based on concept-representation achieve higher accuracy than Nanba’s method.
Although the set of cue phrases is well designed for this dataset, Nanba’s method
still has the problem of synonymy and hyponymy, that why our method using
concept-representation can result in higher accuracy.
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3.2 Experiment 2

This experiment is used to compare the performance of two methods using
HMMs and MEMMs. To this end, we collect 9000 papers from two main sources:
ACM Digital Library and Science Direct, and randomly select 811 citing areas
for this experiment. For a limited number of sentences for training, we randomly
selected sentences from these 811 citing area and run the experiment 10 times
before taking an average of accuracy. Table 2 shows the detection accuracies of
the methods using HMMs and MEMMs.

Table 2. The accuracies of two methods using HMMs and MEMMs

Number of HMMs MEMMs
training sentences (%) (%)

100 60.1 61.4
200 67.1 67.2
300 72.6 73.8
400 79.9 79.6
500 84.9 86.6
600 90.4 91.8
700 95.2 95.9
800 99.5 99.7
811 100.0 100.0

The method using MEMMs produced slightly better result than HMMs as
shown in Table 2. In addition, the method using MEMMs requires lower com-
putation time for the training phase: it takes 7918 seconds for training MEMMs
with 800 sentence compared to 20168 seconds taken by the VT algorithm. The
main reason is not only the different characteristics of HMM training and MEMM
training algorithms, but also because we must re-distribute the emission func-
tions of HMMs to deal with the synonymy and hyponymy relationships between
words while we can model these relations by feature functions of MEMMs.

4 Integration of CTD into the ETD Model

Because the details of our ETD model is out of the scope of this paper, we will
briefly describe the structure of the ETD model and the key idea of building the
interest and utility functions to detect emerging trends, including the integration
of citation types into ETD process.

In our ETD model, each topic ti in T is a node in the topic hierarchy, which
is associated with a time series:

ti =
(
t1i , t

2
i , . . . , t

Δ
i

)
where Δ is the length of the trial period.



Detecting Citation Types Using Finite-State Machines 273

Given a year kth in the trialperiod, we denoted tki as the topic ti in this year.Each
tki is a vector in 6-dimensional space: tki =

(
tki (1), tki (2), tki (3), tki (4), tki (5), tki (6)

)
,

where:

– tki (1): determine how often the topic ti is mentioned in the year kth

– tki (2): the weight of citations type 1, 3, and 5 in the year kth to ti
– tki (3): the number of citations in the year kth to ti
– tki (4): the influence of ti on other topics in the year kth

– tki (5): the weight of author of ti in the year kth

– tki (6): the weight of journal/proceedings talking about ti in the year kth

The topic verification module will monitor these features along the time-
series to evaluate the growth in interest and utility of the topic. In our ETD
model, the growths of all six time-series

{
tki (j)

}
k

(1 ≤ j ≤ 6) are independently
evaluated and integrated into interest and/or utility functions. In concrete terms,
the growth in interest of each topic is evaluated using four time-series

{
tki (1)

}
k
,{

tki (3)
}

k
,
{
tki (5)

}
k
, and

{
tki (6)

}
k
; similarly, the growth in utility of each topic

is evaluated using
{
tki (2)

}
k
,
{
tki (4)

}
k
,
{
tki (5)

}
k
, and

{
tki (6)

}
k
.

The citation information is used in both the interest and utility functions.
Only citation types 1, 3, and 5 are integrated into the utility function while the
number of citations, regardless of citation type, is used to evaluate the interest
of each topic. We then consider each pair (time, value) as a data point, then use
regression analysis to predict the dependence of values on the time. The simplest
way is to apply linear regression on all data points and use the slope co-efficient
of the regression equation to evaluate the global tendency of the time-series.

Citation types can help us understand the research context, select papers for
background reading, and identify problems or gaps in related works. In addition,
as the topics of recent papers are not always novel and attractive, using citation
information is an appropriate way to find the most recent and important topics in
a research domain. The integration of these usages of citations into the emerging
trend detection process is our ongoing work.

5 Conclusion

We have proposed a method to detect the reasons for citations. By defining six
classes of citation types, we developed a method using finite-state machines to
evaluate how closely a citing area matches a class. Our method is robust to the
problem of synonymy and hyponymy, achieved better accuracy that previous
works. In addition, our method using finite-state machines requires neither user-
interactions nor explicit knowledge about cue phrases, so it has more flexibility
to be extended. We believe this method can be improved and applied to other
text-processing tasks, such as named-entity classification, document ranking,
text segmentation, emerging trend detection, etc.
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Abstract. Although much work has been done on duplicate document
detection (DDD) and its applications, we observe the absence of a sys-
tematic study of the performance and scalability of large-scale DDD. It
is still unclear how various parameters of DDD, such as similarity thresh-
old, precision/recall requirement, sampling ratio, document size, corre-
late mutually. In this paper, correlations among several most important
parameters of DDD are studied and the impact of sampling ratio is of
most interest since it heavily affects the accuracy and scalability of DDD
algorithms. An empirical analysis is conducted on a million documents
from the TREC .GOV collection. Experimental results show that even
using the same sampling ratio, the precision of DDD varies greatly on
documents with different size. Based on this observation, an adaptive
sampling strategy for DDD is proposed, which minimizes the sampling
ratio within the constraint of a given precision threshold. We believe the
insights from our analysis are helpful for guiding the future large scale
DDD work.

1 Introduction

Duplicate pages and mirrored web sites are phenomenal on the web. For exam-
ple, it was reported that more than 250 sites mirrored the documents of Linux
Document Project (LDP)1. Broder et al. clustered the duplicated and nearly-
duplicated documents in 30 millions documents and got 3.6 millions clusters con-
taining 12.1 millions documents [1]. Bharat and Broder reported that about 10%
of hosts were mirrored to various extents in a study involving 238,000 hosts [2].

Because of the high duplication of Web documents, it is important to de-
tect duplicated and nearly duplicated documents in many applications, such as
crawling, ranking, clustering, archiving, and caching. On the other hand, the
tremendous volume of web pages challenges the performance and scalability of
DDD algorithms. As far as we know, Broder et al. for the first time proposed
a DDD algorithm for large-scale documents sets in [1]. Many applications and

� This work was conducted when this author visited Microsoft Research Asia.
1 http://www.linuxdoc.org
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following research, such as [2] [3] [4] [5] [6], later adopted this algorithm for its
simplicity and efficiency.

While much work has been done on both DDD algorithms and their applica-
tions, little has been explored about the factors affecting their performance and
scalability. Meanwhile, because of the huge volume data, all prior work makes
some kinds of tradeoffs in DDD. How do these tradeoffs affect accuracy? To our
best knowledge, no previous work conducts any systematic analysis on correla-
tions among different parameters of DDD, and none of them provides a formal
evaluation of their tradeoff choices.

This paper studies several of the most important parameters of DDD algo-
rithms and their correlations. These parameters include similarity threshold,
precision/recall requirement, sampling ratio, document size. Among them, sam-
pling ratio is of most interest, for it greatly affects the accuracy and scalability
of DDD algorithms.

To uncover the correlations of parameters, an empirical analysis is conducted
in this paper. The TREC .GOV collection2 are used as our testing dataset. Al-
though the volume of this collection is much smaller than the whole Web, we
believe that this collection to some extent represents the Web well for DDD al-
gorithms [7]. Experiment results show that even using the same sampling ratio,
the precision of DDD in documents of different size varies greatly. To be more
specific, small sampling ratio heavily hurts the accuracy of DDD for small doc-
uments. Based on this observation, we propose an adaptive sampling method
for DDD which uses dynamic sampling ratio for different document size with
constraint of given precision thresholds. We believe that our analysis is helpful
for guiding the future DDD work.

The remainder of this paper is organized as follows. Section 2 reviews the
prior work on DDD. Section 3 describes the duplicate detection algorithm and
the definition of document similarity used in this paper. Section 4 presents the
experimental results on parameter correlations, and then proposes an adaptive
sampling strategy. Finally we conclude this paper with Section 6.

2 Prior Work

The prior work of duplicate document detection can be partitioned into two
categories based on the ways to calculate document similarity, shingle based
and term based algorithms, both of which can be applied offline and online. We
review these algorithms in this section.

2.1 Shingle Based Algorithms

The algorithms, such as [8] [9] [1] [10] [2] [3] [11] [5] [6], are based on the concept
of shingle. A shingle is a set of contiguous terms in a document. Each document
is divided into multiple shingles and a hash value is assigned to each shingle.
By sorting these hash values, shingles with the same hash value are grouped
2 http://es.csiro.au/TRECWeb/govinfo.html
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together. Then the resemblance of two documents is calculated based on the
number of shingles they share.

Because of the large size of the document collections to be examined, sev-
eral sampling strategies have been proposed to reduce the number of shingles to
compare. Heintze selects shingles with the smallest N hash values and removes
shingles with high frequencies [9]. Broder et al. samples one of 25 shingles by
selecting the shingles whose value modulo 25 is zero and choose at most 400
shingles for each document [1]. In this way they process 30 millions web pages
in 10 days. Another more efficient alternative is also proposed in [1], which
combines several shingles into a supershingle and computes the hash values of
supershingles. Although the supershingle algorithm is much faster, the authors
noted that it does not work well for small documents and no detailed results of
this algorithm are reported. In [10][11], exact copies are removed in advance and
then every two or four lines of document are made as a shingle. Fetterly et al.
use five-gram as a shingle and apply a 64-bit hash to get fingerprints of shin-
gles, then employ 84 different hash functions to construct a feature vector for
each document [4][5]. More precisely, they apply 84 different(randomly selected
but fixed thereafter) one-to-one functions to produce shingle fingerprints of each
document. For each function, they retain the shingle with numerically smallest
hash value of its fingerprints. Thus a vector of 84 shingles is constructed for each
document. Then the 84 shingles are separated into six supershingles, in other
words, each supershingle contains 14 adjacent shingles. The documents having
two supershingles in common are clustered as nearly-duplicate documents. Fet-
terly et al. processed 150M web pages by using this method. We summarize some
of the previous work in Table 1.

To deal with the large-scale data, almost all the previous work employs sam-
pling strategies. However, none of them provides an analysis of how their sam-
pling strategies affect the accuracy of DDD algorithms. On the other hand,
sampling has to be adopted to scale up with the index volume of search engines.
So it is important to study the impact of sampling in DDD.

Table 1. Parameters used in Prior Work

Work Volume of Shingling Hash Similarity
Documents Set Strategy Function Threshold

Broder97[1] 30M 10-gram 40-bit 0.5

Shivakumar98[10], 24M entire document, 32-bit 25 or 15
Cho00[11] 25M two or four lines shingles in common

Fetterly03[4][5] 150M 5-gram 64-bit two supershingles
in common

Sampling Ratio/Strategy
Broder97[1] 1/25 and at most 400 shingles per document

Shivakumar98[10] and Cho00[11] No Sampling
Fetterly03[4][5] 14 shingles per supershingle

six supershingles per document



278 S. Ye, J.-R. Wen, and W.-Y. Ma

2.2 Term Based Algorithms

Term based algorithms [12] [13] [14] use individual terms/words as the basic
unit, instead of continuous k-gram shingles. Cosine similarity between docu-
ment vectors is usually used to calculate similarity between documents. Many
IR techniques, especially feature selection, are used in these algorithms, which
makes them much more complex than shingle-based algorithms. The largest set
processed by term based algorithms contains only about 500K web pages [12].

Term based DDD algorithms work well for small-scale IR systems and most
of them also achieve good performance when used in online DDD. But for search
engines which need to answer over 100M queries everyday, online methods are
not a good choice because of their prohibitive computing cost. Meanwhile, in
some applications, we have to do DDD offline. In this paper, we focus on shingle
based approaches and do not discuss more about term based and online methods.

3 Algorithm

Although much work has been done on DDD algorithms and many applications
employ DDD techniques, there is no systematic analysis on how the parameters
in DDD correlate, such as accuracy, similarity and sampling ratio. And there is
also no formal study on the accuracy and scalability of DDD. This paper aims
to explore these problems. We choose the method in [1] for analysis since many
DDD algorithms and applications follow it, while we believe our conclusions can
also guide other DDD algorithms especially in sampling strategies.

3.1 Document Similarity

Since the exactly duplicate documents, which have no differences between two
documents, are easily to identify by comparing the fingerprints of the whole doc-
ument, this paper focuses on nearly duplicates, which have slightly differences
between two documents. We choose the resemblance in [1] as our document sim-
ilarity metric for its widely usage in DDD. However, we believe the conclusions
based on this similarity can be easily extended to other metrics of document
similarity.

The resemblance given by [1] is defined as follows. Each document is viewed as
a sequence of words and is transformed into a canonical sequence of tokens. This
canonical form ignores minor details such as formatting and HTML tags. Then
every document D is associated with a set of subsequences of token S(D,w). A
contiguous subsequence in D is called a shingle. Given a document D we define
its w-shingling S(D,w) as the union of all unique shingles with size w contained
in D. Thus, for instance, the 4-shingling of (a, rose, is, a, rose, is, a, rose) is the
set {(a, rose, is, a), (rose, is, a, rose), (is, a, rose, is)}.

For a given shingle size, the resemblance r of two documents A and B is
defined as:

r(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)| . (1)
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Where |S| represents the number of elements in the set S.
In our experiments, the shingle size w is set to 10, the same as that in [1]. Dif-

ferent shingle size affects the performance of DDD. Generally, greater w results
in higher precision and lower recall. In our own experiences, although greater
w produces fewer shingles for each document, greater w also hurts the recall of
DDD. So a moderate w is usually chosen to get a balance between precision and
recall.

3.2 Hash Function

32-bit and 40-bit Rabin [15] hash functions are used in some of the prior work [1]
[10] [11] [2] [3]. However, for large scale dataset with several millions of documents
and several billions of shingles, 32-bit or 40-bit hash may produce many false
positives. A 40-bit message digest has the probability 1/2 that a collision (false
positive) is found with just over 220 (about a million) random hashes [16]. In this
paper, we use the well known 128-bit MD5 hash for both document fingerprints
and shingle fingerprints, which generates many fewer false positives for it requires
264 hashes for a collision with 1/2 probability.

4 Experiments

4.1 Data Description

There are several datasets used in prior work, most of which are not public
available. [12] chooses 2GB NIST web pages and TREC disks 4&5 collections
as their testing data, but these two sets contain only 240k and 530k documents
respectively. In this paper we choose the TREC .GOV collection as our testing
dataset since it contains about a million documents and is widely used in Web
related research. Table 2 summarizes the main properties of this dataset.

Table 2. Summary of the TREC .GOV Collection

HTML Documents 1,053,034
Total Size 12.9 GB

Average Document Size 13.2 KB
Average Words per Document 699

4.2 Data Preprocessing

First we canonicalize each document by removing all HTML formatting infor-
mation. Special characters such as HT (Horizontal Tab), LF (Line Feed) and CR
(Carriage Return) are converted into spaces, and continuous spaces are replaced
by one space. Thus each document is converted into a string of words separated
by single spaces.
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Then we remove the exact duplicates from the Web collection since we focus
on detecting nearly-duplicate documents. By calculating MD5 hash for each
document, we cluster exactly duplicate documents, then choose a document
from each cluster as the representative and remove the other documents in the
cluster. As a result, 94,309 documents are removed from the collection and the
final set contains 958,725 documents.

The documents are divided into 11 groups based on the number of words they
contain, as shown in Table 3.

Table 3. 11 Groups of Documents

Group Words Number Shingles
in Document of Documents in Group

0 0-500 651,983 118,247,397
1 500-1000 153,741 105,876,410
2 1000-2000 78,590 107,785,579
3 2000-3000 28,917 69,980,491
4 3000-4000 14,669 50,329,605
5 4000-5000 8,808 39,165,329
6 5000-6000 5,636 30,760,394
7 6000-7000 3,833 24,750,365
8 7000-8000 2,790 20,796,424
9 8000-9000 1,983 16,770,544
10 >9000 7,775 93,564,410

4.3 Implementation

We implement the algorithm in [1] and run DDD experiments with different
similarity thresholds and sampling ratios for each group.

We use three machines with 4GB memory and 1T SCSI disks, one with Intel
2GHz Xeon CPU and the other two with 3GHz Xeon CPU. It takes us two
weeks to run about 400 trials of DDD experiments with different combinations
of parameters.

Broder et al. [1] processes 30 millions web pages in 10 CPU days. There are
two main tradeoffs in their approach. First, they sample one out of 25 shingles
and at most 400 shingles are used for each document. They also discard common
shingles which are shared by more than 1,000 documents. Second, they divide
the data into pieces to fit the main memory. However, [1] does not give the
size of each piece. It just mentions that “the final file containing the list of the
documents in each cluster took up less than 100Mbytes.” Thus we believe that
the size of each piece can not be too large, and small pieces hurt the recall of
DDD since duplicates across different clusters are missed. Moreover, although
the CPU speed has been greatly improved since then, the speed of ram and disk
advances not so much. So our experiments are rather time consuming although
we use much more powerful hardware than theirs.
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4.4 Experimental Results

For evaluation we use the result without sampling as the ground truth and com-
pare the result using sampling with this ground truth to calculate the precision.
If two documents are judged as duplicates in the result using sampling while
they are not judged as duplicates in the result without sampling, it is a false
positive. The precision of a trial is calculated by the ratio between the number
of correctly detected duplicate document pairs and the number of total detected
duplicate pairs in this trial.

For sampling experiments, we make use of the module of the numerical hash
value to select shingles. For example, when using 1/2 sampling ratio, we select
the shingles whose hash value modulo two is zero, that is, the singles with even
hash value. We also run multiple trials for each sampling ratio. For example,
when the sampling ratio is 1/2, we run two trials by selecting shingles with odd
and even hash value respectively and then calculate the average performance of
these two trials. Thus, when the sampling ratio is 1/n, we run n trials by selecting
the singles with different remainders. In our experiments, we count the number
of both selected shingles and total shingles and find that the selection ratio is
consisted with the given sampling ratio. And there are only slight differences
between the precision of different trials with the same sampling ratio, which
verifies that MD5 is a good hash function for this sampling task.

The experimental results of 1/4 and 1/16 sampling ratio are shown in Fig-
ure 1(a) and 1(b).

As shown in Figure 1(a), precision of DDD decreases with the increasing of
similarity threshold. The curve of Group 0, documents having fewer than 500
words, decreases significantly. In Figure 1(b), the highest precision on Group 0
is lower than 0.8 no matter what similarity threshold is used. Also, the precision
on several groups with small documents drops dramatically when the similarity
threshold is higher than 0.9. The low precision on groups with small documents
proves that small documents are sensitive to sampling and it is hard for them
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to achieve good precision when small sampling ratio or high similarity threshold
is required. On the other hand, for groups with large documents, the precision
is high and stable even when the similarity threshold is high and sampling ratio
is small. We also ran experiments with sampling ratio 1/2 and 1/8, which show
the similar properties as 1/4 and 1/16 sampling ratios.

4.5 Adaptive Sampling Strategy

Based on above observations, we propose an adaptive sampling strategy that
applies small sampling ratio on large documents and large sampling ratio on
small documents. To show the power of our sampling strategy, we conduct the
following experiment. We partition the TREC .GOV collection into 11 groups
as previous experiments. For every group we minimize the sampling ratio out of
1/2, 1/4, 1/8, 1/16, subjected to different given precisions ranging from 0.5 to
0.99, thus we minimize the total shingles which we have to process. For example,
with the precision requirement 0.8 and similarity threshold 0.6, we choose 1/8
sampling ratio for Group 0 and 1/16 sampling ratio for the other groups, so
only 8% of the total shingles have to be processed. As shown in Figure 2, our
algorithm greatly reduces the shingles to process and thus can deal with larger
scale documents sets than the previous unified sampling strategy.

Due to the well known long tailed distribution of web document size, small
documents consist of a large proportion of the whole documents collection. In our
experiments, the documents having fewer than 500 words consist of 68% of the
whole collection. For higher precision we can not do small sampling in these small
documents, otherwise it would greatly hurt the overall precision. Fortunately
these small documents consist of only 17% shingles, thus our adaptive sampling
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strategy greatly reduces the total shingles to process by applying small sampling
ratio on large documents.

4.6 Summary of Parameter Correlations

Here we give a summary of the correlations between precision and other param-
eters.

– Similarity Threshold: precision drops with the increase of similarity thresh-
old., especially when the threshold is higher than 0.9. When high similarity
threshold, greater than 0.9, is required, sampling ratio should be increased
to achieve a good precision.

– Sampling Ratio: precision drops with the decreasing of sampling ratio, espe-
cially for small documents containing fewer than 500 words. When dealing
with small documents, either similarity threshold should be decreased or
sampling ratio should be raised.

– Document Size: small documents are more sensitive to similarity threshold
and sampling ratio than large documents. Sampling ratio can be decreased
when dealing with large documents to reduce the shingles in computation.

Generally, sampling ratio does not hurt recall because sampling only generates
false positives. While for small documents, recall may drop because some of the
documents have no shingle sampled by chance.

5 Conclusion and Future Work

Although much work has been done on duplicate document detection and many
applications employ this technique, little has been explored on the performance
and scalability of DDD. In this paper, a systematic study on parameter correla-
tions in DDD is conducted and several most important parameters of DDD are
analyzed.

Our experiment results show that small sampling ratio hurts the precision
of DDD, especially for small documents which consist of a major fraction of
the whole Web. Based on this observation, an adaptive sampling strategy is pro-
posed, which minimizes the sampling ratio of documents with constraint of given
precision thresholds, making DDD feasible to deal with large scale documents
collections. We believe the observations in our work are helpful in guiding the
future DDD work.
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Abstract. This paper addresses a real world problem: the classification of text 
documents in the medical domain. There are a number of approaches to classi-
fying text documents.  Here, we use a partially supervised classification ap-
proach and argue that it is effective and computationally efficient for real-world 
problems. The approach uses a two-step strategy to cut down on the effort re-
quired to label each document for classification.  Only a small set of positive 
documents are labeled initially, with others being labeled automatically as a re-
sult of the first step. The second step builds the actual text classifier. There are a 
number of methods that have been proposed for each step. A comprehensive 
evaluation of various combinations of methods is conducted to compare their 
performances using real world medical documents.  The results show that using 
EM based methods to build the classifier yields better results than SVM.  We 
also experimentally show that careful selection of a subset of features to repre-
sent the documents can improve the performance of the classifiers.  

Keywords: Text classification, partially supervised classification, labeled and 
unlabeled data, medical data mining, and features reduction. 

1   Introduction  

Medical data is often presented, at least partially in the form of free text (e.g. medical 
reports attached to patients’ records).  Such documents contain important information 
about patients, disease progression and management, but are difficult to analyse with 
conventional data mining techniques due to their unstructured or semi-structured na-
ture. Medical staff may have a number of interesting questions that can be asked of 
such data, but they certainly need automatic methods for reading, categorising and 
analyzing thousands of electronic patients’ reports.  

The Gastroenterology unit of a local hospital had just such a problem as they col-
lected electronic reports on thousands of colonoscopy procedures, but could not give 
answer to simple questions, such as the percentage of successful colonoscopies under-
taken. Colonoscopy refers to the passage of the colonoscope from the lowest part 
(anus and rectum) right around the colon to the caecum. This constitutes a complete 
examination.  The aim of colonoscopy is to check for medical problems such as 
bleeding, colon cancer, polyps, colitis, etc. [6]. After each colonoscopy procedure, the 
endoscopist writes a detailed report about the current status of the examined part of 
the body and the result of the procedure itself. The information contained in this re-
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port is extremely valuable for clinical purposes but difficult to handle due to the lack 
of structure. The procedure can be classified as successful or unsuccessful depending 
on what the clinicians claim they have been able to examine and the reasons for any 
limited examinations. Classifying colonoscopy procedure reports into categories is a 
text classification task. 

Text classification is defined as the process of assigning pre-defined category la-
bels to documents based on what a classifier has learned from training examples  [9]. 
For binary classification, the classifier should identify the documents of the class of 
interest (positive documents) from a set of mixed documents. There can also be multi-
class problems in which the classifier has to distinguish documents from each of sev-
eral classes. To build a text classifier is may be necessary to manually label a set of 
documents and then use a learning algorithm to produce a classification [15]. This 
approach, called supervised learning [8], has the problem of the considerable effort 
required to manually label a large number of training examples for every class, par-
ticularly for multi-class problems. An alternative approach called partially supervised 
classification has recently been introduced [1, 2] for binary classification problems, 
and earlier [7] for multi-class problems.  It is based on the use of a large set of unla-
beled documents and a small set of labelled documents for every class so as to reduce 
the labelling effort.  It is also possible to take this idea further and use only positive 
and unlabeled documents to learn a classification [10], cutting down more on the la-
belling effort. This approach is based on a two-step strategy. Step 1 identifies the 
positive documents from the unlabeled documents, and step 2 builds the final classi-
fier. There are a number of algorithms that are applicable in step 1 and step 2.  Decid-
ing on what algorithms should be applied is not a trivial task, but is required for the 
effective application of the technique to real-world data. 

The main purpose of this paper is to perform a practical evaluation of partially su-
pervised classification. The methods available in each step of the process will be 
tested in combination.  The combination that produces the best performance accord-
ing to some evaluation measures will be recommended. The evaluation will be per-
formed through a real-world medical problem: the classification of a set of colono-
scopy reports. For further efficiency, we will also experiment on reducing the set of 
features used to represent a document.   

2   Partially Supervised Classification 

The partially supervised classification approach uses a reduced set of positive docu-
ments, P, and a large set of unlabeled documents, U.  There is initially no labeling of 
negative documents. The first step of the text classification is therefore to identify a 
reliable set of negative documents, RN, from the unlabeled documents. This can be 
achieved by a number of algorithms; in this paper we used Rocchio (ROC) [11], Naïve 
Bayesian classifier (NB) [12] and Spy [2]. Step 2 consists of iteratively applying a 
classification algorithm to the newly labeled data. Since some documents are still in 
the unlabeled set, U- RN, the chosen classifier is applied repeatedly to the data with 
the intention of extracting more possible negative data at each iteration and improving 
the overall performance of the classifier.  The procedure will stop when no further 
negative documents are found in the unlabeled set, U-RN. There are two classifiers 
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used in this step: Expectation-Maximization (EM) [16, 19] and Support Vector Ma-
chines (SVM) [13]. The algorithms were selected based on their availability to the 
authors.  

3   Dataset, Text Representation and Performance Measures 

For these experiments we used real world medical documents collected from the Gas-
troenterology unit of a local hospital. These documents contain information on 
colonoscopy procedures including preparation of the bowel, features of the colon 
identified in examination, abnormalities found during examination with their descrip-
tion, patient’s reaction to the procedure, etc.  The number of documents in this collec-
tion is 4,876. 25% of these documents were selected using a 1-in-4 sampling strategy 
to be used as test documents. The rest (75%) were used to create training sets as fol-
lows: 120 documents from the positive class were selected as the positive set. The rest 
of the documents were used as the unlabeled set.  

The most frequently used method to represent text is bag-of-words representation 
where all words from the set of documents are taken and no ordering of words or any 
structure of text is used [4].  Each distinct word corresponds to a feature of the set of 
documents.  Each feature weighted using term frequency-inverse document frequency 
(tf-idf) [20] which is refined model of term frequency.  

Four different measures were used to evaluate the performance of different classi-
fiers: precision, recall, F-measure and accuracy [14]. 

4   Documents Pre-processing  

Not all the words in the documents are important, so they may degrade the classifier’s 
performance. In addition, representing small set of documents that may have hundreds 
of different words using bag-of words approach will generate a huge feature space 
and thus will increase the processing time. To solve these problems, approaches to 
reduce the feature space dimension are needed.  We used three approaches:  

1. As a result of consulting an expert in the domain field, we removed unhelpful sen-
tences; 

2. We have removed stop words from all data sets using stop-lists;  
3. We stemmed the words using Porter’s suffix-stripping algorithm [3].  

The total number of words before applying any of the feature reduction approaches 
is 319689 word, after applying the three approaches only 154999 words left. That 
means the total number of words reduced to 48.5%.  

5   Results and Analysis 

As we mentioned earlier, the main objective of this paper is to find what is the best 
strategy for partially supervised classification for a real-world application.  It will then 
be possible to test the claim that his method is effective and computationally efficient 
[2] using a challenging medical problem.  The combination of different methods used 
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in step 1 (spy, NB and ROC) and step 2 (SVM and EM) will produce six techniques 
(classifiers) when we used one method for step1 and one method for step 2. These six 
classifiers will be investigated and evaluated in our experiments. The results shown in 
Table 1 illustrate the recall, precision, F-measure and accuracy obtained by different 
classifiers.    

 
Table 1. The recall, precision, F-measure and accuracy results obtained by different classifiers 

 Recall % Precision % F-Measure % Accuracy % 
ROC-SVM 66.10 93.60 77.48 94.42 
NB-SVM 33.33 98.33 49.79 90.24 
SPY-SVM 57.06 95.28 71.38 93.36 
ROC-EM 85.88 85.88 85.88 95.90 
NB-EM 79.66 90.39 84.69 95.82 
S-EM 84.18 87.65 85.88 95.98 
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Fig. 1. The F-measure and accuracy results for six classifiers 

Figure 1 illustrates graphically the F-measure and accuracy results for the six clas-
sifiers. The axes x and y represent the classification techniques and the percentage of 
the F-measure and the accuracy respectively. The main observation from Table 2 and 
Figure 1is that the best results are obtained by classifiers using EM in step 2, regard-
less of the technique used in step 1. In addition, if we compared the F-measure and 
accuracy results obtained by SVM and EM we find that EM significantly outperforms 
SVM. We also observe that when NB is used in step 1 to identify the RN set, it pro-
duces the worst results in term of accuracy and F-measure. Spy-SVM also under-
performs. This may be due to a small positive set, resulting in a small number of spies 
added to U.  This in turn produces a poor RN set.  In the case of S-EM the problem is 
ameliorated since EM used in step 2 will first fill the missing data. According to both 
the F-measure and accuracy, the highest results are obtained by S-EM, but ROC-EM 
and NB-EM performed very close to it with less than 0.2% difference.  It is worth 
noting that those classifiers represent the best balance of recall and precision but 
lower precision than can otherwise be obtained. 
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Another set of experiments was conducted to attempt to improve the performance 
of different classifiers by reducing the number of features used. As shown in table 1, 
the final total number of distinct features in the collection is 2,636. The frequencies of 
these features vary from the highest frequency 7,111 to the lowest frequency of 1.  
1,124 of these features occurred only once. The previous set of experiments was re-
peated with a reduced feature set. In each case, only the γ  top features according to 
their frequency will be selected to build the classifier.  The four values of γ used are 
100, 200, 300 and 500.  

Table 2 shows the resulting accuracy (acc.) and F-measure (f-m) values respec-
tively for these sets or experiments.  Figure 2 and Figure 3 depict the same values 
graphically. The x axe in both figures represents the six classification techniques, and 
y axe in Figure 2 represent the percentage of the accuracy and in Figure 3 represents 
the F-measure values. 

 
Table 2. Accuracy and F-measure results of the six classifiers for four values of γ:  100, 200, 
300 and 500 top features. 

ROC-SVM NB-SVM Spy-SVM ROC-EM NB-EM S-EM 
 Acc. f-m Acc. f-m Acc. f-m Acc. f-m Acc. f-m Acc. f-m 
All features 94.42 77.48 90.24 49.79 93.36 71.38 95.9 85.88 95.82 84.69 95.98 85.88 
γ  = Top 100 features 95.24 82.74 93.6 72.54 93.6 72.54 89.75 70.17 91.56 73.79 91.31 73.37 
γ  = Top 200 features 94.75 79.08 93.27 70.5 94.91 79.74 96.1 86.67 96 86.21 96.2 86.87 
γ  = Top 300 features 94.91 79.74 91.96 62.88 93.93 74.66 95.57 85.67 95.82 85.22 95.82 85.47 
γ  = Top 500 features 95 80 90.48 52.07 93.6 72.73 95.9 86 96.1 86.46 96.06 86.21 
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Fig. 2. Accuracy results of the six classifiers 
for γ = 100, 200, 300 and 500 

Fig. 3. F-measure results of the six classifiers 
for γ = 100, 200, 300 and 500 

Using the top 100 features improved the performance of the SVM based methods 
but significantly degraded the performance of the EM based methods. This may indi-
cate that a set of 100 features is too small to produce and revise good probabilistic 
labels of the documents in U-RN when the EM method is used.  

The results obtained using the top 200 features slightly improve the performance of 
a number of classifiers whilst producing no significant deterioration in others.  Larger 
feature sets  (γ =300 and 500) did not provide significantly improved results and in 
some cases produced slightly worse results. The main observations from the last set of 
experiments are: (1) Selecting a reduced set of features to represent the documents 
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can improve the performance of all classifiers based on F-measure and accuracy; (2) 
A very reduced feature set may affect the performance of certain classifiers such as 
EM; and (3) Finding a sufficient set of features can improve performance while also 
increasing efficiency, but it may require some experimentation. 

6   Conclusions  

The objective of the research to test partially supervised classification on a real world 
problem. To this effect, a number of experiments were conducted to evaluate the per-
formance of different methods within the two-step approach.  The approach has the 
advantage of requiring only a small set of labeled positive documents to operate.  Our 
experimental results showed that using EM to build the text classifier in the second 
step yielded the best results, regardless of the method used to identify negative docu-
ments in the first step. We also experimentally showed that the careful use of feature 
selection can improve the performance and should obviously improve efficiency. In 
our case, selecting the top 200 features to represent the documents yielded satisfactory 
result for all classifiers.  

Our results are very competitive for this real world problem and could be used to 
automatically label and classify medical reports.  We believe the method is widely 
applicable to other text classification problems in the medical domain that requires 
two-class or binary classification.  
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Abstract. We present a novel clustering algorithm to group the XML 
documents by similar structures. We introduce a Level structure format to 
represent the XML documents for efficient processing. We develop a global 
criterion function that do not require the pair-wise similarity to be computed 
between two individual documents, rather measures the similarity at clustering 
level utilising structural information of the XML documents. The experimental 
analysis shows the method to be fast and accurate.  

1   Introduction 

The eXtensible Markup Language (XML) has become a standard language for data 
representation and exchange [11]. With the continuous growth in XML data sources, 
the ability to manage collections of XML documents and discover knowledge from 
them for decision support becomes increasingly important. Several databases tools are 
developed to deliver, store and querying XML data [2,4,10]. However they do require 
efficient data management techniques such as indexing based on structural similarity 
to support an effective document storage and retrieval. The clustering of XML 
documents according to their structural similarity facilitates these applications.  

Mining of XML documents significantly differs from structured data mining and 
text mining [9]. XML allows the representation of semi-structured and hierarchal data 
containing not only the values of individual items but also the relationships between 
data items. Element tags and their nesting therein dictate the structure of an XML 
document. The inherent flexibility of XML, in both structure and semantics, poses 
new challenges to find similarity among XML data.  

Research on measuring the similarity of XML documents is gaining momentum 
[1,3,6,7,8]. Most of these methods rely on the notion of tree edit distance developed in 
combinational pattern matching – finding common structures in tree collection [14].  
(A document is usually represented as a tree structure.) These methods are built on 
pair-wise similarity between documents/trees. The similarity is measured using the 
local functions between each pairs of objects to minimise the intra-cluster similarity 
and maximize the inter-cluster similarity. The similarity value between each pair of 
trees is mapped into a similarity matrix. This matrix becomes the input to the 
clustering process using either the hierarchical agglomerative or k-means clustering 
algorithms [5]. They are generally computationally expensive when the data sources 
are large due to the need of pair wise similarity matching among diverse documents.  
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Our strategy is quite different from these pair-wise clustering approaches. It is 
inspired by the clustering algorithms developed for transactional data, LargeItem [13] 
and Clope [12], that do not need to compute a pair wise similarity. These methods 
define the clustering criterion functions on the cluster level calling global similarity 
measures to optimize the cluster parameters. Each new object is compared against the 
existing clusters instead of comparing against the individual objects. Since the 
computations of these global metrics are much faster than that of pair-wise 
similarities, global approaches are efficient. However, these methods are not suitable 
for XML documents, as they do not consider the hierarchical structure of a document, 
(i.e. the level positions, context or relationships of elements).  

This paper presents the XML documents Clustering with Level Similarity (XCLS) 
algorithm to group the heterogenous XML documents according to similar structure 
using global similarity measures. We develop a Level structure format that represents 
the documents for efficient clustering. The novel global criterion function, called 
LevelSim measures the similarity at clustering level utilising the hierarchal 
relationships between elements of documents. The experimental results show the 
XCLS to be an accurate, fast and scalable technique for grouping XML documents. 

2   XML Documents Clustering with LevelSim (XCLS)  

2.1   Level Structure: Inferring of XML Documents Structure  

In a heterogeneous and flexible environment as the Web, it is not appropriate to 
assume that each XML document on the web has a schema that defines its structure 
definition. Additionally if they have one, many documents depart from their structure 
definition through multiple modifications. For XCLS to be used for general Web 
documents, the structural information within the document is inferred. The documents 
and schemas are first represented as labelled trees. We define a novel concept of the 
level structure to show the level and the elements in each level of a tree structure, 
preserving the hierarchy and the context of elements of the documents. The focus is 
on paths of elements with content values (i.e. leaves in a document tree), without 
considering attributes in an XML document. Figure 1 shows a XML document 
(X_Movie) and its corresponding structural tree (T_Movie). In order to enhance the 
clustering speed, the name of each element is denoted by a distinct integer.  The 
Figure 2 shows the level structure for T_Movie.  

The contents of a cluster preserving the hierarchical information of document are 
also represented as a level structure. Each level of a cluster contains a collection of 
elements of the same level for all documents within the cluster. The figure 4 shows a 
tree structure of a document on Actor information and its corresponding level 
structure. The Figure 3 shows the level structure of a cluster containing both the 
Movie and Actor documents. Each block in this structure contains information 
including element value, level in the hierarchy, its original tree identification, etc. 

2.2   Clustering Global Criterion Function with Level Similarity (LevelSim) 

Considering the level information and elements’ relationships/context of XML data, a 
new solution for measuring structural similarity between two XML objects (cluster to 
tree, tree to tree, cluster to cluster) is developed which is called Level Similarity 
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(LevelSim). It measures the common items in each corresponding level, and allocates 
different weight according to the level (i.e. high level (e.g. root) has more weight than 
low level (e.g. leaf)). Elements are matched according to the level information of each 
object. The order of matching between two objects is important due to the structural 
information present in an XML document. The LevelSim when matching object 1 
(tree) to object 2 (cluster) is defined as:  
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1ComWeight and 
2ComWeight denote the total weight of the common elements in 

all levels considering the level information of object 1 and object 2 respectively; 
TreeWeight denotes the total weight of all items in each level of the tree (object 1); 

iN1
 and jN 2

denotes the number of common elements in level i of object 1 and level 

j of object 2 respectively; kN  denotes the number of elements in level k of the tree.  

r is the increasing factor of weight, which is usually larger than 1 to indicate that 
the higher level elements have larger than lower level elements called as “Base 
Weight”;  

L is the number of levels in the tree. 

<?xml version=”1.0” encoding=”UTF-8”?> 
<Movie Database>                        
     <Movie> 
            <Title> Gold Rush </Title>  
            <Year> 1925 </Year> 
            <Directed by> 
 <Director> Charles Chaplin </Director> 
            </Directed by> 
            <Genres>    
  <Genre> Comedy </Genre> 
  <Genre> (more) </Genre> 
            </Genres> 
            <Cost>  
  <Actor> 
      <FirstName> Charles </FirstName> 
       <LastName> Chaplin </LastName>  

Fig. 1. An XML Document (X_Movie) & its tree representation (T_Movie) 

 
LevelSim yields the values between 0 and 1; 0 indicates completely different 

objects and 1 indicates homogenous objects. The operation LevelSim is not transitive. 
There are some cases when one object may be a part of the other sharing a large 
similarity. In order to solve this problem, the 

21→LevelSim and
12→LevelSim are both 

measured and the larger value between two is chosen:  
 

12211221 :? →→→→ >= LevelSimLevelSimLevelSimLevelSimLevelSim  .    
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Fig. 2. Level structure for T_Movie Fig. 3. Level structure of a cluster  

 

Fig. 4. T_Actor and its level structure 
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Fig. 5. Two different cases showing the process of matching a tree to a cluster 

2.3   The Process of Structure Matching Between Two Objects  

The steps to match elements of a tree (object 1) to elements of a cluster (object 2) are:  

1. Start with searching common elements in the 1st level of both objects. If at least one 
common element is found, mark the number of common elements with the level 
number in object 1 ( 0

1N ) and in object 2 ( 0
2N ), then go to step 2. Otherwise, go to 

step 3. 
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2. Move both objects to next level (level i++, level j++) and search common elements 
in these new levels; If at least one common element is found, mark the number of 
common elements with the level number in object 1 ( iN1

) and in object 2 ( jN 2
), 

then go to step 2. Otherwise, go to step 3. 
3. Only move object 2 to next level (level j), then search common elements in the 

original level (i) of object 1 and the new level (j) of object 2.  If at least one 
common element is found, mark the number of common elements with the level 
number in object 1 ( iN1

) and in object 2 ( jN 2
), then go to step 2. Otherwise, go to 

step 3.   
4. Repeat the process until all levels in either object have been matched.  

After completion of structure matching the Level Similarity (LevelSim) is computed.  
The Figure 5 shows two cases of matching object 1 (a tree T_Movie) to object 2. In 

the first case, object 2 is a cluster only containing the tree T_Actor. In the second 
case, object 2 is a cluster containing both T_Actor and T_Movie. 

2.4   Clustering with Level Similarity 

This section discusses the algorithm that groups the XML structures according to 
LevelSim values. The task is to group each XML document into an existing cluster 
that have the maximum LevelSim or to a new cluster. The figure 6 outlines the 
algorithm that includes two phases of allocation and reassignment. In the allocation 
phase, clusters are progressively formed driven by the criterion function LevelSim. In 
the reassignment phase, only a few iterations are required to refine the clustering and 
 

 
/*Phase 1 – Allocation*/ 
For all XML trees to be clustered 
• read the next tree (represented as level structure); 
• compute the LevelSim between the tree and each existing cluster; 
• assign the tree to an existing cluster if maximum of LevelSim(s) is found 

between two objects and  LevelSim > LevelSim_Threshold; 
• otherwise, form a new cluster containing the tree. 

 
/*Phase 2 – Reassignment (adjustment) */ 
For all XML trees       
• read the next tree (i.e. level structure); 
• compute the LevelSim between the tree and each existing cluster; 
• reassign the tree to an existing cluster if maximum of LevelSim(s) is found 

between two objects and  LevelSim > LevelSim_Threshold; 
• otherwise, form a new cluster containing the tree. 

 
/*Stop if there is ano improvement in two iterations*/ 

Fig. 6. The sketch of XCLS core clustering algorithm 
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optimize the LevelSim. The XCLS algorithm uses a user-defined threshold 
LevelSim_Threshold below which the cohesion between two objects is not considered. 
This threshold (between 0 and 1) can be set according to the application requirement, 
if only highly homogenous documents are to be grouped the threshold is set higher 
(near 1) otherwise it is set at a lower value (near 0). 

3   Experiments and Results  

The data used in experiments are 460 XML documents downloaded from the 
Wisconisn’s XML data bank (http://www.cs.wisc.edu/hiagara/data.html) and the 
XML data repository (http://www.cs.washington.edu/research/xmldatasets/). The data 
set includes various domains such as (Movie (#Documents: 74), University (22), 
Automobile (208), Bibliography (16), Company (38), Hospitality message (24), 
Travel (10), Order (10), Auction data (4), Appointment (2), Document page (15), 
Bookstore (2), Play (20), Club (12), Medical (2), and Nutrition (1). The number of 
nodes varies form 10 to 1000 in these sources. The nesting level varies from 2 to 50. 
Majority of these domains consists of a number of different documents that have 
structural and semantic differences. Hence, even though documents are from the same 
domain, they might not be considered similar enough to be grouped into the same 
clusters.  

3.1   Evaluation Criteria  

The two commonly used evaluation methods are utilised: (1) the intra-cluster and 
inter-cluster quality and (2) the FScore measure.   

The intra-cluster similarity measures the cohesion within a cluster, how close the 
documents within a cluster are. This is computed by measuring the level similarity 
between a pair of trees (i.e. XML document structures) within a cluster. The intra-
cluster similarity of a cluster Ci is the average of all pair-wise level similarities within 

the cluster: 
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 where n is the number of trees in Ci. 

The intra-cluster similarity of a clustering solution C = {C1, C2 … Ck} is the 
average of the intra-cluster similarities of all clusters taking into account the number 

of trees within each cluster: 
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 where ni is the number of 

trees in Ci, N is the total number of trees and k is the number of clusters in the 
solution. 

The inter-cluster similarity measures the separation among different clusters. It is 
computed by measuring the level similarity between two clusters. The inter-cluster 
similarity of the clustering solution is the average of all pair-wise level similarities of 
two clusters. The Level Similarity between two clusters is defined as similar to two 
trees, using the objects as clusters. The inter-cluster similarity for the clustering 
solution C = {C1, C2 … Ck} is:  
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clustering. 
Precision and recall are external cluster quality evaluation based on the 

comparison of clusters’ classes to known external classes. Given a XML document 
category Zr with the nr number of similar XML documents, and a cluster Ci with the ni 
number of similar XML documents categorised by XCLS. Let nr

i be the number of 
documents in cluster Ci belonging to Zr, then precision (correctness) is defined as: 
p(Zr, Ci) = nr

i / ni and recall (accuracy) is defined as: r(Zr, Ci) = nr
i / nr. The FScore 

combining precision and recall with equal weights is defined as: 
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The FScore value of a category Zr is the maximum FScore value attained in any 
clusters of the clustering solution.  Hence the FScore of the overall clustering solution 
is then defined to be the sum of the individual class FScore weighted differently 
according to the number of documents in the class: 
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where q is the total number of XML document clusters. 
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Fig. 7. The Fscore Performance of XCLS vs Wcluto 
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Fig. 9. The Inter Similarity Performance of XCLS vs Wcluto 

3.2   Experimental Evaluation for Accuracy of Clustering 

To show the comparison between pair-wise similarity algorithms and XCLS, a 
similarity matrix is generated by measuring the similarity between each pair of 
documents in the database. The constrained hierarchal agglomerative clustering 
algorithm Wcluto, [15] is used to group documents from this similarity matrix. The 
figure 7 shows the value of FScore near 1 as the given document set is clustered into 
groups according to the natural distribution of domains in the input data sources. 
XCLS achieves the intra-class similarity value to 1 as the number of clusters 
increases (figure 8). Due to the nature of the XCLS algorithm, documents are 
allocated to the same cluster only if there is any similarity exists, otherwise the new 
clusters are being formed. This causes the inter-class similarity between clusters to 
be near 0 from the very beginning of the process (figure 9). This also proves that 
XCLS does not need many iterations in the second phase, only minor adjustments are 
made in consecutive passes.  

3.3   Scalability Evaluation 

Space Complexity. The XCLS require only the information of the current document 
(in process) and a small amount of information of each cluster in the RAM. The tree’s 
information, called tree features, includes the number of levels and its level structure 
containing all distinct elements in each level. The cluster’s information, called cluster 
features, includes the number of trees, the level structure containing all distinct 
elements in each level of the cluster.  Since just one tree structure is kept in RAM, 
only the memory consumed by level structures of clusters need to be analysed for the 
space complexity. Suppose the maximum number of levels is N and the average 
number of elements in a level of the level structure is M, the total memory required 
for the level structure in a cluster is approximately N*M*8 bytes using array of 2*4-
byte integers (4-byte for element id, 4-byte for occurrences). Therefore, XML 
document sources with up to 50 levels, average of 20 elements in a level of a level 
structure and with a clustering of 1k can be fit into a 8M (50*10*8*1k) RAM.   
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Fig. 10. The execution time of XCLS, similarity matrix generation and Wcluto 

Time Complexity. The time complexity of pair-wise clustering algorithms is at least 
O(m2), where m is the number of elements in the documents. This is infeasible for 
large amount of data. XCLS computes the structure similarity between the document 
structure and clusters avoiding the need of pair-wise comparison. Its time complexity 
is O(m×c×p×n): m is number of elements in documents; c is number of clusters; p is 
number of iterations; n is number of distinct elements in clusters. The documents 
grouped into a cluster should have similar structures and elements. So the number of 
distinct elements in clusters should always be less than the distinct elements in 
documents. The number of iterations is usually small and its maximum can be 
configured. (In our experiments, we never required more than two passes. The 
maximum is set as 6.) Therefore, if the number of clusters is less than the number of 
documents (that is usually the case) the time cost is linear to the number of 
documents. The execution time of XCLS (including both pre-processing and 
clustering), time of generating the similarity matrix between each pairs of documents 
in the data set, and execution time of Wcluto (including the similarity matrix 
generation and clustering) in Figure 10 shows the effectiveness of XCLS.  

4   Conclusions and Future Work 

A novel algorithm for clustering heterogeneous XML documents by their structures 
called XCLS is presented based on the intuitive idea of the global criterion function 
LevelSim. XCLS does not compute pair-wise structural similarity between two XML 
documents to get the matrix for clustering; instead, it computes the LevelSim to 
quantify the structural similarity between a XML document and existing clusters and 
groups the XML document to the cluster with the maximum level similarity.  

The LevelSim emphasizes different importance of elements in different level 
positions by allocating different weight to them. The hierarchical relationships of 
elements are also considered by only counting common elements sharing common 
ancestors. The derivation of level structure from a tree is straightforward; and the 
computation of LevelSim is quite effective.  
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This simple idea behind XCLS makes it accurate, fast and memory saving in 
clustering. The experiments shows that XCLS is a scalable (linear time cost), robust 
(independent of the data input order and less sensitive to parameters) and effective 
(inter-cluster similarity close to 0, intra-cluster similarity close to 1, the FScore value 
close to 1) clustering algorithm for diverse and heterogenous XML documents. 

XCLS can be widely used in creating hierarchical index of a large number 
documents for browsing, discovering elements patterns when describing a specific 
object, retrieving relating information for a query quickly or creating learning model 
for documents classification. XCLS can be used to enhance the speed and accuracy of 
fast searching or locating of XML documents.    

XCLS needs some future work to improve its effectiveness. XCLS ignored the 
sematic similarity among documents, which is impractical in the flexible environment 
on web since people may use different tags to describe the same thing. As WordNet 
can organize English words into synonym sets and defined different relations link the 
synonym sets, it can be added to the pre-processing phase to recognize the semantic 
similarity among elements.  
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Abstract. In this paper we introduce a novel document clustering approach that 
solves some major problems of traditional document clustering approaches. In-
stead of depending on traditional vector space model, this approach represents a 
set of documents as bipartite graphs using domain knowledge in ontology. In 
this representation, the concepts of the documents are classified according to 
their relationships with documents that are reflected on the bipartite graph. Us-
ing the concept groups, documents are clustered based on the concepts’ contri-
bution to each document. Through the mutual-refinement relationship with con-
cept groups and document groups, the two groups are recursively refined. Our 
experimental results on MEDLINE articles show that our approach outperforms 
two leading document clustering algorithms:  BiSecting K-means and CLUTO. 
In addition to its decent performance, our approach provides a meaningful ex-
planation for each document cluster by identifying its most contributing con-
cepts, thus helps users to understand and interpret documents and clustering  
results. 

1   Introduction 

Document clustering was initially investigated for improving information retrieval 
(IR) performance (i.e. precision and recall) because similar documents grouped by 
document clustering tend to be relevant to the same user queries [1] [2]. However, 
because document clustering was too slow or infeasible for very large document sets 
in early days, it was not widely used in IR systems [3]. As faster clustering algorithms 
have been introduced and those have been adopted in document clustering, document 
clustering has been recently used to facilitate nearest-neighbor search [4], to support 
an interactive document browsing paradigm [3] [5] [6], and to construct hierarchical 
topic structures [7]. Thus, as information grows exponentially, document clustering 
plays a more important role for IR and text mining communities. 

However, traditional document clustering approaches have four main problems. 
First, when the approaches represent documents based on the bag of word model, they 
                                                           
*  This research work is supported in part from the NSF Career grant (NSF IIS 0448023). NSF 

CCF 0514679 and the PA Dept of Health Tobacco Settlement Formula Grant (#240205, 
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use all words/terms in documents. As Wang et al pointed out [8], only a small number 
of words/terms in documents have distinguishable power on clustering documents. 
Words/terms with distinguishable power are normally the concepts in the domain 
related to the documents. Second, the approaches do not consider semantically related 
words/terms (e.g. synonyms or hyper/hyponyms). For instance, they treat {Cancer, 
Tumor, Neoplasm, Malignancy} as the different terms even though all these words 
have similar meaning. Third, the approaches cannot provide an explanation of why a 
document is grouped into one of document clusters [9] because they pursue similar-
ity-based mechanism on clustering, which does not produce any models or rules for 
document clusters. Lastly, the approaches are based on vector space model. The use 
of vector space representation on document clustering causes the two main problems. 
The first problem is that the vector space model assumes all the dimensions on the 
space are considered independently. In other words, the model assumes that 
words/terms are mutually independent in a document. However, most words/terms in 
a document are related to each other. The second problem is that clustering in high 
dimensional space significantly hampers the similarity detection for objects (here, 
documents) because the distance between every pair of objects tends to the same 
regardless of data distributions and distance functions [10]. Thus, it dramatically de-
creases clustering performance. 

These problems have motivated this study. In this paper, we introduce a novel 
document clustering approach that solves all the four problems stated above. The rest 
of the paper is organized as follows. Section 2 surveys the related work. In section 3, 
we propose a novel graph-based document clustering approach that uses domain 
knowledge in ontology. An extensive experimental evaluation on MEDLINE articles 
is conducted and the results are reported in section 4. Finally, we conclude the paper 
with the three main contributions and future work. 

2   Related Work 

Many document clustering approaches have been developed for several decades. Most 
of document clustering approaches are based on vector space representation and apply 
various clustering algorithms to the representation. To this end, the approaches can be 
categorized according to what kind of clustering algorithms are used. Thus, we clas-
sify the approaches into hierarchical and partitional [11]. 

Hierarchical agglomerative clustering algorithms were used for document cluster-
ing. The algorithms successively merge the most similar objects based on the pairwise 
distances between objects until a termination condition holds. Thus, the algorithms 
can be classified by the way they pick the pair of objects for calculating the similarity 
measure; for example, single-link, complete-link, and average-link. Partitional clus-
tering algorithms (especially K-means) are the most widely-used algorithms in docu-
ment clustering [12]. Most of the algorithms first randomly select k centroids and then 
decompose the objects into k disjoint groups through iteratively relocating objects 
based on the similarity between the centroids and the objects. The clusters become 
optimal in terms of certain criterion functions. 

There are some hybrid document clustering approaches that combine hierarchical 
and partitional clustering algorithms. For instance, Buckshot [3] is basically K-means 
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but Buckshot uses average-link to set cluster centroids with the assumption that hier-
archical clustering algorithms provide superior clustering quality to K-means. In order 
to create cluster centroids, Buckshot first picks kn  objects randomly and then uses 
average-link algorithm; to make the overall complexity linear, Buckshot selects kn  
objects. However, as Larsen & Aone [13] pointed out that using hierarchical algo-
rithm for centroids does not significantly improve the overall clustering quality, com-
pared with the random selection of centroids. 

Recently, Hotho et al. introduced the semantic document clustering approach that 
uses background knowledge [9]. The authors apply ontology during the construction 
of vector space representation by mapping terms in documents to ontology concepts 
and then aggregating concepts based on the concept hierarchy, which is called con-
cept selection and aggregation (COSA). As a result of COSA, they resolve a synonym 
problem and introduce more general concepts on vector space to easily identify re-
lated topics [9]. Because they cannot reduce the dimensionality (i.e. the document 
features) on vector space, it still suffers from “Curse of Dimensionality”. In addition, 
COSA cannot reflect the relationships among the concepts on vector space due to the 
limitation of vector space model. 

3   The Proposed Approach: COBRA 

We present a novel approach for Clustering Ontology-enriched Bipartite Graph Rep-
resentation, called COBRA. The proposed approach consists of three main steps: (1) 
bipartite graph representation for documents through concept mapping, (2) initial 
clustering by combining co-occurrence concepts based on their semantic similarities 
on concept hierarchy and document subsets that share co-occurrence concepts, and (3) 
mutual refinement strategy for concept groups and document clusters. Before discuss-
ing these three main components in detail we first briefly discuss Medical Subject 
Headings (MeSH) as a biomedical ontology due to its importance in our approach. 

Medical Subject Headings (MeSH), published by the National Library of Medicine 
in 1954, mainly consists of the controlled vocabulary and MeSH Tree. The controlled 
vocabulary contains several different types of terms. Among them Descriptor and 
Entry terms are used in this research because only they can be used for graph repre-
sentation. Descriptor terms are main concepts or main headings. Entry terms are the 
synonyms or the related terms to descriptors. For example, “Neoplasms” as a descrip-
tor has the following entry terms {“Cancer”, “Cancers”, “Neoplasm”, “Tumors”, 
“Tumor”, “Benign Neoplasms”, “Neoplasms, Benign”, “Benign Neoplasm”, “Neo-
plasm, Benign”}. MeSH descriptors are organized in MeSH Tree, which can be seen 
as MeSH Concept Hierarchy. In MeSH Tree there are 15 categories (e.g. category A 
for anatomic terms) and each category is further divided into subcategory. For each 
subcategory, corresponding descriptors are hierarchically arranged from most general 
to most specific. In fact, because descriptors normally appear in more than one place 
in the tree, they are represented in a graph rather than a tree. In addition to its ontol-
ogy role, MeSH descriptors were originally used to index MEDLINE articles. For this 
purpose around 10 to 20 MeSH terms are manually assigned to each article (after 
reading full papers). On the assignment of MeSH terms to articles around 3 to 5 
MeSH terms are set as “MajorTopic” which primarily represent an article. 
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3.1   Bipartite Graphical Representation for Documents Through Concept 
Mapping 

Every document clustering method first needs to convert documents into proper for-
mat (e.g. document*term matrix). Since we recognize documents as a set of concepts 
that have their complex internal semantic relationships and assume that documents 
could be clustered based on what concepts they contain, we represent a set of docu-
ments as a bipartite graph to indicate the relationships between concepts and docu-
ments on the graph.  

This procedure takes the following three steps: concept mapping in documents, de-
tection of co-occurrence concepts, and construction of bipartite graph representations 
with co-occurrence concepts. Firstly, it maps terms in each document into MeSH 
concepts. In order to reduce unnecessary search for MeSH concepts, it removes stop 
words from each document and generates three gram-words as the candidates of 
MeSH Entry terms. After matching the candidates with Entry terms it replaces Entry 
terms with Descriptor terms, which is called concept aggregation. Then it filters out 
some MeSH terms that are too general (e.g. HUMAN, WOMEN or MEN) or too 
common over MEDLINE articles (e.g. ENGLISH ABSTRACT or DOUBLE-BLIND 
METHOD); see [14] for details. We assume that those terms do not have distinguish-
able power on clustering documents. 

In the second step, it finds out co-occurrence concepts from sets of concept pairs in 
each document based on the number of times they appear in documents. Co-
occurrence terms have long been used in document retrieval systems to identify in-
dexing terms during query expansion [15] [16]. We use co-occurrence concepts in-
stead of concepts because co-occurrence concepts contain some semantic associations 
between concepts and thus they are regarded more important than single concept.  

The remaining problem for co-occurrence concepts is how to set the threshold 
value for co-occurrence counts; concept pairs whose co-occurrence counts equal or 
bigger than the value are considered as co-occurrence concepts. Because the threshold 
value fairly depends on documents or query to retrieve documents, we develop a 
simple algorithm to detect reasonable threshold value instead of just setting a fixed 
value. This algorithm tries to finds bisecting point in one-dimensional data. It first 
sorts the data, takes as centroids the two end objects, and then assigns the remaining 
objects to the two centroids based on the distances with dynamic centroids update; 
because the data (co-occurrence counts) was already sorted, it does not need any itera-
tion like other partitional clustering algorithms. After obtaining the threshold value 
co-occurrence concepts are mirrored as edges on the graph and their co-occurrence 
counts are used as edge weights.  

In the third step, it constructs a bipartite graph. Given the graph G = (VD+VCC, E), 
VD indicates a set of documents, VCC represents a set of co-occurrence concepts in 
documents and E indicates the relationships between two vertices. Weights can be 
optionally specified on edges. In that case one should provide a sophisticated weight 
scheme to measure the contribution of concepts to each document. However, such a 
weight scheme may not be appropriate especially for small size of documents, such as 
Medline abstracts. In addition, the scheme requires |VD| * |VC| complexity. Thus, we 
draw an unweighted bipartite graph. 
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3.2   Initial Clustering by Combining Co-occurrence Concepts 

Here, COBRA generates initial clusters for the next step by combining co-occurrence 
concepts. Since similar documents share the same or semantically similar co-
occurrence concepts, COBRA combines co-occurrence concepts and then cluster 
documents based on their similarities to k co-occurrence concept groups. On combin-
ing them there are two ways to measure the similarity between co-occurrence con-
cepts: their semantic similarity on the concept hierarchy (simcc) and the overlap of 
their document sets (simdoc). We integrate the two measures with weights. Given two 
co-occurrence concepts (CCi & CCj), the similarity is defined as ( =0.5 in the ex-
periments)  

( , ) ( , ) (1 ) ( , )i j cc i j doc i jsim CC CC sim CC CC sim CC CC= + − ,with [0,1] as weights∈  

The semantic similarity between two co-occurrence concepts (CCi & CCj) on con-
cept hierarchy (simcc) is the average similarity of four concept pairs. pC  indicates the 
set of parent concepts of C concept on the concept hierarchy. simdoc is built on the 
information theoretic based measure [17]. It is defined as the ratio between the 
amount of information needed to state the commonality of co-occurrence concepts 
and the information needed to fully describe what the co-occurrence concepts are in 
terms of the number of relevant documents. 
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where 
iCCdocs implies a set of documents that contain CCi co-occurrence concept. 

Based on average-link clustering algorithm that uses the integrated similarity func-
tion, COBRA combines co-occurrence concepts until we get k co-occurrence concept 
groups. For initial document clusters COBRA links each document to k co-occurrence 
concept groups based on its similarity to k groups. This similarity is simply measured 
by the number of times co-occurrence concepts in each document appear in each of k 
groups. A document is assigned to the most similar co-occurrence concept group. For 
example, suppose there are two co-occurrence concept groups (CCG1={CC1, CC2, 
CC3}, CCG2={CC4, CC5}) and a document has CC2, CC3, and CC5. Then, the docu-
ment is assigned to CCG1.  

3.3   Mutual Refinement Strategy for Document Clustering 

Through the procedures above COBRA generates initial clusters. However, this clus-
tering cannot correct erroneous decisions like hierarchical clustering methods. In 
other words, once clustering procedures are performed, the clustering results are never 
refined further even if the procedures are based on local optimization. 
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In this procedure COBRA “purifies” the initial document clusters by mutually re-
fining k co-occurrence concept groups and k document clusters. The basic idea of the 
mutual refinement strategy for document clustering is the followings. 

 A co-occurrence concept should be linked to the document cluster to which the 
co-occurrence concept makes the best contribution. 

 A document cluster should be related to co-occurrence concepts that make sig-
nificant contributions to the document cluster. 

For this mutual refinement strategy we draw another bipartite graph. Given the 
graph G = (VDC+VCC, E), VDC indicates a set of (k) document clusters, VCC represents 
a set of co-occurrence concepts in documents and E indicates the relationships be-
tween two vertices. We specify weights on edges so that we measure the contribution 
of co-occurrence concepts to each document cluster. This contribution is defined as 
the ratio between the amount of information needed to state the co-occurrence con-
cepts in a document cluster and the total information in the document cluster in terms 
of the number of documents. 
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where Size function returns the number of relevant documents, i

k

CC
DCdocs indicates a 

set of documents with co-occurrence concept (CCi) in the document cluster (DCk).  
After each refinement, using k new co-occurrence concept groups, each document 

is reassigned to the proper document cluster in the same way used for generating 
initial clusters. This mutual refinement iteration continues until no further changes 
occur on the document clusters. 

4   Experimental Evaluation 

In order to measure the performance of COBRA, we conduct experiments on public 
MEDLINE documents (abstracts). For the experiments first we collect several ab-
stract sets about various diseases from PubMed. Specifically, we use “MajorTopic” 
tag along with the disease MeSH terms as queries to PubMed (see Section 3 for the 
tag in detail). Table 1 shows each document set and its size. After retrieving the data 
sets, we generate various document combinations whose numbers of classes are 2 to 
10 using the document sets. Each document set used for the combinations is later used 
as an answer key on the performance measure. 

There are a number of clustering evaluation methods. Among them we use mis-
classification index (MI) [18] as a measure of cluster quality since MI intuitively 
shows the overall quality of generated clusters. MI is the ratio of the number of mis-
classified objects to the size of the whole data set [18]; thus, 0% MI means the perfect 
clustering. 

We evaluate our approach to see how much COBRA provides better clustering re-
sults compared with two leading document clustering approaches, and to check if the 
mutual refinement strategy is able to improve clustering quality.  
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Table 1. Document Sets 

Document Sets # of Docs Document Sets # of Docs 
Gout 642 Otitis 5,233 
Chickenpox 1,083 Osteoporosis 8,754 
Raynaud Disease 1,153 Osteoarthritis 8,987 
Insomnia 1,352 Parkinson Disease 9,933 
Jaundice 1,486 Alzheimer Disease 18,033 
Hepatitis B 1,815 Diabetes Type2 18,726 
Hay Fever 2,632 AIDS 19,671 
Kidney Calculi 3,071 Depressive Disorder 19,926 
Impotence 3,092 Prostatic Neoplasms 23,639 
AMD 3,277 Coronary Heart Disease 53,664 
Migraine 4,174 Breast Neoplasms 56,075 

 

4.1   Comparison of COBRA, BiSecting K-Means and CLUTO 

We apply COBRA to MEDLINE articles to compare its performance with two lead-
ing document clustering approaches BiSecting K-means and CLUTO’s vcluster 
(http://www-users.cs.umn.edu/~karypis/cluto). Two recent document clustering stud-
ies showed BiSecting K-means outperforms traditional hierarchical clustering method 
and K-means on various document sets from TREC, Reuters, WebACE, etc, [12] 
[19]. A recent comparative study showed CLUTO’s vcluster outperforms several 
model-based document clustering algorithms [20]; none of studies have compared the 
two approaches. 

0%
10%
20%
30%
40%
50%
60%
70%
80%

C2
.1

C2
.2 C3
.1

C3
.2 C4
.1

C4
.2 C5
.1

C5
.2 C6
.1

C6
.2 C7
.1

C7
.2 C8
.1

C8
.2 C9
.1

C9
.2

C10
.1

C10
.2

C2
.3
C3
.3

C4
.3
C5
.3
C6
.3
C7
.3
C8
.3
C9
.3

C10
.3

6k 22k 6k 28k 28k 21k 32k 16k 45k 13k 29k 17k 45k 18k 39k 19k 25k 32k 110k 134k 76k 55k 78k 103k 128k 88k 85k

BiSecting K-means
Cluto
COBRA

 

Fig. 1. Comparison of MI for BiSecting K-means, CLUTO, and COBRA (MI on X-axis and 
Corpus ID and Corpus Size on Y axis); Cx.y, where x indicates k, and y is a sequence number. 
BiSecting K-means failed to cluster the corpora whose size are more than 45k. Because BiSect-
ing K-means produces different results every time due to its random initialization, BiSecting K-
means is run ten times and the average values of MIs are used for the comparison. 

For the experiments we generated the various document collections using docu-
ment sets in Table 1. These corpora include very large corpus sets (Cx.3 as Corpus ID 
in Figure 1) whose size are more than 50k; most document clustering studies 
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[13][19][20][21] used at most 8.3k to 20k size corpora for their experiments. Figure 1 
shows MI results (smaller is better) for the three approaches. Table 2 shows averages 
of MIs as overall clustering performance index and standard deviation of MIs as the 
clustering performance consistence index for the approaches. These experiment re-
sults indicate that COBRA outperforms BiSecting K-means and CLUTO. As Table 2 
shows, COBRA consistently produces better clustering results for various corpus sets. 
CLUTO yields more or less comparable clustering results with COBRA. But some-
times (for C2.2, C4.1, C6.1, C10.2, C3.3, & C10.3) CLUTO outputs poor clusters. We 
believe that a prestigious document clustering should consistently produce high-
quality clustering results for various document sets. 

 

Table 2. Simple Statistical Analysis of Experiment Results 

 Average of MIs Standard Deviation of MIs 
BiSecting K-means 44.77% 0.18% 
CLUTO 13.30% 0.14% 
COBRA 6.78% 0.06% 

4.2   Evaluation of Mutual Refinement Strategy on Document Clustering 

We evaluate mutual refinement strategy (MRS) to check if MRS is able to improve 
overall clustering quality. For this evaluation we measured MIs before and after MRS 
process. Table 3 shows MI improvement through mutual refinement strategy (MRS). 
We notice that MRS significantly improves the performance of COBRA. We also 
observe that, without this iterative MRS, COBRA still yields comparable performance 
with CLUTO.  
 

Table 3. MI Improvements through Mutual Refinement Strategy (MRS) 

Corpus 
ID 

Before 
MRS 

After 
MRS 

MI Improve-
ments 

Corpus 
ID 

Before 
MRS 

After 
MRS 

MI Im-
provements 

C2.1 0.15% 0.15% 0.00% C6.3 13.06% 7.99% 38.82% 
C2.2 6.70% 0.41% 93.88% C7.1 2.50% 0.52% 79.20% 
C2.3 0.12% 0.16% -33.33% C7.2 5.46% 4.21% 22.89% 
C3.1 0.61% 0.51% 16.39% C7.3 7.23% 9.27% -28.22% 
C3.2 3.66% 2.36% 35.52% C8.1 2.68% 2.00% 25.37% 
C3.3 23.07% 11.24% 51.28% C8.2 10.40% 7.04% 32.31% 
C4.1 17.16% 17.18% -0.12% C8.3 15.59% 11.15% 28.48% 
C4.2 0.95% 0.35% 63.16% C9.1 28.15% 21.60% 23.27% 
C4.3 1.93% 2.29% -18.65% C9.2 12.11% 10.58% 12.63% 
C5.1 27.52% 3.05% 88.92% C9.3 29.19% 18.15% 37.82% 
C5.2 24.96% 10.61% 57.49% C10.1 6.42% 5.17% 19.47% 
C5.3 25.65% 8.93% 65.19% C10.2 18.09% 4.29% 76.29% 
C6.1 6.52% 2.60% 60.12% C10.3 13.64% 16.57% -21.48% 
C6.2 13.21% 4.58% 65.33% AVG 11.73% 6.78% 33.04% 
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5   Conclusions 

In this paper, we mainly discussed how ontology is incorporated into document clus-
tering procedures and how ontology-enriched bipartite graph representation and mu-
tual refinement strategy improves the document clustering results. The main contribu-
tions of this paper are fourfold. First, COBRA becomes a new leading document 
clustering approach in terms of performance. Second, we introduce a new way of the 
use of domain knowledge in ontology on document clustering without depending on 
vector space model. Third, COBRA provides a meaningful explanation for each 
document cluster by identifying its most contributing co-occurrence concepts. Fourth, 
we introduce mutual refinement strategy to improve clustering quality. The strategy 
can be applied to virtually every document clustering approach.  
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Abstract. In the literature of web search and mining, researchers used
to consider the World Wide Web as a flat network, in which each page
as well as each hyperlink is treated identically. However, it is the com-
mon knowledge that the Web is organized with a natural hierarchical
structure according to the URLs of pages. Exploring the hierarchical
structure, we found several level-biased characteristics of the Web. First,
the distribution of pages over levels has a spindle shape. Second, the av-
erage indegree in each level decreases sharply when the level goes down.
Third, although the indegree distributions in deeper levels obey the same
power law with the global indegree distribution, the top levels show a
quite different statistical characteristic. We believe that these new dis-
coveries might be essential to the Web, and by taking use of them, the
current web search and mining technologies could be improved and thus
better services to the web users could be provided.

1 Introduction

The World Wide Web has been investigated deeply in the past decade because
of its explosive growth and significant power in changing the style of people’s
daily lives. By exploring the link structure of the Web [10], researchers found
many exciting characteristics, such as small world [14], highly clustering [14][8]
and scale free [1]. Small world means that there is always a relatively short path
between any two web pages. And highly clustering means that a web page’s
neighbors are also probable to become neighbors. Scale free, which is well stud-
ied in many scientific areas, means that the probability that a page is pointed
by k other pages decays as a power law, following P (k) ∼ k−γ , regardless of
the scale of the web page collections. With the belief that these characteristics
have discovered some principles of web evolution, many generative graph models
[1][14] were proposed to illustrate how these characteristics could be reproduced
by simple rules.
� This work was performed at Microsoft Research Asia.
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Although most of the aforementioned works were done on analyzing the link
structure of the Web, The Web structure is not only featured by hyperlinks
since the URLs also contain rich structural information. By utilizing the direc-
tory depth in URLs, one can naturally reconstruct the hierarchical relationships
among web pages and represent the Web as a hyperlinked forest. This concept
on the Web has been widely used in many previous works in the literature of
web modeling and mining. Ravasz and Barabási [12] proposed a hierarchical
network model. Laura et al [9] proposed a multi-level layer model. Eiron and
McCurley [5] gave a widely study on the hierarchical structure of the Web. They
proved that the hierarchical structure is closely related to the link structure of
the Web.

Rather than the methodologies employed in the above works on hierarchical
Web modeling, in this study, we investigated the hierarchical structure of the
Web in a more explicit way: we dispatched web pages into certain levels by an-
alyzing their URLs and discussed the roles of levels in the hierarchical structure
of the Web. As a result, we found several novel and interesting statistical charac-
teristics of the Web, which have not yet been discovered. First, the distribution
of pages over levels has a spindle shape. That is, most web pages locate in the
middle levels of the hierarchical Web, so there are much fewer pages in the top
and very deep levels. Second, the average indegree in each level decreases sharply
when the level goes down. Third, although the indegree distributions in deeper
levels obey the same power law with the global indegree distribution, the top
levels show a quite different statistical characteristics (less skewed, which means
certain fairness in attracting in-links).

We believe that the aforementioned new discoveries with respect to the levels
in the hierarchical structure might also be essential to the Web. By taking use of
them, the current web search and mining technologies [2][3][7] could be improved
and thus better services to the web users could be provided.

The rest of the paper is organized as follows. In Section 2, we analyzed the
hierarchical structure of the Web. In Section 3, we exhibited the level-dependent
characteristics through the statistics on well-known webpage collections and tried
to give our explanations to them. In Section 4, we gave the conclusions and future
work discussions.

2 Reconstructing Hierarchical Structure of the Web

Most of the artificial complex systems are organized with the hierarchical struc-
tures [13], such as geographical districts, governmental branches and so on. It
is not only for the feasibility of searching but also for the efficiency of admin-
istration. As one of the artificial complex systems, since its birthday, the Web
has been constructed and organized with a hierarchical structure. In this sec-
tion, we presented the exhibition of the hierarchical structure of the Web and
then described how we reconstructed the hierarchical Web from the experimental
datasets.
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2.1 Hierarchical Structure of the Web

Firstly, the Web can be divided into a number of domains according to the
services, such as .com, .edu and so on. After that, each domain can be further
divided into many sub domains, such as microsoft.com, ibm.com and so on.
As a result, the domain system forms a hierarchical structure. Although these
divisions are engaged for the convenience of management at the very beginning,
their senses have gone far beyond that.

Fig. 1. Hierarchical structure of the website

Secondly, from another point of view, the Web actually consists of large num-
bers of websites, each of which is organized with hierarchical tree structure. For
example, a piece of the sitemap of http://www.nhmfl.gov/ is shown in Fig. 1.
Obviously, the site in this figure is divided into five levels, where the portal of the
website corresponds to the first level (denoted by Level 1). For other pages, their
levels will be determined by their relationship with the portal page. Intuitively,
we can get their level properties as shown in Fig. 1.

As the Web is hierarchical and we can clearly define the levels in the hier-
archical structure, we believe that there must be some novel level-dependent
characteristics. To verify this, we conducted some statistics over two well-known
web page collections.

2.2 Datasets and Mapping Strategy

Our statistics were conducted over two well-known benchmark datasets for TREC
Web track, the .GOV corpus and the .GOV2 corpus. These two corpora were both
crawled from the ”.gov” domain. The first one contains about 1M web pages and
the second one contains about 25M ones.

We firstly got the indegree distributions of the two corpora as shown in Fig. 2
in order to justify whether the datasets are representative. From this figure, we
can clearly see that the indegree distributions indeed follow the power law with
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Fig. 2. Global indegree distribution. (a).GOV and (b).GOV2.

an exponent γ = 2.0 ± 0.1. This result is quite in accordance with the previous
conclusions [3], where γ is around 2.1. Thus, we are confident that the datasets
are representative and the statistical results on them are convincing.

In order to mine level-dependent characteristics, we adopted the following
strategies for URL analysis. Evidently, if a page’s URL is formatted like
http://www.aaa.com/, it will belong to Level 1. If a page’s URL is formatted
like http://www.aaa.com/bbb/, it should belong to Level 2. If all the URLs have
such regularity, we will be able to decide the level of a page only by using the
number of slashes in its URL. However, the URLs are not always as regular as
we hope. To tackle this problem, we designed the following algorithm to extract
the level property from the URL information.

Algorithm for Level Extraction

1. URL regularization and Noise Reduction.
(a) Remove the string after ’?’.
(b) Remove ”http://www.” in the front of the URL.
(c) Remove the string formatted as ”<name>.<suffix>” if it appears in the

end of the URL. <name> is one instance in {index, home, default, main}
and <suffix> is one instance in {html, htm, asp, aspx, php, pl}.

(d) Attach a slash to the end of the URL if there is not any.
2. Level Decision.

(a) Extract the number of slashes, denoted by s.
(b) Extract the string before the first slash. If the number of dots in this

string is d, the value of the page level is determined by s + d− 1.

3 Level-Biased Characteristics of the Web

After dispatching the pages to a hierarchical structure by the algorithm proposed
in Section 2.2, we found that there are totally 17 levels in the .GOV corpus and
21 levels in the .GOV2 corpus. In each dataset, the first ten levels contain more
90% pages so that in the latter paragraphs we will only show the features of the
first ten levels in the visualization of the statistical results.
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3.1 Spindle Distribution of Pages over Levels

Our first concern is surly how many pages in each level. Fig. 3 shows our corre-
sponding statistical results: the distribution of pages with respect to levels has
a spindle shape. That is, there is a dominative level in the middle of the hier-
archical structure containing the most pages (the fifth level in the .GOV corpus
and the seventh level in the .GOV2 corpus), and starting from this dominative
level, the proportion of page numbers decreases when going to either the higher
or the deeper levels. For example, in Fig. 3(a), we can see that over 85% pages
reside in the middle four levels (3, 4, 5 and 6) while in Fig. 3(b) over 70% pages
reside in the middle five levels (4, 5, 6, 7 and 8).

Fig. 3. Spindle distribution of page numbers over levels. (a).GOV and (b).GOV2.

As we know, a page may have several child pages in the hierarchical struc-
ture. Therefore, it seems that the total number of pages in each level should
always increase when the level goes down. However, our statistical results on
real datasets do not support this imagination. Actually, the Web does not look
like a triangle but like a spindle.

As for the gap between imagination and real statistics, we provided our ex-
planation to this from the viewpoint of the evolution of the Web. Suppose the
Web grows in an incremental manner that new pages are added one by one. In
the initial state, there is only a virtual page located in Level 0 which is above the
first level. During the growth of the Web, new pages will be created in different
levels with different probabilities. Since in the hierarchical structure, there is
definite parent-child relationship among the pages, we had better decide who its
parent is when adding a new page. It can be proved that a spindle distribution
of page numbers will be generated if the parent selection of a new page is fair to
all the existing pages. This could be represented by the following theorem.

Theorem 1. If the probability that a new page is put in Level i is proportional
to the number of pages in Level i-1 (this is equivalent to that the existing pages
will get a new child with the same probability), the distribution of pages with
respect to levels will have a spindle shape. In particular, it will obey a Poisson
distribution.
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Proof. Let Xi denote the number of pages in Level i. According to the growth
rule, there are totally t pages at time t. The growth rate of Xi is

dXi

dt
=

Xi−1

t
. (1)

This equation can be considered to be a generative Polya’s urn model[4].
Because Level 0 always contains one virtual page, we can easily get

dX0

dt
= 0, X0 = 1. (2)

With these initial conditions, we can get the general solution of Xi as follows.

Xi =
1
i!

(ln t)i. (3)

In the time t, the proportion of the pages in Level k is

P (k) =
Xk

t
= e− ln t · (ln t)k

k!
. (4)

As one can see, P (k) is exactly a Poisson distribution with λ = ln t. ��

Actually, it is really an interesting conclusion that the uneven distribution is
caused by a fair generative process. Based on this characteristic and the corre-
sponding explanation, we might say that the Web is not always dominated by
the law of rich-get-richer [1], sometimes there are also some fair aspects [11].

3.2 Decreasing Average Indegree Along with the Increasing Level

The spindle distribution tells us that the number of pages in the high levels is
small. Then a next question is whether the number of in-links in these levels
is also small. Our statistics show a negative answer to this question that the
average indegree of the high-level pages is much larger than the low-level pages.
That is, web authors prefer to point to the pages in the high levels when they
create new web pages.

Take the .GOV corpus for example. There are 616 pages and 462,723 in-links
in the first level, which is equivalent to about 751 indegrees per page. However,
for the fifth level, although it contains 296,500 pages, it only has 2,230,431 in-
links, or about 7.5 indegrees per page. Overall speaking, when the level goes
down, the average indegree decreases sharply. The same conclusion can also be
obtained from the .GOV2 corpus. If we plot the average indegree in a double
logarithm coordinate, it is nearly a straight line (see Fig. 4(a)(b)) . In other
words, the average indegree over levels has a smoothed power law form.

As for the power law form, although we may have thought of the advantage of
the high-level pages in attracting hyperlinks, we may not think that the difference
is so significant that it almost obeys a power law. Actually, the top 5 levels have
attracted more than 80% in-links. In other words, a random surfer will visit the
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Fig. 4. Average indegree.(a).GOV, (b).GOV2 and (c).GOV after removing the navi-
gational links.

top-5-level pages with a very high probability thus the pages in these levels will
have very high popularity or importance.

As for the term ”smoothed”, we are meaning that the tail of the curve does not
match a power law exactly. We believe that it is because of the navigational link.
As we known, in the Web, a part of hyperlinks are created only for the navigation
purpose, but not for endorsement. These hyperlinks are usually referred to as
navigational links. Even if the number of preferentially attached links decreases
sharply when the level goes down, the number of navigational links may keep
stable. As a result, the proportion of navigational links becomes larger and larger
when the proportion of preferential links becomes smaller and smaller. Therefore,
the curves in Fig. 4(a)(b) are actually smoothed at the tails. If removing the
navigational links, the absolute amount of the average indegree in each level
decreases evidently. However, it still has a power law form. The experimental
result on the .GOV corpus is shown in Fig. 4(c). That is, the predominance
of the high-level pages in attracting links can not be affected by removing the
navigational links. Furthermore, the average indegree is no long smoothed. It
justifies that the in-links of the low-level pages mainly consist of the navigational
links.

3.3 Distinct Indegree Distribution in the First Level

From Section 3.1 and 3.2, we have found that the top levels in the hierarchical
Web have many distinct properties. In this section, we will investigate some
more details about the indegree distribution in the top levels, other than only
an average value, to see whether the rule of link attachment is also distinct.

In Fig. 5 and Fig. 6, we showed the indegree distribution of web pages in
each level of the .GOV and the .GOV2 corpora. From these figures, we can find
that although the indegree distributions in deeper levels follow the same power
law with the global one, the first level is quite different because its exponent is
significantly less. As we know, the exponent of the power law distribution can
reflect the predominance of rich pages for attracting hyperlinks from other pages.
The bigger the exponent is, the more predominant the richer are. Therefore, we
can predict that the pages in the first level will take rather fairness in attracting
new in-links. In other words, the gap between the poor and the rich in the first
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Fig. 5. Indegree distribution in each level of the .GOV corpus

Fig. 6. Indegree distribution in each level of the .GOV2 corpus

level is much smaller than that in other levels. There could be several possible
explanations to it.

First, as mentioned in Section 3.2, many pages usually have a hyperlink point-
ing to the homepage of its website. Therefore, although a homepage might not
be very popular, the low-level pages in the same website will still have many
hyperlinks pointing to it. As a result, the indegrees of the first-level pages are
always very high. After the above arguments, one may have a further question
whether this kind of intra-site links also causes the different exponent of the
first level. To validate it, we removed the navigational links once again and re-
calculated the number of in-links of the web pages. The corresponding results as
shown in Fig. 7 indicate that the indegree distribution of the first level is still
very different. Therefore we can come to the conclusion that there must be some
other reasons rather than the intra-site links that caused the differences.

Then, second, we would like to point out that the artificial factors nowadays
might be one of the sounded reasons for the above phenomenon. As we know,
today’s Web is no longer an environment with fair competition. There are many
methods that can increase the indegree of the homepage of a website, such as
spam, search engine, paid advertisement, and so on. The webmasters will choose
to utilize these methods to make their website browsed by more and more surfers.
Note that, in such a way, a website (and its homepage) can become very popular
even before it has attracted many in-links. This is surely a crack to the rich get
richer concept. This partially explains why the indegree distribution of the first
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Fig. 7. Indegree distribution in each level of the .GOV corpus after removing the
navigational links

level is so different. Actually this explanation also validates the usefulness of the
research works on anti-spam raised in recent years.

To summarize, from the three level-dependent characteristics discovered in
this paper, we can get a common knowledge that the pages in each level should
not be treated equally, especially for the top levels. Although these three char-
acteristics might not portray the hierarchical structure of the Web completely,
it has provided several beneficial hints for many web applications [6]. It is def-
initely worth finding more such characteristics in the hierarchical structure to
further give help to the applications and researches on the Web.

4 Conclusions

In this paper, we explicitly mapped the web pages to a hierarchical structure
by their URLs. Exploring the hierarchical structure of the Web, we found three
level-biased characteristics of the Web. These characteristics, together with our
explanations to them, may provide very helpful hints for the current web search
and mining technologies. There are still many substantial characteristics undis-
covered. We plan to conduct further works on the hierarchical Web and give
useful information to other branches of the researches on the Web.
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Abstract. Existing web usage mining techniques focus only on discov-
ering knowledge based on the statistical measures obtained from the
static characteristics of web usage data. They do not consider the dy-
namic nature of web usage data. In this paper, we present an algorithm
called Cleopatra (CLustering of EvOlutionary PAtTeRn-based web
Access sequences) to cluster web access sequences (WASs) based on
their evolutionary patterns. In this approach, Web access sequences that
have similar change patterns in their support counts in the history are
grouped into the same cluster. The intuition is that often WASs are
event/task-driven. As a result, WASs related to the same event/task
are expected to be accessed in similar ways over time. Such clusters are
useful for several applications such as intelligent web site maintenance
and personalized web services.

1 Introduction

Recently, web usage mining has become an active area of research and com-
mercialization [3, 6, 10]. Often, web usage mining provides insight about user
behaviors that helps optimizing the website for increased customer loyalty and
e-business effectiveness. Applications of web usage mining are widespread, rang-
ing from usage characterization, web site performance improvement, personal-
ization, adaptive site modification, to market intelligence [1].

Generally, the web usage mining process can be considered as a three-phase
process, which consists of data preparation, pattern discovery, and pattern anal-
ysis [10]. In the first phase, the web log data are transformed into sequences
of events (called Web Access Sequences (WASs)) based on the identification
of users and the corresponding timestamps [1]. Figure 1(a) shows an exam-
ple of such WASs. Here S ID represents a sequence id and a WAS such as
〈a, b, d, c, a, f, g〉 denotes a visiting sequence from web page a to pages b, d, c, a,
f and finally to page g. Each sub-table in Figure 1(a) records the collection of
WASs for a particular month. In the second phase, statistical methods and/or
� This material is based upon work supported by (while serving at) the National Sci-
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S_ID            WASs

1        <a, b, d, c, a, f, g>

4        < b, d,  c, a, e>
3        <e, f, g, i, n>
2        <a, b, e, h, a, f, g>

S_ID            WASs

1        <a, b, d, c, a, f, g>

4   < b, e, h, b, d, c, n, f, g>
3        <e, f, g, i, n>
2        <b, d, c, x>

S_ID            WASs

1        < b, d, e, a, f, g>

4        < e, f, g, i, n>
3        <e, f, g, i, n>
2        <b, e, h, b, d, c>

S_ID            WASs

3        < a, b, e, c, f, g>
4        <e, f, g, i, n>

2        <e, f, g, i, n>

(1) The first month (2) The second month

(3) The third month (4) The fourth month

1        < b, d, e, a, f, g>

(a) Example of WASs
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(b) Support of WASs over a time period

Fig. 1.

data mining techniques are applied to extract interesting patterns such as Web
Access Patterns (WAPs)[7]. A WAP is a sequential pattern in a large set of
WASs, which is visited frequently by users [7], that is, given a support thresh-
old ξ and a set of WASs (denoted as A), a sequence W is a WAP if W appears
as a subsequence1 in at least ξ × |A| web access sequences of A. Lastly, these
patterns are used for further analysis in the third phase, which is application
dependent.

From Figure 1(a), it is obvious that web usage data is dynamic in nature.
For instance, the WAS 〈 b, d, e, a, f, g 〉 did not exist in the first and second
months but appeared in the third and fourth months. The dynamic behaviors
of WASs can be attributed to various factors, such as changes to web content
and users’ interest, arrival of new web visitors, and effects of real life events.

In particular, the dynamic nature of WAS data leads to two challenging
problems in the context of web usage mining: maintenance of web usage mining
results and discovering novel knowledge [11]. In this paper, we focus on discover-
ing novel knowledge from historical WASs. Particularly, we focus on clustering
of WASs based on the characteristics of their evolution over time. The intuition
behind this is that WASs are event/task driven. Consequently, WASs related
to the same event/tasks are expected to be accessed in a similar way over time.
For example, consider Figure 1(b), which depicts the support values (y-axis) of
fiveWASs (denoted as A1, A2, A3, A4, and A5) from time period 1 to 6 (x-axis).
Note that i in the x-axis represents a time period (e.g., day, week, month etc.)
and not a particular time point. It can be observed that evolutionary pattern
of the supports for A1, A3, and A5 are very similar over time (like the letter
“W”). Similarly, the evolutionary patterns of supports for A2 and A4 are similar
(like the letter “M”). However, the “W” and “M” clusters cannot be discovered
by existing web usage mining techniques due to the fact that they focus only
on knowledge discovery from snapshot data and maintenance of the knowledge
with the changes to the data source. To extract those clusters, in this paper, we

1 If there are two WASs A1 = 〈B, E, A〉 and A2 = 〈A, B, C, E,A〉, then A1 is a
subsequence of A2.
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propose the Cleopatra (CLustering of EvOlutionary PATteRn-based web
Access sequences) algorithm.

The Cleopatra clustering results can be useful in many applications, two of
which are given below.

Intelligent Web Site Maintenance: With the massive amount of data on
the web, it is critical to maintain a well-structured web site in order to increase
customer loyalty. Recently web usage mining techniques have been successfully
used as a key solution to this issue [3]. However, none of these techniques exploits
the dynamic nature of WASs to restructure web sites. The Cleopatra cluster-
ing results can be used by web site administrators to maintain a well-structured
web site. For example, consider the “W” cluster of WASs in Figure 1(b), which
includes A1, A3, and A5. By analyzing the evolutionary patterns, the web site
administrator can figure out the possible reasons (such as promotions, release of
new products, and holidays) for such patterns. Accordingly, the structure of the
web site can be modified.

User Segmentation: User segmentation is to cluster web users based on the
corresponding WASs to provide personalized services [4, 3]. Existing works ei-
ther use sequence-based distance or probability models to measure the distance
between WASs [4, 3]. However, none of them has taken the dynamic nature of
WASs into account. For instance, two users may have the same list of WASs
that belong to two topics, T1 and T2, having the same support. Using existing
segmentation techniques, the two users will be grouped into the same cluster.
However, they may have different preferences. For example, the first user may
be currently interested in T2 as most of the WASs about T1 were accessed long
time ago, while the second user may be currently interested in T1 as most of the
WASs about T2 were also accessed long time ago. By taking the temporal infor-
mation into account, the user segmentation can be more accurate as users in the
same group are not only expected to have similar WASs but also evolutionary
patterns of those WASs are expected to be similar as well.

The contributions of this paper can be summarized as follows:

• This is the first approach to cluster WASs based on the evolutionary pat-
terns of their support counts.

• We proposed an algorithm called Cleopatra for clustering WASs based
on the evolutionary patterns. Also, the performance of the algorithm is eval-
uated with real life web usage dataset.

2 Problem Statement

In general, web log data can be considered as sequences of web pages with
session identifiers [1]. Formally, let P = {p1, p2, . . ., pm} be a set of web
pages. A session S is an ordered list of pages accessed by a user, i.e., S =
〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where pi ∈ P , ti is the time when the page pi is
accessed and ti ≤ ti+1 ∀ i = 1, 2, 3, . . . , n− 1. Each session is associated with a
unique identifier, called session ID. A web access sequence (WAS), denoted as
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A, is a sequence of consecutive pages in a session, that is, A = 〈p1, p2, p3, . . . , pn〉
where n is called the length of the WAS.

The access sequence W = 〈p′1, p′2, p′3, . . . , p′m〉 is called a web access pat-
tern (WAP) of a WAS A = 〈p1, p2, p3, . . . , pn〉, denoted as W ⊆ A, if and
only if there exist 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n such that p′j = pij for
1 ≤ j ≤ m.

AWAS group, denoted as G, is a bag ofWASs that occurred during a specific
time period. Let ts and te be the start and end times of a period. Then, G =
[A1, A2, . . ., Ak] where pi is included in WAS Aj for 1 ≤ j ≤ k and pi was
visited between te and ts. For instance, we can partition the set of WASs on
a daily, weekly or monthly basis, where the timestamps for all the WASs in a
specific WAS group are within a day, a week, or a month. Consider the WASs
in Figure 1(a) as an example. They can be partitioned into fourWAS groups on
a monthly basis, where WASs, the timestamps of which are in the same month,
are partitioned into the sameWAS group. The size of G, denoted as |G|, reflects
the number of WASs in G.

Given aWAS groupG, the support of aWAS A inG isΦG(A) = |{Ai|A⊆Ai∈G}|
|G| .

When the WAS group G is obvious from the context, the support is denoted as
Φ(A). Similarly, when theWAS A is obvious from the context, the support is de-
noted as Φ.

In our investigation, the historical web log data is divided into a sequence
of WAS groups. Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence of k WAS
groups generated from the historical web log data. Given a WAS A, let HA =
〈 Φ1(A), Φ2(A), Φ3(A), . . ., Φk(A) 〉 be the sequence of support values of A in HG.
Then, the degree of dynamic (denoted as ω(A)) and version dynamic (denoted
as χ(A)) of A are defined to summarize the changes of support values in the
history (defined later in Section 3.1). Moreover, an evolutionary pattern-based
distance (denoted as D) is defined as the Euclidian distance between WASs
based on their version dynamic values.

Given a collection of WASs, with an evolutionary pattern-based distance D
and the degree of dynamic, the objective of the Cleopatra algorithm is to
partition WASs into clusters such that WASs within the same cluster are more
similar/closer to each other than to WASs in other clusters.

3 Representation of Historical WASs

Given a WAS denoted as A = 〈p1, p2, p3, . . . , pn〉, in this paper, we use an
unordered tree called WAS tree to represent the WAS. A WAS tree is defined
as TA = (r, N, E), where r is the root of the tree that represents web page p1;
N ={p1, p2, · · · , pn} is the set of nodes; and E is the set of edges in the maximal
forward sequences of A. An example of a WAS tree is shown in Figure 2(a),
which corresponds to the first WAS shown in Figure 1(a).

As a result, a WAS group consists of a bag of WAS trees. Here, all occur-
rences of the same WAS within a WAS group are considered identical. Then
the WAS group can also be represented as an unordered tree by merging the
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(c): H-WAS tree
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Fig. 2. Examples

WAS trees. We propose an extendedWAS tree to record the aggregated support
information about the bag of WASs within a WAS group.

Definition 1 [Extended WAS Tree]. Let G = [A1, A2, . . ., Ak] be a bag of
WASs, where each WAS Ai, 1 ≤ i ≤ k, is represented as a tree TAi = (ri,
Ni, Ei). Then, the extended WAS is defined as TG = (r, N, E, Θ), where N =
N1 ∪Nj · · · ∪Nk; E = E1 ∪ Ej · · · ∪Ek; r is a virtual root; and Θ is a function
that maps each node in N to the support of the corresponding WAS. �

Consider the firstWAS group in Figure 1(a). The corresponding extended WAS
tree is shown in Figure 2(b), where the value associated with each node is the
Θ value. Next, we propose to merge the sequence of extended WAS trees into
an historical WAS tree, called H-WAS tree.

Definition 2 [H-WAS Tree]. Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence
of k WAS groups, where each WAS group Gi, 1 ≤ i ≤ k, is represented as an
extended WAS tree, TGi = (ri, Ni, Ei, Θ). Then, the H-WAS tree is defined
as HG = (r, N, E, ℘), where r is a virtual root; N = N1 ∪ Nj · · · ∪ Nk; E =
E1 ∪Ej · · · ∪Ek; and ℘ is a function that maps each node in N to the sequence
of historical support values of the corresponding WAS. �

Note that, in the H-WAS tree there is a sequence of support values for each node;
while there is only one support value for each node in the extended WAS. In
this paper, rather than using the entire sequence of support values, we propose
two metrics called version dynamic and degree of dynamic to summarize the
history of support values.

Definition 3 [Degree of Dynamic]. Given aWAS, A, with the corresponding
support count sequence HA =〈 Φ1(A), Φ2(A), · · · Φn(A) 〉, the degree of dynamic,
denoted as ω(A), is defined as:

ω(A) =
1

n− 1
∗

n−1∑
i=1

di where di =

{
1, if Φi(A) 	= Φi+1(A);
0, otherwise

�

Definition 4 [Version Dynamic]. Given a WAS, A, with the corresponding
support count sequence HA =〈 Φ1(A), Φ2(A), · · · Φn(A) 〉, the version dynamic,
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denoted as χ(A), is defined as a sequence χ(A)=〈χ1(A), χ2(A), · · ·, χn−1(A)〉,
where χi(A) = |Φi(A)−Φi+1(A)|

max{Φi(A),Φi+1(A)} , for 1 ≤ i < n-1. �

Figure 2(c) shows a part of an H-WAS tree, where the associated values are the
corresponding degree of dynamic value, and the sequence of version dynamic
values. The degree of dynamic measures how frequently the WAS changed and
the version dynamic measures how significant are the changes in the history.
Furthermore, based on the version dynamic metric, we propose an evolutionary
pattern-based distance to measure the relationships between WASs.

Definition 5 [Evolutionary Pattern-based Distance]. Given two WASs
(A1 and A2), the evolutionary pattern-based distance between A1 and A2, denoted
as D(A1, A2), is defined as:

D(A1, A2) = (χ′
1(A1) − χ′

1(A2))
2 + · · · + (χ′

n−k+1(A1) − χ′
n−k+1(A2))

2

where χ′
i(Aj) = 1

k

∑i+k−1
i (χi(Aj)−χ(Aj)

σ(Aj) ), k is the user defined window size,

χ(Aj) and σ(Aj) are the average support count value and standard deviation
of χ(A). �

Note that, the above evolutionary pattern-based distance measure is actually
the Euclidean distance between the smoothed χ(A) sequence using the moving
average. This distance measure can handle WASs with different baseline, scale,
and time offset. Such properties are highly desired in this specific problem for the
following reasons. Firstly, the average χ(A), which can be viewed as the baseline
for the χ(A) sequence, for WASs that are related to the same event/task may
vary a lot while their evolutionary patterns are similar. Secondly, the effects
of event/task on different WASs can be different, which makes the scales of
changes (χ(A)) to those WASs different. Thirdly, there may be a different time
delays for different WASs related to the same event/task, which may cause the
time offset among χ(A) sequences.

4 Cleopatra Algorithm

The Cleopatra algorithm consists of three major phases: the H-WAS tree con-
struction phase, the node-based clustering phase, and the subtree-based clustering
phase. The objective of the H-WAS tree construction phase is to represent the
WASs as trees and merge them into a single tree structure that records both
the structural and temporal information. As the H-WAS tree construction has
been discussed in [11], we focus on the clustering phases.

Node-based Clustering Phase: The objective of this phase is to categorize
individual nodes with similar evolutionary patterns in the H-WAS tree into clus-
ters. Note that individual nodes represent WASs from the root to the current
nodes. Hereafter, clustering individual nodes refer to clusteringWASs that starts
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Input: H-WAS tree: H

Output: a set of clusters C

1: C′=DBSCAN(H, ω(A))
2: for all Node pairs (Ni, Nj) in cluster c′i ∈ C′ do
3: calculate D(Ni, Nj)
4: end for
5: C = DBSCAN (c′i, D), ∀ c′i ∈ C′

6: for Stop = False do
7: C′=Split(C)
8: C′=Merge(C′)
9: end for

10: Return(C )

Fig. 3. Node-based Clustering Algorithm

Input: A set of clusters C, distance thresh-
old ε for DBSCAN
Output: Refined clusters C′

1: for cluster Cj ∈ C do
2: calculate the centroid point C(Cj)
3: end for
4: for all Cj , Ck∈ C & C(Cj) �= C(Ck) do
5: if D(C(Cj), C(Ck)) < 2 ∗ ε then
6: merge them into a new cluster
7: calculate the new centroid point
8: end if
9: end for

10: Return clusters C′

Fig. 4. Merging Operation

from the root and ends at the corresponding leaf nodes. This algorithm is shown in
Figure 3 and consists of two phases, a two-level clustering phase and an iterative
refinement phase. In the first phase, given an H-WAS tree, firstly, it is clustered
based on the degree of dynamic associated with the individual nodes. Then, using
the evolutionary pattern-based distance, the degree of dynamic based clustering
results are further partitioned into smaller clusters. In the second phase, the
iterative refinement phase, the merging and splitting algorithms are used to
refine the quality of the clustering results. The reason is that in the first phase,
the two metrics degree of dynamic and evolutionary pattern-based distance are
used separately, when the merging and splitting operations converge, the results
will be more accurate.

Note that we use the DBSCAN algorithm [2] to cluster the individual nodes
in the H-WAS tree in this phase for the following reasons. First, the DBSCAN
algorithm needs no prior knowledge about the number of clusters in the data
collection. This is an advantage of the density-based clustering algorithms. Sec-
ondly, the naive DBSCAN approach has the time complexity of O(N logN),
where N is the total number of points in the database, using spatial indexing
techniques. Moreover, the DBSCAN algorithm is able to discover clusters with
arbitrary shapes and is efficient for very large database. Notice that here the dis-
tances between nodes in the H-WAS tree are the Euclidean distances calculated
based on the smoothed χ(A) sequence generated using the moving average.

In the first phase, the reason for designing a two-level clustering algorithm
is to avoid computational cost. In the first level, the degree of dynamic values
are used for producing a preliminary results as the degree of dynamic values
are easier to obtain while the cost for calculating the evolutionary pattern-based
distances are relatively more expensive. By doing this, the computational cost
for calculating the evolutionary pattern-based distances for nodes that are not
expected to be in the same cluster can be reduced.

In the second phase, the merging and splitting operations are proposed to
refine the clustering results in the first phase. The intuition behind is that it is
possible that the first level of degree of dynamic based clustering results may
not fully reflect the evolution pattern-based distances between the nodes. Using
this iterative merging and splitting operations, which will converge to certain
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results, we can guarantee that node-based clustering results are accurate, which
is the foundation for the sub-tree based clustering in the next phase.

Specifically, merging operation is shown in Figure 4. Firstly, for each cluster
a virtual centroid is obtained. Then, the distances between those centroids are
calculated using the proposed evolutionary pattern-based distance measure. For
clusters whose centroids are within a distance of 2∗ε will be merged together
to form a new cluster, where ε is the radius parameter for the DBSCAN al-
gorithm [2]. After that, the splitting operations is then performed on the new
clustering results to split them into new clusters if possible. This splitting process
is based on the DBSCAN algorithm as well.

Subtree-based Clustering Phase: The output of the node-based clustering
phase is a set of clusters that consist of sets of individual nodes with similar
change patterns. However, given a cluster, the relations between individual nodes
are not captured. In this section, the individual nodes within clusters are merged
together to form subtrees, which can represent higher level concepts or objects.
Note that, the subtree construction process is guided by not only the links in
the H-WAS tree, but evolution patterns of these nodes should be similar. For
a given node in the cluster, to measure the number of nodes that have similar
evolution patterns with it, the evolutionary degree is defined as follows.

Definition 6 [Evolutionary Degree]. Let C = NodeClust(H) be a function
that implements the node-based clustering phase where H is the H-WAS tree
and C is the set of clusters returned by the function. Let B(i, j) = Edge(ni, nj)
be a function that takes in two nodes ni and nj and returns 1 if there exists or
0 if there does not exist an edge (ni, nj) in H. Let Cx ={n1, n2, · · ·, n|Cx|} and
Cx ∈ C. Then, the evolutionary degree of ni ∈ Cx (denoted as E•(ni)) is defined
as follows: E•(ni) =

∑|Cx|
j=1 B(i, j), where i 	= j and 0 < j ≤ |Cx| �

From the above definition, it can be observed that nodes that have large evolu-
tionary degree are expected to form large subtrees. In this section, we propose
to extract the list of subtrees for each cluster. Firstly, nodes in each cluster are
ranked based on the evolutionary degree in descending order. Then, to ensure
that WASs in the same subtree have similar evolutionary patterns with each
other, the intra similarity is defined as follows.

Definition 7 [Intra Similarity]. Let C = NodeClust (H) and C = {C1, C2,
· · ·, Cn}. Let tj be a subtree of H and Nt be the set of nodes in tj. Let
K = { K1, K2, · · ·, Ki }, where Kr = |Nt ∩ Cr| ∀ 0 ≤ r ≤ i and r ≤ n.
Then, the intra similarity of tj, denoted as IS(tj), is defined as: Max(K) / |Nt|,
where Max(K) is the maximum value in K. �

Definition 8 [Cluster Subtree]. Let tj = (Nj , Aj) be a subtree of H such that
Nj ⊆ Cx and Cx ∈ C where C = NodeClust(H). Then tj is a cluster subtree if
IS(tj)≥ β where β is a user-defined threshold. �

The algorithm for extracting subtree clusters is presented in Figure 5. The input
of the subtree-based clustering algorithm is a set of clusters with sorted nodes.
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Input: Clusters with sorted nodes C, IS
threshold β
Output: Clusters of subtrees CoS

1: for all cluster Cj ∈ C do
2: for all node nx with the largest

E•(nx) where E•(nx) > 0 do
3: prune all the leaf nodes that are in

different cluster with nx iteratively
4: calculate the IS of the subtree

rooted at nx

5: if IS (Tree(nx)) ≥ β then
6: insert this subtree into the CoS list
7: prune all the leaf nodes in this sub-

tree from this cluster
8: else
9: E•(nx) = −1
10: end if
11: end for
12: end for
13: Return(CoS)

Fig. 5. Subtree-based Clustering

Dataset ε k β Havg Hmin Savg Smax |CoS|
UoS 0.05 30 0.8 0.81 0.16 0.21 0.46 46
UoS 0.10 60 0.8 0.79 0.13 0.23 0.51 38
UoS 0.15 60 0.75 0.78 0.17 0.19 0.48 34
UoS 0.20 90 0.75 0.78 0.14 0.20 0.46 36

Calgary 0.05 30 0.8 0.80 0.14 0.23 0.45 71
Calgary 0.10 60 0.8 0.79 0.15 0.16 0.38 68
Calgary 0.15 60 0.75 0.71 0.13 0.17 0.38 63
Calgary 0.20 90 0.75 0.75 0.06 0.13 0.32 62

Fig. 6. Experimental Results

Firstly, the node with maximum evolutionary degree is selected and the corre-
sponding subtree that includes all the nodes that are connected to that nodes
is constructed and tested against the threshold value of IS. If this subtree is a
cluster subtree, then all the nodes in this subtree are eliminated from the list of
subtrees in that cluster. Otherwise, if this subtree is not a cluster subtree, then
the evolutionary degree of this node is set to -1. This process iterates till all the
nodes in the subtree are tested.

5 Performance Evaluation

In this section, we evaluate our proposed clustering algorithm with two real
datasets, the web log UoS and Calgary, obtained from the Internet Traffic
Archive [5]. The UoS records the historical visiting patterns for University of
Saskatchewan from June 1, 1995 to December 31, 1995, a total of 214 days. In
this seven month period there were 2,408,625 requests. The Calgary logs were
collected from October 24, 1994 through October 11, 1995, a total of 353 days.
There were 726,739 requests. Both of them have 1 second resolution. The web
access patterns are transformed into a sequence of extended WAS trees with a
duration of one day. All the following experiments are carried out on a PC with
Intel Pentium 4, 1.7Ghz CPU, and 512MB RAM.

Our experiments focus on two aspects: the quality and novelty of the clus-
tering results. To evaluate the quality of the our clustering results, two quality
metrics, Homogeneity and Separation [9, 8], are used. Here we review the metrics:
Havg = 1

M

∑
i<j, C(Ai)=C(Aj)

S(Ai, Aj); Hmin = minC′∈C
2∗ i<j∈C′ S(Ai,Aj)

|C′|∗(|C′|−1) ;
Savg = 2

n(n−1)−2M

∑
i<j, C(Ai) �=C(Aj)

S(Ai, Aj); and Smax = maxC,C′∈C∑
Ai∈C, Aj∈C′ S(Ai, Aj)|C| ∗ |C′|, where n is the total number ofWAS subtrees;

Ai is the ith WAS subtree; M is the total number of node pairs that are within
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the same cluster; C is the set of clusters in the result and |C| is the size of the
set; C(Ai) is the cluster to which Ai belongs. Note that, here we transform the
evolutionary pattern-based distance to the similarity measure S such that we
can use the above cluster quality metrics. That is, S(Ai, Aj) = e−D(Ai,Aj). The
larger homogeneity implies a better result, while a larger separation shows a
worse result.

Figure 6 shows the quality of the clustering results with different parameters
for the DBSCAN algorithm, size of moving window in the moving average, and
the intra similarity threshold. The reason of using the above cluster quality
metrics is that, due to privacy reasons, the original URLs of web pages in the
web usage dataset are not available. Therefore, the ground truth of the clusters
are not available. However, from the values in Figure 6, compared with the
corresponding values in other applications that using above quality metrics, the
quality of our results is comparable to the results in [9, 8].

Considering the novelty of our clustering results, although there is no quan-
tified measures, we have the following observations. First, in the Cleopatra
clustering results, we found many WAS pairs that are in the same cluster are
very far away in the H -WAS-tree while the evolutionary patterns are quite sim-
ilar. Such clustering results can be useful for exploring the hidden factors that
lead to the evolution of the correspondingWASs. Second, the overall structures
of the clusters are quite similar in the Cleopatra clustering result. This means
that suppose we have two clusters C1 and C2, where C1 = {A1, A2, A3} and C2

= {A4, A5, A6}, although A1, A2, and A3 may not be siblings or connected but
pairs such as {A1, A4}, {A2, A5}, and {A3, A6} are siblings or connected.

6 Conclusions

This work is motivated by the fact that existing web usage mining techniques
only focus on mining snapshot web usage data and maintaining of the mining re-
sults incrementally. They do not consider the dynamic nature of web usage data.
In this paper, we proposed the first approach of clustering historicalWASs based
on the evolutionary patterns. Experiments with real life datasets show Cleopa-
tra can efficiently produce high quality clusters that cannot be discovered using
existing web usage mining techniques.

Acknowledgements. We thank Dr Mukesh Mohania from IBM India Research
Lab for the feedbacks on the initial draft of this paper.
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Abstract. Online auction Web sites are fast changing and highly dy-
namic. It is difficult to digest the poorly organized and vast amount of
information contained in the auction sites. We develop a unified frame-
work aiming at automatically extracting the product features and sum-
marizing the hot item features across different auction Web sites. One
challenge of this problem is to extract useful information from the prod-
uct descriptions provided by the sellers, which vary largely in the layout
format. We formulate the problem as a single graph labeling problem
using conditional random fields which can model the relationship among
the neighbouring tokens in a Web page, the tokens from different pages,
as well as various information such as the hot item features across dif-
ferent auction sites. We have conducted extensive experiments from sev-
eral real-world auction Web sites to demonstrate the effectiveness of our
framework.

1 Introduction

The easily accessible Internet creates a profit-generating market place and con-
venient shopping environment for many users. One example is the online auction
Web sites such as ebay.com. Individual sellers place items for bidding in the auc-
tion Web sites. Potential buyers can then start bidding the items by setting the
prices that they are willing to pay. The item is then sold to the one with the
highest bid at the end of the bidding period. Online auction Web sites are be-
coming increasingly popular. According to the press release from ebay.com, they
currently have 147 million community members and approximately 50 million
items for sale at any given time1. Several reasons account for the popularity of
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the online auction business. One reason is that sellers do not need to set up and
promote for their own Web sites for selling the items and hence reduce the cost.
Another reason is that potential buyers can ask the price for the items depend-
ing on their budgets and have a chance to successfully buy the items at a lower
price if they can bid the right price at the right time.

Since online auction Web sites have a large number of sellers and potential
buyers with tremendous number of items from different categories listed for bid-
ding at any time, they are fast changing, highly dynamic, and complex systems.
For example, a digital camera may receive a large number of bids ranging from
few US dollars to few hundreds US dollars in just one or two days. The mutual
influences of the items can be seen from the fact that an item being sold may
be seriously affected if another similar item is placed for bidding with a lower
bidding price. Therefore, acquiring the up-to-date and accurate information in
the auction Web sites offers many potential benefits.

It is useful for both sellers and potential buyers to digest the huge amount
of continuously changing information. For example, when a seller intends to
place an item for bidding, he/she is required to set a start bidding price. Some
sellers may set the start bidding price with their subjective expectations. This
can easily result in either that the start bidding price is set too high and hence
the chance of the item being sold may be very slim, or that the start bidding
price is set too low and hence the return may decrease. Some other sellers may
manually analyze the items currently listed for bidding and their prices before
setting the start bidding price. However, this manual process for analyzing the
vast amount of information is tedious. Besides the sellers, it is also beneficial
for a potential buyer to obtain up-to-date, detailed, and accurate information
to assist the decision. For example, before bidding for a particular item, the
potential buyer may study the description of the item, and other similar items
listed for bidding. After certain investigation, he/she can then decide on the
amount of money for this bid. Due to the highly dynamic and fast changing
nature of the online auction Web sites, rapid decision is essential. If the potential
buyer spends too long time for analysis, he/she may either lose the opportunity
for successfully buying the items, or need to pay a higher cost.

We develop a framework which can automatically extract and summarize the
hot item features across different auction Web sites to assist the sellers and the
buyers in decision marking. One objective of our framework is to characterize the
popularity of an item listed for bidding. Intuitively, a hot item is the item which
attracts many potential buyers for bidding. However, we should not measure
the popularity of an item solely by its number of bids because of the following
reasons. First, the number of bids on a hot item may be affected by the presence
of another similar item listed with a lower price. Both of these items actually
attract many buyers’ interest and should be considered as hot items. Second,
from Auction Software Review, we know that about one-forth of the items re-
ceive only one bid at the end of the auction period and potential buyers like to
place the bid in the last minute [1]. Therefore, our approach for characterizing
the popularity of the items is based on the product features of the items. For
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Fig. 1. A sample of Web page about the
bidding of a digital camera collected from
ebay.com

Fig. 2. Another sample of Web page
about the bidding of a digital camera col-
lected from ebay.com

example, a possible product feature of a digital camera may be “4 megapixel
resolution”. Our approach can automatically discover the product features from
the descriptions provided by the sellers. However, the diversified format of the
descriptions can range from regular format such as tables to unstructured free
texts, making the extraction task difficult. For example, Figures 1 and 2 depict
two Web pages collected from ebay.com. These two Web pages are about the
auction of digital cameras. However, the descriptions provided by the sellers are
very different in layout format.

Our framework is able to collaboratively discover and summarize the hot
item features across different auction Web sites. We formulate the product fea-
ture extraction task and hot item feature summarization task as a single graph
labeling problem using conditional random fields (CRF) [2]. One characteristic
of this graph is that it can model the relationship between the inter-dependence
between the neighbouring tokens in the Web page, as well as the tokens in dif-
ferent Web pages. As a result, Web pages collected from different Web sites can
then be considered under a coherent model improving the extraction quality.
This also leads to another characteristic that various information such as the
hot item feature information can be easily integrated in the graphical structure.
We have conducted extensive experiments on several real-world auction Web
sites to demonstrate the effectiveness of our framework.

2 Related Work

Ghani and Simmons proposed a closely related work on end-price prediction
from auction Web sites [3]. They predict the price of the items at the end of the
bidding period using four different kinds of features. The first kind of features
is related to the sellers such as the seller rating. The second kind of feature
is related to auction such as the first bid price of the item. The third kind of
feature is related to the item. This kind of features consists of the indicators of
the occurrence of certain phrases such as “like new” in the title. The last kind of
feature is called temporal feature which is obtained from the recent history of the
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same item. They compared different machine learning techniques such as neural
network and decision tree for the end-price prediction based on these features.
Our proposed framework is different from their work in several aspects. First,
the objective of their approach is to predict end-price whereas our framework is
to extract and summarize the hot item features. Second, their approach assumes
that each item placed for bidding is independent. However, as mentioned in
Section 1, the items actually have a lot of mutual influences.

Hui and Liu [4] have investigated the task of summarizing customer reviews
posted on the Web sites which is similar to sentiment classification [5]. Their
objective is to classify sentences with subjective orientation. They make use of
opinion terms such as “prefect”, “good” as clues and extract the frequent features
of the product from the reviews. Popescu and Etzioi [6] also conducted similar
research. They first made use of the extraction system called KnowItAll [7] to
extract the explicit features of the product. Next the extracted explicit features
are utilized to identify the opinion or orientation from the reviews. Both of these
two methods apply linguistic techniques and focus on the sentences which are
largely grammatical. In contrast, the proposed work in this paper is to discover
the product features of the hot items from the descriptions provided by the
sellers in the auction Web sites. Such descriptions can be vary largely in layout
format ranging from rigid table to free texts. Our work is also different from
the research work on text summarization [8] whose objective is to produce text
summary from text documents.

For semi-structured documents such as Web pages, different information ex-
traction techniques have been proposed [9, 10]. Wrapper is a popular informa-
tion extraction method and it usually consists of a set of extraction rules which
can identify the attributes of interest from Web documents. Several machine
learning methods have been developed for automatic wrapper generation by
learning extraction models from training examples and achieve promising re-
sults [11, 12, 13, 14]. All these methods suffer from one common shortcoming in
that the learned wrapper can only extract the attributes specified in the training
examples. For example, if we just annotate the start time, end time, location,
and speaker in the training examples in the seminar announcement domain, the
learned wrapper can only extract these four attributes. Some other useful infor-
mation such as the title of the seminar will not be extracted. In our previous
work, we extended the traditional information extraction technique for discov-
ering new attributes in Web pages [15]. It should be noted that our objective
of hot item feature extraction and summarization is different from the objec-
tive of ordinary information extraction since our goal is not only to extract the
product features, but also to generate the summary for the hot items across
different auction Web sites. Some techniques have also been developed for fully
automatic information extraction from Web pages without using any training
examples such as IEPAD [16], MDR [17], Roadrunner [18]. Both IEPAD and
MDR assume that the input Web pages contain multiple records and make use
of the repeated patterns for extraction. However, a Web page normally consists
of one item for bidding in the auction sites. Roadrunner does not require the
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Web pages contain multiple records. However, the Web pages are required to
have similar layout format and this is rare in auction Web sites.

Recently, various techniques have been proposed for collectively conducting
information extraction and data mining [19]. For example, Wellner et al. pro-
posed an approach for extracting different fields in citation and solving the ci-
tation matching problem using conditional random fields [20]. McCallum and
Wellner also proposed an approach to extracting proper nouns and linking the
extracted proper nouns using a single model [21]. Bunescu and Mooney pro-
posed to use relational Markov networks to collectively extract information from
documents [22].

3 Graphical Model for Hot Item Feature Mining

3.1 Model Formulation

In CRF, each node in the graph represents a variable and each edge represents
the inter-dependence between the connected variables. Suppose we collect a set
of Web pages from the auction Web sites and we wish to discover the hot item
features. Figure 3 shows a simplified CRF model automatically constructed for
the hot item feature mining application. The size of the graph is much larger
when dealing with real data. There are two kinds of nodes. The shaded nodes
represent observable variables while the unshaded nodes represent unobservable
variables. Suppose we have a collection of Web pages P. As mentioned above, a
Web page, M ∈ P, can be regarded as a set of text fragments denoted by SM

and each text fragment is considered as a sequence of tokens. For a particular
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Fig. 3. Our proposed conditional random fields model for product feature extraction
and hot item feature mining across different auction Web sites
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sequence A ∈ SM , each token is actually composed of two kinds of information.
The first kind of information is the observation of the tokens such as the content
characteristics or the context characteristics. This information can be observed
and is represented by the observable variable XA. The second kind of information
is the labeling information of the token. In product feature extraction, each
token is labeled with either product feature or normal text. This information is
hidden and is represented by the unobservable variable Y A. Notice that XA and
Y A actually represent a sequence of variables XA

i and Y A
i respectively where

0 < i < L and L denotes the number of the tokens in the sequence A. A
node denoted by WA represents the identified product features in the sequence
A. Each Y A

i is connected to Y A
i−1, Y A

i+1, XA, and WA as shown in Figure 3
since the tag label of each token is inter-dependent with the tag labels of the
neighbouring tokens, the observation of the sequence, and the product features.
There is another unobservable node called ZA which refers to the hot item
feature found in the sequence. An observable variable denoted by αM in Figure 3
represents the number of bids of the item listed in page M . In page M , ZA

is connected with WA and XA because a hot item feature is related to the
observation and the product feature found in the sequence. ZA is also connected
to αM because a hot item feature is inter-dependent with the number of bids of
the item listed in page M . For example, it is likely that the product feature is
a hot item feature if the item receives high number of bids from the potential
buyers. In Figure 3, the sequence B,C ∈ SN are collected from the same page
N ∈ P and N 	= M . As mentioned in Section 1, a hot item is not only related to
its number of bids, but also related to other items listed for bidding. Therefore,
XB and ZB, as well as XC and ZC in page N are also connected to the ZA in
page M .

Once the undirected graph is constructed, the conditional probability of a par-
ticular configuration of the hidden variables, given the values of all the observed
variables can be written as follows:

P (y|x) =
1
Z

∏
C(x,y)∈C(x,y)

Φ(C(x, y)) (1)

where x and y are the set of observable variables and the set of unobservable
variables respectively, C(x, y) refers to the set of cliques of the graph. A clique
is defined as the maximal complete subgraph. Φ(C(x, y)) refers to the clique
potential for C(x, y). Z is called the partition function defined as:

Z =
∑

y

∏
C(x,y)∈C(x,y)

Φ(C(x, y)) (2)

We define the clique potential as a linear exponential function as follows:

Φ(C(x, y)) = exp
∑

i

γifi(x, y) (3)

where fi(x, y) and γi are the i-th binary feature and the associated weight respec-
tively. For example, fi(x, y) equals to one if the underlying token is “resolution”
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and the tag label is product feature and equals to zero otherwise in the digital
camera domain. Hence, Equation 1 can be written as follows:

P (y|x) =
1
Z

exp
∑

i

γifi(x, y) (4)

Given the set of γi, one can find the optimal labeling of the unobserved variables
of the graph via conducting inference. The graph typically consists of a large
number of combination for the labels of all the unobservable variables. Hence,
direct computation of the probability of a particular labeling of the unobservable
variables is infeasible. The inference can be carried out by the message passing
algorithm, also known as the sum-product algorithm, by transforming the graph
into junction tree or factor graph [23]. By finding the configuration of the hidden
variables achieving the highest conditional probability stated in Equation 1, the
hot item features can then be discovered from these Web pages.

3.2 Adaptive Training of CRF

Learning in CRF refers to estimating the value of the weights γi associated with
each fi in Equation 4. Suppose we have a set of training examples denoted by
Tra for which the actual labels of the variables are known. We define the log
likelihood function as follows:

L(γi) =
j<|Tra|∑

j=1

{
∑

i

γifi(x(j), y(j))− log(Z)} (5)

where |Tra| and (x(j), y(j)) denotes the number of training examples and the j-
th training example respectively. Maximum likelihood approach aims at finding
the set of γi which maximize Equation 5. It can be shown that Equation 5 is
convex and achieves maximum when the following condition holds:

∇L(γi)
∇γi

= j<|Tra|
j=1 fi(x(j), y(j)) − j<|Tra|

j=1 y′ fi(x(j), y′)P (y′|x(j))
= 0

(6)

Therefore, one can obtain the set of γi achieving the maximum of Equation 5
by using iterative methods such as conjugate gradient methods or voted percep-
tron algorithm [24]. In particular, Figure 4 shows the outline of voted perceptron
algorithm for learning the parameters. In essence, the voted perceptron algorithm
estimates the weight by iteratively minimizing the following expression:∣∣∣∣∣∣

j<Tra∑
j=1

fi(x(j), y(j))−
j<Tra∑

j=1

fi(x(j), ŷ(j))

∣∣∣∣∣∣ (7)

where ŷ(j) is the predicted labeling using the current weighting.
However, recall that one objective of our framework is to extract the previ-

ously unseen product feature contained in the Web pages. To achieve this, we
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———————————————————————————————————

# Original voted perceptron algorithm for learning CRF
Input:Training examples: Tra; Number of iteration: K

Learning rate: ρ; Initial parameter set: γ0
i

Output: The final parameter set: γK
i

Algorithm:
1. for k = 0 . . . K − 1
2. for j = 1 . . . |Tra|
3. ŷ(j),k = arg maxy′ P (y′|x(j); γk

i )

4. γk+1
i ← γk

i + ρ fi(x
(j), y(j)) − fi(x

(j), ŷ(j),k)

5. k ← k + 1
6. end for
7. end for
8. return γK

i

———————————————————————————————————

Fig. 4. The outline of the supervised voted perceptron learning algorithm for CRF

———————————————————————————————————

# EM based voted perceptron algorithm for learning CRF
Input:Training examples: Tra; Number of iteration: K

Learning rate: ρ; Initial parameter set: γ0
i

Output: The final parameter set: γK
i

Algorithm:
1. γ∗

i ← γ0
i

2. until convergence
E-step:

3. for j = 1 . . . |Tra|
4. P (y′|x(j)) = 1

Z exp i γ∗
i fi(x

(j), y′)
5. end for

M-step:
6. for k = 0 . . . K − 1
7. for j = 1 . . . |Tra|
8. ŷ(j),k = arg maxy′ P (y′|x(j); γk

i )

9. γk+1
i ← γk

i + ρ y′ fi(x
(j), y′)P (y′|x(j)) − fi(x

(j), ŷ(j),k)

10. k ← k + 1
11. end for
12. end for
13. γ∗

i ← γK
i

14. end until
15. return γ∗

i

———————————————————————————————————

Fig. 5. The outline of our EM based voted perceptron learning algorithm for CRF

exploit the clue embodied in the context characteristic such as the layout for-
mat of the extracted data. However, the extracted data cannot be directly used
because they involve uncertainty. To tackle this problem, we treat the extracted
data as unlabeled data and develop an expectation-maximization (EM) based
voted perceptron algorithm as shown in Figure 5. In the E-step of our algorithm,
we estimate the probability of the labeling of the unobservable variables. In the
M-step, we employ the voted perceptron algorithm augmented with the following
weight updating function:

γk+1
i ← γk

i + ρ y′ fi(x(j), y′)P (y′|x(j); γk
i ) − fi(x(j), ŷ(j),k) (8)
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Compared with the algorithm stated in Figure 4, our EM based voted per-
ceptron algorithm estimates the weight by iteratively diminishing the following
expression: ∣∣∣∣∣∣

j<Tra∑
j=1

∑
y′

fi(x(j), y′)P (y′|x(j); γ∗
i )−

j<Tra∑
j=1

fi(x(j), ŷ(j))

∣∣∣∣∣∣ (9)

The first term of Equation 9 (i.e.,
∑j<Tra

j=1

∑
y′ fi(x(j), y′)P (y′|x(j); γ∗

i )) is the
expectation value of fi(x(j), y′) and it approaches to the first term of Equation 7
(i.e.,

∑j<Tra
j=1 fi(x(j), y(j))) when the data set is sufficiently large.

4 Experimental Results

We conducted experiments on three real-world auction Web sites in the digital
camera domain to demonstrate the effectiveness of our framework. The three
auction Web sites are www.ebay.com, auctions.yahoo.com, and www.ubid.com.
We collected 50 Web pages from each of the auction sites for the evaluation.
Each Web page contains an item listed for bidding and the remaining bidding
time is less than an hour. We conducted two sets of experiments to evaluate our
approach to product feature extraction and hot item feature summarization.

We manually annotated the product features in the Web pages. These anno-
tated product features were served as the gold standard in our evaluation. We
randomly chose 5 pages from each of the Web sites (a total of 15 Web pages)
to produce the set of training examples to train our model as described in Sec-
tion 3.2. The trained model is then applied to the remaining Web pages to extract
the product features of the items. Recall(R), precision(P), and F-measure(F) are
adopted as the evaluation metrics. Recall is defined as the number of items for
which the system correctly identified divided by the total number of actual items.
Precision is defined as the number of items for which the system correctly iden-
tified divided by the total number of items it extracts. F-measure is defined as
2PR/(P +R). Table 1 depicts the extraction performance of our approach. Our
approach achieves about 81% and 75% for average precision and recall respec-
tively. This shows that our approach can effectively leverage the content and
context characteristics to extract the product features.

Next, we employ our framework to generate the summary of the hot item
features. To increase comprehensibility, we generate the summary by outputting
the text fragments containing the hot item features instead of individual token.
Table 2 shows some text fragments extracted. We manually investigate the items
listed for bidding in the auction Web sites and find that over 70% of the items
receiving at least one bid from the potential buyers contain at least three of the
reported product features mentioned in the summary. This demonstrates that
the summary generated is very helpful for the auction Web site participants.
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Table 1. The experimental results of our approach to extracting product features. (P,
R, and F refer to the precision, recall, and F-measure respectively. Ave. refers to the
average of extraction performance.)

P R F
ebay 0.77 0.62 0.69
yahoo 0.87 0.88 0.87
ubid 0.78 0.75 0.76
Ave. 0.81 0.75 0.78

Table 2. Some of the text fragments containing the hot item features in the digital
camera domain

Text fragments about the hot item features
Digital Zoom 8X
For Mac or Windows
15 - 25 fps ( for 640 x 480 pixels )
2 . 0 ” TFT LCD Screen
About 120g ( without battery and SD card )
Add SD flash memory cards up to 1GB to store over 1000 pictures
Bundled Kits : Camera Bag

5 Conclusions

We have developed a unified framework which is able to extract and summarize
the hot item features across different auction Web sites. Our system can assist
sellers and potential buyers in making decision. One challenge of this problem
is to extract information from the product descriptions provided by different
sellers, which vary largely in the layout format. We formulate the problem as a
single graph labeling problem employing conditional random fields. The solution
is then obtained by conducting inference in the graph. One characteristic of
our framework is to extract the previously unseen product features by making
use of the clue embodied in the layout format of the extracted data. We have
designed an EM based voted perceptron algorithm to handle the uncertainty
involved. Extensive experiments from several real-world auction Web sites have
been conducted to demonstrate the effectiveness of our framework.
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Abstract. Session similarity is a key issue in web session clustering. Existing 
approaches vary on session representation and similarity computation. How-
ever, they do not consider the similarity between pages, which is crucial due to 
the semantic gap between URLs and corresponding application events. This pa-
per presents a domain taxonomy-based clustering approach, which extends the 
WLCS technique by integrating page similarity to compute session similarity. 
The approach can be applied to both usage and navigation clustering purposes.  

1   Introduction 

Web Usage Mining (WUM) applies data mining techniques to discover patterns from 
web server logs. WUM process is divided into three phases [2]: pre-processing, pat-
tern discovery, and pattern analysis. The categorization of visitors’ behavior based on 
their interaction in a website is a key issue in WUM. Several works [1, 3, 5, 7] lever-
age clustering techniques with the purpose of characterizing user behavior during 
navigation. The goals of session clustering can be roughly classified as usage and 
navigation. However, most clustering techniques do not consider the meaning in the 
application domain of accessed pages, in order to measure the similarity between web 
sessions. Page semantics is frequently considered in the pre-processing phase, in data 
enrichment tasks, in which URLs are mapped into domain concepts [1, 3]. This ap-
proach is static in the sense that a new perspective of a URL (e.g. more generalized 
concept), to obtain better clustering results, often implies re-processing data.  

This paper presents Generalized Conceptual Session Clustering (GCSC) technique, 
which extends WLCS [1] in two ways: 1) it considers page similarity for session simi-
larity computation, and 2) it deals with both usage and navigation clustering purposes. 
The goal is to improve the quality of resulting clusters and to ease their interpretation. 

The remainder of this paper is structured as follows: Section 2 presents related 
work and Section 3 presents a review of WLCS algorithm [1]. Section 4 describes the 
GCSC approach. Preliminary experimental results are discussed in Section 5. Conclu-
sions and future work are addressed in Section 6. 

2   Related Work  

Most works are concerned on how user sessions are represented according to the clus-
tering objectives, and how session similarity is computed. Works such as [3, 7] are 
concerned with usage clustering, and hence represent web sessions as a set of 
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(weighted) pages, disregarding their order of access. Navigation clustering is ad-
dressed by [1, 5, 9], which explicitly consider the user trajectory. Hence, session is 
represented in terms of visited pages, weight, order of access, and revisits.  

A critical issue in WUM is the semantic gap between events in the site, and their re-
lated URL at server log. Semantic approaches conceptualize the application domain 
through a semantic model (i.e. taxonomy or ontology) which represents pages in  
terms of concepts and their relationships [8]. Works such as [1, 3] adopt a domain tax-
onomy in the pre-processing phase to transform URLs into concepts. However, page 
similarity is not explicitly used during clustering, for session similarity computation.  

3   Weighted Longest Common Subsequences 

WLCS [1] establishes the similarity of sessions considering both the similarity of 
their overlap region weighted by the time spent, and the importance of this region 
within each session. User trajectory is defined as a n-length sequence (j={1,…,n}) of 
ordered pairs, given by ( )( ) ( )( ){ }i

n
i
n

ii
i ccccs ττ ,,,, 11= , where i

jc  is the j-th visited page in 

the session si and ( )i
jcτ  is the associated time spent. WLCS discovers the path intersec-

tion by applying a Longest Common Subsequence (LCS) algorithm to find the longest 
common path between any two sessions. Then, given a specific overlap for sessions s1 
and s2, WLCS obtains two functions, ( )il s1  and ( )il s2 , where i=(1,….L) and L is the 

length of overlap region, in order to retrieve the related page indices in each session. 
Then, considering the time spent on those pages, WLCS combines two measurement 
components: similarity and importance. The former computes how similar two ses-
sions are in the overlap region, and the later, how important the overlap region is to 
each session. The total session similarity is the product of similarity and importance. 
WLCS assumes total equality between pages in order to find the overlap region.  

4   Generalized Conceptual Session Clustering  

Generalized Conceptual Session Clustering (GCSC) is a clustering approach that ex-
tends WLCS in two aspects: a) it considers page similarity during the computation of 
session similarity, and b) it deals homogeneously with any clustering goals, as well as 
time and binary weights, by applying the proper post-processing operations over the 
input sessions. GCSC is based on a taxonomy representing domain events for address-
ing the semantic gap between URLs and application events. GCSC assumes the fol-
lowing pre-processing tasks over input log data:  

− Log file is submitted to typical pre-processing tasks [2], and clustering-specific 
post-processing tasks [1, 3, 7].  

− A domain taxonomy exists, which reflects expert knowledge about the domain. 
Data enrichment activities map URLs into concepts of the domain hierarchy. 

4.1   Session Representation  

As in [1], the user trajectory is represented as the sequence of ordered pair of pages 
and weight. We assume both time and binary weights. This session representation 



348 C.M. Nichele and K. Becker 

(Figure 1 A) obviously suits the navigation clustering objective. Hence, each index j 
of any session si represents the order in which a given concept was accessed in the 
session, including its revisits. The generalization proposed by GCSC with regard to 
session clustering purposes uses this same session representation for usage clustering, 
in which neither the order of visited concepts nor their revisits are relevant. Using ap-
propriated pre-processing tasks, concepts are re-arranged in the session according to 
their proximity in the domain taxonomy to emulate a common usage sequence, as 
shown in Figure 1 (B). If time weights are used, they are added in case of revisits.  

 

Fig. 1. Session representation and domain hierarchy example 

4.2   Page Similarity Measure 

This work leverages domain semantics, represented by the taxonomy, to compute the 
similarity between the concepts in terms of their location in the hierarchy. The 
adopted similarity function (Formula 1) is an adaptation of the GVSM (Generalized 
Vector-Space Model) [4] element similarity, where c1 and c2 are concepts in the hier-
archy, LCA is the lowest common ancestor for c1 and c2, and depth is the number of 
edges from the concept to the top of hierarchy.  

( ) ( )( )
( ) ( )21

21
21

,2
,

cdepthcdepth

ccLCAdepth
ccsim

+
×

=  (1) 

4.3   Similarity-Based WLCS 

Another component of GCSC is SWLCS (Similarity-based WLCS), which extends 
WLCS by considering the similarity between concepts when computing the LCS be-
tween sessions. The equality comparison of WLCS was replaced by a similarity com-
parison (Formula 1) considering an additional input, namely similarity threshold. The 
similarity threshold allows defining the minimum similarity required in order to in-
clude two different, but similar concepts into the LCS. For example, consider the con-
ceptual hierarchy of Figure 1 (C), sessions s1 and s2 of Figure 1 (B) and a similarity 
threshold of 0.5. The LCS between s1 and s2 is defined by the session indices ( ) 111 =sl , 

( ) 321 =sl  and ( ) 112 =sl , ( ) 222 =sl , because c11 and c12 similarity meets the threshold value. 

It should be noticed that the definition of a threshold value is not a simple task, since 
it is strongly dependent on depth of the hierarchy. This discussion is out of the scope 
of this paper scope. Given that any two sessions may have more than one LCS [1] and 
time spent in each page of the LCS is used to compute session similarity, SWLCS 
computes session similarity based on two LCS, yielding the highest similarity value.  
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GSCS was implemented as operators in LogPrep [6], a customizable WUM pre-
processing tool, which is organized in terms of pre-processing tasks. For each type of 
task, it provides one or more operators that implement some pre-processing technique. 
We extended LogPrep with a new task (clustering transformations) and two new op-
erators that define respectively usage and navigation clustering goals, as well as 
weight types, together with some clustering-specific post-processing tasks of [6].  

5   Case Study 

We leverage the distance education department domain of our university (PUCRS-
Virtual) as case study. For a given web course, we developed a domain taxonomy that 
organizes 173 concepts through generalization relationships, which was validated by a 
domain expert of PUCRS-Virtual. Due to space limitation, the experiment discussed 
here compares WLCS and SWLCS algorithms for navigation clustering goal, consid-
ering time weighted sessions. For this purpose, we created 11 hypothetical sessions 
(Table 2) out of real log data, where each session si is composed of pairs of concept 
and weight, and concepts correspond to URLs mapped into the taxonomy. The mean 
time technique [7] was used to infer the time of the last access in each session.  

We run SWLCS over this data twice, with a similarity threshold of 0.7 and 1.0, the 
later to produce WLCS results. Then, resulting similarity matrixes were submitted to 
a graph-based clustering algorithm (http://www.users.cs.umn.edu/~karypis/cluto). 
Comparing the clusters produced (Table 3), along with the intuitive meaning of do-
main concepts, it is possible to state that SWLCS appropriately grouped s1 and s2 be-
cause they have a common chat ancestor in their overlap region. Likewise, s7 is 
grouped with s8, s9, s10 and s11 since they have common forum and email services. 
 

Table 1. Hypotetical web sessions 

Sessions  Legend 
s1={(c1,2593),(c2,718),(c3,0)} s2={(c4,1177),(c5,102),(e1,0)}  cj: Chat 
s3={(t1,45),(t2,186),(m1,0)} s4={(t1,98),(t3,57),(m2,24),(m3,0}  ej: Email 
s5={(m1,48),(q1,0)} s6={(m1,101),(q1,0)}  fj: Forum 
s7={(f1,80),(e5,72)} s8={(f2,43),(e3,118),(e4,0)}  qj: Quiz  
s9={(e5,102),(e3,178),(e4,0)} s10={(e6,58),(e3,70),(e7,72), (e8,0)}  mj: Material 
s11={(e5,42),(e3,58),(e4,0)}   tj: Tasks 
   mj: Site map 

Table 2. Experiment results 

WLCS SWLCS 
Cluster1: s3, s4, s5, s6 

Homework tasks, material, site map and quiz 
Cluster1: s5, s6 

Site map and quiz 
Cluster2: s2 

Chat and email services 
Cluster2: s3, s4 

Homework tasks and materials 
Cluster3: s7 

Forum and email services 
Cluster3: s1, s2 

Chat and email services 
Cluster4: s1, s8, s9, s10, s11 

Email, forum and chat services 
Cluster4: s7, s8, s9, s10, s11 

Email and forum services 
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Additionally, SWLCS enables to distinguish between visitors who browse general 
content (s5 and s6) from the ones who access didactical content and perform home-
work tasks (s3 and s4). Hence, it is possible to state that SWLCS revealed in this ex-
periment more meaningful clusters with regard to the domain. Other experiments, not 
addressed in this paper due to space limitations, have displayed similar improvements. 
Notice that the same results could have be obtained by WLCS, if data enrichment 
tasks statically generalize concepts that are generalized dynamically by SWLCS.  

6   Conclusions  

GCSC is a clustering approach that extends WLCS to consider page similarity, and 
for both navigation and usage clustering objectives.  The main contribution is to lev-
erage the advantages of the domain taxonomy for computing session similarity. Con-
cept generalization is dynamically considered during session similarity computation, 
as opposed to static, data enrichment-based approaches. Preliminary results have 
shown encouraging results, but several issues need further experimentation: the ef-
fects of concepts ordering in the usage sessions when computing LCS, bigger data 
samples, threshold definition, etc. This work is part of a research that aims at using 
WUM techniques to provide a learning monitoring behavior for distance education, 
targeted at instructors. Future work includes cluster interpretation using the concep-
tual representation of sessions, for both navigation and usage clusters. 
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Abstract. The web is a sensor of the real world. Often, content of web
pages correspond to real world objects or events whereas the web us-
age data reflect users’ opinions and actions to the corresponding events.
Moreover, the evolution patterns of the web usage data may reflect the
evolution of the corresponding events over time. In this paper, we present
two variants of iWed(Integrated Web Event Detector) algorithm to ex-
tract events from website data by integrating author-centric data and
visitor-centric data. We model the website related data as a multigraph,
where each vertex represents a web page and each edge represents the
relationship between the connected web pages in terms of structure, se-
mantic, and/or usage pattern. Then, the problem of event detection is
to extract strongly connected subgraphs from the multigraph to represent
real world events. We solve this problem by adopting the normalized
graph cut algorithm. Experiments show that the usage patterns play an
important role in iWed algorithms and can produce high quality results.

1 Introduction

The web has invaded our lives. In some sense, the web is a sensor of the real
world. Specifically, it has been observed that events and objects are often rep-
resented by sets of web pages but not individual web pages [4, 8]. Consequently,
a large body of literature has focused on extracting real world events or objects
from web data [4, 5, 8, 11, 12]. These approaches can be classified into two groups:
structure-based extraction and content-based extraction. In the structure-based
approaches, the website structures, hyperlink structures, and URLs are used
to extract sets of web pages corresponding to events and objects [4, 8]. In the
content-based extraction, content of web pages are segmented and categorized
into subgroups that correspond to different topics, events, and stories using tech-
niques such as natural language processing and probability models [1, 11, 12]. At
the same time, such extraction results have been proved useful in many applica-
tions such as organizing the website structure [8], restructuring the web search
results [4], terrorism event detection [9], and Photo Story and Chronicle [5].

Data associated with a set of web pages in a web site can be classified into
two types: author-centric and visitor-centric. Author-centric data refers to a set
of hyperlinked web pages that describes certain object or event, while visitor-
centric data refers to web access sequences of these pages and describes how the

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 351–360, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Web data representation

web pages are accessed in the history. Observe that author-centric data describes
authors’ point of view while visitor-centric data reflects the web visitors’ point
of view.

We observed that existing event and object extraction approaches only ana-
lyzed the author-centric data. These techniques ignore visitor-centric data. How-
ever, often it may not be possible to distinguish different events related to the
same topic by using the author-centric data alone. This is because events be-
longing to the same topic often share a set of keywords and the pages containing
these different events are often connected by hyperlinks. For example, web pages
talking about different car accidents tend to share keywords like car, accidents,
and crash. Also, these pages may be connected as they belong to the same topic
(car accident). Hence, it is difficult to distinguish one car accident from another
based on only keywords and hyperlink structure.

In this paper, we consider visitor-centric data along with author-centric data to
detect real-world events. In other words, we integrate visitor-centric and author-
centric data to distinguish different events under the same topic. The major differ-
ences between our event detection approach and the related research
[1, 11, 12, 5, 4, 2] are twofold. First, all the above works focus on either the author-
centric or the visitor-centric data, while our approach incorporates the visitor-
centric data along with the author-centric data. Second, the temporal property of
the visitor-centric data is utilized in our approach to improve the event detection
accuracy.

For example, suppose Figure 1(a) shows a subset of hyperlinked web pages;
Figure 1(b) shows the implicit links extracted from the corresponding usage
data; and Figure 1(c) shows the evolution pattern of web usage data (the y-axis
shows the frequency of a web page being accessed over the time intervals shown
in the x -axis ). Here, there is an implicit link between two web pages if and
only if they were accessed consecutively in the web access sequences [10]. The
evolution pattern of web usage data refers to how the web pages changed in the
history in terms of their supports [13].

It can be observed that from only Figure 1(a), it is difficult to distinguish
sibling pages such as e and f even if they correspond to different events. How-
ever, with the evolution of web usage data as shown in Figure 1(c), connected
web pages with similar content but corresponding to different events can be dis-
tinguished. For example, in Figure 1(c), pages e and g have similar evolution
pattern while pages e and f have different evolution pattern. At the same, web



iWed: An Integrated Multigraph Cut-Based Approach 353

pages that are not connected by hyperlinks but corresponding to the same event
can be identified using implicit links in Figure 1(b), since they are expected to
be accessed together. As shown in Figure 1(b), the implicit link between web
pages b and g, which are not connected by hyperlink in Figure 1(a), implies that
b and g have a possibility to represent the same event. In this paper, we focus
on detecting events in a specific website as it is extremely difficult to gather web
usage data of the entire web. The contributions of this paper are as follows.

• To the best of our knowledge, this is the first approach that detects website
level events by integrating web structure, web content, and web usage data
and its evolution patterns.

• A multigraph is proposed to model website related data in terms of structure,
semantics, and usage patterns by integrating the author-centric and visitor-
centric data.

• We present two variants of iWed algorithm, called fusion-based graph cut
and level-wise graph cut, to detect events from the multigraph. These al-
gorithms are inspired by the normalized graph cut algorithm widely used
in image and video object extraction [6]. Experiment results show that the
iWed event detection algorithms can produce high quality results.

2 Website Data Representation and Problem Statement

In this section, we first discuss how to represent web structure, web content,
and web usage data of a web site using structure graph, content graph, and
usage graph, respectively. Then, we present how these three types of graphs are
integrated using a multigraph, followed by the problem statement of website-
based event detection.

2.1 Structure Graph

The web structure data here refers to the set of web pages and hyperlinks between
them. It can be modelled as a structure graph, Gs = 〈Vs, Es〉, where each vertex
in Vs is a web page and each edge in Es represents the structure similarity (will
be defined later) between the two pages that are connected by this edge. Note
that the structure similarity is defined to reflect the similarity between web pages
in terms of structure. The intuition is “two web pages are structurally similar if
they are linked with similar web pages” [3]. As the base case, we consider a web
page maximally similar to itself, to which we can assign a structure similarity
score of 1. With this intuition, given two web pages i and j in Vs, the structure
similarity is defined as:

Ss(i, j) =
C

|D(i)| ∗ |D(j)|
|D(i)|∑
m=1

|D(j)|∑
n=1

Ss(Dm(i), Dn(j))

Here C is a constant between 0 and 1, |D(i)| is the degree of vertex i in the graph
and Dm(i) is the mth neighbor of vertex i. It is obvious that this similarity is an



354 Q. Zhao, S.S. Bhowmick, and A. Sun

iterative function where similarities between web pages are propagated through
recursions. That is, the value of Ss(i, j) in the tth iteration, denoted by Sst , is
based on the values of the t-1th iteration. More over it has been proved that
this recursive function is nondecreasing and it will converge eventually [3]. We
initialize the recursions with Ss0 : if i=j, then Ss0(i, j)=1; otherwise Ss0(i, j)=0.

2.2 Content Graph

The web content data refers to the content of each web page. The web content
data is modelled as a content graph, Gc = 〈Vc, Ec〉, where each vertex in Vc is
a web page and each edge in Ec represents the semantic similarity between two
pages. It has been experimentally proven that cosine measure is one of the best
measures for web content clustering [7]. Hence, we use the cosine measure to
quantify semantic similarity between two pages. Given a web page i, using some
stemming algorithm, it will be represented as a vector, −→Xi, which corresponds
to the TF.IDF of the terms after stemming [7]. Then, the semantic similarity
between two web pages i and j, denoted as Sc(i, j), is defined as:

Sc(i, j) =
(−→Xi • −→Xj)
||−→Xi|| · ||−→Xj ||

where (−→Xi•−→Xj) is the dot product of the two vectors and ||−→Xj || denote the length
of vector −→Xj.

2.3 Usage Graph

The usage data refers to the access log of the web pages. It also can be modelled
as a graph, called usage graph, Gu = 〈Vu, Eu〉, where each vertex in Vu is a web
page and each edge in Eu represents the usage pattern-based similarity between
two pages. Firstly, we review some of the literature in web usage mining.

In general, web usage data records the interactions between web users and the
web server. A web access sequence (WAS) is an ordered list of pages accessed
by a user, denoted by A = 〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where pi is a web page,
ti is the time when pi was accessed and ti ≤ ti+1 ∀ i = 1, 2, 3, . . . , n− 1. Similar
to [13], the WASs can be represented as a sequences of WAS group based on
the user-defined time interval. A WAS group (denoted by G) is a bag of WASs
that occurred during a specific time period. Let ts and te be the start and end
times of a period. Then, G = [A1, A2, . . ., Ak] such that ∀ pi ∈ Aj , 1 < j ≤ k, pi

was visited between te and ts. As a result, the historical web log data is divided
into a sequence of WAS groups. Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence
of k WAS groups generated from the historical web log data. Given a web page
i, let Hi = 〈 Φ1(i), Φ2(i), Φ3(i), . . ., Φk(i) 〉 be the sequence of support values
of i in HG. Note that, for 1 ≤ t ≤ k, Φt(i) = N

|Gt| , where N is the number of
WASs that contain i.

Given two web pages, i and j, with the corresponding web usage data, the
usage pattern-based similarity, denoted by Su(i, j), is defined as:
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(a): structure graph (b): content graph (c): usage graph (d): multigraph

Fig. 2. Web data representation

Su(i, j) = λ× e−D + (1 − λ)×
∑k

t=1(Φt(〈i, j〉) + Φt(〈j, i〉))∑k
t=1(Φt(i) ∪ Φt(j))

,

where D =
√∑k

t=1 |Φt(i)− Φt(j)|2. Note that, the usage pattern-based simi-
larity is a linear combination of the evolution pattern-based similarity and the
implicit link-based similarity. The evolution pattern-based similarity is denoted
by e−D, where D is the Euclidian distance between the support sequences H(i)
and H(j). The implicit link-based similarity is represented as the percentage of
WASs that contain i and j consecutively against the total number of WASs
that contain at least one of i and j . Here, λ and 1 − λ are the weights of evo-
lution pattern-based similarity and implicit link-based similarity, respectively.
It is obvious that both the evolution pattern-based similarity and implicit link-
based similarity are within the range of 0 to 1. Similarly, the usage pattern-based
similarity is between 0 and 1.

2.4 Multigraph

We merge the above three graphs into a multigraph, which includes web struc-
ture, web content, and web usage data in a website. A multigraph is a graph
whose edges are unordered pairs of vertices, and the same pair of vertices can
be connected by multiple edges. In this case, there are three edges for each pair
of vertices. These three edges represent the edges of structure graph, content
graph, and usage graph, respectively.

Definition 1 [Multigraph]. A multigraph is represented as a 3-tuple M =
〈 V, E, f 〉, where V is a set vertices , E a set of edges, and f is a function f (ei)
= {{u,v}|u, v ∈ V ; u 	= v } that takes an edge ei ∈ E and returns the set of web
pages u and v that are connected by ei. Two edges ei and ej are called parallel
or multiple edges if f (ei) = f (ej).

An example of the multigraph representation of website data is shown in Figure 2
with the corresponding structure graph, content graph, and usage graph. Note
that, the similarities between disconnected web pages are 0 and the weights of
the edges represent the corresponding similarity values.

Website-based Event Detection Problem: Based on the multigraph rep-
resentation of the website related data, each real world event corresponds to a
strongly connected subgraph in the multigraph. That is, a real world event can
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be represented as a set of structurally and semantically strongly connected web
pages with similar usage patterns in the multigraph. The website based event de-
tection problem is to extract such subgraphs from the multigraph representation.

3 iWed Algorithms

In this section, we present the iWed event detection algorithms based on the
multigraph representation of the website data. To extract the strongly connected
subgraphs from a graph, different graph cut algorithms have been proposed. In
this paper, we adopt the normalized graph cut algorithm, which is widely used
in object extraction from image data and frame segmentation of video data [6].

The three similarity measures, Ss, Sc, and Su, introduced in Section 2 can
be classified into two categories: topic similarity and evolution similarity. Topic
similarity is the combination of the structure similarity (Ss) and the semantic
similarity (Sc), while evolution similarity is the usage pattern-based similarity
(Su). Based on those two categories, we propose two variants of iWed algorithm
for cutting the multigraph. The first approach, called the fusion approach, fuses
the two types of similarity measures together and cuts the graph by treating the
multiedges between two vertices as a single edge. The second approach, called
the level-wise approach, cuts the graph with the two similarity measures sepa-
rately. We now elaborate on these two approaches.

Fusion Approach: The fusion approach, denoted by FUS, integrates the three
similarity measures together using linear combination with different weights.
Such kind of fusion has been extensively used in combining different types of
similarity measures in web content analysis [3]. In the fusion approach, a new
similarity S is proposed as: S = αSs + βSc + γSu, where α, β, γ are the weights
for the corresponding similarity measures, and α+β+γ=1. Then, the multigraph
is transformed to a normal graph, where the weight of each edge is represented
by S. The graph is then cut using the normalized graph cut algorithm.

Level-wise Approach: In the level-wise approach, the topic similarity and the
evolution similarity are used to cut the multigraph separately. Note that, the
topic similarity, denoted as ST , defined as the fusion of structure similarity and
semantic similarity. There are two alternative level-wise approaches. In the first
approach, denoted by LTF (Level-wise Topic First), the multigraph is cut based
on the topic similarity, which corresponds to only two types of edges in the multi-
graph, and the result, CT , is returned. Then, each subgraph in CT is cut again
based on the evolution similarity and the final result, CF , is returned. In the
second approach, denoted by LEF (Level-wise Evolution First), the multigraph
is first cut based on the evolution similarity and the result, CE , is returned.
Then, each subgraph in CE is cut again using the topic similarity and the result
CF is returned. The underlying intuition is that, in the first approach, web pages
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are clustered into semantic topics before they are clustered into events as each
event is expected to be a set of semantically similar web pages that have similar
usage patterns. In the second approach, firstly web pages that correspond to
similar types of events are gathered together and then clustered based on their
semantic relationships.

For both the fusion approach and the level-wise approach, we present the
clustering results with a hierarchical structure. That is, at the first recursion
of the 2-way graph cut algorithm, there are two partitions. After that each
partition is further cut into two child partitions and so on. However, not all the
subgraphs correspond to real world events. To identify real world events and
exclude outliers, we propose an intra-cluster similarity measure, Sintra(G′), for
any subgraph G′:

Sintra(G′) =
2
∑|G′|

i S(i, j)
|G′| × (|G′| − 1)

,

where i 	= j and i, j ∈ G′. Based on this similarity measure, a threshold τ in
the range of [0, 1], is proposed to distinguish the event-based subgraph and the
non-event-based subgraph. A subgraph, G′ in the cut results corresponds to a
real world event if and only if Sintra(G′) ≥ τ .

4 Performance Evaluation

In this section, the experimental results are presented to show the performance of
our proposed event detection approaches. The three approaches, FUS, LTF , and
LEF , are implemented and compared to the baseline approach, BL, which only
takes the structure and content of web pages using the corresponding similarity
measures proposed in Section 2.

In our experiments, a synthetic e-commerce website dataset is used. Even
though there are some real web usage datasets available, but due to privacy
issues the original URLs and web pages are not available and they cannot
be used in our experiments. The synthetic dataset we generated consists of
300 products and 2000 unique web pages. The 300 products belong to 5 cat-
egories, where the content of the web pages are generated according the at-
tributes of products in different categories (we use the schema extracted from
http://www.bargaincity.com.sg, which is one of the biggest e-commerce web-
sites in Singapore). The usage data are generated in three steps. Firstly, the
web access sequences are generated using uniform random generation. Then, we
synthesize a list of 100 events (20 burst events such as one day only promotion
and release of new products, 40 periodic events such as weekend promotion and
new semester promotion, 20 increasing events such as price of a popular product
keeps decreasing, 20 decreasing events such as some products are fading out of
the market). Lastly, some noise access sequences are randomly inserted into the
web usage data to mimic the real life usage data. In total, there are 10,000,000
unique page requests in the synthetic web usage data, which are partitioned into
100 access groups.
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4.1 Evaluation Measures

As the event detection results are set of events, which consist of sets of web pages,
it is different from existing classification algorithms. Although, we have the set
of labelled events with corresponding web pages, the precision and recall mea-
sures in our event detection approach are different from the ones commonly used
in classification tasks for the following reasons. Since an event consists of many web
pages, the event may be detected but the corresponding web pages may not be ac-
curate. That is, some pages may be missed and/or some non-related pages may
be included. For example, given a real world event E = {P1, P2, P3, P4, P5}, there
may be one corresponding event E′ = {P1, P3, P4, P7, P8} in the detection results.
Moreover, for one real world event, there may be more than two corresponding
events in the results. For example, given a real world eventE = {P1, P2,P3,P4,P5},
there may be two corresponding eventsE′ = {P1, P3, P4, P7, P8} andE′′ = {P2, P5,
P9} in the detection results. We propose extended precision/recall measure for
event detection based on the commonly-used precision/recall from IR.

Let E = {E1, E2, · · · , En} be the set of detected events based on our proposed
approach and E ′ = {E′

1, E
′
2, · · · , E′

m} be the set of labelled events in the dataset,
where each event Ei consists of a set of web pages {Pi1, Pi2, · · · , Pik}. For each
Ei, the corresponding real event E′

j with the largest value of |Ei∩E′
j | is selected,

|Ei| is the number of pages included in that event while |Ei ∩E′
j | is the number

of common pages included in both Ei and E′
j . Also, for each real world event E′

j ,
the corresponding event Ei with the largest value of |Ei ∩ E′

j | is selected from
the results. Moreover, for different events in the real world, their corresponding
events in the results should be different and vise versa. Then, the precision and
recall are defined as:

Pr =

∑|E|
i

|Ei∩E′
j|

|Ei|
|E| Re =

∑|E′|
j

|Ei∩E′
j |

|E′
j |

|E ′|

4.2 Experimental Results

Two sets of experiments have been conducted to evaluate our proposed event
detection approaches. Firstly, comparison of our proposed event detection ap-
proaches with the baseline approach is presented. Secondly, we show the effects
of intra-similarity threshold τ on the quality of the detected events. Within each
set of results, both the overall performance and the performance for each type
of events are presented. Lastly, we discuss about how to set the fusion param-
eters in the FUS approach. Note that, the λ value in the usage pattern-based
similarity is set to 0.5 for the following experiments.

Table 1(a) shows the performance of the four approaches with the precision,
recall, and F1 measure1. It can be observed that the LEF , FUS, and LTF ap-
proaches outperform the baseline approach, BL, which shows the improvement
of integrating the usage data and their evolution patterns. Among our proposed

1 The F1 measure is computed as F1 = 2∗Pr∗Re
Pr+Re

.
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Table 1. Event Detection Results

(a) All events
Alg Pr Re F1
BL 0.376 0.108 0.168

FUS 0.729 0.696 0.712
LTF 0.591 0.412 0.486
LEF 0.684 0.625 0.653

(b) Burst events
Alg Pr Re F1
BL 0.531 0.192 0.282

FUS 0.892 0.751 0.815
LTF 0.674 0.582 0.625
LEF 0.873 0.749 0.806

(c) Periodic events
Alg Pr Re F1
BL 0.227 0.098 0.137

FUS 0.678 0.622 0.649
LTF 0.535 0.491 0.512
LEF 0.647 0.562 0.602

(d) In/Decreasing events
Alg Pr Re F1
BL 0.483 0.298 0.364
FUS 0.912 0.895 0.904
LTF 0.692 0.769 0.728
LEF 0.875 0.864 0.869

(e) FUS

τ Pr Re F1
0.1 0.314 0.452 0.371
0.3 0.729 0.696 0.712
0.5 0.758 0.712 0.734
0.7 0.841 0.709 0.769
0.9 0.413 0.422 0.417

(f) LEF

τ Pr Re F1
0.1 0.279 0.354 0.312
0.3 0.591 0.412 0.486
0.5 0.681 0.527 0.594
0.7 0.748 0.699 0.723
0.9 0.324 0.435 0.371

approaches, the LEF and FUS archive better performances than the LTF ap-
proach. This is because some of the synthetic events in our dataset usually cover
more than one semantic topic. Tables 1(b), (c), and (d) show the performance
of our approaches with respect to different types of events.

In the above experiments, weights of the three similarity measures are set to
0.31, 0.20, and 0.49, which are experimentally proved to be the optimal values
for our dataset. The threshold for intra-cluster similarity is set to 0.6. Tables 1(e)
and (f) show the quality of the event detection results of the FUS and LEF
approaches by varying the corresponding τ values. The results are for all types
of events. Observe that the effects of threshold τ are similar for the three types
of events. When the value of τ increases from 0.3 to 0.7, the quality of the event
detection results becomes better; when the value of τ increases from 0.7 to 0.9,
the quality of the event detection results becomes worse. This is because when
the threshold for intra-cluster similarity is too small/large, the number of events
detected may be too many/few. While the number of real world event is fixed,
the performance of the approaches decreases when the threshold is close to the
two extremes.

From the results shown in Table 1, it is evident that the FUS approach
performs relatively better than other approaches in most cases. This is because,
in the FUS approach, the weights of different types of similarities can be tuned.
In our experiments, we show the average results of the FUS approach. It can
be observed that the usage pattern-based similarity significantly improves the
clustering results. Moreover, we observed that the structure similarity is less
important than the usage pattern-based similarity but more important than the
content similarity.

5 Conclusions

This work is motivated by the fact that existing event and object detection
approaches only analyze the content and structure data of a website. In this pa-
per, we integrate the author-centric and visitor-centric data to detect real-world
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events. Experimental results show that our proposed approaches can produce
promising results.
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Abstract. Web documents are widely replicated on the Internet. These replicated 
documents bring potential problems to Web based information systems. So 
replica detection on the Web is an indispensable task. The challenge is to find 
these duplicated collections from a very large data set with limited hardware 
resources in acceptable time. In this paper, we first introduce the notion of 
replica boundary to roughly reflect the situation of the replicas; then we propose 
an effective and efficient approach to discover the boundary of the replicas. The 
advantages of the proposed approach include: first, it dramatically reduces 
pair-wise document similarity computation, making it much faster than 
traditional replicated document detection approaches; second, it can identify the 
boundary of the replicated collections accurately, demonstrating to what extent 
two collections are replicated. On two web page sets containing 24 million and 
30 million Web pages respectively, we evaluated the accuracy of the approach.  

1   Introduction 

The information explosion on the Web has led to a proliferation of documents that are 
identical or almost identical. Studies [3, 14] revealed that 30% to 45% of the Web 
consisted of replicated pages. The replica proliferation causes many problems to Web 
based information systems, including consuming excess bandwidth and crawling time, 
wasting disk to store redundant data, slowing down the indexing and retrieval time, and 
impairing the quality of retrieval results. Large concentrations of replicated documents 
may also skew the content distribution statistics with potentially harmful consequences 
to machine learning applications [6] and Web mining applications[16].  

Most previous studies [2,3,4,7,15,16] investigated this problem at two different 
granularities: duplicate hosts and duplicate documents. However, through analyzing 
the duplicated data recorded in the replica reduction process of our search engine [17], 
we obtained an important observation that resembling page collections often exists in 
two hosts that are obviously not mirror sites, even more serious than duplicate hosts. A 
typical example is the how-to documents of Linux. By submitting queries such as 
‘matlab plot’ or ‘linux nfs howto’ to the large search engines such as Google, Alta Vista 
and MSN, many duplicated pages can be found even in the top ranked results. Most 
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previous research has ignored the existence of replicated sub-collections in two distinct 
sites. Duplicate host detection methods [7, 16] obviously skip over these replicated 
collections. Although the sub-collections can be removed by pair-wise similarity 
computation at the document granularity, considering the scale of the Web, performing 
such a massive amount of computation is highly time-consuming. A better way to 
efficiently remove such replicated sub-collections is to consider them as a whole, 
introducing an intermediate granularity, the directory granularity.  

In order to clarify the complex situation of replication on the Web, we start with 
some definitions.  

 

Fig. 1. Example of replicated directories and replica boundaries for (a) http://www.linux. 
org/docs/ldp/howto/NFS-HOWTO/ (b) http://www.linuxselfhelp.com/HOWTO/NFS- HOWTO/ 

Directories. In most hosts, Web pages are organized into nested directories, and the 
path indicates the location of the directory in the tree structure of the entire site. The 
website managers tend to design one or more index pages to organize the pages within 
the directory. Index pages serve as access portals to the related Web page collection. 
So, the index page can be regarded as the representative of the directory. 

Replicated Directories. According to our observation, the directory trees 
corresponding to replicated sub-collections are often identical as well. We define 
replicated directories as follows: given two directories D and D’ belonging to two 
distinct hosts H and H’, D and D’ are replicated directories if every page P nested in D 
can find an identical counterpoint P’ in D’. Given the example shown in Figure 1, 
“www.linux.org” (H1) and “www.linuxselfhelp.com” (H2) are not duplicate hosts. But 
all pages nested in directories “www.linux.org/docs/ldp/howto/” (D0) and 
“www.linuxselfhelp.com/ howto” (D’0) are identical, and thus replicated directories.  

Replica Boundary. Now we can define replica boundary as follows: given a directory 
tree of a Web page collection, a replica boundary of the collection is a node nearest to 
the root, from which all nested Web pages and sub-directories are replicated with 
another collection. In the previous example, directory pair (D0, D’0) are replica 
boundaries of hosts H1 and H2 respectively. By this definition, duplicate hosts can be 
regarded as a special case of replicated directories. Replica boundary serves as a brief 
description of the replica situation between two hosts.  

In this paper, we proposed an effective and efficient approach to discover the 
replicated directories and the replica boundaries. The advantages of the proposed 
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approach include: first, it dramatically reduces pair-wise document similarity 
computation, making it much faster than traditional replicated document detection 
approaches; second, it can identify the boundary of the replicated collections 
accurately, demonstrating to what extent two collections are replicated. 

2   Related Works 

A number of approaches for near replica detection have been proposed. They can be 
partitioned into two categories according to the granularities at which the replica is 
discovered: near replicated collection detection [4,7,16] and near replicated document 
detection [1, 2, 3, 8, 9, 10, 11, 12, 14].  

Two typical approaches were proposed for replicated collection detection in [4, 7]. 
In [4], the authors proposed a clustering based approach to find replicated Webpage 
collections. This approach has the following drawbacks: first, the generation of trivial 
clusters is a bottom-up clustering process, which is very time consuming; second, the 
approach merges the clusters according to their link relations, the merge condition is 
too strict, because generally not all the Web pages within a Website can be fetched back 
in the crawling process, resulting in a difference in the link situations for two identical 
collections. In [7], the authors proposed an efficient approach to discover mirror hosts 
on the Web. This approach depends mostly on the syntactic analysis of the URL strings, 
and requires retrieval and content analysis for only a small number of pages. The 
approach suffers from the following drawbacks: the approach can only identify whether 
two hosts are totally mirroring or partially mirroring, but for the partially mirrors, it can 
not identify which part are replicated. In [16], the authors proposed and compared 
several algorithms that identify mirrored hosts on the Web based only on URL strings 
and the hyperlink structure. These algorithms can discovery the duplicated host very 
efficiently, but they can not find the directory level replicas. And the duplicated host 
can not be discovered when the path is renamed. 

If not for the size of the Web, detecting near replica documents would be a 
traditional information retrieval problem. All the traditional text clustering approaches 
can be used to find near replicated web pages. Some more efficient approaches [1, 2, 3, 
8, 9, 10, 11, 12, 14] are proposed to find replicated documents (web pages). These 
approaches can be roughly classified as [6]: similarity-based and signature-based. 
Despite the efforts to accelerate the computational time, all the proposed methods need 
to analyze the content of every Web page and depend on large scale pair-wise similarity 
computation, which makes the approaches very time-consuming.  

3   Approaches for Replica Detection 

We first verify an assumption by an experiment. Based on the assumption, we propose 
the replica directory detection approach. In our approach, we identify all the index 
pages in the collection, and discover candidate replicated directories by finding 
replicated index pages. Then, we use coordinate sampling to check the replicate status 
of the candidate directories. After obtaining the replicated directories, the replica 
boundaries are discovered.  
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3.1   Assumption Verification 

Nearly all the efficient duplicated host detection approaches [7, 16] are based on one 
assumption: if one host is replicated, the relative path and filename of the pages within 
the host will not be altered. However, many replicas are not at host granularity, but at 
directory granularity. In this section, we design an experiment to verify whether the 
assumption still works when directories are replicated.  

In the experiment, we first used a bottom-up algorithm to discover the replicated 
directories in the data set. After getting the replicated top directories in the data set, we 
can check whether the relative paths and filenames are changed or not. Based on one 
hundred of replicated directory pair samples, we got the following statistical result. All 
characters in the URLs were first converted to lower case before comparison. The result 
shows that 95% of the replicated directories kept the identical path names. All of the 
rest 5% were replica boundaries and made only one variation, the renaming of the 
replica boundary. Though the replica boundaries were renamed, the names all 
sub-directories and nested files remained unaltered.  

3.2   Index Page Identification 

Index pages are the representatives of directories. Instead of analyzing all URLs at 
hand, we concentrate on index pages to facilitate our algorithm. In [13], much 
information, including URL information, link information and text information, is 
considered to assist in finding the entry pages of websites. By constructing the decision 
tree on the training data, the author found that only the length of URL (the number of 
slashes in the URL), the slash information, and whether URL ends with some special 
keywords were necessarily retained. The URLs identified as entry pages by the 
obtained decision tree are regarded as index pages in our approach. 

3.3   Finding Replicated Directories 

As mentioned above, index pages can be regarded as the representatives of the 
corresponding directories. Generally, if two directories are replicas, their index pages 
are likely to be replicas as well, but this is not necessarily true vice versa. So when two 
index pages are identified as replicas, we need to check the pages in the two 
corresponding directories to justify the decision. If the two directories are replicated to 
each other, we call the two index pages collective replicas, because they reflect not only 
the replica relation between themselves but also the replica relation between the two 
Web page collections in the two directories. Otherwise, we call two index pages 
individual replicas. Our approach for finding replicated directories consists of the 
following three steps: 

Step 1, finding the replicated index pages. The method introduced in [8] is used here. 
It is trivially true that, the replica relation obtained by such a replica identification 
method is an equivalent relation (reflexive, transitive and symmetrical). Thus, grouping 
the pages with identical fingerprints into one cluster constructs a partition of the whole 
page collection. 

Step 2, coordinate sampling from candidate replicated directories. Given two 
replicated index pages, P1 (http://x1/x2/index.html) and P2 (http://y1/y2/index.html), 



 Enhancing Duplicate Collection Detection Through Replica Boundary Discovery 365 

the corresponding directories are D1 (http://x1/x2/) and D2 (http://y1/y2/), we select a 
certain number of pages ( ) at random from D1. By generating one fingerprint per page, 
a fingerprint set composed of the  fingerprints, F1={fp1,...,fp }, is created to represent 
D1. Then the corresponding pages from D2 with the same relative path and filenames 
are selected, and the set F2={fp1,...,fpm} (m<= ) is generated to represent D2. Again, the 
case of the letters in the URLs is ignored. The intuition here is that if a directory is 
replicated, the paths and filenames of the pages in the directory will not be renamed 
(verified in Section 3.1).  

Searching records in a large database repeatedly is time consuming. By using a 
two-level hash method, we can accomplish the sampling for all candidate index page 
pairs in one scan of the database. As generating fingerprints requires analyzing each 
sample page, we can further improve the efficiency by representing the directory with 
the fingerprints of sample URL strings rather than the content of pages. This method is 
also evaluated in the experiments. 

Step 3, evaluating the replica status. As the index pages identified as replicas by the 
previous step may not be collective replicas, we need to evaluate the replica status 
according the sampling results in Step 2. It leads to a split of the original partitioned 
groups into even smaller clusters.  

Since not all the pages on the Web can be fetched, the sample fingerprint sets may 
not be the same (m<= ) even though two directories are replicated to each other. The 
replica status can be measured by computing the resemblance of the two index pages 
via the following formula (1): 
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If r (F1,F2) is larger than a threshold , P1 and P2 are collective replicas and the 
corresponding directories are replicated to each other; otherwise, they are individual 
replicas. For the clusters generated in Step 1, we further partition them into smaller 
clusters where the index pages in same cluster are collective replicas to each other.  

3.4   Replica Boundary Detection 

According to the definition of replicated directory and replica boundary, the replicated 
directory closest to the root is the replica boundary in all the replicated directories 
discovered. However, the replicated directories are identified based on sampling in the 
previous stage. Sampling leads to a measure of similarity between two candidate 
directories. And due to the sampling method, the closer the candidate directories are to 
the root, the less proportion of the pages are examined for the directory. Thus, we 
cannot jump to the conclusion of replicated directory, especially when large amount of 
sampling is impractical.  

Next, we proposed the replica boundary detection algorithm that considers the 
replica information in all the directories. The replica boundary detection task can be 
formulated as follows: given groups of replicated directories, G={g1:{d11,d12,..., d1n},..., 
gk:{dk1,dk2,..., dkm}}, by parsing the paths of the index pages we construct another group 
of directory trees, T={T1,..., Tl}, indicating the structural relationship between the 
corresponding directories. Thus, the goal is to find pairs of nodes (index pages) <di,di'> 
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in T, where all offspring nodes of di' are collective replicas to the corresponding nodes 
of di and their parent nodes are not. 

To accomplish this task, we propose a top down boundary identification algorithm. 
In this algorithm we use containment C(T1, T2) to estimate how much directory tree T1 
is contained in T2. First the directory tree is represented by the set of all nodes in the 
tree. 
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where CR(nodei, nodej) means that nodei and nodej are two replicated directories, |·| is 
the cardinality of a set. The value of containment naturally ranges from 0 to 1. If the 
containment C(T1, T2) is equal to 1, T1 is fully contained in T2. It is evidence that "fully 
contained" is a partial order relation, maintaining the transitive property. As the crawler 
cannot fetch the entire Web, some deep sub-directories may not be fetched by the 
crawler, which affects the containment of two replicated directories. To handle this 
situation, we define a threshold  (0< <1), if C(T1, T2) is larger than , we say that T1 is 
“fully contained” by T2 with the confidence degree of . Since the loosed “fully 
contained” is also a partial order relation, we can achieve fast redundant directory 
removal by deleting the “contained” directories in a linear scan rather than requiring 
square time.  

The matrix C that records the containment of directory pairs is called the 
containment matrix and the entry cij of matrix C is the value of containment (Ti, Tj). 
Given the containment matrix, the replica boundary can be found by the following 
algorithm: 

Algorithm 1: Replica boundary identification algorithm 

Input: containment matrix C and collective replicated index page clusters G 
Output: replica boundary list List 
Procedure 
0 Putting the root nodes of all directory trees into queue Q. 
1 List={} 
2 While Q is not empty 
3 { take out one node ni from Q //we use ti to denote the directory tree with root ni 
4   If (there exist a node nx in the same cluster with ni satisfying C(ni,nx)> ) 
5   { //tree ti is a replica of tx, so ti can be eliminated. 
6    List=List ni  
7    Eliminating all nodes in ti (including ti) from all clusters in G } 
8   Else 
9   { //tree ti is not a replica of other directory trees 
10   For all nodes nj in the same cluster g with ni 
11   { If (C(nj, ni)> ) 
12    { //nj is a replica of ni 
13     List=List ni  
14     Eliminating all nodes in tj (including tj) from all groups in G }} 
15   If (g still contains more than one node) 
16   { Inserting all the children of ni into Q 
17    delete ni from Q}}} 
18 Return List  
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4   Experiments 

We evaluated the accuracy of our approach on two Web page sets containing 24 million 
and 30 million web pages respectively. The two Web page sets were crawled by a 
breadth-first strategy from distinct sets of seeds.  

4.1   Accuracy Evaluation of Replicated Directory Detection 

We adopted precision and recall, which are widely used in the information retrieval 
area to evaluate our replicated directory detection approach.  

replicatedasidentifiedpairsdirectoryallof

correctlyreplicatedasidentifiedpairsdirectoryof
precision

#

#
=  

datasettheinpairsdirectoryreplicatedtheallof

correctlyreplicatedasidentifiedpairsdirectoryof
recall

#

#
=  

We verify whether two directories are really replicated through checking if a set of 
paths sampled from one directory are all valid on the other directory and yield highly 
similar documents, and vice versa. In the approach, two parameters are used: the 
sampling sum ( ) and the resemblance threshold ( ). The experimental results shown in 
Table 1 illustrated how the variability of the sampling sum ( ) and resemblance 
threshold ( ) affect the performance. 

Table 1. Replicated directory detection based on web page content sampling 

Data set 1 Data set 2 
  precision relative 

recall 
  precision relative 

recall 
0 0 90% 100% 0 0 87% 100% 
1 1 100% 61% 1 1 100% 70% 
2 0.5 100% 85% 2 0.5 100% 88% 
2 1 100% 34% 2 1 100% 52% 
3 0.33 100% 92% 3 0.33 100% 94% 
3 0.67 100% 62% 3 0.67 100% 74% 
3 1 100% 24% 3 1 100% 38% 
4 0.25 100% 96% 4 0.25 100% 95% 
4 0.5 100% 80% 4 0.5 100% 87% 
4 0.75 100% 57% 4 0.75 100% 73% 
4 1 100% 11% 

 

4 1 100% 28% 

From the data shown in Table 1, we can see that the changes of the precision on the 
two data sets are similar. The precision reaches 90% and 87% when no sampling is used 
in the approach (  =0). We checked the false cases when =0 and =0, and found that 
the error results from the wrong decision on whether two index pages were replicas, 
due to the near replicated document detection method. We can also see that when 
sampling is used (  >0), the precision can reach 100%. And the variations of  and  can 
only affect the recall value. That means if two index pages are replicated to each other 
and there exists at least one extra replicated page pairs on the two directories, the two 
directories can be regarded as replicated safely. As for the recall, we can see that the 
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value of the recall varied greatly with the variation of the parameters and data sets. The 
reason is that the crawler has not fetched all the pages in a host, especially when the 
data set is not large enough. It can not be guaranteed that the two replicated pages in the 
two replicated directories are all fetched in the data set, which affects the result of 
sampling.  

To improve the efficiency of the algorithm, we can represent the directory using the 
fingerprints of sample URL strings rather than the content of pages, which can save the 
time on fingerprint computation. From the data shown in Table 2, we can see that such 
an alternative only affects the accuracy performance slightly. In conclusion, if the index 
pages of two directories are replicated, we can identify the replica status of the two 
directories by sampling and considering only the URL strings; as for the number of 
samples, 4 samples can achieve satisfactory performance.  

Table 2. Replicated directory detection based on pure URL string sampling 

Data set 1 Data set 2 

  precision relative 
recall 

  precision relative 
recall 

0 0 90% 100% 0 0 87% 100% 
1 1 100% 64% 1 1 98% 72% 
2 0.5 100% 87% 2 0.5 98% 88% 
2 1 100% 39% 2 1 98% 54% 
3 0.33 100% 93% 3 0.33 98% 94% 
3 0.67 100% 64% 3 0.67 98% 75% 
3 1 100% 29% 3 1 98% 43% 
4 0.25 100% 96% 4 0.25 98% 95% 
4 0.5 100% 81% 4 0.5 98% 88% 
4 0.75 100% 63% 4 0.75 98% 77% 
4 1 100% 20% 

 

4 1 98% 35% 

4.2   Accuracy Evaluation of Replica Boundary Detection 

The accuracy is defined as following: 

pairsboundaryreplicaidentifiedallof

pairsboundaryreplicaidentifiedcorrectlyof
precision

#

#
=  

If two directories are identified as a boundary pair, we need check the following two 
conditions to verify whether the two directories are really a replica boundary pair:  

1. whether the two directories are replicated to each other; 
2. whether the parent directories of these two directories are not replicated. 

If the two conditions are both satisfied, the two directories are a boundary pairs. 
The containment threshold  affects the accuracy of replica boundary detection in 

two directions. On one hand, with the rising of ’s value, the accuracy is increasing as 
the containment relation is more and more sufficient; On the other hand, due to the 
incompleteness of the data set, with the rising of ’s value, more and more top level 
replicated directories are excluded and their child directories are regarded as replica 
boundary, which makes the accuracy decrease.  
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As shown in Figure 2, the effect of the latter one is the dominant factor. Even though 
the accuracies of the algorithm on the two data sets differ larger and larger when the 
value of  is rising, they are very similar when  is small. Especially, the accuracy of the 
algorithm on the two data sets all reached 97% when  is equal to 0. According to the 
boundary detection algorithm, all the top replicated directories are regarded as replica 
boundaries when  is equal to 0. That means if two index pages are identified as 
replicated to each other, they are likely to be totally replicated rather than partially 
replicated. So, the top-down algorithm is suitable.  

 

Fig. 2. Accuracy of replica boundary detection 

5   Conclusions and Future Work 

In this paper, we propose an intermediate granularity of replication on the Web at the 
directory level, and present an effective approach to discover the replicated directories 
and the replica boundaries. Experimental results show the effectiveness of the 
approach. The conclusions obtained in the experiment can also be viewed as some of 
the conventions on the Web that can be used in the related applications. For future 
work, we plan to extend the current approach so that it can handle the data in a 
distributed environment. We would also like to explore the online replica detection 
approach, with which we can avoid fetching the duplicate collections. 
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Abstract. This paper deals with the problem of summarization and visualization 
of communication patterns in a large scale corporate social network. The 
solution to the problem can have significant impact in understanding large scale 
social network dynamics. There are three key aspects to our approach. First we 
propose a ring based network representation scheme – the insight is that visual 
displays of temporal dynamics of large scale social networks can be 
accomplished without using graph based layout mechanisms. Second, we detect 
three specific network activity patterns – periodicity, isolated and widespread 
patterns at multiple time scales. For each pattern we develop specific 
visualizations within the overall ring based framework. Finally we develop an 
activity pattern ranking scheme and a visualization that enables us to summarize 
key social network activities in a single snapshot. We have validated our 
approach by using the large Enron corpus – we have excellent activity detection 
results, and very good preliminary user study results for the visualization.  

1   Introduction 

This paper deals with the problem of summarization and visualization of large scale 
social network communication patterns. Understanding large scale social networks is 
an emerging area of research [9]. The problem is made difficult due to the large size 
of the network and the long term duration of these networks. Hence visualization and 
summarization tools that enable users to gain insight into the dynamic behavior of 
these networks are extremely important. 

There has been extensive work in visualization of graph data. Various graph layout 
algorithms have been developed to enable exploration of large graphs [6]. However 
these visualizations are for a single large scale graphs. Tools developed to visualize 
graph data that change over time, show only one graph at a single time instance with a 
slider to move the graph forward / backward in time. However understanding the 
temporal dynamics in the network is difficult. Prior work in analysis of 
communication has focused on issues such as the information propagation in blogs [5] 
and community structure detection. However prior work does not explore email 
communication patterns that are influenced by both time and people. There also has 
been little focus on summarizing key social network activity patterns though visual 
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means. There has been prior work in innovative visualizations for data analysis [4,7]. 
We focus on two aspects not addressed before – (a) closely coupling the results of the 
visualization to the specifics of the social network activity patterns, (b) providing a 
systematic framework for summarizing the entire social network communication 
predicated on a topic.  

We address the summarization and visualization problems by solving three sub-
problems. (a) defining a ring visualization framework for social network activity 
representation. (b) detecting and visualizing three specific activity patterns and (c) 
providing a single snapshot summary of the entire network activity. Our visualization 
framework is inspired by the observation that natural phenomena (ref. Fig. 1) can 
compactly summarize long term activity. The key insight is that compact 
representation of large scale networks, need not require graph based visualizations. 
We develop a ring based visualization and summarization framework, that displays 
relationships between people, time and topic.  

 

Fig. 1. Summarization: Ripples in water provide a compact snapshot view of temporal activity  

We detect three specific activity patterns – periodicity, isolated events and 
widespread growth at multiple time scales and develop specific ring based 
visualizations for each activity. The summarization framework allows us to represent 
key activity patterns over the entire duration of the network in a compact manner. 
Periodic patterns in time are detected using local maxima of message activity. 
Regularity in people refers to people who appear frequently in the conversation – this 
is detected using set intersection techniques.  Isolated patterns are detected using 
constrained global maxima detection, while distributed growth can be detected using 
a multi-scale message activity analysis (more details in [2]). We have conducted 
experiments over the large Enron corpus, and preliminary user studies on the 
visualization, with excellent results.   

The rest of this paper is organized as follows. In the next Section we present our 
approach to visualization of large scale network activity. In Section 3, we discuss our 
activity pattern detection algorithms. In Section 4 we present out summarization 
algorithm. In Section 5 we discuss our experimental results and then present our 
conclusions. 

2   The Visualization Problem 

In this Section we will present our visualization framework. The central innovation in 
our approach is that visual displays of temporal dynamics of large scale social 
networks can be accomplished without using graph based layout mechanisms.   
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Fig. 2. Ring Visualization – Time is represented as concentric circles with the innermost circle 
representing most recent time slot and outermost ring the oldest time, similar to natural 
phenomenon. People are indicated with colored dots whose radial location is consistent over 
time, thus making it very easy to understand how people communicating about a topic vary 
over time. 

2.1   Graphs Do Not Reveal Network Temporal Dynamics  

We are addressing the problem of visualizing email communication amongst 
members of in a large scale social network over an extended period of time. In our 
system, we are using the Enron Data set. This dataset was collected and prepared by 
the CALO Project [3]. It contains email data from about 150 users, from senior 
management of Enron, organized into folders. The corpus contains a total of about 
0.5M messages. In our system, we create an edge between two nodes (people) if there 
is evidence of communication between them. Graphs can be very useful to understand 
the structural properties of any social network – i.e. who talks to whom.. However, 
graphs do not reveal the temporal dynamics of the communication in the social 
network. This is because a graph represents the state of the network at a single time 
instant. This can be a significant problem in large networks such as the Enron corpus 
that has large user set (150) and significant communication activity over a long 
duration. Simple techniques such as animation, graph aggregation will not work well.  

2.2   Our Approach: Rings 

The intuition behind our visualization comes from observing phenomena in the 
physical world. For example, as seen in Figure 1 we observe ripples in water start 
from the center and radiate outward. We observe that the growth or spread of energy 
in these phenomena happens in a radial direction starting from the innermost towards 
the outermost ring.  This creates two constraints – (a) temporal: the outermost ring / 
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ripple represents the earliest temporal event. (b) rotational: the relative orientation of 
each ring is not arbitrary – a line from the center to the outermost ring corresponds to 
a direction of energy flow.  Before we describe the visualization, we briefly discuss 
message preprocessing. 

Message preprocessing: We assume that the user provides a topic, i.e. a keyword. 
We then find all messages in the corpus relevant to the given topic. Since our focus is 
on the visualization rather than information retrieval, we are using a simple keyword 
match algorithm on the subject line to find all messages pertaining to a given topic. 
The messages obtained are then ordered in time as well as associated with a set of 
people - the sender and the set of recipients. In our system, users can browse through 
three scales of time – ‘weekly’, ‘monthly’ and “quarterly”. We divide the users into 
three categories from their email ids  – (a) network members – employees amongst 
the 150 users whose emails contributed to the data set (b) other employees – other 
employees of Enron not part of the initial 150 people and (c) external – people outside 
of  Enron.  

Design Elements: We designed a visualization that indicates multiple graphs that 
vary over time, in a single snapshot (Figure 2). We now explain the design elements 
of our visualization.  

 Time: In our visualization, time is represented as concentric circles, with the 
innermost circle indicating the latest time slot. Additionally, we can also 
show activity over multiple time scales. 

 People: Each person is represented as a distinctly colored dot whose radial 
location is maintained over different circles. Since people in general form an 
unordered set, we assign a default ordering along the clockwise direction in 
the order they first appeared in messages sorted in time.   

 Activity: The message density per time slot is mapped to the color intensity 
of the circles representing them.  Higher the message density, darker the 
color of the circle that represents the corresponding time slot.   

 Animation: The visualization can be animated to show the evolution of 
people talking to each other over time. Time slots indicating more recent 
activity about the topic are added from the innermost ring and move 
outward, reminiscent of ripples in water.  

The graph structure: The graph structure is not obvious when using rings. We have 
dealt with this issue by indicating the actual communication graph structure when the 
user clicks on a particular node in a certain ring. To bring the graph into focus, the 
rest of the nodes in other time rings are dimmed out by changing their color 
saturation.  

3   Activity Patterns  

We now discuss the detection and visualization of three specific temporal 
communication patterns (periodic, isolated and widespread) in a social network to help 
summarize the activity with respect to a certain topic. The activity patterns we describe 
are an extension of the chatter and spiky communication patterns in blogspace that are 
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described in [5]. We add two novel patterns – distributed growth and regulars in 
people, to the spiky patterns described there. Also while [5] looked at variations in 
communication over time, the activity patterns we describe depend on both time and 
people. We assume that we are given the topic and the corresponding set of relevant 
messages (ref. Section 2.2).  

3.1   Periodic Activity Patterns 

We shall detect periodic patterns that are regular over time, as well as regular over 
people. Periodic patterns over time refer to high message activity in the network 
relevant to a particular topic that appears in regular time intervals.  

Detecting periodicity in time: Periodic patterns in time are revealed by detecting the 
local maxima in message activity and then imposing simple temporal constraints on 
the maxima. The periodicity detection algorithm proceeds as follows. First all 
messages are ordered in time, and then grouped according to any chosen scale 
(weekly, monthly, quarterly). Then each time slot is given an activity score using the 
following equation:                            
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Where S(ti) is the score given to the ith time slot , N is the total number of people 
involved in messages about the topic, Pj(ti) is one if the jth node is present in message 
communication at time instant ti, zero otherwise. This score is high on time slots 
involving large number of messages and recipients. All the local maxima from the 
time series scores obtained using eq. (1) are marked as “peaks.” Temporal distances 
are computed from each peak to every other peak and stored in a table per peak. The 
local distance tables are then combined to construct a global histogram of distances. 
We consider a period to be valid only if there exists at least one set of three peaks at 
the same temporal distance from each other. For example if d(p1,p2) = d(p2,p3) = 
d(p3,p4) = d1, then d1 is considered a valid period. This removes spurious maxima. 
The algorithm gives a list of periods and the number of peaks that are participants 
with that period.   

Temporal periodic patterns are easily understood using rings. Every time period 
that corresponds to a peak and part of the top three detected period sets is colored 
with a distinct color.  

Detecting regulars in people: Regularity in people refers to the set of people who 
occur together, frequently, over the duration of the topic. This can be detected using a 
set intersection algorithm.  Consider N to be the total number of people exchanging 
emails about the topic. We iteratively find all subsets Sk from these N people, that 
occurred together more than q1 times over all time slots. The threshold q1 is fixed 
according to the time scale.  These subsets of people form groups that are the 
‘regulars’ to the topic. To visualize the set people who appear together, all nodes 
(representing people) in the visualization that are part of the same set are colored with 
the same color. This is done only after the user explicitly selects this pattern to be 
revealed. Their radius is also increased and the background is dimmed out in order to 
prominently display the regulars in the topic.   
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3.2   Isolated Patterns 

We now show how we can detect and visualize isolated patterns (also referred to as 
spikes) over time and people. Isolated patterns over time refer to significant message 
activity over a short time window. Isolated patterns over people refer to information 
generators – a small set of people, who contribute to most of the messages.  

Detecting spikes in time: A spike in time is characterized by three conditions: (a) 
there exists local maxima in activity, (b) the message activity exceeds a certain 
threshold and (c) the activity exhibits a sharp rise and fall in small time duration.  

In order to find such spikes in time, we first begin with the ordered set of all 
messages relevant to the particular topic. We use equation (1) to calculate the score of 
each time slot, which depends on both the number of messages and the number of 
recipients per message. The global maxima verified with the above constraints are 
then visualized. In order to indicate spikes in time for the given topic to the user, we 
highlight the time slot in which the maxima occurred. We additionally increase the 
radius of all nodes representing people communicating in that time slot.  

Spikes in people: Spikes in people refer to the information generators – a small set of 
people who send a large percentage of messages relevant to the topic. We now define 
two measures  (sender coverage) and  (message coverage), to be as follows.  
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where Ns is the number of unique senders, and mj is the number of messages 
contributed by the jth sender. Given a certain threshold for , we can find a 
corresponding Ns –  the minimum number of senders required to generate those 
messages. The information generator set is determined by determining Ns using 
equation (2) such that these values of  ≥ 0 and  ≤ 0 are satisfied. These Ns senders 
are then the information generators for the given topic. We determined the thresholds 
( 0 = 0.65 and 0 = 0.15) using a training set [2]. Spikes in people in are indicated our 
visualization, by increasing the size of nodes that are spikes in people in all times that 
they occur. We also place them along equidistant radial lines. Details of our algorithm 
to detect and visualize distributed growth can be found in [2].  

4   Summarization 

In this Section we discuss the problem of summarizing the key activity patterns in a 
single snapshot. The solution involves two steps – (a) the detection and ranking of 
activity patterns and (b) developing a single representative snapshot. The visualization 
problem is difficult since the activity patterns need not co-occur within the same time 
window. 

4.1   Ranking the Activity Patterns  

Each activity detector (ref. Section 3) returns a set of detected activities. We thus need 
to develop measures to order the activities within each set. We now discuss a 
systematic ranking measure for each activity pattern.  
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 Periodic in time: each period is associated with a frequency (the number of 
message activity peaks that are in that period), which is used to pick the top 
three periods.  

 Regulars in people: Each set of people has a corresponding frequency which 
is the number of times they occurred together. We use the average closeness 
centrality [8], as a measure to rank the different ‘regular sets’ of people.  

 Isolated in time: The message activity score from equation (1) implicitly 
ranks the sets of the spike in time patterns.   

 Isolated in people: The number of information generators is used to rank the 
sets. Smaller the set of information generators, higher the rank.  

 Distributed growth: The size of the time window of growth is used as a 
ranking mechanism. Larger the time window, higher the rank.  

We will now discuss how we construct a summary snapshot to indicate all the key 
activity patterns, given a certain topic.  

4.2   Constructing the Summary Snapshot 

Each of the activity patterns detected could occur at different times as well as involve 
different people. Hence indicating all of them within the same screen is difficult, 
especially if the time range is bigger than the maximum that can be shown in the 
 

Spike in 
people

Periodic in time  Spike in time  

Regulars in people

 

Fig. 3. Summary Snapshot – Indicating four different activity patterns in a representative 
snapshot for the query ‘California’ grouped monthly 
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available display area. Instead, we have constructed a representative summary 
snapshot that only visually indicates the key patterns for messages of the given topic, 
but does not correspond to the actual time of when the pattern occurred. This is an 
interactive summary, where the user can then click on the pattern of interest to go to 
the ring visualization and see the actual time period corresponding to the activity 
pattern of interest. The Figure 3 shows an example summary snapshot of the query 
‘California’ in the monthly scale.  

5   Experiments 

The visualization and summarization framework was implemented in Java and 
Processing [1] with the Mysql database as the backend. In order to evaluate the 
system, we conducted a preliminary user study with five graduate students. Users 
were asked to interact with the system by executing several text queries (e.g. ‘power 
crisis’, ‘California’, ‘trading’ etc.). They were then asked to answer questions on 
various aspects of the system on a scale of one to seven. The results are summarized 
in Table 1 and indicate that users find the activity patterns as well as the visualization 
to be very useful in understanding email communication. Users also suggested 
various improvements such as (a) visualizing relationships between a single person, 
time and the topic, rather than the entire social network, (b) comparing 
communication activity for multiple topics in the same visualization. 

Table 1. Preliminary user studies 
 

Interface Aspects Score 

User Friendliness 5.0 / 7 

Activity Patterns   6.25 / 7 

Multi-scale analysis 5.75 /7 

Helps understand relationships 
     between topics, people and time 

6.0 / 7 

Summary snapshot 6.25 /7 

 

We acknowledge that this is only a preliminary evaluation – the actual study would 
involve applying our visualization technique to emails from an organization and 
allowing members of the same organization to evaluate whether the visualization was 
able to communicate temporal patterns well. We also ran activity pattern detection 
algorithms on 100 queries on the Enron data. The detailed results can be found in [2]. 

6   Conclusion 

In this paper, we proposed a framework for visualization and summarization of email 
communication activity in large social networks. The framework addressed three 
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challenges (a) visualization (b) activity pattern detection and (c) summarization. The 
novel ring visualization scheme depicts multiple graphs in the same snapshot and 
enables users to understand communication activity that varies over multiple scales in 
time. We also defined and detected three classes of communication activity patterns 
that depend on people and time – (a) periodic (b) isolated and (c) distributed. We 
discussed visualization of these patterns using the ring visualization.  The detected 
activity patterns are then summarized by ranking activity patterns and constructing a 
single snapshot that communicates all key activity patterns to the user. Preliminary 
experiments and user study results are promising and we plan to conduct further 
extensive evaluation. 
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Abstract. Information cascades are phenomena in which individuals
adopt a new action or idea due to influence by others. As such a process
spreads through an underlying social network, it can result in widespread
adoption overall. We consider information cascades in the context of
recommendations, and in particular study the patterns of cascading
recommendations that arise in large social networks. We investigate a
large person-to-person recommendation network, consisting of four mil-
lion people who made sixteen million recommendations on half a million
products. Such a dataset allows us to pose a number of fundamental
questions: What kinds of cascades arise frequently in real life? What fea-
tures distinguish them? We enumerate and count cascade subgraphs on
large directed graphs; as one component of this, we develop a novel ef-
ficient heuristic based on graph isomorphism testing that scales to large
datasets. We discover novel patterns: the distribution of cascade sizes is
approximately heavy-tailed; cascades tend to be shallow, but occasional
large bursts of propagation can occur. The relative abundance of differ-
ent cascade subgraphs suggests subtle properties of the underlying social
network and recommendation process.

1 Introduction

The social network of interactions among a group of individuals plays a funda-
mental role in the spread of information, ideas, and influence. Such effects have
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only way to obtain an account was through a referral.) One also finds many
examples in weblogs (blogs), where a piece of information spreads rapidly from
one blogger to another before eventually being picked up by the mass media.

Information cascades are phenomena in which an action or idea becomes
widely adopted due to influence by others [3, 5, 6]. Cascades are also known as
“fads” or “resonance.” Cascades have been studied for many years by sociolo-
gists concerned with the diffusion of innovation [15]; more recently, researchers
in several fields have investigated cascades for the purpose of selecting trendset-
ters for viral marketing [9, 14], finding inoculation targets in epidemiology [13],
and explaining trends in blogspace [2, 7, 10]. Despite much empirical work in
the social sciences on datasets of moderate size, the difficulty in obtaining data
has limited the extent of analysis on very large-scale, complete datasets repre-
senting cascades. Here we look at the patterns of influence in a large-scale, real
recommendation network and examine the topological structure of cascades.

We address a set of related questions: What kinds of cascades arise frequently
in real life? Are they like trees, stars, or something else? And how do they reflect
properties of their underlying network environment? We describe (in Section 3)
a large person-to-person recommendation network, consisting of 4 million people
who made 16 million recommendations on half a million products. To analyze the
data, we first create graphs where incoming edges influence the creation of out-
going edges. Then, we enumerate and count all possible cascade subgraphs, using
an algorithm developed in Section 4. There, we propose an approximate heuristic
for graph isomorphism involving the degree distribution and the eigenvalues of
the adjacency matrix that scales to large datasets. We apply the algorithm to
the recommendation dataset, and analyze it in Section 5.

We find novel patterns, and the analysis of the results gives us insight into the
cascade formation process. We find that the distribution of cascade sizes can be
approximated by a heavy-tailed distribution. Generally cascades are shallow but
occasional large bursts also occur. The cascade sub-patterns reveal mostly small
tree-like subgraphs; however we observe differences in connectivity, density, and
the shape of cascades across product types. Indeed, the frequency of different
cascade subgraphs is not a simple consequence of differences in size or density;
rather, we find instances where denser subgraphs are more frequent than sparser
ones, in a manner suggestive of properties in the underlying social network and
recomendation process.

2 Related Work

To our knowledge, this is the first large-scale study of cascades in a real recom-
mendation network. We believe the lack of prior studies is due in large part to
the difficulty in acquiring large recommendation network datasets without link
ambiguity from a real-world setting.

Most work on extracting cascades from large-scale on-line data has been done
in the blog domain [1, 7, 10]. The authors in this domain note that, while informa-
tion propagates between blogs, examples of genuine cascading behavior appeared
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relatively rare. This may, however, be due in part to the Web-crawling and text
analysis techniques used to infer relationships among pages. In our dataset, all
the recommendations are stored as database transactions, and we know that no
records are missing. Associated with each recommendation is the product in-
volved, and the time the recommendation was made. Studies of blogspace either
spend a lot of effort mining topics from posts [2, 7] or consider only the prop-
erties of blogspace as a graph of unlabeled URLs [1, 10]. Temporally evolving
graphs are explored in [4]. Theoretical analysis of cascades on random graphs
is provided in [16], using a threshold model. Analysis based on thresholding as
well as alternative probabilistic models of node activation is considered in [9, 14].
Note that this analytical work posits a known network; in the present paper, we
are able to observe the cascades but not the underlying social network.

In our work we need to efficiently enumerate and count cascade subgraphs.
This is an instance of the general issue of frequent subgraph mining [8, 11, 17];
however, most of the prior work in this area is focused on graphs that are richly
labeled and undirected, often motivated by applications to chemical compound
and bioinformatics datasets. While our data has labels as well, we are specifi-
cally interested in enumerating subgraphs based purely on their structures, so
heuristics for pruning the search space using node and edge labels cannot be ap-
plied. Another crucial difference is that we have additional temporal constraints
on cascades. We take advantage of the specific problem domain and develop ef-
ficient algorithms for extracting “temporally consistent” subgraphs, as well as
heuristics for approximate graph isomorphism testing.

3 The Recommendation Network

We study a recommendation network dataset from a large on-line retailer. During
the period covered by the dataset, each time a person purchased a book, DVD,
video, or music product, he or she was given the option of sending an e-mail
message recommending the item to friends. The first recipient to purchase the
item received a discount, and the sender received a referral credit with monetary
value. A person could make recommendations on a product only after purchasing
it. Since each sender had an incentive for making effective referrals, it is natural
to hypothesize that this dataset is a good source of cascades.

Each recommendation is annotated with the product recommended, the time
the recommendation was sent, whether it resulted in a purchase, and the date of
purchase (if applicable). Customer information is anonymized; no demographic
or uniquely identifying information is available.

We represent this relational dataset as a labeled directed multigraph: nodes
represent customers, and a directed edge (v, w) with label (p, t) means that node
v recommended product p to customer w at time t. (For convenience, we will
sometimes denote this edge by (v, w, p, t).) The typical edge generation process is
as follows: a node (person) v buys product p at time t, and then recommends it to
nodes {w1, . . . , wn}. These nodes wi can then buy the product (with the option
to recommend it to others). Note that even if all nodes wi buy the product,
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Table 1. Product group recommendation network statistics: p: number of products, n:
number of nodes, e: total number of edges (recommendations), eu: number of unique
edges, bt: total number of purchases, br: purchases made through recommendations

Group p n e eu bt br

Book 103,161 2,863,977 5,741,611 2,097,809 2,859,096 83,113
DVD 19,829 805,285 8,180,393 962,341 837,300 75,421
Music 393,598 794,148 1,443,847 585,738 712,673 10,576
Video 26,131 239,583 280,270 160,683 165,109 1,376
Full network 542,719 3,943,084 15,646,121 3,153,676 4,574,178 170,486

only the first purchaser will get the discount, which is marked by a purchase flag
(buy-bit). However, we can infer purchases by others of the wi by seeing if they
generated subsequent recommendations for it. (Recall that one had to buy the
product in order to be allowed to recommend it).

The recommendation network consists of 15,646,121 recommendations made
among 3,943,084 distinct users from June 2001 to May 2003 (711 days). A total
of 542,719 different products belonging to four product categories (Books, DVDs,
Music, and Videos) were recommended. For a detailed analysis of the customer
recommendation behavior in this dataset, see [12].

We extract per-group recommendation networks by taking the edge-induced
subgraph formed by all the products of a given category. Table 1 describes the
four networks. The DVD network contains the most recommendations; but the
book network involves more customers. On average a node in the DVD network
made more than 10 recommendations; on average a book or music node made
about two recommendations.

There can be multiple recommendations between the nodes, and by count-
ing only unique edges (eu), we find that only DVDs have more edges than
nodes. In summary, all networks are very sparsely linked, but those pairs of
users who exchanged recommendations often did so several times. Moreover,
exploration of the social network was rather poor. At the end of the two-
year period, the largest connected component contained fewer than 2.5% of the
nodes.

The last two columns of Table 1 show the total number of purchases (bt) and
the purchases that occurred in response to a recommendation (br). Observe that
for DVDs 9% of purchases are associated with a recommendation, for books 3%,
music 1.5% and video less than 1%.

Overall, then, while book recommendations appear quite influential, most
readers do not appear to make many of them. The DVD network, while smaller, is
significantly denser and can be viewed as having a qualitatively richer structure.

4 Proposed Method

In this section we present the algorithms and techniques developed to efficiently
enumerate and count frequent recommendation patterns in a large graph, in-
cluding an approximate heuristic for subgraph isomorphism.
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One might imagine cascades to be trees or near-trees. In fact, we find that
recommendations create essentially arbitrary graphs: there can be multiple rec-
ommendations on the same product or multiple product recommendations be-
tween the same pair of nodes; there are multiple purchases of the same product
by the same individual (this is natural given that many items are purchased as
gifts); and one also finds many cycles.

To find cascades we need to identify cases when incoming recommendations
cause purchases and further outgoing recommendations. Recommendations into
a node u that precede a purchase can be posited to have potentially influenced the
purchase. There are two ways to establish this. If an edge is marked by a purchase
flag, we assume the recommendation influenced the purchase. Alternately, the
existence of two directed edges (u, v, p, t) and (v, w, p, t′) for t′ > t suggests
cascade behavior. That is, node v receives a recommendation for product p at
time t and then makes recommendation for the same product at a later time t′.
(Recall that a node makes recommendations at the time of purchase.)

First we create a separate graph of recommendations for each product. To
find cascades we propose the following two-step procedure:

Delete late recommendations: given a single product recommendation net-
work, for every node we delete all incoming recommendations (edges) that hap-
pen after the first purchase of a product. This removes all recommendations of
the product a person received after the first purchase, i.e. keeps only recommen-
dations that potentially influenced the purchase. Now for every node the time
of all incoming edges is strictly smaller than the time of all outgoing edges.

Delete no-purchase nodes: Preliminary analysis showed that the majority of
recommendations do not produce cascades. We observed many star-like patterns
where the center node recommends to a large number of people, none of whom
purchase the product. To prevent this type of large but shallow pattern, we
delete all nodes that did not purchase the product.

After deleting late recommendations each connected component in the undi-
rected version of the graph can be viewed as a cascade, since all directed paths
in the component are time-increasing (i.e., a cascade subgraph contains only
directed paths with strictly increasing edge times). Deleting no-purchase nodes
ensures that we include only nodes whose behavior was potentially affected by
the cascade (as evidenced by the fact that they made a purchase).

Cascade enumeration: Next we enumerate all possible cascades. By the dis-
cussion in the previous paragraph, the undirected components correspond to
maximal cascades, but simply enumerating components makes it difficult to rea-
son about the smaller building blocks of the cascades. Thus, we instead focus
on enumerating all local cascades: For every node we explore the cascade in the
(undirected) neighborhood of the node. Thus, for every node v, we create the
subgraphs induced on nodes reachable by up to h steps forward or backward
from v (stopping at h that includes all reachable nodes). One can think of this
as capturing the local structure of the cascade at increasing distances around v.
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Approximate graph isomorphism: An essential step in counting cascades
is determining whether a new cascade is isomorphic to a previously discovered
one. No polynomial-time algorithm is known for the graph isomorphism problem,
and so we resort to an approximate, heuristic solution. For each graph we create
a signature. A good signature is one where isomorphic graphs have the same
signature, but where few non-isomorphic graphs share the same signature.

We propose a multi-level approach where the computational complexity (and
accuracy) of the graph isomorphism resolution depends on the size of the graph.
For smaller graphs we perform an exact isomorphism test; as the size of the
graph increases this becomes prohibitively expensive so we use gradually simpler
but faster techniques which give only approximate solutions. Another technique
employed is to create an efficiently computable signature for each graph, use
hashing on this signature value, and then use more expensive isomorphism tests
only on graphs with the same signature.

For every graph we create a signature which is composed of the number of
nodes, the number of edges, and the sorted in- and out-degree sequences. For
graphs with fewer than 500 nodes, we also include the singular values of the
adjacency matrix (via singular value decomposition). We then hash the graphs
using the signatures. Additionally, for graphs with fewer than 9 nodes we perform
exact isomorphism checking. When the exact isomorphism check is used, we keep
a list of all variants of graphs that collided (have the same signature). Since we
first hash, we perform the isomorphism check only on graphs with the same
signatures, and so the number of true isomorphism checks is small.

Note that a small minority of cascades are larger than 9 nodes, so for most of
the subgraphs we get the exact solution; as the cascade size increases the number
of occurrences decreases, and this is where we use an approximate solution.

We performed a small set of experiments to evaluate the proposed approxi-
mate graph isomorphism algorithm. Given a graph with 8 nodes and 12 edges
100,000 brute-force evaluations of graph-isomorphism took under 40 seconds on
a standard desktop machine. In the second experiment we generated 100,000
random graphs (using the Erdős-Rényi model), each of them with a randomly
chosen number of nodes between 4 to 20 and twice as many edges. The count-
ing took 50 seconds. In this experiment we observed at most 53 non-isomorphic
graphs (5 nodes, 10 edges) with the same signature.

5 Patterns of Recommendation

5.1 Size Distribution of Cascades

First, we discuss results on the size of the cascades, measured by the number of
nodes. As in all experiments we create per-product recommendation networks,
delete late recommendations and no-purchase nodes, and then perform the anal-
ysis. Figure 1 shows the distribution of cascade sizes for the four product types.
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Fig. 1. Size distribution of the cascades for the four product types (log size of cas-
cade vs. log count). Superimposed line presents a power-fit. R2 is the coefficient of
determination.

The size of cascades follows a heavy-tailed distribution. For books the largest
cascade has 95 nodes and 231 edges. For DVDs the largest cascade is eight times
larger (n = 791, e = 5544). The cascades involving music or videos are much
smaller; the largest cascades are n = 13, e = 56 and n = 37, e = 169 respectively.

DVDs had the highest proportion of large cascades, and the plot for DVDs in
Figure 1(b) has an interesting transition in its behavior. For smaller cascade sizes,
in the size range consistent with most of the book, music, and video cascades,
the DVD distribution has a power-law fit with slope −4.5, comparable to the
other three product types. For larger cascades, which are observed in abundance
only for DVDs, the distribution flattens to a slope of −1.5.

The cascade size distributions suggest that the simplest branching process
models will not suffice to explain the underlying cascade process; a family of
richer models is proposed in [12], in which the success probability increases
when collisions occur among cascades, and cascade sizes follow a power law with
exponent −1. We have also found that the cascade size distribution follows a
heavy-tailed distribution in sales frequencies [12], with the number of purchases
decaying as a function of rank faster than the number of recommendations does.

5.2 Frequent Cascade Subgraphs

What kinds of cascades arise frequently in real life? Are they like trees, stars, long
chains, or something else? We now explore the building blocks of the cascades, by
performing the described procedure: for each product recommendation graph, we
first identify cascades by deleting late recommendations and no-purchase nodes.
Then, for each node we create a subgraph on nodes at distance up to h hops,
where h varies from 1 up to the value where all nodes are reached. We count the
graphs using the approximate graph isomorphism technique from Section 4.

General observations: For books we identified 122,657 cascades, of which 959
are topologically different. There are 213 cascades that occur at least ten times.
For DVDs we identified 289,055 cascades, 87,614 are topologically different, and
3,015 cascades occur at least ten times. For music we identified 13,330 cascades,
158 were topologically different, and only 23 cascades occurred at least ten times.
Videos were the least rich, with 1,928 subgraphs containing 109 unique patterns,
and only 12 subgraphs occurring at least ten times.
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The frequency of different cascades concurs with observations made in con-
nection with Figure 1 and Table 1, where DVDs had the largest and richest set
of cascades. Also, even though the music network is three times larger than the
video network, it does not exhibit much larger topological variety.

Analysis of frequent cascade patterns: Table 2 shows ranks R and fre-
quencies F of 22 cascades for the 4 product types, including all subgraphs with
at most four nodes and four edges. Cascades are ordered by size. 14 cascade
patterns can be observed in all four product types; Table 2 includes 10 of them.

Table 2. Frequent cascades for the 4 product types. We show all graphs up to 4 nodes
and 4 edges. Ordered by size. For each graph we show rank (R) and frequency (F ).

Book DVD Music Video
Id Graph Nodes Edges R F R F R F R F

G1 2 1 1 86,430 1 36,863 1 11,518 1 1,425

G2 3 2 2 10,573 4 3,238 2 492 5 33
G3 3 2 3 5,089 2 5,147 3 389 3 61

G4 3 2 6 1,593 5 2,419 5 115 22 4

G5 3 3 4 3,115 3 4,746 4 201 2 63

G6 4 3 5 2,769 15 505 6 55 20 5

G7 4 3 8 726 25 416 7 30 27 4

G8 4 3 10 598 7 909 8 25 0 0

G9 4 3 12 398 33 312 13 12 0 0
G10 4 3 13 362 22 424 9 18 26 4

G11 4 3 18 156 37 276 53 4 0 0

G12 4 3 29 82 24 418 28 8 0 0

G13 4 3 92 21 12 549 54 4 0 0

G14 4 4 9 625 11 552 31 7 13 8

G15 4 4 22 112 16 495 10 15 0 0

G16 4 4 23 111 20 435 57 3 0 0

G17 4 4 26 85 17 485 83 2 0 0

G18 4 4 30 79 9 706 32 7 29 3

G19 4 4 37 64 38 273 24 9 0 0

G20 4 4 47 51 955 28 0 0 0 0

G21 4 4 90 21 857 31 0 0 0 0

G22 4 4 91 21 1368 20 0 0 0 0
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The most common cascade, G1, represents a single recommendation. This
pattern accounts for 70% of all book cascades, 86.4% of all music cascades, 74%
of all video cascades, but just 12.8% of DVD cascades. The chain of three nodes
(G3) accounts for 4.1% of book cascades, about 3% of video and music cascades,
but only 1.8% of DVD cascades. DVD cascades tend to be most densely linked.

Comparing G2 and G4 shows that simple splits are more frequent than col-
lisions. For books there are 6.6 times more splits than collisions; for DVDs this
factor drops to 1.3; and it is 4.2 and 8.25 for music and videos respectively. Very
similar observations hold for splits and collisions on 4 nodes (G6 and G13); how-
ever notice that for DVDs the collision of 3 nodes (G13) is slightly more frequent
than the split (G6). Another such example of reversed graphs are G7, G11 and
G8, G12. Again, the split pattern is more frequent than the collision. The ratio
is more unbalanced for books (1 collision per 7 splits) than for DVDs (1 to 2).

Graphs from G14 to G19 all have a triangle, with one additional node attached.
Again, except for DVDs, splits of recommendations (G14 and G15) are more
frequent than collisions (G18, G19). For DVDs the most frequent sub-graph of
the set is G18 (involving a collision), followed by G14 and G15.

Finally, Figure 2 shows typical classes of cascades. Graphs G23 and G27 show
the case when two people have the same set of friends but do not recommend
to each other. Similarly, in graphs G24 and G26, the top node recommends to
a set of people, and then one purchases and recommends to the same set. Flat
cascades are also found (G25, G28, G29) – a person recommends, a number of
people respond (and purchase a product), but the cascade does not propagate.
Graph G30 shows an illustrative example of a cascade that is quite intricate.

G23
G24

G25
G26

G27

G28 G29

G30

Fig. 2. Typical classes of cascades. G23, G27: nodes recommending to the same set
of people, but not each other. G24, G26: one node recommends to another, and both
recommend to the same community. G25, G28, G29: a flat cascade. G30 is an example
of a large cascade.

A concluding, general observation is that the frequency of cascade subgraphs
does not simply decrease monotonically in the number of nodes and edges; for
example, G5 is more frequent than either of its subgraphs G2 and G4 in DVDs
and videos (and more frequent than G4 in books and music). Thus, frequency
appears to reflect properties of the underlying social network (the clustering of
people who know each other), as well as properties of the ways in which recom-
mendations typically get made (e.g. splits are more common than collisions).
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6 Conclusion

A basic premise behind the study of social networks is that interaction leads
to complex collective behavior. Cascades are a form of collective behavior that
has been analyzed both empirically and theoretically, but for which the study
of complete, large-scale datasets has been limited. We have shown that cascades
exist in a large real-world recommendation dataset, and have investigated some
of their structural features.

We developed a scalable algorithm and set of techniques to illustrate the ex-
istence of cascades, and to measure their frequencies. From our experiments, we
found that most cascades are small, but large bursts can occur; that cascade sizes
approximately follow a heavy-tailed distribution; that the frequency of different
cascade subgraphs depends on the product type; and that these frequencies do
not simply decrease monotonically for denser subgraphs, but rather reflect more
subtle features of the domain in which the recommendations are operating.
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Abstract. Chunkingless Graph-Based Induction (Cl-GBI) is a machine
learning technique proposed for the purpose of extracting typical pat-
terns from graph-structured data. This method is regarded as an im-
proved version of Graph-Based Induction (GBI) which employs step-
wise pair expansion (pairwise chunking) to extract typical patterns from
graph-structured data, and can find overlapping patterns that cannot not
be found by GBI. In this paper, we propose an algorithm for construct-
ing decision trees for graph-structured data using Cl-GBI. This decision
tree construction algorithm, called Decision Tree Chunkingless Graph-
Based Induction (DT-ClGBI), can construct decision trees from graph-
structured datasets while simultaneously constructing attributes useful
for classification using Cl-GBI internally. Since patterns extracted by
Cl-GBI are considered as attributes of a graph, and their existence/non-
existence are used as attribute values, DT-ClGBI can be conceived as
a tree generator equipped with feature construction capability. Exper-
iments were conducted on synthetic and real-world graph-structured
datasets showing the effectiveness of the algorithm.

1 Introduction

In recent years, there has been much research work on data mining in seeking for
better performance. Better performance includes mining from structured data,
which is a new challenge. Since structure is represented by proper relations and a
graph can easily represent relations, knowledge discovery from graph-structured
data poses a general problem for mining from structured data.

Chunkingless Graph-Based Induction (Cl-GBI) [4] is a machine learning tech-
nique which was devised for the purpose of extracting typical patterns (sub-
graphs) from graph-structured data. Cl-GBI is regarded as an improved version
of Graph-Based Induction (GBI) [8] which extracts typical patterns from graph-
structured data by recursively chunking two adjoining nodes. However, Cl-GBI
does not employ this pairwise chunking strategy. Instead, the most frequent pairs
are regarded as new nodes and given new node labels in the subsequent steps but
none of them is chunked. In other words, they are used as pseudo nodes, thus

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 390–399, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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allowing extraction of overlapping subgraphs. It was shown in [4] that Cl-GBI
can extract more typical substructures than Beam-wise Graph-Based Induction
(B-GBI) [4] which is an enhanced version of GBI adopting the beam search.

On the other hand, a majority of methods widely used for data mining are
for data that do not have structure and that are represented by attribute-value
pairs. Decision trees [5, 6], and induction rules [1] relate attribute values to target
classes. Association rules often used in data mining also use this attribute-value
pair representation. These methods can induce rules such that they are easy to
understand. However, the attribute-value pair representation is not suitable to
represent a more general data structure such as graph-structured data, which
means that most of useful methods in data mining are not directly applicable to
graph-structured data.

In this paper, we propose an algorithm to construct decision trees for graph
structured data using Cl-GBI. This decision tree construction algorithm, called
Decision Tree Chunkingless Graph-Based Induction (DT-ClGBI), is a revised
version of our previous algorithm called Decision Tree Graph-Based Induction
(DT-GBI) [2], and can construct decision trees for graph-structured datasets
while simultaneously constructing substructures used as attributes for the clas-
sification task by means of Cl-GBI instead of B-GBI adopted in DT-GBI. In
this context, substructures mean subgraphs or patterns that appear in a given
graph database. Patterns extracted by Cl-GBI are regarded as attributes of
graphs and their existence/non-existence are used as attribute values. Namely,
DT-ClGBI does not require the user to define available substructures in advance.
Since attributes (features) are constructed while a classifier is being constructed,
DT-ClGBI can be conceived as a method for feature construction. Using both
synthetic and real-world graph-structured datasets, we experimentally show DT-
ClGBI can construct decision trees from graph-structured data that achieve rea-
sonably good predictive accuracy.

This paper is organized as follows: Section 2 briefly describes the framework
of Cl-GBI. Section 3 proposes DT-ClGBI and explains its working mechanism of
how a decision tree is constructed and used for classification. The performance
of DT-ClGBI is experimentally evaluated and reported in Section 4. Finally,
Section 5 concludes the paper.

2 Graph-Based Induction Revisited

2.1 Graph-Based Induction (GBI)

GBI [8] employs stepwise pair expansion (pairwise chunking) to extract typical
patterns from graph-structured data. Later an enhanced version of GBI, named
Beam-wise GBI (B-GBI) [3], adopting the beam search was proposed to increase
the search space, thus extracting more discriminative patterns while keeping
the computational complexity within a tolerant level. Since the search in GBI
is greedy and no backtracking is made, which patterns are extracted by GBI
depends on which pairs are selected for chunking. This means that patterns
that partially overlap can no longer be extracted, and thus there can be many
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patterns which are not extracted by GBI. B-GBI can help alleviate this problem,
but cannot solve it completely because the chunking process is still involved.

2.2 Chunkingless Graph-Based Induction (Cl-GBI)

Cl-GBI [4] was developed to cope with the problem of overlapping subgraphs
incurred by both GBI and B-GBI. Cl-GBI employs a “chunkingless chunking”
strategy, where frequent pairs are never chunked but used as pseudo nodes in
the subsequent steps, thus allowing extraction of overlapping subgraphs. As in
B-GBI, the Cl-GBI approach can handle both directed and undirected graphs as
well as both general and induced subgraphs. It can also extract typical patterns
in either a single large graph or a graph database. The algorithm of Cl-GBI is
briefly described as follows. For a detailed mathematical treatment of Cl-GBI
the reader is referred to [4].

Given a graph database, two natural numbers b (beam width) and Ne, and a
frequency threshold θ, the “chunkingless chunking” strategy repeats the follow-
ing three steps Ne times, each of which is referred to as a level (Ne is thus the
number of levels).

Step 1. Extract all the pairs consisting of two connected nodes in the graphs,
register their positions using node id (identifier) sets, and count their frequen-
cies. From the 2nd level on, extract all the pairs consisting of two connected
nodes with at least one node being a new pseudo node.

Step 2. Select the b most frequent pairs from among the pairs extracted at Step
1 (from the 2nd level on, from among the unselected pairs in the previous
levels and the newly extracted pairs). Each of the b selected pairs is registered
as a new node. If either or both nodes of the selected pair are not original but
pseudo nodes, they are restored to the original patterns before registration.

Step 3. Assign a new label to each pair selected at Step 2 but do not rewrite
the graphs. Go back to Step 1.

All the pairs extracted at Step 1 in all the levels (i.e. level 1 to level Ne),
including those that are not used as pseudo nodes, are ranked based on a typ-
icality criterion using a discriminative function such as information gain [5] or
gain ratio [6]. Those pairs that have frequency count below θ are eliminated,
which means that there are three parameters b, Ne, θ to control the search.

The output of Cl-GBI algorithm is a set of ranked typical patterns, each of
which comes together with the positions of all its occurrences in each transaction
of the graph database as well as the numbers of occurrences.

3 Decision Tree Cl-GBI (DT-ClGBI)

3.1 Decision Tree for Graph-Structured Data

As mentioned in Section 1, the attribute-value pair representation is not suitable
for graph-structured data, although both attributes and their values are essential
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Fig. 1. Decision tree for classifying graph-structured data

for a classification or prediction task because a class is related to some attribute
values in most cases. In a decision tree, each node and a branch connecting
the node to its child node correspond to an attribute and one of its attribute
values, respectively. Thus, to formulate the construction of a decision tree for a
graph-structured dataset, we define attributes and their values as follows:

– attribute: a pattern/subgraph in graph-structured data,
– value of an attribute: existence/non-existence of the pattern in each graph.

Since the value of an attribute is either yes (the pattern corresponding to the
attribute exists in the graph) or no (the pattern does not exist), the resulting
decision tree is represented as a binary tree. Namely, data (graphs) are divided
into two groups: one consists of graphs with the pattern, and the other consists
of graphs without it. Figure 1 illustrates the decision tree constructed based on
this approach. One remaining question is how to determine patterns which are
used as attributes for graph-structured data. Our approach to this question is
described in the next subsection.

3.2 Feature Construction by Cl-GBI

The algorithm we propose here, called Decision Tree Chunkingless Graph-Based
Induction (DT-ClGBI), utilizes Cl-GBI to extract patterns from graph-structured
data and use them as attributes for a classification task, whereas our previous
algorithm, Decision Tree Graph-Based Induction (DT-GBI), adopted B-GBI to
extract patterns. Namely, DT-ClGBI invokes Cl-GBI at each node of a decision
tree, and selects the most discriminative pattern from those which were extracted
by Cl-GBI. Then the data (graphs) are divided into two groups, i.e., one with the
pattern and the other without the pattern as described above. For each group,
the same process is recursively applied until the group contains graphs of a single
class like the ordinary decision tree construction method such as C4.5 [6]. The
algorithm of DT-ClGBI is summarized in Fig. 2.

In DT-ClGBI, each of the parameters of Cl-GBI, b, Ne, and θ, can be set to
different values at different nodes in a decision tree. All patterns extracted at a
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DT-ClGBI(D)
INPUT
D: a graph database
begin

Create a node DT for D
if termination condition reached

return DT
else

P := Cl-GBI(D) (with b, Ne, and θ specified)
Select the most discriminative pattern p from P
Divide D into Dy (with p) and Dn (without p)
for Di := Dy , Dn

DTi := DT-ClGBI(Di)
Augment DT by attaching DTi as its child
along yes/no branch

return DT
end

Fig. 2. Algorithm of DT-ClGBI

node are inherited to its descendant nodes to prevent a pattern that has already
been extracted in the node from being extracted again in its descendants. This
means that, as the construction of a decision tree progresses, the number of
patterns to be considered at a node progressively increases, and the size of a
pattern newly extracted can be larger than existing patterns. Thus, although
initial patterns at the start of search consist of two nodes and the link between
them, attributes useful for the classification task can be gradually grown up into
larger patterns (subgraphs) by applying Cl-GBI recursively. In this sense, DT-
ClGBI can be conceived as a method for feature construction, since features, i.e.,
attributes (patterns) useful for the classification task, are constructed during the
application of DT-ClGBI.

However, recursive partitioning of data until each subset in the partition con-
tains data of a single class often results in overfitting to the training data and
thus degrades the predictive accuracy of resulting decision trees. To avoid over-
fitting, and improve predictive accuracy, DT-ClGBI incorporates “pessimistic
pruning” used in C4.5 [6] that prunes an overfitted tree based on the confidence
interval for binomial distribution. This pruning is a postprocess that follows the
algorithm in Fig. 2.

Note that the criterion for selecting a pair that becomes a pseudo node in Cl-
GBI and the criterion for selecting a discriminative pattern in DT-ClGBI can be
different. In the following experiments, frequency of a pair is used as the former
criterion, and information gain of a pattern is used as the latter criterion1.

3.3 Classification Using the Constructed Decision Tree

Unseen new graph data must be classified once the decision tree has been con-
structed. Here the problem of subgraph isomorphism arises to test if the input
graph contains the pattern (subgraph) specified in the test node of the tree. To
alleviate this problem, we utilize Cl-GBI again. Theoretically, if the test pattern
actually exists in the input graph, Cl-GBI can find it by setting the beam width b

1 We did not use information gain ratio because DT-ClGBI constructs a binary tree.



Constructing Decision Trees for Graph-Structured Data by Cl-GBI 395

and the number of levels Ne large enough and by setting the frequency threshold
to 0. However, note that nodes and links that never appear in the test pattern
are never used to form the test pattern in Cl-GBI. Therefore, we can remove
such nodes and links from the input graph before applying Cl-GBI to reduce its
running time. This approach is summarized as follows:

Step 1. Remove nodes and links that never appear in the test pattern from the
input graph.

Step 2. Apply Cl-GBI to the resulting input graph setting the parameters b
and Ne large enough, while setting the parameter θ to 0.

Step 3. Test if one of the canonical labels of extracted patterns with the same
size as the test pattern is equal to the canonical label of the test pattern.

In general, Step 1 results in a small graph and Cl-GBI can run very quickly
without any constraints on Ne and b. However, if we need to set these constraints,
we may not be able to obtain the correct answer because we don’t know how
large these parameters should be. In that sense, this procedure can be regarded
as an approximate solution to the subgraph isomorphism problem.

4 Experimental Evaluation of DT-ClGBI

To evaluate the performance of DT-ClGBI, we conducted some experiments on
both synthetic and real-world datasets consisting of directed graphs.

4.1 Synthetic Datasets

Data Preparation. Synthetic datasets were artificially generated in a random
manner. The number of nodes in a graph is determined by the gaussian distri-
bution having the average of T and the standard deviation of 1. The links are
attached randomly with the probability of p. The node labels and link labels are
randomly determined with equal probability. The number of node labels and the
number of link labels are denoted as LV and LE, respectively. The total number
of transactions is kept fixed as GD.

Two datasets of directed graphs having the average size of 30 and 40, each
of which has GD = 300, LV = 5, LE = 10, p = 20%, were generated and
are represented as T 30 and T 40, respectively. Each dataset was equally divided
into two classes, namely “active” and “inactive”. Similarly, L basic patterns of
connected subgraphs having the average size of I, where L = 4 and I = 4, were
generated. The number of basic patterns to be embedded in a transaction Gt

of the class “active”, Nt, was randomly selected in the range between 1 and
L. Each of these Nt basic patterns was in turn chosen from the set of L basic
patterns by equal probability, i.e. 1/L, and overlaid on that transaction. This
means that each transaction of the class “active” includes from 1 to L basic
subgraphs, some of them may happen to be the same. We also check if there
is any basic subgraph included in a transaction of the class “inactive” by Cl-
GBI as described in Section 3.3. If there is, the involved node and link labels
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Fig. 3. Example of 4 basic subgraphs

are changed in a way that the basic pattern no longer exists in the transaction.
In other words, basic subgraphs are those which discriminate the two classes.
This does not necessarily mean that any subgraph of the basic patterns is not
discriminative enough. We have not checked that all the subgraphs of the basic
patterns appear in both active and inactive data. Figure 3 shows the 4 basic
subgraphs which were embedded in the transactions of the class “active”.

Experiments. For these two synthetic datasets, the classification task is to
classify two classes “active” and “inactive” using DT-ClGBI by a single run of
10-fold cross validation (CV). The final prediction error rate was evaluated by
the average of 10 estimates of the prediction error (a total of 10 decision trees).

The first experiment was conducted to confirm that the most discriminative
patterns with respect to the used index can be extracted by Cl-GBI not only at
the root node, but also at each internal node itself. To this end, we compared
the predictive accuracy and the tree size obtained by two different settings for
DT-ClGBI described as follows. In the first setting, i.e. setting 1, a decision tree
is constructed by applying Cl-GBI at the root node only, with Ne = 2. At the
other nodes, we simply recalculate information gain for those patterns that have
already been discovered at the root node. In the other case, i.e., setting 2, Cl-
GBI is invoked at the root node with Ne = 2 and at other nodes with Ne = 1. In
addition, the total number of levels of Cl-GBI in the second setting is limited to
6 to keep the computation time at a tolerant level. Whenever the total number
of levels reaches this limitation, Cl-GBI is no longer used for extracting patterns.
Instead, only the existing patterns are employed for constructing the decision
tree thereafter. Note that beam width is set to 5 in both settings.

Results of the first experiment are summarized in Table 1, and it is shown
that the second setting obtains higher predictive accuracy. Moreover, we observe

Table 1. Comparisons of different settings for DT-ClGBI

Setting 1 Setting 2
Dataset Training error Test error Average of Training error Test error Average of

tree sizes tree sizes
T30 0.22% 1.33% 17.2 0% 0% 9.2
T40 0.37% 5% 18 0.15% 3.33% 12.8
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Table 2. Comparisons of DT-ClGBI and DT-GBI

DT-GBI DT-ClGBI
Dataset Training error Test error Average of Training error Test error Average of

tree sizes tree sizes
T30 1.41% 7.67% 24 0% 0% 9
T40 3.15% 7.67% 18.2 0% 0.67% 9

that the decision trees constructed by the second setting have smaller sizes in
most cycles of the 10-fold CV for both datasets. The result reveals that invoking
of Cl-GBI at internal nodes is needed to improve the predictive accuracy of DT-
ClGBI, as well as to reduce the tree size. Intuitively, the search space increases by
applying Cl-GBI at the internal nodes in addition to the root node. As a result,
more discriminative patterns which have not been discovered in the previous
steps are discovered at these nodes. In other words, applying Cl-GBI at only
the root node cannot help enumerate all the necessary patterns unless Ne and b
are set large enough. For example, in the decision tree constructed by the first
run of 10-fold CV on the dataset T 30 using the second setting, the classifying
pattern for a node at the third level was not found at the root node but its
parent node. If Ne is set large enough, the necessary pattern should be able to
be found at the root node. This pattern, if found at the root node, should give
smaller information gain at the root node but Cl-GBI retains this and passes
down to the lower node. The question is how to find this pattern where it is
needed without running Cl-GBI using all the dataset.

The second experiment focused on the comparisons between DT-ClGBI and
DT-GBI [2], also in terms of the predictive accuracy and the tree size. Here
beam width is also set to 5 in both cases. For DT-GBI, the number of levels
of B-GBI at any node of a decision tree is kept fixed as 4. It should be noted
that, whenever being invoked for constructing a decision tree by DT-GBI, B-
GBI starts extracting typical patterns from the beginning, i.e. no inheritance
is employed, because the graphs that pass down to the yes branch have been
chunked by the test pattern. On the other hand, the number of levels of Cl-GBI
is 4 at the root node and 1 at the other nodes of a decision tree in the case
of DT-ClGBI. In addition, the total number of levels of Cl-GBI is limited to 8,
which means that the number of levels performed by the feature construction
tool in DT-ClGBI is much less than that in DT-GBI.

Table 2 shows the results of the second experiment. It can be seen that DT-
ClGBI achieves lower prediction error for both datasets. We also observe that,
for each dataset, the decision trees constructed by DT-ClGBI have smaller sizes
in most cycles of the 10-fold CV. The higher predictive accuracy of DT-ClGBI
and the simpler decision trees obtained by this method can be explained by the
improvement of Cl-GBI over B-GBI, and the inheritance of previously extracted
patterns at an internal node (in a decision tree) from its predecessors. It is known
that Cl-GBI resolves the problem of overlapping patterns incurred by B-GBI,
thus resulting in more typical patterns extracted by Cl-GBI. In addition, the
computation time of DT-ClGBI was found to be less than half of that required
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by DT-GBI with the above settings, which is mainly due to the fact that the
feature construction tool for DT-ClGBI was not run from the scratch at any
internal node as in DT-GBI. This implies that DT-ClGBI performs better than
DT-GBI while requiring much less computation resource.

It should also be noted that the size of the embedded graphs in these two
datasets is 4 or 5. Setting Ne = 2 as in the first experiment means that the
maximum size of patterns we can get at the root node is 4. Considering the
beam width, it is unlikely that the embedded patterns are found at the root
node. Even Ne = 4 as in the second experiment, these basic patterns cannot
be found. However, the substructures of the embedded graphs are discriminative
enough as shown in the two experiments. Due to the downward closure property,
these substructures were embedded in the transactions of the class “active”.

4.2 Real-World Datasets

Finally, we verified if DT-ClGBI can construct decision trees that also achieve
reasonably good predictive accuracy on a real-world dataset. For that purpose,
we used the hepatitis dataset as in [2]. The classification task here is to clas-
sify patients into two classes, “LC” (Liver Cirrhosis) and “nonLC” (non Liver
Cirrhosis) based on their fibrosis stages, which are categorized into five stages
in the dataset: F0 (normal), F1, F2, F3, and F4 (severe = Liver Cirrhosis). All
43 patients at F4 stage were used as the class “LC”, while all 4 patients at F0
stage and 61 patients at F1 stage were used as the class “nonLC”. This ratio
of “LC” to “nonLC” was determined based on [7]. The records for each patient
were converted into a directed graph as described in [2]. The resulting graph
database has 108 graph transactions, and the average size of a graph transaction
is 316.2 and 386.4 in terms of the number of nodes and of links, respectively.

Through some preliminary experiments on this database using DT-ClGBI,
we found that existence of some graphs often makes the resulting decision tree
too complicated and worsen the predictive accuracy. This has led us to adopt a
two step approach, first to divide the patients into “typical” and “non-typical”,
and second to construct a decision tree for each group of the patients. To divide
the patients in the first step, we ran 10-fold cross validation of DT-ClGBI on
this database, varying its parameters b and Ne in the ranges of {5, 6, 8, 10} and
{6, 8, 10, 12}, respectively. Note that these values are only for the root node
and we did not run Cl-GBI at the succeeding nodes. The frequency threshold θ
was fixed to 10%. Namely, we conducted 10-fold cross validation 16 times with
different combinations of these parameters, and obtained totally 160 decision
trees in this step. Then we classified graphs whose average error rate is 0% into
“typical”, and the others into “non-typical”. As a result, for the class “LC”, 28
graphs are classified into the subset “typical” and the other 15 graphs into “non-
typical”, while for the class “nonLC”, 48 graphs are classified into “typical” and
17 graphs into “non-typical”.

In the second step, we applied DT-ClGBI to each subset again adopting the
best parameter setting in the first step with respect to the predictive accuracy,
where b = 8 and Ne = 10. The predictive accuracy (average of 10-CV) for
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the subset “typical” is 97.4%, and that for “non-typical” is 78.1%. The overall
accuracy is 91.7%, which is much better than the accuracy obtained by applying
DT-ClGBI to the original dataset with b = 8 and Ne = 10, i.e., 83.4%. We can
find typical features for a patient with Liver Cirrhosis in the extracted patterns
such as “GOT is High” or “PLT is Low”. From these results, we can say that DT-
ClGBI can achieve reasonably good predictive accuracy on a real-world dataset
and extract discriminative features embedded in the dataset as subpatterns.

5 Conclusions

We have proposed an algorithm called DT-ClGBI, which can construct decision
trees for graph-structured data using Cl-GBI. In DT-ClGBI, substructures, or
patterns useful for a classification task are constructed on the fly by means of Cl-
GBI during the construction process of a decision tree. The experimental results
using synthetic and real-world datasets showed that decision trees constructed
by DT-ClGBI achieve good predictive accuracy for graph-structured data. The
good predictive accuracy of DT-ClGBI is mainly attributed to the fact that Cl-
GBI can give the correct number of occurrences of a pattern in each transaction
of the graph database due to its capability of extracting overlapping patterns,
which is very useful for algorithms such as DT-ClGBI that need correct counting.
Also, the inheritance of previously extracted patterns at an internal node from
its predecessors is shown helpful.
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Abstract. In semi-supervised classification, many methods use the
graph representation of data. Based on the graph, different methods, e.g.
random walk model, spectral cluster, Markov chain, and regularization
theory etc., are employed to design classification algorithms. However,
all these methods use the form of graphs constructed directly from data,
e.g. kNN graph. In reality, data is only the observation with noise of hid-
den variables. Classification results using data directly from the obser-
vation may be biased by noise. Therefore, filtering the noise before using
any classification methods can give a better classification. We propose a
novel method to filter the noise in high dimension data by smoothing the
graph. The analysis is given from the aspects of spectral theory, Markov
chain, and regularization. We show that our method can reduce the high
frequency components of the graph, and also has an explanation from
regularization view. A graph volume based parameter learning method
can be efficiently applied to classification. Experiments on artificial and
real world data set indicate that our method has a superior classification
accuracy.

1 Introduction

In semi-supervised classification, graph-based methods have drawn great atten-
tion recently. This kind of methods maps the data points into vertices of a graph,
and a weighted graph is formed after defining a similarity function between
points. Graph methods are nonparametric, discriminative, and transductive in
nature. Many methods employ this graph representation of data [2, 6, 7, 10, 8, 9].

Although these works employ many variants of graph formation, e.g. kNN
and eNN graphs, exponential and cosine weights, they are all formed directly
from the data points. We know that all the data points are only the observation
of some hidden variables, and the noise can not be avoided in observed values.
To build a graph which reflects the data distribution better, we should filter the
noise first, and then classify the unlabeled data.

In many practical applications of data classification and data mining, we
usually make necessary assumptions to facilitate our analysis and help us to
find more applicable methods. Labels smoothness [11] and cluster assumption
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[2, 3] are of this kind. As we know, nearby data points in the same cluster tend
to share the same label, and the density of one cluster changes slowly inside
one cluster. So we assume that the real distribution of data points in the same
cluster consists of lower frequency components, and higher frequency ones of the
distribution are more likely to be the noise.

We utilize the Markov random walk model to construct such a graph. Based on
our assumption, theoretical analysis shows that our graph has less high frequency
noise, and a smoother transition matrix. After the filtering step, we use a graph-
based classification method to classify data points.

In this paper, we introduce a new form of smooth graph in Sect. 2. In Sect. 3,
we give the analysis of our graph from spectral theory, Markov chain, and reg-
ularization theory. The classification and parameter learning method are given
in Sect. 4. With the experiment analysis of the artificial and real world data
sets, the results and evaluations are shown in Sect. 5. In Sect. 6, we give the
concluding remark.

2 Smooth Graph

2.1 Data Representation

In this paper, we use the Markov random walk on graph model to build our
graph. Let the graph G = (V,E) be a pair consisting of a set V of vertices, and
a set E of edges joining some pairs of vertices. For each x ∈ V , we may consider
the set Nx of neighbors of x, formed by vertices y with an edge joining x to y.
The random walk is based on this graph, where the step from x to y (y ∈ Nx) has
probability pxy. Under the assumption of Markovian property, such a random
walk on graph can be viewed as a Markov chain.

In the Markov random walk for classification, data points are mapped into
the vertices in a graph or states in a Markov chain. The transition probability
can be seen as the similarity between data points. Given that a dataset consists
of data pairs {(x1, y1), · · · , (xn, yn)}, after the definition of the weights of edges,
we can construct a graph from input data xi. For instance, a typical weight of
edge is defined as

wij = exp(−d(xi, xj)
σ2

) (1)

where d(·) can be Euclidean distance or other distance measure, and σ is the
parameter for exponential weight. Then let the one-step transition probability
be

pij =
wij∑
k wik

(2)

We can get the weight matrix W = [wij ] and transition matrix P = [pij ]. In
the matrix form, we have P = D−1W , where D is a diagonal matrix with
Dii =

∑
j wij . Some semi-supervised classification methods [7, 9, 10] are based

on such a basic representation. In this paper, we assume wii = 0, which forms a
non-lazy random walk.
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2.2 Smooth Graph

From the Markov random walk, we treat that the walker starts walking from
some point according to the transition matrix as a diffusion process. And this
process can smooth the graph as its step increases. We know that the step of
the walk corresponds to the power of transition matrix P . If the matrix P is
from graph G, then we propose the following transition matrix of graph G(m)

for semi-supervised classification.

P (m) = Pm (3)

Therefore, P×P is the transition matrix of another graph G(2), and P×P×P
is the transition matrix of graph G(3), and so on.

3 Analysis for Smoothness

All the following discussions are based on the assumption that real world data
has a smooth distribution, which can be also viewed as data density changes
slowly in a connected region.

3.1 Spectral Analysis

Spectral theory and harmonic analysis have been used to analyze high dimen-
sion data [1, 4]. Dimension reduction, visualization, and many machine learning
methods for high dimension data can be derived from this framework. Our anal-
ysis is given from the frequency point of view.

The smoothness of distribution for some data sets can be captured by the
transition matrix P , sparse region with lower transition probability and dense
region with higher one. For a smooth distribution, the transition probabilities
inside a cluster should be relative high, and should not change greatly from
point to point. On the other hand, the probabilities between clusters should be
relatively small. However, in real world data, for the reason of noise and high
dimensionality of data point, the transition probabilities inside a cluster vary
greatly. In semi-supervised classification, there are fewer labeled data points,
and the noise can easily result in wrong classification.

If the matrix P is composed from different frequencies, based on our assump-
tion, we can filter the high frequency components to smooth data distributions.
From spectral theory we know that matrix P can be decomposed as P = ΦΛΦ−1,
where Λ is a diagonal matrix with eigenvalue λi of P , Φ is composed of the eigen-
vectors corresponding to each eigenvalue.

From spectral theory and harmonic analysis we know that the eigenfunctions
can be interpreted as a generalization of the Fourier harmonics on the manifold
defined by the data points [1]. In our problem setting, smaller eigenvalues corre-
spond to higher frequency eigenfunctions, and larger eigenvalues correspond to
lower ones. By eigen decomposition, we can rewrite P (m) as:

P (m) = Pm = ΦΛΦ−1 · · · ΦΛΦ−1 = ΦΛmΦ−1 (4)
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It is easy to see:
p
(m)
ij =

∑
k

λm
k φikψkj (5)

where φik and ψkj are the elements in Φ and Φ−1. For a probability matrix,
we have λ0 = 1 > λ1 > λ2 · · · > λn ≥ 0. From equation (5) we know that
as the power increases, smaller eigenvalues decay greatly, and larger ones stay
relatively larger. From the frequency view, that is to say, the power of P acts as
a low-pass filter, reducing the higher frequency components while retaining lower
ones. Furthermore, the filtering process can be controlled with the parameter m.

3.2 Markov Chain

In this subsection, we show that the transition matrix will become smoother and
smoother as m increases. We firstly map the graph representation of data into a
Markov chain. The vertices set V of the graph is mapped into the state set I of
the chain. The weight of the graph G defined in Sect. 2 is mapped into transition
probability between states in Markov chain.

From the view of Markov chain, if Pm exists when m → ∞, there is an
uniform distribution πj (1 ≤ j ≤ n) over all the data, where n =| I |, total
number of states in I or vertices in the graph G. That means the probabilities
from any data point to one fixed point are the same. In this case, we say the
graph is “flat”. We can define the smoothness of a graph according to its “flat”
state if it exists. The smoothness function is defined as:

Q(m) =
n∑

i,j=1

(p(m)
ij − πj)2 (6)

Q(m) reflects the smoothness of the graph. The smaller value of Q(m) means a
smoother graph. We can predict that graph G(2) is smoother than G(1). This
can be explained from the view of Markov chain analysis. We give a brief proof
here.

By treating a connected graph G as the Markov chain, it is easy to satisfy
the following conditions: it is a finite-state Markov chain with no two disjoint
closed sets, and it is aperiodic. After mapping the graph into a Markov chain,
we have the following result [5]: there exist a probability distribution {πj , j ∈ I}
and numbers α > 0 and 0 < β < 1 such that, for all i, j ∈ I,

| p(n)
ij − πj |≤ αβn, n = 1, 2, · · · (7)

In particular,
lim

n→∞ p
(n)
ij = πj for all i, j ∈ I (8)

In (7), p(n)
ij is an element in the matrix Pn. From (7), we know that as n gets

larger, p(n)
ij gets closer to the fixed value πj .
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From (6) and (7), we have

Q(m) =
n∑

i,j=1

(p(m)
ij − πj)2 ≤

n∑
i,j=1

α2β2m = n2α2β2m

For a fixed graph, n is a constant. Therefore, Q(m) gets smaller and smaller as
m grows. Then we can say that the graph gets smoother and smoother.

Different m values will result in different graphs. In special case when m = 1,
it is the original graph G. However, m should not get too large. When m→∞,
Pm will become an uniform distribution, which provides no information about
classification.

The following example can illustrate this point. Assume that a is the transition
matrix of some graph G.

a =

⎛⎜⎜⎝
0.40 0.60 0.00 0.00
0.20 0.70 0.10 0.00
0.00 0.10 0.60 0.30
0.00 0.00 0.80 0.20

⎞⎟⎟⎠ a4 =

⎛⎜⎜⎝
0.22 0.60 0.14 0.04
0.20 0.55 0.19 0.06
0.05 0.19 0.54 0.22
0.03 0.16 0.58 0.23

⎞⎟⎟⎠
a16 =

⎛⎜⎜⎝
0.14 0.41 0.33 0.12
0.14 0.40 0.34 0.12
0.11 0.34 0.40 0.15
0.11 0.33 0.41 0.15

⎞⎟⎟⎠ a64 =

⎛⎜⎜⎝
0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14
0.12 0.37 0.37 0.14

⎞⎟⎟⎠
We can see that Q(1) = 1.00, Q(4) = 0.39, Q(16) = 0.01, Q(64) = 0.00. As

m increases, the graph gets flatter and flatter and at last becomes an uniform
distribution for each column.

3.3 Regularization

In graph-based semi-supervised classification, the key problem is to estimate the
probability for each class. In order to solve the “ill-posed problem” in estimating
the probability, regularization is proposed as a solution. Under this framework,
many methods can be viewed as to estimate a smooth function f on the graph.
This function should be close to the given values on the labeled data points, and
at the same time it should be smooth on the whole graph.

One typical method minimizes the following smoothness function:

S(f) =
∑
ij

wij(fi − fj)2 (9)

The solution for the graph G is vector f (0), whose weight matrix is W (0). For the
graph G(m), solution is f (m) with weight matrix W (m). The minimization forces
the fi and fj to be close with biger wij . From (2) we know that wij is associated
with pij . As m goes up, from the analysis above, some data points far away but in
the same cluster will have a higher transition probabilities p(m)

ij . This means that

their corresponding weight w
(m)
ij increases. With Euclidean distance, the path
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between i and j is shortened. From the smoothness function S(f), fi and fj are
forced to be closer than before. Although we notice that as m increases, bigger
weights will be reduced gradually, as long as we pick up a proper value for m, it
is feasible to both keep the local structure and introduce global information.

4 Classification

Many graph based methods for semi-supervised classification can be viewed as
Markov random walks [7, 9, 10]. These methods have clear explanations and have
done well in semi-supervised classification. In order to take advantage of our
graph representation, we employ a random walk related method, i.e. harmonic
function in [10] to label those unlabeled data points.

4.1 Parameter Learning

The parameters in our model are m, and σ in equation (1) if selected. Zhu [10]
has proposed a method for learning σ. We will focus on how to learn parameter
m in our model.

There are many methods that can be used for parameter learning in the graph-
based semi-supervised classification. We propose a graph volume based method.
In semi-supervised classification, labeled data usually has a relatively small size,
e.g. in case of only two labeled data points for binary classification, one for
each class. In this case, we can not fully trust these two points, because they
may be noises or biased by noises greatly. Therefore, many parameter learning
methods, which rely on only labeled data, can not be used here. Based on the
cluster assumption, we know that when two clusters are separated well, no lower
density region exists in any cluster. The connection inside a cluster is stronger
than that between clusters. Based on this intuition, we propose the following
method to select a proper m: let Ci be a subset of the vertices of the graph G.
We define

vol(Ck) =
|Ck|∑
i,j=1

p(xi, xj) i, j ∈ Ck (10)

The following function can be used to measure the connection inside a class.

g(Ck) =
vol(Ck)
| Ck |2 (11)

We call g(Ck) the cohesion factor of the class Ck, and it can be viewed as the
density of Ck. Since our classification method can be viewed as a random walk,
labels are propagated from the labeled data points to unlabeled ones. As long
as the classification is wrong, there will be low density region inside one class,
and vol(Ck) will be small. When g(Ck) becomes relative large and stable, that
is Δg(Ck) < ε, we can stop the walk and pick up the value of m at this time.

Average distance and its variants are frequently used to find a proper m
[7]. This kind of methods computes the average distance between each pair of
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data points in different classes. When the classes are well separated, the average
distance should be larger than other cases. However, this method is influenced
by the shapes of clusters more than our method. For instance, average distance
method might not be suitable to be used in the two moon data set in Fig.1.
Because of the interwoven shape, when two classes are well separated, the average
distance may not be the largest one. But our method is independent of the shapes
of classes.

5 Experimental Results

5.1 Artificial Data

We test our method on the switch or two-moon data [7] with two labeled points,
one for each class. The weight is formed using equation (1), and d(·) is Euclidean
distance. From Fig.1 we can see that, as the value of m gets larger and larger,
the graph becomes smoother. Furthermore, when m = 1 and σ = 0.04 ∼ 0.06,
classification can be totally correct using the method in [10]. However, keeping
the accuracy at 100%, the smooth graph enlarges the range of parameter σ to
σ = 0.04 ∼ 0.45.

Fig. 1. Smooth graph on artificial data. σ = 0.45. Right up: m = 1; Left bottom:
m = 5; Right bottom: m = 9

The smoothness here is different from ones in [9, 10]. In this paper, we use
smoothness to describe the transition probabilities between points. A rough tran-
sition probabilities between points might easily spread the errors. If the bridge
noise has a high transition probability, it will bring more error. However, a
smoother transition probability can reduce this error.
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5.2 Text Classification

We also apply our method to text classification, with few labeled documents
but many unlabeled ones. Text documents are represented with high dimension
vectors, which are usually quite sparse. We expect to construct a smooth graph
for the classification.

We test our method with real-world data set 20 Newsgroups. In order to
make a comparison, the data and setting for Windows vs Mac are the same as
[2, 7]. From 2 to 128 labeled data points are randomly selected to form XL. We
test on 100 randomly splits balanced for class labels. The value of m ranges
from 1 to 16. We show experimental results under different m values. From the
experimental results, we have the following observations:

1.The smooth graph has a high classification accuracy.
In Fig.2, Smooth is the accuracy of our method with learned parameter m.

MAM is the result of [7] and CK is the result of [2]. We can see a clear advantage
of our smooth graph methods, especially when the number of labeled examples
is relatively small. Table 1 shows the classification results of our methods and
original harmonic function [10], where m = 1 is the result of harmonic function
and learned m is the result of our method.

2. Different m affects results greatly.
From Fig.3, we can see that different steps affect the classification results

greatly. When labeled examples are fewer, more steps give a better classification.
But when labeled examples get more, accuracy after more steps falls slightly.
Because when there are more labeled examples, fewer steps are needed to reach
labeled examples, and more steps result in a flatter graph. If the graph is too
“flat”, it may not be good for classification. When steps become infinite, then

1 2 3 4 5 6 7
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Fig. 2. Classification results of smooth graph on text data set Windows vs Mac with
learned m.
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Table 1. Classification accuracy. Left two columns: Electronics vs Space; Right two
columns: Baseball vs Hocky.

Labeled examples m=1 learned m m=1 learned m

2 0.640 0.913 0.648 0.848
4 0.687 0.935 0.700 0.901
8 0.750 0.948 0.763 0.927
16 0.807 0.952 0.824 0.933
32 0.872 0.948 0.880 0.943
64 0.915 0.950 0.921 0.944
128 0.945 0.955 0.946 0.946

2 4 6 8 10 12 14 16
0.65

0.7

0.75

0.8

0.85
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value of m
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labeled=2
labeled=8
labeled=32
labeled=128

Fig. 3. Classification accuracy of full connected graph under different m. From bottom
to up, 2, 8, 32 and 128 labeled examples.

the graph becomes an uniform distribution. In the case we can not make a
classification.

6 Conclusions

In this paper, we propose a new form of graph, i.e., smooth graph, which aims
to filter the high frequency noise with smooth transition matrix. This graph
is constructed using Markov random walk model. By the power of transition
matrix P , we obtain a smooth graph. From spectral theory, Markov chain, and
regularization theory, we show that the high frequency components of this graph
are reduced.

Based on the smooth graph, a semi-supervised classification method that
combines the smooth graph and the graph-based method has been developed
and applied to text classification. Results from the artificial and real data are
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convincing and illustrate that smooth graph fits graph-based semi-supervised
classification better, which has a clear advantage over several other methods.
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Abstract. Network Data Mining identifies emergent networks between myriads 
of individual data items and utilises special statistical algorithms that aid 
visualisation of ‘emergent’ patterns and trends in the linkage. It complements 
predictive data mining methods and methods for outlier detection, which 
assume the independence between the attributes and the independence between 
the values of these attributes. Many problems, however, especially phenomena 
of a more complex nature, are not well suited for these methods. For example, 
in the analysis of transaction data there are no known suspicious transactions. 
This paper presents a human-centred methodology and supporting techniques 
that address the issues of depicting implicit relationships between data attributes 
and/or specific values of these attributes. The methodology and corresponding 
techniques are illustrated on a case study from the area of security. 

1   Introduction 

A large volume of data with different storage systems, multiple formats and all 
manner of internal complexity can often hide more than it reveals to the data mining 
techniques, focused on building descriptive or/and predictive computational models 
[1]. There are several measures of model quality [2], with the accuracy of predictions 
remaining as a key measure of model quality, rather than the theory that may explain 
the phenomena. However, many areas require deeper understanding of the 
phenomena. In addition to the explicitly coded relationships, there often are implicit
relationships between the entities described by the data set, especially in the realm of 
transactions data. The structure of such relationships between the individual entities 
can be revealed by network models. During recent years there has been an increasing 
input from physicists [3], mathematicians [4] and organisational scientists [5] to 
network research, with the focus shifting to large scale networks (with millions of 
links and nodes), their statistical properties and explanatory power, the discovery of 
such models and their use in explaining different phenomena. This change of scale of 
the network models indicates a need for change in the analytics approach [4].  
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Network Data Mining (NDM) addresses this challenge. We define network data 
mining as the process of discovering emergent network patterns and models in large 
and complex data sets. NDM addresses the “loss of detail” problem and the 
“independency of attributes” assumption in predictive modelling. In many areas (e.g. 
science, fraud, intelligence, to name the few) the loss of detail can defeat the whole 
purpose of the analysis as it is often in the detail where the most valuable information 
is hidden [6]. The “independency of attributes” assumption is accepted in many 
classifier building algorithms, for example, Naïve Bayes techniques [7]. The logic is 
clear: by missing detail or making the wrong assumptions or simply by being unable 
to define what is normal, an organisation that relies solely upon predictive data 
mining may fail to discover critical information buried in its data. Further we present 
a human-centred knowledge discovery methodology, that addresses these issues, and 
a case study that follows this methodology and illustrates the solutions that the 
network data mining approach and technology offers. 

2   Network Data Mining – The Methodology 

The overall NDM process is illustrated in Fig. 1. The techniques supporting this 
methodology are implemented in the NetMap visual analytics engine1.The main NDM 
methodological steps and accompanying assumptions approach include: 
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Fig. 1. Network data mining as a human-centered knowledge discovery process 

Specify sources of data and modelling: NDM integrates data in order to obtain a 
single address space, a common view, for disparately sourced data. Having decided 
the sources, multiple data models are created depending on the input fields. 
Visualisation and Generation of Visual Models: Visualisation of entities and links 
consists of a set of various consistent visual models that facilitate the discovery 
capabilities of the analyst – essential when dealing with millions data points. 

1 This premier technology is developed by NetMap Analytics (http://www.netmap.com). 
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‘Train of thought’ analysis: The analyst acts similarly to Donald Schön’s “reflective 
practitioner” [8]. Data miners put together visual pieces of information and create new 
chain of inquiries interacting with the network slices of the data set. 
Cognition and sense-making: Intuition and cognition are integral, and are harnessed in 
the analytical process (an argument well supported in [9]). 
Discovery and remapping: An emergent process, not prescriptive one. To realise its 
full value the discovery phase needs to be repeated at regular intervals so that new 
irregularities that arise and variations on old patterns can be identified and fed into 
exception detection processes. 
Reselection and converting patterns to knowledge: Any linkage pattern observed on 
screen is simply an observation of potential interest. For example, in retail, the 
perpetrators of a scam had taken it in turns to report levels of refunds always just 
under the limits no matter what the limits were varied to over an extensive period. 
NDM depicted collusive and periodic reporting linkages to supervisors. Such patterns 
are termed scenarios and characterised as definable and re-usable patterns. Their 
value is that they are patterns that have now become ‘known’. Hence they can be 
defined, stored in a knowledge base, and applied during other data mining processes. 

3   Example of Network Data Mining Approach in Fraud Detection 

The NDM approach is illustrated with an application to a real world case, presented as 
a reflective analysis of the analyst’s steps, following the main methodological steps. 

Specify sources of data and modelling: The case involved analysis of approximately 
twelve months of motor vehicle insurance claims from one company. Initially there 
were no known persons or transactions of interest. 
Visualisation and Generation of Visual Models: The analyst first built a set of 
linkages between persons, addresses, claim numbers, telephone numbers, and bank 
accounts into which claims monies had been paid, as shown in Fig. 2 and Fig. 3. 
Cognition and sense-making (and ‘Train of thought’ analysis): The analyst was able 
to quickly focus where to look in the myriad of linkages by eliminating the ‘regular’ 
small triangles of data comprised of a person, a claim number and an address, all fully 
inter-linked (most people just had one claim and one address). The ‘bumps’ looked as 
though they were ‘irregularities’. The ‘bumps’ comprised persons linked to multiple 
claims and/or addresses (see Fig. 4). 
Discovery and remapping: Four emergent groups were identified (see Fig. 5). An 
emergent group comprises closely inter-related data items; they have more links 
within the group than outside to any other group. 
‘Train of thought’ analysis: The emergent group on the right in Fig. 5 comprised five 
people called Simons, three claims and four addresses, all closely inter-related. They 
were linked across to another group at 11 o’clock comprised of more people called 
Simons and somebody called Wesson. That Wesson (initial A) was linked down to 
the group at 5 o’clock to E Wesson via a common claim. That in turn took the analyst 
over to the address at 4 o’clock and then to an ‘A Verman’ at 9 o’clock. This ‘train of 
thought’ analysis led the analyst to Verman. Following her intuition she wanted to 
look at Verman more closely (although she could not explain why). 
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Fig. 2. An initial macro view of links between 
persons, addresses and claim numbers 

Fig. 3. Close up at approximately 3 o’clock 
of the linked data shown in Fig. 2 

Fig. 4. ‘Regular triangles’ and ‘irregular bumps’ Fig. 5. Emergent groups 

Fig. 6. A potential suspect on the left (Verman) with all his indirect linkage to other data items 

Reselection and converting patterns to knowledge: The analyst hypothesised that 
Verman was a few steps removed from the activity of the Simons. She firstly took 
Verman and stepped out to obtain all his indirect linkage (see Fig. 6). The analyst then 
added extra linkage (see Fig. 7, in this case, only two extra fields: bank account 
information and telephone numbers). The analyst quickly discovered one extra and 
crucial link that helped her to qualify Verman – one of his two telephone numbers 
was also linked to A Wesson (see Fig. 8). That additional link provided the ‘tipping 
point’, the extra knowledge that gave her sufficient confidence to recommend that 
Verman be investigated. This subsequently led to his conviction on fraud charges. 
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Fig. 7. Enrichment of the linkage in Fig. 6 by adding in extra fields of data 

Fig. 8. Close up of portion of Fig. 7, showing the extra ‘tell tale’ link (arrowed: a telephone 
number in common)  

4   Conclusion 

This paper has described the concept of network data mining and presented a case 
study that illustrates its real-world implementation, its distinction from other 
analytical technics, and also its distinction from social network analysis. Network data 
mining involves a human-centred process which harnesses the intuitive powers of the 
human intellect in conjunction with unique algorithms to facilitate the intuition. The 
extra information in Fig. 8 led to an investigation and then the arrest and successful 
prosecution of Verman, who would have escaped detection with traditional exception 
detection methods. He had only had one claim, no ‘red flag’ information was 
involved, and nothing particularly anomalous occurred with respect to him. A 
complementary usage of a frequent pattern mining algorithm could have revealed a 
rule based on all names occurring more often than expected in the telephone 
population. The result being that the name Simons would be flagged. Future work 
aims at deeper integration of both approaches. 
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Abstract. Mobile user data mining is a field that focuses on extracting 
interesting pattern and knowledge out from data generated by mobile users. 
Group pattern is a type of mobile user data mining method. In group pattern 
mining, group patterns from a given user movement database is found based on 
spatio-temporal distances. In this paper, we propose an improvement of 
efficiency using area method for locating mobile users and using sliding 
window for static group pattern mining. This reduces the complexity of valid 
group pattern mining problem. We support the use of static method, which uses 
areas and sliding windows instead to find group patterns thus reducing the 
complexity of the mining problem. 

1   Introduction 

Modern society is increasingly adopting mobile phones [15]. Mobile phone is 
increasing complex, and providing more user oriented services to mobile users and 
thus is becoming more and more beneficial to have a mobile phone [16]. Mobile 
phones are usually carried by a single user, and are personalized to that particular 
mobile user. As mobile phones now can be personalized and tracked [3, 14], it opens 
up a new dimension of data mining, called mobile user data mining [5, 17, 18], in 
which interesting knowledge can be mined from the record of the mobile user’s 
background, places visited, and details of the places visited. 

Data mining focuses on methods and algorithms in order to extract interesting 
patterns and knowledge from mobile users. Data mining have since been applied into 
different areas such as temporal domain [4, 7, 12, 13], spatial temporal domain [10, 
11], and market basket analysis domain such as association rules [1, 8, 9] and 
sequential patterns [2]. 

Group pattern [17, 18] developed by Wang et al. is useful in determining grouping 
information over a large geographical location, a large number of mobile users and 
over a large duration of time series through data mining. However, one major 
limitation of group pattern is that it uses Euclidean distance to determine the relative 
proximity among mobile users. This is a method which becomes a limitation when the 
size of total number of mobile users through the time horizon becomes large, leading 
to complex dataset and reduced efficiency. The rationale behind group pattern is such 
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that human beings physically close together over a certain time occurring frequently 
can be deemed as close socially [6]. 

In real life mobile environment there are obstacles, which will be termed as static 
objects for the rest of this paper. These static objects are such as things that do not 
move in the mobile environment. For example, walls, doors, phone booths, floors are 
all static objects. As group pattern uses Eucilidean distance, or direct distance 
between two mobile users in order to determine their social proximity, the weakness 
is that if two mobile users is separated by a wall (i.e. between two classroom), they 
will be deemed to be as a close group. The result of this is that there will be more 
group pattern generated in the end of the process than the true number of group 
pattern there really is. This is because people separated by a wall are principally not 
close together. 

2   Background 

Data source for group pattern [17, 18] mining is a user movement database defined by 
D = (D1, D2, …, DM), where Di is a time series containing tuples (t, (x, y, z)) denoting 
the (x, y, z) values respectively of user ui at time point t. For conformance to previous 
definition, we denote the location of a user ui at time t by ui[t].p and his/her (x, y, z) 
values at time t by ui[t].x, ui[t].y, ui[t].z respectively. It is also assumed that all user 
locations are known at every time point and the interval between t and t+1 is fixed. 
 
Definition 1. Given a set of users G, a maximum distance threshold max_dis, and a 
minimum time duration threshold min_dur, a set of consecutive time points [ta, tb] is 
called a valid segment of G, if 

 
1. ∀ui, uj ∋ G, ∀t, ta  t  tb, d(ui[t].p, uj[t].p)  max_dis; 
2. ta = 0 or  ∃ui, uj ∋ G, d(ui[ta-1].p, uj[ta-1].p) > max_dis; 
3. tb = N – 1 or ∃ui, uj ∋ G, d(ui[tb+1].p, uj[tb+1].p) > max_dis; 
4. (tb – ta + 1)  min_dur; 

 
The distance fuction, d(), is defined to return the Eucilidean distance between two 
points, i.e., d(ui[t].p, uj[t].p) =  

222 )].[].[()].[].[()].[].[( ztuztuytuytuxtuxtu jijiji −+−+−  

Consider the user movement database in Table 1. For min_dur = 3 and max_dis = 
10, [5,8] is a valid segment of the set of users, {u2, u4}. 
 
Definition 2. Given a database D, a group of users G, thresholds max_dis and 
min_dur, we say that G, max_dis and min_dur form a group pattern, denoted by P = 
< G, max_dis, min_dur >, if G has a valid segment. 
 
In the interest of space, algorithm AGP [17, 18] is not shown. Valid segments of the 
group pattern P are therefore the valid segments of its G component. Group pattern 
with k users is also known as k-group pattern. In a user movement database, a group 
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pattern [17, 18] may have multiple valid-segments. The combined length of these 
valid segments is called the weight count of the pattern. We quantify the significance 
of the pattern by comparing its weight count with the overall time duration. 
 
Definition 3. Let P be a group pattern with valid segments s1, …, sn, and N denotes 
the number of time points in the database, the weight of P is defined as: 

N

s
Pweight

n

i i== 1
||

)(    (1) 

If the weight of a group pattern [17, 18] exceeds a threshold min_wei, we call it a 
valid group pattern, and the corresponding group of users a valid group. For 
example, considering the user movement database D in Table 1, if min_wei = 50%, 
the group pattern P = <{u2, u3, u4}, 10, 3> is a valid group pattern, since it has valid 
segments {[1,3], [6,8]} and its weight is 6/10  0.5. 
 
Definition 4. Given a database D, thresholds max_dis, min_dur, and min_wei, the 
problem of finding all the valid group patterns (or simply valid groups) is known as 
valid group (pattern) mining. 

3   Proposed Method: Static Group Pattern Mining (SGPM) 

Group pattern [17, 18] mining is defined in Section 2. This proposal proposes a way 
of mining without using Euclidean distance. Euclidean distance is a formula to 
calculate the distance in a two dimensional space. The use of Eucilidean distance 
means more calculation, and also Eucilidean distance is prone to problems where two 
mobile users are separated by an obstacle, such as a wall. In this paper, we focuses on 
the issue of redefining group pattern mining, while the issue of obstacles has been 
proposed and addressed in another contribution. 

First, we re-define how the data in mobile devices are collected. For each mobile 
device, it is assumed that the mobile device have some form of memory and global 
positioning system function, and internal system clock to determine the current time 
and location. In the previous proposed group pattern, data is collected as a stream for 
each and every second throughout the time. This automatically translates to a huge 
and immense amount of source data to be mined. Consider each mobile user generates 
a piece of coordinate (x, y) in the set of integer, the data keeps incrementing at all 
times. Data source for group pattern mining is a user movement database defined by 
D = (D1, D2, …, DM), where Di is a time series containing tuples (t, (x, y)) denoting 
the (x, y) values respectively of user ui at time point t. For conformance to previous 
definition, we denote the location of a user ui at time t by ui[t].p and his/her (x, y) 
values at time t by ui[t].x, ui[t].y respectively. It is also assumed that all user locations 
are known at every time point and the interval between t and t+1 is fixed. 
 
Assumption 1. Given a mobile device ℜ, it is assumed that ℜ is equipped with a 
location identification system, such as global positioning system where it could 
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determine its position in earth, or otherwise determine which room the mobile device 
is located in a shopping mall. 
 
Assumption 2. Given a mobile device ℜ, it is assumed that ℜ is equipped with brief 
processing capability, and data recording facility. ℜ will roam around the mobile 
environment, and subsequently records down the user movement activity accordance 
to definition 1, and subsequently uploaded to the mobile user data mining centre 
when the recording facility is full, for mobile user data mining. 
 
Definition 5 (Location of Interest). Given a mobile device ℜ, duration threshold ℘ 
is defined. ℘ is an integer value that represents time unit, which can be second, 
minute or hour. It is set to a value that if a mobile user stops in a location for ℘ 
duration of time, then the mobile user has shown some interest in this particular 
location. If a mobile user spent more than ℘ in a location, that location is also 
known as location of interest (LOI). 
 
Definition 6 (Data Recording Conditions). Given a mobile device ℜ, variables tstart, 
tstop, tcurrent, tthreshold, vthreshold, vcurrent are defined. For ℜ, in order to save processing time 
and storage space, user movement data is not recorded if the mobile user moving at a 
velocity vcurrent where vcurrent > vthreshold. 
 
Explanation: This is because if the mobile user is travelling fast, it is unlikely that the 
mobile user have interest in the location, but merely travelling from one point to 
another. If vcurrent < vthreshold which means that mobile user slows down or stationery 
for tthreshold duration of time, then user movement recording starts, such that tstart = 
tcurrent – tthreshold. Once ℜ moves, where vcurrent > vthreshold recording stops, such that tstop 
= tcurrent. 
 
Definition 7 (Movement Data Format). Recording of user movement database will 
be represented in the format of: ux : [ai(tstart : tstop, …, tstart : tstop), …, aj(tstart : tstop, …, 
tstart : tstop)] where user x (ux) visited area ai … aj where in ai, user ux is present for a 
set of (tstart : tstop) duration of time, where each tstart : tstop is such that tstop – tstart > 
tthreshold. 
 
Example: For example: u1 : a1(0 : 5, 21 : 30), a2(6 : 10), a3(11 : 20), which represent 
user u1 have visited area a1 from time 0 : 5 and 21 : 30, and area a2 from time 6 : 10 
and area a3 from time 11 : 20. This means user u1 have visited a1, a2, a3, and back to 
a1 in sequence. We define each of this record rn. 
 
Definition 8 (Valid Segment). Given a set of mobile devices ℜ, area A, tstart, tstop, 
tcurrent, tthreshold, vthreshold, vcurrent, each record rn  is called a valid segment of G. We wish 
to remove the definition of weight in previous group pattern proposal, as weight is no 
longer required. Given database D, threshold tthreshold, vthreshold, area acurrent, time tcurrent, 
tstart, tstop, the problem of finding all the valid group patterns (or simply valid groups) 
is known as valid group (pattern) mining. 



 SGPM: Static Group Pattern Mining Using Apriori-Like Sliding Window 419 

4   SGPM Mining: Algorithm ASGP 

We propose Apriori-like Static Group Pattern (ASGP) mining algorithm for the 
purpose of finding all valid group patterns. ASGP is an algorithm for the mining 
problem of Static Group Pattern Mining (SGPM). ASGP utilizes sliding window 
concept and also Apriori combination generation concept in order to mine all valid 
group patterns. Sliding window is a window defined by the size of tduration. Let total 
time in the time series be ttotal. Sliding window will starts from t = 0, until t = ttotal – 
tthreshold. Each slide will involve the sliding window reference time tref = tref + 1. 
 

 

Fig. 1. Demonstration of Sliding-Window 

Figure 1 illustrates the sliding window and the dataset in order to find all valid 
groups patterns. Dataset is grouped by area, which the illustration shows all mobile 
users (m1, …, m10) who have visited area a1 from time (0, …, 20). For each area, (i.e. 
area a1), only mobile users who have stayed in this area longer than tthreshold, is 
recorded through the definition in mobile devices. Sliding window is shown in t = 0 
… t = 4, where it is illustrated as a highlighted border. There are altogether 10 mobile 
users, (m1, …, m10), and the total time ranges from t = 0 … t = 20. There are 17 passes 
altogether. For each pass, the sliding window will examine the mobile users in the 
sliding on whether they have stayed in this sliding window for the total duration of 
time (i.e. mobile user must stay from t = 0 to t = 4 in this window to be recorded). 
Illustration above shows that only mobile user m1, m7 and m9 satisfied this 
requirement, and subsequently registered. These will be recorded as a transaction tn in 
each pass. 

Next pass for the sliding window is to slide the window one step forward, and now 
the sliding window have a coverage from t = 1 to t = 5. This process is repeated until 
the sliding window covers from t = 16 to t = 20. For each pass, a set of mobile users 
who satisfied to be close at the same time for the time_threshold duration is 
registered. A list of them will be displayed here. We call them valid groups, as 
defined in the group pattern definition paper. Figure 2 illustrates. 

Figure 3 shows the support counting for mobile users and its subsequent vertical 
representation of support. Support threshold supportthreshold is defined. Mobile user m 
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Pass 1 (t = 1 … 4) 
Pass 2 (t = 2 … 5) 
Pass 3 (t = 3 … 6) 
Pass 4 (t = 4 … 7) 
Pass 5 (t = 5 … 8) 
Pass 6 (t = 6 … 9) 
Pass 7 (t = 7 … 10) 
Pass 8 (t = 8 … 11) 
Pass 9 (t = 9 … 12) 
Pass 10 (t = 10 … 13) 
Pass 11 (t = 11 … 14) 
Pass 12 (t = 12 … 15) 
Pass 13 (t = 13 … 16) 
Pass 14 (t = 14 … 17) 
Pass 15 (t = 15 … 18) 
Pass 16 (t = 16 … 19) 
Pass 17 (t = 17 … 20) 

m1, m7, m9 
m7, m8 
m5, m7, m8 
m7, m8 
m2, m7 
m6, m7, m10 
m7 
m7 
m7 
m3, m7 
m7 
m7, m8 
m7, m8, m10 
m7, m8, m10 
m4, m7, m8, m10 
m4, m7, m8, m10 
m4, m7, m8, m10 

Fig. 2. Records of transaction for all sliding window passes 

Support for Mobile Users 
 

m1: 1 
m2: 1 
m3: 1 
m4: 3 
m5: 1 
m6: 1 
m7: 17 
m8: 9 
m9: 1 
m10: 6 

Vertical Representation of Support 
 

m1: 1 
m2: 5 
m3: 10 
m4: 15, 16, 17 
m5: 3 
m6: 6 
m7: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 
m8: 2, 3, 4, 12, 13, 14, 15, 16, 17 
m9: 1 
m10: 6, 13, 14, 15, 16, 17 

Fig. 3. Calculating support for mobile users and vertical representation of support 

is not considered if their support msupport < supportthreshold. Let supportthreshold be 3, only 
m4, m7, m8, and m10 will be considered. Algorithm now will proceed taking the 
supported mobile users to generate k-2 itemset from (m4, m7, m8, and m10). The 
subsequent combination for k-2 itemset are [(m4, m7), (m4, m8), (m4, m10), (m7, m8), 
(m7, m10) and (m8, m10)]. 

Figure 4 illustrates the valid static group pattern mining (SGPM) process. The 
defined support = 3. It is now time to test the confidence of valid groups for high 
degree of confidence. Confidence is defined as confidencethreshold, and confidence for a 
particular combination of mobile user itemset such as (m7, m8, m10) is defined as: 

)(sup

)(sup

1087

1087
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k-2 itemsets 
 
(m4, m7) : 3 
(m4, m8) : 3 
(m4, m10) : 3 
(m7, m8) : 9 
(m7, m10) : 4 
(m8, m10) : 5 
 
Support = 3 
∴ Select All 

k-3 itemsets 
 
(m4, m7, m8) : 3 
(m7, m8, m10) : 5 
(m4, m8, m10) : 3 
(m4, m7, m10) : 3 
 
 
 
Support = 3 
∴ Select All 

k=4 itemsets 
 
(m4, m7, m8, m10) : 3 
 
 
 
 
 
 
Support = 3 
∴ Select (m4, m7, m8, m10) 

Fig. 4. Valid static group pattern mining process demonstration 

Support for maximal itemset (m4 ∩ m7 ∩ m8 ∩ m10) is 3. Support for (m4 ∪ m7 ∪ 
m8 ∪ m10) is 17. The confidence of valid group pattern (m4, m7, m8, m10) is 17%. 
Confidence is used to confirm that within the whole time horizon for that area a1, 
from t = 0 to t = 20, altogether 17 records generated from the sliding window, the 
ratio of (m4, m7, m8, m10) is present within the same transaction, compared to 
transactions containing either one of m4, m7, m8 or m10. Confidence is therefore, 
subject to the size of time horizon, and the frequency of occurrence of individual item. 
In the interest of space, we do not show how this problem is dealt in this paper. 
 
Algorithm Sliding-Window 
Input: User movement database grouped by area an, variable tthreshold 
Output: mrecord of mobile users who is present in the whole sliding window 
01 result = ∅; 
02 Swidth = tthreshold; // defining width of sliding window 
03 for (Sref = 0; (Sref + tthreshold != thorizon); t ++) do begin 
04  for (mi = 1; mi  mj; m ++) do begin 
05   for (mi.start; mi.start < mi.finish; mi ++) do begin 
06    if (mi.tref == ∅) skip; 
07    append(result, mi); 
08   end for 
09  end for 
10 end for 
11 return result; 

Fig. 5. Algorithm Sliding-Window 

Figure 5 represents algorithm Sliding-Window where the sliding window is defined 
by tthreshold, and the program code for how the sliding window slides through the 
database. In order for a mobile user to be recorded, a mobile user must be within the 
sliding window, be present at all times from sliding window tref to tref + tthreshold. If the 
mobile user is not present, it will not be recorded. If the mobile user is present at all 
times, it will be recorded for AGSP algorithm. 
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Algorithm AGSP 
Input: result from algorithm Sliding-Window, supportthreshold 

Output: List supported itemsets 
01 R1 = {large r-itemsets} // R gathered from result 
02 for (k=2; Rk-1 ≠ ∅; k ++) do begin 
03  Rk = apriori-gen(Rk-1); 
04  for all transactions t  R do begin 
05   Rt = subset (Rk, t) 
06   for all candidates r  Rt do begin 
07    r.count++; 
08   Rk = {r  Rk | r.count  supportthreshold} 
09 return Rk; 

Fig. 6. Algorithm AGSP 

Figure 6 shows the algorithm AGSP where the result from Sliding-Window 
algorithm is given in order to generate a list of frequent combinations of itemsets 
similar to Apriori algorithm. For instance, only mobile users who have support  
supportthreshold is considered for combination generation. The process is repeated until 
no further combinations can be generated, and the resulting output is a combination of 
mobile users (mi, …, mj) where they are highly supported from the result generated 
from Sliding-Window algorithm. 

Resulting output is a combination of valid group pattern, where (mi, …, mj) is 
located within the same area, near to each other, for a good duration tthreshold. This 
shows evidence of them being close together frequently enough within the same area 
and time for at least tthreshold. In order to find out the ratio of time that this combination 
(mi, …, mj) over the total duration of records R from sliding-window, apply the 
formula of confidence = (mi, ∩ … ∩, mj) / (mi, ∪ … ∪, mj). 

5   Evaluation 

In this section, we evaluate and compare the performance between ASGP and AGP 
algorithms. The experiments has been conducted using synthetically generated user 
movement database on a Pentium IV machine with a CPU clock rate of 2.8 Ghz, and 
504 MB of main memory. Note that both dataset and program are executed in main 
memory so that it represents execution time without bottlenecks from disk access. We 
compare the time it requires AGP algorithm and ASGP algorithm to access from user 
movement database, perform mining and generating the result of all the valid group 
patterns. 

5.1   Dataset 

Since real dataset are not available, we have implemented a synthetic user movement 
database generator for our experiment. Figure 7 shows the parameters used in 
performance evaluation for dataset T5.I2.D1000, T10.I2.D1000, T5.I4.D1000, 
T10.I4.D1000. Fig 8 represents the input parameters, where D represents the number 
of records, T represents the average size of record, and I represent the average size of 
maximal potentially large item sets. 
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Dataset D T I Size (MB) 
T5.I2.D1000 1000 5 2 9.76 

T10.I2.D1000 1000 10 2 19.53 
T5.I4.D1000 1000 5 4 18.25 

T10.I4.D1000 1000 10 4 39.06 

Fig. 7. Dataset parameters for performance evaluation 

5.2   Results 

Figure 8 illustrates the evaluation results for T5.I2.D1000, T10.I2.D1000, 
T5.I4.D1000, and T10.I4.D1000 respectively. It can be observed that on all occasions, 
algorithm ASGP takes shorter time to generate valid group patterns. When the support 
threshold is set to very high (i.e. 1.0) both algorithm takes roughly the same time to 
generate result, because there are very limited amount of candidates in the dataset for 
traversal. As the support is reduced from 1.0 to 0.1 through each decrement of 0.1, the 
number of potential candidates becomes larger and larger. ASGP takes a shorter time 
than AGP generally from support = 0.9 to support = 0.3, and after this both 
algorithms takes roughly the same time to generate valid group patterns. This is 
because support is low, and there are many potential candidates, and more processing 
time required. Nevertheless, algorithm ASGP still outperforms algorithm AGP at a 
varying degree, from slightly quicker for very large dataset to much quicker for a 
moderate sized dataset. 
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Fig. 8. Execution time required between ASGP and AGP algorithms 

6   Conclusion 

This paper reports an innovative redefinition of group pattern mining, called Static 
Group Pattern Mining (SGPM). The objective of this research work is to address the 
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bottlenecks of AGP algorithm. Instead of using Eucilidean distance and calculate the 
distance for each and every pair of mobile users over the time horizon, SGPM uses 
the concept of area, sliding window and Apriori-like algorithm to find all valid 
groups, and valid group patterns. Performance evaluations have shown that SGPM 
have quicker execution time than AGP algorithm in 4 out of 4 cases. Future work 
from here is to further improve the execution time of valid group pattern mining 
problem and addressing obstacle issues in the mobile environment. 
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Abstract. This paper presents a novel pattern called temporal indirect associ-
ation. An indirect association pattern refers to a pair of items that rarely occur
together but highly depend on the presence of a mediator itemset. The exist-
ing model of indirect association does not consider the lifespan of items. Con-
sequently, some discovered patterns may be invalid while some useful patterns
may not be covered. To overcome this drawback, in this paper, we take into ac-
count the lifespan of items to extend the current model to be temporal. An algo-
rithm, MG-Growth, that finds the set of mediators in pattern-growth manner is
developed. Then, we extend the framework of the algorithm to discover temporal
indirect associations. Our experimental results demonstrated the efficiency and
effectiveness of the proposed algorithms.

1 Introduction

Association rule mining was initially introduced by Agrawal et al. [1]. Traditional asso-
ciation rules discover knowledge from frequent itemsets, i.e., a set of items frequently
occur together. However, it has been noted that some of the infrequent itemsets may
provide useful insight about the data as well. In [6], a particular type of patterns called
indirect associations was proposed. A pair of items, x and y, is said to be indirectly as-
sociated via an itemset M if they rarely occur together while their respective occurrence
highly depends on the presence of the itemset M.

As observed in [3], a notable feature of transaction data is that they are temporal, e.g.
transaction products have lifespan. The current model of indirect associations does not
take into account the lifetime of items, which might lead to some unfair measurement.
We explain the incurred problems with the following illustrative examples.

Example 1. Without considering the lifespan of transaction items, some discovered in-
direct associations may not be valid. Figure 1 (a) shows the publication date of a set
of web pages. Figure 1 (b) is an example database where each record is a set of pages
visited in a web user session. Let the support threshold be 0.4. Based on traditional
indirect associations, a pair of two pages is an infrequent itempair if the absolute sup-
port of the pair is less than !12×0.4"=5, where 12 is the size of the complete database.
Since the absolute support of {A,E} is 3 (< 5), traditional indirect association will
discover indirect associations for this pair of items, via some mediators, such as {C}.
However, since page E is published in Aug 05, it is unfair to compute support of item-
pairs containing page E with respect to the complete database, which contains records
starting from Jul 05. Actually, {A,E} is frequent with respect to the set of records from

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 425–434, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Page Publication Date

A

B

C

D

E

F

1 B C
2 A B D
3 A B C
4 B C D
5 B D
6 B C E
7 A C D E
8 A B C E
9 A C E

10 A F
11 B C E F
12 A B C F

Jul-05

Sep-05

Session Date Session ID Pages

Aug-05

May-05

May-05

Jun-05

Jul-05

Aug-05

Sep-05

p1

p2

p3

Fig. 1. Motivating example

Aug 05, e.g. absolute support of {A,E} is 3 ≥ !7×0.4"=3. Thus, traditional indirect
associations discovered for {A,E} are not valid.

Example 2. Without considering the lifespan of transaction items, some valid indirect
associations may not be covered. The traditional indirect association model discovers
a pair of items as an indirect association pattern only if there exists an itemset M that
occurs frequently together with the two items respectively. Since the pair of itemset
{E,F} in Figure 1 is infrequent, we need to search whether there exists a mediator
itemset M such that E and F are indirectly associated via M . Consider the itemset
{B,C}. Since the absolute support values of {E,B,C} and {F,B,C} are 3 and 2 re-
spectively, both of which are less than !12×0.4"=5, {B,C} will not be considered as a
candidate mediator of {E,F}. However, since page E was published in Aug 05, itemset
{E,B,C} is frequent w.r.t. the set of records from Aug 05, so does itemset {F,B,C}.
Thus, {B,C} should be considered as a candidate mediator while traditional indirect
association misses it.

Therefore, considering the lifespan of items, the current indirect association model is
not able to discover the complete set of valid indirect association patterns. In this paper,
we incorporate time in the current model of indirect associations to discover Informally,
we discover a pair of items, x and y, as an indirect association pattern via a mediator M
only if 1) x and y are infrequent in their maximal common existing period; 2) the occur-
rence of x (resp. y) depends on M in their maximal common existing period as well.
Particularly, we call such type of patterns as temporal indirect associations. Temporal
indirect associations are useful in the applications of traditional indirect associations,
such as competitive product analysis [6] and Web usage mining [5], when the lifespan
of items are taken into account.

The main contributions of this paper are summarized as follows.

– We proposed the notion of temporal indirect association considering lifespan of
items.

– We designed a novel algorithm to discover indirect association patterns and ex-
tended the framework of the algorithm to discover temporal indirect association
patterns.

– We implemented the developed algorithms and conducted extensive experiments to
evaluate the performance of the algorithms.
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2 Problem Statement

Considering the time factor, each transaction item is associated with a lifetime. Simi-
lar to the definition in [4], we associate each item with a starting time but no ending
time as most applications are interested in existing items. Thus, we define a temporal
transaction database as follows.

Definition 1 (Temporal Transaction Database). Let P =< p1, · · · , pn > be a se-
quence of continuous time periods such that each period is a particular time granular-
ity, e.g. month, quarter, year etc. ∀ 1 ≤ i ≤ j ≤ n, pi occurs before pj , denoted as
pi ≤ pj . Given a temporal item x, its starting period is denoted as S(x). Given a tem-
poral itemset X , S(X) = max({S(x)}), where x ∈ X . Let I be a set of temporal items
s.t. ∀x ∈ I, S(x) ≤ pn. Let T be a temporal transaction, T ⊆ I . The occurring period
of T is denoted as O(T ). Then, D={T |p1 ≤ O(T ) ≤ pn} is temporal transaction
database on I over P .

For example, Figure 1 (b) is a temporal transaction database D over three periods,
P =< p1, p2, p3 >, in accordance with the “month” granularity. I ={A, B, C, D, E,
F}, where each item is associated with a starting period. For example, S(F ) = p3.
Each transaction in D is also associated with an occurring period. For example, for the
8th transaction T = {A,B,C,E}, O(T ) = p2.

For the purpose of incorporating lifespan of items, the measures involved in tra-
ditional indirect association, support and dependence [6], need to be extended to be
temporal. We now define the temporal measures as follows.

Definition 2 (Temporal Support). Let D be a temporal transaction database on I
over P =< p1, · · · , pn >. Let X be a set of temporal items, X ⊆ I . The temporal sup-
port of X with respect to the subset of D from the period pi, denoted as TSup(X, pi),
is defined as:

TSup(X, pi) =
|{T |X ⊆ T,O(T ) ≥ pi, T ∈ D}|

|{T |O(T ) ≥ pi, T ∈ D}|

Then the temporal support of X , denoted as TSup(X), can be computed as TSup(X,
S(X)).

That is, the temporal support of an itemset X is the ratio of the number of transac-
tions that support X to the number of transactions that occur from the starting pe-
riod of X . For example, consider the temporal transaction database in Figure 1. Let
X = {B,C,E}. Then, S(X) = p2 (because of E). TSup(X) = 3/7 since it is sup-
ported by three transactions while there are seven transactions starting from p2.

Definition 3 (Temporal Dependence). Let D be a temporal transaction database on
I over P = < p1, · · · , pn >. Let X , Y be two temporal itemsets, X ⊆ I , Y ⊆ I . The
temporal dependence between X and Y , denoted as TDep(X,Y ), is defined as:

TDep(X,Y ) =
TSup(X ∪ Y )√

TSup(X,S(X ∪ Y ))TSup(Y, S(X ∪ Y ))
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Since the correlation between two attributes makes sense only when both attributes ex-
ist, we calculate the probability of X and Y (in the denominator) with respect to the
subset of D from the period where X ∪ Y starts. Similar to the traditional definition of
dependence in [6], the value of temporal dependence ranges from 0 to 1. The higher the
value of temporal dependence, the more positive correlation between the two itemsets.
For example, consider the two temporal itemsets X = {B,C} and Y = {E} in Fig-
ure 1. As computed above, S(X∪Y ) = p2, TSup(X∪Y ) = 3/7. Since TSup(X, p2)
is 4/7 and TSup(Y, p2) is 5/7, the TDep(X,Y )= 3/7√

4/7×5/7
= 0.67.

Based on the temporal support and temporal dependence extended above, the tem-
poral indirect association can be defined as follows.

Definition 4 (Temporal Indirect Association). A temporal itempair {x, y} is a tem-
poral indirect association pattern via a temporal mediator M , denoted as < x, y|M >,
if the following conditions are satisfied:

1. TSup({x, y}) < ts (Itempair Support Condition).
2. TSup({x} ∪M) ≥ tf ,TSup({y} ∪M) ≥ tf (Mediator Support Condition).
3. TDep({x},M) ≥ td, TDep({y},M) ≥ td (Mediator Dependence Condition).

where ts, tf , td are user defined itempair support threshold, mediator support threshold
and mediator dependence threshold respectively.

For example, consider the pair of temporal items {E,F} in Figure 1. Let user de-
fined thresholds ts, tf , td be 0.4, 0.4 and 0.6 respectively. Since TSup({E,F}) =
1/3 < 0.4, {E,F} is an infrequent itempair. Consider {B,C} as a candidate medi-
ator. TSup({E,B,C}) = 3/7 ≥ 0.4, TSup({F,B,C}) = 2/3 ≥ 0.4. Meanwhile,
TDep({E}, {B,C}) = 0.67 ≥ 0.6 and TDep({F}, {B,C}) = 0.82 ≥ 0.6. Thus,
< E,F |{B,C} > is a temporal indirect association pattern.

Problem Statement. Let D be a temporal transaction database over a sequence of
time periods P =< p1, · · · , pn >. Given user defined thresholds ts, tf and td, the
problem of temporal indirect association mining is to discover the complete set of
patterns s.t. each pattern < x, y|M > satisfies the conditions: 1) TSup({x, y}) <
ts; 2) TSup({x} ∪ M) ≥ tf , TSup({y} ∪ M) ≥ tf ; 3) TDep({x},M) ≥ td,
TDep({y},M) ≥ td.

3 Algorithm

In this section, we discuss the algorithm for temporal indirect association mining. We
first present a novel algorithm for indirect association mining and then extend it to
support temporal transaction database.

3.1 Indirect Association Mining

An algorithm called HI-Mine was proposed in [7] to use the divide-and-conquer strat-
egy to discover mediators. However, HI-Mine generates a complete set of mediators for
each item x although some of the mediators are useless, e.g. there exists no item y such
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Fig. 2. Indirect association mining

that {x, y} is infrequent and y depends on these mediators as well. Our algorithm ad-
dresses this problem by generating a mediator only if there exists an infrequent itempair
such that both items depend on it.

Basically, we first construct a frequency graph which is used to find infrequent item-
pairs and items that are possible mediators of each infrequent itempair. For each infre-
quent itempair, we then construct a mediator graph with these possible mediator items.
Then, the complete set of mediators for the infrequent itempair will be generated from
the mediator graph.

We use a vertical bitmap representation for the database. For example, consider the
transaction database in Figure 2 (a). The bitmap for item A is [11010]. Then a frequency
graph can be defined as follows (For the clarity of exposition, we assume ts = tf in the
following. The algorithm in Figure 3 explains the situation when ts 	= tf . Let ts and tf
be absolute support threshold).

Definition 5 (Frequency Graph). Given a database D on itemset I , and the user de-
fined mediator (itempair) support threshold tf , a frequency graph, denoted as FG =
(N,E), can be constructed such that N is a set of nodes representing frequent items
{x|b(x) ≥ tf , x ∈ I} and E is a set of edges representing itempairs. Each node x
is associated with the bitmap b(x). Each edge (x, y) is frequent if b(x) ∩ b(y) ≥ tf .
Otherwise, it is infrequent.

For example, let the threshold tf be 2. All individual items in the database in Figure 2
(a) are frequent and the constructed frequency graph is shown in Figure 2 (b) where
infrequent edges are drawn in dashed lines.

Traverse edges in a frequency graph. For each infrequent edge, which corresponds
to an infrequent itempair, we collect a set of candidate mediator nodes.

Definition 6 (Candidate Mediator Node). Given a frequency graph FG = (N,E),
for an infrequent edge (x, y) ∈ E, its candidate mediator nodes, denoted as MN(x, y),
is a set of nodes: {n|b(n) ∩ b(x) ≥ tf , b(n) ∩ b(y) ≥ tf , n ∈ N}.
For example, for the infrequent edge (A,C) in Figure 2 (b), MN(A,C) = {B,D,E}.
Then, a mediator graph for an infrequent edge can be constructed with the set of can-
didate mediator nodes.

Definition 7 (Mediator Graph). Given a frequency graph FG and an infrequent edge
(x, y), a mediator graph created for (x, y) is a directed graph, denoted as MG(x, y) =
(N,E), where N is a set of nodes such that N = MN(x, y) and E is a set of directed
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(a) MG-Growth (b) TMG-Growth

Input: Database D, ts, tf and td

Output: The complete set of indirect associations S

Description:
1: Scan D to find F1 = {x|Sup(x) ≥ tf}.
2: Construct the frequency graph FG with F1.
3: for each edge (x, y) in FG do
4: if Sup(x, y) < ts then
5: Construct mediator graph MG(x, y)
6: if MG(x, y) �= ∅ then
7: MGrowth(MG(x, y), M, 0, C)
8: S =S ∪ C
9: end if

10: end if
11: return S
12: end for
13: function MGrowth(MG(x, y), M, dep, C)
14: for each node n in MG(x, y) do
15: M [dep] = n; dep + +
16: if Sup(n, x) ≥ tf && Dep(n, x) ≥ td

&& Sup(n, y) ≥ tf && Dep(n, y) ≥ td

then
17: C = C ∪ {< x, y|M >}
18: end if
19: Construct conditional mediator graph

MGn(x, y)
20: if MGn(x, y) �= ∅ then
21: MGrowth(MGn(x, y), M, dep, C)
22: end if
23: dep − −
24: end for

25: end function

Input: Temporal transaction database D, ts, tf and td

Output: The complete set of indirect associations S

Description:
1: Scan D to find F1 = {x|TSup(x) ≥ tf}.
2: Construct the frequency graph FG with F1.
3: for each edge (x, y) s.t.S(x) = pi, S(y) = pj

in FG do
4: if TSup(x, y) < ts then
5: Construct mediator graphs

{MGpi (x, y), · · · , MGpn (x, y)}
6: for each graph MGpk (x, y) �= ∅ do
7: TMGrowth(MGpk (x, y), M, 0, C)
8: S =S ∪ C
9: end for

10: end if
11: return S
12: end for
13: function TMGrowth(MGpk (x, y), M, dep, C)
14: for each node n in MGpk (x, y) do
15: if dep == 0 && n is non-extendable then
16: return;
17: end if
18: M [dep] = n; dep + +
19: if TSup(n, x)≥tf && TDep(n, y)≥td

&& TSup(n, y)≥tf && TDep(n, y)≥td

then
20: C = C ∪ {< x, y|M >}
21: end if
22: Construct MG

pk
n (x, y)

23: if MG
pk
n (x, y) �= ∅ then

24: TMGrowth(MG
pk
n (x, y), M, dep, C)

25: end if
26: dep − −
27: end for

28: end function

Fig. 3. Algorithms of MG-Growth and TMG-Growth

edges. Each node n is associated with a bitmap b(n) as in FG. Each edge (m → n),
originating from m if m precedes n according to lexicographical order, is frequent if
b(m) ∩ b(n) ≥ tf .

For example, the mediator graph constructed for infrequent edge (A,C) is shown in
Figure 2 (c). Likewise, infrequent edges are shown in dashed lines.

From the mediator graphMG(A,C), we now present how to compute the set of medi-
ators for infrequent itempair {A,C}. Let the threshold of support be 0.4 and threshold of
dependence 0.6. We first consider the candidate mediator node B. support({A,B})=
3/5 because b(A)∩b(B) = 3. dependence(A,B) support({A,B})√

support(A)×support(B)
= 3√

3×5
=

0.77. The support and the dependence between C and B can be calculated similarly and
we discover an indirect association pattern < A,C|{B} >.

The remaining nodes in the mediator graph that have frequent edges originating
from node B consist of B′s conditional mediator base, from which we construct
B′s conditional mediator graph. For each node n in the conditional mediator graph
of node B, its bitmap is updated by joining with the bitmap of node B. After that, each
edge (m → n) is frequent if b(m) ∩ b(n) ≥ tf . For example, Figure 2 (d) shows the
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Fig. 4. Temporal transaction database

conditional mediator graph of node B. Then, we compute the mediators involving B,
such as {BD} and {BE}, for itempair {A,C}. Similarly, the support and dependence
between A and {BD} can be calculated by joining b(A) with b(D) (Note that b(D)
represents the support of {BD} now) while the support and dependence between C
and {B,D} can be computed with b(C)∩ b(D). The complete algorithm, MG-Growth,
is given in Figure 3 (a).

3.2 Temporal Indirect Association Mining

Based on the measure of temporal support, a frequency graph consisting of frequent
items can be constructed similarly. For example, let the threshold of temporal support
be 0.4. The constructed frequency graph is shown in Figure 4 (b).

Before discussing how to construct a mediator graph for an infrequent itempair, we
highlight that the downward closure property does not hold for mediator discovery in
temporal indirect association mining, e.g even if B is not a mediator of the infrequent
itempair {A,C}, it is possible that {BD} is a mediator of {A,C}. Hence, in order to
discover the complete set of mediators for each infrequent itempair, we divide the set of
mediators according to their lifespan. Given a sequence of periods P =< p1, · · · , pn >
as shown in Figure 4 (c), the complete set of mediators M of an infrequent itempair
{x, y}, where S(x) = pi and S(y) = pj (pi ≤ pj), can be divided into n − i + 1
subsets as shown in the figure: M = Mpi ∪ Mpi+1 ∪ · · · ∪ Mpn , where Mpi =
{X |X ∈ M,S(X) ≤ pi} and ∀pi+1 ≤ pk ≤ pn,M

pk = {X |X ∈ M,S(X) = pk}.
When discovering mediators of Mpi , we use the two corresponding subsets of database
as counting bases (for computing temporal support and temporal dependence of x and
mediators, y and mediators respectively). We create different temporal mediator graphs
for discovering different subsets of mediators.

Consider the frequency graph in Figure 4 (b). We now explain how to discover me-
diators for the infrequent edge (A,C) where S(A) = S(C) = p1. First, we construct
the mediator graph for mining Mp1 , which involves item B only. Since edge (B,C) is
infrequent, there is no candidate mediator nodes and the graph is empty. Then, we con-
struct the mediator graph for mining Mp2 , which involves items D and B because the
edge (B,C) turns to be frequent with respect to the subset of database from p2. Note
that, D is an extendable mediator node while B is non-extendable1. The constructed

1 See the definitions of extendable and non-extendable mediator nodes in our online version [2].
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mediator graph is shown in Figure 4 (d), where non-extendable nodes are depicted in
dashed lines. From this graph, we recursively examine whether {D} and {D,B} are
mediators of {A,C}. The algorithm for mining temporal indirect associations is shown
in Figure 3 (b).

4 Performance Evaluation

In this section, we evaluate the performance of developed algorithms. All experiments
are conducted on a 2GHz P4 machine with 512M main memory, which runs Microsoft
Windows XP. All the algorithms are implemented in C++. In order to obtain compa-
rable experimental results, the method we employed to generate synthetic datasets is
similar to the one used in prior works [7]. Without loss of generality, we use the nota-
tion Tx.Iy.Dz to represent a data set where the number of transactions is z, the average
size of transaction is x and the average size of potentially large itemsets is y. Addition-
ally, we use the notation Tx.Iy.Dz.Pn to represent a temporal transaction database
which is over a sequence of n periods.

Comparison of MG- Growth and HI-Mine. we compare the performance of MG-
Growth with HI-Mine, which is the clear winner of the other existing algorithms [7].
We ran experiments on two datasets: T 10.I5.D10K and T 10.I5.D20K . The thresh-
old of ts and tf are set as the same. The threshold of td is set as 0.1. The results are
shown in Figure 5. MG-Growth is more efficient than HI-Mine, especially when tf (ts)
is small. This is because when the threshold is small, there are more frequent individ-
ual items. Consequently, HI-Mine needs to discover all the set the mediators for more
items no matter whether these mediators are useful or not. On the contrary, MG-Growth
discovers a mediator only if it is depended on by an infrequent itempair. Thus, the per-
formance of MG-Growth will not deteriorate significantly with the decrease of mediator
(itempair) support threshold.

We further examine the scale-up feature of MG-Growth. Figure 5 (c) shows the
results with the variation of data size from 200K to 1M . The scale-up performance
under two different thresholds of tf are studied. The execution times are normalized
with respect to the execution time for the data set of 200K . We observed that the run
time of MG-Growth increases slightly with the growth of data size, which demonstrated
the good scalability of MG-Growth.
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Fig. 6. Experimental Results II

Comparison of TMG-Growth and THI-Mine. In order to evaluate the performance
of the temporal version of MG-Growth, TMG-Growth, we also extend the HI-Mine to
support temporal transaction database [2]. Correspondingly, we denote the temporal
version of HI-Mine as THI-Mine. We compare the performance of TMG-Growth and
THI-Mine with respect to two datasets: T 10.I5.D10K.P3 and T 10.I5.D20K.P5. Fig-
ures 6 (a) and (b) present the results respectively. Obviously, the temporal version of
MG-Growth outperforms the temporal version of HI-Mine as well. When the number of
periods increases, the gap between the two algorithms is apparent even if the mediator
support threshold is large.

We evaluate the quality of temporal indirect association patterns by comparing the
results of the traditional model and the temporal model on the same temporal transac-
tion database. Figure 6 (c) shows the results with respect to the variation of tf thresh-
old, where black blocks depict the percentage of patterns shared by two models, white
blocks depict the percentage of patterns missed by the traditional model and the gray
blocks depict the percentage of invalid patterns. It can be observed that the set of tem-
poral indirect association patterns is significantly different from the results of the tradi-
tional model.

5 Conclusions

In this paper, we take into account the lifespan of items to explore a new model of
temporal indirect association. We first develop an algorithm MG-Growth for indirect
association mining. Under MG-Growth, a set of mediators are generated only if both
items in an infrequent itempair depend on them. Then, we extend the framework of
MG-Growth so that mediators starting from different periods are discovered separately.
Our experimental results showed that MG-Growth outperforms the existing algorithm
significantly and its extended version discovers the temporal indirect association pattern
efficiently.
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Mining Top-K Frequent Closed Itemsets Is Not
in APX
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Abstract. Mining top-k frequent closed itemsets was initially proposed
and exactly solved by Wang et al. [IEEE Transactions on Knowledge and
Data Engineering 17 (2005) 652-664]. However, in the literature, no re-
search has ever considered the complexity of this problem. In this paper,
we present a set of proofs showing that, in the general case, the problem
of mining top-k frequent closed itemsets is not in APX. This indicates
that heuristic algorithms rather than exact algorithms are preferred to
solve the problem.

1 Introduction

In recent years, frequent itemset mining has been studied intensively. Con-
ventional frequent itemset mining requires the user to specify a min support
threshold and aims at discovering subsets of items that occur together at least
min support times in a database. In practical applications [1], setting an appro-
priate min support threshold is no easy task. If min support is set to be too
large, no itemsets will be generated. If min support is set to be too small, an
overwhelming number of itemsets may be generated. Most of the time, it needs
repeated trials and errors to come up with a proper min support threshold.

In order to remove this restriction, Wang et al. [1] proposed the problem of
mining top-k frequent closed itemsets. As opposed to specifying a min support
threshold, Wang et al. [1] allows the miner to specify the desired number of
interesting itemsets, which is much easier for the miner to specify.

We follow the notations in Wang et al. [1] for the problem description. Let I
= {i1, i2, . . . , in} be a set of items. An itemset X is defined to be a nonempty
subset of I. The length of an itemset X is the number of items contained in X .
X is called an l-itemset if its length is l. A transaction is a tuple <tid,X>, where
tid is a transaction identifier and X is an itemset. A transaction database TDB
is a set of transactions. We say that an itemset X is contained in transaction
<tid,X> if X ⊆ Y . Given a transaction database TDB, the support of an
itemset X , denoted as sup(X), is the number of transactions in TDB which
contain X .

An itemset X is called a closed itemset if there exists no proper superset Y of
X with sup(X)=sup(Y ). A closed itemset X is a top-k frequent closed itemset
of minimal length min l if there exists no more than (k -1) closed itemsets of
length at least min l whose support is higher than that of X .

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 435–439, 2006.
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The problem is to mine top-k frequent closed itemsets of minimal length
min l in a transaction database TDB. For clarity of presentation, the problem
is called the TFCI problem in this paper. Each instance of the TFCI problem
is represented by <I, TDB,min l, k>.

Wang et al. [1] proposed an exact algorithm based on FP-tree [2] to solve the
TFCI problem. An extensive performance studies had been performed by Wang
et al. [1]. The results show that their algorithm offers very high performance.

In this paper, we show that, in the general case, the TFCI problem is not in
APX. This implies that heuristic algorithms rather than exact algorithms are
preferable to solve the TFCI problem in reasonable run time.

No existing work has ever considered the inapproximability issue of the TFCI
problem. Most existing works consider the NP-completeness of mining specific
types of frequent itemsets and association rules. Gunopulos et. al [3] first proved
that the problem of deciding whether there is a maximal itemset of length at
least t and support at least σ is NP-complete. Zaki et. al [4] further considered
the complexity of several variants of the same problem. Angiulli et. al [5] con-
sidered the complexity of mining association rules with categorical and quan-
titative attributes. However, these works never address the inapproximability
issues.

Jermaine [6] first considered the inapproximability issue of itemset mining.
He showed that mining the itemset that maximizes some correlation function
is not approximable. Our work is distinct from Jermaine [6] in the following
two aspects: (1) we consider the top-k closed itemsets that have the best sup-
port, intead of the itemset that maximizes some correlation function (2) we not
only show that the TFCI problem is not approximable but also strengthen the
inapproximability result by showing that the TFCI problem is not in APX.

2 The Non-APX Result

In this section, we will focus on proving that mining top-1 frequent closed itemset
is not in APX, which immediately implies that mining top-k frequent closed
itemsets is not in APX.

We will show that if, for some constant r ≥ 1, there is a polynomial-time r-
approximation algorithm for mining top-1 frequent closed itemset, we can solve
the CLIQUE problem in polynomial-time, a contradiction to the fact that the
CLIQUE problem is NP-Complete [7]. The CLIQUE problem we consider is
as follows.

CLIQUE
Instance: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a k-clique in G, i.e., a subset of vertices C ⊆ V

such that |C| = k and, for any u, v ∈ C, {u, v} ∈ E?
For any instance y and any algorithm A, we use OPT (y) to represent an

optimal solution of y and use A(y) to represent the solution obtained by applying
A on y. We say that A is a polynomial-time r-approximation algorithm for
mining top-1 frequent closed itemset if, for any instance y and a constant r ≥
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1, A when applied to input (y, r) returns an approximate solution A(y) of y in
time polynomial in |y| such that sup(OPT (y))

sup(A(y)) ≤ r.
We now suppose that we are given a CLIQUE problem instance x = <G, k>

where G = (V , E), V = {v1, v2, . . . , vn}, and E = {ei | ei ⊆ V and |ei| = 2, 1≤
i ≤ m}. Also we suppose that we are given a polynomial-time r-approximation
algorithm A for mining top-1 frequent closed itemset for some constant r ≥ 1.
We construct from x a TFCI problem instance y = <V, TDB, n− k, 1>, where

the transaction database TDB = {<(i1, i2, . . . , ia), (V −
a⋃

j=1

eij )>| 1 ≤ ij ≤ m

for all 1 ≤ j ≤ a} and a =
⌊

log r

log( k(k−1)
2 )−log( k(k−1)

2 −1)

⌋
+1.

In the next, we show that we can determine whether there is a k-clique in G

in polynomial time by checking if sup(A(y)) ≥ (k(k−1)
2 )a × 1

r .
We begin by introducing some useful definitions and lemmas. Let S be an

arbitrary subset of V . We define e(S) as the number of edges in E that connect
vertices in S. Formally, e(S) =|{i|ei ⊆ S}|.

Consider the following lemma that relates sup(V − S) and e(S).

Lemma 1. sup(V − S) = (e(S))a.

Proof. sup(V − S) = |{<(i1, . . . , ia), (V −
a⋃

j=1

eij )>| 1 ≤ ij ≤ m for 1 ≤ j ≤ a

and (V−S)⊆ (V−
a⋃

j=1

eij )}|

= |{<(i1, . . . , ia), (V −
a⋃

j=1

eij )>| 1 ≤ ij ≤ m for 1 ≤ j ≤ a and (
a⋃

j=1

eij ) ⊆ S}|

= |{<(i1, . . . , ia), (V −
a⋃

j=1

eij )>| eij ⊆ S for 1 ≤ ij ≤ m, 1 ≤ j ≤ a}|
=|{i | ei ⊆ S}|a
=e(S)a

Lemma 2 presents some useful property of closed itemset.

Lemma 2. Let X be an arbitrary itemset. Then, there exists an itemset Y such
that Y is a closed itemset, X ⊆ Y and sup(X) = sup(Y ).

Proof. Without loss of generality, let U = {Y |X ⊆ Y and sup(X) = sup(Y )}.
We will prove the lemma by showing that some itemset in U is closed. The proof
is by contradiction.

We note that U 	= ∅ because X ∈ U . We assume that every itemset in U is
not closed. Let Y be an arbitrary itemset in U . Since Y is not closed, by the
definition of closed itemset, there exists an itemset Z such that Y ⊂ Z and
sup(Y ) = sup(Z). Hence, X ⊆ Y ⊂ Z and sup(X) = sup(Y ) = sup(Z), which
mean Z ∈ U .

This implies that every itemset in U has a proper superset in U , a falsity.
This completes the proof.
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Lemma 3. (k(k−1)
2 − 1)a < (k(k−1)

2 )a × 1
r .

Proof. The lemma is a direct result of a > log r

log( k(k−1)
2 )−log( k(k−1)

2 −1)
, which is

derived from a =
⌊

log r

log( k(k−1)
2 )−log( k(k−1)

2 −1)

⌋
+1.

Based on the above three lemmas, we show that we can determine whether there
is a k-clique in G in polynomial time by checking if sup(A(y)) ≥ (k(k−1)

2 )a × 1
r .

Theorem 1 and Theorem 2 are provided for this fact.

Theorem 1. If the graph G has a clique of size k, then sup(A(y)) ≥ (k(k−1)
2 )a×

1
r .

Proof. Let S be an arbitrary clique of size k in G. Obviously, e(S)=k(k−1)
2 . By

Lemma 1, sup(V − S) = (k(k−1)
2 )a.

By Lemma 2, there exists an itemset Y such that Y is a closed itemset,
(V −S) ⊆ Y and sup(Y ) = sup(V −S). Since |Y |≥|V −S|= n−k, Y is a feasible
solution of y. Therefore, sup(OPT (y)) ≥ sup(Y ) = sup(V − S) = (k(k−1)

2 )a.
Since A is a polynomial-time r-approximation algorithm for the instance y,

we have sup(OPT (y))
sup(A(y)) ≤ r. Hence, sup(A(y)) ≥ sup(OPT (y))× 1

r ≥ (k(k−1)
2 )a× 1

r .
This concludes the proof.

Theorem 2. If the graph G has no clique of size k, then sup(A(y)) < (k(k−1)
2 )a×

1
r .

Proof. Since A(y) is a solution of y, we have |A(y)| ≥ n− k and |V −A(y)| ≤ k.
Since there is no clique of size k in G, e(V −A(y)) ≤ (k(k−1)

2 −1). By Lemma 1 and
Lemma 3, we have sup(A(y)) = (e(V −A(y)))a ≤ (k(k−1)

2 −1)a < (k(k−1)
2 )a× 1

r .
This completes the proof.

Based on Theorem 1 and Theorem 2, if we had a polynomial-time r-approximation
algorithmA for top-1 frequent closed itemset mining for some constant r, we could
use it to decide whether G has a k-clique as follows: we apply the polynomial-time
r-approximation algorithmA on the constructed instance yof top-1 frequent closed
itemset mining corresponding to G and we answer yes if and only if sup(A(y)) ≥
(k(k−1)

2 )a× 1
r . However, this contradicts to the fact that the CLQIUE problem is

NP-Complete [7]. The next two theorems immediately follow.

Theorem 3. The problem of mining top-1 closed itemset is not in APX unless
P = NP.

Theorem 4. The TFCI problem is not in APX unless P = NP.
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3 Conclusions

We have provided in this paper a set of proofs showing that there is no APX
for mining top-k frequent closed itemsets. The result indicates that heuristic
algorithms, instead of exact algorithms, are preferred to solve the problem.
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Abstract. The quality of discovered association rules is commonly evaluated by 
interestingness measures (commonly support and confidence) with the purpose 
of supplying subsidies to the user in the understanding and use of the new dis-
covered knowledge. Low-quality datasets have a very bad impact over the qual-
ity of the discovered association rules, and one might legitimately wonder 
whether a so-called “interesting” rule noted LHS -> RHS is meaningful when 
30 % of LHS data are not up-to-date anymore, 20% of RHS data are not accu-
rate, and 15% of LHS data come from a data source that is well-known for its 
bad credibility. In this paper we propose to integrate data quality measures for 
effective and quality-aware association rule mining and we propose a cost-
based probabilistic model for selecting legitimately interesting rules. Experi-
ments on the challenging KDD-CUP-98 datasets show for different variations 
of data quality indicators the corresponding cost and quality of discovered asso-
ciation rules that can be legitimately (or not) selected. 

1   Introduction 

Quality in data mining results critically depends on the preparation and on the quality 
of analyzed datasets [10]. Indeed data mining processes and applications require vari-
ous forms of data preparation, correction and consolidation combining complex data 
transformation operations and cleaning techniques [11], because the data input to the 
mining algorithms is assumed to conform to “nice” data distributions, containing no 
missing, inconsistent or incorrect values [15]. This leaves a large gap between the 
available “dirty” data and the available machinery to process and analyze the data for 
discovering added-value knowledge and decision making [9]. Data quality is a multi-
dimensional, complex and morphing concept [4]. Since a decade, there has been a 
significant amount of work in the area of information and data quality management 
initiated by several research communities (database, statistics, workflow management, 
knowledge management), ranging from techniques in assessing information quality 
[13] to building large-scale data integration systems over heterogeneous data sources 
with different degrees of quality and trust. In error-free data warehouses or database-
backed information systems with perfectly clean data, knowledge discovery tech-
niques (such as clustering, mining association rules or visualization) can be relevantly 
used as decision making processes to automatically derive new knowledge patterns 
and new concepts from data. Unfortunately, most of the time, these data are neither 
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rigorously chosen from the various heterogeneous sources with different degrees of 
quality and trust, nor carefully controlled for quality [9]. Deficiencies in data quality 
still are a burning issue in many application areas, and become acute for practical 
applications of knowledge discovery and data mining techniques [5]. We illustrate 
this idea with the following example in the context of association rule mining. Among 
traditional descriptive data mining techniques, association rule mining identifies intra-
transaction patterns in a database and describes how much the presence of a set of 
attributes in a database's record (i.e., a transaction) implicates the presence of other 
distinct set of attributes in the same record (respectively the same transaction). The 
quality of discovered association rules is commonly evaluated by interestingness 
measures (namely support and confidence). The support of a rule measures the occur-
rence frequency of the pattern in the rule while the confidence is the measure of the 
strength of implication. The problem of mining association rules is to generate all 
association rules that have support and confidence greater than the user-specified 
minimum support and confidence thresholds. Besides support and confidence, other 
interestingness measures have been proposed in the literature for knowledge quality 
evaluation with the purpose of supplying subsidies to the user in the understanding 
and use of the new discovered knowledge [12], [7]. But, to illustrate the impact of 
low-quality data over discovered association rule quality, one might legitimately 
wonder whether a so-called ''interesting'' rule noted LHS → RHS is meaningful when 
30 % of LHS data are not up-to-date anymore, 20% of RHS data are not accurate, and 
15% of LHS data come from a data source that is well-known for its bad credibility. 
Our assumption is that interestingness measures are not self-sufficient for represent-
ing association rule quality. Association rule quality should also integrate the meas-
ures of the quality of data the rule is computed from with considering the probability 
that the deficiencies in data quality may be adequately detected. The twofold contri-
bution of this paper is to propose a method for scoring association rule quality and a 
probabilistic cost model that predicts the cost of low-quality data over the quality of 
discovered association rules. This model is used to select so-called “legitimately in-
teresting” rules. We evaluate our approach using the KDD-Cup-98 dataset. 

The rest of the paper is organized as follows. Section 2 gives a brief overview on 
data quality characterization and management. In Section 3, we present our decision 
model for estimating the cost of low-quality data on association rule mining. In Sec-
tion 4, we evaluate our approach using the KDD-Cup-98 dataset. Section 5 provides 
concluding remarks and guidelines for future extensions of this work.  

2   An Overview of Data Quality Characterization and 
Management  

Maintaining a certain level of quality of data is challenging and can not be limited to 
one-shot approaches addressing simpler abstract versions the real problems of dirty or 
low-quality data [4]. Solving them requires highly domain- and context-dependent 
information and also human expertise. Classically, the database literature refers to 
data quality management as ensuring: i) syntactic correctness (e.g., constraints en-
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forcement, that prevent “garbage data” from being entered into the database) and ii) 
semantic correctness (i.e., data in the database truthfully reflect the real world situa-
tion). This traditional approach of data quality management has lead to techniques 
such as integrity constraints, concurrency control and schema integration for distrib-
uted and heterogeneous information systems. But since a decade, literature on data 
and information quality across different research communities (including databases, 
statistics, workflow management and knowledge engineering) proposed a plethora of: 

- Data quality dimensions and classifications with various definitions depending 
on authors and application contexts [1], [13], on the audience type or on the ar-
chitecture of systems (e.g. for data warehouses [6]) 

- Data quality metrics [4],  
- Conceptual data quality models [6], [1],  
- Frameworks and methodologies for cleaning data [11], for improving or assess-

ing data quality in databases [6] or using data mining techniques to detect anoma-
lies [3], [5], [10], [8].  

The most frequently mentioned data quality dimensions in the literature are accuracy, 
completeness, timeliness and consistency [1]. 

3   Probabilistic Cost Model for Quality-Driven Selection of 
Interesting Association Rules 

Our initial assumption is that the quality of an association rule depends on the quality 
of the data which the rule is computed from. This section will present the formal defi-
nitions of our model that introduces data quality indicators and combines them for 
determining the quality of association rules. 

3.1   Preliminary Definitions for Association Rule Quality 

Let I be a superset of items. An association rule R is an implication of the form:     
LHS  RHS where LHS ⊆ I, RHS ⊆  I and LHS ∩ RHS = ∅. LHS and RHS are con-
junctions of variables such as the extension of LHS is: g(LHS)= x1∧x2 ∧…∧xn and the 
extension of Y is g(RHS)= y1∧y2∧…∧ yn' . 

Let j (j=1, 2,…, k) be the dimensions of data quality (e.g., data completeness, 
freshness, accuracy, consistency, completeness, credibility, etc.). Let qj(Ii)∈[minij , 
maxij] be a scoring value for the dataset Ii on the quality dimension j (Ii ⊆ I). The vec-
tor, that keeps the values of all quality dimensions for each dataset Ii (normalized in 
[0,1]) is called quality vector and noted q(Ii). The set of all possible quality vectors is 
called quality space Q. 

Definition 1. Association Rule Quality 
The quality of the association rule R is defined by a fusion function denoted "oj" 
specific for each quality dimension j that merges the components of the quality vec-
tors of the datasets constituting the extension of the right-hand and left-hand sides of 
the rule. The quality of the rule R is k-dimensional vector such as:  
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The average quality of the association rule R denoted q(R) can be computed by the 
weighted sum of the quality dimensions of the quality vector components of the rule: 

=

=
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with wj the weight of the quality dimension j. We assume the weights are normalized:  
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Definition 2. Fusion Function per Quality Dimension 
Let T be the domain of values of the quality score q(Ii) for the dataset Ii on the quality 
dimension j. The fusion function denoted "oj" is commutative and associative such as 
oj: T × T  T. The fusion function may have different definitions depending on the 
considered quality dimension j in order to suit the properties of each quality criterion. 
Table 1 presents several examples of definition for the fusion function allowing the 
combination of quality scores per quality dimension for two datasets noted x and y 
over the four quality dimensions; freshness, accuracy, completeness, consistency.  

Table 1. Different fusion functions for merging quality scores per dimension 
 j  D A T A  

Q U A L I T Y  

D I M E N S I O N  

F U S I O N  F U N C T I O N  " o j"  Q U A L I T Y  D I M E N S I O N   
O F  T H E  R U L E   x   y   

1  F r e s h n e s s  m in [ q 1 ( x ) , q 1 ( y ) ]  T h e  f r e s h n e s s  o f  t h e  a s s o c i a t i o n  r u l e  x   y  i s  
e s t i m a t e d  p e s s i m i s t i c a l l y  a s  t h e  l o w e r  s c o r e  o f  
f r e s h n e s s  o f  t h e  2  d a t a  s e t s  c o m p o s i n g  t h e  r u l e .  

2  A c c u r a c y  q 2 ( x ) .  q 2 ( y )  T h e  a c c u r a c y  o f  t h e  a s s o c i a t i o n  r u l e  x   y  i s  
e s t i m a t e d  a s  t h e  p r o b a b i l i t y  o f  a c c u r a c y  o f  t h e  tw o  
d a t a  s e t s  x  a n d  y  o f  t h e  r u l e .  

3  C o m p le t e n e s s  q 3 ( x ) +  q 3 ( y ) –  q 3 ( x )  .  q 3 ( y )  T h e  c o m p l e t e n e s s  o f  t h e  a s s o c i a t io n  r u l e  x   y  i s  
e s t i m a t e d  a s  t h e  p r o b a b i l i t y  t h a t  o n e  o f  t h e  tw o  
d a ta  s e t s  o f  t h e  r u l e  i s  c o m p l e t e .  

4  C o n s is t e n c y  m a x [ q 4 ( x ) ,  q 4 ( y ) ]  T h e  c o n s i s t e n c y  o f  t h e  a s s o c i a t i o n  r u l e  x   y  i s  
e s t i m a t e d  o p t i m i s t i c a l l y  a s  t h e  h i g h e r  s c o r e  o f  
c o n s i s t e n c y  o f  t h e  2  d a t a  s e t s  c o m p o s i n g  t h e  r u l e .  

 

We consider that selecting an association rule is a decision that designates the rule as 
legitimately interesting (noted D1), potentially interesting (D2), or not interesting (D3) 
based both on good interestingness measures and on the actual quality of the datasets 
composing the left-hand and right-hand sides of the rule. Consider the item x ∈ LHS 
∪ RHS of a given association rule, we use PCE(x) to denote the probability that the 
item x will be classified as “erroneous” (or “polluted” and “with low-quality”), e.g., 
freshness, accuracy, etc. and PCC(x) denotes the probability that the item x will be 
classified as “correct” (i.e., “with correct quality” in the range of acceptable values for 
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Fig. 1. Probabilities of detection of correct and low-quality data 

each pre-selected quality dimension). Also, PAE(x) represents the probability that the 
item x is “actually erroneous” (AE) but detected correct, and PAC(x) represents the 
probability that it is “actually correct” (AC) but detected erroneous (see Figure 1). 

For an arbitrary average quality vector q ∈ Q on the datasets in LHS ∪ RHS of the 
rule, we denote by P(q∈Q | CC) or fCC(q) the conditional probability that the average 
quality vector q corresponds to the datasets that are classified as correct (CC). Simi-
larly, we denote by P(q∈Q | CE) or fCE(q) the conditional probability that the average 
quality vector q corresponds to the datasets that are classified erroneous (CE).   We 
denote by d the decision of the predicted class of the rule (i.e., legitimately interesting 
D1, potentially interesting D2, or not interesting D3), and by s the actual status of qual-
ity of the datasets upon which the rule has been computed. Let us also denote by 
P(d=Di, s=j) and P(d=Di | s=j) correspondingly, the joint and the conditional prob-
ability that the decision Di is taken, when the actual status of data quality (i.e., CC, 
CE, AE, AC) is j. We also denote by cij the cost of making a decision Di for classify-
ing an association rule with the actual data quality status j of the datasets composing 
the two parts of the rule. Based on the example presented in Table 3 where we can see 
how the cost of decisions could affect the result of selection among interesting asso-
ciation rules, we need to minimize the mean cost c that results from making such a 
decision. In Table 3, c10 is the cost of a confident decision (D1) for the selection of a 
rule based on correct-quality data (CC). c21 is the cost of a neutral decision (D2) for 
the selection of a rule based on low-quality data (CE). c33 is the cost of a suspicious 
decision (D3) of selecting a rule based on low-quality data but actually detected as 
correct (AC). The corresponding mean cost c is written as follows: 
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From the Bayes theorem, the following is true: 

j)j).P(s s DP(dj) s,DP(d ii ======  (5) 

where i=1,2,3 and j= CC,CE,AE,AC. Let us also assume that q is the average quality 
vector drawn randomly from the space of all quality vectors of the datasets of the rule. 
The following equality holds for the conditional probability P(d=Di| s=j) : 

.)q(f)js DP(d
iQq

ji
∈

===
 

(6) 
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where i=1,2,3 and j=CC,CE,AE,AC. fj is the probability density of the quality vectors 
when the actual data quality status is j. We also denote the a priori probability of CC 
or else P(s=CC) as 0, the a priori probability of P(s=AC)= 0

AC, the a priori probabil-
ity of P(s=AE)= 0

AE and the a priori probability of P(s=CE)=1- ( 0+ 0
AE + 0

AC). 
The mean cost c in Eq. (4) based on Eq. (5) is written as follows: 
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and by using Eq. (6) and dropping the dependent vector variable q , Eq. (7) becomes: 
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For the sake of simplicity for the following of the paper, let's now consider the case of 
the absence of the misclassification region (i.e., fAC, fAE are null and 0

AE= 0
AC =0). 

Without misclassification region P(s=CE) could be simplified as 1- 0. Every point q 
in the quality space Q belongs to the partitions of quality Q1 or Q2 or Q3 that corre-
spond respectively to partitions of the decision space: D1 or D2 or D3 in such a way 
that its contribution to the mean cost is minimum. This will lead to the optimal selec-
tion for the three sets of rules which we denote by D0

1, D
0
2 and D0

3. Based on this 
observation, a point q that represents the quality of a rule defined in Eq. (2) is as-
signed to one of the three optimal areas as follows: 
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The inequalities of Eq. (9) give rise to three different threshold values L, P and N 
(respectively for legitimately, potentially and not interesting rules) in the decision 
space as defined in Eq. (10): 
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4   Experiments and Results 

In order to validate and evaluate our decision model, we built an experimental system. 
The system relies on a data generator that automatically generates data quality meta-
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data with a priori known characteristics. This system also allows us to perform con-
trolled studies so as to establish data quality indicators and quality variations on data-
sets and on discovered association rules which are assigned to the decision areas D1, 
D2 or D3. In the set of experiments that we present, we make use the KDD-CUP-981 
dataset from the UCI repository. The KDD-Cup-98 dataset contains 191,779 records 
about individuals contacted in the 1997 mailing campaign. Each record is described 
by 479 non-target variables and two target variables indicating the “respond”/“not 
respond” classes and the actual donation in dollars. About 5% of records are “re-
spond” records and the rest are “not respond” records. The KDD-Cup-98 competition 
task was to build a prediction model of the donation amount. The participants were 
contested on the sum of actual profit Σ(actual donation - $0.68) over the validation 
records with predicted donation greater than the mailing cost $0.68 (see [14] for de-
tails). Because we ignored the quality of the data collected during this campaign, we 
generated synthetic data quality indicators with different distributions representative 
of common data pollutions. In this experiment, our goal is to demonstrate that data 
quality variations may have a great impact on the significance of KDD-Cup-98 results 
(i.e., the top ten discovered “respond” rules) and we use different assumptions on data 
quality indicators that do not affect the top ten list of discovered association rules but 
that significantly change the reliability (and quality) of this mining result and also the 
cost of the decisions relying on these rules. The variable names, definitions, estimated 
probabilities and average quality score per attribute are given in Table 2. For the sake 
of simplicity, we suppose that the quality dimension scores are uniformly representa-
tive of the quality of the attribute value domain. The average quality per attribute in 
Table 2 is computed from the equi-weighted function given in Eq. (2). fCC (q(Ii)) (also 
noted fCC  in Table 2) is the probability density that the dataset Ii  is “correct” when the 
average quality score of Ii  is q(Ii). fCE (q(Ii)) is the probability density that the dataset 
Ii  is “erroneous” when the average quality score of Ii  is q(Ii). Table 3 shows tentative 
unit costs developed by the staff of the direct marketing department on the basis of 
consideration of the consequences of the decisions on selecting and using the discov-
ered association rules. Without misclassification problem, the costs c12, c13, c22, c23, 
c32, and c33 are null; the cost c30 of a suspicious decision for rule selection based on 
correct data is $500. Based on the values assigned to the various costs in Table 2, we 
also assume that the a priori probability that a certain quality vector belongs to CC 
equals the a priori probability that the same vector belongs to CE. For this reason, the 

ratio  
1 0

0

−
 in Eq. (9) and (10) equals 1. By using Eq. (10) and Table 3, we compute 

the values of the three decision thresholds for rule selection for the a priori probability 
π0= 0.200 without misclassification and we obtain: L=0.125, P = 0.0131579 and N = 2.25. 
In order to be consistent with the conditional independency of the quality vector com-
ponents we also need to take the logarithms of the thresholds values. By doing this we 
obtain: log(L)=-0.9031; log(P) =  -1.8808 and log(N) = 0.3522. Based on the values for 
these thresholds, we can assign the rules to one of the three decision areas. The top 10 
a priori association rules discovered by Wang et al. [14] are given in Table 4 with the 
 

                                                           
1 http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html for the dataset and  
  http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98.html for the results. 
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confidence, the support (in number of records), and the profit. Table 4 also shows the 
score per quality dimension, the average quality and the cost of selecting the associa-
tion rule. The scores are computed from the definitions of the quality dimensions 
given in Table 1. The costs are computed from Eq. (8). It’s very interesting to notice 
that the predicted profit per rule may be considerably affected by the cost of the rule 
computed from low-quality data (e.g., the second best rule R2 whose predicted profit 
is $61.73 has a cost of $109.5 and thus is classified as “not interesting” due to the bad 
quality of its datasets). Let us now introduce different variations on the average qual-
ity of the datasets composing the rules. Based on the cost Table 3, Figure 2 shows the 
behavior of the decision cost of rule selection when data quality varies from the initial 
average quality down to -10%, -30%, and -50% and up to +10%, +30% and +50% for 
a priori probability 0 =0.200 and without misclassification. In Figure 2 we observe 
that the quality degradation of the datasets composing the rules increases the cost of 
these rules with variable amplitudes. 

Fig. 2. Decision cost for rule selection with dif-
ferent data quality variations without misclassifi-

cation for 0 = 0.200 
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R2                  

R3                 Legitimately 

R4                  

R5                 Potentially 

R6                  

R7                  

R8                  
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 50% 30% 10% init quality -10% -30% -50%     

  

Fig. 3. Decision status on rule selection 

for data quality variations for 0 =0.200 

 
Data quality amelioration implies a stabilization trend of the decision cost for le-

gitimately interesting rule selection. Another interesting result is shown in Figure 3 
where the decisions for rule selection change simultaneously with the data quality 
variations. Among the top 10 interesting rule discovered by Wang et al. [14] with the 
initial data quality (noted Init Qual), 5 rules (R1, R5, R7, R9 and R10) are poten-
tially worth being selected based on their average data quality. Increasing data quality 
up to +30%, 3 rules were legitimately interesting (R5, R7 and R9). This observation 
offers two (among others) interesting research perspectives for both association rule 
mining and data quality management: first, for proposing a post-filtering rule process 
based on data quality indicators and decision costs for rule selection and secondly, for 
the optimal scheduling of data quality improvement activities (e.g., cleaning) driven 
and tuned by the rule pruning step. Additionally to the interestingness measures the 
three thresholds can be used as a predictive technique for quality awareness in asso-
ciation rule mining for the appropriate selection of legitimately interesting rules based 
on the data quality indicators. 
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Table 2. KDD-Cup-98 dataset with quality 
measures and estimatedprobabilities 

 Quality Attribute Definition 
Fresh. Accur. Compl. Consi. Average 

fCC fCE 

AGE904 Average Age of 
Population 0,50 0,21 0,39 0,73 0,46 0,9 0,05 

CHIL2 Percent Children 
Age 7 - 13 0,16 0,99 0,75 0,71 0,65 0,95 0,1 

DMA DMA Code 0,49 0,58 0,16 0,95 0,55 0,95 0,01 
EIC16 Percent Employed 

in Public 
Administration 

0,03 0,56 0,33 0,61 0,38 0,98 0,01 

EIC4 Percent Employed 
in Manufacturing 0,17 0,37 0,87 0,15 0,39 0,9 0,2 

ETH1 Percent White 0,21 0,76 0,50 0,53 0,50 0,55 0,15 
ETH13 Percent Mexican 0,52 0,77 0,87 0,79 0,74 0,9 0,6 
ETHC4 Percent Black < 

Age 15 0,84 0,52 0,32 0,35 0,51 0,95 0,45 

HC6 Percent Owner 
Occupied 
Structures Built 
Since 1970 

0,47 0,96 0,74 0,11 0,57 0,98 0,03 

HHD1 Percent 
Households w/ 
Related Children 

0,61 0,95 0,27 0,08 0,48 0,96 0,41 

HU3 Percent Occupied 
Housing Units 0,07 0,40 0,18 0,57 0,30 0,94 0,53 

HUPA1 Percent Housing 
Units w/ 2 thru 
9 Units at the 
Address 

0,76 0,85 0,96 0,93 0,88 0,95 0,52 

HVP5 Percent Home 
Value >= $50,000 0,99 0,88 0,38 0,95 0,80 0,94 0,05 

NUMCHLD NUMBER OF 
CHILDREN 0,44 0,23 0,53 0,50 0,42 0,96 0,17 

POP903  
 

Number of 
Households 0,77 0,52 0,74 0,61 0,66 0,87 0,15 

RAMNT_22 Dollar amount of 
the gift for 
95XK 

0,37 0,95 0,95 0,75 0,76 0,84 0,25 

RFA_11 Donor’s RFA 
status as of 
96X1 promotion 
date 

0,59 0,34 0,34 0,76 0,51 0,95 0,12 

RFA_14 Donor’s RFA 
status as of 
95NK promotion 
date 

0,60 0,69 0,24 0,10 0,41 0,95 0,13 

RFA_23 Donor’s RFA 
status as of 
94FS promotion 
date 

0,34 0,01 0,23 0,63 0,30 0,97 0,55 

RHP2 Average Number 
of Rooms per 
Housing Unit 

0,66 0,72 0,08 0,26 0,43 0,98 0,2 

TPE11 Mean Travel Time 
to Work in 
minutes 

0,20 0,26 0,78 0,32 0,39 0,85 0,05 

WEALTH2  
Wealth Rating 
 

0,24 0,82 0,41 0,58 0,51 0,87 0,05 

 

Table 3. Costs of various decisions for 
classifying association rules  

 D ecision  
for R ule 
Selection  

C ost# D ata  
Q uality  
S ta tu s 

C ost w ithout 
m isclassifica tion  

c 10 C C   $0 .00  

c 11 C E  $1 000.00  

c 12 A E  $0.00  

 
 

D 1 
c 13 A C $0.00  

c 20 CC  $50.00  

c 21 C E  $50.00  

c 22 A E  $0.00  

 
D 2 

c 23 A C $0.00  

c 30 CC  $ 500.00  

c 31 C E  $0.00  

c 32 A E $0.00 

 
 

D 3 
c 33 A C  $0.00  

Table 4. The top 10 “respond” rules by Wang et al. [14] with quality, cost, and decision area 

  

Quality Decision 
Area 

# Association Rule (Conf. ; Supp.) Profit  
(Wang et al., 2005) 

Fresh. Accur. Compl. Consi. Average 

Cost 

 

1 ETHC4=[2.5,4.5], ETH1=[22.84,29.76], 
HC6=[60.91,68.53] (0.11; 13) $81.11 0,21 0,38 0,79 0,53 0,48 $ 53 

potentially 

2 RFA_14=f1d, ETH1=[29.76,36.69] (0.17; 8) $61.73 0,21 0,52 0,62 0,53 0,47 $109.5 
not 

3 HHD1=[24.33,28.91], EIC4=[33.72,37.36] (0.12;12) $47.07 0,17 0,35 0,90 0,15 0,39 $113 
not 

4 RFA_23=s2g, ETH13=[27.34,31.23] (0.12;16) $40.82 0,34 0,01 0,90 0,79 0,51 $130 
not 

5 EIC16=[11.25,13.12], CHIL2=[33,35.33], 
HC6=[45.69,53.30] (0.16;11) $35.17 0,03 0,53 0,77 0,71 0,51 $ 34.7 

potentially 

6 RHP2=[36.72,40.45], AGE904=[42.2,44.9] (0.16;7) $28.71 0,50 0,15 0,44 0,73 0,46 $109 
not 

7 HVP5=[56.07,63.23], ETH13=[31.23,35.61], 
RAMNT_22=[7.90,10.36] (0.14;10) $24.32 0,37 0,65 0,68 0,95 0,66 $ 62.8 

potentially 

8 NUMCHLD=[2.5,3.25], HU3=[66.27,70.36] (0.08;31) $19.32 0,07 0,09 0,61 0,57 0,34 $190 
not 

9 RFA_11=f1g, DMA=[743,766.8], 
POP903=[4088.208,4391.917], 
WEALTH2=[6.428571,7.714286] 

(0.25;8) $17.59 0,24 0,08 0,72 0,95 0,50 $ 49.6 
potentially 

10 HUPA1=[41.81+,], TPE11=[27,64,31.58] (0.23;9) $9.46 0,20 0,22 0,99 0,93 0,59 $ 40.8 
potentially  

5   Conclusion 

The original contribution of this paper is twofold: first, we propose a method for scor-
ing the quality of association rules that combines and integrates measures of data 
quality; secondly, we propose a probabilistic cost model for estimating the cost of 
selecting “legitimately (or not) interesting” association rules based on correct- or low-
quality data. The model defines the thresholds of three decision areas for the predicted 
class of the discovered rules (i.e., legitimately interesting, potentially interesting, or 
not interesting). To validate our approach, our experiments on the KDD-Cup-98 data-
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set consisted of: i) generating synthetic data quality indicators, ii) computing the aver-
age quality of the top ten association rules discovered by Wang et al. [14], iii) com-
puting the cost of selecting low-quality rules and the decision areas they belong to, iv) 
examining the cost and the decision status for rule selection when the quality of un-
derlying data varies. Our experiments confirm our original assumption that is: inter-
estingness measures are not self-sufficient and the quality of association rules depends 
on the quality of the data which the rules are computed from. Data quality includes 
various dimensions (such as data freshness, accuracy, completeness, etc.) which 
should be also considered for effective and quality-aware mining. Our future plans 
regarding this work, are to study the optimality of our decision model, to propose 
error estimation and to validate the model with experiments on large biomedical data-
sets (see [2]) with on-line collecting and computing operational data quality indicators 
with the aim to select high-quality and interesting association rules. 
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Abstract. Tree mining has recently attracted a lot of interest in areas such as 
Bioinformatics, XML mining, Web mining, etc. We are mainly concerned with 
mining frequent induced and embedded subtrees. While more interesting pat-
terns can be obtained when mining embedded subtrees, unfortunately mining 
such embedding relationships can be very costly. In this paper, we propose an 
efficient approach to tackle the complexity of mining embedded subtrees by 
utilizing a novel Embedding List representation, Tree Model Guided enumera-
tion, and introducing the Level of Embedding constraint. Thus, when it is too 
costly to mine all frequent embedded subtrees, one can decrease the level of 
embedding constraint gradually up to 1, from which all the obtained frequent 
subtrees are induced subtrees. Our experiments with both synthetic and real 
datasets against two known algorithms for mining induced and embedded sub-
trees, FREQT and TreeMiner, demonstrate the effectiveness and the efficiency 
of the technique. 

1   Introduction 

Research in both theory and applications of data mining is expanding driven by a 
need to consider more complex structures, relationships and semantics expressed in 
the data [2,3,4,6,8,9,12,15,17]. As the complexity of the structures to be discovered 
increases, more informative patterns could be extracted [15]. A tree is a special type 
of graph that has attracted a considerable amount of interest [3,8,9,11,12,17]. Tree 
mining has gained interest in areas such as Bioinformatics, XML mining, Web min-
ing, etc. In general, most of the formally represented information in these domains is 
of a tree structured form and XML is commonly used. Tan et. al. [8] suggested that 
XML association rule mining can be recast as mining frequent subtrees in a database 
of XML documents. Wang and Liu [13] developed an algorithm to mine frequently 
occurring induced subtrees in XML documents. Feng et. al. [4] extend the notion of 
associated items to XML fragments to present associations among trees. 

The two known types of subtrees are induced and embedded [3,8,9,17]. An In-
duced subtree preserves the parent-child relationships of each node in the original tree 
whereas an embedded subtree preserves not only the parent-child relationships but 
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also the ancestor-descendant relationships over several levels. Induced subtrees are a 
subset of embedded subtrees and the complexity of mining embedded subtrees is 
higher than mining induced subtrees [3,9,17]. 

In this study, we are mainly concerned with mining frequent embedded subtrees 
from a database of rooted ordered labeled subtrees. Our primary objectives are as 
follows: (1) to develop an efficient and scalable technique (2) to provide a method to 
control and limit the inherent complexity present in mining frequent embedded sub-
trees. To achieve the first objective, we utilize a novel tree representation called Em-
bedding List (EL), and employ an optimal enumeration strategy called Tree Model 
Guided (TMG). The second objective can be attained by restricting the maximum 
level of embedding that can occur in each embedded subtree. The level of embedding 
is defined as the length of a path between two nodes that form an ancestor-descendant 
relationship. Intuitively, when the level of embedding inherent in the database of trees 
is high, numerous numbers of embedded subtrees exist. Thus, when it is too costly to 
mine all frequent embedded subtrees, one can restrict the level of embedding gradu-
ally up to 1, from which all the obtained frequent subtrees are induced subtrees. 

The two known enumeration strategies are enumeration by extension and join [3]. 
Recently, Zaki [17] adapted the join enumeration strategy for mining frequent em-
bedded rooted ordered subtrees. An idea of utilizing a tree model for efficient enu-
meration appeared in [14]. The approach uses the XML schema to guide the candidate 
generation so that all candidates generated are valid because they conform to the 
schema. The concept of schema guided candidate generation is generalized into tree 
model guided (TMG) candidate generation for mining embedded rooted ordered la-
beled subtrees [8,10]. TMG can be applied to any data with clearly defined semantics 
that have tree like structures. It ensures that only valid candidates which conform to 
the actual tree structure of the data are generated. The enumeration strategy used by 
TMG is a specialization of the right most path extension approach [2,8,9,10]. It is 
different from the one that is proposed in FREQT [2] as TMG enumerates embedded 
subtrees and FREQT enumerates only induced subtrees. The right most path exten-
sion method is reported to be complete and all valid candidates are enumerated at 
most once (non-redundant) [2,8,9]. This is in contrast to the incomplete method 
TreeFinder [11] that uses an Inductive Logic Programming approach to mine unor-
dered, embedded subtrees. The extension approach utilized in the TMG generates 
fewer candidates as opposed to the join approach [8,9]. 

In section 2 the problem decomposition is given. Section 3 describes the details of 
the algorithm. We empirically evaluate the performance of the algorithms and study 
their properties in section 4, and the paper is concluded in section 5. 

2   Problem Definitions 

A tree can be denoted as T(r,V,L,E), where (1) r ∈  V is the root node; (2) V is the set 
of vertices or nodes; (3) L is the set of labels of vertices, for any vertex v∈ V, L(v) is 
the label of v; and (4) E is the set of edges in the tree. Parent of node v, parent(v), is 
defined as the predecessor of node v. There is only one parent for each v in the tree. A 
node v can have one or more children, children(v), which are defined as its succes-
sors. If a path exists from node p to node q, then p is an ancestor of q and q is a 
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descendant of p. The number of children of a node is commonly termed as fan-
out/degree of the node, degree(v). A node without any child is a leaf node; otherwise, 
it is an internal node. If for each internal node, all the children are ordered, then the 
tree is an ordered tree. The height of a node is the length of the path from a node to its 
furthest leaf. The rightmost path of T is defined as the path connecting the rightmost 
leaf with the root node. The size of a tree is determined by the number of nodes in the 
tree. Uniform tree T(n,r) is a tree with height equal to n and all of its internal nodes 
have degree r. All trees considered in this paper are rooted ordered labeled. 
 

 

Fig. 1. Example of induced subtrees (T1, T2, T4, T6) and embedded subtrees (T3, T5) of tree T 

 
Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered induced subtree of a tree T (r, 
V, L, E) iff (1) V’⊆V, (2) E’⊆E, (3) L’⊆L and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V and v’ 
is not the root node parent(v’)=parent(v), (5) the left-to-right ordering among the 
siblings in T’ should be preserved. Induced subtree T’ of T can be obtained by repeat-
edly removing leaf nodes or the root node if its removal doesn’t create a forest in T. 

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an ordered embedded subtree of a tree 
T(r, V, L, E) if and only if it satisfies property 1, 2, 3, 5 of induced subtree and it 
generalizes property (4) such that ∀v’∈V’, ∀v∈V and v’ is not the root node ances-
tor(v’) = ancestor (v).  

Level of Embedding (Φ). If T’(r’, V’, L’, E’) is an embedded subtree of T, the level 
of embedding (Φ) is defined as the length of a path between two nodes p and q, where 
p∈V’ and q∈V’, and p and q form an ancestor-descendant relationship from p to q. 
We could define induced subtree T as an embedded subtree with maximum Φ that can 
occur in T equals to 1, since the level of embedding of two nodes that form parent-
child relationship equals to 1. 

For instance in fig 2 the level of embedding, Φ, between node at position 0 and 
node at position 5 in tree T is 3, whereas between node 0 and node 2, 3, and 4 is equal 
to 2. According to our definition of induced and embedded subtree previously, S1 is 
an example of an induced subtree and S2, S3, and S4 are examples of embedded sub-
trees.  

Transaction based vs occurrence match support. We say that an embedded subtree 
t is supported by transaction k ⊆ K in database of tree Tdb as tp k. If there are L occur- 
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Fig. 2. Illustration of restricting the level of embedding when generating S1-4 subtrees from 
subtree ‘a b’ with OC 0:[0,1] of tree T 

rences of t in k, a function g(t,k) denotes the number of occurrences of t in transaction 
k. For transaction based support, tp k=1 when there exists at least one occurrence of 
t in k, i.e. g(t,k) 1. In other words, it only checks for existence of an item in a transac-
tion. For occurrence match support, tp k corresponds to the number of all occur-
rences of t in k, tp k=g(t,k). Suppose that there are N transactions, k1 to kN, of trees in 
Tdb, the support of embedded subtree t in Tdb is defined as: 

∑
=

N

i
ikt

1

p
 

(1) 

Transaction based support has been used in [3,12,17]. However occurrence match 
support has been less utilized and discussed. In this study we are in particular inter-
ested in exploring the application and the challenge of using occurrence match sup-
port. Occurrence match support takes repetition of items in a transaction into account 
whilst transaction based support only checks for existence of items in a transaction. 
There has not been any general consensus which support definition is used for which 
application. However, it is intuitive to say that whenever repetition of items in each 
transaction is to be accounted for and order is important, occurrence match support 
would be more applicable. Generally, transaction based support is very applicable for 
relational data. 

String encoding ( ). We utilize the pre-ordering string encoding ( ) as utilized in 
[8,9,17]. We denote encoding of subtree T as (T). For each node in T (fig. 1), its 
label is shown as a single-quoted symbol inside the circle whereas its pre-order posi-
tion is shown as indexes at the left/right side of the circle. From fig. 1, (T1):‘b c / b e 
/ /’; (T3):‘b e / c /’, etc. We could omit backtrack symbols after the last node, i.e. 

(T1):‘b c / b e’. We refer to a group of subtrees with the same encoding L as candi-
date subtree CL. A subtree with k number of nodes is denoted as k-subtree. Through-
out the paper, the ‘+’ operator is used to conceptualize an operation of appending two 
or more tree encodings. However, this operator should be contrasted with the conven-
tional string append operator, as in tree string encoding the backtrack symbols needs 
to be computed accordingly.  

Mining (induced|embedded) frequent subtrees. Let Tdb be a tree database consist-
ing of N transactions of trees, KN. The task of frequent (induced|embedded) subtree 
mining from Tdb with given minimum support ( ), is to find all the candidate (in-
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duced|embedded) subtrees that occur at least  times in Tdb. Based on the downward-
closure lemma [1], every sub-pattern of a frequent pattern is also frequent. In rela-
tional data, given a frequent itemset all its subsets are also frequent. A question how-
ever arises of whether the same principle applies to tree structured data when the 
occurrence match support definition is used. To show that the same principle doesn’t 
apply, we need to find a counter-example. 

Lemma 1. Given a tree database Tdb, if there exist candidate subtrees CL and CL’, 
where CL ⊆ CL’, such that CL’ is frequent and CL is infrequent, we say that CL’ is a 
pseudo-frequent candidate subtree. In the light of the downward closure lemma these 
candidate subtrees are infrequent because one or more of its subtrees are infrequent. 

Lemma 2. The antimonotone property of frequent patterns suggests that the fre-
quency of a superpattern is less than or equal to the frequency of a subpattern. If 
pseudo-frequent candidate subtrees exist then the antimonotone property does not 
hold for frequent subtree mining. 

From fig. 1, suppose that the minimum support  is set to 2. Consider a candidate 
subtree CL where L:’b c / b’. When an embedded subtree is considered, there are 3 
occurrences of CL that occur at position {(0, 4, 7), (0, 5, 7), (0, 6, 7)}. On the other 
hand, when an induced subtree is considered, there are only 2 occurrences of CL that 
occur at position {(0, 5, 7), (0, 6, 7)}. With  equal to 2, CL is frequent for both in-
duced and embedded types. By extending CL with node 8 we obtain CL’ where 
L’:L+’e’ = ’b c / b e’. In the light of lemma 1, CL’ is a pseudo-frequent candidate 
subtree because we can find a subtree of CL’ whose encoding ‘b b e’ at position (0, 7, 
8) is infrequent. This holds for both induced and embedded subtrees. In other words, 
lemma 1 holds whenever occurrence match support is used. Subsequently, since 
pseudo-frequent candidate subtrees exist, according to lemma 2, the antimonotone 
property does not hold for frequent subtree mining when occurrence match support is 
used. Hence, when mining induced and embedded subtrees, there can be frequent 
subtrees with one or more of its subsets infrequent. This is different to flat relational 
data where there are only 1-to-1 relationships between items in each transaction. Tree 
structured data has a hierarchical structure where 1-to-many relationships can occur. 
This multiplication between one node to its many children/descendants makes the 
antimonotone property not hold for tree structured data. This makes full (k-1) pruning 
should be performed at each iteration when generating k-subtrees from a (k-1)-subtree 
when occurrence match support is used to avoid generating pseudo-frequent subtrees.  

3   IMB3-Miner Algorithms 

Database scanning. The process of frequent subtree mining is initiated by scanning a 
tree database, Tdb, and generating a global pre-order sequence D in memory (diction-
ary). The dictionary consists of each node in Tdb following the pre-order traversal 
indexing. For each node its position, label, right-most leaf position (scope), and parent 
position are stored. An item in the dictionary D at position i is referred to as D[i]. The 
notion of position of an item refers to its index position in the dictionary. When gen-
erating the dictionary, we compute all the frequent 1-subtrees, F1. After the dictionary 
is constructed our approach does not require further database scanning. 
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.  
0: 1 2 3 4 5 6 7 8 
2: 3 4 
7: 8 

Fig. 3. The EL representation of T in fig 1 

Constructing Embedding List (EL). For each frequent internal node in F1, a list is 
generated which stores its descendant nodes’ hyperlinks [12] in pre-order traversal 
ordering such that the embedding relationships between nodes are preserved. The 
notion of hyperlinks of nodes refers here to the positions of nodes in the dictionary. 
For a given internal node at position i, such ordering reflects the enumeration se-
quence of generating 2-subtree candidates rooted at i (fig 3). Hereafter, we call this 
list as embedded list (EL). We use notation i-EL to refer to an embedded list of node 
at position i. The position of an item in EL is referred to as slot. Thus, i-EL[n] refers 
to the item in the list at slot n. Whereas |i-EL| refers to the size of the embedded list of 
node at position i. Fig 3 illustrates an example of the EL representation of tree T (fig. 
1). In fig 3, 0-EL for example refers to the list: 0:[1,2,3,4,5,6,7,8], where 0-EL[0]=1 
and 0-EL[6]=7.  

Occurrence Coordinate (OC). When generating k-subtree candidates from (k-1)-
subtree, we consider only frequent (k-1)-subtrees for extension. Each occurrence of k-
subtree in Tdb is encoded as occurrence coordinate r:[e1,…ek-1]; r refers to k-subtree 
root position and e1,…,ek-1 refer to slots in r-EL. Each ei corresponds to node (i+1) in 
k-subtree and e1<ek-1. We refer to ek-1 as tail slot. From fig. 1 & 3, the OC of 3-subtree 
(T2) with encoding ‘b b e’ is encoded as 0:[6,7]; 4-subtrees T1 with encoding ‘b c / b 
e’ are encoded as 0:[5,6,7], and so on. Each OC of a subtree describes an instance of 
each occurrence of the subtree in Tdb. Hence, each candidate instance has an OC 
associated with it. 

 
 
 

0: 1 2 3 4 5 6 7 8 9 10 

 
 
 
 
 

Fig. 4. TMG enumeration: extending (k-1)-subtree tk-1 where (tk-1):‘a b / b c’ (0:[1,4,5]) with 
nodes at position 6, 7, 8, 9, and 10 

TMG enumeration formulation. TMG is a specialization of right most path exten-
sion method which has been reported to be complete and all valid candidates are 
enumerated at most once (non-redundant) [2,8,9,10]. To enumerate all embedded k-
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subtrees from a (k-1)-subtree, TMG enumeration approach extends one node at the 
time to the right most path of (k-1)-subtree. We refer to each node in the right most 
path as an extension point. One important property of EL is that the positions of nodes 
are stored in pre-order manner. Hence, given a (k-1)-subtree with known tail slot, the 
subsequent slots in EL will form the scope of extension from i to j. All embedded k-
subtree are generated by attaching a node at position i to j to the (k-1)-subtree. Sup-
pose l(i) denotes a labeling function of node at position i. Given frequent (k-1)-
subtree tk-1 with (tk-1):L, the root position r, tail position t, and occurrence coordinate 
r:[m,…,n], k-subtrees are generated by extending tk-1 with j∈r-EL such that t<j |r-
EL|-1. Thus its occurrence coordinate becomes r:[m,…,n,j] and its encoding becomes 
L’:L+l(i) where i=r-EL[j] and m<n<j. To restrict the level of embedding of each 
node, at each extension a check is performed if the level of embedding is less or equal 
to the specified Φ. Only when the level of embedding of a node at position j to its 
extension point is less than Φ, the extension is performed. From fig 4, suppose that Φ 
is set to 1, when we extend a subtree with OC 0:[0,3,4] with node at position 6, 7, and 
9 (0:[5], 0:[6], 0:[8]), the level of embedding between nodes at position 6, 7, and 9 to 
their extension point equals to 1 ( Φ), and thus should not be pruned. However when 
it is extended with node at position 8 and 10 (0:[7], 0:[9]) the level of embedding 
between node at position 8 and 10 to their extension points is>2 ( Φ), and thus should 
be pruned. 

Pruning. When using occurrence match support there can be pseudo-frequent candi-
date subtrees generated when generating k-subtrees from (k-1)-subtrees. To make sure 
that all generated subtrees do not contain infrequent subtrees, full (k-1) pruning must 
be performed. The rationale of this has been discussed in [9,17]. From this point on-
ward we refer to full (k-1) pruning as full pruning. This implies that at most (k-1) 
numbers of (k-1)-subtrees need to be generated from the currently expanding k-
subtrees. An exception is made whenever the Φ constraint is set to 1, i.e. mining in-
duced subtree, we only need to generate l numbers of (k-1)-subtrees where l<(k-1) 
and l equal to the number of leaf nodes in k-subtrees. When the removal of root node 
of k-subtree doesn’t generate a forest [8,9,17] then an additional (k-1)-subtree is gen-
erated by taking the root node off from the expanding k-subtree. The expanding k-
subtree is pruned when at least one (k-1)-subtree is infrequent, otherwise it is added to 
the frequent k-subtree set. This ensures that the method generates no pseudo-frequent 
subtrees. While full pruning is easily done in a breadth first search (BFS) based 
method, it is a challenge for a depth first search (DFS) based approach such as VTre-
eMiner (VTM). As a consequence, VTM performs opportunistic pruning [17]. Doing 
full pruning is quite time consuming and expensive. Further, to accelerate full prun-
ing, a caching technique is used by checking whether a candidate is already in the 
frequent k-subtree. If a (k-1)-subtree candidate is already in the frequent k-subtree set, 
it is known that all its (k-1)-subtrees are frequent, and hence only one comparison is 
made. 

Vertical Occurrence List. To determine if a subtree is frequent, we count the occur-
rences of that subtree and check if it is greater or equal to the specified minimum 
support . We say that a candidate subtree with encoding L has a frequency n if there 
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Inputs  : Tdb(Tree database),•(min.support), (max. level of embedding) 
Outputs : Fk(Frequent subtrees), D(dictionary) 
{D, F1} : DatabaseScanning (Tdb)
{EL, F2} : ConstructEmbeddedList (F1,D, )
k=3

while( |Fk| 0 ) 
 Fk = GenerateCandidateSubtrees(Fk-1, )
k = k+1 

GenerateCandidateSubtrees(Fk-1, ):
for each frequent k-subtree tk-1 Fk-1

 Lk-1 = GetEncoding (tk-1)
 VOL-tk-1 = GetVOL(tk-1)
for each occurrence coordinate ock-1 (r:[m,…n]) VOL-tk-1 

       for (j = n+1 to |r-EL|-1 ) 

  if( EmbeddingLevel(j) ) then 
        {ock, Lk} = TMG-extend( ock-1,Lk-1,j ) 
  if( Contains(Lk, Fk) )
  Insert( hashkey(Lk),ock,Fk )
  else 

If( k-1Pruning (Lk) == false)  
           Insert( hashkey(Lk),ock,Fk ) 
return Fk

 

Fig. 5. Pseudo-code of IMB3-Miner algorithm 

0 6 8 
0 5 8 
0 4 8 

‘b c / e’ 
 

Fig. 6. VOL example of a subtree (‘b c / e’) of T in fig 1 

are n instances of subtrees in the database with the same encoding L. Each occurrence 
of a subtree is stored as an occurrence coordinate, as previously described in [9]. 
Computing the frequency of a subtree can be easily determined from the size of the 
list that stores each occurrence of a subtree. We call such a list as vertical occurrence 
list (VOL). VOL(L) denotes the vertical occurrence list of a subtree with encoding L. 
The frequency of a subtree with encoding L is denoted as |VOL(L)|. When transaction 
based support is used the occurrence of each subtree is grouped by its transaction IDs 
and the support count corresponds to the number of unique transactions in the VOL. 

4   Results and Discussions 

We compare IMB3-Miner (IMB3), FREQT (FT) for mining induced subtrees and 
MB3-Miner (MB3), X3-Miner (X3), VTreeMiner (VTM) and PatternMatcher (PM) 
for mining embedded subtrees. We created a synthetic database of trees with varying: 
max. size (s), max. height (h), max. fan-out (f), and number of transactions (|Tr|). 
Notation XXX–T, XXX-C, and XXX–F are used to denote execution time (including 
data preprocessing, variables declaration, etc), number of candidate subtrees |C|, and 
the number of frequent candidate subtrees |F| obtained from the XXX approach re-
spectively. Additionally, IMB3-(NP)-dx notation is used where x refers to the level of 
embedding Φ and (NP) is optionally used to indicate that full pruning is not per-

size : 3 
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formed. The minimum support  is denoted as (sxx), where xx is the minimum fre-
quency. Occurrence match support was used for all algorithms; Experiments were run 
on 3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux machine and used GNU g++ 
(3.4.3) for compilation. 
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Fig. 7. Scalability test: (a) time performance (b) number of subtrees |C| 

Scalability (s:10,h:3,f:3). |Tr| was varied to 100K, 500K & 1000K, with  set to 25, 
125 and 250, respectively. We can see that all algorithms are well scalable (fig 6a). 
MB3 outperforms VTM & PM for mining embedded subtrees and IMB3 outperforms 
FT for mining induced subtrees. For |Tr|:1000K at :250, it can be seen that VTM and 
PM generate more candidates (VTM-C & PM-C) by using the join approach (fig 6b). 
Those extra candidates are invalid, i.e. they do not conform to the tree model.  

Pseudo-frequent (s:9,h:2,f:5,|Tr|:1). We created a dataset that corresponds to the tree 
T in fig 1 to illustrate the importance of full pruning when occurrence match support 
is used. We set  to 2 and compare the number of frequent subtrees generated by 
various algorithms. From fig 8 we can see that the number of frequent subtrees de-
tected by VTM (DFS) is larger in comparison to PM, MB3 and X3 (BFS). The differ-
ence comes from the fact that the three BFS based algorithms perform full pruning 
whereas DFS based approach such as VTM relies on opportunistic pruning which 
does not prune pseudo-frequent candidate subtrees. Fig 7 shows that FT & IMB3-NP 
generate more frequent induced subtrees in comparison to IMB3. This is because they 
don’t perform full pruning, and as such generate extra pseudo-frequent subtrees. 
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Deep Tree (s:28,h:17,f:3,|Tr|:10,000) & Wide Tree (s:428,h:3,f:50,|Tr|:6,000). For 
deep trees (273,090 nodes), when comparing the algorithms for mining frequent em-
bedded subtrees, MB3 has the best performance (fig 9a). VTM aborts when <150 
where the number of frequent subtrees increases significantly when  is decreased (fig 
9b). At :150, VTM generates a superfluous 688x more frequent subtrees compared 
to MB3 and PM. In regards to mining frequent induced subtrees, fig 8a shows that 
IMB3 has a slight better time performance than FT. At s80, FT starts to generate 
pseudo-frequent candidates. For wide tree (1,303,424 nodes), the DFS based approach 
like VTM outperforms MB3 as expected (fig 9c). However, VTM fails to finish the 
task when <7. We omit IMB3 & FT because the support threshold at which they 
produce interesting results is too low for embedded subtrees algorithms. In general, 
the DFS and BFS based approaches suffer from, deep and wide trees respectively. 
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Fig. 9. (a) deep tree time performance (b) deep tree number of frequent subtrees, (c) wide tree 
time performance 

CSLogs (s:214,h:28,f:21). The dataset was used by Zaki in [17]. When used for oc-
currence match support, the tested algorithms had problems in returning frequent 
subtrees. Hence, the dataset was trimmed. At |Tr|:32,241, interesting results started to 
appear. VTM aborts when <200 due to numerous numbers of candidates generated. 
The usefulness of constraining the level of embedding is demonstrated in fig. 10b & 
10c. From fig 10b, we can see that the number of frequent subtrees generated by FT 
& IMB3-NP is identical. Both FT & IMB3-NP generate pseudo-frequent subtrees as 
they do not perform full pruning. Because of this, the number of frequent induced 
subtrees detected by FT & IMB3-NP can unexpectedly exceed the number of frequent 
embedded subtrees found by MB3 & PM (fig 10b, s80).  

Fig 10a shows that both IMB3-NP & IMB3 outperform FT. A large time increase 
for FT and IMB3-NP is observed at :200 as a large number of pseudo-frequent sub-
trees are generated (fig 10b). We also compare the results from VTM, PM & MB3 to 
the result obtained when the level of embedding is restricted to 6 (IMB3-d6) (fig 10c). 
By restricting the embedding level, we expect to decrease the execution time without 
missing many frequent subtrees. The complete set of frequent subtrees was detected at 

200, while only less than 2% were missed with <200. Overall, MB3 and its vari-
ants have the best performance. 
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Fig. 10. 54% transactions of original CSLogs data [17] (a) time performance (b) number of 
frequent subtrees (c) number of frequent subtrees for unconstrained vs constrained approach 

Overall Discussion. All MB3 and its variants demonstrate high performance and 
scalability which comes from the efficient use of the EL representation and the opti-
mal TMG approach that ensures only valid candidates are generated. The join ap-
proach utilized in VTM & PM could generate many invalid subtrees which degrades 
the performance. MB3 performs expensive full pruning, whereas VTM utilizes less 
expensive opportunistic pruning but suffers from the trade-off that it generates many 
pseudo-frequent candidate subtrees. This can cause memory blow up and serious 
performance problem (fig 8a & 10). In the context of association mining, regardless 
of which approach is used, for a given dataset with minimum support , the discov-
ered frequent patterns should be identical and consistent. Assuming pseudo-frequent 
subtrees are infrequent, techniques that don’t perform full pruning would have limited 
applicability to association rule mining. When representing subtrees, FT [5] uses 
string labels VTM, PM, and MB3 (and its variants) use integer labels. When a 
hashtable is used for candidate frequency counting, hashing integer labels is reported 
to be faster than hashing string labels especially for long patterns [10] As we can see, 
IMB3 & IMB3-NP always outperform FT. When experimenting with the level of 
embedding constraint (fig 10c), we have found that restricting the level of embedding 
at a particular level leads to speed increases at the low cost of missing a very small 
percentage of frequent subtrees while providing a good estimate could be found by 
restricting the level of embedding.

5   Conclusions 

In this study we have provided some detailed discussions about various theoretical 
and performance issues of the different approaches. We proposed an efficient ap-
proach to tackle the complexity of mining embedded subtrees by utilizing a novel 
Embedding List representation, Tree Model Guided enumeration, and introducing 
Level of Embedding constraint. High performance and scalability of the proposed 
approach was demonstrated in our experiments by contrasting it with the state of the 
art algorithms Tree-Miner and FREQT. Specifically, we studied the problem of em-
bedded subtrees rather than just induced subtrees. Further, we studied the notion of 

aborted 

aborted 
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using occurrence match support instead of the simpler transaction based support. We 
use both synthetic and real datasets in the experimental studies. 
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Abstract. We propose a false-negative approach to approximate the set
of frequent itemsets (FIs) over a sliding window. Existing approximate
algorithms use an error parameter, ε, to control the accuracy of the min-
ing result. However, the use of ε leads to a dilemma. A smaller ε gives a
more accurate mining result but higher computational complexity, while
increasing ε degrades the mining accuracy. We address this dilemma by
introducing a progressively increasing minimum support function. When
an itemset is retained in the window longer, we require its minimum sup-
port to approach the minimum support of an FI. Thus, the number of
potential FIs to be maintained is greatly reduced. Our experiments show
that our algorithm not only attains highly accurate mining results, but
also runs significantly faster and consumes less memory than do existing
algorithms for mining FIs over a sliding window.

1 Introduction

Frequent itemset (FI) mining is fundamental to many important data mining
tasks. Recently, the increasing prominence of data streams has led to the study of
online mining of FIs [5]. Due to the constraints on both memory consumption and
processing efficiency of stream processing, together with the exploratory nature
of FI mining, research studies have sought to approximate FIs over streams.

Existing approximation techniques for mining FIs are mainly false-positive
[5, 4, 1, 2]. These approaches use an error parameter, ε, to control the quality
of the approximation. However, the use of ε leads to a dilemma. A smaller ε
gives a more accurate mining result. Unfortunately, a smaller ε also results in
an enormously larger number of itemsets to be maintained, thereby drastically
increasing the memory consumption and lowering processing efficiency. A false-
negative approach [6] is proposed recently to address this dilemma. However, the
method focuses on the entire history of a stream and does not distinguish recent
itemsets from old ones.
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We propose a false-negative approach to mine FIs over high-speed data streams.
Our method places greater importance on recent data by adopting a sliding win-
dow model. To tackle the problem introduced by the use of ε, we consider ε as
a relaxed minimum support threshold and propose to progressively increase the
value of ε for an itemset as it is kept longer in a window. In this way, the number
of itemsets to be maintained is greatly reduced, thereby saving both memory and
processing power. We design a progressively increasing minimum support function
and devise an algorithm to mine FIs over a sliding window. Our experiments show
that our approach obtains highly accurate mining results even with a large ε, so
that the mining efficiency is significantly improved. In most cases, our algorithm
runs significantly faster and consumes less memory than do the state-of-the-art
algorithms [5, 2], while attains the same level of accuracy.

2 Preliminaries

Let I = {x1, x2, . . . , xm} be a set of items. An itemset is a subset of I. A trans-
action, X , is an itemset and X supports an itemset, Y , if X ⊇ Y . A transaction
data stream is a continuous sequence of transactions. We denote a time unit in
the stream as ti, within which a variable number of transactions may arrive. A
window or a time interval in the stream is a set of successive time units, denoted
as T = 〈ti, . . . , tj〉, where i ≤ j, or simply T = ti if i = j. A sliding window
in the stream is a window that slides forward for every time unit. The window
at each slide has a fixed number, w, of time units and w is called the size of
the window. In this paper, we use tτ to denote the current time unit. Thus, the
current window is W = 〈tτ−w+1, . . . , tτ 〉.

We define trans(T ) as the set of transactions that arrive on the stream in
a time interval T and |trans(T )| as the number of transactions in trans(T ).
The support of an itemset X over T , denoted as sup(X,T ), is the number of
transactions in trans(T ) that support X . Given a predefined Minimum Support
Threshold (MST), σ (0 ≤ σ ≤ 1), we say that X is a frequent itemset (FI) over
T if sup(X,T ) ≥ σ|trans(T )|.

Given a transaction data stream and an MST σ, the problem of FI mining
over a sliding window is to find the set of all FIs over the window at each slide.

3 A Progressively Increasing MST Function

Existing approaches [5, 4, 2] use an error parameter, ε, to control the mining
accuracy, which leads to a dilemma. We tackle this problem by considering ε = rσ
as a relaxed MST , where r (0 ≤ r ≤ 1) is the relaxation rate, to mine the set of
FIs over each time unit t in the sliding window. Since all itemsets whose support
is less than rσ|trans(t)| are discarded, we define the computed support as follows.

Definition 1 (Computed Support). The computed support of an itemset X
over a time unit t is defined as follows:

s̃up(X, t) =
{

0 if sup(X, t) < rσ|trans(t)|
sup(X, t) otherwise.
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The computed support of X over a time interval T = 〈tj , . . . , tl〉 is defined as

s̃up(X,T ) =
l∑

i=j

s̃up(X, ti). �

Based on the computed support of an itemset, we apply a progressively increasing
MST function to define a semi-frequent itemset.

Definition 2 (Semi-Frequent Itemset). Let W = 〈tτ−w+1, . . . , tτ 〉 be a win-
dow of size w and T k = 〈tτ−k+1, . . . , tτ 〉, where 1 ≤ k ≤ w, be the most recent
k time units in W . We define a progressively increasing function

minsup(k) =
⌈
mk × rk

⌉
,

where mk = σ|trans(T k)| and rk = (1−r
w )(k − 1) + r.

An itemset X is a semi-frequent itemset (semi-FI) over W if s̃up(X,T k) ≥
minsup(k), where k = τ − o + 1 and to is the oldest time unit such that
s̃up(X, to) > 0. ��
The first term mk in the minsup function in Definition 2 is the minimum support
required for an FI over T k, while the second term rk progressively increases the
relaxed MST rσ at the rate of ((1−r)/w) for each older time unit in the window.
We keep X in the window only if its computed support over T k is no less than
minsup(k), where T k is the time interval starting from the time unit to, in which
the support of X is computed, up to the current time unit tτ .

4 Mining FIs over a Sliding Window

We use a prefix tree to keep the semi-FIs. A node in the prefix tree represents
an itemset, X , and has three fields: (1) item which is the last item of X ; (2)
uid(X) which is the ID of the time unit, tuid(X ), in which X is inserted into the
prefix tree; (3) s̃up(X) which is the computed support of X since tuid(X).

The algorithm for mining FIs over a sliding window, MineSW, is given in
Algorithm 1, which is self-explanatory.

Algorithm 1 (MineSW)
Input: (1) An empty prefix tree. (2) σ, r and w. (3) A transaction data stream.
Output: An approximate set of FIs of the window at each slide.

1. Mine all FIs over each time unit using a relaxed MST rσ.
2. Initialization: For each of the first w time units, ti (1 ≤ i ≤ w), mine all FIs

from trans(ti). For each mined itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations: (i) Add sup(X, ti)

to sup(X); (ii) If sup(X) < minsup(i−uid(X)+1), remove X from the prefix
tree and stop mining the supersets of X from trans(ti).

(b) If X is not in the prefix tree, create a new node for X in the prefix tree with
uid(X) = i and sup(X) = sup(X, ti).

3. Incremental Update:
– For each expiring time unit, tτ−w+1, mine all FIs from trans(tτ−w+1). For each

mined itemset, X:
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• If X is in the prefix tree and τ − uid(X) + 1 ≥ w, subtract sup(X, tτ−w+1)
from sup(X). Otherwise, stop mining the supersets of X from trans(tτ−w+1).

• If sup(X) becomes 0, remove X from the prefix tree. Otherwise, set uid(X)
= τ − w + 2.

– For each incoming time unit, tτ , mine all FIs from trans(tτ ). For each mined
itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations: (i) Add sup(X,

tτ ) to sup(X); (ii) If either τ −uid(X)+1 ≤ w and sup(X) < minsup(τ −
uid(X) + 1), or τ − uid(X) + 1 > w and sup(X) < minsup(w), remove X
from the prefix tree and stop mining the supersets of X from trans(tτ ).

(b) If X is not in the prefix tree, create a new node for X in the prefix tree
with uid(X) = τ and sup(X) = sup(X, tτ ).

4. Pruning and Outputting: Scan the prefix tree once. For each itemset X visited:
– Remove X and its descendants from the prefix tree if (1) τ − uid(X) + 1 ≤ w

and sup(X) < minsup(τ − uid(X) + 1), or (2) τ − uid(X) + 1 > w and
sup(X) < minsup(w).

– Output X if sup(X) ≥ σ|trans(W )| (we can thus set minsup(w) = σ|trans(W )|
to prune more itemsets).

5 Experimental Evaluation

We run our experiments on a Sun Ultra-SPARC III with 900 MHz CPU and
4GB RAM. We compare our algorithm MineSW with a variant of the Lossy
Counting algorithm [5] applied in the sliding window model, denoted as LCSW.
We remark that LCSW, which updates a batch of incoming/expiring transactions
at each window slide, is different from the algorithm proposed by Chang and Lee
[2], which updates on each incoming/expiring transaction. We implement both
algorithms and find that the algorithm by Chang and Lee is much slower than
LCSW and runs out of our 4GB memory. We generate two types of data streams,
t10i4 and t15i6, using a generator [3] that modifies the IBM data generator.

We first find (see details in [3]) that when r increases from 0.1 to 1, the
precision of LCSW (ε = rσ in LCSW) drops from 98% to around 10%, while
the recall of MineSW only drops from 99% to around 90%. This result reveals
that the estimation mechanism of the Lossy Counting algorithm relies on ε to
control the mining accuracy, while our progressively increasing minsup function
maintains a high accuracy which is only slightly affected by the change in r.
Since increasing r means faster mining process and less memory consumption,
we can use a larger r to obtain highly accurate mining results at much faster
speed and less memory consumption.

We test r = 0.1 and r = 0.5 for MineSW. According to Lossy Counting [5], a
good choice of ε is 0.1σ and hence we set r = 0.1 for LCSW. Fig. 1 (a) and (b)
show that for all σ, the precision of LCSW is over 94% and the recall of MineSW
is over 96% (mostly over 99%). The recall of MineSW (r = 0.5) is only slightly
lower than that of MineSW (r = 0.1). However, Fig. 2 (a) and (b) show that
MineSW (r = 0.5) is significantly faster than MineSW (r = 0.1) and LCSW,
especially when σ is small. Fig. 3 (a) and (b) show the memory consumption of
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Fig. 1. Precision and Recall with Varying Minimum Support Threshold
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Fig. 2. Processing Time with Varying Minimum Support Threshold
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Fig. 3. Memory Consumption with Varying Minimum Support Threshold

the algorithms in terms of the number of itemsets maintained at the end of each
slide. The number of itemsets kept by MineSW (r = 0.1) is about 1.5 times less
than that of LCSW, while that kept by MineSW (r = 0.5) is less than that of
LCSW by up to several orders of magnitude.

6 Conclusions

We propose a progressively increasing minimum support function, which allows
us to increase ε at the expense of only slightly degraded accuracy, but signif-
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icantly improves the mining efficiency and saves memory usage. We verify, by
extensive experiments, that our algorithm is significantly faster and consumes
less memory than existing algorithms, while attains the same level of accuracy.
When applications require highly accurate mining results, our experiments show
that by setting ε = 0.1σ (a rule-of-thumb choice of ε in Lossy Counting [5]), our
algorithm attains 100% precision and over 99.99% recall.
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Abstract. The discovery of frequent patterns and their representations has 
attracted a lot of attention in the data mining community. An extensive research 
has been carried out mainly in discovering positive patterns. Recently, the 
generalized disjunction–free representation GDFLR of all frequent patterns 
both with and without negation has been proposed. There are cases, however, 
when a user is interested in patterns with a restricted number of negated items. 
In this paper, we offer the k-GDFLR representation as an adaptation of GDFLR, 
which represents all frequent patterns with at most k negated items. Algorithms 
discovering this representation are discussed as well. The experimental results 
show that k-GDFLR is more concise than GDFLR. 

1   Introduction 

Discovering of frequent patterns in large databases is an important data mining 
problem. The problem was introduced in [1] for a sales transaction database. Frequent 
patterns were defined there as sets of items that are purchased together frequently. 
Frequent patterns are commonly used for building association rules. Patterns and 
association rules can be generalized by admitting negation. A sample rule with 
negation could state that 75% of customers who buy coke also buy chips and neither 
beer nor milk. Admitting negation usually results in abundance of mined patterns. It is 
thus preferable to discover and store a possibly small fraction of patterns from which 
one can derive all other significant patterns. In [2-3], a generalized disjunction-free 
literal set representation (GDFLR) was offered as a lossless representation of all 
frequent patterns, both with and without negation. GDFLR is by orders of magnitude 
more concise than all frequent patterns [2]. Nevertheless, GDFLR can still be 
numerous. In addition, the patterns with large number of negated items might not be 
of interest to a user at all. In this paper, we propose the k-GDFLR representation as an 
adaptation of GDFLR to represent all frequent patterns with at most k negated items. 
We introduce necessary modifications in algorithms discovering the GDFLR 
representation to adapt them to discover frequent patterns with a restricted number of 
negated items. Finally, we present the results of the experiments testing the 
conciseness of the new representation w.r.t. the number of allowed negated items. 
                                                           
*  Research has been supported by grant No 3 T11C 002 29 received from Polish Ministry of 

Education and Science. 
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2   Basic Notions 

As follows from Table 1, items a and b were 
purchased together in four transactions. The number of 
transactions in which set of items {x1, ..., xn} occurs is 
called its support and is denoted by sup({x1, ..., xn}). A 
set of items is called a frequent pattern if its support 
exceeds a user-specified threshold (minSup). 
Otherwise, it is called infrequent. Clearly, the support 
of a pattern never exceeds the supports of its subsets. 
Thus, subsets of a frequent pattern are also frequent, 
and supersets of an infrequent pattern are infrequent. 

A pattern consisting of items x1, …, xm and negations of items xm+1, …, xn is denoted 
by {x1, …, xm, −xm+1, …, −xn}. The support of pattern {x1, …, xm, −xm+1, …, −xn} is 
defined as the number of transactions in which all items in set {x1, …, xm} occur and 
no item in set {xm+1, …, xn} occurs. A pattern X is called positive, if it does not contain 
any negated item. Otherwise, X is called a pattern with negation(s). A pattern obtained 
from X by negating any number of items in X is called a variation of X. 

One can easily note that sup(X∪{(–x)}) = sup(X) – sup(X∪{x}) [6]. Multiple usage 
of this property enables calculation of the supports of patterns with any number of 
negated items from the supports of their positive variations and their subsets [6]: 

sup({x1,…,xm} ∪ {−xm+1,…,−xn}) = ΣZ⊆{xm+1, …, xn} (–1)|Z| × sup({x1,…,xm}∪Z)   (1) 
Nevertheless, the knowledge of the supports of only frequent positive patterns may 

be insufficient to derive the supports of all frequent patterns with negation [6]. 
A generalized disjunctive rule based on a positive pattern X = {x1, …, xn} is 

defined as an expression of the form x1 … xm → xm+1 ∨ … ∨ xn, where {x1, …, xm} ∩ 
{xm+1, …, xn} = ∅ and {xm+1, …, xn} ≠ ∅. We say that a transaction supports rule 
r: x1 … xm → xm+1 ∨ … ∨ xn if it contains all items in {x1, …, xm} and at least one item 
in {xm+1, …, xn}. We say that a transaction violates rule r if it contains all items in 
{x1, …, xm} and no item in {xm+1, …, xn}. The number of transactions violating rule r 
is called its error and is denoted by err(r). It was shown in [2] that err(r) is 
determinable from the supports of subsets of {x1, …, xm, xm+1, …, xn}: 

 err(x1 … xm → xm+1 ∨ … ∨ xn) = ΣZ⊆{xm+1, …, xn} (–1)|Z| × sup({x1, …, xm}∪Z)     (2) 

The following equation follows immediately from Eq. 1 and Eq. 2:  

err(x1 … xm → xm+1 ∨ … ∨ xn) = sup({x1, …, xm} ∪ {−xm+1, …, −xn})         (3) 

Rule x1 … xm → xm+1 ∨ … ∨ xn is an implication (x1 … xm  xm+1 ∨ … ∨ xn) if 
err(x1 … xm → xm+1 ∨ … ∨ xn) = 0. Clearly, if x1 … xm → xm+1 ∨ … ∨ xn is an 
implication, then x1 … xm z → xm+1 ∨ … ∨ xn and x1 … xm → xm+1 ∨ … ∨ xn ∨ z, which 
are based on a superset of {x1, …, xn}, are also implications. Such implications can be 
used for calculating the supports of patterns on which they are based. E.g., ac  b ∨ f 
implies that sup({ac}) = sup({abc}) + sup({acf}) – sup({abcf}). Hence, the support of 
pattern {abcf} is determinable from the supports of its proper subsets. In general, if 

Let us analyze sample transactional database D presented in Table 1. Each row in D 
reports items that were bought by a customer during a single visit to a supermarket. 

Table 1. Sample database D 

Id Transaction 
T1 {abce} 
T2 {abcef} 
T3 {abch} 
T4 {abe} 
T5 {acfh} 
T6 {bef} 
T7 {h} 
T8 {af} 
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there is an implication based on a positive pattern, then the support of this pattern is 
derivable from the supports of its proper subsets [5]. Each such pattern is called a 
generalized disjunctive set. Otherwise, it is called a generalized disjunction-free set. It 
can be noted that supersets of generalized disjunctive sets are generalized disjunctive 
and subsets of generalized disjunction-free sets are generalized disjunction-free [5]. 

3   Representing Frequent Patterns with at Most k Negations 

In this section, we offer a generalized disjunction-free literal set representation of 
frequent patterns with at most k negations (k-GDFLR) as consisting of the following 
components: 

1. the main component (k-Main) containing each positive pattern (stored with its 
support) that has at least one frequent variation with at most k negations and is 
neither generalized disjunctive nor has support equal 0;  

2. the infrequent border (k-IBd –) containing each positive pattern all variations of 
which that have at most k negations are infrequent and all proper subsets of 
which belong to k-Main; 

3. the generalized disjunctive border (k-DBd –) containing each positive pattern 
(stored with its support and/or implication) that is either generalized disjunctive 
or has support equal 0, has at least one frequent variation with at most k negations 
and has all its proper subsets in k-Main. 

 It can be observed that k-GDFLR equals GDFLR (please, see [2-3] for the 
definition of GDFLR) for k = ∞ (unrestricted number of negated items allowed). 

Lemma 3.1. 
a) If P belongs to k-Main, then all subsets of P belong to k-Main.  
b) If P belongs to k-IBd –, then for each superset of P all its variations with at most k 

negations are infrequent.  
c) If P belongs to k-DBd –, then each superset of P is either generalized disjunctive 

or has support equal 0.  

Lemma 3.2. 
a) k-Main ∪ k-DBd – is the set containing each positive pattern that has at least one 

frequent variation with at most k negations and all proper subsets in k-Main. 
b) k-Main ∪ k-DBd – ∪ k-IBd – is the set containing each positive pattern all proper 

subsets of which belong to k-Main. 
c) k-DBd – ∪ k-IBd – is the set containing each positive pattern not contained in 

k-Main, but having all proper subsets in k-Main. 
d) 2I \ (k-Main ∪ k-DBd – ∪ k-IBd –) = {X⊆I| ∃Y⊂X Y∈ k-DBd – ∪ k-IBd –}. 

As follows from Lemma 3.2d, positive patterns that do not belong to k-GDFLR 
have at least one proper subset in the border k-DBd – ∪ k-IBd –. 

Lemma 3.3 (calculating supports of positive patterns based on k-GDFLR). The 
k-GDFLR representation is sufficient to determine for any positive pattern X, if it is 
frequent, and if so, enables determining its support. In addition, k-GDFLR determines 
the support of each positive pattern X that does not have subsets in k-IBd –. 
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Proof: Analogous to the proof of Lemma 3.3.2 in [2].                                                  

Eventually, we conclude that k-GDFLR is a lossless representation of all frequent 
patterns with at most k negations.  

Theorem 3.1 (calculating supports of patterns with at most k negations based on 
k-GDFLR). The k-GDFLR representation determines for any pattern X with at most k 
negations whether it is frequent, and if so, enables determining its support. In 
addition, the k-GDFLR representation determines the support of each pattern X with 
at most k negations that does not have subsets in k-IBd –. 

Proof (constructive): Let X be a pattern with at most k negations and Pos(X) be a 
positive variation of X. If ∃Y∈k-IBd – Y ⊆ Pos(X), then X is not frequent. Otherwise, 
Pos(X) and all its subsets do not have subsets in k-IBd –. Thus, by Lemma 3.3, 
k-GDFLR determines the supports of Pos(X) and all its proper subsets. In accordance 
with Eq. 1, this suffices to calculate sup(X).   
Below we determine upper bounds on the length of elements in k-GDFLR. 

Theorem 3.2. 
a) ∀Z∈k-Main, |Z| ≤ log2(|D| −  minSup) . 
b) ∀Z∈k-DBd – ∪ k-IBd –, |Z| ≤ log2(|D| − minSup)  + 1. 

Proof: Analogous to the proof of Theorem 3.3.3 in [2].   

4   Discovering the k-GDFLR Representation 

Algorithm k-GDFLR-Apriori(support threshold minSup; maximal allowed number of negations k); 

k-Main = {}; k-DBd – = {}; k-IBd – = {∅};                   // initialize GDFLR 
if |D| > minSup then begin 

 ∅.sup = |D|;  move ∅ from k-IBd – to k-Main0;  X1 = {1 item patterns}; 
 for (i = 1; Xi ≠ ∅; i++) do begin 
  calculate the supports of i item patterns in Xi within one scan of database D; 
  forall candidates X∈Xi do begin 
   /* calculate the errors of all generalized dis. rules based on X with at most k disjuncts (by Eq. 2)*/ 
   Errs[1-k] = Errors-of-rules(X, k-Main, [1 .. k]); 
   if max({X.sup}∪Errs[1-k]) ≤ minSup then 
    /* all variations of X with at most k negations are infrequent (by Eq. 3) */ 
    add X to k-IBd –

i 
   else begin 
    /* calculate the errors of all generalized disjunctive rules based on X (by Eq. 2) */ 
    Errs = Errs[1-k] ∪ Errors-of-rules(X, k-Main, [k+1 .. |X|]); 
    if min({X.sup}∪Errs) = 0 then add X to k-DBd –

i  // there is a generalized dis. variation of X 
    else add X to k-Maini  endif 
   endif 
  endfor; 
  /* create new i+1 item candidates by merging i item patterns in k-Maini */ 
  Xi+1 = {X⊆I| ∃Y,Z ∈ k-Maini (|Y∩Z| = i−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all i item subsets in k-Maini */ 
  Xi+1 = Xi+1 \ {X∈Xi+1| ∃Y⊆X (|Y| =  ∧ Y∉ k-Maini} 
 endfor 

endif; 
return <∪i k-Maini, ∪i k-DBd –

i, ∪i k-IBd –
i>; 

 

i
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Here, we offer the k-GDFLR-Apriori algorithm to discover k-GDFLR as a 
modification of GDFLR-Apriori [2]. The differences between k-GDFLR-Apriori and 
GDFLR-Apriori are highlighted in the code. Similar modification of the GDFLR-SO-
Apriori algorithm [4], which is an alternative to GDFLR-Apriori, would result in 
obtaining the k-GDFLR-SO-Apriori algorithm adapted to discovering k-GDFLR. 

5   Experimental Results 

Let us present the experimental results obtained for the benchmark data sets: 
mushroom (8124 transactions of length 23 items; 119 distinct items) and connect-4 
(67557 transactions of length 43 items; 129 distinct items). Fig. 1 shows the 
cardinality of k-GDFLR for k = 0 (no negation allowed), 2, 3, and ∞. 
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Fig. 1. Cardinalities of the representations 

6   Conclusions 

We have offered the lossless k-GDFLR representation of all frequent patterns with a 
restricted number of negated items. We have shown how to adapt the algorithms 
discovering GDFLR to discover k-GDFLR. The conducted experiments prove that 
k-GDFLR is more concise than GDFLR especially for low support values and low k. 
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Abstract. Detecting association rules with low support but high confidence is a
difficult data mining problem. To find such rules using approaches like the Apri-
ori algorithm, minimum support must be set very low, which results in a large
amount of redundant rules. We are interested in sporadic rules; i.e. those that fall
below a maximum support level but above the level of support expected from ran-
dom coincidence. In this paper we introduce an algorithm called MIISR to find
a particular type of sporadic rule efficiently: where the support of the antecedent
as a whole falls below maximum support, but where items may have quite high
support individually. Our proposed method uses item constraints and coincidence
pruning to discover these rules in reasonable time.

1 Introduction

There are many association mining algorithms dedicated to frequent itemset mining
[1, 2, 3, 4, 5]. These algorithms are defined in such a way that they only find rules with
high support and high confidence. A much less explored area in association mining is
infrequent itemset mining. Recently, Koh and Rountree [6] proposed the Apriori-Inverse
algorithm to mine infrequent itemsets without generating any frequent rules. It captures
so-called sporadic rules using maximum support (maxsup) and minimum confidence
(minconf) thresholds. The support of itemsets forming each rule is below the maxsup
threshold but above a user-defined minimum absolute support value. They define the
notion of perfectly sporadic rules, where the itemset forming each rule consists only
of items that are below the maxsup threshold. In contrast, imperfectly sporadic rules
consist of individual items with high support but the support of the intersection of the
items is low.

Apriori-Inverse is not able to find imperfectly sporadic rules because it never con-
siders itemsets that have support above maxsup; therefore no subset of any itemset that
it generates can have support above maxsup. Apriori will miss these rules, because the
support for the itemsets forming the rules is too low. Apriori-Inverse will miss them
as well, because the support for the individual items is too high. Therefore, both algo-
rithms will miss rules of the form AB → C, where A and B are individually common,
but AB is rare and C is rare. This, for example, is the situation where two symptoms—
both of which commonly occur alone—occur together only rarely; but when they do,
the combination indicates a rare and serious disease with high confidence. We consider
this to be a very interesting type of rule to be able to find.

The aim of our research is to develop a technique to mine imperfectly sporadic rules
efficiently. To force any variant of the Apriori algorithm [2] to find imperfectly spo-

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 473–482, 2006.
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radic rules, the minimum support threshold must be set very low. This in turn drasti-
cally increases the running time of the algorithm, due to a combinatorial explosion in
the number of frequent itemsets. Apriori-Inverse suffers the same problem in reverse:
maximum support has to be set so high that too many itemsets qualify as sporadic.

In this paper, we propose an algorithm called MIISR (Mining Interesting Imperfectly
Sporadic Rules) to find imperfectly sporadic rules using item constraints: we capture
rules with a single-item consequent below the maxsup threshold. The maxsup threshold
is used to identify all items that are considered rare. These items are then considered
to be the only possible consequents for all rules that will be generated. Items in the
transactions containing the consequent are then detected. The items found are used to
form antecedents that have strong associations with the consequents.

Inherently we are looking for rules with low support that could make them indistin-
guishable from coincidences (that is, situations where items fall together no more often
than would be allowed by chance). Hence, we use coincidence pruning to remove the
occurrences of coincidental itemsets. For an itemset to be considered non-coincidental
it must have support above a minimum absolute support (minabssup) value which is
generated using a variant of Fisher’s exact test. The rest of this paper is organised as
follows. Definitions pertinent to infrequent itemset mining and a review of related work
are given in Section 2. The MIISR algorithm and an explanation of coincidence prun-
ing is presented in Section 3. In Section 4, we evaluate MIISR on synthetic and real
datasets, and in Section 5 we conclude the paper.

2 Related Work

The following is a formal statement of association rule mining for transaction databases.
Let I = {i1, i2, . . . , im} be the universe of items and D be a set of transactions, where
each transaction T is a set of items such that T ⊆ I . An association rule is an implica-
tion of the form X → Y , where X ⊂ I , Y ⊂ I , and X ∩Y = ∅. X is referred to as the
antecedent of the rule, and Y as the consequent. The rule X → Y holds in the trans-
action set D with confidence c% if c% of transactions in D that contain X also contain
Y . The rule X → Y has support s% in the transaction set D, if s% of transactions in
D contain XY [2]. Throughout this paper we shall use XY to denote an itemset that
contains both X and Y .

One way of forcing low-support items to take part in mined rules is by imposing
item constraints; i.e., providing a list of those items that may or may not take part
in a rule and then modifying the mining process to take advantage of that informa-
tion [7, 8, 9, 12, 11]. One of the restrictions that may be imposed is called consequent
constraint-based rule mining. Among these we shall discuss Dense-Miner, EP (Emerg-
ing Pattern), and Fixed-Consequent ARM (Association Rule Mining).

Bayardo et al. [9] proposed a consequent constraint-based rule mining approach
called Dense-Miner. They require mined rules to have a given consequent C speci-
fied by the user. This approach introduces an additional metric called improvement. The
improvement of a rule is defined as the minimum difference between its confidence and
the confidence of any proper sub-rule with the same consequent.

imp(A→ C) = min(∀A′ ⊂ A, conf(A→ C)− conf(A′ → C))
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If the imp of a rule is greater than 0, then removing any non-empty combination of
items from the antecedent will lower the confidence by at least the improvement.

Emerging pattern (EP) was proposed by Li et al. [12]. Given a known consequent T ,
they use a dataset partitioning approach to find “top”, “zero-confidence”, and “μ-level
confidence” rules. The dataset D is divided into sub-datasets D1 and D2; where D1

consists of the transactions containing T and D2 consists of transactions which do not
contain T . All items in T are then removed from D1 and D2. Using the transformed
dataset, EP then finds all itemsets X which occur in D1 but not in D2. For each X ,
the rule X → T is a “top rule” in D with confidence of 100%. On the other hand,
for all itemsets Z that only occur in D2, all transactions in D which contain Z must
not contain T . Therefore Z → T has a negative association and is a “zero-confidence”
rule. For “μ-level confidence” rules Y → T the confidences are greater than or equal to
1− μ.

Rahal et al. [11] propose a slightly different approach. Fixed-Consequent ARM gen-
erates minimal confidence rules using SE trees and P-trees. Given two rules R1 and
R2, with confidence values higher than the confidence threshold, where R1 is A → C
and R2 is AB → C, R1 is preferred, because the antecedent of R2 is a superset of the
antecedent of R1. The support of R1 is greater than or equal to R2. R1 is considered
a minimal rule and R2 is considered a non-minimal rule. The algorithm was devised
to generate the highest support rules that match the user specified minimum confidence
threshold without having the user specify any support threshold.

The drawback to all three approaches is that they are only useful when we have
prior knowledge that a particular consequent is of interest. For our application, we are
interested in searching for imperfectly sporadic rules, without having to wade through
a lot of rules that have high support, without generating a large number of trivial rules,
and without needing prior knowledge of which consequents ought to be interesting.

3 Proposal of MIISR

In the previous section, the techniques discussed might generate some imperfectly spo-
radic rules, if there is prior knowledge of a rare and interesting consequent, and if min-
sup is set low enough. So, rather than address the problem in the context of frequent
itemset mining, we suggest explicitly treating it as a problem of infrequent itemset min-
ing. Hence we propose the MIISR algorithm to mine interesting imperfectly sporadic
rules. This algorithm uses the same definition of maxsup as in Apriori-Inverse [6]. Since
itemsets lose support as they grow larger, and our guiding constraint is maxsup rather
than minsup, we can no longer rely on a downward-closure principle.

We begin by searching for any individual items below maxsup and using these as
candidate consequents. For each candidate consequent, we then generate candidate an-
tecedents from the items within the same transactions. Because we are dealing with
candidate itemsets with low support, it is possible that we will see items occurring to-
gether in transactions about as many times as chance would allow—we refer to this
situation as a coincidence. Itemsets that occur within the database due to coincidence
do not add meaningful information and should be ignored. Hence we identify a minab-
ssup value to filter out these itemsets. The imperfectly sporadic rules are then generated
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in a similar fashion to Apriori. As we are storing the transactional dataset in an inverted
index, we note that our method does not require dataset partitioning.

3.1 Imperfectly Sporadic Rules

A rule is considered imperfectly sporadic if it meets the requirements of maxsup and
minconf but contains any items that have support above maxsup. For instance, suppose
we had an itemset AB with support(A)=12%, support(B)=10%, and support(AB)=
10%, with maxsup = 11% and minconf = 75%. Both A → B (confidence = 92%)
and B → A (confidence = 100%) are sporadic in that they have low support and high
confidence. Imperfectly sporadic rules are defined as in [6]:

Definition:

A→ B is imperfectly sporadic for maxsup s and minconf c iff

confidence(A→ B) ≥ c, and
support(AB) < s, and
∃x : x ∈ (AB), support(x) ≥ s

Some imperfectly sporadic rules could be completely trivial or uninteresting: for in-
stance, when the antecedent is rare but the consequent has support of 100%. We can
characterise four different types of imperfectly sporadic rule:

Type 1 rules have both frequent and infrequent itemsets in antecedent and consequent.
They may end up sporadic due to two or more frequent items occurring together
infrequently.

Type 2 rules have only frequent itemsets in both antecedent and consequent. They too
may be sporadic due to two or more items occurring together infrequently.

Type 3 rules have consequents that contain only infrequent itemsets; they will only be
imperfectly sporadic if there are frequent items in the antecedent.

Type 4 rules have antecedents that contain only infrequent itemsets; they will only be
imperfectly sporadic if there are frequent items in the consequent.

We would prefer a technique that finds imperfectly sporadic rules that are interesting:
for instance when the items in the antecedent are above maxsup but the intersection of
these items is below maxsup and the consequent has a support below maxsup. Clearly
Type 3 rules are interesting under this definition, and the rest of this paper describes
our attempt to generate them in a reasonably efficient manner. An example of a Type
3 rule is fever, stiff neck, rash → meningitis, where fever, stiff neck, and rash are com-
mon separately, but just occasionally occur together. When they do, one can diagnose
meningitis with some confidence, even though meningitis is quite rare.

3.2 MIISR Overview

Broadly speaking, the MIISR algorithm performs the following steps. On the first pass
through the database an inverted index is built using items as keys and the transaction
IDs as the data. At this point, the support of each unique item (the 1-itemsets) in the
database is available as the length of each data chain. Items that fall under maxsup
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are identified and recorded as candidate consequents. For each candidate consequent
found, we use the items that reside in the same transactions as the candidate consequent
to extend the (k − 1)-itemsets in precisely the same manner as Apriori to generate
candidate k-itemsets. These extensions are considered to be candidate antecedents. We
then check the candidate antecedent itemsets against the inverted index to ensure they
meet the minimum absolute support requirement and prune them out if they do not.
This candidate generation process is repeated until no further candidate antecedents are
produced.

3.3 Minimum Absolute Support Value

When searching for rare itemsets, we consider two circumstances: occurrences of item-
sets due to some non-random process that is generating them, or occurrences of itemsets
by random collision (coincidence). It is important to distinguish between them, as item-
sets that have a low support but high confidence that seem interesting may be occurring
due to chance and should be considered “noise”. Clearly it makes sense only to con-
sider candidate itemsets that appear together more often than coincidence. We define
coincidence in the following way: for N transactions in which the antecedent A occurs
in a transactions and consequent B occurs in b transactions, we can calculate the prob-
ability that A and B will occur together exactly c times by chance. We refer to this as
“probability of chance collision” [10]. We can calculate this probability using Pcc in
(1). The probability that A and B will occur together exactly c times is:

Pcc
(
c
∣∣N, a, b

)
=

(
a
c

)(
N−a
b−c

)(
N
b

) (1)

For example, given N = 1000, A = B = 500, and AB = 250, we are able to
determine that the probability that A and B will occur exactly 250 times is 0.05. This
equation is the usual calculation for exact probability of a 2×2 contingency table [13].
Now, we want the least number of collisions above which Pcc is smaller than some
small value p (say, 0.0001). This is:

minabssup(N, a, b, p) = min

{
m
∣∣ i=m∑

i=0

Pcc(i
∣∣N, a, b) ≥ 1.0− p

}
(2)

This formula amounts to inverting the usual sense of Fisher’s exact test [13]. Usu-
ally a 2×2 contingency table is provided and a p-value calculated. However here we
are providing two of the four values and a p-value, and calculating the minimum value
to complete the table. By selecting the minabssup value for each itemset we are able
to prune out associations that appear in the dataset by chance. We calculate the cu-
mulative Pcc of AB together m times (beginning from 0 and incremented by 1). We
stop the incrementation when the cumulative value of Pcc ≥ 1.0 − p and m is set as
the minabssup value. For example given that we set N = 1000, A = B = 500, and
p = 0.0001, minabsup value is 274. Candidate itemsets that appear above the minab-
ssup requirement are considered somewhat interesting, and worth retaining to evaluate
their confidence.
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3.4 Exclusory Constraint

Even after pruning out candidate antecedents that are indistinguishable from coinci-
dence, a considerable number of itemsets can still be produced for a modest dataset.
One solution to this problem is to prune out a larger number of itemsets before gen-
erating new candidates. Another solution, and the one we adopt, is to prohibit current
candidates from being extended if their extensions are not likely to produce interesting
rules. Here we introduce an exclusory constraint for this purpose. Given an imperfectly
sporadic rule A→ C which has high confidence, it becomes less meaningful if C → A
has confidence that is too low. For a candidate antecedent A to be considered worth
expanding with respect to consequent C, it must therefore meet this requirement:

conf(C → A) > max(minconf, 1− sup(C)) (3)

Once the confidence of C → A falls below minconf or 1− sup(C), A may still produce
an interesting rule with C, but AZ is unlikely to do so no matter what Z is. Thus, we
wish to keep A in the pool of candidate itemsets, but we do not wish to extend it—we
exclude it from the next round of candidate generation.

3.5 The MIISR Algorithm

Having defined how to calculate the minimum absolute support (minabssup) neces-
sary to consider a rule to be non-coincidental, and a procedure to prevent candidate
antecedents from being extended if they are unlikely to produce interesting rules, we
are now able to define an algorithm for Mining Interesting Imperfectly Sporadic Rules:
MIISR.

Algorithm for Mining Interesting Imperfectly Sporadic Rules (MIISR)
Input: Transaction Database D, maxsup value, minconf value
Output: Antecedent Itemsets for Imperfectly Sporadic Rules,

indexed by Consequent

(1) Generate inverted index Idx of (item, [TID-list]) from D.
(2) Generate candidate consequent items:

C ← ∅
for each item i ∈ Idx do begin

if count(Idx , i)/|D| < maxsup
then C ← C ∪ i

end
(3) Generate candidate antecedent itemsets:

A ← ∅
for each item i ∈ C do begin

Ai,1 ← ∅
(3.1) Generate candidate antecedent itemsets of size 1:
for each item j ∈ {items in the same trans as i} do begin

if j /∈ Ai,1 and count(Idx , j, i) > minabssup(N, i, j, 0.0001)
then Ai,1 ← Ai,1 ∪ j

end
(3.2) Find Ai,k, the set of k-antecedent-itemsets where k ≥ 2:
for (k ← 2; Ai,k−1 �= ∅; k ← k + 1) do begin

Ai,k ← ∅
for each j ∈ {itemsets that extend Ai,k−1} do begin

if all subsets of j of size k − 1 ∈ Ai,k−1
and count(Idx , j, i) > minabssup(N, i, j, 0.0001)
then Ai,k ← Ai,k ∪ j

end
end

end
return A



Mining Interesting Imperfectly Sporadic Rules 479

In Section 3.2 of MIISR, “itemsets that extend Ai,k−1” refers to the same process
that Apriori uses to turn candidate itemsets of size k − 1 into itemsets of size k. That
is, itemsets that share all but their last item are used to form a new itemset with the
same prefix, the suffix of the first itemset, and the suffix of the second itemset. The only
difference is that candidate antecedents that do not meet the exclusory requirement
outlined in Section 3.4 are never considered for extension. The “count” function, when
given one itemset argument in addition to the inverted index, returns the number of
transactions in which the itemset occurs. When given two itemset arguments, it returns
the number of transactions in which both of the itemsets may be found.

The result of MIISR is a data structure indexed by all 1-itemsets that fall under
maximum support. We need not return C, the list of candidate consequents, since if Ai

is non-empty, i ∈ C. For each of these items i, A contains a list of antecedents such
that Ai,j → i should be an imperfectly sporadic rule. Since MIISR does not restrict
the antecedents to containing only frequent itemsets, some perfectly sporadic rules may
also be produced.

4 Experiments

To assess the performance of MIISR in discovering Type 3 imperfectly sporadic rules,
we developed a synthetic data generator which deliberately injects imperfectly sporadic
itemsets. We then tested the MIISR algorithm on six different datasets from the UCI
Machine Learning Repository [14].

Our synthetic data generator is a modified version of the data generator proposed
by Agrawal and Srikant [2]. In real databases there may be both frequent and infre-
quent itemsets and rules, but we are only interested in the imperfectly sporadic itemsets.
Table 1 summarizes the characteristics of several of the datasets generated during our
tests. Since we are deliberately ignoring large itemsets, we left |I| set to 2 for all exper-
iments.

Table 1. Parameter settings

Name |T | |L| |S| |D| Size in Megabytes

T20.L100.S30.D10K 20 100 30 10K 1.4

T60.L60.S20.D10K 60 60 20 10K 2.9

T10.L30.S10.D1000K 10 30 10 1000K 48.0

To create a dataset D, our synthetic data generation program takes the following
parameters: number of transactions |D|, average size of transactions |T |, average size of
large itemsets |I|, number of large itemsets |L|, number of imperfectly sporadic itemsets
|S|, and number of items N . We first determine the size of the next transaction which is
generated using a Poisson distribution with mean as the average size of the transaction.
We then fill the transactions with items. Each transaction is assigned a series of potential
large itemsets and/or an imperfectly sporadic itemset. Each itemset in T has a weight
associated with it, which corresponds to the probability that this itemset will be picked.
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4.1 Results

Three different experiments varying either the number of transactions, average size of
transactions or number of imperfectly sporadic itemsets injected were conducted to
assess the efficiency and scalability of MIISR. The datasets used were generated using
the synthetic data generator described in the previous section. Maxsup was set to 0.10
and minconf to 0.90.

Fig. 1. Scale-up based on
the number of transactions

Fig. 2. Scale-up based on
the average size of transac-
tions

Fig. 3. Scale-up based num-
ber of imperfectly sporadic
itemsets

In the first experiment, we varied the number of transactions from 103 to 106 over
the T10.L30.S10 dataset. In Figure 1 we see that the time taken to process the data
seems to increase linearly with the number of transactions. Figure 2 shows the execu-
tion time taken to process a dataset while varying the average size of transactions, from
15 to 60 with an increment of 5, for the L60.S20.D10K dataset. Note that as the aver-
age size of transactions increased, the execution time increased somewhat worse than
linearly. However, the curvature is gentle over a reasonably practical range of values. In
the third experiment, we investigate the scale-up of the number of deliberately injected
imperfectly sporadic itemsets which ranged from 2 to 30 with an interval of 2 for the
T20.L100.D10K datasets. Figure 3 shows the results of the execution time to process a
dataset with a varying number of injected imperfectly sporadic itemsets. Although the
number of rules found for each dataset increases as the number of imperfectly sporadic
itemsets increases, notice that the fluctuation of the runtime taken is quite a small per-
centage of the total runtime. The difference between the maximum and minimum time
taken is 38 seconds.

Testing of the MIISR algorithm was also carried out using six different datasets
from the UCI Machine Learning Repository [14]. Table 2 displays results from using
MIISR with and without the exclusory constraint. Each row of the table represents an
attempt to find the number of imperfectly sporadic rules (with minconf 0.95, and lift
greater than 1.0) from the database named in the left-most column. In the table, accept
represents the number of itemsets below maxsup but above the minabssup value and
reject represents the number of itemsets below the minabssup value. The number of
accepted and rejected itemsets depends on the the amount of noise within a certain
dataset.
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Table 2. Comparison of MIISR with and without exclusory constraint

Dataset Maxsup MIISR MIISR with Exclusory Constraint

Rules Passes Avg
Spo-
radic
Sets

Itemset Analysed Time
(sec)

Rules Passes Avg
Spo-
radic
Sets

Itemset Analysed Time
(sec)

Accept Reject Accept Reject

TeachingEval. 0.100 5 16 1 15 421 0.48 5 7 1 15 421 0.52

Bridges 0.100 3 5 1 5 2261 1.04 2 3 1 4 2261 1.64

Zoo 0.100 8 11 3 29 1926 0.98 1 9 2 19 1926 1.52

Flag 0.100 215 47 8 356 10964 5.32 3 14 2 48 10962 6.93

Soybean-Large 0.100 66922 247 339 83585 42090 150.14 4631 129 50 6585 1946 9.77

Mushroom 0.005 3981966 207 20236 4188691 11716 8887.15 488274 678 1694 1149372 891 908.86

Using MIISR, we were able to find imperfectly sporadic rules below maxsup of
0.10 for the datasets Teaching Assistant Evaluation, Bridges, Zoo, Flag, and Soybean-
Large within reasonable time (below 200 seconds). However for the Mushroom dataset,
maxsup was lowered to 0.005. Due to the nature of the Mushroom dataset, where strong
association holds among most of the items, coincidence pruning is not able to prune
out many itemsets. Consequently, we end up with a very large amount of imperfectly
sporadic rules, some of which might be less interesting than others.

Finally, we note that both the proportion of itemsets accepted by the minabssup
constraint and the number of rules accepted by the exclusory constraint seem to be
entirely dataset-dependent.

5 Conclusion and Future Work

Very few existing algorithms try to find infrequent itemsets, despite the fact that the
most potentially interesting things that happen in a database are likely to happen in-
frequently. In this paper, we present a new algorithm called MIISR for discovering
imperfectly sporadic rules. We are particularly interested in infrequently occurring as-
sociations of frequent itemsets giving rise to infrequent consequents. The supports of
imperfectly sporadic rules are by definition low, and we therefore run the risk of accept-
ing as interesting rules things that have only fallen together by chance. For this reason,
the minimum absolute support value proposed in the paper plays an important role be-
cause it does not allow rules that have only chance association to be generated. We
acknowledge that this approach, and that based on the exclusory constraint, are heuris-
tic, but we believe that to be unavoidable when generating low support rules. Since the
number of low support rules can be very large, but those that are likely to be interesting
not as common, exhaustive techniques tend rapidly to fall into pathological cases.

Currently this approach performs fairly efficiently on synthetic datasets and medium
sized real datasets. Our future work will deal with examining the problem of transac-
tion length, to which MIISR seems most sensitive in the synthetic datasets. More im-
portantly, we need to try to characterise the UCI Mushroom dataset in terms of imper-
fectly sporadic rules, and determine an approach that would narrow down the candidate
antecedent itemsets even further. If it turns out that there simply are a lot of high con-
fidence, low support rules in that database, then we need to investigate interestingness
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metrics that could be used to generate a better subset of them. Hence we are interested
in determining the actual interestingness of imperfectly sporadic rules in real domains.
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Abstract. In the past, we proposed an extended multidimensional pattern rela-
tion (EMPR) to structurally and systematically store previously mining infor-
mation for each inserted block of data, and designed a negative-border online 
mining (NOM) approach to provide ad-hoc, query-driven and online mining 
supports. In this paper, we try to use appropriate data structures and design effi-
cient algorithms to improve the performance of the NOM approach. The lattice 
data structure is utilized to organize and maintain all candidate itemsets such 
that the candidate itemsets with the same proper subsets can be considered at 
the same time. The derived lattice-based NOM (LNOM) approach will require 
only one scan of the itemsets stored in EMPR, thus saving much computation 
time. In addition, a hashing technique is used to further improve the perform-
ance of the NOM approach since many itemsets stored in EMPR may be useless 
for calculating the counts of candidates. At last, experimental results show the 
effect of the improved NOM approaches. 

1   Introduction 

Some researchers have recently developed incremental mining and online mining 
approaches to maintain association rules without re-processing an entire database 
whenever the database is updated [3][4][6][10] or user-specified parameters are 
changed [1]. In general, data under decision-support consideration usually evolve in a 
systematic way. For example, the data in a data warehouse may be inserted or deleted 
in a block during an interval of a month. In the past, we proposed the multidimen-
sional pattern relation (MPR) [11] to structurally and systematically store additional 
context information and mining information for each inserted block of data. MPR is 
conceptually similar to the construction of a data warehouse for OLAP [7][13], except 
it is not used to store data but mined patterns. We also extended the mining informa-
tion in MPR by including negative pattern sets (candidate sets which are not large) 
and developed a negative-border online mining (NOM) approach based on the ex-
tended multidimensional pattern relation (EMPR) especially for blocks of data with 
different item sets [12]. 
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The NOM approach needs to calculate the appearing counts and the non-appearing 
upper-bound counts of the candidate itemsets derived from matched tuples. A 
straightforward way for finding these values is to process matched tuples one after 
one for each candidate itemset. The computation cost will, however, become large 
along with the increase of the itemsets kept in EMPR and the candidate itemsets to be 
considered. In fact, in the NOM approach, many candidate itemsets with the same 
subsets can be processed at the same time. On the other hand, many itemsets kept in 
the matched tuples are useless for calculating the counts of candidates since they are 
not the subsets of candidates and can be omitted. In this paper, we thus try to use 
appropriate data structures and design efficient algorithms to improve the perform-
ance of the NOM approach. 

At first, the problem of calculating the appearing and upper-bound counts of can-
didate itemsets in a matched tuple is conceptually modeled by a graph and converted 
into a directed-minimum-spanning-tree problem. The spanning-tree-count-calculating 
(STCC) algorithm is then proposed to find the directed minimum spanning tree. The 
lattice data structure [1] is utilized to organize and maintain all candidate itemsets 
such that the candidate itemsets with the same proper subsets can be considered at the 
same time. Consequently, by the STCC algorithm, the proposed lattice-based NOM 
(LNOM) approach requires only one scan of the itemsets for each matched tuple in 
Phase 1. In addition, the hashing technique is used to filter out a part of itemsets in the 
matched tuples which are useless for calculating the counts of candidates. The compu-
tational time can thus be further reduced. 

Table 1. An EMPR example based on the minimum support of 5% 

ID Region Branch Time No_Trans Frequent_Pattern_Set 
(Itemset, Support) 

Frequent_Pattern_Set 
(Itemset, Support) 

1 CA San 
Francisco 

2003/10 10000 (A,10%),(B,11%),(C,9%), 
(AB,8%),(AC,7%),(BC,6%)
,(ABC,6%) 

(D,2%) 

2 CA San 
Francisco 

2003/11 15000 (A,5%),(B,7%),(C,5%) (D,1%),(AB,2%),(AC,2%)
,(BC,1%) 

3 CA Los 
Angeles 

2003/10 20000 (A,8%),(B,6%),(F,5%) (C,2%),(D,3%),(AB,3%),
(AF,4%),(BF,3%) 

4 CA Los 
Angeles 

2003/11 25000 (A,5%),(C,6%),(F,7%), 
(AF,6%),(CF,5%) 

(B,3%),(D,4%),(F,2%), 
(AC,3%) 

5 NY New 
York 

2003/10 18000 (B,8%),(C,7%),(BC,6%) (A,2%),(D,2%) 

6 NY New 
York 

2003/11 18500 (B,8%),(C,6%) (A,4%),(D,2%),(BC,3%) 

2   Review of the NOM Approach 

2.1   The Extended Multidimensional Pattern Relation (EMPR) 

Each tuple in EMPR comes from a block of data in the database to be processed. 
EMPR consists of two major types of information. One is the context information 
used to represent the contexts of each individual block of data. The other is the mining 
information used to record the available information mined from each individual 
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block of data by a batch mining algorithm. Given an initial minimum support s, the 
set of previously mined large itemsets with supports for a block of data D is called a 
frequent pattern set (fps) for D; the set of previously mined negative itemsets with 
supports is called a negative pattern set (nps) for D. The latter consists of the itemsets 
which are candidates but do not have enough supports [8]. 

Example 1: Table 1 shows an EMPR based on an initial minimum support set at 5%. 
The tuple with ID = 1 shows that seven large itemsets (A, 10%), (B, 11%), (C, 9%), 
(AB, 8%), (AC, 7%), (BC, 6%), (ABC, 6%) and one negative itemset (D, 2%) are 
discovered from 10000 transactions under the contexts of Region = CA, Branch = 
San Francisco and Time = 2003/10. 

2.2   The Negative-Border Online Mining (NOM) Approach 

Assume an EMPR based on an initial minimum support s includes m tuples {t1, t2, …, 
tm}. Given a mining request q which consists of a set of contexts cxq, a new minimum 
support sq (sq ≥ s) and a new minimum confidence confq, the NOM approach can 
effectively and efficiently derive the association rules simultaneously satisfying sq, 
confq and cxq by three consecutive phases, generation of candidate itemsets, reduction 
of candidate itemsets, and generation of association rules. 

The phase for generation of candidate itemsets first selects the tuples in EMPR sat-
isfying cxq (called matched tuples), collects the itemsets kept in these matched tuples 
whose supports are larger than or equal to sq as the set of candidate itemsets, and 
calculates the appearing count, appearing

xCount , and the non-appearing upper-bound 

count, UB
xCount , for each candidate. The appearing count and the non-appearing up-

per-bound count of a candidate itemset x can be represented as follows: 
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where mt denotes the set of matched tuples, ti.fps denotes the frequent pattern set in ti, 
ti.nps denotes the negative pattern set in ti, ti.trans denotes the number of transactions 
kept in ti, and ti.sx denotes the actual support of x in ti. After that, the phase for reduc-
tion of candidate itemsets calculates the upper-bound supports of candidate itemsets 
and adopts two pruning strategies to reduce the candidate number. The upper-bound 
support UB

xs  of a candidate itemset x is defined as follows: 

UB

xs =
TransMatch

CountCount UB
x

appearing
x

_

+ , 
(3) 

where Match_Trans denotes the number of transactions in the matched tuples. The 
first pruning strategy will remove the candidate itemsets whose upper-bound supports 
are less than sq. The second pruning strategy will put the ones which appear in all the 
matched tuples and have upper-bound supports larger than or equal to sq into the set 
of final large itemsets. Finally, the phase for generation of association rules re-
processes, if necessary, the remaining candidate itemsets against the underlying data-
base, and derives the association rules satisfying confq from all the final large itemsets 
found. 
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Example 2: For the EMPR given in Table 1, assume a mining request q wants to get 
the patterns with the contexts cxq of Region = CA and Time = 2003/10 and satisfying 
the minimum support sq = 5.5%. Phase 1 finds the set of candidate itemsets {{A}, 
{B}, {C}, {AB}, {AC}, {BC}, {ABC}}, which is the union of the itemsets appearing 
in the frequent pattern sets and with their supports larger than 5.5%. In Phase 2, the 
upper-bound supports of these candidate itemsets are calculated. According to the 
calculation results, the itemsets {C}, {AB}, {AC}, {BC} and {ABC} will be pruned, 
and the itemsets {A} and {B} will be put into the set of final large itemsets. No re-
maining candidate itemsets need to be further processed in Phase 3 for this example. 

3   Improving the Performance of the NOM Approach 

The NOM approach needs to calculate the appearing counts and the non-appearing 
upper-bound counts of the candidate itemsets derived from matched tuples. Assume k 
is the number of matched tuples, m is the average number of itemsets in the k matched 
tuples, and n is the number of candidate itemsets generated from the k matched tuples. 
The computation cost will be O(knm) when the candidate itemsets are processed one 
by one. It will become large along with the increase of the itemsets kept in EMPR and 
the candidate itemsets to be considered. 

In fact, many candidate itemsets with the same subsets can be calculated at the 
same time. For example, in Tuple 3 of Example 2, the appearing count of the candi-
date itemset {C} and the upper-bound counts of the candidate itemsets {AC}, {BC} 
and {ABC} can be calculated at the same time because they have the same subset 
{C}. On the other hand, many itemsets kept in matched tuples are useless for calculat-
ing the counts of candidates. For example, in Example 2, the itemsets {D}, {F}, {AF} 
and {BF} are not the subsets of the candidate itemsets and can be omitted. 

4   The Proposed Lattice-Based NOM (LNOM) Approach 

The problem of calculating the appearing and upper-bound counts of candidate item-
sets in a matched tuple t can be conceptually modeled by a graph. Let G = (V, E) be a 
directed graph, where V is the set of vertices representing all candidate itemsets and E 
is the set of directed edges representing a-proper-subset-of relationships between 
pairs of candidate itemsets. For each edge (u, v) ∈ E, a weight w(u, v) specifies the 
possible upper-bound count of the candidate itemset v estimated from the candidate 
itemset u. Given a new vertex r representing the pseudo starting vertex, we make a 
new graph G’ = (V’, E’), where V’ = V ∪ {r}, E’ = E ∪ {(r, u): u ∈ V}. For each edge 
(r, u), if u appears in t, the appearing count of u is assigned as the weight w(r, u). For 
the case that u does not appear in t, meaning it is collected from the other matched 
tuple(s), then w(r, u) = 0 if there exists one item contained in u but not contained in t 
and w(r, u) = t.trans*s−1 otherwise, where s is the initial minimum support for deriv-
ing EMPR. 

For each vertex other than r in G’, the smallest weight on all its incoming edges is 
its tight upper-bound count. The count-calculation problem can thus be easily thought 
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of as the directed-minimum-spanning-tree problem [5], which wishes to find a rooted 
directed spanning tree T = (V’, S’) from G’, such that S’ is a subset of E’ and 

∈Svu

vuw
),(

),(  is a minimum. In this section, the spanning-tree-count-calculating (STCC) 

algorithm is thus proposed based on the above concept for efficiently finding the 
counts of all candidate itemsets in a tuple.  The STCC algorithm first selects an item-
set appearing in t and with the smallest support. It then estimates the upper-bound 
count of each itemset reachable from the selected one in the graph, and thus avoids 
recalculating the counts of these traversed vertices in the future. This requires only 
one scan of the itemsets in t if they have been sorted according to their supports. 

The STCC algorithm can be efficiently implemented by the lattice data structure 
[1], which organizes all candidate itemsets in a systematic way. For each candidate 
itemset x, a corresponding vertex ux associated with a pair of values 
( appearing

xCount , UB

xCount ) is built in the lattice. A directed edge is generated from ux to 

uy if y can be derived by adding an item to x. By the connected edges, the proposed 
lattice-based NOM approach (called LNOM) can not only restrict the number of can-
didate itemsets to be examined, but also easily consider candidate itemsets with the 
same proper subsets at the same time. 

5   Using the Hashing Technique to Reduce Computation Cost 
Further 

Many itemsets kept in matched tuples, especially negative itemsets, may be useless 
for calculating the counts of candidate itemsets. Negative itemsets are formed by 
excluding large itemsets from the candidates which are generated in a level-wise way 
[10]. In general, the set of candidate itemsets generated level-wisely is usually much 
larger than the set of large itemsets found, especially in the early stage of candidate 
generation [2][9]. In this section, we shall utilize the hashing technique to filter out a 
part of useless itemsets to be considered in Phase 1. 

Take the direct hashing function as an example. Each bucket of the hash table con-
sists of only an integer to represent how many candidate itemsets have been hashed 
into this bucket. 0 denotes that no candidate itemsets have been hashed into this 
bucket. After a hash table is constructed from all the candidate itemsets, it can then be 
used to filter out a part of useless itemsets in a tuple. When an itemset of a matched 
tuple is selected, the NOM approach calculates its hash value and finds its corre-
sponding bucket. If the value stored in the target bucket is equal to 0, the itemset must 
be useless since it is not a candidate itemset. It can thus be directly omitted. Other-
wise, rescanning the candidate itemsets is necessary to determine whether it is a can-
didate. Furthermore, the corresponding value in the bucket of the itemset which is 
assured to be a candidate will be decreased by one. The next itemset of the same tuple 
is then checked according to the modified hash table, which can thus raise the prob-
ability for a useless itemset to be filtered out. After a tuple is processed, the hash table 
is restored to its original state, which is then used for another tuple. 
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6   The LNOM Algorithm with a Direct Hashing Function 

The algorithm of LNOM approach with a direct hashing function is stated below. 
The LNOM approach with a direct hashing function: 
INPUT: An EMPR based on an initial minimum support s, and a mining request q with a set of contexts 

cxq, a minimum support sq (sq ≥ s) and a minimum confidence confq. 
OUTPUT: A set of association rules satisfying the mining request q. 
Phase 1: Generation of candidate itemsets: 
STEP 1: Set C = φ and Match_Trans = 0, where C is a lattice used to maintain the set of candidate itemsets 

and Match_Trans is a variable used to keep the total number of transactions in the matched tuples 
which have been processed. 

STEP 2: Initialize two equal-sized hash tables HT1 and HT2 with all the bucket values being zero. 
STEP 3: For each tuple t in EMPR, do the following substeps: 
 STEP 3-1: If t satisfies cxq, put it into the matched set and do STEP 3-2; otherwise, repeat STEP 3 

to process the next tuple. 
 STEP 3-2: For each itemset x ∈ t.fps, if x ∉ C and t.sx ≥ sq, set HT1[h(x)] = HT1[h(x)] + 1, insert x 

into C with appearing
xCount = 0 and UB

xCount  = 0, and add edges to its parents and 

children, where HT1[h(x)] denotes the value stored in the bucket corresponding to the 
hash value h(x) of x in HT1. 

STEP 4: For each tuple t in the matched set, do the following substeps: 
 STEP 4-1: Set ProcessedSet = φ, where ProcessedSet is a set used to keep the itemsets in C which 

have been processed. 
 STEP 4-2: Restore the bucket values in HT2 to those in HT1 and set Match_Trans = Match_Trans 

+ t.trans. 
 STEP 4-3: Select an itemset x with the smallest support t.sx from t. 

 STEP 4-4: If HT2[h(x)] ≠ 0 and x ∈ C, set appearing
xCount  = appearing

xCount  + t.trans * t.sx, 

HT2[h(x)] = HT2[h(x)] − 1, ProcessedSet = ProcessedSet ∪ {x}, and do STEP 4-5; 
otherwise, do nothing and go to STEP 4-6. 

 STEP 4-5: For each itemset y in the proper superset of x in C and y ∉ ProcessedSet, set 
UB

yCount  = UB

yCount + min(t.trans * s − 1, t.trans * t.sx), HT2[h(y)] = HT2[h(y)] − 1, 

and ProcessedSet = ProcessedSet ∪ {y}. 
 STEP 4-6: Repeat STEPs 4-3 and 4-4 until all itemsets in t are processed. 
Phase 2: Reduction of candidate itemsets: 
STEP 5: Set k = 1, where k is used to keep the number of items in a candidate itemset currently being 

processed. 
STEP 6: For each itemset x ∈ Ck, do the following substeps: 

 STEP 6-1: Calculate the upper-bound support UB

xs  by the formula: 

UB

xs =
Trans_Match

CountCount UB
x

appearing
x + . 

 STEP 6-2: If 
UB

xs < sq, set C = C − {y | y ∈ C and x ⊆ y}. 

 STEP 6-3: If UB

xs =
Trans_Match

Countappearing
x  and UB

xs  ≥ sq, then set L = L ∪ {x} and C = C − {x}. 

STEP 7: Set k = k + 1. 
STEP 8: Repeat STEPs 6 and 7 until all candidate itemsets are processed. 
Phase 3: Generation of association rules: 
STEP 9: For each x ∈ C, re-process each underlying block of data Di for tuple ti in which x does not appear 

to get appearing
xCount , and then calculate the actual support of x by the following formula: 

sx =
TransMatch

CountCount appearing
x

appearing
x

_

+ . 
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STEP 10: If sx < sq, then set C = C − {x}; otherwise, set L = L ∪ {x} and C = C − {x}. 
STEP 11:  Derive the association rules satisfying confq from the set of large itemsets L. 

7   Experiments 

The experiments were conducted in Java on a workstation with dual XEON 2.8GHz 
processors and 2048MB main memory, running the RedHat 9.0 operating system. 
Several synthetic datasets were used. The synthetic datasets were generated by a gen-
erator similar to that used in [2]. Table 2 listed the four groups of synthetic datasets 
generated and used in our experiments. Each dataset was treated as a block of data in 
the database. For example, Group 1 contained ten blocks of data, from T20I8D100KL1 
to T20I8D100KL10, each consisting of 100000 transactions averaging 20 items and 
generated according to 400 to 490 maximal potentially large itemsets with an average 
size of 8 from a total of 200 items.  

Table 2. The four groups of synthetic dataset 

Group Size Datasets D T I L N 

1 10 
T20I8D100KL1 to 
T20I8D100KL10 

100000 20 8 400 to 490 200 

2 10 
T20I8D100KN1 to 
T20I8D100KN10 

100000 20 8 400 200 to 290 

3 5 
T10I8D500KL1 to 
T10I8D500KL5 

500000 10 8 400 to 560 200 

4 5 
T10I8D500KN1 to 
T10I8D500KN5 

500000 10 8 400 200 to 360 

 
An EMPR was first derived from each group of synthetic datasets. These are sum-

marized in Table 3. 

Table 3. Mining information for the four groups 

Group Initial minimum 
support 

Average length of maxi-
mal large itemsets 

Average size of 
large itemsets 

Average size of 
negative itemsets  

1 2% 9 12127 55625 
2 2% 11 18534 49318 
3 2% 5 799 11899 
4 2% 8 869 14488 

 

For showing the influence of the number of negative itemsets on execution time, 
the NOM algorithms using no negative itemsets (NOM(0)) and all negative itemsets 
(NOM(A)) from the stored negative pattern sets in the EMPR were run. Fig. 1(a) to 
Fig. 1(d) shows the execution times for the two NOM algorithms on Groups 1 to 4, 
where the query support is set at 2.4%. For Group 1, most candidate itemsets ap-
peared in nearly all tuples in EMPR such that the negative itemsets provided little 
help in calculating counts of candidates. This can be easily seen from Fig. 1(a) that 
the execution time by NOM(0) was less than that by NOM(A). For Group 2, most 
candidate itemsets appeared in only one or few tuples in EMPR. The effect of nega-
tive itemsets on finding tight upper-bound supports thus become apparent. However, 
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since the computation cost in Phase 1 was much larger than that in Phase 3, the execu-
tion time by NOM(0) was still less than that by NOM(A) as shown in Fig. 1(b). Even 
so, it can be observed from Fig. 1(c) and Fig. 1(d) that NOM(0) did not always outper-
form NOM(A) for Groups 3 and 4, This phenomena is especially when the size of 
candidate itemsets is small and the size of underlying data is large. 
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Fig. 1. The influence of the number of negative itemsets on execution time of the NOM algo-
rithm for Groups 1 to 4 
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Fig. 2. Execution times spent by the NOM and LNOM algorithms on Groups 1 to 2 

The performance of the NOM algorithm with a direct hashing function was then 
evaluated. Let NOM(AH) denote running NOM(A) with a direct hashing function. 
The execution times on Groups 1 to 2 are shown in Fig. 2(a) and Fig. 2(b), where the 
query support is set at 2.4% and the size of the hash table is about 10K. It can be eas-
ily seen that the computation time in Phase 1 of the NOM algorithm can be efficiently 
reduced by the hashing technique. Next, experiments were made to show the effect of 
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using the lattice data structure on the NOM algorithm. The execution time of the 
NOM algorithm was compared with that of the LNOM algorithm with and without a 
direct hashing function. The query support is set at 2.4% and the size of the hash table 
is about 10K. The results for Groups 1 to 2 are also shown in Fig. 2(a) and Fig. 2(b), 
where LNOM(A) and LNOM(AH) respectively denote running LNOM algorithm with 
and without a direct hashing function. It is easily seen that the execution time by the 
LNOM algorithm was always much less than that by the NOM algorithm. 

8   Conclusion 

For providing ad-hoc, query-driven and online mining supports, the NOM approach 
utilized three phases to acquire interesting association rules by aggregating related 
mining information from EMPR. In Phase 1, for each candidate itemset, the NOM 
approach needs to find its smallest-support subset from the information of itemsets 
kept in each related mining information to calculate its appearing count or its upper-
bound count. When the candidate itemsets are processed one by one, this cost is con-
siderably tremendous. For overcoming this problem, in this paper, we have developed 
a lattice-based NOM (LNOM) approach to consider candidate itemsets with the same 
proper subset at the same time, and utilized the hashing technique to reduce the num-
ber of itemsets kept in the matched tuples to be considered. 
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Abstract. Measuring the similarity for categorical data is a challeng-
ing task in data mining due to the poor structure of categorical data.
This paper presents a dissimilarity measure for categorical data based
on the relations among attributes. This measure not only has the advan-
tage of value variance but also overcomes the limitations of condition the
probability-based measure when applied to databases whose attributes
are independent. Experiments with 30 databases also showed that the
proposed measure boosted the accuracy of Nearest Neighbor classifica-
tion in comparison with other tested measures.

1 Introduction

The most common similarity measures for categorical data are binary vector-
based methods ([1] and references therein). These methods transform each data
object into a binary vector, at which each bit indicates the presence or ab-
sence of a possible attribute value. Then the similarity between two objects is
estimated by the similarity between two corresponding binary vectors. These
methods contain two main drawbacks: (1) the transformation of data objects
into binary vectors may leave out many subtleties of the data; (2) they do not
consider the correlations between attributes that typically exist in real-life data
and are potentially concerned with the difference among attribute values.

Recently, Le and Ho presented the condition probability-based measure [2]
based on relations among condition probability distributions of attributes. Their
experiments showed that the condition probability-based measure gave better
results than other tested methods. However, the method did not work properly
with databases whose attributes are likely independent.

In this paper, we propose a dissimilarity measure for categorical data based
on three main points. First, we employ the idea from text mining [3] and taxon-
omy [4] that is to weight attribute values by its frequency in databases and in
its conditional distributions. Second, the dissimilarity among weighted condition
distributions of attributes are taken into account to estimate the dissimilarity
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between categorical values. This point is inherited from [2] but we now con-
sider dissimilarity between weighted condition distributions instead of condition
probability distributions, as was used in [2]. Finally, we include the dissimi-
larity between weighted condition distributions and weighted distributions of
attributes. The intuition behind the idea is that the dissimilarity between the
weighted condition distributions conditioned on a value, and the weighted distri-
butions of attributes shows reliability when considering the weighted condition
distributions as the preventative of this value. The proposed measure overcomes
the limitations of the condition probability-based measure [2] when applied to
databases whose attributes are independent. Experiments with 30 databases also
showed that the proposed measure boosted the accuracy of Nearest Neighbor
classification [5] in comparison with the condition probability-based measure,
and the binary vector-based measures.

2 Association-Based Dissimilarity Measure

Let A1, . . . , Am be m attributes and D ⊆ dom(A1) × . . . × dom(Am) be a
database, N = |D|. Denote fr(Ai = xi) the frequency of value xi of attribute
Ai, xi ∈ dom(Ai). Also denote fr(Aj = xj |Ai = xi) the condition frequency of
value xj of attribute Aj given that attribute Ai holds value xi. Consider value
xj of an attribute Aj , its weight w(xj) can simply be defined as

w(xj) = (1 + fr(Aj = xj)/N) ∗ log2N/fr(Aj = xj)

We restrict the term weight w(xj) of value xj of attribute Aj to conditional
weight w(xj |Ai = xi) of value xj given that attribute Ai holds value xi.

w(xj |Ai = xi) =

{
0 if fr(Aj = xj |Ai = xi) = 0(
1 + fr(Aj=xj|Ai=xi)

frAi=xi

)
∗ log2

N
fr(Aj=xj)

otherwise

The intuition is that the less frequency fr(Aj = xj) in database D but more
conditional frequency fr(Aj = xj |Ai = xi), the greater the conditional weight
w(xj |Ai = xi). This idea is commonly used in text mining([3] and references
therein) and taxonomy [4].

Denote weight vector Wj = (w(xj) : xj ∈ dom(Aj)) and W xi

j = (w(xj |Ai =
xi) : xj ∈ dom(Aj)). We can consider these vectors as approximations of weight
distribution and conditional weight distribution of values of Aj , respectively,
and called them hereafter weight distribution and conditional weight distribu-
tion of Aj . Denote Eucl(W xi

j ,W yi

j ) the Euclidean distance between these two
distributions.

Definition 1. The dissimilarity of two values xi and yi of an attribute Ai, de-
noted δ(xi, yi), is defined as

δ(xi, yi) =

⎧⎨⎩0 if xi = yi

1
m−1

∑
Aj ,Aj �=Ai

e
Eucl(W

xi
j

,W
yi
j

)

e
Eucl(Wj ,W

xi
j

)×e
Eucl(Wj ,W

yi
j

)
otherwise
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It can be seen from Definition 1 that the dissimilarity between two different
values xi and yi is based on three factors. The first one is the dissimilarity
between the conditional weight distribution W xi

j and W yi

j with the assumption
that the less dissimilar between the conditional weight distribution W xi

j of Aj

when Ai = xi, and W yi

j when Ai = yi, the less dissimilar between xi and yi.
The second (third) factor is the dissimilarity between the weight distribution Wj

of Aj , and W xi

j when Ai = xi, (W xi

j when Ai = yi) with the assumption that
the more dissimilar between Wj and W xi

j the more reliable when considering
the dissimilarity between W xi

j and W yi

j as the dissimilarity between xi and
yi. The exponential function is used with the purpose to be applicable when
dissimilarities between weight distributions are 0.

Definition 2. The dissimilarity of two objects x and y is defined as the average
dissimilarity of their attribute value pairs.

φ(x,y) =
1
m

m∑
i=1

δ(xi, yi)

3 Characteristics and Complexity

3.1 Characteristics

Proposition 1. Given any objects x and y, it holds true for

1. φ(x,y) ≥ 0
2. φ(x,y) = 0 if and only if x = y
3. φ(x,y) = φ(y,x)

Let J be Jaccard similarity measure J(x,y) = a
m where a is the number of

identical value pairs of x and y.

Proposition 2. If m attributes A1, . . . , Am are all independent of each other,
then φ = 1− J .

Hence, φ(.) can be applied to databases whose attributes are absolutely inde-
pendent. This overcomes the limitations of measures based on relations among
attributes, the condition probability-based measures [2].

3.2 Algorithm and Complexity

Now we present a three-step algorithm to measure the dissimilarities of all pairs
of data objects of a data set D. At the first step, the weighted contributions of
attributes and condition weighted contributions are estimated. Then, the dis-
similarities between value pairs are computed based on the weighted condition
contributions and the weighted contributions. Finally, dissimilarities between
data objects are determined by Definition 2. Obviously, the complexity of the
algorithm is O(nm2)+O(m3

v)+O(n2m) = O(n2m), the same as the complexity
of the condition-based dissimilarity measure [2].
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Table 1. Databases and Nearest Neighbor results

Proposed Sθ or Tθ Cond. Prob. Based
Name μ1 μ0 z μ0 z

1 audiology 75.10 74.90 0.17 64.45 7.44
2 balance-scale 64.88 64.75 0.17 46.82 22.14
3 breastda 96.55 95.89 2.24 95.97 2.00
4 cmc 45.92 43.73 3.73 46.05 -0.21
5 crxda 80.17 78.61 2.42 83.71 -5.71
6 diabetesda 73.38 73.43 -0.07 72.01 1.92
7 germanda 70.40 70.17 0.38 67.70 4.52
8 glassda 74.60 73.92 0.51 71.39 2.57
9 heartda 80.67 77.52 3.03 79.56 1.07
10 horseda 77.07 74.63 2.54 73.30 4.12
11 ionoda 93.93 93.22 1.28 91.99 3.31
12 irisda 95.10 92.77 2.91 95.10 0.01
13 isonod 93.65 93.71 -0.10 92.08 2.66
14 krkopt 41.87 37.67 33.24 46.90 -5.00
15 krvskp 93.41 90.92 13.24 89.62 17.50
16 monks 64.50 77.48 -13.92 50.39 14.16
17 page-blocksd 96.66 96.50 1.58 96.80 -1.41
18 pimada 71.90 66.34 7.72 70.83 1.51
19 primary-tumor 35.58 33.48 1.99 34.78 0.72
20 promoters 82.94 81.14 1.21 85.69 -32.72
21 sickda 96.92 96.12 5.51 97.15 -1.79
22 sonarda 80.01 79.96 0.04 78.12 1.55
23 soybeanl 92.02 91.89 0.21 91.08 1.39
24 splice 77.99 75.93 6.78 87.32 -11.03
25 ttt 100.00 81.02 58.95 98.22 16.17
26 vehicleda 71.79 69.33 3.74 69.76 2.79
27 vote 93.31 92.02 2.54 93.99 -1.38
28 waveformda 74.06 71.65 8.55 77.12 -5.71
29 yeastd 49.93 44.46 9.62 44.50 8.89
30 zoo 97.22 96.21 1.35 97.25 -0.04

Aver. acc. 78.05% 76.31% 76.32

4 Evaluations

In this section we show the merit of our approach when it is applied to real
data. To this end, we compared the proposed measure with the binary vector-
based measures of two families Sθ and Tθ [1], and the condition probability-
based measure [2]. Sθ and Tθ include most of the popular binary-based similarity
measures (see [6]). To compare similarity measures, we combined these measures
with the popular distance-based data mining method, nearest neighbor classifier
(NN), and analyze the accuracies of NN.

4.1 Methodology and Databases

We compared the accuracy of NN in combination with the proposed measure
(denoted μ1) with the accuracy of NN when combined with a similarity measure
of family Tθ or Sθ, or the condition probability-based measure (denoted by μ0)
[2], using the 10-time, 10-fold cross-validation strategy (see [6] for more detail).

To avoid bias on data selection, we used 30 data sets from UCI [7] (see
Table 1), for which numerical attributes are automatically discretized using the
data mining system CBA [8].

4.2 Results and Discussion

Table 1 shows experimental results of 30 databases including accuracies of NN
with the proposed measure (the third column), accuracies of NN with binary
based-measures and Z values when comparing with those of NN with the pro-
posed measures (the fourth and fifth columns), and accuracies of NN with con-



Association-Based Dissimilarity Measures for Categorical Data 497

ditional probability-based measure and Z values when comparing with those of
NN with the proposed measure (the last two columns).

Consider 95% significant level (Z = 1.64). As can be seen from Table 1 that,
the accuracy of NN with the proposed measure δ is higher than the accuracy
of NN with a measure of Sθ or Tθ in 17 databases and only lower than in one.
Similarly, 14 over 30 databases NN with the proposed measure δ is better than
with the conditional probability-based measure. However, we observed 6 cases
in which NN with the conditional probability-based measure outperforms NN
with the proposed measure. The number of databases for which NN with the
proposed dissimilarity measures is the most accurate is 17, while that number is
3 for a measure of Sθ or Tθ, and 9 for the condition probability-based measure.

The average accuracy of NN with the proposed measure δ over 30 databases
is 1.74% (1.73%) higher than NN with a measure of Sθ or Tθ (the condition
probability-based measure).

In a nutshell, the proposed measure boosts the accuracy of NN in comparison
with the condition probability-based measure and binary vector-based measures.
However, none of the measures outperforms completely the others.

5 Conclusion

In this paper, we presented a similarity measure for categorical data based on
relations between attributes. Experiments with a large amount of data showed
that the nearest neighbor classification using this proposed measure achieved
higher accuracy than using the condition probability-based measure and binary
vector-based methods. More importantly, the proposed method overcomes the
limitations of the condition probability-based measure when applied to databases
whose attributes are independent.
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Abstract. There are many advanced techniques that can efficiently
mine frequent itemsets using a minimum support. However, the ques-
tion that remains unanswered is whether the minimum support can really
help decision makers to make decisions. In this paper, we study four sum-
mary queries for frequent itemsets mining, namely, 1) finding a support-
average of itemsets, 2) finding a support-quantile of itemsets, 3) finding
the number of itemsets that greater/less than the support-average, i.e.,
an approximated distribution of itemsets, and 4) finding the relative fre-
quency of an itemset. With these queries, a decision maker will know
whether an itemset in question is greater/less than the support-quantile;
the distribution of itemsets; and the frequentness of an itemset. Process-
ing these summary queries is challenging, because the minimum-support
constraint cannot be used to prune infrequent itemsets.

1 Introduction

Frequent itemsets mining is one of the fundamental research topics in data mining
and is rooted in market basket analysis [Roddick&Rice 2001][Wang et al 2001].
A frequent itemset is actionable if its support is greater than or equal to a user-
specified threshold, called a minimum support, denoted τ . For example, ({beer,
diaper}, 0.15%) is a frequent itemset in a transactional dataset when τ = 0.1%.
Data marketers and decision-makers are interested in knowing how to evaluate
the frequency of an itemset, for example {beer, diaper}.

In order to provide more information sources for decision makers to effec-
tively make decisions, in this paper, we propose novel approaches to report sta-
tistical itemset parameters. We specify summary queries (statistical parameters),
namely, 1) finding a support-average of itemsets, 2) finding a support-quantile of
itemsets, 3) finding the number of itemsets that greater/less than the support-
quantile, i.e., an approximated distribution of itemsets, and 4) finding the fre-
quentness of an itemset. Taken the itemset, {beer, diaper}, as an example. We
� This research is partially supported by Australian large ARC grants (DP0449535,

DP0559536 and DP0667060), a China NSFC major research program (60496327),
and a China NSFC grant (60463003).
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can provide a decision maker the following information. The frequency of {beer,
diaper} is greater than the support-quantile. The number of itemsets that have
a support less than the support-average is more than the number of itemsets
that have a support greater than the support-average. In addition, we can also
provide a frequentness of the itemset if all frequent itemsets, their supports are
greater than τ , are normalized into a range of [0,1].

The rest of this paper is organized as follows. In Section 2, the problem state-
ment is given with an example. Section 3 reports the results of our experimental
studies. We conclude this paper in Section 4.

2 Problem Description

Let I = {x1, x2, · · · , xN} be a set of items, and N = |I|. An itemset X is a subset
of items I, X ⊆ I. Let I be the set of all possible non-empty itemsets of I. The
size of I is then 2N − 1. A transactional dataset D is a set of transactions where
a transaction is a set of items. Let the number of transactions in D that contain
an itemset X be s(X). The support of an itemset, X , is defined as sup(X) =
s(X)/|D|. An itemset X is a frequent itemset, if and only if sup(X) ≥ τ , where
τ is a threshold called a minimum support threshold.

We call an itemset, X , effective, if sup(X) > 0. Let smin and smax be the
minimum and maximum supports of all possible effective itemsets in D, respec-
tively, then smin ≤ sup(X) ≤ smax. It is important to note that smin is the
minimum value of effective itemsets in D and is different from the minimum
support threshold, τ , which is a user-given parameter.

In the literature, the problem of frequent itemsets mining is to find the com-
plete set of frequent itemsets in a given transactional dataset with respect to a
given support threshold, τ . In this paper, we do not discuss how to efficiently
mine frequent itemsets. Instead, we focus ourselves on how to efficiently answer
the summary queries. Let N be the number of effective itemsets existing in a
transactional dataset D. Four summary queries are given below.

Support-average query: We consider how to find the average of supports for
all effective itemsets, X , in D, which is defined below.

savg =

∑
X∈I

sup(X)

N (1)

Note: the minimum support threshold τ is not used.

Support-quantile query: Let IS be the set of itemsets in dataset D. For any
itemset A in IS, assume

IS+
A = {x|x ∈ IS ∧ supp(x) ≥ supp(A)}

and
IS−

A = {x|x ∈ IS ∧ supp(x) < supp(A)}
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It is commonsense that an itemset B is frequent (or large) in D if |IS+
B |

|IS| < 1
2 .

This means that if B is frequent in D, then the support of most itemsets in IS is
lesser than that of B. We take this as the first support constraint of frequent
itemsets.

From this first constraint, there is a support quantile, written to squan, such
that IS−

squan ≈ IS+
squan, where

IS+
quan = {x|x ∈ IS ∧ supp(x) > squan}

and
IS−

quan = {x|x ∈ IS ∧ supp(x) ≤ squan}
That is,

squan = sup(A), when
|IS+

sup(A)|
|IS−

sup(A)

≈ 1 (2)

Support-lean query: We consider a distribution of all effective itemsets in
D, called an itemset distribution. In an itemset distribution for a transactional
dataset D, the x-axis represents supports in the range of smin and smax, and
the y-axis shows the number of effective itemsets that have the corresponding
support given in the x-axis. The median of supports in the x-axis is (smin +
smax)/2. We want to know the position of savg in the itemset distribution, and
introduce a notion called lean, denoted L.

L =
L− − L+

N (3)

where, L− is the number of effective itemsets, X ∈ I, whose support is less than
savg in the transactional dataset D, and L+ is the number of effective itemsets,
X ∈ D, whose support is greater than savg in the transactional dataset D.

In other words, when L− = L+, L = 0 and savg = squan; when L− > L+,
L > 0 and savg > squan; and when L− < L+, L < 0 and savg < squan. We
call the itemsets distribution of D left gradient when L > 0, and right gradient
when L < 0, respectively. Like the support-average and support-quantile queries,
support-lean query is irrelevant to τ .

Relative-support query: We consider a relative frequency query with respect
to a minimum support threshold. In detail, given a minimum threshold, τ , we
can find all frequent itemsets, X , τ ≤ sup(X) ≤ smax. If we take sup(X) = 0 for
those itemsets, X , such as sup(X) < τ , and take sup(X) = 1 for those itemsets,
X , such as sup(X) = smax, what is the relative minimum support sup(X), for
any itemsets X found in between. In other words, it normalizes the supports
of itemsets in [τ, smax] onto [0, 1]. We model it as δ(X, τ). Here, δ(X, τ) = 0 if
sup(X) < τ , δ(X, τ) = 1 if sup(X) = smax, and any δ(X, τ) is between 0 and 1.

Example 1. Let I = {a, b, c, d, e}. Suppose there is a transactional dataset with
5 transactions, D = {(a, b, d), (b, c), (b, d), (b, c, d, e), (a, d)}. Among all
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25− 1 itemsets, there are 19 effective itemsets, namely, {a, b, c, d, e, ab, ad, bc,
bd, be, cd, ce, de, abd, bcd, bce, bde, cde, bcde}. The minimum and maximum
support, smin and smax, are 0.2 (the support of bcde), and 0.8 (the support of
d), respectively. Note: the set of non-effective itemsets, for example, includes ae,
because sup(ae) = 0. Here, savg = (31/5)/19 = 0.33 and squan = sup(e) = 0.2.
Because L = (12−7)/19, the transactional dataset is left gradient. It implies that
more itemsets have a support less than the support-average value savg = 0.33.

The problems of processing the above four summary queries are important,
because they provide global information for users to understand the transac-
tional dataset to be mined and to select a proper minimum support threshold to
mine. The problems are also challenging, because the computation costs are high.
For example, the first three, support-average, support-quantile and support-lean
queries, do not use the minimum-support threshold, τ . Therefore, the pruning
techniques used in frequent itemsets mining can not be effectively used. The last
requests high computational overhead after frequent itemsets mining. In this pa-
per, we emphasize on approximations for the three summary queries (see next
section for the efficiency).

3 Experimental Studies

We evaluate our testing results using a relative error rate, ε, such as ε = Ê −
E)/E, where E is the true value and Ê is the approximated value.

Fig. 1. Itemset distribution in TDB1 and its sample D1

We use a real dataset taken from UCI/CENSUS-INCOME, denoted TDB1.
The number of transactions in TDB1 is 32,562, and the number of items is 104.
We selected 9 attributes (2, 4, 6-10, 14, 15) from TDB1. The average size of
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frequent itemsets is 6. We take a simple, D1, where |D1| = 1, 612. The sample
size is 5% of the real dataset.

We use the sample D1 to approximate the itemset distribution in TDB1.
We show the itemset distribution in Fig. 1 using four subfigures where the

itemsets with support less than 2 are omitted. Here, for simplicity, we use the
actual count, s(X), instead of the support sup(X) for an itemset X . Fig. 1
(a), (b), (c) and (c) show the count ranges in 2-9, 10-40, 40-79, and 80-250,
respectively.

Fig. 2. Itemset distribution in TDB2 and its sample D2

4 Conclusion

We have considered four summary queries, and we provide approximation solu-
tions. The new techniques proposed unleash the power of frequent itemsets by
providing useful statistical parameters. As shown in our experimental studies,
our approximation solutions can achieve high satisfactory level for answering the
four summary queries efficiently.
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Abstract. Mining frequent itemset using bit-vector representation approach is 
very efficient for small dense datasets, but highly inefficient for sparse datasets 
due to lack of any efficient bit-vector projection technique. In this paper we 
present a novel efficient bit-vector projection technique, for sparse and dense 
datasets. We also present a new frequent itemset mining algorithm Ramp (Real 
Algorithm for Mining Patterns) using bit-vector representation approach and 
our bit-vector projection technique. The performance of the Ramp is compared 
with the current best frequent itemset mining algorithms. Different experimen-
tal results on sparse datasets show that mining frequent itemset using Ramp is 
faster than the current best algorithms. 

1   Introduction 

Association rules mining introduced by Agrawal [1], has now become one of main 
pillar of data mining and knowledge discovery tasks, and it is successfully applied in 
sequential pattern mining, emerging pattern mining, multidimensional pattern mining, 
classification, maximal and closed pattern mining. Using the support-confidence 
framework, the problem of mining the complete association rules from transactional 
dataset is divided into two parts – (a) finding frequent itemsets, and (b) generating 
association rules from frequent itemsets. Among them part (a) is considered to be the 
most time consuming process, requires heaviest frequency counting operation for 
each itemset.  

As indicated in [8], MAFIA a maximal itemset mining algorithm [3] (using bit-
vector representation approach) is considered to be most efficient algorithm for small 
dense dataset mining. The main components of MAFIA are its traversal of search 
space by depth first search, filtering infrequent items from node’s tail by dynamic 
reordering [3] and frequent items representation using vertical bit-vectors. To check 
the frequency (support) of itemsets it performs a bitwise-AND (bitwise-∧) operation 
on head and tail item bit-vectors regions. Since 32-bit CPU supports 32-bit ∧ per 
operation, hence each region of item bit-vector is composed of 32-bits (represents 32 
transactions). Calculating frequency using bit-vectors is efficient when the dataset is 
dense, but highly inefficient when the items bit-vectors contain more zeros than ones, 
resulting in many useless counting operations, which usually happens in the case of 
sparse datasets. To handle the bit-vectors sparseness problem, MAFIA proposed a bit-
vector projection technique known as projected bitmap. The main deficiency of pro-
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jection using projected bitmap technique is that, it requires a high processing cost 
(time) for its creation. Due to this reason, MAFIA used adaptive compression [4], 
since projection is done only when saving from the compressed bitmaps outweigh the 
cost of projection. However, with adaptive compression, projection cannot be possible 
on all nodes of search space. 

In this paper we present a novel bit-vector projection technique, we call it Pro-
jected-Bit-Regions (PBR) bit-vector projection technique and its implementation 
Ramp (itemset mining algorithm). The main advantages of projection using PBR are 
that – (a) it consumes a very small processing cost and memory space for projection, 
and (b) it can be easily applied on all nodes of search space without requiring any 
adaptive approach. In section 2.2 to 2.4 we present some efficient implementation 
techniques for Ramp, which we experienced in our implementation. Our different 
experimental results on sparse dataset suggest that mining frequent itemset using 
Ramp is faster than the current best algorithms which marked good scores on FIMI03 
and FIMI04 [7]: fpgrowth-zhu [6], AFOPT [8], PatriciaMine [10], AIM [5], MAFIA 
[3], fpgrowth-borgelt, Eclat-borgelt [2], Apriori-borgelt [2]. This shows the effective-
ness of our PBR bit-vector projection technique. 

2   Bit-Vector Projection with PBR (Projected-Bit-Regions) 

For efficient projection of bit-vectors, the goal of projection should be such as, to 
bitwise-∧ only those regions of head bit-vector bitmap(head)  with tail item X bit-
vector bitmap(X)  which contains a value greater than zero and skip all others. Obvi-
ously for doing this, our counting procedure must be so powerful and have some in-
formation which guides it, that which regions are important and which ones it can 
skip. To achieve this goal, we propose a novel bit-vector projection technique PBR 
(Projected-Bit-Regions). With projection using PBR, each node Y of search space 
contains an array of valid region indexes PBR Y  which guide the frequency counting 
procedure to traverse only those regions which contain an index in array and skip all 
other.  Figure 1 show the code of itemset frequency calculation using PBR technique. 
As clear from Figure 1, line 2 first retrieves a valid region index  in bitmap (head)  
and line 3 apply a bitwise-∧ on bitmap (head)  with bitmap (X)  on region . 

One main advantage of bit-vector projection using PBR is that, it consumes a very 
small processing cost for its creation, thereby can be easily applied on all nodes of 
search space. At any node, projection of child nodes can be created either at the time 
of frequency calculation if pure depth first search is used, or at the time of creating 
head bit-vector if dynamic reordering is used. The strategy of creating PBR X  at node 
n for each tail item X is that, when the PBR of bitmap(n)  are bitwise-∧ with bit-
map(X)  a simple check is perform on each bitwise-∧ result. If the value of result is 
greater than zero, then an index is allocated in PBR n.head ∪ X . The set of all indexes 
which contain a value greater than zero makes the projection of {head ∪ X} node.  

2.1   Ramp: Itemset Mining Algorithm  

The basic strategy of Ramp for mining frequent itemset is that, it traverses search 
space in depth first order. At any node n, infrequent items from tail are removed by 
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dynamic reordering and new node m for every tail item X in tail n, is generated such 
as m.head = n ∪ X and m.tail = n.tail – X. Items in m.tail are reordered by increasing 
support which keeps the search space as small as possible. For frequency counting, 
item X bit-vector is bitwise-∧ with n.head bit-vector on PBR n . The pseudo code of 
Ramp is described in Figure 1. 
 

 

Fig. 1. Pseudo code of Ramp for mining all frequent itemset 

2.2   Increasing Projected Bit-Regions Density 

The bit-vector projection technique described in section 2 does not provide any com-
paction or compression mechanism to increase the density in bit-vector regions. As a 
result, on the sparse dataset only one or two bits are set in each bit-vector region, 
which not only increase the projection length but also it is not possible to achieve true 
32bit CPU performance. To increase the density in bit-vector regions the Ramp starts 
with an array-list [9]. Next at root node, a bit-vector representation for each frequent 
item is created which provide a sufficient compression and compaction in bit-vectors 
regions. Sufficient improvements are obtained in Ramp by using this approach. 

2.3   2-Itemset Pair 

There are two methods to check whether current itemset is frequent or infrequent – (a) 
to directly compute its frequency from its PBR (b) by 2-Itemset pair. If any 2-Itemset 
pair of any itemset is found infrequent, then by following Apriori [1] property itemset 
is consider to be as infrequent. In AIM [5] almost the same approach was used with 
the name efficient initialization. However AIM used this approach only for those 
itemsets which contain a length equal to two. In Ramp we extend the basic approach 
and apply 2-Itemset pair approach also on those itemsets which contain a length more 
than two. We know any itemset which contains a length more than two, is the superset 
of its entire 2-Itemset pairs. Before counting its frequency from TDB, Ramp checks its 

Ramp (Node n) 
(1) for each item X in n.tail 
(2)      for each region index  in PBR  n  
(3)             AND-result  = bit-vector[ ] ∧  head-bit-vector of n [ ] 
(4)                   support[X] = support[X] + number of ones(AND-result) 
(5) remove infrequent items from n.tail, reorder them by increasing support 
(6) for each item X in n.tail 
(7)          m.head = n.head ∪ X 
(8)          m.tail = n.tail – X 
(9)          for each region index  in PBR  n  
(10)             AND-result = bit-vector[ ] ∧  head-bit-vector[ ] 
(11)                   if AND-result  > 0  
(12)                        insert  in PBR  m  
(13)                        head bit-vector of m [ ] = AND-result                      
(14)         Ramp (m) 
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2-Itemset pairs. If any pair is found infrequent then that itemset is automatically con-
sidered to be infrequent  

2.4   Writing Frequent Itemsets to Output File 

When the dataset is dense and contains millions of frequent itemsets on low support 
threshold, almost 90% of overall mining time is spent on writing frequent itemsets to 
output file. We have noted hat some of previous implementations e.g. AFOPT [8], 
PatriciaMine [10], fpgrowth-zhu [6] write output itemsets one by one, which increases 
the context switch and disk rotation times and degrades their algorithm performance. 
A better approach which we use in Ramp is to write itemsets to output file only when 
a sufficient number of itemsets are mined in memory. In Ramp we find that, writing 
itemsets using this approach sufficiently decreases the processing time of algorithm.  

3   Computation Experiments 

The implementation of Ramp-all is coded in C language, and the experiments are 
done on Pentium4 3.2 GHz CPU with 512MB memory. The performance measure is 
the execution time of the algorithms datasets with different support thresholds on two 
benchmark datasets (available at http://fimi.cs.helsinki.fi/data/). Figures 2 and 3 show 
the performance curves of all algorithms. As we can see from Figures, the Ramp-all 
outperforms the other algorithms on almost all support level thresholds, and gives 
global best performance. The performance improvements of Ramp-all over other 
algorithms are significant at low support thresholds. 
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4   Conclusion 

Mining frequent itemset using bit-vector representation approach is very efficient for 
dense datasets, but highly inefficient for sparse datasets due to lack of any efficient 
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bit-vector projection technique. In this paper we present a novel efficient bit-vector 
projection technique, which is better than the previous projected bitmap projection 
technique. The main advantages of our bit-vector projection technique are that, it does 
not require any rebuilding threshold or does not depend on any adaptive approach for 
projection, and can be easily applicable on all nodes of search space. We also present 
a new frequent itemset mining algorithm Ramp using our bit-vector projection tech-
nique. Different experiments on benchmark datasets show that Ramp is faster than the 
current best frequent itemset algorithms, which show the effectiveness of our bit-
vector projection technique. 
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Abstract. In this paper, we present an evaluation of novel rule eval-
uation support method for post-processing of mined results with rule
evaluation models based on objective indices. Post-processing of mined
results is one of the key issues in a data mining process. However, it is dif-
ficult for human experts to evaluate many thousands of rules from a large
dataset with noises completely. To reduce the costs of rule evaluation
task, we have developed the rule evaluation support method with rule
evaluation models, which are obtained with objective indices of mined
classification rules and evaluations of a human expert for each rule. To
evaluate performances of learning algorithms for constructing rule eval-
uation models, we have done a case study on the meningitis data mining
as an actual problem. Furthermore, we have also evaluated our method
on four rulesets from the four kinds of UCI datasets.

1 Introduction

In recent years, huge data are easily stored on information systems in natural sci-
ence, social science and business domains, developing information technologies.
With these huge data, people hope to utilize them for their purposes. Besides,
data mining techniques have been widely known as a process for utilizing stored
data on database systems, combining different kinds of technologies such as
database technologies, statistical methods and machine learning methods. Es-
pecially, IF-THEN rules, which are produced by rule induction algorithms, are
discussed as one of highly usable and readable output of data mining. However,
to large dataset with hundreds attributes including noises, the process often ob-
tains many thousands of rules. From such huge rule set, it is difficult for human
experts to find out valuable knowledge which are rarely included in the rule set.

To support such a rule selection, many efforts have done using objective rule
evaluation indices such as recall, precision, and other interestingness measure-
ments (we call them ‘objective indices’ later). However, it is also difficult to

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 509–519, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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estimate a criterion of a human expert with single objective rule evaluation in-
dex, because his/her subjective criterion such as interestingness and importance
for his/her purpose is influenced by the amount of his/her knowledge and/or a
passage of time.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In Section 3, we describe the rule evaluation model construction method
based on objective indices. Then we present a performance comparison of learn-
ing algorithms for constructing rule evaluation models in Section 4. With the
results of the comparison, we discuss about the availability of our rule evaluation
model construction approach.

2 Related Work

Many efforts have done to select valuable rules from mined large rule set based
on objective rule evaluation indexes. Some of these works suggest the indexes to
discover interesting rules from such a large amount of rules.

Focusing on interesting rule selection with objective indexes, researchers have
developed more than forty objective indexes based on number of instances,
probability, statistics values, information quantity, distance of rules or their at-
tributes, and complexity of a rule[11, 21, 23]. Most of these indexes are used to
remove meaningless rules rather than to discover really interesting ones for a
human expert, because they can not include domain knowledge. In contrast, a
dozen of subjective indexes estimate how a rule fits with a belief, a bias or a
rule template formulated beforehand by a human expert. Although these sub-
jective indexes are useful to discover really interesting rules to some extent due
to their built-in domain knowledge, they depend on the precondition that a hu-
man expert is able to clearly formulate his/her interest. Although interestingness
indexes were verified their availabilities on each suggested domain, nobody has
validated their availabilities on the other domains or/and characteristics related
to the background of a given dataset.

Ohsaki et. al[15] investigated the relation between objective indexes and real
human interests, taking real data mining results and their human evaluations.
In this work, the comparison shows that it is difficult to predict real human
interests with a single objective index. Based on the result, they indicated the
possibility of logical combination of the objective indexes to predict real human
interests more exactly.

3 Rule Evaluation Support with Rule Evaluation Model
Based on Objective Indices

We considered the process of modeling rule evaluations of human experts as the
process to clear up relationships between the human evaluations and features



Evaluating a Rule Evaluation Support Method 511

Mined Rules

Calculating Objective
Rule Index Values

Rule ID Accuracy Recall ... Human Expert

Training dataset
for a rule 
evaluation model

1

2

0.85

0.90

0.14

0.65

Interesting

Evaluation labels
for each rule

Not Interesting

...

...
...

n 0.59 0.01 Not Understandable...

A Rule Evaluation Model

Learning Algorithm

Training Phase: Prediction Phase:

Dataset for
Mining

New Mined Rules

Calculating Objective
Rule Index Values

Rule ID Accuracy Recall ...

Test dataset
for the rule 
evaluation model

new1

new2

0.75

0.88

0.24

0.56

...

...
...

new n 0.95 0.32 ...

New Dataset
 for Mining

Human Expert

Human Expert
Unknown

Unknown

Unkown

Display with
the predictions

Human
Expert

Predicting rule evaluations
with learned rule evaluation
model

The Rule Evaluation Model

Fig. 1. Overview of the construction method of rule evaluation models

of input if-then rules. With this consideration, we decided that the process of
rule evaluation model construction can be implemented as a learning task. Fig.1
shows the process of rule evaluation model construction based on re-use of human
evaluations and objective indices for each mined rule.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices such as recall, precision and other rule evaluation values.
The human evaluations for each rule are joined as class of each instance. To
obtain this data set, a human expert has to evaluate the whole or part of input
rules at least once. After obtaining the training data set, its rule evaluation
model is constructed by a learning algorithm. At the prediction phase, a human
expert receives predictions for new rules based on their values of the objective
indices. Since the task of rule evaluation models is a prediction, we need to
choose a learning algorithm with higher accuracy as same as current classification
problems.

4 Performance Comparisons of Learning Algorithms for
Rule Model Construction

To predict human evaluation labels of a new rule based on objective indices
more exactly, we have to construct a rule evaluation model, which has higher
predictive accuracy.

In this section, we firstly present the result of an empirical evaluation with
the dataset from the result of a meningitis data mining[9]. Then to confirm
the performance of our approach on the other datasets, we evaluated the five
algorithms on four rule sets from four kinds of UCI benchmark datasets [10].
With the experimental results, we discuss about the following three view points:
accuracies of rule evaluation models, analyzing learning curves of the learning
algorithms, and contents of learned rule evaluation models.

As an evaluation of accuracies of rule evaluation models, we have compared
predictive accuracies on the whole dataset and Leave-One-Out. The accuracy of a
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Table 1. The objective rule evaluation indices for classification rules used in this
research. P: Probability of the antecedent and/or consequent of a rule. S: Statistical
variable based on P. I: Information of the antecedent and/or consequent of a rule.
N: Number of instances included in the antecedent and/or consequent of a rule. D:
Distance of a rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverrage(Coverage), Prevalence(Prevalence)

Precision(Precision), Recall(Recall)
Suppurt(Support), Specificity(Specificity)
Accuracy(Accuracy), Lift(Lift)
Leverage(Leverage), Added Value(Added Value)[21]
Klösgen’s Interestingness(KI)[14], Relative Risk(RR)[1]
Brin’s Interest(BI)[2], Brin’s Conviction(BC)[2]
Certainty Factor(CF)[21], Jaccard Coefficient(Jaccard)[21]
F-Measure(F-M)[19], Odds Ratio(OR)[21]
Yule’s Q(YuleQ)[21], Yule’s Y(YuleY)[21]
Kappa(Kappa)[21], Collective Strength(CST)[21]
Gray andOrlowska’s Interestingness weighting Dependency(GOI)[7]
Gini Gain(Gini)[21], Credibility(Credibility)[8]

S χ2 Measure for One Quadrant(χ2-M1)[6]
χ2 Measure for Four Quadrant(χ2-M4)[6]

I J-Measure(J-M)[20], K-Measure(K-M)[15]
Mutual Information(MI)[21]
Yao and Liu’s Interestingness 1 based on one-way support(YLI1)[23]
Yao and Liu’s Interestingness 2 based on two-way support(YLI2)[23]
Yao and Zhong’s Interestingness(YZI)[23]

N Cosine Similarity(CSI)[21], Laplace Correction(LC)[21]
φ Coefficient(φ)[21], Piatetsky-Shapiro’s Interestingness(PSI)[16]

D Gago and Bento’s Interestingness(GBI)[5]
Peculiarity(Peculiarity)[24]

validation dataset D is calculated with correctly predicted instances Correct(D)
as Acc(D) = (Correct(D)/|D|) × 100, where |D| means the size of the dataset.
Recalls of class i on a validation dataset is calculated with correctly predicted
instances about the class Correct(Di) as Recall(Di) = (Correct(Di)/|Di|) ×
100, where |Di| means the size of instances with class i. Also the precision of
class i is calculated with the size of instances predicted i as Precision(Di) =
(Correct(Di)/Predicted(Di))× 100.

As for learning curves, we obtained learning curves about accuracies to the
whole training dataset to evaluate whether each learning algorithm can perform
in early stage of a process of rule evaluations. Accuracies from randomly sub-
sampled training datasets are averaged with 10 times trials on each percentage
of subset.

Looking at elements of the rule evaluation models on the meningitis data
mining result, we consider the characteristics of objective indices, which are
used in these rule evaluation models.

To construct a dataset to learn a rule evaluation model, values of objective
indices have been calculated for each rule, taking 39 objective indices as shown in
Table1. Thus each dataset for each rule set has the same number of instances as
the rule set. Each instance consists of 40 attributes including the class attribute.

To these dataset, we applied five learning algorithms to compare their perfor-
mance as a rule evaluation model construction method. We used the following
learning algorithms from Weka[22]: C4.5 decision tree learner[18] called J4.8,
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neural network learner with back propagation (BPNN)[12], support vector ma-
chines (SVM)1[17], classification via linear regressions (CLR)2[3], and OneR[13].

4.1 Constructing Rule Evaluation Models on an Actual Datamining
Result

In this case study, we have taken 244 rules, which are mined from six dataset
about six kinds of diagnostic problems as shown in Table2. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction al-
gorithm composed by a constructive meta-learning system called CAMLET[9].
For each rule, we labeled three evaluations (I:Interesting, NI:Not-Interesting,
NU:Not-Understandable), according to evaluation comments from a medical
expert.

Table 2. Description of the meningitis datasets and their datamining results

Dataset #Attributes #Class #Mined rules #’I’ rules #’NI’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9

Comparison on Classification Performances. In this section, we show the
result of the comparisons of accuracies on the whole dataset, recall of each class
label, and precisions of each class label. Since Leave-One-Out holds just one test
instance and remains as the training dataset repeatedly for each instance of a
given dataset, we can evaluate the performance of a learning algorithm to a new
dataset without any ambiguity.

The results of the performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table3. All
of the accuracies, Recalls of I and NI, and Precisions of I and NI are higher than
predicting default labels.

Comparing with the accuracy of OneR, the other learning algorithms achieve
equal or higher performance with combination of multiple objective indices than
sorting with single objective index. Looking at Recall values on class I, BPNN
have achieved the highest performance. As for the other algorithms, they show
lower performance than OneR, because they have tended to be learned classifi-
cation patterns for the major class NI.

The accuracies of Leave-One-Out shows robustness of each learning algorithm.
These learning algorithms have achieved from 75.8% to 81.9%. However, these

1 The kernel function was set up polynomial kernel.
2 We set up the elimination of collinear attributes and the model selection with greedy

search based on Akaike Information Metric.
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Table 3. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms

On the whole training dataset Leave-One-Out
Recall of Precision of Recall of Precision of

Acc. I NI NU I NI NU Acc. I NI NU I NI NU
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0

learning algorithms have not been able to classify the instances with class NU,
because it is difficult to predict a minor class label in this dataset.

Learning Curves of the Learning Algorithms. Since the rule evaluation
model construction method needs evaluations of mined rules by a human ex-
pert, we have investigated learning curves of each learning algorithm to estimate
minimum training subset to construct a valid rule evaluation model. The upper
table in Fig.2 shows accuracies to the whole training dataset with each subset of
training dataset. The percentages of achievements for each learning algorithm,
comparing with the accuracy with the whole dataset, are shown in the lower
chart of Fig.2.

As shown in these results, SVM and CLR, which learn hype-planes, achieves
grater than 95% with only less than 10% of training subset. Although decision
tree learner and BPNN could learn better classifier to the whole dataset than
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IF                                 YLI1 < 0.02 THEN  "I"
IF  YLI1 >= 0.02  and  YLI1 < 0.29  THEN  "NI"
IF  YLI1 >= 0.29  and  YLI1 < 0.43  THEN  "I"
IF  YLI1 >= 0.43  and  YLI1 < 0.44  THEN  "NI"
IF  YLI1 >= 0.44  and  YLI1 < 0.55  THEN  "I"
IF  YLI1 >= 0.55  and  YLI1 < 0.63  THEN  "NI"
IF  YLI1 >= 0.63  and  YLI1 < 0.83  THEN  "I"
IF  YLI1 >= 0.83                              THEN  "NI"

NU =
      0.6202 * Specificity +
      0.6224 * Accuracy +
     -1.1384 * Leverage +
     -0.6895 * RelativeRisk +
      0.3704 * CertaintyFactor +
      0.5722 * OddsRatio +
      0.7656 * BI +
     -0.222  * Credibility +
     -0.3941 * LaplaceCorrection +
      0.7986 * GiniGain +
     -0.0966 * GBI +
     -0.8895

NI =
      1.7173 * Precision +
     -0.5063 * Accuracy +
      0.5673 * RelativeRisk +
     -1.2718 * CertaintyFactor +
      0.5955 * YulesQ +
     -0.4609 * K-Measure +
      0.4613 * PSI +
     -0.4181 * Peculiarity +
      0.5302

I =
     -1.4417 * Precision +
     -0.7286 * Specificity +
      0.4085 * Lift +
      0.6297 * CertaintyFactor +
     -1.4477 * CollectiveStrength +
      1.5449 * GiniGain +
     -0.5318 * PSI +
      0.4981 * Peculiarity +
      1.4872

(a)
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Fig. 3. Learned models to the meningitis data mining result dataset

these hyper-plane learners, they need more training instances to learn accurate
classifiers.

To eliminate known ordinary knowledge from large rule set, it is needed to
classify non-interesting rules correctly. The right upper table in Fig.2 shows
percentages of recalls on NI. The right lower chart in Fig.2 also shows the per-
centages of achievements on recall of NI, comparing with the recall of NI on
the whole training dataset. Looking at this result, we can eliminate NI rules
with rule evaluation models from SVM and BPNN even if there is only 10% of
rule evaluations by a human expert. This is guaranteed with no less than 80%
precisions of all learning algorithms.

Rule Evaluation Models on the Actual Datamining Result Dataset.
In this section, we present rule evaluation models to the whole dataset learned
with OneR, J4.8 and CLR, because they are represented as explicit models such
as a rule set, a decision tree, and a set of linear models.

Fig.3 shows rule evaluation models on the actual data mining result: The rule
set of OneR is shown in Fig.3(a), Fig.3(b) shows the decision tree learned with
J4.8, and Fig.3(c) shows linear models to classify each class.

Looking at indices used in learned rule evaluation models, they are not only
the group of indices increasing with a correctness of a rule, but also they are
used some different groups of indices on different models. Almost indices such as
YLI1, Laplace Correction, Accuracy, Precision, Recall, Coverage, PSI and Gini
Gain are the former type of indices on the models. The later indices are GBI
and Peculiality, which sums up difference of antecedents between one rule and
the other rules in the same ruleset. This corresponds to the comment from the
human expert. He said that he evaluated these rules not only correctness but
also his interest based on his expertise.



516 H. Abe et al.

4.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

We have also evaluated our rule evaluation model construction method with rule
sets from four datasets of UCI Machine Learning Repository to confirm the lower
limit performances on probabilistic class distributions.

We selected the following four datasets: Mushroom, Heart, Internet Adver-
tisement Identification (called InternetAd later) and Letter. With these datasets,
we obtained rule sets with bagged PART, which repeatedly executes PART[4]
to bootstrapped training sub-sample datasets.

To these rule sets, we calculated the 39 objective indices as attributes of each
rule. As for the class of these datasets, we set up three class distributions with
multinomial distribution. Table4 shows us the datasets with three different class
distributions. The class distribution for ‘Distribution I’ is P = (0.35, 0.3, 0.3)
where pi is the probability for class i. Thus the number of class i in each instance
Dj become piDj . As the same way, the probability vector of ‘Distribution II’ is
P = (0.3, 0.5, 0.2), and ‘Distribution III’ is P = (0.3, 0.65, 0.05).

Table 4. Datasets of the rule sets learned from the UCI benchmark datasets

Accuracy Comparison on ClassificationPerformances. To above datasets,
we have attempted the five learning algorithms to estimate whether their clas-
sification results can go to or beyond the accuracies of just predicting each de-
fault class. The left table of Table5 shows the accuracies of the five learning algo-
rithms to each class distribution of the three datasets. As shown in Table5, J48
and BPNN always work better than just predicting a default class. However, their
performances are suffered from probabilistic class distributions to larger datasets
such as Heart and Letter.

Evaluation on Learning Curves. As same as evaluations of learning curves
on the meningitis rule set, we have estimated the minimum training subsets for
a valid model, which works better than just predicting a default class.

The right table in Table5 shows sizes of minimum training subsets, which
can be constructed more accurate rule evaluation models than percentages of a
default class by each learning algorithm. To smaller dataset, such as Mushroom
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Table 5. Accuracies(%) on whole training datasets labeled with three different dis-
tributions(The left table). Number of minimum training sub-samples to outperform
%Def. class(The right table).

and InternetAd, they can construct valid models with less than 20% of given
training datasets. However, to larger dataset, they need more training subsets to
construct valid models, because their performances with whole training dataset
fall to the percentages of default class of each dataset as shown in the left table
in Table5.

5 Conclusion

In this paper, we have described rule evaluation support method with rule eval-
uation models to predict evaluations for an IF-THEN rule based on objective
indices, re-using evaluations of a human expert.

As the result of the performance comparison with the five learning algo-
rithms, rule evaluation models have achieved higher accuracies than just pre-
dicting each default class. Considering the difference between the actual evalua-
tion labeling and the artificial evaluation labeling, it is shown that the medical
expert evaluated with noticing particular relations between an antecedent and
a class/another antecedent in each rule. In the estimation of robustness to a
new rule with Leave-One-Out, we have achieved more than 75.8% with these
learning algorithms. On the evaluation with learning curves to the dataset of
the actual datamining result, SVM and CLR have achieved more than 95% of
achievement ratio compared to the accuracy of the whole training dataset with
less than 10% of subset of the training dataset with certain human evaluations.
These results indicate the availability of this rule evaluation support method for
a human expert.

As future work, we will introduce a selection method of learning algorithms
to construct a proper rule evaluation model according to each situation. We also
apply this rule evaluation support method to estimate other data mining result
such as decision tree, rule set, and committee of them with objective indices,
which evaluate whole mining results.
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Abstract. In this paper, we propose a novel scoring method for tumor prediction 
using an evolutionary fuzzy classifier which can provide accurate and 
interpretable information. The merits of the proposed method are threefold. 1) 
The score ranged in [0, 100] can further illustrate the degree of tumor status in 
contrast to the conventional tumor classifier. 2) The derived score system can be 
used as a tumor classifier using a system-suggested or human-specified threshold 
value. 3) The derived classifier with a compact fuzzy rule base can generate an 
interpretable and accurate prediction result. The effectiveness of the proposed 
method is evaluated and compared using two well-known datasets from 
microarray data and an existing tumor classifier. It is shown by computer 
simulation that the proposed scoring method is effective using ROC curves of 
classification. 

1   Introduction 

Microarray gene expression profiling technology is one of the most important research 
topics in clinical diagnosis of disease [1]-[4]. There are a lot of machine learning 
algorithms, such as support vector machines, neural networks, and logistic regression, 
which have been used in the tumor classification from gene expression data. Soinov et 
al. [5] and Li et al. [6] used tree structures to classify microarray samples. Hvidsten et 
al. [7] proposed learning rule based models of biological process from gene expression 
time profiles. Vinterbo et al. [8] presented a rule-induction and filtering strategy to 
obtain an accurate, small and interpretable fuzzy classifier using a grid partition of 
feature space, compared with logistic regression models. 

In pattern recognition problems, the scoring ability is important not only to quantify 
the certainty grades of samples belonging to each class, but also to help researchers to 
finding out the true active samples and filtering out the background noise [9]. Liu et al. 
[10] proposed a scoring algorithm based on negative entropy to position specific 
frequency matrix (PSFM) and Markov model to predict protein-DNA binding site. 
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Murvai et al. [11] used a probabilistic scoring method for protein domain identification. 
Jensen and Liu [12] proposed a bayesian scoring function approach to motif discovery. 

In this study, a completely new and effective scoring method for tumor prediction 
from microarray data is investigated. It is necessary to cope with the following 
difficulties in designing the scoring system, described below. 1) It is desirable to select 
a minimal number of relevant genes while maintaining the highest accuracy for 
designing tumor classifiers, which is essential for developing inexpensive diagnostic 
tests. 2) The desrived scores can faithfully respond to accurate tumor classification with 
an interpretable manner. To achieve the above-mentioned goals, we propose a scoring 
method based on an interpretable fuzzy classifier (named iSFC, interpretable scoring 
fuzzy classifier). 

The design of iSFC has three classification and one scoring function objectives to be 
simultaneously optimized: maximal classification accuracy, minimal number of rules, 
minimal number of used features, and maximal area under a ROC curve. High 
performance of iSFC arises from that the flexible membership function, simplified 
fuzzy rule, and rule/gene selection are simultaneously optimized [13]. An intelligent 
genetic algorithm (IGA) is used to efficiently solve the design problem with a large 
number of tuning parameters [14]. 

The performance of iSFC is evaluated using two benchmark datasets. It is shown 
that iSFC has concisely interpretable rules and better performance than the existing 
Vinterbo’s classifier [8]. iSFC is also comparable to some non-rule-based methods 
using a large number of genes in terms of accuracy performance. Furthermore, the 
efficient scoring ability of iSFC is evaluated using the mean areas under ROC curves 
having 0.984 and 0.930 for training and test data, respectively. 

2   The Scoring Method Using iSFC 

2.1   Membership Function and Fuzzy Partition 

The classifier design of iSFC uses flexible generic parameterized fuzzy regions which 
can be determined by flexible generic parameterized membership functions (FGPMFs) 
and a hyperbox-type fuzzy partition of feature space. Each fuzzy region corresponds to 
a parameterized fuzzy rule. In this study, each value of gene expression is normalized 
into a real number in the unit interval [0, 1]. An FGPMF with a single fuzzy set is 
defined as 

( )

0   if  or  
( ) /( ) if  <  < 
( ) /( ) if  <  < 
1   if 

x

x a x d
x a b a a x b
d x d c c x d

b x c

μ =

≤ ≥
− −
− −

≤ ≤

 (1) 

where x∈ [0, 1] and a b c d≤ ≤ ≤ . The variables a, b, c, and d determining the shape of 
a trapezoidal fuzzy set are the parameters to be optimized. Five parameters V1, V2, …, 
V5 ∈ [0, 1] without constraints instead of a, b, c, and d are encoded into a chromosome 
for facilitating IGA. Let an additional variable L=V1 which determines the location of 
the fuzzy set characterizing the occurrence of training patterns. When Vi are obtained, 
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variables a, b, c, and d can be derived as follows: a = L- (V2 + V3), b = L- V3, c = L+ V4, 
and d = L+ (V4 + V5). This transformation can always make the derived values of a, b, c, 
and d feasible and reduce interactions among encoded parameters of chromosomes. 

2.2   Fuzzy Rule and Fuzzy Reasoning Method 

The following fuzzy if-then rules for n-dimensional pattern classification problems are 
used in the design of iSFC: 

Rj : If x1 is Aj1 and ... and xn is Ajn then Class CLj with CFj, j = 1,...,N  

where Rj is a rule label, xi denotes a gene variable, Aji is an antecedent fuzzy set, C is a 
number of classes, CLj ∈ {1, …, C} denotes a consequent class label, CFj is a certainty 
grade of this rule in the unit interval [0, 1], and N is a number of initial fuzzy rules in the 
training phase.  

To enhance interpretability of fuzzy rules, linguistic variables in fuzzy rules can be 
used. Each variable xi has a linguistic set U = {L, ML, M, MH, H}. Each linguistic 
value of xi equally represents 1/5 of the domain [0, 1]. Following the quantization 
criterion, we can consider genes to be regulated according to a qualitative level. For 
example, xi is Low for down-regulated genes; xi is Medium for neutral genes; and xi is 
High for up-regulated genes. An antecedent fuzzy set Aji ∈ Au where Au denotes a set of 
the subsets of U. Examples of linguistic antecedent fuzzy sets are shown in Fig. 1. 

 
   

(a) (b) (c) 

Fig. 1. Examples of an antecedent fuzzy set Aji with linguistic values (L: low, ML: medium low, 
M: medium, MH: medium high, H: high). (a) Aji represents {ML, M, MH}. (b) Aji represents 
{ML, M, MH, H}, i.e., not Low. (c) Aji represents {L, ML, M, MH, H } or ALL. 

 
In the training phase, all the variables CLj and CFj are treated as parametric genes 

encoded in chromosomes and their near-optimal values are obtained using IGA. The 
following fuzzy reasoning method is adopted to determine the score of an input pattern 
xp = (xp1, xp2, …, xpn) based on voting using multiple fuzzy if-then rules: 

Step 1) Calculate the difference of certainty grades, DCGp, between Class 1 and Class 
2 for the input pattern xp as follows: 

 1  2
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where FC denotes the fuzzy classifier, the scalar value 

1 1( ) ( ) ... ( )j p j p jn pnx x xμ μ μ= ⋅ ⋅ , and ( )jiμ represents the membership function of 

the antecedent fuzzy set Aji. 
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Step 2) Normalize all DCG of training samples to [0, 100] and the normalized value is 
defined as the classification score, Scorep, of the corresponding sample, xp. 

Step 3) If Scorep is greater or equal to a boundary threshold, then classify xp as 
Class 1, otherwise classify xp as Class 2. In this study, the boundary threshold, 

, is set to 50.

2.3   Fitness Function and Chromosome Representation 

In this study, we define the fitness function (or objective function) of IGA as  

max  ( ) =  -   -  r r f fFit FC NP W N W N⋅ ⋅  (3) 

where Wr and Wf  are positive weights. In this study, we use Wr = 0.1 and Wf = 0.001 
[13]. 

A chromosome consists of control genes for selecting useful features and significant 
fuzzy rules, and parametric genes for encoding the membership functions and fuzzy 
rules. The control genes comprise two types of parameters. One is parameter rj, j = 
1,…, N , represented by one bit for eliminating unnecessary fuzzy rules. If rj = 0, the 
fuzzy rule Rj is excluded from the rule base. Otherwise, Rj is included. The other is 
parameter fi, i = 1,…, n , represented by one bit for eliminating useless features. If fi = 0, 
the feature xi is excluded from the classifier. Otherwise, xi is included. The parametric 
genes consist of three types: 

1) [0,1]k
jiV ∈ , k = 1,…, 5, for determining the antecedent fuzzy set Aji for each 

feature variable xi in rule Rj; 
2) {1,..., }jC C∈  for determining the consequent class of rule Rj; 

3) [0,1]jCF ∈  for determining the certainty grade of rule Rj; 

where j = 1,…, N and i = 1,…, n. A rule base with N fuzzy rules is represented as an 
individual, as shown in Fig. 2. The number of encoding parameters to be optimized is 
equal to Np = n + 3N + 5Nn. A chromosome representation uses a binary string for 
encoding control and parametric genes. There are 8 bits for encoding one of parameters 

k
jiV  and 

jCF . Since each fuzzy region defines a fuzzy rule, the setting of number N is 

independent of value n but dependent on the number of fuzzy regions. Generally, N is 
set to the maximal number of possible fuzzy regions. In this study, N is set to 3C. The 
design of an efficient fuzzy classifier is formulated as a large-scale parameters 
optimization problem (LPOP). If the optimal or near-optimal solution to the LPOP can 
be found, an efficient fuzzy classifier can be obtained. 

 
 
 
 
 

Fig. 2. Chromosome representation 
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2.4   IGA for Designing iSFC 

The used intelligent genetic algorithm (IGA) is a specific variant of the intelligent 
evolutionary algorithm [14] to solve the design problem of iSFC. The main difference 
between IGA and the traditional GA is an efficient intelligent crossover operation. The 
intelligent crossover is based on orthogonal experimental design to solve intractable 
optimization problems comprising lots of design parameters. 

Orthogonal Experimental Design. The two-level orthogonal arrays (OAs) used in 
IGA are described below. Let there be  factors, with two levels each. The total number 
of level combinations is 2  for a complete factorial experiment. To use an OA of  
factors, we obtain an integer M 2lo g ( 1 )2 α +=  where the bracket represents an upper 
ceiling operation, build an OA LM(2M-1) with M rows and M-1 columns, use the first  
columns, and ignore the other M- -1 columns. OA can reduce the number of level 
combinations for factor analysis. The number of OA combinations required to analyze 
all individual factors is only M = O( ), where +1 ≤ M ≤ 2 . 

After proper tabulation of experimental results, the summarized data are analyzed 
using factor analysis to determine the relative effects of levels of various factors as 
follows. Let yt denote a objective function value of the combination t, where t = 1, …, 
M. Define the main effect of factor i with level k as Sik where i = 1, …, : 

t

1
i k t

M
S y W

t
=

=
 (4) 

where Wt = 1 if the level of factor i of combination t is k; otherwise, Wt = 0. Consider 
that the objective function is to be maximized. For the two-level OA, level 1 of factor i 
makes a better contribution to the objective function than level 2 of factor i does when 
Si1 > Si2. If Si1 < Si2, level 2 is better. If Si1 = Si2, levels 1 and 2 have the same 
contribution. The main effect reveals the individual effect of a factor. The most 
effective factor i has the largest main effect difference MEDi = |Si1 - Si2|. After the better 
one of two levels of each factor is determined, an efficient combination consisting of all 
factors with the better levels can be easily derived. 

Intelligent Crossover. All parameters are encoded into a chromosome using binary 
codes. Like traditional GAs, two parents P1 and P2 produce two children C1 and C2 in 
one crossover operation. Let all encoded parameters be randomly assigned into  
groups where each group is treated as a factor. The following steps describe the 
intelligent crossover operation. 

Step 1: Use the first  columns of an OA LM(2M-1) 
Step 2: Let levels 1 and 2 of factor i represent the ith groups of parameters coming from 

parents P1 and P2, respectively. 
Step 3: Evaluate the fitness values yt for experiment t where t = 2, …, M. The value y1 is 

the fitness value of P1. 
Step 4: Compute the main effect Sik where i = 1, …,  and k = 1, 2. 
Step 5: Determine the better one of two levels of each factor. 
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Step 6: The chromosome of C1 is formed using the combination of the better genes 
from the derived corresponding parents. 

Step 7: The chromosome of C2 is formed similarly as C1, except that the factor with the 
smallest main effect difference adopts the other level. 

Step 8: The best two individuals among P1, P2, C1, C2, and M-1 combinations of OA are 
used as the final children C1 and C2 for elitist strategy. 

One intelligent crossover operation takes M+1 fitness evaluations, where +1≤ M 
≤ 2 , to explore the search space of 2  combinations. 

Intelligent Genetic Algorithm. The used IGA is given as follows: 

Step 1: Randomly generate an initial population with Npop individuals. 
Step 2: Evaluate fitness values of all individuals. Let Ibest be the best individual in the 

population. 
Step 3: Use the simple ranking selection that replaces the worst Ps·Npop individuals with 

the best Ps·Npop individuals to form a new population, where Ps is a selection 
probability. 

Step 4: Randomly select Pc·Npop individuals including Ibest, where Pc is a crossover 
probability. Perform intelligent crossover operations for all selected pairs of 
parents. 

Step 5: Apply a conventional bit-inverse mutation operator to the population using a 
mutation probability Pm. To prevent the best fitness value from deteriorating, 
mutation is not applied to the best individual. 

Step 6: Termination test: If a pre-specified termination condition is satisfied, stop the 
algorithm. Otherwise, go to step 2. 

3   Experimental Results 

The parameter settings of IGA from [13] were used: Npop=20, Pc=0.7, Ps=1-Pc, 
Pm=0.01. The stopping condition is to use 100×Np fitness evaluations. All the 
experimental results are the averaged values of 30 independent runs. In each run, a 
ten-ford cross validation test (10-CV) is used. 

Two benchmark data sets from [15] were used. For comparison, we adopted the 
same Wilcoxon rank sum test with [8] as a non-parametric feature pre-selection method 
for the unbalanced data set, such as microarray gene expression data. In this study, we 
have pre-selected n=10, 15 and 20 features (genes) to evaluate the performance of our 
method on various values of n. After computer simulation, the results of iSFC using the 
two data sets for n=10, 15 and 20 revealed no significant difference. In the following 
experiments, we used the data sets with n=15. Table 1 shows the used two data sets and 
the number Np of parameters to be optimized using IGA. 

 
Table 1. The two data sets with numerical feature values proposed in [16] 

Dataset Type C # of 
samples 

# of 
genes Np 

1 DLBCL 2 77 5469 483 
2 prostate tumor 2 102 10509 483 
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Two experiments are conducted to evaluate iSFC. Experiment 1 is to compare the 
performances of iSFC with the Vinterbo’s fuzzy classifier [8]. Experiment 2 is to 
compare the performances of iSFC with the non-rule-based classifiers in [13]. Due to 
the high classification performance of iSFC, the scoring ability is also enhanced in 
terms of ROC curves. 

3.1   Experiment 1 

For easy comparisons, we conducted two evaluations on the Vinterbo’s method using 
different numbers of pre-selected features. One is to use 200 features (V200), which is 
the same with that in [8]. The other is to use 15 features (V15), which is the same with 
that of the proposed method. 

Table 2 shows the statistical results (average and standard deviation) of iSFC, V200, 
and V15 in terms of training accuracy (TrCR), test accuracy (TeCR), number of rules 
(Nr), number of features (Nf), and rule number per class (Nr/C). The results of V200 and 
V15 were obtained by using the execution file provided by S. A. Vinterbo et al. [8]. 

From these results, we can obviously observe that iSFC is more compact and 
accurate using 15 candidate features than the Vinterbo’s classifier using 200 candidate 
features in terms of TrCR (97.93% vs. 83.72%), TeCR (89.67% vs. 83.50%), Nr (1.92 
vs. 2.80), and Nr/C (0.96 vs. 1.40). On the other hand, V200 is better than V15 in test 
accuracy but worse in training accuracy and using more candidate features and 
computation time. Moreover, the classifiers V200 compare favorably to those of 
logistic regression models, one of the standard classification methodologies applied in 
the biomedical domain [8]. 

Table 2. The statistical results of iSFC and the Vinterbo’s classifier in terms of training accuracy, 
test accuracy, number of rules, number of features rule number per class 

Data set Method 
TrCR 
(%) 

TeCR 
(%) 

Nr Nf Nr/C 

iSFC 97.73  89.83  1.61  3.37  0.81
V200 85.91 85.00 2.60 3.80 1.30DLBCL 
V15 84.65 78.33 7.00 6.90 3.50
iSFC 98.12   89.50  2.22  4.36  1.11 
V200 81.52 82.00 3.00 3.30 1.50 Prostate tumor 
V15 84.46 84.00 2.90 5.10 1.45
iSFC 97.93 89.67 1.92 3.87 0.96 
V200 83.72 83.50 2.80 3.55 1.40Average 
V15 84.56 81.17 4.95 6.00 2.48

3.2   Experiment 2 

We compare the proposed method with some non-rule-based methods to evaluate the 
accuracy and interpretability of iSFC. Since Statnikov et al. [16] has investigated 
various efficient classifiers which can handle multiple classes using a very large 
number of genes, the reported accuracy without using gene selection can be used as an 
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upper bound for comparisons. Table 3 shows the test accuracy comparison using 
10-CV on the two data sets between iSFC and the following methods: multicategory 
support vector machine (SVM), k-nearest neighbors (k-NN), backpropagation neural 
networks (NN), and probabilistic neural networks (PNN) which are the most common 
methods for gene expression data analysis. The results are obtained from [13]. 

Table 3 indicates that the multicategory SVM with 94.75% is the most accurate 
classifier for tumor classification. However, it cost too much to take thousands of genes 
to make the classification decision such that it is not practical to implement the chips of 
medical test containing such lots of genes in real environment. On the other hand, iSFC 
needs just a few genes. It means that our method takes much less cost to make a 
biological test and is better in another economical view. The proposed fuzzy classifier 
iSFC with 89.67% using 3.87 genes on an average is worse than SVM but superior to 
k-NN (86.03%), NN (84.41%), and PNN (80.04%) using thousands of genes in terms of 
accuracy only. Because the sample sizes of microarray data are extremely small, it 
results in the high training accuracy (97.93%) and relatively low test accuracy 
(89.67%). From the viewpoint of analysis and practical applications, iSFC can serve as 
one of efficient tools for analysis of gene expression profiles. 

Furthermore, iSFC performs well in terms of ROC curves, and results in the large 
areas under the ROC curve in training and test phases, TrAUC and TeAUC (0.984 and 
0.930), near to 1. It reveals that iSFC has the scoring ability to efficiently differentiate 
each sample between two classes and effectively quantify the likelihood or certainty 
grades of classification for each sample. Moreover, with the ability of quantifying the 
certainty grades of samples belonging to each class, researcher can easily find out the 
real active samples and filter out the background noise. And this can lead to a more 
accurate experimental result. Figs. 3(a) and (b) show the score distribution histogram of 
test samples using the dataset prostate tumor and the corresponding ROC curve from 
one of the 30 10-CV runs. In this case, the test accuracy and AUC are 93.00% and 
0.963, respectively. 

Table 3. The test accuracies, number of used features of 10-CV, and the area under ROC curve 
over 2 data sets between iSFC and other non-rule based methods 

Another advantage of iSFC is the interpretability of learning result. Fig. 4 shows an 
example of iSFC for the data set DLBCL using 90% samples for training and the rest 
for test. The classifier has 2 fuzzy rules using 5 features, genes 2, 4, 8, 11 and 14, 
 

Accuracy (%) # of Used Features Area under ROC curve 
(AUC) of iSFC Data set 

iSFC SVM k-NN NN PNN iSFC Non-fuzzy 
classifiers TrAUC TeAUC 

DLBCL 89.83 97.50 86.96 89.64 80.89 3.37  5469 0.986  0.925  

Prostate 
tumor 89.50 92.00 85.09 79.18 79.18 4.36 10509 0.982 0.934

Average 89.67 94.75 86.03 84.41 80.04 3.87 7989 0.984 0.930 
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Where TrCR=100% and TeCR=100%. The fuzzy rule R1 tells us that when the 
expression of gene 8 is not greater than medium-small, the impact of gene 8 to 
classifying samples to Class 1 is proportional to its expression, otherwise gene 8 does 
not affect the classification, with a certainty grade, 0.824. On the other hand, the 
linguistically interpretable meaning of fuzzy rule R2 is: 

R2: If x2 is ALL, x4 is not greater than medium-small, x8 is ALL, x11 is not small, and 
x14 is small, then Class 2 with CF=0.427. 

  
(a) (b) 

Fig. 3. The (a) score distribution histogram and (b) ROC curve of data set prostate in one run of 
10-CV. The test accuracy and AUC are 93.00% and 0.963. 

Gene 2 Gene 4 Gene 8 Gene 11 Gene 14 C CF

R1 1 0.824

R2 2 0.427
 

Fig. 4. Fuzzy rules for the classification problem over data set DLBCL using 90% samples for 
training and the remainder for testing. The accuracies for training and test data are both 100% 

4   Conclusions 

This paper has proposed an interpretable scoring fuzzy classifier, named iSFC, for 
microarray data analysis. The superiority of the proposed iSFC has been evaluated by 
computer simulation on two benchmark datasets of gene expression. The experimental 
results reveal that: 1) the proposed method can obtain interpretable classifiers with an 
accurate and compact fuzzy rule base, compared with the existing fuzzy classifier [8]; 
2) iSFC using few genes is worse than SVM but superior to k-NN, NN, and PNN using 
thousands of genes in terms of accuracy; and 3) iSFC has an efficient scoring ability to 
quantify certainty grades of samples belonging to each class with the average areas 
under ROC curve in training and test phases (0.984, 0.930) nearly to 1. 
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Abstract. Discovering protein structural signatures directly from their primary 
information is a challenging task, because the residues associated with a 
functional motif are not necessarily clustered in one region of the sequence. 
This work proposes an algorithm that aims to discover conserved sequential 
blocks interleaved by large irregular gaps from a set of unaligned biological 
sequences. Different from the previous works that employ only one type of 
constraint on gap flexibility, we propose using combination of intra- and inter-
block gap constraints to discover longer patterns with larger irregular gaps. The 
smaller flexible intra-block gap constraint is used to relax the restriction in local 
motif blocks but still keep them compact, and the larger flexible inter-block gap 
constraint is proposed to allow longer irregular gaps between compact motif 
blocks. Using two types of gap constraints for different purposes improves the 
efficiency of mining process while keeping high accuracy of mining results. 
The efficiency of the algorithm also helps to identify functional motifs that are 
conserved in only a small subset of the input sequences.  

1   Introduction 

Automatic discovery of patterns in unaligned biological sequences is an important 
problem in molecular biology. For a set of proteins that share a common function or 
structure, it is often that only a few of common residues are conserved among them 
[4]. In biology, a motif is a pattern that has a specific structure and is functionally 
significant [4]. Functional motifs are not necessarily found in only one region of the 
protein sequence. Instead, the conserved residues usually appear as clusters (it is 
called a motif block in this paper), and multiple clusters may simultaneously 
contribute to an important substructure [13]. Limited insertions and deletions are 
admitted within a motif block, and large insertions and deletions may happen between 
motif blocks during evolution. 

Protein families can often be characterized by one or more such patterns, which 
each consist of one or more motif blocks [12, 18, 21, 22]. Many computational 
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approaches have been introduced for the problem of motif identification [1, 2, 3, 6, 8, 
11, 16, 17]. These approaches can be categorized based on the type of the motifs they 
discover, statistical or deterministic. In this paper, we focus on the problem of 
discovering deterministic patterns like some other web services, Pratt [6] and 
Teiresias [17]. A deterministic pattern can be matched or not matched by a sequence. 
In the mining process, a pattern is found if it matches more than a user-specified 
percentage of the input sequence set. This is the so-called minimum support 
constraint. 

A sequential pattern is called sparse if a large number of wildcards exist between 
pattern components, and is treated as flexible, contrary to fixed, if different sequences 
match the same pattern with different sizes of gaps, where a gap is defined as a set of 
one or more successive wildcards. Discovering sparse and flexible patterns is a time-
consuming task due to the large search space of solutions. So many related studies 
employ constraints to expedite the mining process [6, 14, 17, 20], among which the 
gap constraint is widely used to restrict the length of a fixed gap within some 
maximum and minimum values specified by the users. Jonassen et al. in 1995 first 
introduced the constraint of gap flexibility in Pratt program that allows limited 
variable spacing between pattern components [7]. Gaps of irregular lengths are 
important in biological patterns because variable sizes of loops can occur even in 
well-conserved regions. Setting flexibility as 2 satisfies most short patterns existing in 
protein sequences [7]. 

However, longer patterns consisting of several sequential blocks can be discovered 
only when a larger flexibility is allowed. According to our performance analysis on 
Pratt program, version 2.1 [6], we observed that the program consumes unreasonably 
much time when flexibility is set to a value larger than 4, as shown in Table 1. This 
result is because the branching factor of Pratt used in constructing the pattern tree is 
exponentially in proportion to the flexibility constraint. Pratt uses some other 
constraints, such as flexibility product, to narrow down the search space and to 
decrease the number of potential patterns generated. However, this largely reduces the 
solution space, and consequently longer patterns cannot be discovered. 

Another common problem of current mining algorithms is a huge amount of 
memory is required for constructing a pattern tree and the associated data structures 
during mining process. Table 1 also shows the memory usage of Pratt v2.1 versus the 
flexibility constraint. This situation is getting even worse when lower support 
constraint is requested. Nevertheless, low supports are desired during mining process 
because some highly specific signatures are usually conserved in few members of a 
protein family. 

Table 1. Performance analysis of Pratt v2.1 on a data set containing about one hundred of 
sequences with the support constraint set as 70% 

Flexibility Flexibility product Memory used Execution time 
FL=2 FP=16 0.182 Gigabytes 2895 seconds 
FL=3 FP=81 1.016 Gigabytes 36963 seconds 
FL=4 FP=256 1.5 Gigabytes 207236 seconds 
FL=5 FP=625 3.9 Gigabytes The system crashed 
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This work presents the algorithm MAGIIC that aims to discover flexible long 
patterns from a set of unaligned biological sequences. We propose using combination 
of intra- and inter-block gap constraints to find patterns with large irregular gaps, 
provided that the derived patterns are still compact in local regions. The idea is 
motivated by the observation that highly conserved regions of biological sequences 
are usually separated by a set of large gaps with irregular lengths. The smaller flexible 
intra-block gap constraint is used to relax the local motif blocks but still keep them 
compact, and the larger inter-block gap constraint is proposed to allow longer gaps to 
exist between compact motif blocks. Using two types of gap constraints for different 
purposes largely improves the efficiency of the mining process. 

2   Problem Definition 

In this section, the problem of mining conserved sequential blocks with flexible intra-
and inter-block gaps is defined. We first give the definition of a sequence. 

Definition 1 (Sequence). A sequence over an alphabet Σ is a finite sequence of 
components belonging to Σ. For any sequence β= β1…βm , a sequence α is called a 
subsequence of β, denoted as α <s β, if α can be obtained by deleting zero or more 
components from sequence β. We use β[i..j] to denote the substring (contiguous 
subsequence) of β, which starts at position i and ends at position j of β, for 1 ≤ i ≤ j ≤ 
m. In particular, β[1..i] is the prefix of sequence β that ends at position i, and β[i..m] is 
the suffix of sequence β that begins at position i. The number of components in β is 
denoted as |β |.                                                                                                                 

If we segment a sequence into one or more blocks, it can be expressed as a blocked 
sequence. Blocks belonging to the same sequence are called sequential blocks. 

Definition 2 (Blocked sequence). A sequence α = α1…αm  can be segmented into 
disjoint r blocks, r ≤ m, and be written as B1…Br , where Bk= α[ek-1+1..ek], e0 = 0, er = 
m, and ek > ek-1+1, for 1 ≤ k ≤ r.                                                                                       

We next define what intra- and inter-block gaps are. 

Definition 3 (Intra- and inter-block gaps). Let β = β1…βm  be a sequence, and 
α= B1…Br  be a blocked sequence provided that α <s β. If we consider the blocked 
sequence α as a pattern, then β serves as an instance of α. The interval between any 
two adjacent blocks Bi and Bi+1 on the sequence β is called an inter-block gap. The 
interval between any two adjacent components within a block of α on the instance β 
is called an intra-block gap.                                                                                            

MAGIIC employs different constraints for intra- and inter-block gaps respectively. 

Definition 4 (Gap constraints). Let ω = (γmin, γmax, τmin, τmax) be a set of constraints 
called gap constraints, which stand for the low and up bounds of an intra-block gap 
and the low and up bounds of an inter-block gap, respectively. Given a blocked 
sequence α= B1…Br , we say that α satisfies the user-defined gap constraints ω if 
there exists a sequence β= β1…βm  such that α holds as a subsequence of β and the 
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Table 2. Parameters of MAGIIC 

Parameter set θ Description 

λ Minimum occurrences of a pattern 
κ min Minimum size of a motif block 
κ max Maximum size of a motif block 

γ min  Low bound of an intra-block gap 
γ max Up bound of an intra-block gap 
τ min Low bound of an inter-block gap ω 

τ max Up bound of an inter-block gap 
nmin Minimum size of a pattern 
nmax Maximum size of a pattern 

blocks in α satisfy the constraint ω, denoted as α <ω β. The set β/(α)ω stands for all the 
substrings of β that match pattern α under the gap constraints ω.                                 

MAGIIC also employs some other basic constraints associated with pattern mining, 
including the support and size constraints. The parameter names are given in Table 2.  

Definition 5 (Support and size constraints). The support of a blocked sequence α in 
a sequence database D under the gap constraints ω and the size constraints (κ min, κmax, 
nmin, nmax) is defined as the number of distinct input sequences β ∈ D such that α <ω β 
and the blocked sequence α= B1…Br  satisfies nmin ≤ |α| ≤ nmax, and κmin ≤ |Bi| ≤ κmax for 
1 ≤ i ≤ r. The pattern α is frequent (conserved) in sequence database D if its support is 
grater than λ, where λ is the minimum support constraint.                                            

Finally we give the problem statement as follows. 

Problem Statement. Given a sequence database D and the parameter set θ listed in 
Table 2, the algorithm will find the complete set of conserved blocked sequences 
(patterns) existing in the sequence database D under the constraints in θ. 

The derived patterns are expressed in the PROSITE language [5]. The notation x(a,b), 
a < b, is used for a size-bounded gap with minimum length of a and maximum length 
of b, and x(a) stands for a gap with a fixed length of a. The wildcard x(a) is omitted if 
a = 0, and is written as x if a = 1, i.e. x = x(1).  

3   Method 

This paper proposes a novel algorithm called MAGIIC, which is designed based on 
the PrefixSpan algorithm proposed by Pei et. al. in 2004 [15]. The contribution of 
MAGIIC comes from two parts. First, MAGIIC develops a new procedure called 
bounded-prefix-growth based on the prefix-growth procedure of the PrefixSpan 
algorithm. In order to identify patterns with large flexible gaps in biological data, the 
bounded-prefix-growth procedure incorporates intra- and inter-block gap constraints 
to speed up the mining process. Second, MAGIIC employs a newly designed 
projected database, called complete projected database, to guarantee that all the 
patterns satisfying the user-specified gap constraints will be found. In this section, we 
first briefly describe the PrefixSpan algorithm. After that, the concept of a complete 
projected database will be defined and how the intra- and inter-block gap constraints 
affect the scanning process of bounded-prefix-growth will be introduced. 
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PrefixSpan algorithm presents as a promising and efficient approach for many 
applications of sequential pattern discovery by avoiding generating a large amount of 
pattern candidates, and it consumes a relatively stable and small amount of memory 
space by using the pseudo projecting technique that records only the sequence 
identifiers and the associated event identifiers instead of constructing a physical 
projected database. The prefix-growth procedure of PrefixSpan employs a divided-
and-conquer mechanism for pattern growing, which recursively reduces the size of 
the sequence database by generating the projected database of the current sequential 
pattern and then grows the sequential pattern in one particular projected database by 
exploring the local frequent components. 

Fig.1 provides an example of a projected database with respect to a pattern CG . 
Fig.1(a) shows the original database D. The projected database addressed by the 
PrefixSpan algorithm does not record complete information regarding gaps between 
sequence components, because PrefixSpan does not consider gap constraints in its 
mining process. As the example shown in Fig.1(b), the CG ’s projected database 
only keeps the longest substring of each sequence in D whose prefix matches the 
pattern CG . This information is not sufficient when gaps are considered in the 
pattern mining process. Thus as shown in Fig.1(c), a complete projected database 
collects all the substrings in database D with a prefix of pattern CG  that satisfies the 
gap constraints. We next give the definition of a complete projected database. 

Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
S

1
 C T G E Y T J E A S N C A G E G 

S
2
 P E C P G K I I C H P G Q G R K 

S
3
 S C W V S Q W V V C Q G W G   

(a) The original database D 
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
s

1
 C T G E Y T J E A S N C A G E G 

s
2
 C P G K I I C H P G Q G R K   

s
3
 C Q G W G            

(b) The projected database of the pattern CG , according to the definition of PrefixSpan 
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
s

1-1
 C T G E Y T J E A S N C A G E G 

s
1-2

 C A G E G            
s

2-1
 C P G K I I C H P G Q G R K   

s
2-2

 C H P G Q G R K         
s

3
 C Q G W G            

(c) The complete projected database of the pattern CG  

Fig. 1. Illustration of the complete projected database 

S1 C T G E Y T J E A S N C A G E G 
 

S2 P E C P G K I I C H P G Q G R K 
 

S3 S C W V S Q W V V C Q G W G   
                         

Note: S1/ CG ω ={g1, g2}, S2/ CG ω ={g3, g4}, and S3/ CG ω ={g5} 

Fig. 2. The scenario of scanning a projected database 

g1 g2 

g4 g3 

g5 
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Definition 6 (Complete projected database). Let α be a blocked sequence, and ω be 
a set of gap constraints. The α’s complete projected database constructed from 
projecting the database D under gap constraints ω, denoted as D|(α)ω, is a complete 
collection of sequences, each of which is the suffix of a sequence β ∈ D and has a 
prefix of s, provided that s ∈ β /(α)ω.                                                                             

We next describe how the bounded-prefix-growth procedure scans a complete 
projected database. The proposed procedure is called bounded-prefix-growth because 
its scanning range in the projected database is restricted by the gap constraints. In 
Fig.2, the dotted arrows represent the original scanning range of a projected database 
in PrefixSpan algorithm and the solid arrows show the scanning range of the bounded-
prefix-growth procedure under the intra-block gap constraints (γmin = 1, γmax = 2). The 
scanning range of a complete projected database under gap constraints ω is much 
smaller. Most of the times, only the ranges under the intra-block gap constraints are 
considered when looking for the next frequent component. Only when the size of the 
currently growing block (the right most block) of the pattern satisfies the minimum 
block size constraint, larger scanning range with respect to the inter-block constraints 
will also be considered during the mining process. 

The arguments of bounded-prefix-growth include a pattern as a blocked sequence 
α and its complete projected database D|(α)ω. This procedure takes the blocked 
pattern α as input and tries to extend it under the user-specified constraints ω. In each 
call of bounded-prefix-growth, the search space of finding the next frequent 
component is bounded by the intra- and inter-block gap constraints. A component is 
conserved (frequent) if its occurrences in the projected database D|(α)ω satisfy the 
minimum support threshold. Each frequent component is appended to the current 
blocked sequence one at a time, and the resulted new blocked sequence (α′) is used as 
the argument for the next call of bounded-prefix-growth, accompanied with a smaller 
projected database D|(α′)ω. Adding one more component to the current blocked 
pattern thus reduces the size of the complete projected database. 

4   Results and Discussions 

The performance of MAGIIC is compared with two well known packages on this 
problem, Teiresias [17] and Pratt v2.1 [6]. All the experiments provided here were 
conducted on a machine with a 3GHz Intel Pentium CPU and memory of 2GBs, 
running Linux Server. Regarding the parameter setting of MAGIIC, the users can set 
the following three constraints as a large number as long as the consuming time is 
acceptable on their machines. In this paper, we set both the maximum size of a motif 
block (κmax) and the maximum size of a pattern (nmax) as 100, and change the up 
bound of an inter-block gap (τmax) incrementally during mining process because this 
parameter affects the performance of MAGIIC significantly. Furthermore, in order to 
reduce the confusion of setting the other parameters, we set the low bound of an inter-
block gap (τmin) just one larger than the up bound of an intra-block gap (γmax). Since 
only limited insertions and deletions within motif blocks are allowed during 
evolution, we set the low/up bound of an intra-block gap (γmin/γmax) as 0/2. 
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Table 3. Study on the first data set. (Arsenate reductase and related) 

(a) Patterns discovered by different algorithms 
ID Patterns discovered by different algorithms Support 
 Pattern discovered by MAGIIC   
(1) P-x-C-x(0,2)-S-x(0,2)-R-x(72,75)-P-x(1,2)-L-x(1,2)-R-P-I 38 
 Pattern discovered by Teiresias (K=70, L=6, W=100, other parameters as default,) 
(i) L-x(19)-P-x(4)-RPI-x(19)-L 38 
 Pattern discovered by Pratt v2.1 (C%=70, PX=100, FN=4, FL=5, FP=12, other parameters as 

default) 
(ii) R-x(18,20)-L-x(7)-P-x-L-x(2)-R-P-I 35 
(iii) G-x-[DEST]-x(2)-[AI]-x(2)-R-x(0,1)-K-x(4,7)-L-[ADGN]-[ILMV]-[ADEN]-x-

[DEGN]-x-[FILM]-[PST]-x(3)-[FL]-x(2)-[FILM]-[IMV]-x(3)-P-x-[ILM]-[IL]-x 
-[RS]-P-I-[ILMV]-x-[DT] 

35 

(b) Executing time and usage of memory space for each algorithm with support = 70% 
Method MAGIIC Teiresias Pratt v2.1 
Runtime in seconds 2 15 588 
Memory used in Megabytes 3 15 150 

 

  
(a) Pattern (1) found by MAGIIC (b) Pattern (i) found by Teiresias  (c) Pattern (ii) found by Pratt v2.1 

Fig. 4. Viewing the derived patterns of the first data set in a three-dimensional structure 
(1I9D.pdb). The patterns are plotted in sticks, and blocks are shown with different colors. 

This paper employs two well annotated data sets to demonstrate the capability of 
MAGIIC algorithm in identifying conserved structural motifs. The first input set 
collects 50 proteins of the InterPro family IPR006660, Arsenate reductase and related, 
(one fragment has been removed) from Swiss-Prot (http://www.expasy.org/sprot/) 
(version 48.1). With the support constraint set as 70%, the minimum size of a motif 
block as 4, and the up bound of an inter-block gap constraint as 100, MAGIIC found 
one pattern with 38 supporting sequences, as shown in Table 3(a), denoted as pattern 
(1). In fact, this pattern can be found as long as the user-specified constraints are more 
relaxed than the above settings. It can be observed in Fig. 4(a) that the two motif 
blocks of pattern (1) are clustered together when the protein is folded, and they are 
really closed to the ligands bound together with this protein. This shows that the 
derived motif reveals its structural and functional meanings. It has been reported in 
[9] that the cysteine in the first block is important in binding one of the sulfate anion 
(SO4). We will show in the following that it is not found by other mining programs. 

Table 3(a) also provides the best pattern found by Teiresias and Pratt v2.1, labeled 
as pattern (i)-(iii), which are derived by using reasonable parameter settings regarding 
this data set. It can be observed in Fig. 4(b) and (c) that patterns (i) and (ii) do not 
capture the signature of the substructure with respect to the ligands bound with this 
protein. The main problem of Teiresias is only fixed gaps are considered. Even Pratt 
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considers the flexibility of gaps, allowing large flexibility on every gap enlarges the 
search space and increases the executing time rapidly, which forces the users to give 
up searching for a pattern with a large gap like x(72,75). On the other hand, both 
Teiresias and Pratt v2.1 can handle equivalence to extend the length of the patterns, 
such as the pattern (iii) identified by Pratt v2.1. However, it does not really help to 
identify the structural motif associated with the functional site. Table 3(b) provides 
the executing time and memory usage of each algorithm. It is always the case that 
lowering support constraint enlarges the search space and thus consumes more 
computing time and space. Incorporating two gap constraints also makes MAGIIC 
more efficient than the other two packages in finding some highly specific signatures 
which are conserved in few members of a protein family. 

The second training data was retrieved from Swiss-Prot database (release 48.1) by 
querying the keywords IPR001305, PF00684, and PS00637, which are associated 
with the CXXCXGXG domain signature of DnaJ proteins. The keywords are the 
entry IDs of InterPro (release 11.0), Pfam (version 18.0) and PROSITE (release 
19.11) databases, respectively. We randomly select 100 proteins from the retrieved 
272 sequences (totally we have 275 sequences, but three short fragments have been 
excluded.) And later we will show that the other 172 proteins can be completely 
found by using the pattern derived by MAGIIC.  

With the support constraint set as 70%, the minimum size of a motif block as 4, and 
the up bound of an inter-block gap constraint as 20, MAGIIC found a pattern with 72 
supporting sequences, denoted as pattern (1) in Table 4(a). This pattern contains four 
repeats of the motif block {C-x(2)-C-x-G-x-G}, which is recognized as the DnaJ 
central cysteine-rich (CR) domain. The DnaJ CR domain consists of two zinc centers, 
each of which is composed of four conserved cysteines [10]. We can see in Fig. 5(a) 
that each pair of the blocks in pattern (1) forms a zinc binding site, where the first and 
fourth blocks contribute to the first one and the second and third blocks contribute to 
the second one. It has been studied in [19] that the second binding site is more 
important than the first one. By increasing the support constraint as 100% and relaxing 
the minimum size of a motif block as 3, MAGIIC found another pattern, listed in Table 
4(a) as pattern (2), which contains only three motif blocks. We observed that some 
DnaJ proteins lost the first block of the CR domain during evolution and some other 
lost the last block. This is consistent with the observation in [19] that the second and 
third blocks are more important to the function of DnaJ proteins. 

The pattern of the entry PS00637 in PROSITE is provided in Table 4(a), denoted 
as pattern (i). As shown in Fig. 5(b), this pattern does not capture the feature of the 
isolated cysteine-rich domain, same as the best patterns found by Pratt v2.1 and 
Teiresias, also provided in Table 4(a). The selectivity of the derived patterns is 
evaluated by employing the ScanProsite (http://www.expasy.org/tools/scanprosite/) 
web service to scan protein sequences in Swiss-Prot database (release 48.1). The 
results are shown in Table 4(b). The precision rate is defined as TP / (TP + FP) and 
the recall rate as TP/ (TP + FN), where TP is short for true positives, FP for false 
positives, and FN for false negatives. It can be observed that the patterns found by 
Teiresias are not as good as MAGIIC or Pratt, and the pattern (ii) found by Pratt is 
specific enough to recognize the DnaJ proteins. However, pattern (2) still does not 
correctly capture the structural motif of the cysteine-rich domain. Also, Pratt v2.1 
consumes much more resources than MAGIIC and Teiresias, as shown in Table 4(c). 
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Table 4. Study on the second data set (the CXXCXGXG domain signature of DnaJ proteins) 

(a) Patterns discovered by different algorithms 
ID Pattern discovered by MAGIIC  Support 

(1) 
C-x(2)-C-x-G-x-G-x(8,14)-C-x(2)-C-x-G-x-G-x(12,19)- 
C-x(2)-C-x-G-x-G-x(5,12)-C-x(2)-C-x-G-x-G 72 

(2) C-x(2)-C-x-G-x-G-x(8,19)-C-x(2)-C-x-G-x(7,20)-C-x(2)-C-x-G 100 
ID Pattern of PS00637 in PROSITE database 
(i) C-[DEGSTHKR]-x-C-x-G-x-[GK]-[AGSDM]-x(2)-[GSNKR]-x(4,6)-C-x(2,3)-C-x-G-x-G - 
 Pattern discovered by Pratt (C%:70,PX:20,FL:8, FN:3, FP:256 and other parameters as default) 

(ii) G-x(7,12)-C-x(2)-C-x-G-x-G-x(6,14)-C-x(2)-C-x-G 100 
 Pattern discovered by Teiresias (K=70, L=4, W=30 and other parameters as default) 
(iii) C-x(2)-C-x-G-x-G-x(6)-C-x(2)-C-x-G-x-G-x(12)-P-x(14)-G 70 
(iv) C-x(2)-C-x-G-x-G 100 

(b) Analysis on the selectivity and sensitivity of patterns 
Method ID TP FN FP Precision % Recall % Expected random matches 
MAGIIC (1) 219 53 0 100 80.50 4.342022e-14 
MAGIIC (2) 272 0 1 99.63 100 2.950594e-06 
PROSITE (i) 188 76 0 100 71.21 2.857160e-05 
Pratt (ii) 271 1 5 98.18 99.63 3.565674e-03 
Teiresias (iii) 223 49 0 100 81.98 2.180195e-07 
Teiresias (iv) 272 0 366 42.63 100 55 

(c) Performance and usage of memory space with support = 70% 
Method MAGIIC Teiresias Pratt v2.1 
Runtime in seconds 76 217 858760 
Memory used in Megabytes 3 18 4000 

 

  
(a) Pattern found by MAGIIC (1EXK.pdb) (a) Pattern found by MAGIIC (1EXK.pdb) 

Fig. 5. Structure of the patterns for the DnaJ proteins. The zinc atoms are plotted as red spheres 
and the patterns in colored cartoon display. 

5   Conclusion 

Functional motifs composed of several sequential blocks are difficult to find. Current 
mining technologies might individually find each motif block but fail to connect them 
with large irregular gaps. On the other hand, allowing large flexible gaps might derive 
patterns with the conserved residues largely scattered. MAGIIC employs intra- and 
inter-block gap constraints to discover clusters of conserved residues present in 
protein sequences. The efficiency of MAGIIC remains even when the constraints are 
relaxed. This is important because setting lower support constrains or larger gap 
flexibilities helps to identify the signature of protein functional sites. The spatial 
information of the sequential motifs also helps to detect critical substructures of 
proteins that share similar functions. Thus, how to incorporate MAGIIC in the study 
of protein binding or protein-protein interaction deserves further study. 
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Abstract. In this paper we examine the issues involved in finding con-
sensus patterns from biosequence data of very small sample sizes, by
searching for so-called minimal multiple generalization (mmg), that is, a
set of syntactically minimal patterns that accounts for all the samples.
The data we use are the sigma regulons with more conserved consensus
patterns for the bacteria B. subtilis. By comparing between the mmgs
found over different search spaces, we found that it is possible to de-
rive patterns close to the known consensus patterns by simply making
some reasonable requirements on the kinds of patterns to obtain. We also
propose some simple measures to evaluate the patterns in an mmg.

1 Introduction

Finding frequently occurring patterns (called consensus patterns) within a set of
biosequences is a common task in molecular biology. The kinds of patterns used
in the various methods may differ very significantly [3], for example compare
the patterns used in the PROSITE [9] database and the TEIRESIAS algorithm
[7]. The patterns we consider are strings over a finite alphabet Σ and a variable
symbol “*”, where its language is the strings obtainable by (independently)
replacing all variables in the pattern with strings over Σ [8].

Our approach to consensus pattern is based on finding so-called minimal mul-
tiple generalizations (mmg) [2] from subclasses of the pattern languages. Given
any sample set S of strings over Σ, the mmgs are the most (syntactically) specific
set of up to k patterns over the given class where their languages together contain
S. Arimura et. al. [2] gave a polynomial time algorithm MMG for finding such
mmgs. Others [1, 11, 10, 6] have studied how well the MMG discovered mmgs
perform in predicting gene functions. Here, we consider instead the resemblance
between the discovered mmgs and well established consensus patterns.

As samples, we use the sigma factor dependent promoter sequences in Bacil-
lus Subtilis, which has well established consensus patterns [4]. The difficult part
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in using these samples is that they are not very abundantly available, and hence
it is difficult for candidate patterns to achieve sufficient levels of statistical sig-
nificance. We show that by constraining our search to only patterns of slightly
more specific forms, some patterns in the discovered mmgs match the known
consensus patterns fairly accurately. We also note some qualities that can be
found in the better matching patterns.

2 Preliminaries

Let Σ be a finite set of alphabets. A regular pattern is a string over Σ ∪ {∗},
where the ‘∗’ symbol is called a variable. A substitution θ for a pattern p is
a set of replacements for variables in p with regular patterns. p & q iff p is
obtainable from q via some substitution θ; p ≺ q iff p & q but not q & p.
Given two sets of patterns P and Q, P ' Q iff for each p ∈ P , p & q for some
q ∈ Q, and P � Q iff P ' Q but not Q ' P . The language of a pattern p,
L(p) = {w ∈ Σ∗ | w & p}. For a set of patterns P , L(P ) =

⋃
p∈P L(p). Note

that P ' Q ⇒ L(P ) ⊆ L(Q) [8].
Given k ∈ N , a finite set S ⊆ Σ∗ and a class of patterns P ⊆ (Σ ∪ {∗})∗, a

set of patterns P ⊆ P is a k-minimal multiple generalization (or k-mmg) for S
over P if �P ≤ k, S ⊆ L(P ), and there are no other set of up to k patterns Q in
P where Q � P and S ⊆ L(Q). We use the efficient algorithm MMG in [2] for
finding such mmgs.

Using different classes of patterns in MMG may change its output very sig-
nificantly. Originally the regular patterns were studied in [2]. Then, the regular
patterns with restricted number of variable occurrences were studied in [1]. In
this work we study those classes, with the addition of so-called range specifiers
(as in the PROSITE patterns) where a variable is written “∗(x, y)” for some x,
y ∈ N . A variable written this way, when replaced with constant strings, can
only be replaced with strings of length at least x and at most y.

3 Experimental Setup

We run our tests using a straight-forward implementation of the MMG algo-
rithm (downloadable from www.daisy.ai.kyutech.ac.jp/∼kalngyk). The program
is given as input a set of biosequences S, a maximum number k of patterns al-
lowed in a k-mmg, and finally, a class of patterns P . The output k-mmg is then
compared with known consensus patterns. This is repeated for k = 5 and k = 10
over all combinations of our candidates for S and P , as follows.

(For S) We use the sigma factor dependent promoter sequences in B. subtilis
(refer [4]) for samples. These sequences (and consensus patterns) are obtained
from the on-line database DBTBS [5]. We use the regulons sigD (33/51/59), sigE
(62/44/51), sigH (48/37/50), sigW (32/42/45) (numbers are for sample size,
average sequence length and maximum sequence length), because their sample
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sizes are relatively large and there are relatively long contiguous conserved re-
gions within their consensus patterns.

(For P) We use subclasses of the regular patterns with restricted use of vari-
ables. We also consider patterns of the following form, the rational of which will
be made clear in its description: Assume that each of the target patterns con-
sists of exactly two segments. That is, they are of the form “∗1v∗2w∗3”, where
v, w are non-empty strings over Σ and the ∗is are variables. We further assume
that v is not too close to the end of the sequences, while w is not too close to
the beginning of the sequences. For this reason, we place upper bounds on the
maximum length of the words that can be used to replace ∗1 and ∗3. In this
study we use the same length x as the upper bound for both ∗1 and ∗2, and
we set x to 0.5 times the length of the longest biosequence in the input sample.
This gives us the pattern “∗(0, x) v ∗(0,∞) w ∗(0, x)”. For comparison, we also
test with other classes to observe the effects of the fixed pattern form and the
use of the range specifiers. In total we have the following for candidates of P :

1. patterns of fixed form “∗(0, x) v ∗(0,∞) w ∗(0, x)” where v, w ∈ (Σ ∪ {∗})∗
2. patterns of fixed form “∗ v ∗ w ∗” where v, w ∈ (Σ ∪ {∗})∗
3. regular patterns with at most 3 variable occurrences

To evaluate how a pattern p in a k-mmg fits a sample S, the most intuitive
measure is the number of sequences in S which matches the pattern p, i.e. �(S ∩
L(p)). Another useful measure is that of coverage, introduced in [6], which is
the total number of sequences in L(p) of length up to the longest sequence in
S, i.e. �({w ∈ L(p) | w is not longer than the longest sequence in S}) which we
shall simply refer to as the coverage of p. Intuitively, the coverage of p should be
related to the amount of generalization committed by L(p) based on the sample
S, and this has been observed in [6].

4 Results

Table 1 show the mmgs obtained from the different pattern classes P . We report
only patterns in the k-mmg with either very high number of matching sequences
or with very low coverage, with emphasis on the former. Each pattern listed is
followed by two values (x, y), where x is the number of sequences in S which
matches the pattern, and y is the coverage of the pattern (for simplicity, range
specifiers have been ignored in the computation of these coverages).

Here we see that the use of range specifiers enables MMG to not mix up
between the two segments in the pattern, which is most evident in the sigD
patterns. Without the use of range specifiers, the patterns obtained from fixed
form patterns (pattern class 2) are often not much better than those obtained
from regular patterns (pattern class 3). We also note that good correspondence
with the known consensus pattern almost always come from patterns with “high”
number of matching sequences and “low” coverage, even though we currently lack
a method to decide the ideal range of these values.
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5 Discussions

In summary, we found that using more restrictive classes of languages in the
MMG algorithm gave us consensus patterns that matches the known consensus
patterns fairly reasonably. (Though not included in this shorter version of the
paper, we also found that patterns using so-called composite symbols, as in the
PROSITE patterns, tend to yield less resembling patterns.) Of course, this does
not mean that more restrictive classes necessarily produce better patterns. For
example the class generated by “∗(0, x) v w ∗(0, x)” where v, w ∈ Σ∗, though
more restrictive than the class “∗(0, x) v ∗(0,∞) w ∗(0, x)”, would not produce
the consensus patterns we want in our test cases.

On the other hand, the results do show some promise for using the MMG
algorithm in finding consensus patterns, provided that a suitable pattern class is
given as input to the algorithm. Since each computation of the MMG algorithm
runs very quickly (typically in a few seconds), it is conceivable for the algorithm
to be employed interactively — where a user would iteratively specify a class of
patterns to use, and decide when the output is suitable for consensus patterns.

It would be ideal if we can furthermore automate this process by running the
algorithm with successively more restrictive classes of languages, and stop when
successive iterations provide no further improvements in the patterns obtained.
To do this, we need only (1) a criteria to evaluate if a set of patterns is better than
another (for example the measures we have discussed herein may be adapted for
this purpose), and (2) a measure to classify how restrictive is a class of languages.
Problem (1) seems to be the more difficult problem, but we note that even the
classification in (2) may not be simple. For the classes of languages used in this
paper, proper inclusions between the classes allow us to estimate how restrictive
the classes are. However, this will not work for classes that are incomparable
with respect to inclusion. For example, we could not say if the class generated
by patterns of the form “∗w” is less, more, or just as restrictive as that generated
by “w∗”, since they do not include each other — though assuming homogeneity
in word generation, they should intuitively be considered equally restrictive. For
this reason, more theoretical work on the complexity of subclasses of the pattern
languages is perhaps needed to improve the use of the MMG algorithm.

Acknowledgements. We thank Prof. Satoru Kuhara (Kyushu University) for
introducing us to the topic.
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Abstract. In this paper we propose a new class of kernels defined over extended
relational algebra structures. The “extension” was recently proposed in [1] and it
overcomes one of the main limitation of the standard relational algebra, i.e. diffi-
culties in modeling lists. These new kernels belong to the class of �-Convolution
kernels in the sense that the computation of the similarity between two complex
objects is based on the similarities of objects’ parts computed by means of sub-
kernels. The complex objects (relational instances in our case) are tuples and sets
and/or lists of relational instances for which elementary kernels and kernels on
sets and lists are applied. The performance of this class of kernels together with
the Support Vector Machines (SVM) algorithm is evaluated on the problem of
classification of protein fingerprints and by combining different data representa-
tions we were able to improve the best accuracy reported so far in the literature.

1 Introduction

Recently it has been realized that one strength of the kernel-based learning paradigm
is its ability to support non-vectorial input spaces, [2, 3, 4, 5]. This is mainly due to
the fact that the proper definition of a kernel function enables the structured data to be
embedded in some linear feature space without the explicit computation of the feature
map. As a result any propositional algorithm which is based on inner products can be
applied on the structured data.

In [6] we made one step in the direction of bringing kernel methods and learning
from structured data together and we proposed a novel and general framework based
on concepts of relational algebra for kernel-based learning over relational schema. We
defined kernel functions over relational schema which are instances of )-Convolution
kernels and use them as a basis for a relational instance-based learning algorithm. One
of the main limitations of relational algebra representation as described in [6], is that,
although it is ideal for modeling sets, it can not naturally model lists. To tackle this
problem we recently proposed in [1] an extension to this representation language in
such a way that it allows for modeling of lists of complex objects (relational instances).
This new representation was used within the framework of distance-based learning and
for the task of classification of protein fingerprints promising results were reported.

In this paper we propose new kernels over extended relational algebra language
which operate directly on the structures defined in [1]. This amounts to defining new
kernels on lists of relational instances. We report experimental results on a problem of
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classification of protein fingerprints for which we were able to improve the best accu-
racy reported in the literature.

2 Description of the Extended Relational Instance

Consider a general relational schema that consists of a set of relationsR={R1,. . . , Rn}.
The schema of a relation Ri is the set of attributes of Ri and we denote it as Ri(A1, . . . ,
Azi). A tuple (instance), Rij , of a relation Ri is a particular row in Ri with Rij =
(vj1, vj2, . . . , vjzi) and vjl the value of the Al attribute in the Rij tuple. An attribute
Ak is called a potential key of relation Ri if it assumes a unique value for each in-
stance of the relation. An attribute Al of relation Rj is a foreign key if it references a
potential key Ak of relation Ri and takes values in the domain of attribute Ak in which
case we will also call the Ak a referenced key. A set link is a quadruple of the form
sl(Ri, Ak, Rj , Al) where either Al is a foreign key of Rj referencing a potential key
Ak of Ri or vice versa. To be able to represent lists we define a list link as a quin-
tuple ll(Ri, Ak, Rj , Al, LIST (Al)) where Ri, Ak, Rj , Al are defined as before and
LIST (Al) is a list of values from D(Al) defining the order of the elements of the list.
The association between Ak and Al encoded in sl and ll models one-to-many relations:
for sl one element of Ri can be associated with a set of elements of Rj whereas for ll
one element of Ri is connected with a list of elements from Rj .

We will call the set of attributes of a relation Ri that are not keys (i.e. referenced
keys, foreign keys or attributes defined as keys but not referenced) standard attributes
and denote it with IA,Ri . The notion of links is critical for our relational learner since
it will provide the basis for the new types of attributes, i.e. set and list.

For a given referenced key Ak of relation Ri we denote by SL(Ri, Ak) the set of
links sl(Ri, Ak, Rj , Al) in which Ak is referenced by foreign key Al of Rj . By analogy
we define the set of links ll(Ri, Ak, Rj , Al, LIST (Al)) as LL(Ri, Ak). By SL(Ri) =
∪kSL(Ri, Ak) we denote the set of all set links in which one of the potential keys of
Ri is referenced as a foreign key by an attribute of another relation. By LL(Ri) =
∪kLL(Ri, Ak) we denote the set of all list links in which one of the potential keys of
Ri is referenced as a foreign key by an attribute of another relation.

Similarly for a given foreign key Al of Rj , SL−1(Rj , Al) will return the standard
link sl(Ri, Ak, Rj , Al) where Ak is a potential key of Ri referenced by the foreign key
Al of Rj . By analogy we define LL−1(Rj , Al). If Rj has more than one foreign keys
then by SL−1(Rj) = ∪lSL

−1(Rj , Al) we denote the set of all set links of Rj defined
by the foreign keys of Rj . By LL−1(Rj) = ∪lLL

−1(Rj , Al) we define the set of all
list links of Rj defined by the foreign keys of Rj .

To define a classification problem one of the relations in R should be defined as the
main relation, M . , i.e. the relation on which the classification problem will be defined.
Each instance, Mij , of the M relation will give rise to one relational instance, M+

ij
,

i.e. an instance that spans the different relations in R. More precisely M+
ij

will have
the same set of standard attributes IA,M and the same values for these attributes as
Mij has and each link sl ∈ SL(M) ∪ SL−1(M) (ll ∈ LL(M) ∪ LL−1(M)) adds in
M+

ij
one attribute of type set (list). The value of an attribute of type set (list) is defined

based on the link sl (or ll) and it will be the set (list) of instances with which Mij is
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associated in some relation Rj when we follow the link sl (ll). We will denote Isl,Ri

and Ill,Ri the set of attributes of type set and list, respectively. By recursive application
of this procedure we obtain the complete description of the relational instance M+

ij
.

More details on relational algebra representation can be found in [6, 1].

3 Kernels on Extended Relational Instances

In this Section we will introduce a new class of kernels over extended relational alge-
bra structures which are instances of the )-Convolution kernels, [2], and are based on
kernels introduced in [6].

In order to define these kernels we recall from Section 2 that a given relation Ri is
divided into three parts: IA,Ri , Isl,Ri , Ill,Ri , which denote set of standard attributes,
set of attributes of type set and set of attributes of type list, respectively. A relational in-
stance Ria is Ria = (vaIA,Ri

, vaIsl,Ri
, vaIll,Ri

), where vaIA,Ri
= (va1, . . . , va|IA,Ri

|)
is the vector of standard attributes and vaIsl,Ri

= (vs1, . . . , vs|Isl,Ri
|) and vaIll,Ri

=
(vl1, . . . , vl|Ill,Ri

|) are vectors of attributes of type set and list.
Given this formalism we defined the Direct Sum Kernel on the set X (if |IA,Ri | 	= 0)

as kΣ(Ria , Rib
) = ks(vaIA,Ri

, vbIA,Ri
) +
∑

l∈Isl,Ri
Kset(val, vbl)

+
∑

l∈Ill,Ri
Klist(val, vbl) where ks(., .) is an elementary kernel defined on the set

IA,Ri of the standard attributes of Ri and Kset(., .) and Klist(., .) are kernels between
sets or lists, respectively. Here we use a normalized version of kΣ (if |IA,Ri | 	= 0):

KΣ(Ria , Rib
) := kΣ(Ria ,Rib

)

1+|Isl,Ri
|+|Ill,Ri

| . More details on the Direct Sum Kernels applied

to relational instances can be found in [6].
In the next Section we will define kernels over sets (Kset(., .)) and kernel over lists

(Klist(., .)) of relational instances. The computation of the final kernel is based on
recursive alternating applications of KΣ(., .) and kernels Kset(., .) and Klist(., .).

Kernels over Lists and Sets. Before defining kernels over lists we first introduce some
helpful notation. Lets denote by i a sequence i1 ≤ i2 ≤ · · · ≤ in of indices; we say that
i ∈ i if i is one of the sequence indices. We denote with l(i) the length of a sequence i.
For a given attribute, val of type list val[ik] is its k element.

The first kernel is the Contiguous Sublist Kernel Klist1(val, vbl) =
∑

i,j,l(i)=l(j) λ
l(i)∑

s=1,...,l(i) KΣ(val[is], vbl[js]) which is a modified version of the Contiguous Subtree
Kernel, [5], and where val and vbl are attributes of type list, the subsequences i and j
are assumed to be contiguous and 0 < λ < 1 is a parameter penalizing longer subse-
quences. A slightly more general kernel is proved in [5] to be a valid kernel, which is
computable in O(mn) where m and n are the lengths of the lists val and vbl respec-
tively.

The other kernel on lists we experimented with is a specialized version of the kernel
over basic terms from [3] which we will call the Longest Common Sublist Kernel. This
kernel can be written as Klist2(val, vbl) = m +

∑m
s=1 KΣ(val[is], vbl[is]) + n where

m = min(l(val), l(vbl)), i.e. the length of the shortest list, and n = 1 if the lists are of
the same length and 0 otherwise. This kernel in more general settings is proved to be a
valid kernel in [3].
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The above kernels are normalized such that the examples in the corresponding fea-
ture space have a unit norm, i.e. Klist(x, y) := Klist(x,y)√

Klist(x,x)Klist(y,y)
.

The Contiguous Subtree Kernel and Longest Common Sublist Kernel are related to
each other in the sense that they apply to the same kind of data. However the underlying
notion of similarity of the Contiguous List Kernel and the kernel from [3] is different.
In the former the overall similarity is measured by sum of the mutual similarities of all
the (consecutive) sublists of the same length. The similarity between the sublists are
computed by means of other kernels. On the other hand the kernel from [3] only takes
the longest common contiguous sublist at the start of the two sublists into account. In
that sense the former takes a more “global” view.

For attributes of type set we use the Averaged Cross Product Kernel, [6].

4 Experiments

We checked the performance of the SVM algorithm, [7], on a protein fingerprint clas-
sification problem. Protein fingerprints are groups of conserved motifs (regions) drawn
from multiple sequences alignment that can be used as diagnostic signatures to identify
and characterize collections of protein sequences, [8]. Broadly speaking, fingerprints
may be diagnostic for a gene family or superfamily (united by a common function),
or a domain family (united by a common structural motif). Fingerprints can be de-
scribed by its component motifs and protein sequences, we are therefore confronted
with a multirelational learning problem. Our approach will be different from the one
presented in [8] since there the task representation is propositionalized by aggregating
protein and motif characteristic over a fingerprint.

We modeled this data in the following way: the “fingerprints” (main) relation with
global characteristics of the instances is associated through an one-to-many relation
with the “motifs” relation. Additionally there is a number of relations with aggregated
information about proteins (actually proteins IDs) associated with the main relation
using one-to-one relations. Fingerprints are globally characterized by (among others)
number of proteins and proportion of protein sequences that match all or only a part of
the motifs in a fingerprint. Individual motifs are characterized by a number of amino
acids and protein sequences, coverage (the fraction of protein sequences in the finger-
print that match the motif) and a number of features measuring motif’s conservation.
The last source of information are protein sequences and more precisely their SWISS-
PROT/TrEMBL labels. Features computed on the basis of these labels can be considered
as statistics computed on the set of proteins and hence they can be stored in the “finger-
prints” relation. However, keeping them in separate relations provides us a way to treat
missing values which is the case here since not all proteins have a SWISS-PROT entry.
More information about different attributes in different relations can be found in [8].

We also defined three different data representation based on combinations of the two
different types of link associations defined in Section 2. In the first two approaches
we assumed that each instance from the “fingerprints” relation is associated with a set
and list of instances from the “motifs” table, respectively. The latter approach assumes
that the order in which motifs appear along the sequence of amino acids is important.
This is justified by the fact that a motif is basically a multiple sequence alignment
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Table 1. Accuracy and rank results on the protein fingerprints dataset

Elementary kernel 10-fold CV test set 10-fold CV test set 10-fold CV test set
SETS LISTS SETS AND LIST

Contiguous Sublist Kernel
kPp=2,a=1 85.08 (4.5) 84.22 85.88 (5.5) 86.08 87.63 (8.5) 87.35
kGγ=0.1 83.66 (1) 81.97 83.59 (1) 83.86 86.01 (5.5) 83.99

Longest Common Sublist Kernel
kPp=2,a=1 85.61 (5) 86.01 86.75 (7.5) 86.35
kGγ=0.1 83.86 (1) 84.13 85.81 (5.5) 73.3
Def. Accuracy 54.4

with a number of conserved regions so there exists an intrinsic notion of order (along
protein sequences). In the third approach we combine the two previous representations:
an instance from the “fingerprints” relation is associated both with the set and list of
instances from the “motifs” table.

We follow the experimental procedure reported in [8] where 1842 fingerprints records
from version 37 of the PRINTS database were split into the design and testing set.
In all experiments we limited ourselves to normalized polynomial kPp,a(., .) (where
p = 2, a = 1) and Gaussian RBF kGγ (., .) (where γ = 0.1) elementary kernels, [7]. For
attributes of type lists we use the Contiguous Sublist Kernel (λ = 0.5) and Longest Com-
mon Sublist Kernel defined in Section 3. We also explored the behavior the SVM with
the C = 1 complexity parameter. We estimate accuracy using ten-fold cross-validation
and control for the statistical significance of observed differences using McNemar’s test
(sig. level=0.05). We also establish a ranking schema of different relational kernels as
follows: in a given dataset if kernel a is significantly better than b then a is credited
with one point and b with zero points; if there is no significant difference then both are
credited with half point. Results are presented in table 1.

To compare the different data representations we fix a submodel and average the
ranks of Klist (or Kset), kP and kG, ignoring their parameter settings. The average
ranks for the models where motifs are represented as sets or lists are 2.75 and 3.125,
respectively, whereas for the third model (instances from the “fingerprints” relation are
associated both with the set and list of motifs) the average rank is 6.75. We can see that
there is a clear advantage in terms of predictive performance of the third model over the
others.

Here the best results are obtained for the kP elementary kernel (p = 2, a = 1)
together with the Contiguous Sublist Kernel and where the third representation of the
data is used. The estimated cross-validation accuracy is 87.63 % whereas the holdout
accuracy is 87.35 %. This represents a statistically significant improvement over the
best accuracy previously reported in [8] by 1.72 % for cross-validation and 1.43 for the
holdout test set.

5 Discussion and Future Work

In this paper we proposed a new class of kernels which extends our previous work
presented in [6, 1] in the sense that these kernels are defined over a richer representa-
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tion language. Our kernels can be considered as instances of the )-Convolution kernel
where the subkernels are elementary kernels and kernels over sets and lists.

Although many kernels have been recently proposed for sequences over a finite al-
phabet (e.g. [4]), not much work has been done in defining kernels over lists of complex
objects. The exceptions are kernels described in [5, 3], variants of which are proposed in
Section 3. The main difference between the Contiguous Sublist Kernel and the Contigu-
ous Subtree Kernel from [5] is that the latter uses an additional user defined matching
function whereas for the objects we consider, the relation determines whether two re-
lational instances are matchable or not. The other difference is that kernels from [5]
are highly specialized whereas our kernels can be used for any classification problem.
The Longest Common Sublist Kernel is a direct application of a kernel over basic terms
defined in [3]. The main difference is that the kernel proposed in [3] was applied only
for sequences over a finite alphabet (with matching kernel for sequences’ elements)
whereas we extended it to more complex structures where only a kernel over elements
of the lists is needed. Comparison to other kernels over (general) complex structures
can be found in [6].

Experiments on the protein fingerprints show that in terms of accuracy there is an
advantage of relational SVM over propositional one. On the other hand using the re-
lational approach makes it easer to preprocess the data since it has a clear relational
representation. In the future work we will concentrate on designing more refined ker-
nels for sets and lists. The other remaining challenge here is that of bringing more
discriminatory information (e.g. biological literature) to bear on the classification of
protein fingerprints.
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Abstract. Hyperclique patterns are groups of objects which are strongly
related to each other. Indeed, the objects in a hyperclique pattern have a
guaranteed level of global pairwise similarity to one another as measured
by uncentered Pearson’s correlation coefficient. Recent literature has pro-
vided the approach to discovering hyperclique patterns over data sets
with binary attributes. In this paper, we introduce algorithms for mining
maximal hyperclique patterns in large data sets containing quantitative
attributes. An intuitive and simple solution is to partition quantitative
attributes into binary attributes. However, there is potential information
loss due to partitioning. Instead, our approach is based on a normaliza-
tion scheme and can directly work on quantitative attributes. In addition,
we adopt the algorithm structures of three popular association pattern
mining algorithms and add a critical clique pruning technique. Finally,
we compare the performance of these algorithms for finding quantitative
maximal hyperclique patterns using some real-world data sets.

1 Introduction

A hyperclique pattern [9, 4] is a new type of association pattern that contains
items which are highly affiliated with each other. More specifically, the pres-
ence of an item in one transaction strongly implies the presence of every other
item that belongs to the same hyperclique pattern. Conceptually, the problem
of mining hyperclique pattern in transaction data sets can be viewed as finding
approximately all-one sub-matrix in a 0-1 matrix where each column may corre-
spond to an item and each row may correspond to a transaction. For the rest of
this paper, we refer to this problem as the binary hyperclique mining problem.

However, in many business and scientific domains, there are data sets which
contain quantitative attributes (e.g. income, gene expression level). How to de-
fine and efficiently identify hyperclique patterns in data sets with quantitative
attributes remains a big challenge in the literature. To this end, the focus of this
paper is to address the quantitative hyperclique pattern mining problem.

To the best of our knowledge, there is no previous work on developing al-
gorithms for finding quantitative maximal hyperclique patterns. Our approach
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for mining quantitative hyperclique patterns is built on top of the normalization
scheme [7]. A side effect of the normalization scheme is that there is no support
pruning for single items. To meet with this computational challenge, we design a
clique pruning method to dramatically remove a large number of items which
are weakly related to each other, and thus effectively improving the overall com-
putational performance for finding quantitative hyperclique patterns. We adopt
structures of three popular association pattern mining algorithms including FP-
tree [5], diffEclat [10], and Mafia [3] as the bases of our algorithms. The purpose
of these algorithms is to find quantitative maximal hyperclique pattern, which
is a more compact representation of quantitative hyperclique patterns and is
desirable for many applications, such as pattern preserving clustering [8]. A hy-
perclique pattern is a maximal hyperclique pattern if no superset of this pattern
is a hyperclique pattern. Finally, we briefly introduce the results of using our
approach on some real-world data sets.

2 Normalization and Quantitative Hyperclique Patterns

Normalization. In this paper, we adopt the normalization method proposed
in [7]. For a vector x =< x1, x2, . . . , xn >, our normalization will turn the vec-
tor as x′ =< x′

1, x
′
2, . . . , x

′
3 > =< x1

|x| ,
x2
|x| , . . . ,

xn

|x| >, where |x| =
√∑n

k=1 x
2
k.

After data normalization, we define the support of every individual item i,
σL2

2
(i) = x′

1
2 + x′

2
2 + . . . + x′

n
2 = 1 and the support of an itemset X is de-

fined as σmin, L2
2
(X) =

∑
i∈T (min{T (i, j)|j ∈ I})2, where T(i, j) means the

normalized value of item j in the transaction i.
One advantage of this normalization is that the resulting support is a number

between 0 and 1. Such normalization is natural in many domains, e.g., text
documents. However, a side-effect of this is that individual items can no longer
be pruned using a support threshold since all single items have a support of 1.

Quantitative Hyperclique Patterns. A traditional binary hyperclique pat-
tern [9] is a frequent itemset with the additional constraint that every item in
the itemset implies the presence of the remaining items with a minimum level
of confidence known as the h-confidence. Specifically, we have the following:

Definition 1. A set of attributes, X, forms a hyperclique pattern with a partic-
ular level of h-confidence, where h-confidence is defined as

hconf(X) = min
i∈X

{conf({i} → {X − {i}})} = σ(X)/max
i∈X

{σ(i)} (1)

Where σ is the standard support function [1].

H-confidence, just like standard support, is in the interval [0, 1] and it has the
anti-monotone property; that is, the h-confidence of an itemset is greater than or
equal to that of its any superset. Also, hyperclique patterns have the high affinity
property, i.e., items in a pattern with a high h-confidence are guaranteed to have
a high pairwise similarity as measured by the cosine metric. Additionally, there
is an important relationship between h-confidence of binary hyperclique patterns
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and the support function σmin, L2
2
(X). In particular, since σmin, L2

2
(X) is equiv-

alent to standard support for binary data, we can substitute σmin, L2
2
(X) for the

standard support function σ(X) in Equation 1. It is then interesting to note
that if we normalize all attributes to have an L2 norm of 1, i.e., σmin, L2

2
(i) = 1

for all items i, then, by Equation 1, hconf(X) = σmin, L2
2
(X), since the normal-

ization sets the support of all the item to 1, we get maxi∈X{σ(i)} = support
(i) =1.

In a nutshell, finding continuous hyperclique patterns first proceeds by nor-
malizing the attributes to have an L2 norm of 1. Then, for each row, we take
the minimum of the specified attributes. Finally, we square each of these values
and add them up. The resulting value is the h-confidence and is a lower bound
on the pairwise cosine similarity.

3 Algorithm Descriptions

Here, we present the algorithms for mining quantitative maximal hyperclique
patterns. Our algorithms are built on top of three state-of-the-art association
pattern mining algorithms including FPTree [5], diffEclat [10], and Mafia [3].

Clique Pruning. We design a clique pruning method for eliminating weakly re-
lated single items. Specifically, we first compute h-confidence of all item pairs on
the normalized data. For each item, we then identify the maximum h-confidence
value among all pairs including this item. Finally, for a user-specified threshold,
we prune all items whose maximum h-confidence is less than this threshold.

Algorithm based on FP-Tree. FP-Tree [5] is a compact tree structure which
allows to identify frequent patterns without generating the candidate patterns.
Here, we adopt the FP-tree algorithm for finding quantitative maximal hyper-
clique patterns. First, we store float values instead of integer values, since the
support of the normalized data are continuous. Second, the support values should
be squared before added to the FP-Tree since they have an L2 Norm. Finally,
we need to split squared transactions and make the support of preceding item
not less than the successor item, before adding them into the FP-Tree.

Algorithm based on MAFIA. MAFIA [3] is a depth-first searching algo-
rithm for mining maximal frequent patterns. For the data set with continuous
attributes, we change the algorithm to store not only the tidset, but also the
support (normalized data) for each transaction. For this purpose, the algorithm
needs a float vector to store the support information. Each element in the vector
presents the support for each transaction in order.

Algorithm based on DiffEclat. DiffEclat uses a vertical data representation,
called diffset, for efficiently mining maximal frequent patterns[10]. The diffset
only store the different set of transaction ID between the pattern and its parant
pattern. The key modification that we made is to store both transaction IDs
and the support information. However, for diffset, we store the support different
between a pattern and its parent pattern instead of the support itself.
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4 Experimental Evaluation

Experimental Setup. Our experiments were performed on two real-life gene
expression data sets, Colon Cancer and NCI [2, 6]. Table 1 shows some charac-
teristics of these gene expression data sets.

Table 1. The Characteristics of Gene Expression Data Sets

DATASET Colon Cancer NCI
# Gene 2000 9905
# Sample 62 68
# Class 2 9
CLASS NAME # SAMPLE

C1 Tumor 40
C2 Normal 22

A Performance Comparison. Figure 1 (a) shows the running time of three
algorithms on the Colon Cancer data set. As can be seen, when the h-confidence
threshold is less than 0.35, the FP-Tree can be an order of magnitude faster
than Mafia and DiffEclat is not very efficient and become unscalable when the
h-confidence threshold is low. Also, Figure 1 (b) shows the performance of the
proposed algorithms for mining sample patterns on the NCI data set. Similar
to the observation from the Colon Cancer data set, we can also observe that
when the h-confidence threshold is less than 0.5, the FPTree can be an order of
magnitude faster than Mafia. However, MAFIA has a better performance when
the h-confidence threshold is high. Another observation is that the performance
DiffEclat is not scalable when the h-confidence threshold is low.

The Effect of Clique Pruning. Figure 2 demonstrate the effect of clique
pruning on Colon and NCI data sets using the algorithm based on Mafia. As
can be seen from both figures, with the increase of the clique pruning ratio,
the running time is reduced significantly. The running time can be orders of
magnitude faster if we target on hyperclique patterns with high affinity. Another
benefit is that, the proposed algorithm can even identify patterns at a very low
level support when the clique pruning ratio is at a certain level.
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Fig. 1. The Performance Comparison on Colon and NCI data sets
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Fig. 2. The Effect of Clique Pruning on Colon Cancer and NCI Data Sets

5 Conclusions

In this paper, we addressed the problem of mining quantitative maximal hyper-
clique patterns in the data sets with continuous attributes. Instead of mapping
continuous attributes into binary attributes, we applied a data normalization
method. Also, we provided algorithms for finding quantitative maximal hyper-
clique patterns. These algorithms are built on top of three state-of-the-art asso-
ciation pattern mining algorithms and have included a clique pruning method to
perform pruning for individual items. Finally, the performance of the algorithms
have been demonstrated using real-world data sets.
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Abstract. We present a novel resolution-based outlier notion and a nonparamet-
ric outlier-mining algorithm, which can efficiently identify top listed outliers 
from a wide variety of datasets. The algorithm generates reasonable outlier re-
sults by taking both local and global features of a dataset into consideration. 
Experiments are conducted using both synthetic datasets and a real life con-
struction equipment dataset from a large building contractor. Comparison with 
the current outlier mining algorithms indicates that the proposed algorithm is 
more effective. 

1   Introduction 

The term “outlier” can refer to any single data point of dubious origin or dispropor-
tionate influence. Given a set of observations X, an outlier is an observation that is an 
element of this set but which is inconsistent with the majority of the data or inconsis-
tent with a sub-group of X to which the element is meant to be similar. The above 
definition has two implications: outlier vis-à-vis the majority; and outlier vis-à-vis a 
group of neighbours. Whether it is an interesting contaminant or dubious data entry, 
an outlier is often considered noise, which can have a harmful effect on statistical 
analysis. 

Attempts have been made to remove the noisy data using various outlier mining 
approaches; in one example, Raz et al. [1] designed an expert system to automatically 
detect unlikely vehicles and erroneously classified ones from weigh-in-motion data. 
In contrast to noisy data, some relevant outliers contain important information on 
system malfunction, mismanagement, or even unpredictable phenomena (environ-
mental or geological disaster), which should be detected for further investigation 
rather than discarded. In either of these two cases, the inconsistent records should first 
be identified as much as possible from the dataset. Data validation (range validation, 
single variate pattern validation etc.) can only filter out a small portion of outliers. 
Traditional statistical approaches including multivariate outlier detection are not ap-
plicable due to their pre-assumption of certain statistical distributions, which may not 
exist for datasets containing multiple clusters. 

Outlier mining techniques in data mining seem to be viable solutions for outlier de-
tection in engineering applications. Some of the popular algorithms include among 
others a distance-based outlier mining algorithm by Knorr and Ng [2]; a local outlier 
mining algorithm by Breunig et al. [3] and a connectivity-based mining algorithm by 
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Tang et al. [4]. However these algorithms are not widely accepted in civil engineering 
disciplines because they do not cater to the special features of engineering datasets, 
including: 

 
 Current outlier mining algorithms need domain-dependent parameters, but these 

parameters are not known a priori; 
 Current outlier mining algorithms need some parameters, which can only be 

obtained and tuned through tremendous trial-and-error effort. This is not practi-
cal for frequent time-changing applications and thus cannot be an integrated part 
of a real-time decision support system. 

 Current outlier mining algorithms are capable of mining either global or local 
outliers while the engineering dataset usually contains loosely bounded clusters. 
It is difficult in this case to differentiate local from global outliers. 

 In engineering applications, there exists a need for ranking the top-listed outliers. 
This is where our major focus is. 

 
In this paper, we present a Resolution-Based outlier (RB-outlier) notion and an as-

sociated outlier detection algorithm efficient for engineering applications. The RB-
outlier notion is proposed based on a nonparametric clustering algorithm called 
TURN* by Foss and Zaïane with the same idea of resolution change [5]. The pro-
posed algorithm can detect and rank top-N outliers from any kind of dataset without 
the need for input parameters.  

We also compare RB-outlier with DB-outlier and Local density based outlier 
(LOF-outlier) mining algorithms using both synthetic datasets and a construction 
equipment dataset from a large building contractor. Our experimental results show 
that the RB-outlier mining algorithm generates equivalent or better results than the 
other two competitive algorithms on all the datasets while benefiting from the absence 
of input parameters; the RB-outlier results seem to combine the results from both DB-
outlier which looks for global outliers and LOF-outlier which looks for local outliers. 
Analysis on the detected outliers from the equipment datasets shows that these com-
bined results make more sense for engineering datasets. 

2   Related Work 

Hawkins defines an outlier as “an observation which deviates so much from other 
observations as to arouse suspicions that it was generated by a different mechanism” 
[6]. Traditionally outlier detection in engineering disciplines depends on statistical 
approaches. After fitting a data series into a bell-shaped statistical distribution, those 
data points located far away from the mean (e.g. 3 standard deviations) are deemed 
outliers; multivariate outlier detection techniques can help identify outliers within a 
multivariate dataset. Other commonly used techniques are quartile methods, and visu-
alization methods using scatter plot, etc. With regard to the data complexity and sheer 
data volume in engineering systems, outlier detection using statistical approaches is 
very inefficient and even impractical due to their limitations such as the difficulties 
with handling higher dimensional data, and the necessary assumption of distributions.  
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A distance-based definition of outliers was first proposed by Knorr and Ng. They 
introduced DB-outlier to identify outliers from a large database (i.e. with high dimen-
sions and high data volume) [2]. A DB-outlier is defined as follows: “An object O in a 
dataset T is considered a DB(p,D)-outlier if at least a fraction p of the objects in T 
lies greater than distance D from O”. The authors claim that this definition general-
izes the notion of outlier defined in statistical tests for standard distributions. DB-
outlier tends to find outliers in global context, which means some important outliers 
deviated from their local clusters are probably missed if a large number of isolated 
points or loosely packed clusters appear. While Knorr and Ng’s definition is distribu-
tion free, it lacks a mechanism to rank outliers. Without violating the original notion 
of DB(p,D) outlier, Ramaswamy et al. further propose to rank each point based on its 
distance to its kth nearest neighbour, and use a partition-based algorithm to efficiently 
mine top-N outliers from a large database [7]. For them, the outliers are the top n 
data elements whose distance to the kth nearest neighbour is greatest. This definition 
also eliminates the need to estimate an appropriate distance D. 

Another popular algorithm is a local density based outlier-mining algorithm pro-
posed by Breunig et al. [3]. A Local Outlier Factor (LOF) is assigned for each object 
with respect to its surrounding neighbourhood. The LOF value depends on how the 
data points are closely packed in its local reachable neighbourhood. These points deep 
inside a dense cluster have a LOF value of approximately 1 while the isolated points 
have a much higher value. The authors claim that this definition also catches the spirit 
of the outlier definition given by Hawkins [6]. The local outlier notion seems more 
reasonable than DB-outlier because each data point can be measured with a numerical 
factor based on how the data is deviated from its genuine cluster. Therefore the out-
liers can be ranked as per their LOF values. 

Tang et al. improved to some extent the LOF definition by using their Connec-
tivity-based Outlier Factor (COF) for a dataset containing low density patterns. In 
such a case, LOF would not be effective to measure the density of an outlier with 
respect to its sparse neighbourhood [4]. 

The biggest hurdle of effectively applying these afore-mentioned outlier-mining 
algorithms in the engineering domain is the determination of their input parameters. 
All the parameters should be either known a priori or estimated and optimized by 
trial-and-error with the help of expert opinions. In particular, LOF is very sensitive to 
its parameter MinPts and DB-outlier results vary greatly when D and p change. Sub-
jective results make it difficult to implement these outlier-mining algorithms for out-
lier detection in engineering applications. 

3   Resolution-Based Outlier 

TURN* is a nonparametric clustering algorithm [5]. The optimum clustering of a 
dataset can be obtained automatically based on resolution change: when the resolution 
changes on a dataset, the clusters in the dataset redistribute. All the objects are in the 
same cluster when the resolution is very low, meanwhile every object is a single clus-
ter when the resolution is very high, and therefore the optimum clustering can be 
achieved at a point between these two extreme scenarios. The “TURN-CUT” tech-
nique was introduced to detect this critical point during the resolution change by look-
ing for a plateau in the curve of the differential of some collected cluster statistics [5].  
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The same observation holds when viewing all the objects in the dataset from the 
perspective of outliers. All the objects are outliers when the resolution is high enough 
to warrant no neighbours (by distance measure) for any objects in the dataset; mean-
while all the objects are “inliers” when the resolution is low enough to have all the 
objects close-packed in a single cluster. If the resolution of a dataset changes, differ-
ent outliers demonstrate different clustering-related behaviors during resolution 
change; those objects more isolated, with less neighbours, and far away from large 
data communities are more liable to be outliers. On the other hand, the top outliers 
will be merged into a cluster later when the resolution is decreased. As a result, the 
accumulated cluster-related properties collected on one object can be used to measure 
its degree of outlyingness relative to its close neighbourhood and community (reach-
able neighbourhoods). We first define the neighbourhood of an object:  

Definition 1. Neighbourhood of Object O:  

If an Object O has a nearest neighbouring points P along each dimension 
in k-dimensional dataset D and the distance between P and O is less or 
equal to 1, then P is defined as the close neighbour of O, all the close 
neighbours of P are also classified as the close neighbours of O, and so 
on. All these connected objects are classified as the same neighbourhood. 

The threshold value is taken as 1 to measure whether two points are close enough to 
become neighbours. The absolute value of this threshold is not important because the 
pair-wise distances between points are relative measurements during resolution 
change. The algorithm finds the maximum resolution Smax at which all the points are 
far enough from each other to be non-neighbours, and the minimum resolution Smin at 
which all the points are close enough to be neighbours.  

Secondly we define the resolution-based outlier factor for each object: 

Definition 2. Resolution-Based Outlier Factor (ROF): 

If the resolution of a dataset changes consecutively between maximum 
resolution where all the points are non-neighbours, and minimum resolu-
tion where all the points are neighbours, the resolution-based outlier 
factor of an object is defined as the accumulated ratios of sizes of clus-
ters containing this object in two consecutive resolutions. 
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Where r0, r2…ri…rR. are the resolutions at each step, R is the total number of resolution 
change steps from Smax to Smin, CluserSize(O,r) is the number of objects in the cluster 
containing object O at a resolution r. 

At each resolution, we cluster the points based on the distance between every two 
objects and the neighbourhood definition. The time complexity of clustering at each 
resolution is O(NLogN) as demonstrated in [5]. The cluster size of each object is set 
to 1 at the beginning ( i.e. at Max. resolution), then the cluster size increases for the 
object whenever the object gets merged, or the cluster containing the object merges 
other objects at the next lower resolution. 



 A Nonparametric Outlier Detection for Effectively Discovering Top-N Outliers 561 

The cluster size at the previous resolution is reduced by 1 for ease of comparison, 
which will set the ROF of an object to 0 before the object gets merged. Top N outliers 
are the N elements with the lowest ROF value. 

Universally defining an outlier is somewhat controversial and is often subjective, 
relative to the application at hand. While considering locality and globality, our defi-
nition still embodies the essence of the accepted definition given by Hawkins [6] with 
regard to deviation from other observations. 

4   Resolution-Based Outlier Mining Algorithm 

Using the definitions of close neighbourhood and ROF in the previous section, a reso-
lution-based outlier detection and ranking algorithm (RB-MINE) is proposed for 
mining top-N outliers in a dataset with multiple numerical attributes.  

The resolution change ratio r is a percentile value used for computing the resolu-
tion change step size. The reason why this parameter is not considered an input pa-
rameter for the nonparametric clustering algorithm TURN* is explained in [5]. The 
same argument can be applied here to the RB-outlier mining algorithm. Indeed our 
experimental tests show the resolution change ratio, so long as it is kept in a moderate 
range, has a minor effect on the outlier results. Thus the user does not need to spend 
much effort to fine-tune this parameter, unlike the current popular outlier mining 
algorithms. Moreover, this ratio need not be static. It can decrease dynamically start-
ing with a large step declining to a smaller step progressively. We found in our exten-
sive experiments that fixing this resolution change to a static 10% gave good results 
for a wide range of data. 

 
RB-CLUSTER 
Given a resolution r and a dataset D: 

1. Scale the coordinates using current resolution r. 
 Current Coordinates = Original Coordinates * r 

2. For each object O 
     For the objects within a threshold distance of 1 from O, find the closest neighbours in each 

direction (+,-) along every dimension. (this can be done with a sort on each dimension) 
3. Pick an unlabeled object and give it a new cluster label C. 

      Initialize its neighbourhood chain nChain and set the cluster size of C to 1. 
4. Scan this object’s close neighbours. For each neighbour: 

If the neighbour is unlabeled, give the neighbour the same cluster label C, add the 
neighbour to nChain, and increase the cluster size of C by 1. 

If the neighbour has already been labeled as C’ (C’ ≠ C), change the label of all 
points in cluster C’ to C.  Increase the cluster size of C by the number of objects con-
tained in cluster C’, then delete records on cluster C’. 

5. Move to the next object on nChain. Repeat 4 until all objects on nChain are checked. 
6. Record the size of cluster C. 
7. Repeat (3)~(6) until all objects are labeled. 
8. For each object p, update the ROF value. 

Fig. 1. RB-CLUSTER component algorithm 
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RB-MINE 
Given a dataset D and the specified number N of top outliers 

1. Find the maximum resolution, Smax, at which no close neighbours can be found for each 
object, and the minimum resolution, Smin, at which all the points are close neighbours in 
the same neighbourhood. 

2. Starting at Smax, initialize the ROF value as 0 for each object. 
3. Update ri = ri-1 + (Smax –Smin)*Δr, (Δr is the resolution changing ratio). 
4. Run RB-CLUSTER to cluster the objects at resolution ri. 
5. Update the ROF value for each object. 
6. Rank objects in an increasing order of ROF, obtain top N outliers. 

Fig. 2. RB-MINE algorithm 

The finalized RB-outlier algorithm is comprised of a component algorithm RB-
CLUSTER in Figure 1, and an overall algorithm RB-MINE in Figure 2. RB-
CLUSTER clusters objects in the dataset at each resolution step while RB-MINE 
steers the mining process through the change of resolution and collection of ROF for 
each object. 

5   Comparison of RB-Outlier with DB-Outlier and LOF-Outlier 

One of the primary factors determining the outlier mining results is the outlier notion, 
which describes what an outlier is and assigns it a measuring factor, if it is possible.  

For examples, DB(D,p) outlier evaluates the inconsistency of an object by judging 
if there are sufficient number of objects within D (or the distance to its kth nearest 
neighbour is closer than D, where k is the (1-p) percent of the total number of ob-
jects), therefore the algorithm searches for the specified number of nearest points in a 
global context; LOF-outlier measures the degree of outlyingness by taking only a 
restricted neighbourhood into account, LOF varies depending on how an object is 
deviated from its “best-guess” cluster in a local context. 

The RB-outlier notion measures how an object deviates from its close neighbour-
hood. The definition of neighbourhood implies that this neighbourhood actually in-
cludes a series of chained neighbourhoods (we call it a “community”), as such, RB-
outlier measures an object against its degree of outlyingness by taking both “global” 
and “local” features into account. 

6   Experimental Results 

To validate the RB-outlier mining results and compare with those detected by DB-
outlier and LOF-outlier mining algorithms, we implemented all three algorithms in 
the same C++ development environment, and conducted experiments on a number of 
synthetic datasets as well as a real world construction equipment dataset obtained 
from a large building contractor. This section summarizes our experimental results 
and comparative analysis on a token 200-tuple 2D synthetic dataset, a 10,000-tuple 
2D synthetic dataset, and a 1033-tuple 3D construction equipment dataset.  
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A Synthetic 2D dataset of four clusters with a total number of 200 objects: The 
token dataset shown in Figure 3.A, contains four distinct clusters and 20 outliers. This 
dataset, used in many clustering research projects for validating clustering results can 
be equally applied for visual validation of outlier detection. We run the three algo-
rithms separately on this dataset, each identifying the top-10 and top-20 outliers and 
marking up these points in the density plot. DB-outlier was optimal with p=97/200 
and LOF-outlier with MinPts=3. Figure 3.A summarizes the top outliers detected by 
RB-outliers. 

 
A: Top-20 outliers identified by RB-outlier in 
a 200-tuple synthetic dataset 

B: Top-200 outliers identified by RB-outlier 
in a 10,000-tuple synthetic dataset  

Fig. 3. Top outliers identified by RB-outlier in two synthetic datasets 

Among the top-10 outliers, eight out of the top-10 outliers are the same with the 
three algorithms; visual judgment on the density plot confirms the “outlyingness” of 
the identified objects and the eight objects voted unanimously as outliers are truly 
isolated as compared with others. This finding indicates that all the three algorithms 
can effectively find outliers from this dataset. However there are some differences 
between the three sets of results: 

 
1. Though top-3 outliers are exactly the same in the three sets of results, the other 

five unanimously identified outliers have different rankings in their perspective 
results. The five outliers have higher rankings in RB-outlier list. 

2. The outliers No. 4 and 5 in LOF-outlier results are interpreted differently by DB-
outlier and RB-outlier. In the DB-outlier set, No. 4 is ranked as No. 10 and No.5 
is not included in the top-10; nevertheless neither of them is included in RB-
outlier results at the top-10 level. This observation indicates that LOF-outlier 
tends to take objects in a small isolated cluster as outliers, the same tendency can 
be observed with DB-outlier. This finding can be explained by the definition for 
the minimum number of neighbouring points in LOF-outlier and DB-outlier: a 
small cluster containing number of objects less than this specified parameter 
tends to be classified as “a cluster of outliers.”  
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The afore-mentioned conclusions are further enhanced by increasing the number of 
outliers in the top list. For example, if we look at the top-20 outliers in Figure 3.A, 
they are indeed detected by all the algorithms. However, RB-outlier shifts the unani-
mously identified outliers to higher rankings in its top-20 list. 

Precision and recall are two measures in information retrieval that could be used as 
criteria for evaluating the outlier results. Precision is defined as the percentage of 
correct outliers in the set of detected outliers (i.e. the total number of correctly de-
tected outliers divided by the number of labeled outliers); recall is the percentage of 
all known outliers correctly detected (i.e. total number of correctly detected outliers 
divided by the total number of existing outliers). For top-20, Precision and Recall are 
the same and all three algorithms achieve 100%. However, scrutinizing at a lower n 
for top-outliers, RB-outlier always has better or equivalent precision and recall. 

A synthetic 10,000 object dataset containing nine clusters of different shapes: 
This dataset is also widely used for visually validating clustering results. The dataset 
contains 9 clusters of difference shapes and significant noise. This experiment aims to 
verify the capability of RB-outlier to distinguish outliers from “inliers” in a relatively 
large set and in the presence of clusters of arbitrary shapes. 

In this experiment, we compared the top-200 outlier results identified by LOF-
outlier and RB-outlier respectively, as marked up in Figure 3.B. Though both identify 
similar objects as outliers in this dataset, a detailed observation reveals that LOF-
outlier biases objects in locally sparse areas, and RB-outlier takes local sparsity and 
global sparsity into consideration when picking up outliers. The LOF algorithm as-
signs a higher outlier factor for the object whose local density is lower than its 
neighbours. Therefore, when the number of outliers to detect is increased, LOF-
outlier marks the objects at the edge of dense clusters as outliers, while RB-outlier 
tends to pick up outliers from isolated objects. RB-outlier’s performance is indeed the 
sought for behaviour in construction engineering data. 

A 3D construction equipment management dataset: To test-drive the RB-outlier 
mining algorithm and validate its usefulness in engineering datasets, we conducted 
experiments on a three-dimensional construction equipment dataset obtained from a 
large building contractor. The dataset includes characteristic attributes for 1033 pieces 
of equipment in the contractor’s equipment fleet. Three numerical attributes are de-
fined for each unit in addition to the identify attribute: the yearly repair/maintenance 
cost (yearly cost), the rate of charge, and the age. The objective of the experiments is 
to identify top listed inconsistent units from the dataset. The inconsistency of these 
units indicates the abnormal combination of the three attributes for a unit with respect 
to its similar equipment sub-group; 

Using DB-outlier, LOF-outlier and RB-outlier algorithms, we identify the top-20 
outliers from the selected equipment fleet. A comparison of the three sets of outliers 
determines that 11 out of 20 are unanimously identified as outliers by the three algo-
rithms in their top-20 lists. LOF-outlier generates very similar results to DB-outlier 
with 16 being the same out of the top-20. This is not surprising because a large num-
ber of isolated objects appear in this dataset. LOF definition becomes similar to the 
DB-outlier notion for a sparsely distributed dataset: both start by looking for mini-
mum number of neighbouring objects. Two additional units are identified as outliers 
by both LOF-outlier and RB-outlier; but no addition outlying units are identified by 
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both DB-outlier and RB-outlier besides the 11 common units. RB-outlier moves all 
the 11 common units to higher rankings and adds 6 new units in the top-20 outlier list. 
Analysis of the 6 added units against their individual equipment sub-group and the 
entire fleet confirmed their interestingness.  

The inability of identifying some outstanding outliers by DB-outlier and LOF-
outlier mining algorithms can be illustrated from their outlier notions: these two algo-
rithms evaluate the degree of outlying by drawing a hyper-sphere around each object; 
and the number of objects inside the hyper-sphere influences the outlier measurement 
of the object. The outliers harbored inside the concave of a cluster can not be identi-
fied efficiently based on this rational, subsequently some outliers become missing in 
the results if the two algorithms are applied on a real life dataset which may contain 
clusters of any arbitrary shape. 

Among the top-20 outliers, Unit# 505-401, a soil cement plant (300 to 600 TPH), 
is detected as No.1 outlier by DB-outlier and No. 2 outlier by LOF-outlier, but is not 
identified as an outlier by RB-outlier. Detailed analysis of this unit finds out it is the 
only unit in this equipment class, therefore it is not a “true” outlier in the application. 
Other outliers in top-20 of DB-outliers (no. 16 and 17) are also the only units in their 
respective equipment class; No. 18 of LOF-outliers is identified as outlier because it 
is in a small 2-object cluster. These outlying units in DB-outlier and LOF-outlier 
results are of no particular interests; their appearance somehow degrades the general 
quality of the top-N outlier mining results. On the contrary, all the 11 common outly-
ing units, the three found by RB-outlier and by another method, and the 6 additional 
units unique to the RB-outlier results are indeed inconsistent units relative to their 
individual equipment sub-group. If we consider the 11 common units as “true” out-
liers, and look at the top-20 or less in the outlier results, the recall is generally better 
for RB-outlier when we compare the three algorithms. 

Execution time is not reported or discuss because all the three algorithms are com-
parable. While LOF uses an index structure like R* trees to find nearest neighbours, 
this index structure collapses with high dimensional spaces and the time complexity 
of all three methods becomes in the order O(N2) when the dimensionality is above 15 
or 20 dimensions. In those cases, outlier analysis can benefit from linear approaches 
approximating k-nearest neighbours such as [8, 9, 10]. 

7   Summary and Conclusion 

Outlier mining provides unprecedented advantages for detecting inconsistent records 
from a large database, which could not be possibly accomplished with traditional 
statistical techniques. Nevertheless the current popular outlier mining algorithms, 
when applied for engineering applications are neither efficient nor effective because 
of their domain-dependent parameters. The outlier notions in the current algorithms 
are targeted at either global or local outliers, but in engineering data, the data is typi-
cally noisy and clusters in the dataset are not well bounded as in the synthetic datasets 
used by some authors. At the same time, the current outlier mining algorithms cannot 
efficiently detect outliers from a dataset containing clusters of arbitrary shapes, such 
as in the engineering data. 
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The resolution-based outlier definition and the nonparametric RB-outlier mining 
algorithm RB-MINE introduced in this paper are more suited to engineering data 
when compared with the popular DB-outlier and LOF-outlier schemes. The algorithm 
overcomes the problems stated above and can be used for robust outlier detection in a 
wide variety of multi-dimensional datasets in engineering data.  

The ability of mining top-N outliers based on ROF provides a mechanism of rank-
ing by the degree of “interestingness”. Problems in the records can be identified by 
looking at the top listed outliers for further investigation. The outlier mining tech-
nique we propose is expected to eliminate the burden of domain experts spent on 
estimating and tuning unknown parameters.  
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Abstract. The task of outlier detection is to find small groups of data objects 
that are exceptional when compared with rest large amount of data. Recently, 
the problem of outlier detection in categorical data is defined as an optimization 
problem and a local-search heuristic based algorithm (LSA) is presented. 
However, as is the case with most iterative type algorithms, the LSA algorithm 
is still very time-consuming on very large datasets. In this paper, we present a 
very fast greedy algorithm for mining outliers under the same optimization 
model. Experimental results on real datasets and large synthetic datasets show 
that: (1) Our new algorithm has comparable performance with respect to those 
state-of-the-art outlier detection algorithms on identifying true outliers and (2) 
Our algorithm can be an order of magnitude faster than LSA algorithm. 

1   Introduction 

In contrast to traditional data mining task that aims to find the general pattern 
applicable to the majority of data, outlier detection targets the finding of the rare data 
whose behavior is very exceptional when compared with rest large amount of data. 
Studying the extraordinary behavior of outliers can uncover valuable knowledge 
hidden behind them and aid the decision makers to make profit or improve the service 
quality. Thus, mining for outliers is an important data mining research with numerous 
applications, including credit card fraud detection, discovery of criminal activities in 
electronic commerce, weather prediction, and marketing. 

A well-quoted definition of outliers is firstly given by Hawkins [1]. This definition 
states: an outlier is an observation that deviates so much from other observations as to 
arouse suspicion that it was generated by a different mechanism. With increasing 
awareness on outlier detection in data mining literature, more concrete meanings of 
outliers are defined for solving problems in specific domains [3-22].  

However, conventional approaches do not handle categorical data in a satisfactory 
manner, and most existing techniques lack for a solid theoretical foundation or 
assume underlying distributions that are not well suited for exploratory data mining 
applications. To fulfill this void, the problem of outlier detection in categorical data is 
defined as an optimization problem as follows [22]: finding a subset of k objects such 
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that the expected entropy of the resultant dataset after the removal of this subset is 
minimized.  

In the above optimization problem, an exhaustive search through all possible 
solutions with k outliers for the one with the minimum objective value is costly since 
for n objects and k outliers there are ),( kn  possible solutions. To get a feel for the 
quality-time tradeoffs involved, a local search heuristic based algorithm (LSA) is 
presented in [22]. However, as is the case with most iterative type algorithms, the 
LSA algorithm is still very time-consuming on very large datasets.  

In this paper, we present a very fast greedy algorithm for mining outliers under the 
same optimization model. Experimental results on real datasets and large synthetic 
datasets show that: (1) Our algorithm has comparable performance with respect to 
those state-of-the-art outlier detection algorithms on identifying true outliers and (2) 
Our algorithm can be an order of magnitude faster than LSA algorithm. 

The organization of this paper is as follows. First, we present related work in 
Section 2. Problem formulation is provided in Section 3 and the greedy algorithm is 
introduced in Section 4. The empirical studies are provided in Section 5 and a section 
of concluding remarks follows. 

2   Related Work 

Statistical model-based methods, such as distribution-based methods [1,5] and depth-
based methods [6], are rooted from the statistics community. In general, underlying 
distributions of data are assumed known a priori in these methods. However, such 
assumption is not appropriate in real data mining applications. Distance based 
methods [7-9] and density based methods [10,11] are recently proposed methods for 
mining outliers in large databases. However, they primarily focused on databases 
containing real-valued attributes. Clustering-based outlier detection techniques 
regarded small clusters as outliers [12, 14] or identified outliers by removing clusters 
from the original dataset [13]. Sub-Space based methods aim to find outliers 
effectively from high dimensional datasets [3,4]. Support vector based methods 
[15,16] and neural network based methods [17,18] are also widely used in outlier 
detection. Outlier ensemble based methods are investigated recently in [24,25].  

The preceding methods may be considered as traditional in the sense that they 
define an outlier without regard to class membership. However, in the context of 
supervised learning (where data have class labels attached to them) it makes sense to 
define outliers by taking such information into account. The problem of class outlier 
detection is considered in [19-21]. 

3   Problem Formulation 

Entropy is the measure of information and uncertainty of a random variable [2]. If X 
is a random variable, and S (X) the set of values that X can take, and p (x) the 
probability function of X, the entropy E (X) is defined as shown in Equation (1).  
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and hence the entropy can be computed as the sum of entropies of the attributes. 
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4   The Greedy Algorithm 

In this section, we present a greedy algorithm, denoted by greedyAlg1, which is 
effective and efficient on identifying outliers. 

4.1   Overview 

Our greedyAlg1 algorithm takes the number of desired outliers (supposed to be k) as 
input and selects points as outliers in a greedy manner. Initially, the set of outliers 
(denoted by OS) is specified to be empty and all points are marked as non-outlier. 
Then, we need k scans over the dataset to select k points as outliers. In each scan, for 
each point labeled as non-outlier, it is temporally removed from the dataset as outlier 
and the entropy objective is re-evaluated. A point that achieves maximal entropy 
impact, i.e., the maximal decrease in entropy experienced by removing this point, is 
selected as outlier in current scan and added to OS. The algorithm terminates when 
the size of OS reaches k. 
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4.2   Data Structure 

Given a dataset D of n points 
^

1p ,…, 
^

np , where each point is a multidimensional 

vector of m categorical attributes, we need m corresponding hash tables as our basic 
data structure. Each hash table has attribute values as keys and the frequencies of 
attribute values as referred values. Thus, in O (1) expected time, we can determine the 
frequency of an attribute value in corresponding hash table. 

4.3   The Algorithm 

Fig.1 shows the greedyAlg1 algorithm. The collection of records is stored in a file on 
the disk and we read each record t in sequence. 

In the initialization phase of the greedyAlg1 algorithm, each record is labeled as 
non-outlier and hash tables for attributes are also constructed and updated (Step 01-
04). 

In the greedy procedure, we need to scan the dataset for k times to find exact k 
outliers, i.e., one outlier is identified in each pass. In each scan over dataset, we read 
each record t that is labeled as non-outlier, its label is changed to outlier and the 
changed entropy value is computed. A record that achieves maximal entropy impact is 
selected as outlier in current scan and added to the set of outliers (Step 05-13).  

In this algorithm, the key step is computing the changed value of entropy. In the 
following Theorem, we show that the decreased entropy value is only dependent on 
the attribute values of the record to be temporally removed. 

Theorem 1: Suppose the number of records remained in D is nl, the record 
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current iteration. Hence, Theorem results by considering all attributes.  
With the use of hashing technique, in O (1) expected time, we can determine the 

frequency of an attribute value in corresponding hash table. Hence, we can determine 
the decreased entropy value in O (m) expected time since the changed value is only 
dependent on the attribute values of the record to be temporally removed. 
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 Algorithm greedyAlg1 

 Input:    D   // the categorical database    

 k   // the number of desired outliers 

 Output:  k identified outliers                            

/* Phase 1-initialization */ 

01  Begin 

02 foreach record t in D  

03      update hash tables using t 

04      label t as a non-outlier with flag “0” 

/* Phase 2-Greedy Procedure */ 

counter = 0 

05 Repeat 

06    counter++ 

07    while not end of the database do  

08      read next record t which is labeled “0”  //non-outlier 

09      compute the decrease on entropy value by labeling t as outlier 

10     if maximal decrease on entropy is achieved by record b then  

11       update hash tables using b 

12       label b as a outlier with flag “1” 

13 Until counter = k 

14 End  

Fig. 1. The greedyAlg1algorithm 

4.4   Time and Space Complexities 

Worst-case analysis: The time and space complexities of the greedyAlg1 algorithm 
depend on the size of dataset (n), the number of attributes (m), the size of every hash 
table and the number of outliers (k). 

To simplify the analysis, we will assume that every attribute has the same number 
of distinct attributes values, p. Then, in the worst case, in the initialization phase, the 
time complexity is O (nmp). In the greedy procedure, since the computation of value 
change on entropy requires at most O (mp) and hence this phase has time complexity 
O (nkmp). Totally, the algorithm has time complexity O (nkmp) in worst case. 

The algorithm only needs to store m hash tables and the dataset in main memory, so 
the space complexity of our algorithm is O ((p + n) m). 

Practical analysis: Categorical attributes usually have small domains. An important 
of implication of the compactness of categorical domains is that the parameter, p, can 
be regarded to be very small. And the use of hashing technique also reduces the 
impact of p, as discussed previously, we can determine the frequency of an attribute 



572 Z. He et al. 

value in O (1) expected time, So, in practice, the time complexity of greedyAlg1can 
be expected to be O (nkm). 

The above analysis shows that the time complexity of greedyAlg1 is linear to the 
size of dataset, the number of attributes and the number of outliers, which make this 
algorithm scalable. Previous LSA algorithm presented in [22] has the time complexity 
O (nkmI), which is much slower than our algorithm since I (the number of iterations 
in LSA) is usually larger than 10. 

5   Experimental Results 

A comprehensive performance study has been conducted to evaluate our greedyAlg1 
algorithm. In this section, we describe those experiments and their results. We ran our 
algorithm on real-life datasets obtained from the UCI Machine Learning Repository 
[23] to test its performance against other algorithms on identifying true outliers. In 
addition, some large synthetic datasets are used to demonstrate the scalability of our 
algorithm. 

5.1   Experiment Design and Evaluation Method 

Following the experimental setup in [22], we also used two real life datasets 
(lymphography and cancer) to demonstrate the effectiveness of our algorithm against 
FindFPOF algorithm [4], FindCBLOF algorithm [14], KNN algorithm [8] and LSA 
algorithm [22]. In addition, on the cancer dataset, we add the results of RNN based 
outlier detection algorithm that are reported in [17] for comparison, although we 
didn’t implement the RNN based outlier detection algorithm.  

For all the experiments, the two parameters needed by FindCBLOF algorithm are 
set to 90% and 5 separately as done in [14]. For the KNN algorithm [8], the results 
were obtained using the 5-nearest-neighbour; For FindFPOF algorithm [4], the 
parameter mini-support for mining frequent patterns is fixed to 10%, and the maximal 
number of items in an itemset is set to 5. Since the LSA algorithm and greedyAlg1 are 
parameter-free (besides the number of desired outliers), we don’t need to set any 
parameters.  

As pointed out by Aggarwal and Yu [3], one way to test how well the outlier 
detection algorithm worked is to run the method on the dataset and test the percentage 
of points which belong to the rare classes. If outlier detection works well, it is 
expected that the rare classes would be over-represented in the set of points found. 
These kinds of classes are also interesting from a practical perspective. 

Since we know the true class of each object in the test dataset, we define objects in 
small classes as rare cases. The number of rare cases identified is utilized as the 
assessment basis for comparing our algorithm with other algorithms. 

5.2   Results on Lymphography Data 

The first dataset used is the Lymphography data set, which has 148 instances with 18 
attributes. The data set contains a total of 4 classes. Classes 2 and 3 have the largest 
number of instances. The remained classes are regarded as rare class labels for they 
are small in size. The corresponding class distribution is illustrated in Table 1. 
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Table 1. Class distribution of lymphography data set 

Case Class codes Percentage of instances 
Commonly Occurring Classes 2, 3 95.9% 
Rare Classes 1, 4 4.1% 

Table 2 shows the results produced by different algorithms. Here, the top ratio is 
ratio of the number of records specified as top-k outliers to that of the records in the 
dataset. The coverage is ratio of the number of detected rare classes to that of the rare 
classes in the dataset. For example, we let LSA algorithm find the top 7 outliers with 
the top ratio of 5%. By examining these 7 points, we found that 6 of them belonged to 
the rare classes. 

In this experiment, both the greedyAlg1 algorithm and LSA algorithm performed 
the best for all cases and can find all the records in rare classes when the top ratio 
reached 5%. In contrast, the KNN algorithm achieved this goal with the top ratio at 
10%, which is almost the twice for that of our algorithm. 

From the above results, we can see that greedyAlg1 algorithm achieves at least the 
same level performance as that of LSA algorithm on Lymphography data set. 

Table 2. Detected rare classes in lymphography data set 

Number of Rare Classes Included (Coverage) Top Ratio 
(Number of 
Records) 

GreedyAlg1 LSA FindFPOF FindCBLOF KNN 

5% (7) 6(100%) 6(100%) 5(83%) 4 (67%) 4 (67%) 
10%(15) 6(100%) 6(100%) 5(83%) 4 (67%) 6(100%) 
11%(16) 6(100%) 6(100%) 6(100%) 4 (67%) 6(100%) 
15%(22) 6(100%) 6(100%) 6 (100%) 4 (67%) 6(100%) 
20%(30) 6(100%) 6(100%) 6 (100%) 6 (100%) 6(100%) 

5.3   Results on Wisconsin Breast Cancer Data 

The second dataset used is the Wisconsin breast cancer data set, which has 699 
instances with 9 attributes. In this experiment, all attributes are considered as 
categorical. Each record is labeled as benign (458 or 65.5%) or malignant (241 or 
34.5%). We follow the experimental technique of Harkins, et al. [17,18] by removing 
some of the malignant records to form a very unbalanced distribution; the resultant 
dataset had 39 (8%) malignant records and 444 (92%) benign records (the resultant 
dataset is available at: http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/). 
The corresponding class distribution is illustrated in Table 3. We also consider the 
RNN based outlier detection algorithm on this dataset, whose results are reproduced 
from [17,18]. 

Table 4 shows the results produced by the different algorithms. Clearly, among all 
of these algorithms, RNN performed the worst in most cases. In comparison to other 
algorithms, greedyAlg1 preformed very well in average. Hence, this experiment also 
demonstrates the effectiveness of greedyAlg1 algorithm. 
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Table 3. Class distribution of wisconsin breast cancer data set 

Case Class codes Percentage of instances 
Commonly Occurring Classes 1 92% 
Rare Classes 2 8% 

Table 4. Detected malignant records in wisconsin breast cancer dataset 

Number of Rare Classes Included (Coverage) Top Ratio 
(Number of 
Records) 

GreedyAlg1 LSA FindFPOF FindCBLOF RNN KNN 

1%(4) 4 (10.26%) 4 (10.26%) 3(7.69%) 4 (10.26%) 3 (7.69%) 4 (10.26%) 
2%(8) 7 (17.95%) 8 (20.52%) 7 (17.95%) 7 (17.95%) 6 (15.38%) 8 (20.52%) 
4%(16) 15(38.46%) 15(38.46%) 14 (35.90%) 14 (35.90%) 11 (28.21%) 16(41%) 
6%(24) 22(56.41%) 22(56.41%) 21 (53.85%) 21 (53.85%) 18 (46.15%) 20(51.28%) 
8%(32) 27 (69.23%) 29(74.36%) 28(71.79%) 27 (69.23%) 25 (64.10%) 27(69.23%) 
10%(40) 33(84.62%) 33(84.62%) 31(79.49%) 32 (82.05%) 30 (76.92%) 32(82.05%) 
12%(48) 36(92.31%) 38 (97.44%) 35 (89.74%) 35 (89.74%) 35 (89.74%) 37(94.87%) 
14%(56) 39 (100%) 39 (100%) 39 (100%) 38 (97.44%) 36 (92.31%) 39 (100%) 
16%(64) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 36 (92.31%) 39 (100%) 
18%(72) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 38 (97.44%) 39 (100%) 
20%(80) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 38 (97.44%) 39 (100%) 
25%(100) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 38 (97.44%) 39 (100%) 
28%(112) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 39 (100%) 

Although the performance of greedyAlg1 algorithm on identifying true outliers on 
this dataset is not so good as that of the LSA algorithm in two cases, but their 
performance are almost identical. And as we will show in next Section, our algorithm 
is very fast for larger dataset, which is more important in data mining applications. 

5.4   Scalability Tests 

The purpose of this experiment was to test the scalability of the greedyAlg1 algorithm 
against LSA algorithm when handling very large datasets. A synthesized categorical 
dataset created with the software developed by Dana Cristofor (The source codes are 
public available at: http://www.cs.umb.edu/~dana/GAClust/index.html) is used. The 
data size (i.e., number of rows), the number of attributes and the number of classes are 
the major parameters in the synthesized categorical data generation, which were set to 
be 100,000, 10 and 10 separately. Moreover, we set the random generator seed to 5. 
We will refer to this synthesized dataset with name of DS1. 

We tested two types of scalability of the greedyAlg1 algorithm and LSA algorithm 
on DS1 dataset. The first one is the scalability against the number of objects for a 
given number of outliers and the second is the scalability against the number of 
outliers for a given number of objects. Both algorithms were implemented in Java. All 
experiments were conducted on a Pentium4-2.4G machine with 512 M of RAM and 
running Windows 2000. Fig. 2 shows the results of using greedyAlg1 and LSA to find 
30 outliers with different number of objects. Fig. 3 shows the results of using two 
algorithms to find different number of outliers on DS1 dataset. 

One important observation from these figures was that the run time of greedyAlg1 
algorithm tends to increase linearly as both the number of records and the number of 
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Fig. 2. Scalability to the number of objects when mining 30 outliers from DS1 dataset 

outliers are increased, which verified our claim in Section 4.4. In addition, 
greedyAlg1 algorithm is always faster than LSA algorithm and can be at least an 
order of magnitude faster than LSA in most cases. 

Hence, we are confident to claim that greedyAlg1 algorithm is suitable for mining 
very large dataset, which is very important in real data mining applications. 
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Fig. 3. Scalability to the number of outliers when mining outliers from DS1 dataset 

6   Conclusions 

Conventional outlier mining algorithms do not handle categorical data in a 
satisfactory manner. To fulfill this void, this paper presents a very fast greedy 
algorithm for mining outliers. Experimental results on real datasets and large 
synthetic datasets demonstrate the superiority of our new algorithm. 
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Abstract. Mining outliers in database is to find exceptional objects
that deviate from the rest of the data set. Besides classical outlier anal-
ysis algorithms, recent studies have focused on mining local outliers,
i.e., the outliers that have density distribution significantly different from
their neighborhood. The estimation of density distribution at the loca-
tion of an object has so far been based on the density distribution of its
k-nearest neighbors [2, 11]. However, when outliers are in the location
where the density distributions in the neighborhood are significantly dif-
ferent, for example, in the case of objects from a sparse cluster close
to a denser cluster, this may result in wrong estimation. To avoid this
problem, here we propose a simple but effective measure on local outliers
based on a symmetric neighborhood relationship. The proposed measure
considers both neighbors and reverse neighbors of an object when es-
timating its density distribution. As a result, outliers so discovered are
more meaningful. To compute such local outliers efficiently, several min-
ing algorithms are developed that detects top-n outliers based on our
definition. A comprehensive performance evaluation and analysis shows
that our methods are not only efficient in the computation but also more
effective in ranking outliers.

1 Introduction

From a knowledge discovery standpoint, outliers are often more interesting than
the common ones since they contain useful information underlying the abnormal
behavior. Basically, an outlier is defined as an exceptional object that deviates
much from the rest of the dataset by some measure. Outlier detection has many
important applications in fraud detection, intrusion discovery, video surveillance,
pharmaceutical test and weather prediction. Various data mining algorithms
[1, 2, 3, 8, 10, 11, 12, 13, 15, 18, 17, 20, 21, 23, 24, 25] for outlier detection were pro-
posed. The outlierness of an object typically appears to be more outstanding
with respect to its local neighborhood. For example, a network intrusion might

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 577–593, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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cause a significant spike in the number of network events within a low traffic pe-
riod, but this spike might be insignificant when a period of high network traffic is
also included in the comparison. In view of this, recent work on outlier detection
has been focused on finding local outliers, which are essentially objects that
have significantly lower density 1 than its local neighborhood [2]. As an objec-
tive measure, the degree of outlierness of an object p is defined to be the ratio
of its density and the average density of its neighboring objects [2].
To quantify what are p’s neighboring objects, users must specify a value k, and
neighboring objects are defined as objects which are not further from p than p’s
kth nearest objects 2. As an example, let us look at Figure 1 in which k is given
a value of 3. In this case, the three neighboring objects of p will have higher
density than p and thus p will have a high degree of outlierness according to the
definition in [2]. This is obviously correct based on our intuition.

local outlier

pp

Fig. 1. A local outlier, p

ppq
r

C1
C2

Fig. 2. Comparing the outlierness of p, q, r

ppq
r

C1
C2

s

t

Fig. 3. Taking RNNs of p into account

Unfortunately, the same cannot hold in more complex situation. Let us look
at the following example.

Example 1: We consider Figure 2 in which p is in fact part of a sparse cluster
C2 which is near the dense cluster C1. Compared to objects q and r, p obviously
displays less outlierness. However, if we use the measure proposed in [2], p could
be mistakenly regarded to having stronger outlierness in the following two cases:
Case I: The densities of the nearest neighboring objects for both p and q are
the same, but q is slightly closer to cluster C1 than p. In this case, p will have a
stronger outlierness measure than q, which is obviously wrong.
1 The density of an object p is defined as 1/kdist(p) where k is a user-supplied param-

eter and kdist(p) is the distance of the kth nearest object to p.
2 Note that p ’s kth nearest neighbor might not be unique and thus p could have more

than k neighboring objects.
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Case II: Although the density of r is lower than p, the average density of its
neighboring objects (consisting of 2 objects from C2 and an outlier) is less than
those of p. Thus, when the proposed measure is computed, p could turn out to
have a stronger outlierness measure than r, which again is wrong.

Note that the two cases we described are not only applicable to p but also
to the two objects above and below p. In general, any member of C2 that is
lying near the border between the two clusters could have been misclassified as
showing stronger outlierness than q and r. ��
From these examples, we can see that existing outlierness measure is not easily
applicable to complex situation in which the dataset contains multiple clusters
with very different density distribution. The reason for the above problem lies
in the inaccurate estimation for the density distribution of an object’s neighbor-
hood. In Figure 2, although p belongs to cluster C2, it is closer to cluster C1,
and thus the estimation of p’s neighborhood density distribution is derived from
C1 instead of C2.

To get a better estimation of the neighborhood’s density distribution, we pro-
pose to take both the nearest neighbors (NNs) and reverse nearest neighbors
(RNNs) [14] into account. The RNNs of an object p are essentially objects that
have p as one of their k nearest neighbors. By considering the symmetric neigh-
borhood relationship of both NN and RNN, the space of an object influenced
by other objects is well determined, the densities of its neighborhood will be
reasonably estimated, and thus the outliers found will be more meaningful. As
a simple illustration in Figure 3 which depicts the same situation as Figure 2,
we show that p has two RNNs: s and t. This distinguishes it from q which has
no RNNs, and r which has only an outlier as its RNNs. Later on in this paper,
we will show how such an observation can be incorporated to ensure that the
outlierness measure for p will indicate that it is a weaker outlier than both q and
r. We now summarize our contributions in this paper:

(1) We propose the mining of outliers based on a symmetric neighborhood rela-
tionship. The proposed method considers the influenced space considering both
neighbors and reverse neighbors of an object when estimating its neighborhood
density distribution. To the best of our knowledge, previous work of outlier de-
tection has not considered the effect of RNN. Such a symmetric relationship
between NNs and RNNs will make the outlierness measurement more robust
and semantically correct comparing to the existing method.

(2) We assign each object of database the degree of being INFLuenced Out-
lierness(INFLO). The higher INFLO is, the more likely that this object is an
outlier. The lower INFLO is, the more likely that this object is a member of a
cluster. Specifically, INFLO ≈ 1 means the object locates in the core part of a
cluster.

(3) We present several efficient algorithms to mining top-n outliers based on
INFLO. To reduce the expensive cost incurred by a large number of KNN and
RNN search, a two-way search method is developed by dynamically pruning
those objects with value INFLO ≈ 1 during the search process. Furthermore,
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we take advantage of the micro-cluster [11] technique to compress dataset for
efficient symmetric queries, and use two-phase pruning method to prune out
those objects which will never be among the top-n outliers.

(4) Last but not the least, we give a comprehensive performance evaluation and
analysis on synthetic and real data sets. It shows that our method is not only
efficient and scalable in performance, but also effective in ranking meaningful
outliers.

The rest of this paper is organized as follows. In section 2, we formally define a
new outlier measurement using symmetric neighborhood relationship and discuss
some of its important properties. In section 3, we propose efficient methods
for mining and ranking outliers in databases. In section 4, a comprehensive
performance evaluation is made and the results are analyzed. Related work is
discussed in section 5 and section 6 concludes the paper.

2 Influential Measure of Outlierness by Symmetric
Relationship

In this section, we will introduce our new measure and related properties. The
following notations will be used in the remaining of the paper. Let D be a
database of size N , let p, q and o be some objects in D, and let k be a positive
integer. We use d(p, q) to denote the Euclidean distance between objects p
and q.

Definition 1 (k-distance and nearest neighborhood of p). The k-distance
of p, denoted as kdist(p), is the distance d(p, o) between p and o in D, such that:
(1) at least for k objects o′ ∈ D it holds that d(p, o′) ≤ d(p, o), and (2) at most for
(k− 1) objects o′ ∈ D it holds that d(p, o′) < d(p, o). The k-nearest neighborhood
of p, NNk(p) is a set of objects X in D with d(p,X) ≤ kdist(p): NNk(p) =
{X ∈ D\{p}| d(p,X) ≤ kdist(p))}. ��
Definition 2 (local density of p). The density of p, denoted as den(p), is the
inverse of the k-distance of p, i.e., den(p) = 1/kdist(p). ��
Although the k-nearest neighbor of p may not be unique, kdist(p) is unique.
Hence, the density of p is also unique. The nearest neighbor relation is not
symmetric. For a given p, the nearest neighbors of p may not have p as one of
their own nearest neighbors. As we discussed in Section 1, these neighbors should
also be taken into account when the outlierness of p is computed. Therefore, we
introduce the concept of reverse nearest neighbors [14] as follows.

Definition 3 (reverse nearest neighborhood of p). The reverse k-nearest
neighborhood RNN is an inverse relation which can be defined as: RNNk(p) =
{q|q ∈ D, p ∈ NNk(q)}. ��
For any object p ∈ D, NNk search always returns at least k results, while the
RNN can be empty, or have one or more elements. By combining NNk(p) and
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RNNk(p) together in a novel way, we form a local neighborhood space which will
be used to estimate the density distribution around p. We call this neighborhood
space the k-influence space for p, denoted as ISk(p).

p

q
1

q
2

q
3

q
4

k=3

q
5

Fig. 4. RNN and Influence
Space

Example 2: Figure 4 gives a simple description
of how to obtain RNN in {p, q1, q2, q3, q4, q5}
when k = 3. NNk(q1) = {p, q2, q4}, NNk(q2)
= {p, q1, q3}, NNk(q3) = {q1, q2, q5}, NNk(q4)
= {p, q1, q2, q5}, NNk(q5) = {q1, q2, q3}. Dur-
ing the search of k-nearest neighbors of p, q1, q2,
q3, q4 and q5, RNNk(p) = {q1, q2, q4} is incre-
mentally built. Similarly, RNNk(q1), RNNk(q2),
RNNk(q3), RNNk(q4) and RNNk(q5) are found.
Note that NNk(p) = {q1, q2, q4} = RNNk(p)
(here IS3(p) = {q1, q2, q4}). If the value of k
changes, RNNk(p) may not be equal to NNk(p),
or totally different. ��
Unlike the nearest neighborhood, the influence space for an object p contains
influential objects affecting p, more precisely estimating density around p ’s
neighborhood w.r.t. these objects.

Definition 4 (influenced outlierness of p). The influenced outlierness is de-

fined as: INFLOk(p) = denavg(ISk(p))
den(p) where denavg(ISk(p)) = o∈ISk(p) den(o)

|ISk(p)| .
��

INFLO is the ratio of the average density of objects in ISk(p) to p’s local
density. p’s INFLO will be very high if its density is much lower than those of
its influence space objects. In this sense, p will be an outlier. We can assert p
is a local outlier if INFLOk(p) > t where t * 1. On the other hand, objects
with density very close to those in their influence space will have INFLO ≈
1. Without loss of generality, we assume that for any local outlier object q
(INFLO(q) > t), we have |RNNk(q)| < j(a value < k), and any non-local
outlier p cannot belong to RNNk(q).

Lemma 1. Given any object p, q ∈ D, if maxp′∈ISk(p) kdist(p′) < minq′∈ISk(q)

kdist(q′) then denavg(ISk(p)) > denavg(ISk(q)).

Proof. denavg(ISk(p)) = p′∈ISk(p) den(p′)
|ISk(p)| ≥ |ISk(p)|·1/ maxp′∈ISk(p) kdist(p

′)
|ISk(p)| >

|ISk(p)|·1/ minq′∈ISk(q) kdist(q
′)

|ISk(p)| =
|ISk(q)|·1/ minq′∈ISk(q) kdist(q

′)
|ISk(q)| ≥ q′∈ISk(q) den(q′)

|ISk(q)| =
denavg(ISk(q)) ��

Lemma 2. For p ∈ D, if kdist(p)
maxq′∈ISk(p)kdist(q′) > t, then p is a local outlier.

Proof. INFLOk(p) = denavg(ISk(p))
den(p) = p′∈ISk(p) den(p′)

|ISk(p)|·den(p) ≥
|ISk(p)|·1/ maxp′∈ISk(p) kdist(p

′)
|ISk(p)|·den(p) = kdist(p)

maxq′∈ISk(p)kdist(q′) > t. ��
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Lemma 3. For p ∈ D, if there exists r ∈ RNNk(p) such that kdist(p) ≤
kdist(r) ≤ kdist(q) where q ∈ NNk(RNNk(p)), r 	= q and denavg(ISk(q))

kdist(p) > t,
then p is a local outlier.

Proof. Since kdist(p) ≤ kdist(q), so q ∈ NNk(p) ∩ RNNk(p), thus maxp′∈ISk(p)

kdist(p′) = maxp′∈NNk(p)∪RNNk(p) kdist(p′) = maxp′∈RNNk(p) kdist(p′) ≤
kdist(r) = minq′∈NNk(q)∪RNNk(q) kdist(q′) = minq′∈ISk(q) kdist(q′). Based on
Lemma 1, denavg(ISk(p)) > denavg(ISk(q)), so INFLOk(p) = denavg(ISk(p))

den(p) =

denavg(ISk(p)) · kdist(p) > denavg(ISk(q)) · kdist(p) = denavg(ISk(q))
kdist(p) > t. So p is

a local outlier. ��

Lemma 4. For p ∈ D, the value of RNNk(p)∩NNk(p)
NNk(p) is proportional to the den-

sity value of p.

Proof. Because the size of any cluster should be larger than k (usually k =
M inPts [2]), the higher the above ratio, the more influence for the local neigh-
borhood to the object, and the higher density for this object. ��

3 Mining Algorithms for Influence Outliers Using
Symmetric Relationship

Essentially, mining influenced outliers is based on the problem of finding the
influence space of objects, which is in KNN and RNN . In this section, we
provide several techniques for finding influenced outliers, including the naive
index-based method, the two-way search method and the micro-cluster method.

3.1 A Naive Index-Based Method

Finding influence outliers requires the operations of KNN and RNN for each
object in the database, so the search cost is huge. If we maintain all the points
in a spatial index like R-tree, the cost of range queries can be greatly reduced
by the state-of-the-art pruning technique [19]. Suppose that we have computed
the temporary kdist(p) by checking a subset of the objects, the value that we
have is clearly an upper bound for the actual kdist(p). If the minimum distance
between p and the MBR 3 of a node in the R-tree (called MinDist(p, MBR)) is
greater than the kdist(p) value that we currently have, none of the objects in the
subtree rooted under the node will be among the k-nearest neighbors of p. This
optimization can prune entire sub-tree containing points irrelevant to the KNN
search for p. Along with the search of KNN , the RNN of each object can be
dynamically maintained in R-tree [14]. After building the index of KNN and
RNN , the outlier influence degree can be calculated and ranked. The following
algorithm is to mining top-n INFLO by building KNN and RNN index within
R-tree.
3 Minimum bounding rectangle.
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Algorithm 1 Index-based method.
Input: k, D, n, the root of R-tree.
Output: Top-n INFLO of D.
Method:

1. FOR each object p ∈ D DO
2. MBRList = root; kdist(p) = ∞; heap = 0;
3. WHILE (MBRList) != empty DO
4. Delete 1st MBR from MBRList;
5. IF (1stMBR is a leaf) THEN
6. FOR each object q in 1stMBR DO
7. IF (d(p, q) < kdist(p)) AND (heap.size < k) THEN
8. heap.insert(q);
9. kdist(p) = d(p, heap.top);
10. ELSE
11. Append MBR’s children to MBRList;
12. Sort nodeList by MinDist;
13. FOR each MBR in MBRList DO
14. IF (kdist(p) ≤M inDist(p,MBR)) THEN
15. Remove Node from MBRList;
16. FOR each object q in heap DO
17. Add q into NNk(p), add p into RNNk(q);
18.FOR each object p ∈ D DO
19. Ascending sort top-n INFLO from KNN and RNN ;

Here MBRs are stored in ascending order based on MinDist(p, MBR), as
lines 11-12. The algorithm searches KNNp only in those MBRs with MinDist
smaller than the temporary kdist(p), otherwise these MBRs are pruned (lines
13-15). If any nearer object is located (lines 6-7), it will be inserted into the
heap and the current kdist(p) will be updated (lines 8-9). Whenever NNk(p) are
found, they are stored as p’s nearest neighbors. Meanwhile, it need store p as a
reverse nearest neighbor (lines 16-17). Finally, INFLO is calculated based on
KNN and RNN index.

3.2 A Two-Way Search Method

Two major factors hamper the efficiency of the previous algorithm. First, for
any object p, RNN space cannot be determined unless all the other objects
have finished nearest neighbor search. Second, large amount of extra storage is
required on R-tree, where each object at least stores k pointers of its KNN , and
stores m pointers (m varies from 0 to o(k)) for its RNN . The total space cost
will be prohibitive. Therefore, we need reduce the computation cost for RNN
and corresponding storage cost. By analyzing the characteristics of INFLO, it
is clear that any object as a member of a cluster must have INFLO ≈ 1 even
without INFLO calculation. So we can prune off these cluster objects, saving
not only the computation cost but also the extra storage space.
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Theorem 1. For p ∈ D, if for each object q ∈ NNk(p), it always exists p ∈
NNk(q), then INFLOk(p) ≈ 1.

Proof. Because for each q ∈ NNk(p), p ∈ NNk(q), p and its nearest neighbors
are close to each other. They are actually in a mostly mutual-influenced neigh-
borhood. Since k is potentially the number of objects forming a cluster, under
this circumstance, p resides in core part of a cluster. ��
To apply this theorem, we will first search p’s k-nearest neighbor, then dynam-
ically find the NNk for each of these nearest neighbors. If NNk(NNk(p)) still
contains p, which shows p is in a closely influenced space and is a core object of
a cluster (INFLOk(p) ≈ 1), we can prune p immediately without searching cor-
responding RNN . Such a early pruning technique will improve the performance
significantly. The two-way search algorithm is given as follows:

Algorithm 2 A Two-way search method.
Input: k, D, n, the root of R-tree, a threshold M .
Output: Top-n INFLO of D
Method:

1. FOR each p ∈ D DO
2. count = |RNNk(p)|;
3. IF unvisited(p) THEN
4. S = getKNN(p); //search k-nearest neighbors

5. unvisited(p) = FALSE;
6. ELSE
7. S = KNN(p); //get nearest neighbors directly

8. FOR each object q ∈ S DO
9. IF unvisited(q) THEN
10. T = getKNN(q); unvisited(q) = FALSE;
11. IF p ∈ T THEN
12. Add q into RNNk(p);
13. Add p into RNNk(q);
14. count + +;
15. IF count ≥ |S| ∗M THEN //M is a threshold

16. Label p pruned mark;
17.FOR each object p ∈ D′ DO //D′ is unpruned database

18. Ascending sort top-n INFLO from KNN and RNN ;

The algorithm aims to search and prune objects that are likely to have low
INFLO, thus avoid unnecessary RNN search. The |RNNk(p)| is initialized
to 0 for p. Search process is taken two directions, that is, from one object to
its nearest neighbors, then to the new nearest neighbors (lines 8-14). If for p’s
nearest neighbors, their nearest neighbors’ spaces contain p, or most of them
contain p, p is a core object of a cluster and cannot be ranked as top-n outliers,
and can be pruned (lines 15-16). Finally, top-n INFLOs are calculated (lines
17-18).
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3.3 A Micro-Cluster-Based Method

In order to further reduce the cost of distance computation, we introduce micro-
cluster to represent close objects [11] so that the number of k-nearest neighbor
search will be greatly reduced. The upper and lower bound of k-distance for each
micro-cluster can be estimated in influenced space. Under the guidance of the
two-way search, those micro-clusters which actually are “core parts” of clusters
can be pruned and top-n outliers are ranked in the remaining dataset.

Definition 5. (MicroCluster) The MicroClusterC for a d-dimensional dataset
X is defined as the (3 ·d+2)-tuple (n,CF1(C), CF2(C), CF3(C), r), where CF1
and CF2 each corresponds to the linear sum and the sum of the squares of the data
values for each dimension respectively. The number of data points |C| is maintained

inn, the centroid ofX1 . . .Xn isCF3(C) = CF1(C)
n . The radius of theMicroCluster

is r = maxn
j=1

√
(Xj − CF3(C))2. ��

[26] introduced an efficient clustering algorithm, BIRCH, with good linear scala-
bility to the size of database, we borrow its basic idea to partitioning the database
into micro-clusters. The detailed procedure can be referenced in [11]. The follow-
ing theorem [11] can be used to estimate the lower and upper bound of k-distance
of any object.

Theorem 2. Let p ∈MC(n, c, r) and MC1(n1, c1, r1), . . . , MCl(nl, cl, rl) be
a set of micro-clusters that could potentially contain the k-nearest neighbors of
p. Each object oi is treated as a micro-cluster MCi(1, oi, 0). Thus we will now
have l + n− 1 micro-clusters.

1. Let {dMin(p,MC1),. . . , dMin(p, MCl+n−1)} be sorted in increasing order,
then a lower bound on the k-distance of p, denoted as min kdist(p) will be
dMin(p, MCi) such that n1 + ... + ni ≥ k, and n1 + ... + ni−1 < k

2. Let {dMax(p, MC1),. . . , dMax(p,MCl+n−1)} be sorted in increasing order,
then an upper bound on the k-distance of p, denoted as max kdist(p) will be
dMax(p, MCi) such that n1 + ... + ni ≥ k and n1 + ... + ni−1 < k. ��

The following is the micro-cluster based algorithm for mining top-n local outliers.

Algorithm 3 Micro-cluster method.
Input: A set of micro-clusters MC1, . . . , MCl, M .
Output: Top-n INFLO of D.
Method:

1. FOR each micro-cluster MCi DO
2. FOR each p ∈MCi Do
3. Get Max/Min of kdist(p); // based on theorem 2

4. IF Min kdist(p) < Minkdist(MCi) THEN
5. Min kdist(MCi) = Minkdist(p);
6. IF Max kdist(p) > Maxkdist(MCi) THEN
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7. Max kdist(MCi) = Maxkdist(p);
8. FOR each micro-cluster MCi DO
9. count = |RNNk(MCi)|;
10. IF unvisited(MCi) THEN
11. S = getKNN(MCi); //search k-nearest micro-clusters

12. unvisited(MCi) = FALSE;
13. ELSE
14. S = KNN(MCi); //get nearest micro-clusters directly

15. FOR each micro-cluster q ∈ S DO
16. IF unvisited(q) THEN
17. T = getKNN(q); unvisited(q) = FALSE;
18. IF Min kdist(q) ≥ Max kdist(MCi) THEN
19. Add q into RNNk(MCi);
20. Add MCi into RNNk(q);
21. count + +;
22. IF count ≥ |S| ∗M THEN //M is a threshold

23. Label MCi pruned mark;
24.FOR each object p ∈ unpruned micro-clusters MC′ DO
25. Ascending sort top-n INFLO from KNN and RNN ;

After building micro-clusters, the process of finding outliers is similar to the
two-way search method. We simply treat each micro-cluster as a single object
to search KNN . As the number of micro-clusters is much less than that of
database objects, the computational cost will be saved a lot. The |RNNk(MCi)|
is initialized to 0 for each micro-cluster MCi, and the lower/upper bound of k-
distance of each MCi is derived (lines 1-7) based on theorem 3.2. Then irrelevant
objects in micro-clusters which cannot become top-n outliers are pruned if most
of the k-nearest micro-clusters of a micro-cluster MC contain MC in their k-
nearest micro-clusters as well, then MC will be located in the core part of
clusters (lines 20-22) and could be removed. If the lower bound of k-distance for
any MC’s neighboring micro-cluster q is bigger than the upper bound of that
for MC, then q belongs to MC’s RNN (lines 18-21). By combining the two-way
search and the micro-cluster technique, it achieves a significant improvement in
performance.

4 Performance Evaluation

In this section, we will perform a comprehensive experimental evaluation on
the efficiency and the effectiveness of our mining algorithm. We will compare
our methods with the LOF method in [2] and show that our methods not only
achieve a good performance but also identify more meaningful outliers than
LOF . We perform tests on both real life data and synthetic data. Our real life
dataset is the statistics archive of 2000-2002 National Hockey League (NHL),
totally 22180 records with 12 dimensions4. Our synthetic datasets are generated
4 http://www.usatoday.com/sports/hockey/stats/
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based on multiple-gaussian distribution, where the cardinality varies from 1,000
to 1,000,000 tuples and the dimensionality varies from 2 to 18. The tests are run
on 1.3GHZ AMD processor, with 512MB of main memory, under Windows 2000
advanced-server operating system. All algorithms are implemented by Microsoft
Visual C++ 6.0.

Fig. 5. A dataset

Experiments on Effectiveness. To achieve a com-
prehensive understanding on the effectiveness of the
INFLO measure, it is necessary to test on a series of
datasets with different sizes and dimensions. We gen-
erate our dataset with complex density distribution
by a mixture of Gaussian distribution. Most outliers
detected by our methods are meaningful with good
explanations, and some of them cannot be found by
LOF . For easily illustrating, we just pick up a por-
tion of 2-dimensional dataset containing a low den-
sity cluster A and a high density cluster B in Figure
5. The top-6 outliers are listed by INFLO and LOF
respectively in Table 1.

Table 1. Outliers Ranking

Rank Index LOF Index INFLO
1 147 3.47 147 17.34
2 101 2.80 101 8.899
3 146 2.56 146 8.81
4 50 1.74 1 4.50
5 65 1.57 50 3.52
6 4 1.45 16 3.03

Table 2. Outliers Ranking(INFLO)

Rank INFLO Player Games Goals Shoot %
1 25.95 Nurminen 2 1 100
2 12.66 Lemieux 43 35 20.5
3 7.60 Holmstrom 76 16 21.6
4 7.25 Blake 67 19 7.1
5 7.03 Maclnnis 59 12 5.5

Table 3. Outliers Ranking(LOF)

Rank LOF Player Games Goals Shoot %
1 5.19 Nurminen 2 1 100
2 2.47 Jagr 81 52 16.4
3 2.61 Lemieux 43 35 20.5
4 2.31 McDonald 16 1 4.8
5 2.31 Skalde 19 1 4.2

Due to the limitation of space, we only show two instances. Table 1 lists
the top 6 outliers based on the sample dataset in Figure 5, by both LOF and
INFLO measures. The most outstanding outliers can be recognized by either
measure. In this sample, 50 percentage of the top 6 outliers are the same points
by both measures. When n is increased, INFLO will find even more differ-
ent top outliers from LOF . By visual comparison, the top 6 outliers found by
INFLO is more meaningful. Even for the same objects appeared in top-n lists
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of both measure, their position could be different and INFLO-based results
are obviously more reasonable. In addition, INFLO can detect outliers which
can be overlooked by LOF . For instance, the 50th object and the 4th object
have inversely ranking orders by different measure. LOF only considers nearest
neighborhood as a density estimation space, and the NN of both the 1st and
the 50th objects are in cluster A. Since the distance between the 50th object and
A is larger than that of the 1st object and A, so the 50th object with low density
is ranked as a higher outlier than the 1st with a high density. While INFLO
measure considers both NN and RNN , some objects of B will influence the
50th object, and thus make it being less outlierness than 1st object. It is clear
that using INFLO as outlierness measure preserves more semantics than using
LOF . Another interesting phenomena in experiments is that INFLO measure
gives more rational indication for the outlier degree assignment. As an example,
LOF value that are assigned to those bordering objects of a cluster has only a
tiny difference with those in the core of a cluster. By INFLO, however, the bor-
dering objects will have significantly larger INFLO values than the core part of
the same cluster while the value differences are smaller than objects in different
cluster. Figure 6 presents such value differences curve by LOF and INFLO, in
which the difference is evaluated by cluster bordering objects and cluster mean
center.
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Fig. 6. LOF and INFLO

In the following experiments, we run our pro-
posed algorithms with NHL 2000-2002 playoff
data (22180 tuples) to rank top-n exceptional
players in NHL. The results are compared with
those computed from LOF . We varied k from
10 to 50. Projection is done on dataset by ran-
domly selecting dimensions, and the outlierness
of hockey players is evaluated. For example, we
focus on the statistics data in 3-dimensional
subspace of Games played, Goals and Shoot-
ing percentage. Due to the limitation of space,
we only list top-5 players in Table 2 and Table 4. Lots of interesting and useful
information can be found in our examination. For example, there are two players
who are listed in both tables as top-5 outliers. Nurminen is the strongest outlier.
Although he only took two games and got one point, his 100% shooting per-
centage dominated other two statistics numbers in comparison. As it happens in
the synthetic dataset, we can still find some surprising outliers which cannot be
identified by LOF . For example, Rob Blake ranks 4th in our method but is only
ranked as the 31th outlier using LOF . Our reasoning for such surprising result is
as follows. The variation of shooting percentage is usually small, since only a very
few of players can become excellent shooter. Comparing to those players who
have similar statistics number in Games Played and Goals dimensions, although
Blake’s shooting percentage is rather low, Blake is still not too far away from
other player when viewed in term of distance. Thus based on LOF measure,
Blake’s could not be ranked in the top players. But the reason for him being a
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most exceptional player by INFLO is that there is no such type of player whose
Shooting Percentage is so low while having so many Goals. Actually, Blake is
the only defence whose number of goals scored is over 12. He must have shot too
many times in the games without getting goals.

Another interesting example is Jaromir Jagr, who scores in the 3rd position
and ranks as the second outlier in LOF , but the 24th in our measure. The
reason is that even though Jagr has a strong goaling capability and a big fame,
there are over twenty players who have higher statistics than him in Shooting
Percentage and Games. So objectively, he is not ranked as the most exceptional
player during 2000-2002 seasons. Note that we treat all the hockey data equal in
the analysis not like hockey fans who always weigh goals much higher than other
factors.

Efficiency Issues of Experiments. We evaluate the efficiency of the proposed
mining algorithms by varying the data size, dimension number, k and pruning
parameter accordingly. Figure 7 shows the performance curves of different meth-
ods, along with the runtime (include CPU time and I/O time) corresponding to
different size of dataset with 5 dimensions. It shows that the run time of three
methods are similar when the number of tuple is less than 100k. When the data
size increases to 200k or so, micro-cluster-based method is the best and the two-
way search is better than index-based method. When the size of the load is near
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to 1000k, swapping operation between R-tree and disk will happen frequently.
As such, the performance of index-based method starts to degrade. On the other
hand, since the two-way search method does early pruning in the search process,
it reduces the total computation cost greatly and saves much time. Micro-cluster
method achieves best performance because it not only uses the similar pruning
technique as the two-way search, but also reduces the huge number of the near-
est neighbor search. So it takes the least time to finish mining outliers in each
dataset and scales well to large databases. Unavoidably, this advantage in perfor-
mance is done by sacrificing some precision in KNN approximation. However,
if we adjust the micro-cluster to a suitable size, good quality mining results can
still be obtained. Figure 9 shows the pruning results under the different values of
threshold M (see the two-way search part in section 3). It can be seen that when
M increases, more objects in the database remain unpruned, but the possibility
of objects misses to be pruned will be reduced. If M decreases, more objects will
be removed, and the cost of future computation will be reduced. It is particu-
larly suitable for top-n case in which only a few objects can become the outlier
candidates. Figure 10 shows the pruning results under the different radius of
micro-cluster. We can see that when the radius increases, more objects will be
inside the micro-clusters, and the difference between lower and upper bound of
micro-clusters’s k-distance will be larger. As a result, more micro-clusters will
not be pruned. Figure 8 presents different performance results of the two-way
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search method when k varies from 10 to 50. If k is less than 30, the scalability
is good with the support of R-tree. When k is over 30, the cost for the nearest
search is rather expensive, more MBRs will be searched to compute the distance
between the objects and the query object. Thus the running time would increase
drastically with the increased number of distance computation.

We also studied the relationship between performance of our algorithm and
the number of dimensions, and Figures 11 and 12 show the runtime of our
algorithm with different dimensions and varying database with respect to the
microcluster-based method and the two-way search method respectively. From
the experiment results, we know that the algorithms on smaller dimensionality
and data size always have shorter running time. Specifically, when dimensionality
is larger than 12, the running time will be increased drastically, thus seriously
hindering the efficiency of the algorithms.

5 Related Work

Knorr and Ng [12] initialized the concept of distance-based outlier, which defines
an object o being an outlier, if at most p objects are within distance d of o. A
cell-based outlier detection approach that partitions the dataset into cells is also
presented. The time complexity of this cell-based algorithm is O(N + ck) where
k is dimension number, N is dataset size, c is a number inversely proportional to
d. For very large databases, this method achieves better performance than depth-
based method, but still exponential to the number of dimensions. Ramaswamy
et al. extended the notion of distance-based outliers by using the distance to the
k-nearest neighbor to rank the outliers. An efficient algorithm to compute the
top-n global outliers is given, but their notion of an outlier is still distance-based
[20].

Some clustering algorithms like CLARANS [16], DBSCAN [6], BIRCH [26],
and CURE [7] consider outliers, but only to the point of ensuring that they do
not interfere with the clustering process. Further, outliers are only by-products
of clustering algorithms, and these algorithms cannot rank the priority of
outliers.

The concept of local outlier, which assigns each data a local outlier factor
LOF of being an outlier depending on their neighborhood, was introduced by
Breunig et al. [2]. This outlier factor can be used to rank the objects regarding
their outlierness. To compute LOF for all objects in a database, O(n*runtime
of a KNN query) is needed. The outlier factors can be computed efficiently if
OPTICS is used to analyze the clustering structure. A top-n based local outliers
mining algorithm which uses distance bound of micro-cluster to estimate the
density, was presented in [11].

There are several recent studies on local outlier detection. In [5], [4], three
enhancement schemes over LOF are introduced, namely LOF’ and LOF” and
GridLOF, and [22] introduces a connectivity-based outlier factor (COF) scheme
that improves the effectiveness of an existing local outlier factor LOF scheme
when a pattern itself has similar neighborhood density as an outlier. They ex-
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tensively study the reason of missed outliers by LOF, and focus on finding those
outliers which are close to some non-outliers with similar densities. While our
measure based on the symmetric relationship is not only compatible with their
improved measures, but also identifies more meaningful outliers. LOCI [17] ad-
dresses the difficulty of choosing values for MinPts in the LOF technique by
using statistical values derived from the data itself.

6 Conclusion

In this paper, we discuss the problem with existing local outlier measure and
proposed a new measure INFLO which is based on a symmetric neighborhood
relationship. We proposed various methods for computing INFLO including the
naive-index based method, the two-way pruning method and the micro-cluster
based method. Extensive experiments are conducted showing that our proposed
methods are efficient and effective on both synthetic and real life datasets.
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Abstract. Intrusion detection systems protect normal users and system 
resources from information security threats. Anomaly detection is an approach 
of intrusion detection that constructs models of normal behavior of users or 
systems and detects the behaviors that deviate from the model. Monitoring the 
sequences of system calls generated during the execution of privileged 
programs has been known to be an effective means of anomaly detection. Finite 
automata have been recognized as an appropriate device to model normal 
behaviors of system call sequences. However, there have been several technical 
difficulties in constructing finite automata from sequences of system calls. We 
present our study on how to construct finite automata from system call 
sequences using genetic algorithms. The resulting system is shown to be very 
effective in detecting intrusions through various experiments. 

1   Introduction 

Intrusion means any behavior that damages the integrity, confidentiality, or 
availability of computer systems or networks by exploiting the vulnerabilities of the 
system or network resources. These days any computer or network user is exposed to 
threats of intrusions, and damages caused by intrusions are ever more increasing. 
Intrusion detection system tries to protect the normal users and system resources by 
detecting intrusions. 

Approaches to detecting intrusions can be classified into misuse detection and 
anomaly detection. Misuse detection maintains patterns of intrusions and tries to 
detect those patterns. Anomaly detection establishes models of normal behavior and 
tries to detect behaviors that deviate from the normal ones. An advantage of anomaly 
detection is that it can learn models of normal behavior and, as a result, can detect 
intrusion patterns that are similar to known intrusion patterns. There have been many 
studies on how to model normal behavior including statistical approaches[3, 6, 8, 9, 
12], neural networks[2], and finite state automata[7, 11, 13, 15]. 

Finite state automata monitor sequences of system calls generated by execution of 
privileged programs, and accept the normal sequences and reject the abnormal 
sequences. Forrest et al. introduced the use of system call sequences to model 
program behaviors [4, 5, 14]. They extract the short sequences of fixed length from 
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the long sequence of system calls generated by processes, called N-grams, and 
maintain the database of such sequences. When a program is monitored, the N-grams 
are extracted and matched against the ones in the database of normal sequences. If the 
miss ratio exceeds the given threshold, a warning is issued. The use of system call 
sequences has been proven to be a very effective way of intrusion detection. 
However, since short sequences of fixed length are used, the intruder can dodge 
detection by carefully inserting spurious system calls within the fixed window size in 
order not to exceed the threshold. 

Sekar et al. examine the program counters where the system calls are made [11]. 
States and edges of finite automata are labeled by program counters and system calls, 
respectively. This approach facilitates the construction of finite automata, but has 
difficulty in stack traversal and dealing with fork/exec to trace program counters. 

Kosoresow et al. substitute macros for frequently occurring substrings of the 
system call sequence, and then construct finite automata recognizing the system call 
sequences generated by processes [7]. By introducing macros the system call 
sequences become shorter, and consequently the resulting automaton becomes 
smaller. This approach has neither the weakness of the N-gram method nor the 
difficulty of tracing program counters. However, the procedure of selecting macros 
and constructing finite automata are carried out manually using human insight and 
intuition. Wee et al. provided automatic ways to select macros and using suffix trees 
and to construct automata using multiple sequence alignment [15]. 

In this paper, we present our study on how to construct intrusion detection 
automata using genetic algorithms. 

2   Construction of Finite State Automata 

Execution of each privileged program generates many processes, and each process 
generates a long sequence of system calls. For each privileged program, we evolve a 
finite state automaton that can accept the sequences generated by the normal 
execution of the program and reject the sequences generated by the execution of the 
program while the system is being intruded.  

2.1   Representation of Finite State Automata 

A finite state automaton is represented as a matrix where the column indices 
correspond to states and the row indices input symbols. In our study input symbols are 
system calls. Table 1 is the matrix representation of the FSA in Figure 1. For our 
genetic algorithms, a matrix is encoded as a string that is obtained by splicing 
columns of the matrix in order. Figure 2 is the encoded string of the matrix in Table1. 
The entry –1 indicates that there is no transition from the state by the input symbol. 

In our genetic algorithm each member of the initial population has  –1 at about half 
the entries of the matrix. The number of states in FSA is initially set to the number of 
distinct system calls appearing in the execution of the given privileged program. 
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Fig. 1. a finite state automaton 

Table 1. matrix representation of a finite automaton in Fig. 1 

 S0 S1 S2 S3 S4 S5 S6 S7 S8 
A S1 -1 -1 -1 S5 -1 S7 -1 -1 
B -1 S2 -1 -1 S6 S6 -1 S8 -1 
C S7 S3 -1 -1 -1 -1 S1 -1 -1 
D -1 -1 S4 S4 -1 -1 -1 -1 -1 

 
 
 
 

Fig. 2. encoding of the FSA in Table 1 

2.2   Population, Selection, Crossover, and Mutation 

We set the population size to 1000 and placed the individuals on a 20 × 50 grid. Each 
cell of the grid is assumed to have 8 neighbors: the cells immediately east, west, 
north, south, northeast, southeast, southwest, and northwest to the given cell, i.e. the 
Moore neighborhood. The cells at the edges of the grid find its neighbors in the wrap-
around fashion. Hence the grid is actually a torus.  

Crossover is performed on an individual and one of its neighbors. We randomly 
select an individual A and select as its mate the one that has the highest fitness among 
the 8 neighbors of A. The newly generated individual N, through crossover and 
mutation, replaces the individual L of the lowest fitness in the current population, if N 
is fitter than L. Otherwise the population stays the same, and the selection of two new 
mates starts over again. 

We employ uniform crossover. Before the crossover is performed, the length of the 
child is determined first. The length of the child is randomly selected in the range of 
Pmax-2 to Pmax+2, where Pmax is the length of the longer one between two parents. 
While the uniform crossover is performed, the extra portion of the longer parent 
which does not have corresponding positions in the shorter parent, is directly copied 
to the child. When the child’s length is selected to be longer than Pmax, the extra 
portion of the child’s chromosome is set to arbitrary values. 

 

 S1, -1, S7, -1, -1, S2, S3, -1, -1, -1, -1, S4, -1, -1, -1, S4 S5, S6, -1, -1, 
 -1, S6, -1, -1, S7, -1, S1, -1, -1, S8, -1, -1, -1, -1, -1, -1 
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When the uniform crossover is performed, the genotype of each parent is inherited 
to the child proportionately to their respective fitness. For example, if one parent’s 
fitness is twice higher than the other’s, then the child gets the fitter parent’s genes 
twice more often than the less fit parent. Figure 3 illustrates the crossover operation.  

S1 -1 S3 S0 -1 S2 -1 -1 -1 -1 S3 -1 S1 S2 -1 S3

S1 -1 S0 -1 -1 S0 -1 S2 S2 -1 S3 -1 -1 S3 -1 S2

S1 -1 S0 S0 -1 S2 -1 S2 S2 -1 S3 -1 S1 S3 -1 S3 S4 -1 S3 S2 

values randomly set 

child

parent1 

parent2 

 

Fig. 3. crossover 

S1 -1 S0 S0 -1 S2 -1 S2 S2 -1 S3 -1 S1 S3 -1 S3 S4 -1 S3 S2 

S1 -1 S2 S0 -1 S0 -1 S2 S2 -1 S3 S4 S1 S3 -1 S3 S4 -1 S3 S2 

S4swap change

 

Fig. 4. mutation 

Two kinds of mutation operation are employed. One is the change of the allele at a 
locus to a random allele. Another is the swap of alleles at two loci. The rate of each 
mutation operation is set to 2.5%. Figure 4 illustrates mutation operations. 

The way the selection, crossover, and mutation are performed in our study is based 
on the scheme suggested in the Belz et al’s work on induction of finite state automata 
with application to phonotactics [1]. 

2.3   Fitness 

Fitness represents the degree of how well a given finite automaton deals with the 
sequences generated during execution of a given privileged program. Values of 
fitness range from 0 to 1. 

There are three factors in evaluating fitness of finite automata: consistency, 
compactness, and distinction. Consistency is the rate of accepting normal sequences. 
Compactness is the size of finite automata. Distinction is the rate of rejecting 
abnormal sequences. Compactness is measured as the number of system calls 
occurred in the sequences divided by the number of states in the automaton. The 
smaller the number of states, the higher the compactness of the finite automaton. 

Three factors of fitness are assigned their weights in evaluating the fitness. The 
weights are represented as percentages, and the sum of weights is 100%. The set of 
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number of states: 4 
system calls: 1, 2, 3, 4 
state transition table: S1, -1, S3, S0, -1, S2, -1, -1, -1, -1, S3, -1, S1, S2, -1, S3 
weight of consistency: 40% 
weight of compactness: 20% 
weight of distinction: 40% 
fitness = 0.75*40% + 1.00*20% 

+0.75*40% = 0.8 

System call sequences 

normal sequences    abnormal sequences 
(1) 1, 2, 3, 4          (1) 1, 4, 4, 3 
(2) 3, 4, 2, 1          (2) 1, 4, 2, 3 
(3) 3, 1, 2, 3          (3) 1, 4, 1, 3 
(4) 3, 4, 2, 3          (4) 4, 1, 2, 3 

S0 S1 S2 S3 

4

1 2 3

1

2

4
3

 

Fig. 5. fitness of a finite automaton 

weights can vary across privileged programs. For example, the set of weights for the 
program sendmail can be different from the set of weights for ftp. The following toy 
examples in Figure 5 illustrate how the fitness of automata is computed.  

In Figure 5, the automaton has 4 states. State S0 is the starting state, and S3 is the 
final state. Weights of consistency, compactness, and distinction are 40%, 20%, and 
40%, respectively. Consistency of the automaton is 0.75, since it accepts 3 sequences 
out of 4 normal sequences. The number of system calls occurring in the sequences is 
4. Hence the compactness is 1.00. Distinction is 0.75, since it rejects 3 sequences out 
of 4 abnormal sequences. Hence the fitness is 0.75*40% + 1.00*20% + 0.75*40% = 
0.8. 

3   Experiments 

We used Forrest et al’s data sets for our experiments [16]. These data sets include the 
system call sequences of the privileged programs ps, named, login, xclock, lpr, ftp, 
and sendmail. An execution of a program generates many processes. Each sequence is 
obtained by collecting the system calls from the execution of a process. Table 2 
describes the details of these data sets. 

For example, the execution of the program ps under the normal condition 
generated 19 sequences. There are longer ones and shorter ones. If we add up all the 
lengths of these sequences, it comes to 6145. The alphabet of these sequences consists 
of 22 system calls. Each system call is represented by a unique number. Hence a 
sequence of system calls is actually a sequence of integers. Out of 19 sequences 11 
are used as training data and the remaining 8 are used as test data. 
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Table 2. system call sequences data 

normal sequences abnormal sequences 

program 
number 
of  
seq. 

sum of 
lengths of 
seq. 

number  
of  
system 
calls 

number 
of 
training 
seq. 

number 
of  
test  
seq. 

number 
of  
seq. 

sum of 
lengths of 
seq. 

number  
of  
system 
calls 

number 
of 
training 
seq. 

number 
of  
test  
seq. 

Ps 19 6145 22 11 8 21 6969 22 13 8 

named 26 44481 45 16 10 3 615 45 2 1 

login 24 8907 46 14 10 9 4854 46 5 4 

xlock 69 338898 40 40 29 2 950 36 1 1 

Lpr 9 2399 37 5 4 8 1345 37 5 3 

ftp 8 180316 50 5 3 5 1364 45 3 2 

sendmail 49 414740 53 25 24 23 6505 50 13 10 

 

Finite automata are evolved for each program using training data. The size of the 
population is set to 1000, crossover rate 90%, mutation rate 5%, and finite automata 
are evolved for 10,000 generations. 

The best automaton thus obtained is run on normal sequences and abnormal 
sequences to evaluate the scores of the sequences and to determine the threshold value 
that can distinguish the normal sequences from the abnormal sequences. Every time 
the finite automaton makes a successful transition from the current state by the current 
symbol - actually a number representing a system call – in the sequence, the sequence 
gets one point. If there is no transition specified by the current symbol, the automaton 
goes back to the starting state instead of getting one point. The total points amassed 
by the sequence until the automaton consumes all the symbols in the sequence are the 
score of the sequence. 

Every normal and abnormal sequence is evaluated and assigned its score by the 
automaton. Then the threshold score is determined that can best distinguish the 
normal sequences form the abnormal ones. The whole procedure is repeated several 
times with different sets of weights for consistency, compactness, and distinction 
factors of the fitness function in order to obtain the best combination of these three 
factors. The results are shown in Table 3. 

The automaton along with the threshold value is evaluated depending on how well 
it can determine normal sequences and abnormal sequences. Detection rate represents 
 

Table 3. the best automaton obtained for each program 

best automaton obtained 
Program 

number of states threshold consistency/compactness/distinction 
Ps 19 35 45/10/45 
Named 45 50 70/10/20 
Login 46 91 70/10/20 
Xlock 37 92 70/10/20 
Lpr 37 90 70/10/20 
ftp 45 90 60/10/30 
Sendmail 50 86 60/10/30 
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how well it can detect abnormal sequences. False positive rate represents how often it 
misreports a normal sequence as an abnormal one. Naturally high detection rate and 
low false positive rate are desirable. Table 4 shows the performance measures of 
intrusion detection. Table 5 and Table 6 show the performance of intrusion detection 
on the training data and testing data. 

Table 4. performance measures of intrusion detection 

TP (True Positive) : the number of cases where abnormal behavior is detected 

TN (True Negative) : the number of cases where normal behavior is recognized 

FP (False Positive) : the number of cases where normal behavior is misinterpreted as abnormal 

FN (False Negative) : the number of cases where abnormal behavior is not detected 

detection rate = TP / (TP + FN) 

false positive rate = FP / (TN + FP) 

Table 5. intrusion detection performance of the resulting finite automaton on training data 

program 
training 

TP 

training 

TN 

training 

FN 

training 

FP 

detection 

rate 

false 

positive

rate 
ps 13/13 10/11 0/13 1/11 100% 9.1% 
named 2/2 16/16 0/2 0/16 100% 0% 
login 5/5 14/14 0/5 0/14 100% 0% 
xlock 1/1 40/40 0/1 0/40 100% 0% 
lpr 5/5 5/5 0/5 0/5 100% 0% 
ftp 3/3 5/5 0/3 0/5 100% 0% 
sendmail 12/13 24/25 1/13 1/25 92.3% 4.0% 

Table 6. intrusion detection performance of the resulting finite automaton on test data 

program test TP test TN test FN test FP 
detection 

rate 

false 

positive

rate 
ps 8/8 8/8 0/8 0/8 100% 0% 
named 1/1 10/10 0/1 0/10 100% 0% 
login 4/4 10/10 0/4 0/10 100% 0% 
xlock 1/1 29/29 0/1 0/29 100% 0% 
lpr 3/3 4/4 0/3 0/4 100% 0% 
ftp 2/2 3/3 0/2 0/3 100% 0% 
sendmail 10/10 24/24 0/10 0/24 100% 0% 

As can be seen in Table 5 and Table 6, some of the programs have very scanty 
data. For such programs the generated automaton is not likely to be reliable. Hence 
we tried all the sequences as training data. The result is shown in Table 7 and Table 8. 

The program ps has very heterogeneous sequences, and it seems that the behaviors 
of these sequences cannot be captured by finite automata. For the other programs, the 
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Table 7. the best automaton obtained for each program when all the sequences are used as 
training data 

best automaton obtained 
program 

number of states threshold consistency/compactness/distinction 
Ps 15 62 45/10/45 
Named 40 70 70/10/20 
Login 46 88 70/10/20 
Xlock 37 85 70/10/20 
Lpr 34 90 70/10/20 
ftp 47 90 60/10/30 
sendmail 52 69 60/10/30 

Table 8. intrusion detection performance of the resulting finite automaton when all the 
sequences are used as training data 

Program TP TN FN FP 
detection 

rate 

false 

positive 

rate 
ps 21/21 18/19 0/21 1/19 100% 5.26% 
named 3/3 26/26 0/3 0/26 100% 0% 
login 9/9 24/24 0/9 0/24 100% 0% 
xlock 2/2 69/69 0/2 0/69 100% 0% 
lpr 8/8 9/9 0/8 0/9 100% 0% 
ftp 5/5 8/8 0/5 0/8 100% 0% 
sendmail 23/23 49/49 0/23 0/49 100% 0% 

results show that our approach to construction of automata is a very effective means 
of intrusion detection. 

4   Conclusions 

Information security, including computer security and network security, is a serious 
matter these days. Intrusion detection is an indispensable ingredient of computer and 
network security. Use of system call sequences and finite automata have been 
recognized as an effective way of intrusion detection. However, previous techniques 
of constructing finite automata that can detect intrusions have drawbacks such as 
requiring additional information other than system call sequences or difficulty in 
handling sequences of significantly varying lengths. 

In this paper we present a technique of constructing finite automata that can detect 
intrusions using genetic algorithms. It can construct finite automata from system call 
sequences without requiring additional information, and it can deal with sequences of 
varying lengths. Experiments show that the resulting system’s detection rate is very 
high, and false positive rate is satisfactorily low. Our study also demonstrates the 
practical usefulness of machine learning by showing that induction of finite automata, 
which perform critical computation such as intrusion detection, can be effectively 
carried out through evolutionary computation. 

Our future study plan includes testing the performance of our system by trying 
extensive data sets of system call sequences and improving the algorithm of 
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constructing finite automata so that the resulting finite automata can handle such 
severely heterogeneous sequences as the ones generated by the program ps. 
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An Adaptive Intrusion Detection Algorithm
Based on Clustering and Kernel-Method
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Abstract. An adaptive intrusion detection algorithm which combines
the Adaptive Resonance Theory(ART) with the Concept Vector and
the Mecer-Kernel is presented. Compared to the supervised- and the
clustering-based Intrusion Detection Systems(IDSs), our algorithm can
detect unknown types of intrusions in on-line by generating clusters in-
crementally.

Keywords: intrusion detection, ART, mercer kernel, concept vector.

1 Introduction

In the traditional signature-based IDSs, the rule-base has to be manually revised
whenever each new type of attack is discovered. To solve this manual revision
problem, some of the machine learning algorithms have been applied to the
IDS[1][2]. However, most of these machine learning approaches are based on
supervised learning, and have following problems: 1) a large volume of training
data should be collected and classified manually; 2) the performance of the IDS
depends on the quality of the training data; 3) a training phase with the huge
data is computationally expensive and can not be performed in an incremental
manner; 4) it is difficult to detect new intrusions which are not trained.

Recently, the clustering algorithms based on unsupervised learning have been
proposed for IDS to overcome these problems[3][4][5]. However, the number of
new intrusion types is increased rapidly and the volume of the information is
too large. Thus, the general-purpose clustering algorithms used in artificial in-
telligence need to be modified to satisfy the following IDS requirements: 1) each
event data should be processed as soon as it is received and clusters are generated
adaptively without fixing the number of clusters; 2) clustering the huge volume
of event data needs to be completed in few seconds; 3) the result of clustering
needs to be insensitive to the order of input data since the sequence of event
data is arbitrary in general.

In this paper, we propose a clustering-based intrusion detection algorithm
which can satisfy all the requirements. First, we choose an on-line and incremen-
tal clustering algorithm, called Adaptive Resonance Theory(ART). In addition to
that, we employ both Concept Vector[6] and Mercer-Kernel[7] to classify a high
� Corresponding author.

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 603–610, 2006.
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dimensional sparse pattern effectively and improve the separability, respectively.
These two techniques can improve the detection rates of new intrusions because
most of the information source for intrusion detection is high dimensional and
very similar to each other. Based on the experimental results, our algorithm can
provide superior performance by generating clusters incrementally and subdi-
viding the patterns in detail.

The organization of this paper is as follows. Section 2 explains the data rep-
resentation and the similarity measure, and Section 3 describes the proposed
intrusion detection algorithm. The experimental results are given in Section 4,
and conclusions are made in Section 5.

2 Data Representation and Similarity Measure

In this section, we define input dataset and similarity measure in order to evalu-
ate the real world problems; the input patterns are represented by a mixture of
variable types. For a given set of n input patterns x = {xi}n

i=1, we assume that
the input pattern xi consists of k numeric attributes and m symbolic attributes.
Let Rk and Rm denote the k-dimensional numeric space and m-dimensional
symbolic space, respectively. Then, x can be represented as follows:

x = {xi}n
i=1; xi = xR

i + xS
i ; xR

i ∈ Rk, xS
i ∈ Sm (1)

To avoid bias toward some features over other features, we perform L2 nor-
malization on numeric attributes to have unit Euclidean norm.

xR
i =

xR
i

‖xR
i ‖

; ‖xi‖ =

√√√√ k∑
j=1

x2
ij (2)

Also, a similarity measure which computes the similarity between objects
of mixed variable types is defined as follows: Let m and λ ∈ [0, 1] denote the
dimension of the symbolic space and an adjustable parameter in order to weight
the attribute types, respectively. Then,

S(xi, xj) = λ· < xR
i , x

R
j > +(1− λ) ·

∑m
l=1 δ(x

S
il, x

S
jl)

m
(3)

where the delta function δ(·) is defined as follows:

δ(xS
il, x

S
jl) =

(
1, if xS

il = xS
jl

0, otherwise

)
(4)

Since numeric attributes are normalized to be unit vectors, the cosine measure
is obtained by the inner product of two vectors.

< xR
i , x

R
j >= ‖xR

i ‖ · ‖xR
j ‖ · COS(θ(xR

i , x
R
j )) = COS(θ(xR

i , x
R
j )) (5)
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3 Adaptive Intrusion Detection Algorithm

An intrusion detection algorithm proposed in this paper is an “adaptive” al-
gorithm which combines the on-line and incremental clustering algorithm ART
with Concept Vector and Mercer-Kernel. By employing the Concept Vector, a
weight vector of each cluster is normalized to the mean vector of each clus-
ters. Thus, we need not consider the learning rate parameter in updating the
weight vectors and can improve the speed of the execution. Also, we can improve
the separability by mapping the input pattern to a feature space with Mercer-
Kernel. Details of the proposed algorithm, called Kernel-ART, can be described
as follows:

Initialization: The number of clusters is set to one initially, and the first input
pattern is assigned to its initial weight vector as follows:

w1 = x1 = wR
1 + wS

1 = xR
1 + xS

1 (6)

Then, the matching value, computed by the activation function between the
initial weight vector and the first input pattern, is set to one. This ensures that
the first input pattern is assigned to the first cluster for any vigilance parameter
ρ ∈ [0, 1].

Activation Function: The basic idea of the Mercer-Kernel is to perform a
nonlinear data transformation into some high dimensional dot-product space,
called feature space, to increase the probability of the linear separability of the
patterns within the transformed space[7]. By replacing the inner product in the
similarity measure of equation (3) with the RBF kernel function K(xi, xj) =
exp{− 1

c ||xi − xj ||2}, we can obtain a similarity measure function in the feature
space. Then, the activation function is defined by the similarity measure in the
feature space as follows:

AF (xi, ŵj) = λ · exp
{
−1
c
‖xR

i − ŵR
j ‖2
}

+ (1− λ) ·
∑m

l=1 δ(x
S
il, w

S
jl)

m
(7)

where ŵR
j =

wR
j

‖wR
j ‖ is the Concept Vector of a cluster j. The Concept Vector

is the mean vector of the cluster normalized to the unit Euclidean norm. Since
the Concept Vectors(i.e., clusters) are localized in the high dimensional sparse
space, the clusters can represent the class structure of the dataset. That is, the
clusters can represent each types of attacks individually.

Matching Function: If the activation function AF (·) and the matching func-
tion MF (·) are chosen as

MF (xi, ŵ1) > MF (xi, ŵ2)⇔ AF (xi, ŵ1) > AF (xi, ŵ2), (8)

then the mismatch reset condition and the template matching process of the
original ART can be eliminated for the resonance domain[8]. The most simple
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way to define the activation and the matching functions under the condition of
equation (8) is to set the activation function to equal to the matching function.
By this setting, we can make the algorithm simple and improve the speed of
execution.

Resonance Condition: According to the simple setting of the matching func-
tion, the resonance unit is selected as follows:

AF (xi, ŵj∗) ≥ ρ; j∗ = arg maxj=1,...,c{AF (xi, ŵj)} (9)

When the best-matching template does not satisfy the vigilance criterion, a
new cluster unit can be created and the input pattern is assigned to it. This
condition can speed-up the execution time of the algorithm further.

Update Weight Vector: When a cluster j∗ is selected by equation (9), the
input pattern is assigned to the cluster j∗ and the weight vector is updated as
follows:

w
R(t)
j∗ = w

R(t−1)
j∗ + xR

i (10)

w
S(t)
j∗ = MostFrequentSymbol

Normalize input pattern with L2 norm and Initialize Weights:
w1 = x1 = wR

1 + wS
1 = xR

1 + xS
1

While Stopping Condition is false
For each input data

Set activation of all F2 to zero
Compute Activation Function:

AF (xi, wj) = λ · exp − 1
c
‖xR

i − wR
j ‖2 + (1 − λ) ·

m
l=1 δ(xS

il,w
S
jl)

m

Find j∗ with max activation
j∗ = arg maxj=1,...,c{AF (xi, wj)}

Test for reset:
If AF (xi, wj∗) ≥ ρ then

w
R(t)
j∗ = w

R(t−1)
j∗ + xR

i

w
S(t)
j∗ = {MostFrequentSymbol}

else
allocation: c = c + 1
wR(t)

c = wR(t)
c + xR

i

wS(t)
c = wS(t)

c

Fig. 1. Outline of the Kernel-ART algorithm
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The weight vector of the cluster j∗ is defined by sum of input patterns that are
assigned to the cluster j∗. Thus, we need not consider the learning rate parameter
in updating the weight vectors, and our algorithm is less sensitive to the order
of input patterns than that of previous clustering such as Fuzzy ART. This
is because, in Kernel-ART, the weight vectors memorize the normalized mean
vector of the input patterns assigned to each clusters. This intrusion detection
algorithm, called Kernel-ART, is summarized in Fig. 1.

4 Experimental Results

To evaluate the effectiveness of Kernel-ART, KDD CUP 99 data[9] were used for
the experiments. In order to make accurate analysis on the experiment result,
we used only the Corrected-labeled dataset among KDD CUP 99 data. It was
collected through the simulation on the U.S. military network by 1998 DARPA
Intrusion Detection Evaluation Program, aiming at obtaining the benchmark
dataset in the field of intrusion detection. The size of data is 311,029 and it
consists of 9 symbolic attributes and 32 numeric attributes. The data is mainly
divided into four types of attack: DOS, R2L, U2R and PROBING. In Kernel-ART,
ρ is the vigilance parameter which affects the support of clusters. λ ∈ [0, 1] and c
denote the weight of the similarity measure function and the RBF kernel-width
parameter of Kernel-ART, respectively. We set ρ to 0.93, λ to 0.5 and c to 1.

4.1 Comparison with Other Intrusion Detection Algorithms

Because many research results of intrusion detection have been reported recently,
we compare our performance with those supervised and unsupervised(clustering)
learning algorithms. Table 1 shows the classification capability of each research
for normal data and four types of attack. The Kernel-ART proposed in this paper
can provide good classification capability as a whole, as shown in Table 1. Most
of previous methods except IDBGC[5] show considerable inferior performance
only at the classification capability as to R2L and U2R. Note that R2L and U2R
are host-based attacks which exploit vulnerabilities of the operating systems, not
of the network protocol. Therefore, these are very similar to the “normal” data

Table 1. Comparison with Other Intrusion Detection Algorithms

Supervised Learning Unsupervised Learning
Bernhard KayAcik Ambwani IDBGC[5] Proposed

[10] [11] [12] Sampled Kernel-ART

Normal 99.5% 95.4% 99.6% - 97.1%

Attack DOS 97.1% 95.1% 96.8% 56.0% 99.9%
U2R 13.2% 10.0% 4.2% 78.0% 61.4%
R2L 8.4% 9.9% 5.3% 66.0% 33.1%

PROBING 83.3% 64.3% 75.0% 44.0% 95.5%
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in the KDD CUP 99 data collected from network packets. However, our method
can provide superior performance in separating these two patterns. It can be
said, therefore, that the strategy of Kernel-Method employed in this paper, that
is to improve the separability(see Eq. 7), is turned out to be very efficient. Note
that results reported in [5] were average detection ratios with small number of
“sampled” instance from KDD CUP 99 data, which are sampled with similar
number of each attack type. The comparisons indicates that our method is not
only comparable to [5] in general but also outperformed in DOS and PROBING,
in particular.

4.2 Clustering Results of Each Subsidiary Types of Attack

To show the efficiency of Kernel-ART, we summarized the clustering results
of each subsidiary types of attack in Table 2. In general, reasonable detection
ratio with large number of instance. Depending on type of attack, the size of
data available for the testing is quite different. The size of attack instance that
pertained to U2R and R2L is much smaller than that of other types of attack.
Therefore, some of the attacks in those two classes show low detection ratio. In
case of PROBING, Saint is a network probing tool modeled after Satan. So, saint
and Satan are clustered together. According to the experimental results of Table
2, detailed separation capability of Kernel-ART is relatively good. As in section
4.1, this result matches well with the strategy of Kernel-Method employed in
this paper.

Table 2. Experimental Results of each Subsidiary Types of Attack

Type Attacks No. of Detection Attacks No. of Detection
instance Ratio instance Ratio

DOS land 9 100.0% mailbomb 5000 100.0%
processtable 759 100.0% smurf 164091 100.0%

neptune 58001 99.8% apache2 794 99.6%
back 1098 99.5% pod 87 88.5%

teardrop 12 0.0% udpstorm 2 0.0%
U2R multihop 18 38.9% buffer overflow 22 27.3%

ps 16 25.0% perl 2 0.0%
rootkit 13 0.0% loadmodule 2 0.0%

sqlattack 2 0.0% xterm 13 0.0%
R2L imap 1 100.0% guess passwd 4367 99.6%

httptunnel 158 65.8% warezmaster 1602 54.8%
xsnoop 4 50.0% named 17 47.1%

ftp write 3 33.3% snmpgetattack 7741 0.5%
snmpguess 2460 0.1% phf 2 0.0%

worm 2 0.0% xlock 9 0.0%
sendmail 17 0.0%

PROBING nmap 84 100.0% mscan 1053 96.6%
satan 1633 95.8% portsweep 354 93.5%

ipsweep 306 83.0% saint 736 14.3%
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Table 3. Input Parameters of Experiments: α and β are learning rates of Fuzzy Art,
and ρ is the vigilance parameter. λ and c denote the weight of the similarity measure
function and the RBF kernel-width parameter of Kernel-ART, respectively.

K-means # of cluster = 39, repeat 30 experiments, using min-max normalization
Fuzzy ART α = 0.00001, β = 1.0, varying ρ from 0.35 to 0.95
Kernel-ART λ = 0.5, c from 0.01 to 0.1, varying ρ from 0.35 to 0.95

Table 4. Comparison with Other Clustering Algorithms

K-means Fuzzy ART Proposed
Kernel-ART

Normal 75.6% 82.4% 96.6%

Attack DOS 64.2% 93.8% 93.2%
U2R 81.8% 84.1% 87.5%
R2L 33.0% 62.3% 73.9%

PROBING 96.6% 99.4% 100.0%

4.3 Comparison with Other Clustering Algorithms

To evaluate the clustering characteristics of Kernel-ART, we compared our
method with typical clustering algorithms such as K-means and Fuzzy ART.
Among the labeled 311,029 data instances, we sampled 880 data instances such
as 176 normal instances, 176 DOS attacks, 176 R2L attacks, 176 U2R attacks,
and 176 PROBING instances. The conditions of this experiment are summarized
in Table 3, and the results of the experiment are shown in Table 4. These re-
sults show that Kernel-ART can provide better performance in classifying both
“normal” and “attack” than the typical clustering methods.

5 Conclusions

In this paper, we have presented a robust and efficient intrusion detection algo-
rithm which can detect various types of unknown intrusions in on-line by gen-
erating clusters incrementally. The Concept Vector and the Mercer-Kernel can
classify a high dimensional sparse pattern effectively and improve the separa-
bility. Based on the experimental results, the proposed Kernel-ART can classify
individual attacks more accurately than the previous methods. This classifying
information can be exploited further for developing different responses to differ-
ent attacks and several intrusion prevention strategies. Because our algorithm
has no training phase and does not require periodical renewals of discovered
attacks, the cost of system maintenance can also be reduced significantly. We
believe our algorithm is very practical and can be employed in future IDSs be-
cause of its computational efficiency and ability in detecting new intrusions.
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Abstract. Data mining is the non-trivial process of identifying novel,
potentially useful and understandable patterns in data. With most of the
organizations starting on-line operations, the threat of security breaches
is increasing. Since a database stores a lot of valuable information, its
security has become paramount. One mechanism to safeguard the infor-
mation in these databases is to use an intrusion detection system(IDS).
In every database, there are a few attributes or columns that are more
important to be tracked or sensed for malicious modifications as com-
pared to the other attributes. In this paper, we propose an intrusion
detection algorithm named weighted data dependency rule miner (WD-
DRM) for finding dependencies among the data items. The transactions
that do not follow the extracted data dependency rules are marked as
malicious. We show that WDDRM handles the modification of sensitive
attributes quite accurately.

Keywords: Data dependency, Weighted rule mining, Read-Write
sequence, Intrusion detection.

1 Introduction

Data mining has attracted a great deal of attention in the industry in recent
years due to the wide availability of huge volume of data and the imminent
need for turning such data into useful information and knowledge [1]. Data min-
ing generally refers to the process of extracting models or determining patterns
from large observed data [2]. It involves an integration of techniques from mul-
tiple disciplines such as database technology, statistics, machine learning, high-
performance computing, spatial data analysis, neural network and others.

Recently, researchers have started using data mining techniques in the emerg-
ing field of information and system security and specially in intrusion detection
systems. An intrusion is defined as any set of actions that attempt to compromise
the integrity, confidentiality or availability of a resource. Intrusion Detection is
the process of monitoring the events occurring in a computer system or network
and analyzing them for signs of intrusions [3].

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 611–620, 2006.
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Intrusion detection has been discussed in public research since the beginning
of the 1980s. In the last few years, it became an active area of research and
commercial IDSs started emerging [4]. Several research works also have been
proposed that apply data mining for intrusion detection. Lee et al [5] have sug-
gested data mining techniques for network intrusion detection. They consider
several categories of data mining algorithms, namely, classification, link analysis
and sequential analysis along with their applicability in the field of intrusion
detection. Barbara et al [6] have built a testbed using data mining techniques to
detect network intrusions . Though intrusion detection is a well researched area,
only a few researches have focused on database intrusion detection. Chung et al
[7] use the idea of ”working scope” to find the frequent itemsets referenced to-
gether and used this information for anomaly detection. Lee et al [8] propose an
intrusion detection system in real-time databases using time signatures. Lee et al
[9] have suggested a method for fingerprinting the access patterns of legitimate
database transactions and using them to identify database intrusions. Barbara
et al [10] use hidden markov model (HMM) and time series to find malicious
corruption of data. They use HMM to build database behavioral models that
capture the changing behavior over time, and uses them to recognize malicious
patterns. Zhong et al [11] have proposed an algorithm to mine user profiles based
on the queries submitted by the user. Hu et al [12] have proposed an idea of de-
termining dependency among data items in databases. The transactions that do
not follow the mined data dependencies are identified as malicious transactions.

In this paper, we propose an algorithm for database intrusion detection us-
ing a data mining technique, which takes the sensitivity of the attributes into
consideration. Sensitivity of an attribute signifies how important the attribute is
for tracking against malicious modifications. This approach mines dependency
among attributes in a database. The transactions that do not follow these de-
pendencies are marked as malicious transactions.

The rest of the paper is organized as follows. In Section 2, we describe
weighted data dependency rule mining (WDDRM) algorithm with an exam-
ple. We present details of our experiments and provide results in Section 3.
Finally, we conclude the paper with some discussions.

2 Weighted Data Dependency Rule Mining

2.1 Intuition

Databases are increasing in size in two ways: the number N of records, or objects
in the database, and the number d of fields, or attributes, per object. Databases
containing of the order of N = 109 objects are increasingly common nowadays.
The number d of attributes can easily be of the order of 102 or even 103 in various
applications [2]. With the number of attributes increasing at such a high rate, it
is very difficult for administrators to keep track of attributes whether they are
accessed or modified correctly or not. By dividing the attributes into different
categories based on their relative importance or sensitivity, it is comparatively
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easier to track only those attributes whose unintended modification can have the
largest impact on the application or the system.

Practitioners as well as researchers have observed that IDS can easily trigger
thousands of alarms per day, a number of which are triggered incorrectly by
benign events [13]. Categorization of attributes helps the administrator to check
only those alarms, which are generated due to malicious modification of sensitive
data instead of checking all the attributes. Since the main objective of a database
intrusion detection system is to minimize the loss suffered by the owner of the
database, it is important to track high sensitive attributes with more accuracy.

If sensitive attributes are to be tracked for malicious modifications then we
need to generate data dependency rules for these attributes. Unless there is a
rule for an attribute, the attribute cannot be checked. If high sensitive attributes
are accessed less frequently, then there may not be any rule generated for these
attributes. The motivation for dividing attributes in different sensitivity groups
and assigning weights to each group is to bring out the dependency rules for
possibly less frequent but more important attributes. Once we have rules for
these sensitive attributes, we can check them in each transaction and if any
transaction does not follow the mined rules, it will be marked as malicious.

We discuss the main components of an IDS in the following subsections.

2.2 Security Sensitive Sequence Mining

The problem of finding sequences among the attributes along with the opera-
tions {read,write} is similar to the problem of mining sequential patterns. Mining
sequences from large sets of data is a known problem. Agrawal et al [14] have
proposed an algorithm for finding sequential patterns from data. In this algo-
rithm, all the data items are considered at the same level without any weightage.
We modify an existing sequential mining algorithm and make it security sensi-
tive sequential mining by introducing weights for each attribute based on the
sensitivity group. Higher the sensitivity of an attribute, higher is its weight. We
have categorized the attributes in three sets : High Sensitivity (HS) attribute
set, Medium Sensitivity (MS) attribute set and Low Sensitivity (LS) attribute
set. The sensitivity of an attribute is dependent on the particular database ap-
plication. Also, modification of the sensitive attributes are more important than
reading those attributes from the point of view of integrity. For the same at-
tribute say x, if x ∈ HS then W (xw) > W (xr), where W is a weight func-
tion, xw denotes writing or modifying attribute x and xr denotes reading of
attribute x.

Given a schema, we categorize all the attributes into the above mentioned
three sets based on their sensitivities and assign numerical weights to each set.
Let w1, w2, w3 ∈ R, where R is the set of real numbers and w3 ≤ w2 ≤ w1 are
the weights of HS,MS and LS, respectively. Let d1, d2, d3 ∈ R be the additional
weights of the write operations for each category such that d3 ≤ d2 ≤ d1. Let
x ∈ HS be an attribute which is accessed in a read operation. Then the weight
given to x is w1. If it is accessed in write operation then the weight given to x
is w1 + d1.
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TID Attribute access sequence

1 11r, 13w , 4r, 8r, 2r , 16r, 17r , 14r

2 7r, 2r, 7r, 2r, 14r , 15w

3 16r , 17r, 14r , 14r, 15w , 17w , 2r, 7w

4 11r, 12w , 2r, 4w , 16r, 17r , 14r

5 2r, 4w, 2r, 7w , 7r, 8r, 2r

6 11r , 13w, 4r, 8r, 2r, 2r, 4w

7 14r, 15w , 4r, 8r , 2r, 8r, 2r

8 7r, 8r, 2r, 2r, 2r, 8w, 5w, 2r, 4w

9 8r, 2r, 14r, 15w , 7r, 2r

10 14r, 15w , 16r , 17r, 14r , 14r, 15w , 17w

Fig. 1. Example transactions for the Sequence Mining Algorithm

Table Name Column Name

Customer Name, Customer id, Address,Phone no

Account Account id, Customer id, Status,Open dt, Close dt, Balance

Account type Account type,Max tran per month, Description

Fig. 2. Bank database schema

For security sensitive sequence mining, we assign weights to each sequence
based on the sensitivity groups of the attributes present in the sequence. The
weight assigned to a sequence is the same as the weight of the most sensitive
attribute present in that sequence. The weight assigned to each sequence also
depends on the operation applied on the attributes.

The weights assigned to all the sequences are used in the second pruning step
which calculates the support of each sequence in the transaction. If support value
for any sequence is above the minimum support, the sequence is considered to
be a frequent sequence. Let us assume that there is a sequence s with weight ws.
Let N be the total number transactions. If s is present in n transactions out of
N transactions, then the support of sequence s would be:

Support(s) = (n ∗ ws) / N (1)

The effect of this weighted approach on sequence mining algorithm is sig-
nificant. With this approach, sequences containing high sensitive attributes but
accessed less in the transactions can become frequent sequences because each
such sequence’s count is enhanced by multiplying with its weight. The weighted
support can now exceed the minimum support.

Consider the example transactions shown in Figure 1. There are 10 transac-
tions. These transactions are generated from the bank database schema shown
in Figure 2 with attributes encoded into integers. In Figure 3, the weight of each
attribute is shown. These attributes are categorized into HS,MS and LS groups
depending upon the sensitivity. First, these transactions are given input to a se-
quential pattern mining algorithm [14] for extracting the sequences using normal
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Sensitivity Group Attributes Weights Write Weights Normalized Weights

HS 7, 8, 13 3 .25 .48
MS 5, 16 2 .25 .33
LS 2, 4, 11, 12, 14, 15, 17 1 .25 .19

Fig. 3. Weight table for the attributes used in the bank database

Sequence using Non-weighted Method Sequence using Weighted Method

< 4r, 8r, 2r >, < 14r , 15w , 2r >, < 16r , 17r, 14r , 15w , 17w , 7w >,
< 2r, 4w >, < 2r, 7r >, < 2r, 14r >, < 2r, 4w , 7w, 7r, 8r >, < 7r, 8r, 8w , 2r, 4w >,
< 16r, 17r , 14r >, < 7r, 8r, 2r, 8w, 4w >, < 8r, 2r, 14r , 15w , 7r >,
< 7r, 2r >, < 11r, 2r > < 8r, 14r , 15w , 7r, 2r >, < 11r , 13w , 8r, 2r, 4w >,

< 11r , 13w , 8r, 2r, 16r >, < 13w, 4r, 8r, 2r >,
< 7w , 7r, 8r, 2r >, < 2r, 7r, 14r, 15w >,
< 7r, 2r, 14r, 15w >, < 14r , 15w, 2r, 7w >,
< 14r , 15w , 2r, 8r >, < 14r , 15w, 8r, 2r >,
< 4r, 2r, 8r >, < 13w , 8r, 16r, 17r , 14r >,
< 13w , 8r, 2r, 16r , 14r >

Fig. 4. Mined sequence using Minimum Support value 25%

definition of support. These transactions and weights are also given as input to
the proposed weighted sequential mining algorithm. Here, support values of the
sequences are calculated using equation (1). In both the cases, minimum support
is set to 25%. The sequences generated from the two algorithms are shown in
Figure 4.

2.3 Read-Write Sequence Generation

In this subsection, we first define some of the terminologies used in the rest of
the paper.

Definition 1. A read sequence denoted as ReadSeq of attribute aj is the se-
quence of the form < a1r , a2r , a3r ...., akr , ajw >, which is the sequence of at-
tributes a1 to ak that are read before attribute aj is written. All such sequences
form a set named as read sequence set denoted by ReadSeqSet.

Definition 2. A write sequence denoted as WriteSeq of attribute aj is the se-
quence of the form < ajw , a1w , a2w , a3w , ...., akw >, which is the sequence of at-
tributes a1 to ak that are written after attribute aj is written. All such sequences
form a set named as write sequence set denoted by WriteSeqSet.

The sequences shown in Figure 4 are next used to generate read and write se-
quences. As per the definitions, ReadSeq and WriteSeq must contain at least one
write operation. All the sequences that do not have any attribute with write oper-
ation, are not used for read and write sequence generation. A sequence that con-
tains a single attribute does not contribute to the generation of dependency rules
and hence will be ignored too. The read-write sequences are generated as follows.
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Non-weighted Method Weighted Method

Read Set Write Set Read Set Write Set
< 14r , 15w >, < 16r, 17r , 14r, 15w >, < 16r, 17r , 14r, 17w >, < 15w , 17w , 7w >,
< 2r, 4w > < 16r, 17r , 14r, 7w >, < 2r, 4w >, < 2r, 7w >, < 8w, 4w >,

< 7r, 8r, 8w >, < 7r, 8r, 2r, 4w >, < 15w , 7w >,
< 8r, 2r, 14r , 15w >, < 8r, 14r, 15w >, < 4w, 7w >,
< 11r, 13w >,< 11r , 8r, 2r, 4w >, < 13w , 4w >
< 2r, 7r, 14r , 15w >, < 7r, 2r, 14r , 15w , >
< 14r, 15w >,< 14r , 2r, 7w >, < 7r, 8r, 2r, 8r >

Fig. 5. Read Sequences and Write Sequences

For each write operation ajw in a sequence, add < a1r , a2r ...akr , ajw > to
ReadSeqSet where a1r , a2r ...akr are the read operations on attributes a1 to ak

before the write operation on attribute aj . To generate write sequences, for each
write operation ajw in a sequence, add < ajw , a1w , a2w , ....akw > to WriteSeqSet
where a1w , a2w , ....akw are write operations on attributes a1 to ak after the write
operation on attribute aj . The read-write sequences generated from the mined
sequences of Figure 4 are shown in Figure 5.

2.4 Weighted Data Dependency Rule Generation

There are two types of data dependency rules, namely, read rules and write rules.
A read rule of the form ajw → a1r , a2r ..., akr implies that attributes a1 to ak are
read in order to write attribute aj . Write rule of the form ajw → a1w , a2w , ....akw

implies that after writing attribute ajw , attributes a1w , a2w , ...akw are modified.
These rules are generated from the read and write sequences. Weighted data
dependency rule generation uses weighted confidence. The confidence of the read
and write rules are calculated by the following method.

Let R be a read rule of the form ajw → a1r , a2r , ....akr , generated from the
read sequence rs ∈ ReadSeqSet . Let Count(ajw ) and Count(rs) be the total
count of the attribute ajw and that of rs among the total number of transactions.
The weighted confidence of the rule R is defined as:

Conf idence(CR) = Count(rs) / Count(ajw) (2)

Count(ajw ) is defined as follows:

Count(ajw ) =
∑

∀ Transaction T, ajw∈T and rs /∈ T

(w3 + d3)

=
∑

∀ Transaction T, rs ∈ T

max(W (rs))
(3)

Count(rs) is defined as:

Count(rs) =
∑

∀ Transaction T, rs ∈ T

max(W (rs)) (4)
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Non-weighted Method Weighted Method

Read Rules Write Rules Read Rules Write Rules
< 15w → 14r >, < 17w → 16r, 17r , 14r >,< 4w → 2r >, < 8w → 4w >

< 4w → 2r > < 8w → 7r, 8r >, < 13w → 11r >,
< 8w → 7r, 8r, 2r >, < 15w → 14r >,
< 7w → 2r >

Fig. 6. Read and Write Dependency Rules with Confidence value 70%

ALGORITHM WDDRM:

Initialize two sets ReadSeqSet = {Φ}, WriteSeqSet = {Φ} for storing read and write
sequences respectively.

Initialize two sets ReadRuleSet = {Φ}, WriteRuleSet = {Φ} for storing read and write
rules respectively. Create a set weighted data dependency rules
WDDR = {ReadRuleSet, WriteRuleSet}.

Execute sequential mining algorithm with minimum support minSup. At each step,
calculate support of the sequences using equation (1).

For each sequential pattern Pi, where Pi contains at least one write operation
IF (a1r , a2r , ...., akr , ajw ∈ Pi and a1r , a2r , ...., akr �= ∅) where a1r to akr are all the
read operation on attributes a1 to ak before ajw , the write operation on attribute aj

For each write operation ajw

Generate read sequence < a1r , a2r , ...., akr , ajw > and Add to ReadSeqSet

IF (ajw , a1w , a2w , ....akw ∈ Pi and a1w , a2w , ...., akw �= ∅) where a1w to akw are all the
write operation on attributes a1 to ak after ajw , the write operation on attribute aj

Generate write sequence < ajw , a1w , a2w , .....akw > and add to WriteSeqSet

For each read sequence rs of the form a1r , a2r , ...., akr , ajw ∈ ReadSeqSet
Construct read rule rr of the form ajw → a1r , a2r , ...., akr

Calculate the confidence C of rr using equation (2)
IF (C ≥ minConf) Add rr ∈ ReadRuleSet

For each write sequence ws of the form ajw , a1w , a2w , ....akw ∈ WriteSeqSet
Construct write rule wr of the form ajw → a1w , a2w , ..., akw

Calculate the confidence C of wr using equation (2)
IF (C ≥ minConf) Add wr ∈ WriteRuleSet

Return WDDR = {ReadRuleSet, WriteRuleSet}

Fig. 7. Weighted Data Dependency Rule Miner Algorithm

The rules generated from the read-write sequences are shown in Figure 6.
After the rules are generated, they are used to verify whether the incoming

transactions are malicious or not. If an incoming transaction has a write oper-
ation, it is checked whether there are any corresponding read or write rules. If
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the write operation violates these rules, it is marked as malicious and an alarm
is generated. Otherwise, normal operation proceeds. The complete algorithm for
the weighted data dependency rule mining is shown in the Figure 7.

3 Experimental Results

We have carried out several experiments to show the efficacy of the developed
method. The system has been developed using Java as front end and MS SQL
2000 Server as the back end database. We have used the bank database of Fig-
ure 2 for our experiments. Volunteers from our institute were invited to interact
with the system and make malicious transactions. This was beneficial because
the interaction by the volunteers helped us to capture real data that would be
expected in a normal application. They were provided the schema and the infor-
mation on sensitive attributes. The volunteers tried novel ways of committing
malicious transactions since it was announced that scores would be awarded
based on the total weight of attributes they could modify.

In the learning phase, we have generated a number of sets of training data
with each set of size 10,000 transactions having different distributions. In one
experiment, we have used the following distributions. Insert/Update=90%, Se-
lect=10%. We also choose the number of transactions containing most sensitive
attributes in the training data as a parameter. We used 20% of the transactions
with highly sensitive attributes in the training data. All these parameters are
varied for different experiments. The support and confidence values are .25 and
.70, respectively. Once the transactions are generated, we have run the non-
weighted algorithm to generate the data dependency rules. After that, we have
used WDDRM algorithm on the training data with weight ratios 1:2:3 for LS,
MS and HS groups, respectively. In the experiments, we have taken additional
weight of write operation as 0.25 for all the three categories. We used weights for
different groups as another parameter. Dependency rules for each set of weights
were finally generated.

In order to study relative performance, we have compared our work with
the non-weighted dependency rule mining approach. We call this method as
DDRM and use it for comparison. Figure 8(a) shows a comparison of DDRM
and WDDRM . The percentage of malicious transactions detected is plotted
against the sensitivity ratio. When the weights of all three groups are equal,
then WDDRM reduces to DDRM . However, when distinct weights are as-
signed to the three groups, WDDRM detects higher percentage of malicious
transactions. DDRM cannot be effectively applied in this situation. In Figure
8(b) , comparative performances is shown for each sensitivity group. It is seen
that WDDRM outperforms DDRM for more sensitive attributes.

Figure 9(a) shows the effect of the number of write operations on the per-
formance of the intrusion detection system. As the number of write operations
increases, the effectiveness of the system also increases. This is because write
operations are required to generate the data dependency rules. If there are more
write operations on attributes in the transactions, more rules are generated.
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(a) Comparison of DDRM and WD-
DRM with different sensitivity ratio

(b) Comparison of DDRM and WD-
DRM for different sensitivity groups

Fig. 8.

(a) Performance of WDDRM algo-
rithm with number of write opera-
tions

(b) Comparison of DDRM and
WDDRM in terms of Loss Suffered
by IDS

Fig. 9.

Hence, detection rate increases if more insert/update statements are present in
the transactions. Figure 9(b) shows the loss suffered by the intrusion detection
system in terms of weight unit using both the approaches. The ratio of weights
used for the experiment is 3:2:1 for HS, MS and LS, respectively and distribu-
tion of Insert/Update=90% and Select=10%. Loss is computed by adding the
weights of all the attributes whose malicious modifications are not detected by
the IDS. It is evident from the figure that WDDRM outperforms DDRM . This
is because WDDRM tracks the sensitive attributes in a much better way than
DDRM and hence overall loss is minimized.

4 Conclusions and Discussions

In this paper, we have identified some of the limitations of the existing data
mining based intrusion detection systems, in particular, their incapability in
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treating database attributes at different levels of sensitivity. We proposed a novel
weighted data dependency rule mining algorithm that considers the sensitivity
of the attributes while mining the dependency rules. Experimental results show
that our proposed algorithm performs better than some of the previous work
done in this area. The sensitivity levels can be syntactically captured during
data modeling through the E-R diagram notations.
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Abstract. The challenge of privacy-preserving data mining lies in re-
specting privacy requirements while discovering the original interesting
patterns or structures. Existing methods loose the correlations among
attributes by transforming the different attributes independently, or can-
not guarantee the minimum abstraction level required by legal poli-
cies. In this paper, we propose a novel privacy-preserving transformation
framework for distance-based mining operations based on the concept
of privacy-preserving MicroClusters that satisfy a privacy constraint as
well as a significance constraint. Our framework well extends the robust-
ness of the state-of-the-art k-anonymity model by introducing a privacy
constraint (minimum radius) while keeping its effectiveness by a signifi-
cance constraint (minimum number of corresponding data records). The
privacy-preserving MicroClusters are made public for data mining pur-
poses, but the original data records are kept private. We present efficient
methods for generating and maintaining privacy-preserving MicroClus-
ters and show that data mining operations such as clustering can easily
be adapted to the public data represented by MicroClusters instead of
the private data records. The experiment demonstrates that the pro-
posed methods achieve accurate clusterings results while preserving the
privacy.

1 Introduction

With the rapidly increasing amounts of data stored in electronic formats, the
concerns about privacy of personal information have emerged globally. For ex-
ample, bank databases with transactional information about every aspect of
business which are now measured in gigabytes and terabytes, contain much sen-
sitive information such as address, account balance, credit card number etc.
Although data mining is a useful tool for such large databases and can discover
valuable, non-obvious information, in the absence of adequate safeguards it can
also jeopardize information privacy [16].

These privacy concerns have triggered regulations and laws protecting pri-
vacy in data collection and publishing. In particular, health-related data are very
sensitive and most countries have established corresponding rules. For example,
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according to the United States Health Insurance Portability and Accountabil-
ity Act (HIPAA), health records have to be de-identified before they can be
released to some third party. For example, ZIP codes have to be generalized to
their first three digits or replaced by 000 for units with 20,000 or fewer persons
[8]. The HIPPA requirements correspond to different range constraints for the
individual attributes such as “the first 3 digits” minimum range constraint(range
threshold) on ZIP codes. Alternatively, a single global range constraint can be
set by choosing the maximum of the minimum range thresholds over all dimen-
sions. The HIPPA requirements also imply a significance constraint, for example,
“20,000” is the minimum number of de-identified patients in a published group.

The topic of privacy-preserving data mining, has been initialized by [3], where
a randomized approach [1, 2, 14] is proposed by adding random noise to all data
records to protect the privacy and reconstructing the original data distribution
to generate new dataset for data mining tasks such as classification. Another
approach is by data generalization which hides individual record via generalized
values. A typical model in this approach is k-anonymity [4, 20, 21] which gener-
alizes the attribute values of the records such that for any record, there are at
least k other records in the dataset from which it cannot be distinguished. The
randomized approach meets the minimum range constraint required in privacy
policies, however attributes are assumed to be independently distributed and thus
the reconstructed data distribution may not accurately reflect the correlations
among multiple attributes. The k-anonymity model, on the other hand, specifies
a significance constraint, but no range constraint. Thus, the original data can
be estimated very accurately from the anonymized data in the case of k similar
or even identical records.

k=6

x

y

20

r
R=rt

Fig. 1. A dataset

Figure 1 depicts a small sample database where the
k-anonymity method will output the three dashed cir-
cles with radius r. The k-anonymity method condenses
the k most similar (or even the same) objects into an
anonymized group, so that the attacker can estimate
the private attribute values with confidence interval of
r which can become arbitrarily small. In addition, if the
attacker has prior-knowledge of some original record,
other information can be estimated step by step. For
example if he knows one attribute x of a point is 20,
from the published information of k-anonymity, he can
infer another attribute y of this point with 100% con-
fidence within a range of r. On the other hand, a model with significance and
range constraints outputs one big solid circle, where the radius R is equal to
rt. This model on average has a better protection for the privacy. Even if the
attacker knows that the x value of a point is 20, he can only guess the other
attribute y of this point with 100% confidence within a range of R (>> r).

In this paper, we propose a novel privacy-preserving transformation scheme
which meets the constraints of privacy policies and is robust to different kinds
of privacy attacks. Our framework, which well extends the k-anonymity model,
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is based on so-called privacy-preserving MicroClusters (PPMicroClusters) that
satisfy a privacy constraint (minimum radius) as well as a significance constraint
(minimum number of corresponding data records). Within the constraints given
by these requirements, we try to minimize the overall cost of the PPMicroClus-
ters resulting in maximum accuracy of subsequent analysis. These sphere-like
MicroClusters are made public for data mining purposes, but the original data
records are kept private.

The contributions of this paper are as follows:

(1) We propose the novel concept of PPMicroClusters that satisfy a privacy con-
straint (minimum radius) as well as a significance constraint (minimum number
of corresponding data records).
(2) We develop an efficient local-search-based method for generating and main-
taining PPMicroClusters in a dynamic database with updates.
(3) Our experimental evaluation on synthetic and real data sets demonstrates
that the proposed methods achieve accurate clustering results while preserving
the privacy.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 introduces the new model. Section 4 and Section 5 present the algo-
rithms. We give experimental results in Section 6 and conclude the paper in
Section 7.

2 Related Work

The research on privacy preserving data mining was initialized by [3] and the
current approaches to enforce privacy-protection in data mining applications can
be categorized as follows:

•Randomized Approaches: These methods deliberately introduce noise in the
data that hides data of the individual records. However, patterns summarizing
the trends in the dataset are the information most relevant to data analysts that
does not really need to access individual records. Novel reconstruction techniques
to accurately reconstruct the distribution of original data values are presented
in [3] and [1]. A perturbation mechanism was proposed in [2], where the model
parameters are themselves characterized as random variables, and demonstrate
that this feature provides improvements in privacy at a very marginal cost in
accuracy. However, this approach only assumes data distributes independently
in each attributes.
•Cryptographic Techniques: [18] introduces the problem of distributed data
mining between more parties such that confidential information of any party
is not disclosed. The method uses the results in [24] which forms the basis for
applying cryptographic techniques to privacy-preserving in data mining. The
challenge of this approach is the cost of computation/communication in cryp-
tion/decryption for large databases.
•Data Generalization: The major idea in this category is to transform the
values of certain attributes that are marked for having the potential to breach
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the privacy of a dataset and are called Quasi-Identifiers in [20]. The k-anonymity
problem is discussed in [20] and [21], where a data transformation technique is
described which makes use of concept hierarchies to bring about generalizations
in the Quasi-Identifiers such that at least k or more tuples satisfy any given
value combination for the Quasi-Identifiers. [17] presents a method based on a
set of geometric data transformation primitives, to maintain the correlations.
But the original attribute values can still be easily estimated with small vari-
ance.
•Miscellaneous: [9] discusses a novel genetic algorithm based method to achieve
privacy protection in datasets. It uses a metric to evaluate the information
loss due to hierarchy-based generalization. Schloer [22] develops a matrix based
method for multidimensional data transformation. The authors in [3] use a mea-
sure that defines privacy in terms of variance, while in [1] a privacy measure based
on the differential entropy of the generated distribution is proposed. The work of
[14] applies a slightly different measure that considers the privacy of the model
with respect to the actual objects in the dataset. Some recent work [4, 5, 6, 12]
extend k-anonymity in performance or the quality of preserved privacy. While
none of them considers the minimum radius requirement of the anonymized data,
which means the precise estimate of the original data can still be easily reached
if the anonymized data are bound in very small dense space. The recent work on
privacy-preserving clustering incudes distribution-based method where the data
for a single entity are vertically split across multiple sites [23]; or the data are
distributed horizontally [14], [10], among the sites. Another approach in privacy-
preserving clustering is centralization-based method including [17] which proposes
a target-oriented transformation method based on geometric transformations of
digital images.

3 Privacy-Preserving MicroClustering

In this section, we introduce a framework based on privacy-preserving Micro-
Clusters (PPMicroClusters) that satisfy a privacy constraint (minimum radius)
as well as a significance constraint (minimum number of corresponding data
records). Given a set of d-dimensional records, X = {X1 . . . Xk . . ., Xn}, and
each Xi is a record containing d dimensions which are denoted by Xi = (x1

i

. . .xd
i ). In order to perform a robust data transformation for distance-based

data mining, we propose to use MicroClusters to approximate the subsets of any
dataset with an user-specified privacy threshold.

Definition 1 (MicroCluster). The MicroClusterC for a d-dimensional dataset
X is defined as the (3 · d + 2)-tuple (n,CF1(C), CF2(C), CF3(C), r), where
CF1 and CF2 each corresponds to the linear sum and the sum of the squares of
the data values for each dimension respectively. The number of data points |C| is
maintained in n, the centroid of X1 . . . Xn is CF3(C) = CF1(C)

n . The radius of

the MicroCluster is r = maxn
j=1

√
(Xj − CF3(C))2. ��
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Note any point p which is within the radius from the center of a MicroCluster, will
be assigned to this MicroCluster so that p may belong to multiple MicroClusters.

Definition 2 (Privacy Preserving MicroCluster).Given a radius rt (pri-
vacy threshold) and a number of objects nt (statistical significance threshold).
We call a MicroCluster C = (n,CF1(C), CF2(C), CF3(C), r) a Privacy-
Preserving MicroCluster, (PPMicroCluster) if the constraints: (1) r ≥ rt (2)
n ≥ nt are satisfied. ��

PPMicroClusters are “small clusters” of points with sufficient statistics and pri-
vacy protection that can well represent the overall original data distribution
including the inter-attribute correlations. If users wish to improve the privacy,
they can increase the threshold rt. Similarly, users can improve the significance
by increasing the threshold nt. However, the radius threshold should not become
too large, because otherwise the accuracy of a subsequent data mining method
will deteriorate. This tradeoff motivates the following definition of a privacy-
preserving MicroClustering that best reflects the original cluster structure.

Definition 3 (Privacy Preserving MicroClustering). Given a d-dimen-
sional database X, the radius threshold rt and the number of objects thresh-
old nt, the task of Privacy-Preserving MicroClustering (PPMicroClustering) is
to find a set of PPMicroClusters C1, . . . , Cm satisfying rt and nt such that the

cost of
m∑

j=1

N∑
i=1,Xi∈Cj

dist2(Xi, Cj) is minimized. ��

The smaller the sum of the squared distances of points to the center, the more
PPMicroClusters, which means the smaller the size of each PPMicroCluster,
and the less overlap among them. This motivates the objective of minimizing
the sum of squared distances.

Theorem 1. PPMicroClustering is an NP-hard problem.

Proof. Since the special case of PPMicroCluster, where parameters nt, rt, m are
set to 0, 0 and K respectively, is equivalent to the classic K-clustering problem
[7], PPMicroClustering is an NP-hard problem. ��

           (a)
k=6

k=6 (b)   (c)

PPM1

k=6 

a
b

PPM2

Fig. 2. (a) Case 1 (b) Case 2 (c) Case 3

We use the cases in
Figure 2 to illustrate
the differences of our
framework compared
to the k-anonymity
model. The circle in-
dicates the minimum
radius constraint rt in
our model and both
models have the mini-
mum points constraint
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nt = k = 6. In case 1 (Figure 2(a)), when both models generate exactly the same
two far-apart PPMicroClusters of 6 points, both achieve the same degree of pri-
vacy protection. In case 2 (Figure 2(b)) where points are distributed densely. The
k-anonymity model will return 3 MicroClusters, while our model generates only
one PPMicroCluster, leading to a much wider confidence interval when an adver-
sary tries to estimate the private attributes. In case 3 (Figure 2(c)), k-anonymity
assigns the points in the overlap area uniquely to the closest PPMicroCluster,
i.e., “a” is assigned to PPM1 and “b” belongs to PPM2. Notice that now the
real radius of PPM1 or PPM2 is less than the minimum radius constraint (i.e.,
the distance between the center and the farthest point in each PPMicroCluster
after assigning “a” and “b” becomes less than rt). However, we assign “a” and
“b” to both PPM1 and PPM2, both PPMicroClusters will be “safer” in privacy
since it would be harder for attacker to guess the individual record under the
user-specified privacy standard. So in general, our model provides better privacy
protection than k-anonymity.

Note that the constraint nt in both our model is conceptually different from
the constraint k in k-anonymity model. The value of k determines the privacy
degree of the microcluster, while the value of nt determines the statistical sig-
nificance (accuracy) of the microcluster. To reach the expected privacy degree
obtained by our model, k-anonymity needs to increase the value of k for the
data in dense area, but meantime it has more difficulty to identify desired mi-
croclusters with good accuracy in sparse area. The generated PPMicroCluster
can be used published for query processing and data mining applications with
several forms: (1) Represent a PPMicroCluster by its center, radius and number
of points contained. (2) Represent a PPMicroCluster by the CF-value obtained
from aggregating all points located in a PPMicroCluster. (3) Randomly generate
points in each PPMicroCluster.

4 A Local-Search-Based Algorithm

In this section, we introduce an efficient local search based algorithm to generate
PPMicroclusters. The algorithm proceeds in the following three steps:

While the dataset contains unmarked data points Do
Step 1. Pick an unmarked data point p
Step 2. Find a PPMicroCluster for p
Step 3. Mark all data points in this PPMicroCluster

Fig. 3. Algorithm Sketch

Initially, the algorithm picks an unmarked data point randomly in step 1, and
generates a PPMicroCluster for the point which is explained in section 4.1. Then
it picks next seed considering the new generated PPMicroCluster. The details
on how to pick next seed are elaborated in section 4.2.
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4.1 Forming PPMicroCluster

The major step in this algorithm is the second step. We have the following
observations to guide our algorithm design. Before going into details we define
several notations to facilitate our explanation. Let denote point p’s k−1 nearest
neighborhood as kNNp (here k = nt, p is included), denote the radius of kNNp

as rkNNp . The mean vector of points in kNNp is denoted as μp. If p is one of k
nearest neighbors of μp, we call this neighboring region kNNμp accordingly.

Lemma 1. The sum of squared distance of kNNp is greater than or equal to
the sum of squared distance of kNNμp

Proof. For k points p1, p2, . . . , pk which are members of kNNp, and p is the

means (μp) of such p points, i.e., p =
k
i=1 pi

k . Without loss of generality, suppose

p = p1,
∑k

i=1(pi−p)2 =
∑k

i=1 p
2
i +k·p2−2p·∑k

i=1 pi =
∑k

i=1 p
2
i +k· (p1+...+pk)2

k2 −
2· p1+...+pk

k ·(p1+. . .+pk) =
∑k

i=1 p
2
i − (p1+...+pk)2

k . So
∑k

i=1(pi−p)2−∑k
i=1(pi−

p)2 =
∑k

i=1 p
2
i + k · p2 − 2p

∑k
i=1 pi − (

∑k
i=1 p

2
i − (p1+...+pk)2

k ) = k · p2
1 − 2p1 ·

(p1 + . . . + pk) + (p1+...+pk)2

k = k·p1+(p1+...+pk)2

k ≥ 0. ��
If there is a point p′ which is in kNNp but not in kNNμp , it shows that the
distance between p′ and μp is greater than the radius of kNNμp . Thus, we
conclude that the sum of squared distance of k points in kNNμp to μp is smaller
than or at least equal to the sum of squared distance of k points in kNNp to p.
In another word, kNNμp is more compact. Since our objective function is the
sum of square distance between any point and the center, the compacter the
PPMicroClusters are, the smaller the overall sum of squared distance is. Hence
we can base on this observation by replacing p by a “better” μp as a center to
form a compact PPMicroCluster.

Pr

(II)

Q

rt

Fig. 4. Pick Q

Right

re

split line

μ

c1

c2

O

rt

rt

Left

Fig. 5. Split

We start from find-
ing the kNNp for the
data point p which is
picked in step 1 and
choose the mean vector
of those points as a po-
tential PPMicroCluster
center. The PPMicro-
Cluster for p is denoted
by PPMp. Since we
aim to find a PPMi-
croCluster to cover p
as much compact as it

can, so we still need consider every point q in kNNp as candidates and find
corresponding potential PPMicroclusters for p in the following manner: find
kNNq, denote the mean vector of points in kNNq as μq. If any kNNμq exists
(i.e., k-nearest neighbors of q include p), then determine potential PPMicro-
Cluster PPMq from center μq by extending radius rkNNμq

of kNNμq if rt is
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not satisfied. Furthermore, choosing a PPMicroCluster PPM ′ of these potential
PPMicroClusters with a minimal sum of squared distance, denote its center as
mcenter, which is different from the mean vector of all the points in PPM ′

since PPM ′ often has more than k = nt objects to meet rt constraint. All the
points including p in PPM ′ are then marked. Due to the different cardinality of
potential PPMicroclusters, we make the decision based on the average squared
distance of each PPMicroCluster.

In general, the strategy described above is trying to assign p to a better
PPMicroCluster from possible PPMicroClusters which are not too far away from
p and compact enough.

Remark. The k nearest neighbor search function considered in this section is
slightly different from the general kNN search in that it needs not only consider
the distance of the k-th neighbor but also retrieve the distance of the k-th neigh-
bor when only unmarked points are issued. The details of obtaining guarantee
of rt is presented in section 4.2.

One minor issue left in step 2 is when the number of unmarked points is small, the
rkNNp could be far less than the k nearest neighbor distance for only unmarked
points (refereed to kNN ′

p). Thus such a criterion holds: when 2×rkNNp ≤ rkNN ′
p
,

p is assigned to the closest PPMicroCluster generated before.

4.2 Picking the Next Seed

After forming a PPMicroCluster PPMp for point p, it is very important to choose
a “good” point as a “seed” to start another round of forming PPMicroClusters.
As illustrated in Figure 4, we employ a range query on μp with radius rPPMp

(bold line) plus the radius constraint rt (dashed line), then picking the point
which is located within radius [rPPMp , rPPMp + rt] and unmarked as the seed.
Figure 4 also shows point Q is valid candidate for the next seed. When proceeding
the seed searching, we consider points returned from the range query in the order
of farthest point w.r.t the query center to the closest one. If no candidate is
available, a randomly picked point will serve as the next seed.

The strategy we use in the seed selecting step follows the observation that
the forming two touch PPMicroClusters is the most efficient way to cover all the
corresponding points.

4.3 Handling Outliers

In the proposed framework, outliers will lead to MicroClusters that either have
a too large radius or do not meet the significance threshold, and may conse-
quently have more overlaps with existing MicroClusters. Note that we may ap-
ply different measures from the literature to define outliers, for example, the
distance-based outlier definition [11, 19]. In this paper, we measure the outlier
at the abstraction level of MicroClusters which is more appropriate in our con-
text than a definition at the abstraction level of individual records.
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Definition 4 Outlying MicroCluster Given any MicroCluster C of r and n,
a percentage threshold of p, 0 ≤ p ≤ 1, if n ≤ p · nt, C is called an Outlying
MicroCluster. ��
Concerning the treatment of outliers when refining the MicroClusters, we pro-
pose the following three methods:

– Method A: No special treatment of outliers, i.e., according to the algorithm
presented in the previous subsection, outliers would be merged with the near-
est PPMicroCluster until they meet the privacy constraints. The drawback
is the radius of the merged PPMicroClusters may become (too) large.

– Method B: Detect which MicroClusters are outliers and remove them. The
rationale is the MicroClusters will be used as input for a clustering algorithm,
and for that purpose outliers are not of crucial importance. The drawback
is the transformed, public dataset loses some information of the original,
private data set.

– Method C: Detect which MicroClusters are outliers, increase their radius
to minimum radius and add enough “fake objects” to these MicroClusters
until they satisfy our minimum number of objects requirement (i.e., become
PPMicroClusters). The rationale is it does not blow up other PPMicroClus-
ters (which would imply a loss of clustering accuracy) while preserving the
privacy of outlying MicroClusters. The drawback is increasing the number
of PPMicroClusters.

5 An Incremental Local-Search Algorithm

In each PPMicroCluster, we keep information as follows:

1. PPMicroCluster mcenter (which is denoted in 4.1) c, mean μ and standard
deviation δ of points in this PPMicroCluster.

2. The number of points located in the radius of rt around c denoted as core
region, where rt is the radius constraint.

3. The number of points located outside of the core region.

When a new data point pnew comes, it is assigned to mcenter c of the closest
PPMicroCluster. If pnew is located in c’s core region. The number of data points
in the core region, mean value vector and standard deviation, are updated ac-
cordingly. If a PPMicroCluster contains less than 2k points, we do not split it.
However, when the number of points in a PPMicroCluster exceeds 2k, a split
operation is not necessarily triggered, but depending on the tradeoff between
keeping all the points in this PPMicroCluster and splitting it into two or more
PPMicroClusters. Obviously, the benefit of splitting a MicroCluster aims to de-
crease the sum of squared error. On the other hand, if the new split PPMicro-
Clusters are highly overlapped, the points located inside the overlapping region
contribute twice to the objective function, and the resulting qualities in accuracy
are not desired. Thus, we introduce two criteria to evaluate the necessity of a
split operation.
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•The loss-and-gain criterion: evaluate the cost difference in the unsplit PP-
MicroCluster and the split PPMicroClusters in terms of the sum of squared
error. If the gain wins over the loss, the split occurs; otherwise no split operation
on this PPMicroCluster.
•Effective radius criterion: evaluate the “effective radius” re (re ≤ r) of PP-
MicroCluster, which refers to the radius covering a region which a high percent-
age of points are included. If re is small, which means most of points in this PP-
MicroCluster locates densely around the center, so there is no necessary to split,
just keep it as before. For the sake of quantifying the tradeoff in gain-and-loss cri-
terion, we first estimate the possible overlap. To simplify the analysis, assuming
points are uniformed distributed in the PPMicroCluster (note that this assump-
tion is reasonable for estimating the contribution of points to the new split clus-
ters, and other non-uniformed distributions have less trade-off to consider split).

R

c

μ
dist

Fig. 6. Gain after split

The example depicted in Fig-
ure 5 shows that the original
PPMicroCluster with radius re

is cut in the middle and form
two core regions on each side.
The centers of two core regions
are label c1 and c2 which are
also the means on each half.
Since the radius of a core region
is the predefined rt, we can es-
timate the size of the overlap-
ping region marked as O in the

figure as well as the sum of squared error. Thus, we have the following equation
for quantifying the loss: loss = (dist(c1,c2)

2 )2 ∗ num, where num is the number
of points in the overlapping region O and dist(c1, c2) is the distance between
two new centers. It is easy to see that dist(c1, c2) = re. Besides, the number of
points in O is proportional to the width of O, i.e., num = m ∗ [(2rt − re)/2re]
where m is the total number of data points in a PPMicroCluster. Finally, the
simplified equation becomes loss = ( re

2 )2 ∗ 2rt−re

2re
∗m.

Next we quantify the gain of moving the center of a MicroCluster to the mean
of the data points located in the MicroCluster based on the following observation.

Lemma 2. Given a set of points P = {p1, . . . , pm}, and mean of them μ. The
difference between the sum of squared distance of points in P to a center c and
to the mean μ is m× dist(c, μ)2.

Proof. This observation can be proved easily. Consider the case showing in Fig-
ure 6, the mcenter of the split PPMicroCluster is labeled c and the mean of the
data points in region R is μ. Based on the triangle inequality, the corresponding
difference of sum of squared distance is at most dist(c, μ)2∗num = dist(c, μ)2∗m.

��
Now we compare the difference between of loss and gain, if gain wins over loss,
then the split operation can be employed; otherwise no split occurs in the current
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PPMicroCluster. Based on lemma 2, we conclude that the gain of splitting a
PPMicroCluster into two MicroClusters is at least m × (dist(c1,c2)

2 )2, which is
also m× ( re

2 )2.
In order to estimate the “effective” radius re (re ≤ r) of current PPMicro-

Cluster, we first define re to be the radius of a region which includes a high
percentage (say 95%) of points in the PPMicroCluster. Afterwards, if the mean
and the standard deviation of a random variable are labeled X with respect to
μx and δx respectively, based on the Chebyshev’s inequality theorem [15], for
any positive constant t, Pr(|X − μx| < t) ≤ 1− δx

2

t2 .
Therefore, estimating the radius of a PPMicroCluster is equivalent to find the

t such that 1− δ2/t2 = 95%. If t is less than rt, the estimated radius, re, is set
to rt. Otherwise, the estimated radius is t.

In general, these two criteria help to provide a better maintenance of PPMi-
croClusters in a dynamic environment.

6 Experimental Evaluation

We have conducted an experimental evaluation of our method using a synthetic
dataset and a real dataset. The synthetic dataset consists of 100,000, five di-
mensional records with 10 clusters generated from Gaussian distributions. The
real dataset is a set of 50,000, seven dimensional health records. The number
of “natural” clusters (10) in this dataset was determined by clustering with a
series of different K-values and choosing the clustering, i.e., K-value, with the
highest silhouette coefficient [13]. To evaluate the quality of the PPMicroClus-
ters, we apply K-means clustering algorithm on the microclusters generated by
our method and Charu’s condensation method [4] respectively, and compare the
results measured by (1) the accuracy of the clustering based on the PPMicro-
Clusters (2) the degree of the privacy achieved. Both measures are analyzed with
respect to the two parameters of PPMicroClustering, minimum radius threshold
rt and minimum number of objects threshold nt.

We have implemented our methods in C++. All the experiments were con-
ducted on an Intel 1GHZ processor with 512M RAM, 40G hard disk, running
Windows XP.

Clustering Accuracy: The quality of clusters is evaluated by comparing the
results of our modified K-means method on PPMicroClusters with the results of
the traditional K-means method on the original database. We evaluate both the
external quality and the internal quality of the clustering results. (1) The external
quality will be measured by the entropy with respect to the given “true” cluster
labels in the original dataset. For both the synthetic data and the real data,
we take the results of K-means method on the original dataset as a substitute
for the true class labels (their entropies are zero), and investigate the influence
of changing the values of minimum radius rt and nt to the entropies. For the
modified K-means clustering results of PPMicroClusters, the entropy of each
cluster is measured based on the ratio of the number of objects with “true”
label in the current cluster to the number of all objects in this cluster. (2) The
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Fig. 8. Real Data(1)
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Fig. 9. Synthetic Data(2)
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Fig. 10. Real Data(2)

internal quality is measured by the sum-of-squares of the K clusters with respect
to the closest centroids of clusters. That is, after K centroids are obtained by
applying our modified K-means method over PPMicroClusters, the total sum
of distances of all objects to the closest cluster centroids is derived and can be
compared with the cost of baseline K-means method over the original dataset.
We investigate the impact of changing values of rt to the clustering cost.

The entropy evaluations with respect to the minimum radius rt are shown in
Figures 7 and 8 where nt = 10. For both datasets, the entropies increase approxi-
mately linearly with increasing rt values. PPMicroClusters can be obtained with
three different ways of handling outliers (introduced in subsection 4.3 as method
A, method B and method C). All three methods achieve relative good accuracy
(entropies < 0.4). The best one is PPMicroClustering method A (i.e., outliers
are assigned to the nearest PPMicroCluster) which achieves overall the lowest
entropy values. We argue that this is due to the fact that the objects in the same
PPMicroCluster always belong to the same cluster, and also outliers are always
identified in the same (nearest) cluster as the traditional K-means method does.
The PPMicroClustering method B (with removing outliers) obtains the second
lowest entropies, and the PPMicroClustering method C (with “fake objects”)
yields clusters with larger entropies than the above two methods.

We also performed experiments to evaluate the clustering accuracy with re-
spect to increasing nt in Figures 9 and 10 where rt = 20. For both datasets,
all three methods achieve relatively low entropies, and the entropies increase
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Fig. 11. Synthetic Data(3)
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Fig. 12. Real Data(3)

steadily with increasing nt values. The PPMicroClustering method A is slightly
lower than the PPMicroClustering method B in entropy based on the similar
reason as for the changing values of rt (the increase of rt leads to an increase of
nt and vice versa). The PPMicroClustering method C again ranks third w.r.t.
entropy. Since method A outperformed the other outlier handling methods, we
use method A in all the following experiments. We compare the clustering accu-
racy on PPMicroClusters generated by PPMicroClustering with that by Charu’s
Condensation method in both static and incremental ways (as shown in Figures
11 and 12). PPMicroClusters generated by PPMicroClustering static method are
slightly less accurate than Condensation static method, meanwhile privacy con-
straint rt are guaranteed. Since our incremental method evaluates split criteria
of loss-and-gain and “effective” radius, it always prevents a microcluster from
unnecessarily splitting into several “bad” microclusters. So the generated micro-
clusters are always more accurate than those generated by Charu’s incremental
method.

The cost evaluations with respect to the minimum radius nt are shown in Fig-
ures 13 and 14. Here rt = 20 and we report K-means results on microclusters by
PPMicroClustering and Charu’s Condensation method in both static and incre-
mental methods. The cost increases moderately with increasing minimum points
nt. The clustering cost on microclusters generated by static PPMicroClustering
is almost the same as by Charu’s static Condensation, while PPMicroClusters
have privacy guarantee rt. As indicated by the costs, the clustering cost on
microclusters generated by both incremental methods are higher than by their
static methods. Similar to the previous reason, the clustering cost on micro-
clusters generated by our incremental method is slightly lower than by Charu’s
incremental method.

Privacy Measure. Since the generation of the PPMicroClusters is generaliz-
ing all attributes simultaneously, the level of privacy can be measured by as
follows: (1) the variance of the radius of the PPMicroClusters; (2) the aver-
age radius of the PPMicroClusters. We analyze the influence of the changing
value of rt on these two measures. The variance of radius r is measured by
V ar(r) = E[(r−rt)2] =

m
i=1 (ri−rt)

2

m , where r1, . . . , rm are the radii of m PPMi-
croClusters. Here, to examine the privacy degree of PPMicroClusters, our radius
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variance is computed as the average squared deviation of each PPMicroCluster’s
radius from its radius (privacy) threshold rt. Figures 15 and 16 show that the
impact of changing numbers of rt to the radius variance of PPMicroClusters.
For both datasets, the smaller the minimum privacy threshold rt, the smaller
variance of the radius of each PPMicroCluster, which means the lower degree of
privacy. On the other hand, the variance of radius of PPMicroClusters is larger
for larger values of rt (for example, when rt = 300, the variance is 5 times of rt),
which means the higher degree of privacy. The average radius of PPMicroClus-

ters is defined by 1
m

m∑
i=1

ri where r1, . . . , rm are the radii of m PPMicroClusters.

We examine the average radius of PPMicroClusters with respect to the changing
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values of rt. Figures 17 and 18 depict the phenomena that for both datasets, the
smaller the minimum radius threshold, the smaller average radius of PPMicro-
Clusters (i.e., rt = 1.5 in read data, the average radius of PPMicroClusters is
1.5), which means less privacy guarantee; while the average radius increases with
increasing values of rt, which generally means more privacy will be obtained. The
figures on the accuracy and the privacy measures show the fundamental trade-off
of privacy-preserving clustering: with increasing minimum radius (or minimum
numbers), the accuracy decreases while privacy increases.

7 Conclusion

In this paper, we propose a novel robust transformation for privacy-preserving
data mining based on the concept of privacy-preserving MicroClusters that
satisfy a range constraint as well as a significance constraint. The privacy-
preserving MicroClusters are made public for data mining purposes, but the orig-
inal data records are kept private. We present methods for generating privacy-
preserving MicroClusters and show that standard clustering algorithms can eas-
ily be adapted to cluster the public MicroClusters instead of the private data
records. Our experimental evaluation on synthetic and real data sets demon-
strates that the proposed methods achieve accurate clusterings while preserving
the privacy.

Acknowledgement. We would like to thank Dr. Jiawei Han, University of
Illinois at Urbana-Champaign and Dr. Martin Ester, Simon Fraser University
for their valuable suggestions on the previous drafts.
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Abstract. Collaborative filtering (CF) systems are receiving increasing
attention. Data collected from users is needed for CF; however, many
users do not feel comfortable to disclose data due to privacy risks. They
sometimes refuse to provide information or might decide to give false
data. By introducing privacy measures, it is more likely to increase users’
confidence to contribute their data and to provide more truthful data. In
this paper, we investigate achieving referrals using item-based algorithms
on binary ratings without greatly exposing users’ privacy. We propose to
use randomized response techniques (RRT) to perturb users’ data. We
conduct experiments to evaluate the accuracy of our scheme and to show
how different parameters affect our results using real data sets.

1 Introduction

Collaborative filtering (CF) is a recent technique for filtering and recommenda-
tion purposes. It has many important applications [1, 2] in E-commerce, direct
recommendations, and search engines. With the help of CF, users can get rec-
ommendations about many of their daily activities. Using other users’ data, CF
systems try to predict how well an active user (a) will like an item that he/she
did not buy before. The key idea is that a will prefer those items that like-minded
users prefer, or that dissimilar users do not. Users might express their opinions
about items they bought before or showed interest as like (1) or dislike (0).

CF systems are advantageous; however, they fail to protect individual user’s
privacy and they have a number of disadvantages [1, 2]. The most important is
that they are a serious threat to individual privacy. They pose various privacy
risks [3] like unsolicited marketing, price discrimination, and being subject to
government surveillance. Many users sometimes refuse to give data or might
contribute false information. Customer data is a valuable asset and it has been
sold when E-companies suffered bankruptcy [2]. By providing privacy measures,
users feel comfortable to contribute more truthful information. The challenge
is how can people contribute their preferences about products for CF purposes
without greatly compromising their privacy?
� This work was supported by Grants ISS-0219560 and ISS-0312366 from the United
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In this paper, we propose a new scheme to achieve private recommendations
using item-based algorithms on binary ratings. In our scheme, before sending
data to the server, each user perturbs data in such a way that the server is not
able to learn the true ratings. However, the perturbing scheme should still be able
to allow the server to produce accurate referrals. We propose to use randomized
response techniques (RRT) for data disguising. CF is based on aggregate values
rather than individual data items. We hypothesize that it is possible to combine
CF algorithms with the RRT to achieve users’ privacy while still producing
accurate referrals, because the aggregate data can be estimated with decent
accuracy from disguised data if we have significantly large data. To verify this
hypothesis, we implemented RRT for an item-based algorithm [11]. Using two
existing data sets, we performed a series of experiments to evaluate the scheme’s
performance and to show how our results change with varying parameters.

2 Related Work

Canny [1, 2] proposes two schemes for privacy-preserving collaborative filter-
ing (PPCF). A community of users can compute a public “aggregate” of their
data without disclosing individual users’ data. While his works focus on the
peer-to-peer framework, in which users actively participate in the CF, our work
focuses on another framework, in which users send their preferences to a server,
which creates a model and provides referrals based on it. Polat and Du [8] apply
randomized perturbation techniques (RPT) for PPCF. Although their schemes
are based on numerical ratings and RPT, our work focuses on binary ratings
and we employ RRT for data disguising. While they investigate how to provide
private predictions using CF algorithms on user-user similarities, we focus on
achieving private recommendations using item-based CF algorithms.

RRT were first introduced by Warner [12] as a technique to estimate the per-
centage of people in a population that has attribute A. The interviewer asks
each respondent two related questions, the answers to which are opposite to
each other. Using a randomizing device, respondents choose the first question
with probability θ and the second question with probability 1-θ, to answer. The
interviewer learns responses but does not know which question was answered.
Sarwar et. al [11] propose item-based CF algorithms and present a model-based
approach to pre-compute item-item similarity scores. After computing similari-
ties, the best l similarities are retained (l is called the model size). The prediction
is then computed by taking a weighted average of a’s ratings on similar items.

3 Providing Private Predictions Using RRT

The algorithm proposed by [11] might be extended to provide referrals on bi-
nary ratings. In[7], referrals are provided on market basket data, where Tanimoto
coefficient is used to find similarities between users. Polat and Du [9] extend Tan-
imoto coefficient to find user-user similarities on binary ratings. We propose the
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following scheme to provide predictions on binary ratings using item-based algo-
rithms. The server finds item-item similarities using Wj1j2 =

[
t(Vs)−t(Vd)

]
/t(V ),

where t(Vs) and t(Vd) are the number of similar and dissimilar votes for items
j1 and j2, respectively and t(V ) is the number of co-ratings. Similarities range
from -1 to 1. If Wj1j2 > 0, items are similar; otherwise they are dissimilar. When
Wj1j2 = 0, they are not correlated. The server selects the best l similarities for
each item and stores them. It receives a’s known ratings and the target item
q and finds a’s ratings for those items that are the best similar items to q. It
calculates the number of 1s (lj) and 0s (dj) among those ratings after it reverses
the dissimilar items’ ratings. It then computes ldj = lj − dj . If ldj > 0, then the
item will be recommended as like, otherwise it will be predicted as dislike.

To further improve accuracy, significance weighting (SW) can be applied [6].
Herlocker et. al [6] add a correlation factor that can devalue similarity weights
that are based on a small number of co-rated items. Since similarities are found
between items, we apply SW based on number of users who rated such items.
We applied 2c/n as a correlation factor, where c is the number of co-ratings and
n is the number of users. If two items have less than n/2 co-ratings, we applied
a significance weight of 2c/n, otherwise a significance weight of 1 was applied.

A typical ratings vector includes the votes and empty cells for unrated items.
An example of a ratings vector for user u is Vu = (11 ⊥ 00 ⊥ 101), where
⊥ means not rated. To perturb Vu, u generates a random number (ru) using
uniform distribution over the range [0,1]. If ru ≤ θ, then u sends the true data,
Vu. Otherwise, he/she sends the false data (exact opposite of the ratings vector),
which is V u = (00 ⊥ 11 ⊥ 010), where V u is the vector that reverses the 1’s in
Vu to 0’s and 0’s to 1’s; we call V u the opposite of Vu. With probability θ, true
data is sent while false data is sent with probability 1-θ. Although the server has
the ratings vectors, it does not know whether they are true or false data.

3.1 Finding Private Predictions Using RRT

Without privacy as a concern, users send true ratings to the server, which can
provide referrals as explained before. However, with privacy as a concern, the
server should not be able to learn the true ratings of users including a. Users
might send false data to accomplish perfect privacy but producing accurate
predictions is impossible from this data. If they send actual data, finding accurate
recommendations is possible but privacy is not preserved. CF systems should
provide referrals efficiently. To achieve a good balance between accuracy, privacy,
and efficiency, we propose to use both one-group and multi-group schemes.

One-Group Scheme. There are different RRT for data disguising. The one-
group scheme [4], in which all ratings are put into the same group and all of them
are either reversed together or keep the same values. The server cannot know
whether users tell the truth or lie because the random numbers are only known
by the users. In this scheme, we achieve the same accuracy on perturbed data
with original scheme. The model, which includes item-item similarities, created
from perturbed data is the same with the one created from original data because
all ratings are either reversed together or keep the same values.
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Although we achieve decent accuracy in this scheme, the privacy level is very
low. If the server somehow learns the true rating for only one item, it can obtain
true votes for all items. To further improve privacy, we propose to use multi-group
schemes, in which the set of the items is partitioned into a number of groups; then
the RRT are used to perturb each group independently. We can partition m items
into m groups (m-group scheme), with each group containing only one item.
For each group, users randomly decide whether to disclose its true rating (with
probability θ) or to disclose the false rating (with probability 1− θ). The users
repeat this process for all groups; the random decisions are independent for each
group. The m-group scheme is very secure. If the server can figure out one rating
for any item, other ratings are still hidden. However, accuracy might become very
low. A compromise between the one-group scheme and the m-group scheme is
to partition the items into M groups, where 1 < M < m. The decision is the
same for all items in the same group, but the decisions for different groups are
independent.

Multi-Group Schemes. Each user first groups the items in the same way. They
then disguise their ratings in each group independently. Since the ratings in dif-
ferent groups are perturbed independently, even if the server knows information
about one group, it will not be able to derive information about other groups. We
improve privacy level by introducing multi-group schemes, while with increasing
M , accuracy decreases because we add more randomness. Users disguise their
ratings in each group as they do for one-group scheme based on random numbers
and θ. They then send perturbed data to the server that needs to create a model
by estimating item-item similarities from disguised data and storing the best l
of them for each item. After model estimation, based on a’s query, the server
sends the estimated similarities for q to a who can compute predictions for q
using them as explained previously. Since active users only need to send a query
rather than their ratings, the server will not learn true preferences. To form the
model on disguised data, the server should find a way to estimate item-item
similarities from perturbed data.

The server does not know whether the collected data is true or not because
users disguise their ratings based on the relation between random numbers, which
are only known by them, and θ. However, it is possible to estimate the item-item
similarities because the server is able to estimate the probabilities of having true
or false data given disguised data. If we call the perturbed data Yk, the true
data Xk, and Xk represents the exact opposite of Xk or false data, where k =
1, 2, . . . ,M and k shows the group name, the server needs to find p(Xk|Yk = Xk)
and p(Xk|Yk = Xk) for each group, where p(Xk|Yk = Xk)+p(Xk|Yk = Xk) = 1.
p(Xk|Yk = Xk) can be calculated using the Bayes’ rule as follows:

p(Xk|Yk = Xk) =
p(Yk = Xk|Xk)p(Xk)

p(Yk = Xk)
(1)

where p(Yk = Xk|Xk) is θ. The value of p(Yk = Xk) can be calculated from
disguised data while the value of p(Xk) can be computed as follows using the
facts that p(Yk = Xk|Xk) = θ and p(Yk = Xk|Xk) = 1− θ:
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p(Yk = Xk) = p(Yk = Xk|Xk)p(Xk) + p(Yk = Xk|Xk)p(Xk)
p(Yk = Xk) = θp(Xk) + (1− θ)p(Xk) (2)

Eq. (2) can be solved for p(Xk) as follows using the fact that p(Xk)+p(Xk) = 1:

p(Xk) =
p(Yk = Xk) + θ − 1

2θ − 1
(3)

We get the following after replacing p(Xk) with its equivalent in Eq. (1):

p(Xk|Yk = Xk) =
θ2 + θp(Yk = Xk)− θ

2θp(Yk = Xk)− p(Yk = Xk)
(4)

Note that Xk and Yk are ratings vectors of original and disguised data, re-
spectively. Therefore, to find p(Yk = Xk), the server finds posterior probabilities
for all items in each group k, selects the best one, uses it as p(Yk = Xk), and
computes p(Xk|Yk = Xk) and p(Xk|Yk = Xk) values for each group. It then
can estimate item-item similarities. Since all items in the same group are either
reversed or keep the same values, similarities for them will be same with the
ones computed from true data, while similarities computed from perturbed data
for those items in different groups will be different from those calculated from
true data due to RRT. However, the server can estimate similarities for them.
Note that there are four possible situations because the received data might be
true or false in each group. The server first computes four similarity values by
considering all four situations. Then, it finds the probabilities of having such sit-
uations. Finally, it multiplies those weights with the corresponding probability
values, sums the results, and finds the similarity values between items in differ-
ent groups. After estimating similarities, the server forms the model by selecting
the best l similarities for each item and starts providing filtering services.

It is still possible to achieve decent accuracy using multi-group schemes in
addition to one-group scheme. Although the number of true similarities decrease
with increasing M , there are still (m2 −Mm)/(2M) true similarities because
similarity weights for items in the same groups will be identical to the ones
computed from original data. In addition, since such weights between items are
computed over all users who commonly rated them, the aggregate values can be
estimated from disguised data when there are enough users’ data.

Our scheme can also be extended to provide private top-N recommenda-
tions. To find top-N recommendations, the server computes ldj values for all a’s
unrated items, sorts them, and provides first N items to a as top-N recommen-
dations. Since online computation cost is critical, instead of finding referrals for
all unrated items, a sends a query stating he/she is looking for recommendations
for Na items, where N < Na < m−mat and mat is the number of rated items
by a. The server then sends item similarities for those Na items to a who can
compute ldj values for them and find top-N recommendations.
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3.2 Providing Private Recommendations with Full Privacy

In addition to preventing the server from learning the ratings, it should not be
able to learn items rated by the users. We can extend our scheme to achieve this
goal. Before they disguise their data, users conduct the followings to prevent
the server from learning the rated items. First, each user u finds the number of
rated items (mut) and randomly creates a uniform integer mur from the range
(1,mut). They then randomly select mur unrated items and fill randomly selected
�mur/2� items’ cells with 1 and the remaining unrated items’ cells with 0.

We can still provide accurate referrals while achieving full privacy because
users fill empty cells with equal numbers of 1s and 0s. When there are enough
users, the contributions of appended ratings to similarities will be close to zero.
The changes in the number of similarly or dissimilarly rated items will be close to
each other. The server does not know the rated items due to appended ratings.
However, it can guess the randomly selected unrated items. The probability of
guessing the number of randomly selected unrated items (mur) for the server is
1 out of m′/2, where m′ represents the number of 1s or 0s, depending on which
one is less, including the fake ratings for randomly selected unrated items. After
guessing mur, the probability of guessing the mur/2 randomly selected unrated
items filled with 1s is 1 out of Cm′

1
mur/2 and the probability of guessing the mur/2

randomly selected unrated items filled with 0s is 1 out of Cm′
0

mur/2, where m′
1 and

m′
0 represent the number of 1s and 0s, respectively. Therefore, the probability

of guessing the fake ratings is 1 out of
(
(m′/2)(Cm′

1
mur/2)(C

m′
0

mur/2)
)
.

4 Overhead Costs and Privacy Analysis

Our scheme does not introduce additional communication and storage costs due
to privacy concerns. Model creation is done off-line while referrals are computed
and provided online. Our scheme’s online component does not introduce over-
head computation costs while off-line computation costs increase. However, off-
line computation costs are not critical to the overall performance. Privacy can
be measured with respect to the reconstruction probability (p) with which the
server can obtain the true ratings vector of a user given his/her disguised data.
Privacy level (PL) can be defined in terms of p as follows [10]: PL = (1−p)×100.
With increasing p, privacy level decreases. To decrease p, the randomness should
be increased, which makes accuracy worse because privacy and accuracy conflict
each other. We can define p in terms of p(Xk|Yk = Xk) and M as follows:

p =
[
p(Xk|Yk = Xk)

]M
=

[
θ2 + θY − θ

2θY − Y

]M

(5)

where Y represents p(Yk = Xk). With increasing M , p decreases while PL
increases. The value of p depends on θ, M , and the value of Y or X , where X
represents p(Xk). Since randomization process is conducted independently for



Achieving Private Recommendations Using RRT 643

different groups, PL increases with increasing M . When θ = 1.0 or θ = 0.0, we
disclose everything about the original data. However, when θ is away from 1.0
or 0.0 and approaches to 0.50, PL increases because we add more randomness.
We calculated PLs and showed them in Fig. 1. We varied θ from 0.51 to 1.0
because the complementary θ values achieve the same PL and found PLs for X
being 0.3, 0.4, and 0.5, where we fixed M at 3. We then varied M from 1 to 5,
fixed X at 0.3, and found PLs for θ being 0.51, 0.6, and 0.7. As expected, PLs
increase with decreasing θ from 1 to 0.51 and increasing M values.
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Fig. 1. Privacy Levels With Varying Parameters

5 Experiments

We used Jester and MovieLens (MLP) real data sets in our experiments. Jester
data set [5] has 100 jokes and records of 17,988 users. The ratings range from -10
to +10, and the scale is continuous. MLP data was collected by the GroupLens
Research Project (www.cs.umn.edu/research/Grouplens). It consists of ratings
for 1,682 movies made by 943 users. Ratings are made on a 5-star scale. As
evaluation criteria, we employed classification accuracy (CA), which is the ratio
of the number of correct classifications to the number of classifications and F -
measure (FM), where FM = (2 × precision × recall) / (precision + recall).

We transformed numerical ratings into two labels. We labeled items as like if
numerical ratings were bigger than 3, or dislike otherwise in MLP. We labeled
them as like if numerical ratings were above 2.0, or dislike otherwise in Jester. We
randomly selected 2,000 and 800 training and 500 and 143 test users from Jester
and MLP, respectively. Although we used the same test users throughout our
trials, we used different numbers of training users based on various experiment
settings. For each test user, we withheld 5 rated items’ ratings, tried to find
referrals for them, and compared them with true ratings. We ran data disguising
500 times and compute predictions on scrambled data. We compared referrals
on perturbed data using our scheme with true ratings, calculated CAs and FMs
for all test users, and displayed final values.
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We hypothesize that accuracy and privacy depend on several factors including
the significance weighting (SW), the model size (l), the number of users (n)
and groups (M), the value of θ, and the number of appended ratings. We first
performed testings to show how SW affects our results. We conducted trials with
varying n values. We discarded such similarities calculated on fewer than 3 co-
ratings. We found out that recommendation qualities become better when SW
is applied for all n values because by applying it, we devalued such similarity
weights calculated on limited number of co-ratings. CA is increased by 0.0045
with SW when n is 800 for MLP. We applied SW in the following experiments.

To find the optimum l, we performed trials using MLP while varying l values.
For each l value, we ran the algorithm, found referrals for test items, compared
them with true ratings, and calculated CAs and FMs. We ran this procedure 50
times and computed overall averages. With increasing l up to 500, the results are
becoming better. However, after 500 best similarities, the results slightly become
worse with increasing l. Therefore, we selected 500 as l for MLP. In the following
experiments, we set l being 100 and 500 for Jester and MLP, respectively.

To show how data partition or various M values affect our results, we per-
formed testings using both data sets with varying group schemes. We used ran-
domly selected 500 and 200 training users from Jester and MLP, respectively,
where we set θ at 0.65. We performed our experiments for up to five-group
scheme, calculated CAs and FMs, and displayed the results in Table 1. As we
expected, the results are becoming worse with increasing M because the bigger
the M we use, the more randomness we add. For MLP, the loss in CA is 0.0338
when we changed M from 1 to 5 while it is 0.0188 for Jester.

Table 1. Recommendation Qualities With Varying M Values

Jester MLP
M 1 2 3 5 1 2 3 5
CA 0.7095 0.6974 0.6962 0.6907 0.6813 0.6698 0.6580 0.6475
FM 0.6668 0.6550 0.6524 0.6455 0.7470 0.7391 0.7279 0.7158

Accuracy will be different for varying θ values because randomness differs with
varying θ. We performed testings using both data sets, where we used 500 and
200 training users from Jester and MLP, respectively. We only showed results
for three-group scheme, where we varied θ from 0.51 to 1.00, because comple-
mentary θ values give the same results. We compared the referrals estimated
from disguised data with the ones computed from original data. We displayed
CAs and FMs in Fig. 2. As expected, changes in accuracy are becoming worse
while θ values are converging to 0.51. With decreasing θ values from 1 to 0.51,
the randomness becomes bigger and causes losses in accuracy. Note that since
all users send true data when θ = 1.0, the changes in accuracy will be 0.

We hypothesize that we can still provide accurate recommendations with full
privacy if we have enough users’ data. Since false ratings are inserted into ratings
vectors, referral qualities will decrease. To show how accuracy changes with
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Fig. 2. Changes in Recommendation Qualities With Varying θ Values
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Fig. 3. Recommendation Qualities With Varying n Values and Full Privacy

appended ratings and varying n values, we performed experiments using both
data sets. We appended ratings as explained in Section 3.2. We disguised users’
ratings after inserting false ratings using θ being 0.65. We calculated CAs and
FMs, and showed them in Fig. 3. As expected, recommendation qualities increase
with increasing n. When there are more than 200 users, improvements become
steady. However, recommendation qualities rapidly increases with increasing n
when there are limited number of users. When ratings are appended, the results
become worse compared to results without full privacy issues. However, the
decrease in accuracy due to full privacy is small. For Jester, with increasing n,
FM values based on appended ratings are becoming closer to the ones computed
without appended ratings. For MLP data, when one-group scheme is used with n
being 800, the accuracy lost is only 0.0057 due to appended ratings. It is 0.0067
for three-group scheme. Therefore, our scheme can be easily extended to achieve
full privacy while still providing accurate referrals.
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6 Conclusions and Future Work

We presented a solution to achieve binary ratings-based private referrals on item-
based algorithms using RRT. We showed that it is possible to provide accurate
recommendations on perturbed data. Besides one-group scheme, we introduced
multi-group schemes to achieve an equilibrium between accuracy, privacy, and
efficiency. We will investigate whether we can achieve accurate referrals based on
inconsistently disguised data. We will study how to extend our scheme to other
recommendation algorithms.
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Abstract. Classical data mining algorithms implicitly assume complete access
to all data, either in centralized or federated form. However, privacy and security
concerns often prevent sharing of data, thus derailing data mining projects. Re-
cently, there has been growing focus on finding solutions to this problem. Several
algorithms have been proposed that do distributed knowledge discovery, while
providing guarantees on the non-disclosure of data. Classification is an important
data mining problem applicable in many diverse domains. The goal of classifi-
cation is to build a model which can predict an attribute (binary attribute in this
work) based on the rest of attributes. We propose an efficient and secure privacy-
preserving algorithm for support vector machine (SVM) classification over verti-
cally partitioned data.

1 Introduction

The goal of data mining is to efficiently analyze large quantities of data to find inter-
esting patterns and/or summarize the data in novel ways. Classification is one of the
most common applications found in the real world. The goal of classification is to build
a model which can predict the value of one variable, based on the values of the other
variables. For example, based on financial, criminal and travel data, one may want to
classify passengers as security risks. In the financial sector, categorizing the credit risk
of customers, as well as detecting fraudulent transactions are both classification prob-
lems. Numerous such problems abound.

There is considerable research on different classification algorithms. Indeed, several
different solutions are commonly used in the real world. A basic assumption is that
complete access to data is available, either in centralized or federated form. However,
privacy and security concerns restrict access to data. Sharing of data may not be possible
due to either legal or commercial reasons. For example, due to HIPAA laws [1], medical
data cannot be released for any purpose without appropriate anonymization. Similar
constraints arise in many applications. European Community legal restrictions apply to
disclosure of any individual data.Customer data, process data, etc., is often a valuable
business asset for corporations. For example, complete manufacturing processes are
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trade secrets (although individual techniques may be commonly known). All of these
cases require distributed knowledge discovery, without the disclosure of data. (Section
5 discusses related work in this area of Privacy-Preserving Data Mining.)

We assume vertically partitioned data with at least three participating parties, i.e.,
three or more parties that collect different information about the same set of entities.
For instance, a bank, health insurance company and auto insurance company collect
different information about the same people. A bank has customer information like av-
erage monthly deposit, account balance. The health insurance company has access to
medical information and other policy information. The car insurance company has ac-
cess to information such as car type, accident claims, etc. Together, they might evaluate
if the person is a credit risk for life insurance.

Support Vector Machine (SVM) classification is one of the most actively developed
methodologies in data mining. SVM has proven to be effective in many real-world
applications [2]. Like other classifiers, the accuracy of an SVM classifier crucially de-
pends on having access to the correct set of data. Data collected from different sites is
useful in most cases, since it provides a better estimation of the population than the data
collected at a single site.

In this paper, we propose a privacy-preserving SVM (support vector machine) clas-
sification method on vertically partitioned data, PP-SVMV for short, such that each
party (e.g., bank, insurance company) need not disclose its data or general information
to other parties while still acquiring the same SVM classification accuracy as when
the data is centralized. Our algorithm is efficient and secure. We first overview SVM
(Section 2) and develop our PP-SVM technique (Section 3). We empirically show the
practicality of our method in Section 4. Finally, related work is discussed in Section 5.

2 SVM Overview

We first describe the notation to overview SVM. All vectors are column vectors unless
transposed to a row vector by a prime superscript ′. The scalar (inner) product of two
vectors x and y in the n-dimensional real space Rn is denoted by x′y and the 2-norm of
x is denoted by ||x||. An m× n matrix A represents m data points in a n-dimensional
input space. An m ×m diagonal matrix D contains the corresponding labels (i.e., +1
or -1) of the data points in A. (A class label Dii, or di for short, corresponds to the i-th
data point xi in A.) A column vector of ones of arbitrary dimension is denoted by e.
The identity matrix of arbitrary dimension is denoted by I .

First, consider a linear binary classification task, as depicted in Figure 1. For this
problem, SVM finds the separating hyperplane (w · x = γ) that maximizes the mar-
gin, denoting the distance between the hyperplane and closest data points (i.e., support
vectors). In practice, we use the “soft” margin to deal with noise, in which the distance
from the boundary to each support vector could be different. The “hard” margin is for-
mulated as 1

||w|| , as illustrated in Figure 1. To maximize the margin while minimizing
the error, the standard SVM solution is formulated into the following primal program
[2, 3]:

min
w,y

1
2w

′w + νe′y (1)
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|f(x)| / ||w||

f(x) = w·x – γ = 0

f(x) < -1

f(x) > 1

m = 1 / ||w||
m

Fig. 1. The separating hyperplane that maximizes the margin. (‘+’ is a positive data point, i.e.,
f(‘+’) > 0, and ‘o’ is a negative data point, i.e.,f(‘o’) < 0.)

s.t. D(Aw − eγ) + y ≥ e and y ≥ 0 (2)

which minimizes the reciprocal of the margin (i.e., w′w) and the error (i.e., e′y). By
having the slack variable y in the constraint (2), SVM allows error or the soft margin.
The slack or error is minimized in the objective function (1) and it will be larger than
zero when the point is on the wrong side or within the margin area. The soft margin
parameter ν (a user parameter) is tuned to balance the margin size and the error. The
weight vector w and the bias γ will be computed by this optimization problem. Once
w and γ are computed, we can determine the class of a new data object x by f(x) =
w′x− γ, where the class is positive if f(x) > 0, or else negative.

In order to reduce the number of variables in the objective function and also be able
to apply the kernel trick, we transform the primal problem to the following dual problem
by applying the Largrange multipliers:

min
α

1
2α

′Qα− e′α (3)

s.t. 0 ≤ αi ≤ ν and
∑

i diαi = 0, i = 0, ...,m (4)

where di(i .e.,Dii) and αi are the class label and the coefficient respectively for a data
vector xi. The coefficients α are to be computed from this dual problem. An m × m
matrixQ is computed by the scalar product of every data pair, i.e.,Qij = K(xi, xj)didj

where K(xi, xj) = xi ·xj for linear SVM. The support vectors are the data vectors {xi}
such that the corresponding coefficients αi > 0. The weight vector w =

∑
αidixi

and thus the classification function f(x) =
∑

αidixi · x − γ for linear SVM. For
nonlinear SVMs, f(x) =

∑
αidiK(xi, x)− γ, where we can apply a nonlinear kernel

forK(xi, x) (e.g.,K(xi, x) = exp(− ||xi−x||2
g ) for RBF kernel,K(xi, x) = (xi·x+1)p

for polynomial kernel, ). [2] provides further details on SVM.
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Fig. 2. PP-SVM: Framework for privacy-preserving SVM

3 Privacy-Preserving SVM

To generate the global SVM model (i.e., the SVM model constructed from the data from
multiple parties) without sharing any data among the parties, (1) the framework must
be able to generate the global model only from models locally constructed by parties
on their own data, without seeing others’ data. We call this requirement data privacy.
To prevent disclosing the general classification information on each party, (2) the local
model must not be disclosed when jointly generating the global model. We call this
requirement model privacy.

These two requirements lead to design our PP-SVM framework illustrated in Fig-
ure 2. (Figure 2 involves only three parties but can be generalized to more.) Each party
builds a local model L from its own data A ( 1©), and each party securely merges its
model with others ( 2©), in order to generate the global model G ( 3©). The global model
G will be the same for every party, which will be used for classifying new data ob-
jects. Assuming that the merge of the local models is done securely, this framework
keeps private the local models (i.e., L1,L2,L3) as well as the data of each party (i.e.,
A1,A2,A3). This section presents techniques that implement the framework. First, we
discuss the choice for the local model L. Then, we present a method to securely merge
the local models.

3.1 Local Model

As we see from the last paragraph of Section 2, an SVM model is represented by the
bias γ, and a list of support vectors, their labels, and coefficients {(xi, di, αi)} such
that αi > 0. That is, the global model G is composed of γ and {(xi, di, αi)} which are
computed from the dual problem in Section 2.

Given vertically partitioned data over multiple parties, we cannot use a local SVM
model (i.e., computed only over local data) for our local modelL in the framework (Fig-
ure 2), because the global SVM model G cannot be built only from local SVM models;
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The globally optimal coefficients (computed by the dual problem) will be different from
the locally optimal coefficients computed on local data. Since each party has the data
of an attribute subset, the dual problem on the attribute subset will not generate the
globally optimal coefficients. Thus, in our framework, the local model L needs to go
beyond the standard SVM model.

To solve the dual problem globally, we need the m×m matrix Q = K(xi, xj)didj

in Eq.(3) which is computed over the data of all the attributes. The diagonal matrix D
for di is given as class labels, thus we only need to compute the global kernel matrix
K = K(xi, xj). For linear kernel where K(xi, xj) = xi · xj , the global matrix K can
be directly computed from local matrices becauseK is a gram matrix and a gram matrix
can be merged from gram matrices of vertically partitioned data, as Lemma 1 proves.

A  � �

�

A1 A2

Fig. 3. Vertically partitioned matrix A

Lemma 1. Suppose the m× n data matrix A is vertically partitioned into A1 andA2

as Figure 3 illustrates. Let K1 andK2 be the m×m gram matrices of matricesA1 and
A2 respectively. That is, K1 = A1A1′

and K2 = A2A2′
. Then, K, the gram matrix of

A, can be computed as follows:

K = K1 + K2 = A1A1′
+A2A2′

(5)

Proof. An (i, j)th element of K is xi · xj , where xi and xj are ith and jth data vectors
in A. Let x1

i and x2
i be vertically partitioned vectors of xi, which are the parts fromA1

and A2 respectively. Then,

xi · xj = x1
i · x1

j + x2
i · x2

j (6)

From Eq.(6), each element in K is equal to the sum of the elements in K1 andK2. Thus
K = K1 +K2.

Lemma 1 proves that local gram matrices are sufficient to build the global gram matrix
which is the kernel matrix K for linear kernel. Some popular nonlinear kernel matri-
ces can also be computed from the gram matrix: The polynomial kernel is represented
by a dot product of data vectors (i.e., K(xi, xj) = (xi · xj + 1)p). The RBF ker-

nel can also be represented by dot products (i.e., K(xi, xj) = exp(− ||xi−xj ||2
g ) =

exp(− |xi·xi−2xi·xj+xj ·xj|
g )). Thus, the local gram matrix from each party is sufficient
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to construct the global kernel matrix K for nonlinear kernels such as polynomial and
RBF which can be represented by dot products.

Thus, we use the local gram matrix as the local model L in our framework. Sec-
tion 3.2 discusses how to merge L securely from each party to securely build the global
gram matrix. Once the global gram matrix is built, each party can run a quadratic pro-
gramming solver to compute the global SVM model G, which will be the same for every
party.

3.2 Secure Merge of Local Models

To keep both data and model privacy, it is necessary to securely merge the local models
which are the m ×m local gram matrices. A secure addition mechanism for m × m
matrices is required. For k ≥ 3 parties, we developed such a method based on simple
secure addition of scalars.

We first describe a simple method to securely calculate the sum of integers from
individual sites under the assumption that there are at least three parties and the parties
do not collude. We then extend the method so as to seamlessly merge the local models
with high efficiency and privacy.

Secure Sum of Integers: Formally, we assume k ≥ 3 parties, P0, . . . , Pk−1, with party
Pi holding value vi. Together they want to compute the sum v =

∑k−1
i=0 vi. Assume that

the sum v is known to lie in a field F .
The parties also randomly order themselves into a ring. The ordering can be selected

by one of the parties, or by a third party. If the parties cannot decide on a suitable order
and no third party can be found, then a protocol developed by Sweeney and Shamos
can be used [4] to fix upon a random ordering. The protocol developed by Sweeney
and Shamos is quite efficient and requires only O(k) communication. For this paper,
to simplify the presentation, without loss of generality, we assume that this order is the
canonical order P0, . . . , Pk−1. In general, any order can be decided on. The protocol
proceeds as follows:

P0 randomly chooses a number R, from a uniform distribution over F . P0 adds this
to its local value v0, and sends the sum R + v0 mod |F| to site P1. For the remaining
sites Pi, i = 1, . . . , k − 1, the algorithm proceeds as follows:

Pi receives

V = R +
i−1∑
j=0

vj mod |F|.

Pi then computes

R +
i∑

j=1

vi mod |F| = (vi + V ) mod |F|

and passes it to site Pi+1 (mod k). Finally, P0, subtracts R from the final message it
gets (i.e., adds −R (mod |F|)) to compute the actual result.

Clearly, the above protocol correctly calculates the required sum. In order to eval-
uate the security of the protocol, it is necessary to have a definition of what is meant
by security. The area of Secure Multi-Party Computation (SMC) provides a theoretical
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framework for defining and evaluating secure computation. This protocol can be proven
to be completely secure under our assumptions in the SMC framework. A complete
proof of security is presented in our technical report [5].

Secure Sum of Matrices: We can extend the secure addition of scalars to securely
adding matrices. The key idea is as follows. Suppose a master party wants to merge
(i.e., add) its local matrix with those in other slave parties. We assume that the parties
have arranged themselves in some sequence and the master initiates the protocol.

1. The master party creates a random matrix of the same size as its local matrix. (The
random matrix is hidden from the other parties.)

2. The master party merges (adds) the random matrix with its local matrix, sends the
merged matrix to the following slave party.

3. Each slave party, receives the perturbed matrix, merges it with its local matrix and
passes it to the following party (the last slave party sends the matrix back to the
master).

4. The master subtracts the random matrix from the received matrix, which results in
the matrix that adds the matrices of all the parties, without disclosing their local
matrices to each other.

All addition is done in a closed field, and subtraction refers to addition of the com-
plement. This secure addition mechanism is proven to be secure and efficient [5]. The
extra computation required by the first party is the generation of the random matrix and
the final subtraction. In terms of communication overhead, k rounds are required for ev-
ery party to acquire the summed matrix, where k is the number of participating parties.
One problem with the matrix summation method is that it is vulnerable to collusion.
The parties preceding and following a party, can collude to recover its local matrix.
However, the technique can easily be made collusion resistant to q parties by splitting
up the local matrices into q random parts and carrying out the addition protocol q times.
The sum of the final matrices from all q rounds gives the real global matrix. As long as
the parties are ordered differently in each run, recovery of a local matrix is only possible
if collusion occurs in all q rounds. Further details can be found in [5].

3.3 Security

Our method preserves “data privacy”, since only the original party gets to exactly see
the data; The local model is directly computed from the local data. However, to ensure
“model privacy,” we need at least three participating parties; Each party gets the final
global model, which is simply the sum of local models. Thus, with only two parties
participating, the other party’s local matrix could be found simply by subtracting the
local model from the global model. What is revealed, is the sum of the local models
of the other parties. Since the SVM requires knowing the global matrix, this is always
possible from the final result as well, and so is unavoidable.

We still need to analyze the effects of knowing the sum of gram matrices computed
over the attributes of other parties. In general, the number and type of attributes of the
other parties are still assumed to be unknown. As such, the summed matrix does not
disclose any attribute values. If the exact number and types of attributes of the other
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parties are known, a number of quadratic equations will be revealed in the attribute val-
ues; Every cell of the gram matrix corresponds to a dot product – thus the quadratic
equation. Since the matrix is symmetric, there are a total of m(m+ 1)/2 distinct equa-
tions (where m is the number of data objects). If the number of total variables (i.e., the
sum of all the attributes of other parties) is larger than m(m + 1)/2, it is impossible to
recover the exact attribute values. Knowing that the matrix is symmetric and positive
semidefinite does not disclose further information. While this does reveal more infor-
mation than strictly necessary, this is a trade off in the favor of efficiency. If complete
security is required, the summed matrix could be kept randomly split between two of
the parties, and an oblivious protocol run to compute the global model using the generic
circuit evaluation technique developed for secure multiparty computation [6, 7].

4 Experiment

The goal of the experiments is simply to demonstrate the scalability of our PP-SVMV.
The accuracy will be exactly the same as that of SVM when the data is centralized.
We revised the sequential minimal optimization (SMO) source1 to implement the PP-
SVMV. We used the Tic-Tac-Toe data set included in the SMO package for our exper-
iment. We sampled around 958 data objects (m) and extracted around 27 features (n).
PP-SVMV generates above 99% with an RBF kernel which is the same as that of the
original SVM when the data is centralized.

 0
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Fig. 4. X-axis:# parties; Y-axis: time (sec.); COMM: communication time; TOTAL: total training
time

To check the scalability of the PP-SVMV on an increasing number of participating
parties, we vary the number of parties from three to ten. We divide the 27 features about
equally between the participating parties. For instance, when ten parties participate,
three parties have two features, and the other seven parties have three features. Figure 4
shows results of our experiments: The total training time (including the parallel local
computations) hardly changes; SVM is sensitive to the number of data objects more
than the features, and the change on the number of features are not visibly influential to

1 http://www.datalab.uci.edu/people/xge/svm
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the total training time. The difference of the communication time is also not visible due
to the dominant computation time. The results are averaged over ten runs.

5 Related Work

Recently, there has been significant interest in the area of Privacy-Preserving Data Min-
ing. We briefly cover some of the relevant work. Several solution approaches have been
suggested. One approach is to perturb the local data (by adding “noise”) before the data
mining process, and mitigate the impact of the noise from the data mining results by
using reconstruction techniques [8]. However, there is some debate about the security
properties of such algorithms [9, 10]. The alternative approach of using cryptographic
techniques to protect privacy was first utilized for the construction of decision trees
[11]. Our work follows the same approach. A good overview of prior work in this area
can be found in [12]. Recently, some alternative techniques such as condensation[13]
and transformation [14] have also been proposed.

In terms of data mining problems, work addressed includes association rule mining
[15], clustering [16, 17], classification [18], and regression [19, 20]. All of the crypto-
graphic work falls under the theoretical framework of Secure Multiparty Computation.
Yao first postulated the two-party comparison problem (Yao’s Millionaire Protocol) and
developed a provably secure solution [6]. This was extended to multiparty computations
by Goldreich et al. [7]. The key result in this field is that any function can be computed
securely. Thus, the generic circuit evaluation technique can be used to solve our current
problem. However, the key issue in privacy-preserving data mining is one of efficiency.
The generic technique is simply not efficient enough for large quantities of data. This
paper proposes an efficient technique to solve the problem.

Yu and Vaidya [21] developed a privacy-preserving SVM classification on horizon-
tally partitioned data. Since their method is based on the trick of the proximal SVM
[3], it is limited to linear classification. Our PP-SVMV is the first one proposing a se-
cure SVM classification on vertically partitioned data, which uses the techniques of the
secure matrix addition [5] and distributed SVM [22].

6 Conclusion

We propose a scalable solution for privacy-preserving SVM classification on vertically
partitioned data (PP-SVMV). With three or more participating parties, our method PP-
SVMV securely computes the global SVM model, without disclosing the data or classi-
fication information of each party to the others (i.e., keeping the model privacy as well
as the data privacy). Future work may address the idea of efficiently achieving complete
security by keeping the global model split between parties as well.
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Abstract. Software packages providing a whole set of data mining and machine
learning algorithms are attractive because they allow experimentation with many
kinds of algorithms in an easy setup. However, these packages are often based
on main-memory data structures, limiting the amount of data they can handle.
In this paper we use a relational database as secondary storage in order to elimi-
nate this limitation. Unlike existing approaches, which often focus on optimizing
a single algorithm to work with a database backend, we propose a general ap-
proach, which provides a database interface for several algorithms at once. We
have taken a popular machine learning software package, Weka, and added a re-
lational storage manager as back-tier to the system. The extension is transparent
to the algorithms implemented in Weka, since it is hidden behind Weka’s stan-
dard main-memory data structure interface. Furthermore, some general mining
tasks are transfered into the database system to speed up execution. We tested the
extended system, refered to as WekaDB, and our results show that it achieves a
much higher scalability than Weka, while providing the same output and main-
taining good computation time.

1 Introduction

Machine learning and mining algorithms face the critical issue of scalability in the
presence of huge amounts of data . Typical approaches to address this problem are to
select a subset of the data [4, 3], to adjust a particular algorithm to work incremen-
tally (processing small batches of data at a time), or to change the algorithms such that
they use data structures and access methods that are aware of the secondary storage.
For instance, [8, 2] propose algorithms for decision tree construction that access special
relational tables on secondary storage. Agarwal et al [7] develop database implemen-
tations of Apriori, a well-known algorithm for association rule mining, and show that
some very specific implementation details can have a big impact on performance. Their
approach achieves scalability by rearranging fundamental steps of the algorithm. Both
of these pieces of work require the developer of the mining algorithm to be very familiar
with database technology, implementing stored procedures, user defined functions, or
choosing the best SQL statements. Machine learning researchers, however, are often not
familiar enough with database technology to be aware of all optimization possibilities.

The goal of our research is to provide a general solution to scalability that can be
applied to existing algorithms, ideally without modifying them, and that can be used
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by machine learning researchers to implement new algorithms without the need to be
database experts. For that purpose, we have taken a very popular open-source package
of machine learning algorithms, Weka [9], which can only be used on data sets that
can fit into main memory, and extended it to be able to use a database as backend. In
the extended system, WekaDB, a storage manager interface is defined with two imple-
mentations. One implementation is the original main-memory representation of data,
the other uses a relational database management system (DBMS). All algorithms im-
plemented in Weka can run in WekaDB without changes, and can use either of the two
storage implementations depending on the data set size. Also, new algorithms can be
added to the package without developers being required to know SQL.

Our basic approach couples Weka and the database rather loosely. The basic model
uses the DBMS as a simple storage with the facility to retrieve records individually
from the database, perform all computation in main memory, and write any necessary
changes back to the database. However, accessing records individually is expensive,
so WekaDB also implements several generally applicable optimizations. First, data is
transferred in chunks between the database and WekaDB instead of one record at a time
whenever possible. Second, many of the storage manager interface methods are imple-
mented using advanced SQL statements; in particular, we take advantage of aggregate
functionality (like sum, avg) provided by the DBMS. Third, some popular libraries (e.g.,
pre-processing filters) that were originally implemented on top of the storage interface,
have been reimplemented to take advantage of DBMS functionality. Furthermore, even
though WekaDB itself eases data size limitations, the implementations of the machine
learning algorithms can create large internal data structures, imposing indirect limita-
tions. In order to address this issue WekaDB provides database implementations for
typical main memory data structures, like arrays. The algorithms can access these data
structures as if they were implemented in main-memory.

We present an empirical evaluation of WekaDB on both synthetic and real data, us-
ing several machine learning algorithms from the original Weka package. The results
show significant improvement in terms of scalability, while still providing reasonable
execution time. For one of the algorithms, k-means clustering, we also compare with
an implementation developed specifically for using a database backend [10]. In some
situations, WekaDB’s implementation even outperforms this specialized solutuion. In
general, our approach is a practical solution providing scalability of data mining algo-
rithms without requiring machine learning developers to be database experts.

2 Weka

Weka [9] is a popular, open source, machine learning software package implementing
many state-of-the-art machine learning algorithms. These algorithms all access the data
through one well-defined data-structure core. The data is represented by two main-
memory data structures defined in core. A Dataset is a set of Datarecord objects.
Each data record in a dataset consists of the same number of attribute/value pairs and
represents one unit of data, e.g., information about a single customer. Additionally, the
records have weight attributes, which are used by some learning algorithms.

Dataset keeps attribute and type information, and maintains a DR vector pointing
to individual Datarecord objects. At the start of any algorithm, an initial Dataset
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Fig. 1. WekaDB

object DS is created. Then, data records are loaded from an input file into individual
Datarecord objects. For each object, a pointer is inserted into the DR vector of DS.
During the computation, a copy DS′ of a Dataset object DS could be made. Copying
is lazy. Initially DS′ shares the DR vector with DS. Only when a Datarecord object
o in DS′ needs to be modified, a new copy of the DR vector is created. All pointers in
this vector still point to the old Datarecord objects. Then, a new copy of o is created,
and the corresponding entry in the vector is adjusted accordingly.

Furthermore, Dataset provides methods to access and manipulate the data records:
enumerateRecords()allowstoiterativelyretrievedatarecords,whileRecord(index)
allows access to a record based on its index in the DR vector. General information about
the data set can be returned by methods likenumRecords(). There are alsodelete/add
methods,whichremove/addthecorrespondingDatarecordpointerfromtheDRvector.
The sort() method sorts the DR vector based on an attribute. Summary statistics are
provided by methods such as sumofWeights().

3 Data in WekaDB

Fig. 1(a) shows the the redesigned system architecture. Based on the core interface
from Weka, we defined a general data structure interface. Any data source that im-
plements this interface can be plugged into Weka. Our new storage manager uses a
relational database (currently DB2). Dataset and Datarecord have been modified
to access the database. In Dataset, the DR vector was replaced by a P-vector.
Instead of pointing to a Datarecord, each entry of the vector contains a position

integer representing a record in the database. A Datarecord object is created (and the
record loaded to main memory), whenever it is accessed by the learning algorithm.

3.1 Database Design

Data records reside in the database. Two extreme design alternatives are as follows.

• Full table copy: For each Dataset object DS there is one table T DS containing all
records to which the P-vector of DS points. Making a copy DS′ of DS leads to the
creation of a table TDS′, and records in T DS are copied to T DS′.
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• Lazy approach: There is only one Dataset table with a special attribute did indi-
cating to which Dataset object a record belongs. Initially, all records have the same
value IDS for did. When a copy DS′ is made from an existing Dataset object DS,
DS′ shares the records with DS. Only if DS′ changes a record for computation pur-
poses, a copy of the original record is inserted into the Dataset table with the did
attribute set to IDS′. This new record will be updated. Each Dataset object has to
keep track of the set of did values with which its records might be labeled.

The full table copy approach is very time consuming if the machine learning algo-
rithm performs many Dataset copy operations. However, it might be necessary if an
algorithm adds or replaces attributes, i.e., changes the schema information. The lazy ap-
proach mirrors the lazy instantiation of new Datarecord objects in the main-memory
implementation of core. Since most machine learning algorithms do not change at-
tribute values, this seems to be the most efficient approach. However, many algorithms
do change the weight attributes associated with the records. If this happens, basically
all Dataset objects will have their own set of records in the Dataset table.

Therefore, we store the more static attribute information in a Dataset table and the
frequently changing weight information in a weight table (Figure 1(b)). The Dataset
objects share the same records in the Dataset table unless they change attribute val-
ues. If an algorithm never changes attribute values there is one set of data records in
Dataset with did= IDS. In contrast, the weight table contains, for each existing
P-vector (Dataset objects might share P-vectors) its own set of weight records.
This set contains as many weight records as there are entries in the P-vector. Note
that a P-vector might have fewer entries than the total number of records with did

= IDS (e.g., in decision tree construction).
The Dataset table has one attribute for each attribute of the original data, a did

attribute as described above, and a position attribute that links the record to the
P-vector of the Dataset object. If a record dr has did = IDS and position = X ,
then DS’s P-vector has one entry with value X . The weight table has attributes tid
and position similar to the did and position attributes in the Dataset table, and a
weight. In order to match the weights with the corresponding records in the Dataset
table, we have to join over the position and match did/tid attributes. Both Dataset
and weight tables have several indices (clustered and unclustered) on position and
did/tid attributes in order to speed up the most typical data access.

Some algorithms change the structure, i.e., they remove or add attributes. This is
usually only done in the preprocessing phase. In such cases, full table copies are made.
When preprocessing is completed, a filtereddataset table is created, which will
then be used instead of the original dataset table.

3.2 Main Memory Data Structures

Figure 2 shows how the main memory data structures are adjusted in order to allow for
the main memory and database storage implementation to co-exist. The abstract class
AbstractDataset implements variables and methods used in both storage implemen-
tations. MMDataset is the original Dataset implementation in Weka, and DBDataset
is the abstract class for our relational database implementation. It contains commonly
two subclasses. Recall that the Dataset object might have to keep track of several did.
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However, if an algorithm never changes attribute values (except the weights), there will
be only one did value for all records. Hence, we allow algorithms to declare this fact
in advance, and then use a simpler implementation which can ignore did. The class
MutableDataset supports all the functions that allow algorithms to change attribute
values, while ImmutableDataset does not support those functions (only the weights
are allowed to change). The same class structure is used for data records.

4 Database Access

WekaDB accesses the database using a standard JDBC API. For space reasons, we only
outline here how the ImmutableDataset class accesses the database. A special load
interface allows the transfer of records from a file in ARFF format (used by Weka) to
the database, creating dataset and weight tables and the corresponding records.

When an algorithm starts, an initial ImmutableDataset object is created with a
corresponding P-vector based on the information in the dataset table. No data
records are loaded. The P-vector is the only memory-based data structure that grows
linearly with the size of the data set. It is needed because algorithms can reorder the
records during the computation, for instance by sorting and resampling. In WekaDB,
this is done by reordering the entries in the P-vector. This vector represents the data
in the correct order for a specific ImmutableDataset object while the records in the
dataset and weight table are unordered.

If a copy DS′ is made from an ImmutableDataset object DS, it can share the
P-vector and tid value with DS, or it can create its own P-vector, and receive a
new tid value. In the latter case, it must call the add method for each record to which it
wants to refer. This method adds the position of the record to the P-vector and inserts
a weight record into the weight table, with the same position and the new tid value.
No records are added into the dataset table for ImmutableDataset objects. The
new ”copy” of the data set is represented by the new P-vector.

Data records are accessed via the enumerateRecords() and Record(index)

methods of the ImmutableDataset class. We only describe the latter here.
Record(index) on object DS loads the record with position p if DS’s P-vector

V has V [index] = p.
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The (slightly simplified) SQL statement is

SELECT * FROM dataset, weight
WHERE weight.tid = IDS
AND dataset.position = p
AND weight.position = p

If Record(index) is called in a loop accessing all records one by one, the state-
ment is executed repeatedly, and data transfer takes place for each record. Looping is
very common in data mining algorithms, which makes this type of data access very ex-
pensive. Hence, retrieval will be faster if we load a whole set of records with one query,
buffer them within core and then provide the records to the user on request within the
loop. Hence, we implemented a buffered version of Record(index), which retrieves B
records at a time. B is an adjustable parameter. In the buffered implementation, when a
record with position p (determined as above) is requested, we first check if the record is
already in main memory. If so, the record is returned right away. Otherwise, we use the
following (slightly simplified) SQL statement to retrieve B consecutive records, starting
at position p:

SELECT * FROM dataset, weight
WHERE weight.tid = IDS
AND dataset.position = weight.position
AND dataset.position >= p
AND dataset.position < (p+B)

The B retrieved records are stored in a JDBC ResultSet. For data mining algorithms
that access the data sequentially and do not perform any sorting, buffering can dramat-
ically decrease the number of database accessed. If an algorithm had sorted the entries
in the P-vector, the benefits of buffering are limited.

5 Using More Database Functionality

The loose-coupling approach discussed so far performs all computation on data records
in main memory. It might be more efficient to perform some computation within the
database by applying advanced SQL functionality. This leads to a semi-tight coupling
between Weka and database. For that purpose we modified several core methods. As
a simple example, our implementation of sumOfWeights of the ImmutableDataset
class uses the SQL aggregate function sum to perform the operation within the database.
Another example is sort(), which orders the data based on the values of one attribute.
A main memory implementation requires retrieving records possibly multiple times
from the database. In contrast, we use an SQL statement with an order by clause.

Data preprocessing [5] is a common step in many algorithms. It is used to clean data,
and perform data transformation. Weka provides a set of filters using the filters in-
terface. The implementation itself is built on top of core. Weka’s main memory imple-
mentation of the filters accesses records one by one, and stores all the filtered data in a
queue. This adds considerable overhead, and reduces scalability due to the queue data
structure. We reimplemented the filters using a database oriented approach that does not
require loading any records into main memory. For instance, for the filter that replaces
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all missing attribute values with the modes/means observed in the data, we precompute
modes and means with SQL aggregate functions and use update SQL statements to
replace missing values with these modes and means.

Since the machine learning algorithms are developed without considering space limi-
tations they might create their own data structures that limit scalability. For instance, the
logistic regression algorithm implemented in Weka normalizes the input data and stores
it in a 2-dimensional array (one dimension represents the records, the other the nor-
malized attributes). This is done by a pass through the data set using Record(index)

calls. This array is, in fact, as large as the entire data set. Our approach is to provide
adequate support in order to help developers eliminate such limitations. Normalizing
records and then accessing the normalized data in a systematic way seem to be standard
steps usable in various algorithms. Therefore, we offer extra normalization methods as
part of the Dataset class. The methods use SQL queries to perform the normalization
and store the normalized values in the database. The normalized data can be retrieved
through an interface that provides the standard array representation. It can be used with-
out knowing that a database implementation is used. Whenever a normalized record is
accessed through the array interface, a corresponding SQL query retrieves the record
from the database.

6 Optimizing JDBC Applications

Our implementation uses several standard mechanisms to speed up the JDBC applica-
tion. First, our system uses a single database connection for all database access to opti-
mize connection management. Since transaction management is expensive, we bundle
related operations in a single transaction in order to keep the number of transactions
small. Third, since the system runs in single user mode, we run our transactions in the
lowest isolation mode provided by the database to minimize the concurrency control
overhead. Finally, we use JDBC’s PreparedStatement objects as much as possible,
since these statements are parsed and compiled by the database system only once, and
later calls use the compiled statements, improving performance significantly.

7 Empirical Evaluation

We evaluate WekaDB using the logistic regression algorithm, the Naive Bayes algorithm
and the K-means clustering algorithm, on both synthetic and real data sets. The first two
algorithms are used for classification problems, while the last one is an unsupervised
learning algorithm. We note that at the moment, all algorithms in the Weka package,
except the decision tree construction algorithm, work seamlessly with WekaDB. Once
logistic regression and k-means clustering were fully functional, the other algorithms
worked with WekaDB without any further tweaking.

The synthetic data sets were generated using the program of [1]. We generated train-
ing data sets with 10,000 to 1,000,000 records, and one testing data set with 5000
records. Each data set has 10 numerical attributes and 1 class attribute, without missing
values. We also run tests with filters for replacing missing values and for discretizing
continuous attributes. The results were very similar to the ones reported here.
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The real data set is based on the AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer) data set, originally created at JPL (Jet Propulsion Laboratory, California In-
stitute Technology) and extensively corrected by CCRS (Canadian Center for Remote
Sensing, Natural Resources Canada). It contains hyperspectral data that was captured
by the NASA/JPL AVIRIS sensor over Cuprite, Nevada on June 12, 1996 (19:31UT)
(see [6] for more information). The original data set contains 314,368 records and 170
attributes. For the purpose of the experiments, we generated four different data sets,
containing 12669, 19712, 35055 and 78592 records respectively, and one testing data
set containing 3224 records. Each data set has 168 numeric attributes and 1 nominal
class attribute without missing values.

We restricted the memory size to be used by Weka/WekaDB to 64MB in order to
avoid long running times and be able to run many experiments. All experiments use the
default values for all the algorithms, unless otherwise specified.

In all the experiments we measure the runtime of the algorithms when we increase
the size of the training data set. In all cases, the main-memory implementation of Weka
is significantly faster (between 2-3 orders of magnitude). However, the maximum num-
ber of instances that it can handle is below 40000. WekaDB, on the other hand, can
handle up to 700000 - 800000 instances, which is a 20-fold improvement.

Figure 3 illustrates the running time on the synthetic data set for WekaDB with a
buffer (size 10000) and without using a buffer for Naive Bayes (left figure) and logistic
regression (right figure). As illustrated, the computation time increases linearly with the
number of instances, which should be expected, as both algorithms have to loop through
the data. A similar linear increase is observed in the original Weka implementation, but
with a much smaller slope, of course. Using the buffer yields a 5-fold improvement
in speed. Weka’s computation time is 11 seconds at 28000 records (not shown in the
figure), compared to 368 seconds for WekaDB with a buffer. Hence, Weka’s computa-
tion is roughly 30 times faster. For logistic regression, the time difference is more pro-
nounced, with Weka finishing in 0.9 seconds, compared to 251 seconds for WekaDB.
However, Weka is showing a significant space limitation running out of memory at
29000 instances. At 700000 and 800000 records respectively, WekaDB also runs out of
memory, because at this point the position vector becomes a memory constraint (since
it grows linearly with the size of the data set). Recall that we use only 64MB. If we
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Fig. 4. Performance Comparisons

assume that 1GB of main memory is available, we can expect WekaDB to handle on
the order of 10,000,000 records while Weka will handle less than 500,000.

Figure 4(a) presents the performance of the original (main-memory) Weka imple-
mentation compared to WekaDB with a buffer on the AVIRIS dataset. The results are
consistent with those on the synthetic data: Weka can only handle 35000 instances,
roughly 10% of the size of the original data set. WekaDB is roughly 1000 times slower
at 35000 instances, but can handle the entire data set successfully. Performance scales
linearly with the number of instances. The reason for the large discrepancy in running
time is the number of attributes, which is much larger than for the synthetic data. Very
similar results are obtained with Naive Bayes.

For k-means clustering, the comparison of Weka, WekaDB and buffered WekaDB
is very similar to those presented before, so we omit it here. Instead, Fig.4(b) com-
pares WekaDB using a buffer to a k-means algorithm proposed by Ordonez [10], which
also stores the data in a database and re-implements the computation in the database.
This algorithm takes particular care to take advantage of any database-specific opti-
mizations. We refer to it as DB2-SQL. As expected, the optimized algorithm can scale
better (since there are no limiting memory data structures), and is faster for the partic-
ular number of clusters requested (k = 2). However, further analysis of the algorithms
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shows an interesting trend. Fig. 5 shows the behavior of the two algorithms as we vary
the number of clusters between 5 and 20, for different dataset sizes. As the number
of clusters increases, the computation time of WekaDB grows linearly, while that of
DB2-SQL grows super-linearly. Hence, when there are many clusters, the simple k-
means algorithm in WekaDB outperforms the specialized DB2-SQL implementation.
As the number of instances also increases, WekaDB has even better performance. This
is due to the fact that in the DB2-SQL implementation, the cluster centers and all aux-
iliary memory structures are in the database. As instances have to be compared to the
cluster centers in order to decide where they belong, the computation time degrades.
Also, larger numbers of clusters typically require more iterations of the algorithms. In
WekaDB, since the number of clusters is still relatively small, a lot of the processing is
done in main memory, which makes it much faster.

8 Conclusions

This paper presented an approach to the integration of learning algorithms with rela-
tional databases. We built an extension of the well-known Weka data mining library,
WekaDB, which allows the data used by the learning algorithms to reside on secondary
storage. This change is transparent to the developers of machine learning algorithms.
Our empirical results show that this approach provides scalability up to very large data
sets. From the point of view of evaluating empirically the performance of new data
mining algorithms, we believe that WekaDB provides an interesting benchmark, since
it provides a faithful implementation and execution of the learning algorithms. Other
approaches, such as resampling and special-purpose algorithms, can be compared to it
in terms of accuracy, as well as scalability and computation time. Also, in principle,
WekaDB allows any new algorithms that are added to the Weka package to be able to
work immediately on data stored in a database, without any further modifications. We
currently work on removing the remaining memory limitation for WekaDB, by elimi-
nating the need to have an internal memory data structure linear in the size of the data
set. The idea is to store the position as additional attribute in the dataset table.
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Abstract. In propositional domains using a separate test set via ran-
dom sampling or cross validation is generally considered to be an unbi-
ased estimator of true error. In multirelational domains previous work
has already noted that linkage of objects may cause these procedures
to be biased and has proposed corrected sampling procedures. However,
as we show in this paper, the existing procedures only address one par-
ticular case of bias introduced by linkage. In this paper we therefore
introduce generalized subgraph sampling, a sampling procedure based on
bin packing, which ensures that test sets are properly chosen to match
the probability of reencountering previously seen objects and which in-
cludes previous approaches as a special case. Experiments with data from
the Internet Movie Database illustrate the performance of our algorithm.

1 Introduction

In machine learning one typically assumes that the true classification of an ob-
ject depends only on the object itself and, given the object, is independent of the
classification of other objects. In this case, the observed sample error on a suffi-
ciently large and randomly chosen independent test set is an unbiased estimator
of true error. However, many applications rely on relational data where the label
of an object may probabilistically depend on the labels and/or attributes of other
related objects or shared parts of objects (”autocorrelation”). As pointed out by
[1], whenever there is autocorrelation, the observed error on a randomly chosen
test set may not be an unbiased estimator anymore. In [1] this issue is addressed
using subgraph sampling, which however completely eliminates the dependency
between training and test sets and thus is applicable only to problem settings
where future data never link to previously seen data.

In this paper we therefore propose generalized subgraph sampling (GSS), a
sampling procedure based on bin packing, which ensures that test sets are prop-
erly chosen to match the probability pkn

S of reencountering previously seen ob-
jects and which includes subgraph sampling as a special case for pkn

S = 0. In the
following section we first introduce the issues associated with autocorrelation in
more detail and then present the GSS algorithm in Section 3. We experimen-
tally compare two variants of our sampling algorithm with random sampling in
Section 4. The paper concludes with a summary and further challenges for error
estimation using multirelational data.

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 668–672, 2006.
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2 Linkage Bias in Multirelational Domains

In multirelational domains the assumption of independent instances cannot be
taken for granted. Let us consider an example that clearly shows the dependen-
cies between objects due to linkage and autocorrelation [1]. The Internet Movie
Database1 (IMDb) stores information on over 450,000 movies, including actors,
producers, studios and box office receipts. We regard the learning task to predict
whether a movie has box office receipts of more than $2 million given information
about the studio that made the movie. More formally, the application consists
of two kinds of objects, movies X and studios A. Figure 1 shows the relevant
structure of the movie data set. We will refer to a studio a ∈ A as a neighbor of
a movie x ∈ X if the studio produced that movie. The set of movies sharing the
same studio a forms the neighborhood of a. The degree δa specifies the number
of movies produced by studio a.

Fig. 1. Internal structure of the movie data

If we proceed as usual to estimate the error of a hypothesis and divide the
movie data into a training and test set randomly (according to some split pro-
portion), we will very likely assign movies of the same studio to both resulting
sets. A dependency between the training and test set arises as the sets share
some of their neighbors. In fact, when using random splits the relative frequency
of common neighbors increases with the chosen split ratio between training and
test set [2]. How does this dependency influence the error estimate? Since the la-
bels of movies produced by the same studio are correlated (it is plausible that big
studios will make many movies with big box office receipts), any learner capable
of exploiting relations (in particular probabilistic relational learners [3, 4, 5]) will
form a hypothesis that exploits the known objects, and thus will make fewer
errors predicting the label of movies from known studios than of movies from
unknown studios. Thus, the more objects with known neighbors are in the test
set, the lower the estimated error will be even though the hypothesis is the same.
This has led [1] to postulate that the dependency between the training and test
set should be removed. They present a procedure, subgraph sampling, which en-
sures that any information (in this case studios) shared between different objects
is included in either the training or the test set and thus eliminates the above
mentioned bias in error estimation.

1 http://www.imdb.com
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This approach, however, considers only the application setting in which the
studios of all future movies have never been seen before. Yet, in many applica-
tions future objects that we need to classify with our induced hypothesis will
actually have known neighbors. In the movie domain it is quite likely that a new
movie will be produced by one of the already existing studios. Therefore, the er-
ror will be overestimated if the links between training and test set are removed
completely. Instead, the test set should reflect the probability that a randomly
drawn (future) object is linked to known neighbors. We call this probability the
known neighbor probability.

Definition 1 (Known Neighbor Probability). For an instance space X, a
distribution DX , a sample S, a set A of neighbors and a function nb : X →
A assigning to each instance x ∈ X its neighbor a ∈ A, the known neighbor
probability for an instance x randomly drawn according to DX is defined as
pkn

S := P
(
nb(x) ∈ ⋃s∈S nb(s)

)
.

Given a sample S, the known neighbor probability pkn
S is a domain property.

In a transductive learning setting or a context where the distribution over the
complete instance space were known, its computation would be straightforward.
In most cases, however, the known neighbor probability must be supplied by the
user based on application considerations.

3 Generalized Subgraph Sampling

In order to arrive at an unbiased estimate, the fraction of objects in the test set
with neighbors also present in the training set should match the known neighbor
probability. How can this goal be achieved? Above we already remarked that ran-
dom sampling is incapable of establishing the known neighbor frequency, as the
amount of related objects in the test set varies with the chosen training/test set
split proportion2. Therefore, we propose generalized subgraph sampling (GSS),
which is a sampling procedure based on the known neighbor probability. It en-
sures that for a given data sample S, known neighbor probability pkn

S and a
chosen split proportion ptrain the resulting test set contains the same propor-
tion of objects with known neighbors with respect to the training set as specified
by the known neighbor probability. GSS includes subgraph sampling as proposed
by [1] as a special case for pkn

S = 0.
The task to install the known neighbor probability into the test set can be

considered as a bin packing problem. In general, bin packing requires to pack a
set of items into a number of bins such that their total weight does not exceed
some maximum value. More specific, GSS needs to fill three bins. The first bin,
Strain, contains the training instances. The second and third bin, Stest,rel and

2 In certain domains, natural temporal splits can be used to form test sets. Alterna-
tively, if we do not require an error estimate for a single user presentable hypothesis,
it would be possible to induce and evaluate two hypotheses (on completely known
vs. on completely unknown test data) and then average according to pkn

S [6].
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Stest,ind, contain the test instances which are either related to or independent of
instances in the training set respectively. We designed two versions of GSS. The
first version (Simple) prefers neighbors with a small degree in order to sustain
the specified bin sizes and is allowed to adjust the chosen split proportion if
necessary. The second version (Modified) chooses all objects randomly, yet may
discard data tuples to preserve the known neighbor probability as well as the
chosen split ratio. Algorithm 1 depicts Part 1 and 2 of GSS Simple, which satisfy
the specification if the sample contains a sufficient number of neighbors with
degree δa > 1. We indicate a subset by adding a subscript to the name of the
originating set, e.g. Stest denotes the test set created from sample S and Sa

denotes the neighborhood of neighbor a. The sizes of S, Stest,rel and Stest,ind

are denoted by n, ntest,rel and ntest,ind respectively. For further details see [2].

Algorithm 1 GSS Simple (Part 1 and 2).
Input: sample S, split proportion ptrain, 13: ntest,rel = (|Stest,ind|/(1− pkn

S )) · pkn
S

known neighbor probability pkn
S 14: while |Stest,rel| < ntest,rel

Output: Strain, Stest and |S| > 0 do
1: Strain = Stest = Stest,kn = 15: choose a ∈ A randomly

Stest,ind = ∅ 16: if |Sa| ≥ 2 then

2: ntest,rel = |S| · (1 − ptrain) · pkn
S 17: choose two objects s1, s2 ∈ Sa

3: ntest,ind = |S| · (1− ptrain)(1− pkn
S ) 18: Stest,rel = Stest ∪ {s1}

4: # Part 1: fill bin Stest,ind 19: Strain = Strain ∪ {s2}
5: compute set A of neighbors and 20: S = S\{s1, s2}

neighborhood Sa for each a ∈ A 21: else
6: while |Stest,ind| < ntest,ind do 22: Strain = Strain ∪ Sa

7: choose a ∈ A with smallest δa 23: S = S\Sa

8: Stest,ind = Stest,ind ∪ Sa 24: A = A\{a}
9: S = S\Sa 25: end if

10: A = A\{a} 26: end while
11: end while 27: Strain = Strain ∪ S
12: # Part 2: fill bin Stest,rel 28: Stest = Stest,ind ∪ Stest,rel

4 Experiments

We evaluated both variants of our algorithm on data from the IMDb and com-
pared their performance against random sampling. Table 1 on top shows the
achieved known neighbor probabilities for three chosen split proportions. As can
be seen, both versions of our algorithm are successful in ensuring the required
known neighbor probability of 0.45 regardless of the split proportion. As ex-
pected, the known neighbor probability obtained by random sampling varies as
the chosen split proportion changes. The bottom of Table 1 shows that both al-
gorithms produce exactly the required sizes at a split proportion of 0.7 and 0.9.
For a chosen split proportion of 0.5 both algorithms yield significantly enlarged
training sets, which results from an unexpected large number of neighbors with
δa = 1.
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Table 1. Top: average obtained known neighbor probability for a target pkn
S = 0.45;

bottom: average obtained split proportion and percentage of unused objects

algorithm KNP, split prop. = 0.5 KNP, split prop. = 0.7 KNP, split prop. = 0.9
Random 0.3184 ± 0.0182 0.3669 ± 0.0247 0.4014 ± 0.0467
Simple 0.4501 ± 0.0000 0.4502 ± 0.0000 0.4499 ± 0.0000
Modified 0.4500 ± 0.0026 0.4498 ± 0.0005 0.4494 ± 0.0009

split prop. = 0.5 split prop. = 0.7 split prop. = 0.9
algorithm resultant split unused resultant split unused resultant split unused
Random 0.5002 ± 0.0000 0.0000 0.7000 ± 0.0000 0.0000 0.9001 ± 0.0000 0.0000
Simple 0.5779 ± 0.0000 0.0000 0.6998 ± 0.0000 0.0000 0.8999 ± 0.0000 0.0000
Modified 0.6465 ± 0.0119 0.0014 0.7014 ± 0.0007 0.0013 0.9000 ± 0.0002 0.0011

5 Conclusion and Future Work

In relational domains it is well known that high linkage and autocorrelation cause
a bias in test procedures. Therefore, sampling procedures must be adjusted to
provide for an unbiased error estimate. Present approaches only address the spe-
cial case where no further dependencies between the data sample and randomly
drawn future objects are expected. We propose a sampling procedure that con-
trols the amount of dependent objects in the test set. Our evaluation shows that
GSS is an effective sampling procedure that guarantees to partition a sample
according to a given known neighbor probability.

So far our procedure relies on the user to provide the known neighbor prob-
ability. It is a topic of future research to investigate whether certain conditions
allow to estimate the known neighbor probability directly from the data sample.
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Abstract. This paper addresses subtle aspects of graph mining using an SQL-
based approach.  The enhancements addressed in this paper include detection of 
cycles, effect of overlapping substructures on compression, and development of 
a minimum description length for the relational approach. Extensive 
performance evaluation has been conducted to evaluate the extensions. 

1   Introduction 

Database mining has been a topic of research for quite some time [1-4]. Graph mining 
uses the natural structure of the application domain and mines directly over that 
structure. Graphs can be used to represent structural relationships in many domains. 
Subdue [5] is a mining approach that works directly on graph representation. 

Subdue identifies interesting and repetitive substructures within the structural data. 
Subdue uses the principle of minimum description length [6] (or MDL) to evaluate 
the substructures. The major drawback of main memory algorithms is their scalability 
to larger problems. The DBMS version of Subdue is called DB-Subdue [7]. The input 
(which is a graph) is represented using relations and operations use joins (or other 
relational operations) for mining repetitive substructures.  This paper extends the DB-
Subdue (termed EDB-Subdue [8]). This paper proposes an approach to handle cycles 
and overlaps in a graph. This paper also addresses a new technique for evaluating the 
substructures, which is both scalable and capable of distinguishing the best 
substructure among substructures of equal size and frequency.  

The rest of this paper is organized as follows. Section 2 discusses the related work 
briefly. Section 3 discusses the design issues for the various enhancements that have 
been added to DB-Subdue. Section 4 presents performance evaluation including 
comparison with the Subdue algorithm. Section 5 has conclusions. 

2   Related Work 

Related work include AGM (Apriori-based Graph Mining) [9], gSpan (graph-based 
Substructure pattern mining) [10], FSG (Frequent SubGraph discovery) [11] and 
                                                           
*  This work was supported, in part, by  NSF (grants IIS-0097517, IIS-0326505, and EIA-

0216500). 
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Subdue [5]. AGM is a mathematical graph theory based approach which mines a 
complete set of subgraphs mainly using support measure. gSpan is a depth first search 
based canonical labeling approach, that uses a canonical tree representation of each 
graph instead of the adjacency matrix. FSG aims at discovering subgraphs which 
occur frequently over the entire set of graphs. Also the scope of all the above frequent 
item set mining algorithms differs entirely from the scope of EDB-Subdue which 
aims at discovering the best pattern within  a forest of graphs as opposed to 
discovering frequent patterns in a large database of graphs.  

3   Extensions to DB-Subdue (EDB-Subdue) 

Database Minimum description length principle (DMDL) is a heuristic based on the 
minimum description length principle (MDL) [6]. Although the MDL principle is 
accurate, it cannot be applied directly to database representations (based on the 
number of 1’s in the adjacency matrix) and is computationally expensive.  On the 
other hand, DB-Subdue’s frequency heuristic scales well for large datasets. DB-
Subdue cannot distinguish between substructures that have the same number of 
vertices and edges and having the same frequency of occurrence. These attributes 
form the signature of a substructure. The adjacency matrix in the MDL principle 
plays a vital role in distinguishing between two substructures with the same signature. 
For example, in the graph shown in Fig. 1, there are two substructures, each appearing 
twice in the graph. 

 

Fig. 2 (graph1) and Fig. 3 (graph2) show two sub graphs with the same signature 
substructures. The adjacency matrices for the two graphs are different even though 
they have the same number of vertices 
and edges. The number of bits needed 
to encode Fig 1 is less than the bits 
required to encode Fig 2. This is 
because for Fig 2 there is only one 
row in which there are 1s. But for Fug 
3, both the first and second rows have 
1s. As a result, two rows have to be 
represented in the second case 
whereas only one row has to be 
represented in the first case. For the input graph in Fig. 1, if graph compression is 
performed using the first substructure the resultant MDL value is 1.14539 and if the 

 

Fig. 1. Input Graph Example 

  

Fig. 2. Sample Graph1 Fig. 3. Sample Graph2 
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graph is compressed using the second substructure the MDL value obtained is 
1.12849. Therefore, the MDL principle ranks graph1 higher than graph2.    

MDL     =  DL(G) /  DL(S) + DL(G|S) 
In the above formula, the lesser the number of bits needed to represent DL (S) + 

DL (G|S), the better is the substructure. The DMDL principle uses this representation 
difference for distinguishing same signature substructures. The DMDL value is 
calculated using a formula that helps us achieve the goal of differentiating same 
signature substructures.  

DMDL =  Value (G) /  Value(S) + Value(G|S) 
In the above formula, ‘G’ represents the entire graph, ‘S’ represents the 

substructure and ‘G|S’ represents the graph after it has been compressed using the 
substructure S. 

    Value(G) = graph_vertices + graph_edges 
    Value(S) = sub_vertices + uniquesub_edges 
    Value(G|S) = (graph_vertices – sub_vertices *  count + count)  +  
                                   (graph_edges – sub_edges * count) 

Value (G) in the above formula represents the value of the entire graph. Value (S) 
represents the value of the substructure. Value (G|S) represents the compressed graph 
(replacing all the instances of the substructure in the graph). The parameter 
uniquesub_edges is calculated as the number of unique extensions in the substructure. 
This is because extensions are the only way we can determine how vertices are 
connected within a substructure. For the graph in Fig. 2 the extensions are 1, 1, as the 
second vertex is extended from the first vertex and the third vertex is also extended 
from the first vertex. Therefore the uniquesub_edges value is 1. The value 1 indicates 
that only one row of 1’s are present in the corresponding adjacency matrix. For the 
graph shown in Fig. 3, the extensions are 1, 2 as the second vertex is extended from 
the first vertex and the third vertex is extended from the second vertex. The 
uniquesub_edges value is 2 indicating that there are two rows of 1’s present in the 
corresponding adjacency matrix. Therefore, without computing the adjacency matrix 
for the substructure the same effect is obtained in the DMDL value. The DMDL value 
for the graph of Fig. 2 is 1.1481 and the value for graph of Fig. 3 is 1.1071. Hence, 
the first substructure is a better substructure than the second substructure as it has a 
higher value. In general, for higher edge substructures having the same signature, 
substructures with vertices having a higher out-degree are better substructures.  

Detecting Cycles: Detecting cycles is important when dealing with graph mining 
algorithms. The main problem with the DB-
Subdue algorithm is the fact that it loops 
within a cycle after detecting the same. In 
DB-Subdue, the substructure in Fig 4 will be 
extended to the substructure shown in Fig 5. 
However, this extended substructure does not 
exist in the input graph. Therefore this 
extension needs to be detected and avoided. 
This might also affect the best substructure that is discovered. Cycles are detected by 
checking if the vertex number of any vertex in the new substructure formed is already 

  

Fig. 4. Cycle Fig. 5. Cycle extension 
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present in the substructure. The conditions to prevent cycles are formalized as 
follows: 

In the subgraph V1, V2…Vj, Vj + 1…Vj + k, Vj there is a cycle as the vertex Vj 
appears twice. We need to eliminate expansion from the second occurrence of Vj, 
as it is the repetition of a vertex already present in the substructure. This is done 
by making the second occurrence of Vj different from the first occurrence of Vj 
(by modifying the vertex number). This prevents expansion from the second 
occurrence of Vj as its new value is not present in the input graph. The basic idea 
is to prevent that vertex from expanding further. The computation will not be 
affected in any manner, as the main objective is to substitute the repeated vertex 
with a vertex not present in the input graph. For example, in Fig 4 and Fig 5, for 
the extension from 3 → 3, vertex 3 repeats again and the presence of a cycle can 
be deduced. As the cycle is now detected, extension from the second occurrence 
of vertex 3 should be prevented. This is achieved by changing the vertex number 
to a value that is not present in the graph. This prevents the extension from the 
second occurrence of vertex 3, as the modified vertex value will not match any 
vertex in the input graph. 

In general, each time a new vertex is added, it is checked to see if that vertex is 
already present in the substructure. If so, then the vertex number is changed to prevent 
future expansions from that vertex.  

Overlapping Substructures: Two or more instances of a substructure are said to 
overlap if they have a common substructure between them. 

We will first explain how overlap is avoided in a two-vertex substructure and then 
generalize it to higher-vertex overlap. An example of a two-edge substructure overlap 
is shown in Fig 6. In this example there are two instances of the substructure ‘CDE’ 
that are overlapping and the overlapping 
substructure among them is ‘CD’. Since both 
the first and second vertex is overlapping, only 
one of the overlapping instances of the 
substructure must be considered for counting 
the number of instances of the substructure 
‘CD’. This problem is solved by only counting 
one instance; the instance with the greatest third 
vertex value while the count is computed. In the 
example, the substructure ‘CDE’ will have 
count of one rather than two, as the substructure 
‘CD’ is overlapping.  

In general, for a higher-edge substructure, if there is an overlap on any of the 
vertices other than the last vertex, then only the overlapping instance that has the 
greatest last vertex value is included for computing the count. In case of an overlap on 
the last vertex, each vertex is checked starting from the vertex previous to the last one 
until the first vertex and the non-overlapping vertex is determined. Only the 
overlapping instance that has the greatest non-overlapping vertex value is included for 
calculating the count. Therefore when overlap is avoided the count of the substructure 

 

Fig. 6. Two edge substructure overlap 
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as computed as follows: No. of instances of the substructure = No. of non-overlapping 
instances + one overlapping instance. 

4   Performance Evaluation 

This section discusses the performance comparison between Enhanced DB-Subdue 
and Subdue main memory algorithm for various datasets. We used Oracle 9i, running 
on Linux, and Intel Xeon dual processor with 2GB of RAM. The set of experiments 
that were performed included datasets that had cycles. The substructures that were 
embedded are shown in Fig 7 and 8 respectively. The experiments were performed 
only between Enhanced DB-Subdue and Subdue main memory, as DB-Subdue cannot 
handle cycles. The enhanced DB-Subdue includes all the additional functionality 
(DMDL, Cycles and overlap). As it can be seen from the comparisons, the Enhanced 
DB-Subdue performs better than the main memory algorithm for large datasets. The 
running times using a beam value of 4 is shown in Fig. 9.  Experiments were also 
performed for a beam value of 7 and 10 respectively. Fig. 9 clearly indicates that after 
incorporating all the features of Subdue into EDB-Subdue, it still outperforms 
Subdue. In addition, the main-memory Subdue would not handle data sets larger than 
20K vertices and 40K edges (hence there are no performance values beyond 20K data 
sets) where as the EDB-Subdue could easily handle 800K vertices and 1600K edges. 
The graph is plotted on a log scale. 

  

Fig. 7. Substructure1 with cycles Fig. 8. Substructure2 with cycles 

 

Fig. 9. Graphical Comparison of the approaches 
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5   Conclusions 

The enhancements addressed in this paper include detection of cycles and handling 
overlapping substructures. All the enhancements were implemented using SQL. The 
experiments clearly demonstrate the scalability of the algorithm even after adding all 
the functionality. 
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Abstract. The integration of multimedia semantics is challenging due to the 
feature-based representation of multimedia data and the heterogeneity among 
data sources. From human viewpoint, multimedia data objects are often consid-
ered as perceptions of the real world, and therefore can be represented at a se-
mantic-entity level in the linguistic domain. This paper proposes a paradigm 
that facilitates the integration of multimedia semantics in heterogeneous distrib-
uted database environments with the help of linguistic analysis. Specifically, we 
derive a closed set of logic-based form expressions for the efficient computation 
of multimedia semantic contents, which include conceptual attributes and lin-
guistic relationships into the consideration. In the expression set, the logic terms 
give a convenient way to describe semantic contents concisely and precisely, 
providing a representation of multimedia data that is closer to human percep-
tion. The space utilization is also improved through the collective representation 
of similar semantic contents and feature values. In addition, the optimization 
can be easily performed on logic expressions using mathematical analysis. By 
replacing long terms with equivalent terms of shorter lengths, the image repre-
sentation can be automatically optimized. Using a heterogeneous database in-
frastructure, the proposed method has been simulated and analyzed. 

1   Introduction 

In recent years, the rapid expansion of multimedia applications, partly due to the ex-
ponential growth of distributed and portable computing devices, has proliferated over 
the daily life of computer users. Consequently, research on multimedia technologies is 
of increasing importance in computer society. In contrast with the traditional text-
based systems, multimedia applications usually incorporate much more powerful 
descriptions of human thought – video, audio, and images. Moreover, the large collec-
tions of data in multimedia systems make it possible to resolve more complex data 
operations such as imprecise query or content-based retrieval. However, the conven-
iences of multimedia applications come with challenges to the existing data manage-
ment schemes: 

First, multimedia applications generally require more resources; however, the stor-
age space and processing power are limited in many practical systems, e.g., mobile 
devices and wireless networks [1,10]. Due to the large data volume and complicated 
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operations of multimedia applications, new methods are needed to facilitate efficient 
representation, accessing, and processing of multimedia data while considering the 
technical constraints. 

In addition, there is a gap between user perception of multimedia entities and physi-
cal represent-and-access mechanism of multimedia data. Users often browse and desire 
to access multimedia data at the object level (“entities” such as human beings, animals, 
or buildings). However, the existing multimedia retrieval systems tend to represent 
multimedia data based on their lower-level features (“characteristics” such as color 
patterns and textures), with little regard to combining these features into objects [2]. 
This representation gap often leads to unexpected retrieval results. The representation of 
multimedia data according to human’s perspective is one of the focuses in recent re-
search activities; however, few existing systems provide automated identification or 
classification of objects from general multimedia data collections. 

Moreover, the collections of multimedia data are often diverse and poorly indexed 
[3]. In a distributed environment, due to the autonomy and heterogeneity of data 
sources, multimedia objects are often represented in heterogeneous formats [4]. The 
difference in data formats further leads to the difficulty of incorporating multimedia 
objects under a unique indexing framework. 

Last but not the least, the present research on content-based multimedia retrieval is 
based on feature vectors. These features are extracted from the audio/video streams or 
image pixels, with the empirical or heuristic selection, and then combined into vectors 
according to the application criteria. Due to the application-specific multimedia data 
formats, this paradigm of multimedia data management lacks scalability, accuracy, 
efficiency, and robustness [3]. 

Motivated by the aforementioned challenges, in this work we introduce a semantic-
aware paradigm that organizes the multimedia data objects based on concise and 
abstract description of data contents, and summarizes the data contents from different 
data sources as semantically equivalent and globally recognizable terms. To show the 
feasibility and effectiveness of the proposed paradigm, a simulator was developed to 
compare and contrast our method against several content-based searching methods as 
proposed in the literature. 

The remaining part of this paper is organized into three sections: Section 2 briefly 
overviews the related work and background materials. Section 3 addresses the semantic 
representation of multimedia data objects and introduces an automated linguistic ap-
proach of integrating multimedia semantics. Finally, section 4 draws the paper into 
conclusions. 

2   Preliminaries 

2.1   Content Analysis  

Due to the aforementioned importance of multimedia content processing, recent re-
search work focused on organizing multimedia data based on their contents [1]. Con-
tent-based retrieval systems have attempted to provide solutions to multimedia 
searching based on specific features [3]. Most of these systems support searches on 
low-level features such as colors, textures, or shapes of images. However, in most 
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practical cases, the semantic contents of multimedia objects may not be indicated as 
low-level features. As pointed out by Wang et al. [5], human beings tend to view 
images as whole objects. This object-oriented view on multimedia content processing 
has led to the research on two tracks: single-modal content processing and cross-
modal content processing. 

The single-modal processing focuses on content information within a single modal-
ity, such as image or audio. Most previous research topics in this area were highly 
domain-specific applications (such as face recognition [6]), with less emphasis on 
general-purpose object detection methods [7]. Moreover, the probabilistic schemes 
(Bayesian and etc.) employed in the earlier research needed large training data and 
sometimes user feedback to classify and detect objects of interest. 

The cross-modal processing obtains content information by fusing visual-audio 
data and retrieving camera operations such as zooming or tracking. The recent re-
search has focused on context-extraction models (Latent Semantic Index, Canonical 
Correlation Analysis, and etc.) to obtain semantic contents from video frames [8]. 
However, the extraction of semantic contents is a time-consuming task that includes 
complex matrix computations. 

However, multimedia applications usually generate large volume of data. As a re-
sult, instead of direct manipulation of raw multimedia data, it is more practical to 
sketch the multimedia content using some concise representation. Hence, there is a 
need for a set of quantitative parameters that can be used for multimedia content rep-
resentation as well as content-based operations such as similarity comparisons. 

In most content-representation systems that have advanced in the literature [1], the 
content of each multimedia object is described as a combination of features. If we 
consider each feature as a dimension, a multimedia object can also be considered as a 
vertex in the high-dimensional feature space. Different multimedia objects are charac-
terized by different feature values, therefore scattering in separated regions of the 
high-dimensional feature space. The boundaries between these regions distinguish the 
content differences between multimedia objects. Generally, the boundaries cannot be 
described by linear discriminant equations [7]; hence, some refined description meth-
ods (e.g. Gaussian mixtures, neural networks, and principle component analysis) are 
employed for classifying multimedia objects based on their features [11]. The feature 
extraction is the process of mapping multimedia objects into vertices in feature space. 
The extracted features are usually domain-specific characteristics that can distinguish 
the “object of interest” from a large number of multimedia objects. 

There are two common types of features in multimedia retrieval systems: granule-
level features and object-level features. The granule-level features are those character-
istics that are derived directly or indirectly from the original format of multimedia 
storage — i.e., the pixels, such as hue, textures, and saturation. The object-level fea-
tures, in contrast, are obtained from the recognition of the higher-level understanding 
of the multimedia data — the semantic topics of the multimedia data. 

Most existing multimedia retrieval systems tend to use granule-level features for 
content representation. This is mainly due to the difficulty of obtaining object-level 
semantic concepts from multimedia raw data [7]. However, human’s perception of 
multimedia data is always at an object-level, instead of focusing on granule-level 
features such as color histogram or texture. Hence, research on object detection is 
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becoming important in recent years, and many models were proposed for efficient 
extraction of objects from multimedia data. 

Object detection is a pattern recognition problem with two classes of involved pat-
terns: possible objects versus “non-objects”, where “non-objects” refer to the class of 
background patterns. The major challenge in object detection is the definition of distinc-
tions between objects and non-objects. An object detector must cope with both the 
variation within the object category and with the diversity of visual components that 
exist in the world at large. For instance, human faces vary in color, aging, facial expres-
sion, and in small disguises such as the facial hair, glasses, or cosmetics. The illumina-
tion conditions, viewing directions or poses may also affect the appearance of human 
faces. Moreover, the detector for “faces” must also distinguish human faces from all 
other visual patterns that may occur in the world, such as similar looking objects. 

Based on domain-specific knowledge or empirical observations, several experi-
mental systems were built for detection of certain types of multimedia objects, such as 
face identification from images or video segments [12]. However, it is much more 
complex to build an object-detection system for general-purpose recognition of ob-
jects, such as analyzing the animals in a given image. Normally, most existing object-
detection systems do not guarantee complete accuracy in recognizing visual objects; 
instead they provide approximate recognition for given objects. As mentioned before, 
a multimedia system usually maps multimedia data objects to vertices in a high-
dimensional space of granule-level features. A given multimedia data object may 
reside in small region, surrounded by other objects that are semantically similar to it. 
Bigger distance between vertices in the feature space means smaller content similarity 
between multimedia data objects. 

2.2   Logic-Based Semantic Description 

To represent the contents of multimedia data objects in a computer-friendly struc-
tural fashion, we now describe a way of organizing the data objects into layers ac-
cording to their semantic contents.  

Definition 1: The Elementary Entities 
The elementary entities are those data entities that semantically represent basic ob-
jects (objects that cannot be divided further). Let E = f1 ∧ f2 ∧ …∧ fn, where fi = pi1 ∨ 
pi2 ∨… ∨ pim is the disjunction of some logic predicates (true/false values) and pi1 … 
pim form a logic predicate set Fi. The semantic content of an elementary entity can 
then be defined as: 

E = ∧
=

n

i 1

(∨
=

m

j 1

pij),  for every pij ∈ Fi (1) 

Definition 2: The Multimedia Data Objects 
A multimedia data object is the combination of a series of elementary entities. Given 
the above definition of elementary entities E1, E2, …, Ek, the content of a multimedia 
data object can be defined as: 

S = 
k

i 1=

Ei. (2) 
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As noted in definition 2, a multimedia data object is considered as a combination 
of logic terms, whose value represents the semantic content. The analysis of semantic 
contents is then converted to the evaluation of logic terms and their combinations. 
This content representation approach has at least the following advantages: 

1. The logic terms provide a convenient way to describe semantic contents con-
cisely and precisely. Easy and consistent representation of the elementary entities 
based on their features simplifies the semantic content representation of complex 
data objects using logic computations. As a result, the similarity between data ob-
jects can be considered as the equivalence of their corresponding logic terms. 

2. This logic representation of multimedia content is often more concise than feature 
vector. In a specific multimedia database system, the feature vector is often fixed 
sized to facilitate the computation and representation. However, some features may 
be null in many cases. Although these null features do not contribute to the seman-
tic contents of multimedia data objects, they still occupy space in the feature vec-
tors  hence, lower storage utilization. In contrast, the logic representation can im-
prove storage utilization by eliminating the null features from logic terms. 

3. Compared with feature vectors, the logic terms provide an understanding of mul-
timedia contents that is closer to human perception. 

4. Optimization can be easily performed on logic terms using mathematical analy-
sis. By replacing long terms with mathematically equivalent terms of shorter 
lengths, the multimedia data representation can be automatically and systematic-
cally optimized. 

5. Based on the equivalence of logic terms, the semantically similar objects can be 
easily found and grouped into same clusters. This organization facilitates the con-
tent-based nearest-neighbor retrieval, and at the same time reduces overlapping 
and redundancy, resulting in efficient search and storage utilization. 

3   Semantics Integration 

3.1   Logic Expression Set 

Given the set of multimedia data objects that are represented as combination of ele-
mental logic expressions, the semantic relationships between these data objects can be 
described using a closed set of logic formula: Let IS = {S1, …, Sn} denote a collection 
of objects obtained from the complete set of multimedia data objects, and IQ = {Q1, 
…, Qn} denote the list of content-based queries submitted during a period of time. 
Because any practical multimedia database only consists of limited number of data 
objects, the corresponding data object set should also be of limited cardinality. And 
the semantic contents of any data object in this database can be represented as the 
combination of several objects from the object set IS. 

Definition 3: The Instance-Of Relationship 
The semantics of a given multimedia data object could be annotated as a word . 
Then an on-line thesaurus  (e.g. Roget’s thesaurus or Wordnet) can be used to define 
the inter-relationship between the data objects. For two given data objects Si and Sj, if 
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i describes a generic concept that includes j, then Sj contains a hyponym of Si, or Sj 

is an instance of Si, denoted as Si ⎯→←  Sj. 

Definition 4: The Is-A Relationship 
The is-a relationship is the controversial of instance-of relationship. In the above 
definitions, Si contains a hypernym of Sj, or Si is an extended concept of Sj, denoted 

as Si ⎯→←  Sj. 

It can be proven that the instance-of/is-a (or hypernym/hyponym) relationships are a 
pair of partial order relations, which shows the “inclusion” relationship between se-
mantic contents. Based on the hypernym/hyponym relationships, a Hasse diagram 
shaped hierarchy can be constructed to indicate the routes of searching semantic con-
cepts within a closed linguistic system. 

Definition 5: The Polysemy Relationship 
Some multimedia data objects may contain words that can be interpreted as ambigu-
ous semantic meanings, which are collectively defined as polysemy. The probability 
of polysemy in a multimedia dataset IS, denoted as (IS), can be defined as the per-
centage in the on-line thesaurus  of semantic lemmas that include non-tree-shaped 
branches in the Hasse diagram hierarchy, because the tree-shaped hierarchies are 
defined as single-ancestor relationships and therefore are free from polysemy. In other 
terms, the polysemy probability can be formalized as: 

(IS) = 

=

∈− ||

0||

||

|),(|

1
S

S

I

X

Ix
S

X

Ixenclosure
, for ∀ X ⊆  IS.                    (3) 

where enclosure(x, IS) returns all possible subsets of IS that completely cover the 
semantic content of x and not shared with other subsets. 

Definition 6: The Homology Relationship 
In a multimedia database, the homology relationships exist among the semantically 
similar data objects in different data formats, same-format data objects in different 
physical locations, and/or similar data objects in different data formats at different 
physical locations. Given two multimedia data objects Si and Sj, their homology rela-
tionship can be defined as: 

Si ⎯→←≡  Sj  iff (Si ⎯→←  Sj ∧ Si ⎯→←  Sj) is satisfied  (4) 

Definition 7: The Heterology Relationship 
The heterology relationship shows the opposite semantic features of two multimedia 
data objects (or linguistic concepts). For these two data objects, no matter in which 
linguistic domain, their semantic contents cannot have homology, instance-of, or is-a 
relationships. For instance, “in” and “out”, “up” and “down”, “move” and “stop” are 
concepts that can be represented as the annotations or semantic contents of images, 
and this type of concepts form the relationship of heterology denoted as: 

Si ⎯→←≠  Sj  iff ¬( Si ⎯→←  Sj ∨ Si ⎯→←  Sj) is satisfied (5) 
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Definition 8: The Share-With Relationship 
Given a multimedia data object and the content-relationship function as defined 
above, the share-with relationship returns a set of data objects that possess overlap-
ping contents with the semantics of the given data object. Formally, the set returned 
by share-with relationship can be defined as: 

Si ⎯→←  IS = { Sk | (IS) ∩  Si φ≠ }   (6) 

3.2   Content Integration 

We have two major goals in the content integration process as follows: 

• Specify the hidden semantic relationships among the multimedia data objects, and 
• Minimize the logic-based representation of the exported terms. 

These objectives allow higher QoS and performance, respectively. Inspired by the 
formation of Karnaugh Maps [9], we designed a combinatorial optimization table to 
shorten the complex combinations of features into condensed logic terms. The opti-
mization table is a k-dimensional table where k is the size of the feature sets represent-
ing the underlying multimedia data objects. As a result each table entry represents a 
multimedia data object. The semantics integration process is performed on this com-
binatorial optimization table in the following phases: 

Phase 1: Semantic domain partitioning 
The partitioning of semantic domain provides a means of representing and orga-

nizing multimedia data objects based on their semantic contents. Given a collection 
of semantically similar data objects, one can collectively represent them using the 
description of their common semantic features. 

Table 1. Notations related to semantic domain partitioning 

Symbols Notations 
I The set of terms 
G The set of semantic groups 
a(g) The cardinality of a group g 
t(G) The function of selecting a term from I with the mini-

mum overlapping with elements in  
S(x, G) The function selecting a group from  most related to x 

       Algorithm 1: Partitioning semantic domain 

  1. G = φ  
  2. x = t(I, G) 
  3. I = I – {x} 
  4. WHILE |I | > 0 DO 
  5.  g = s(x, G) 
  6.  IF (distance of x and g < threshold) 
  7. g = g U {x} 
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  8. create Boolean set with size log(a(g)) 
  9.  ELSE 
  10.   G = G U {{x}} 
  11.RETURN the Boolean variable sets 

The semantic terms are first translated into binary codes for convenience of proc-
essing  the terms are translated into a collection of Boolean variable sets. Assuming 
the data object set has n1, n2, …, nk distinct semantic groups, respectively, we need 
log2 ( (n1))  + log2 ( (n2))  + … + log2 ( (nk))  Boolean variables to represent the 

semantic groups. 

Phase 2: Similar content clustering 
A combinatorial optimization table is constructed. Each cell is labeled with a com-

bination of Boolean variables, either in the original form or in the complement form. 
As the indication of semantic content, the cells are filled with “1”s, “0”s, or “*”s. The 
“*”s indicate the non-applicable cases. Adjacent cells set to “1”s indicates the multi-
media entities share some common features. Hence, we can cluster the “neighboring” 
entities with the common features as a semantically similar group. The clustering 
process is performed as indicated in the following rules: 

• Each cluster contains 2k adjacent 1s in a rectangular region in the combinatorial 
optimization table (k is any non-negative integer). 

• The clusters with over 50% overlapping are merged into a larger cluster, which 
shows the share-with relationship as defined in section 3.1. 

• For the adjacent orthogonal clusters, check with the on-line thesaurus  and de-
termine whether they are under the same instance-of relationship. Merge the clus-
ters with same hypernym into a larger cluster which is labeled as their hypernym. 

Phase 3: Content-based retrieval 

Table 2. Notations related to content-based retrieval 

Symbols Notations 
t The semantic distance threshold 
R The set of returned query result 
Q The query multimedia data object 

Algorithm 2: Content-based retrieval 
1. initialize t 

2. R = φ  
3. IF (content clustering is finished) 
4. THEN convert Q into query terms 
5. FOR each term T in Q DO  
6.  compute the semantic distance with T 
7.  IF the semantic distance < threshold t 
8.  THEN  IF no further sub cluster 
9.   THEN put the similar data objects in R 
10.    IF the objects is not enough 
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11.    THEN increase the threshold t 
  pop a cluster and go to line 6 

 12.    ELSE go to line 17 
13.   ELSE  push current cluster in stack,  

decrease the threshold t, 
send query to sub clusters,  
and go to line 6 

14.   ELSE IF the current cluster is inaccessible 
15.       THEN increase the threshold t 

pop a cluster and go to line 6 
16.       ELSE push the current cluster in stack,  

send the query term to larger  
super cluster and go to line 5 

17. order the data objects in R and output 

Lemma 1: If each cluster in the Hasse diagram hierarchy has no less than m sub clus-
ters, then the height of the hierarchy is O (logm n), where n is the number of clusters. 

Theorem 1: If each node in the Hasse diagram hierarchy has no less than m sub clus-
ters, then the insertion, deletion and normal retrieval in this hierarchy are O (logm n). 

Proof. The insertion, deletion and normal retrieval are proved separately. 

1) The insertion of multimedia data objects starts at a non-dividable cluster and 
can be achieved in O (1) time. However, it may cause the continuous modifica-
tion of super clusters and make them rebuild cycles of homology. The modifi-
cation of clusters and elimination of old homology relationship links are O (1). 
If the proper hashing algorithms are employed, the searching of proper new 
homology cycles also has the O (1) time complexity. Since the height of the 
Hasse diagram hierarchy is O (logm n), there are at most O (logm n) clusters 
need to be modified. Consequently, the total complexity of insertion is O (logm 
n). 

2) The processing of deletion is generally similar as that of insertion. But it also 
needs to remove the useless homology relationships. This removal is also pro-
portional to the height of the hierarchy. As a result, the deletion is also 
achieved in O (logm n) time. 

3) As noted before, the normal retrieval is restricted in a sub branch of the Hasse 
diagram hierarchy. So the query processor examines at most 2* logm n clusters. 
At each cluster, the time cost is O (1). Thus the normal retrieval is also an O 
(logm n) process. 

Theorem 2: If each cluster in the Hasse diagram hierarchy has no less than m sub 
clusters, and the longest homology cycle has k clusters, then the nearest neighbor 
retrieval in this hierarchy is O (logm n + log2 k). 

Proof. As noted before, when processing the nearest neighbor retrieval, the system 
finds the semantically most similar data object and uses its homology cycle to find 
other data objects. The first step takes O (logm n) time. Since the system needs to 
order the data objects according to their semantic similarities, the second step takes O 
(log2 k) time. Consequently, the total time is O (logm n + log2 k). 
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4   Conclusions 

We proposed a novel content-aware retrieval model for multimedia data objects in 
heterogeneous distributed database environment. In contrast with the traditional fea-
ture-based indexing models, the proposed model employs a concise descriptive term 
to represent the semantic contents of multimedia objects. In short, the proposed model 
offers the following advantages: (1) the concise descriptions accurately represent the 
semantic contents of multimedia data objects using optimized logic terms; (2) the 
descriptive terms enable the search engine with capability of handling imprecise que-
ries. Our future work would include improvements of the proposed model, such as 
more efficient search strategies and adaptation to cross-modal multimedia data. 
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Abstract. Indexing of motion data is important for quickly searching
similar motions for sign language recognition and gait analysis and reha-
bilitation. This paper proposes a simple and efficient tree structure for
indexing motion data with dozens of attributes. Feature vectors are ex-
tracted for indexing by using singular value decomposition (SVD) prop-
erties of motion data matrices. By having similar motions with large vari-
ations indexed together, searching for similar motions of a query needs
only one node traversal at each tree level, and only one feature needs
to be considered at one tree level. Experiments show that the majority
of irrelevant motions can be pruned while retrieving all similar motions,
and one traversal of the indexing tree takes only several microseconds
with the existence of motion variations.

1 Introduction

Continuous motion data can be generated by many real-time and off-line appli-
cations in life sciences and animations, and can be employed for gesture recogni-
tion, gait analysis and rehabilitation, sports performance, film and video games
[8]. To decide whether a motion segment in a motion stream is a known motion
in a large motion database, or to recognize motions in the continuous motion
data, not only is a motion similarity measure needed [5], but also an efficient
and fast pruning algorithm is necessary. The pruning algorithm should prune
most impossible motions in a large database for a motion query in real time. To
prune motions efficiently and fast needs to address several challenges:

– Datasets of motions have multiple attributes. Each attribute describes the
angular values or coordinates of a joint of the motion subject, and dozens of
attributes are needed to capture a complete subject motion.

– Datasets of motions are high dimensional and even similar motions can have
different dimensions. One dimension is for one sampling of all attributes, and
every motion can have different durations and thus different dimensions.

Due to these issues, direct indexing of motion data is difficult and inefficient.
This paper proposes a new method for indexing motion data with dozens

of attributes. The feature vectors are extracted by obtaining the equal-length

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 689–698, 2006.
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dominating vectors from singular value decompositions (SVD) of motion data
and by reducing vector dimensionalities. Corresponding feature values of all mo-
tion patterns are partitioned into several intervals. Motion or feature vector IDs
are inserted into a tree of feature intervals by using the corresponding feature
values. To take into consideration motion variations, a feature ID is allowed to
be inserted into multiple neighboring feature intervals. Hence a feature vector
ID can be in multiple leaf nodes instead of in only one leaf node. Searching for
possible similar motions of a query needs only one node traversal at each tree
level and takes only several microseconds.

2 Related Work

Equal length multi-attribute sequences are considered in [2]. A CS-Index struc-
ture is proposed for shift and scale transformations. In [4], multi-attribute se-
quences are partitioned into subsequences, each of which is contained in a Min-
imum Bounding Rectangle (MBR). Every MBR is indexed and stored into a
database by using an R-tree or any of its variants.

Dynamic time warping (DTW) and longest common subsequence (LCSS) are
extended for similarity measures of multi-attribute data in [9]. Before the exact
LCSS or DTW is performed, sequences are segmented into MBRs to be stored in
an R-tree. Based on the MBR intersections, similarity estimates are computed
to prune irrelevant sequences.

Attributes of the data indexed in the previous work are less than ten. In
contrast, our proposed indexing structure can handle dozens or hundreds of
data attributes without loss of good performances. This work proposes a novel
indexing approach which is different from that in [6], making it possible to search
the indexing tree for similar motions in only several microseconds.

3 Geometric Structures Revealed by SVD

In this section, we give the definition and geometric interpolation of SVD for its
application to the indexing of multi-attribute motion data.

SVD exposes the geometric structure of a matrix A. If the multi-dimensional
row vectors or points in A have different variances along different directions and
columns of A have zero means, the SVD of matrix A can find the direction with
the largest variance. If columns of A do not have zero means, the direction along
which row vector projections have the largest 2-norm or Euclidean length can
be revealed by SVD. Figure 1 illustrates the data in an 18 × 2 matrix. The 18
points in the 18 × 2 matrix have different variances along different directions,
hence data have the largest variance along v1 as shown in Figure 1.

Along the direction of the first right singular vector, the projections of row
vectors in A have the largest 2-norm, and along the second right singular vector
direction, the projection 2-norm is the second largest, and so on. The singular
values reflect the Euclidean lengths or 2-norms of the projections along the
corresponding right singular vectors.
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y

x

v1

v2

Fig. 1. Geometric structure of matrix exposed by its SVD

As shown in [1], any real m×n matrix A can be decomposed into A = UΣV T ,
where U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n are two
orthogonal matrices, and Σ is a diagonal matrix with diagonal entries being the
singular values of A: σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0. Column vectors ui and vi

are unit vectors and are the ith left and right singular vectors of A, respectively.
For similar motions with different lengths, their left singular vectors are of

different lengths, but their right singular vectors are of the equal length. The
singular values of matrix A are unique, and the singular vectors corresponding
to distinct singular values are uniquely determined up to the sign, or a singular
vector can have opposite signs [7]. For convenience, we will refer to the right
singular vectors as singular vectors.

4 Feature Vector Extraction for Indexing

Motion matrices should have similar geometric structures if the corresponding
motions are similar. Since the geometric similarity of matrix data can be cap-
tured by SVD, we propose to exploit SVD to generate representative vectors or
feature vectors for motion matrices, and use these feature vectors for indexing
the multi-attribute motion data.

As Figure 2 shows, the first singular values are the dominating ones among
all singular values. Since the singular values reflect lengths or magnitudes of the
row vector projections along their corresponding singular vectors, we can say
that the first singular vectors are the dominating vectors. If two motions are
similar, their corresponding first singular vectors u1 and v1 should be mostly
parallel to each other geometrically, so that |u1 · v1| = |u1||v1||cos(θ)| .= |u1||v1|
= 1, where θ is the angle between the two right singular vectors u1 and v1, and
|u1| = |v1| = 1 by the definition of SVD. Similarly, the first singular vectors are
also very likely to be different from each other when two motions are different.
Other corresponding singular vectors may not be close to each other even if
two motions are similar as shown in Figure 3. This suggests that the first right
singular vectors can be used to index multi-attribute motions for pruning the
majority of different motions.
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Fig. 3. Singular vectors of similar motions. The first singular vectors are similar to
each other, while other singular vectors, such as the second vectors as shown at the
bottom, can be quite different.

It is worth noting that for motions to be similar, other singular vectors and
singular values should also be considered as shown in [5]. Although being neces-
sary conditions for similarity measure, similar first singular vectors are sufficient
for indexing purpose as to be demonstrated in Section 6.

Since the lengths or dimensions of the first singular vectors of multi-attribute
motion data are usually larger than 15, dimensionality reduction needs to be
performed on them first in order to avoid the so-called ”curse of dimensionality.”
We use SVD further to reduce the dimensionality of the first singular vectors
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Fig. 4. Component distributions of the transformed first singular vectors

to be indexed. Let A be the matrix composing the first singular vectors of the
motions to be indexed, and

A = WΣZT

then AZ = WΣ gives the projected/transformed first singular vectors of motion
patterns in the coordinate system spanned by the column vectors of Z [3], and for
a singular vector u1 of a query motion, u1Z gives a corresponding transformed
singular vector of u1 in the system spanned by the column vectors of Z.

Due to singular value decomposition, the component variations of the trans-
formed first singular vectors are the largest along direction z1, and decreases along
directions z2, . . . , zn as shown in Figure 4. The differences among the first singular
vectors are optimally reflected in the first several dimensions of the transformed
first singular vectors, hence we can index the first singular vectors by indexing
only the first several components of the transformed singular vectors. Differences
among all the other corresponding components are small even if motions are dif-
ferent, so the other components can thus be truncated and the dimensionalities
are reduced to the first several ones. We refer to the transformed singular vec-
tors after dimensionality reduction as the feature vectors of the motions. If the
first component of a feature vector is negative, all components of this vector are
negated to obtain a consistent sign for feature vectors of similar motions [6].

5 Index Tree Construction

Let r be the dimension of the feature vectors, r < n. We designate one level of the
index tree to each of the r dimensions. Let level 1 be the root node, level i includes
nodes for dimension i, i = 1, 2, . . . , r, and level r+ 1 contains leafnodes. Leafnodes
contain motion identifiers Pk, and non-leaf nodes contain entries of the form

(Ii, cp)

where Ii is a closed interval [a, b] describing the component value ranges of the
feature vectors at level i, −1 ≤ a, b < 1. Each entry has the address of one child
node, and cp is the address of the child node in the tree.



694 C. Li and B. Prabhakaran

The width and boundary of interval Ii depend on the distribution of ith

component values of feature vectors and the possible variations of the ith feature
vector components of similar motions. Let δi be the maximum difference of the ith

feature vector components of any similar motions, let xi and yi be the respective
minimum and maximum values of the ith components of all feature vectors, and
let ε be the entry interval factor for adjusting entry intervals. Then the width of
entry intervals at the ith level is εδi, and the number of entries of a node at level
i is !(yi − xi)/(εδi)", limited by maximum number of entries per node allowed.

5.1 Insertion and Searching

Let the root node of the tree be T . The unique ID of a feature vector is in-
serted into the tree by comparing the ith component ci of the feature vector and
the entry interval [a, b] of the node traversed and can be inserted into multiple
neighboring intervals:

– Subtree Insertion: If T is a non-leaf node, find all entries whose Ii’s overlap
with [ci − εδi, ci + εδi]. For each overlapping entry, find the subtree whose
root node T is pointed to by cp of the overlapping entry.

– Leaf Node Insertion: If T is a leaf node, insert the motion pattern iden-
tifier Pk of the feature vector in T .

Figure 5 illustrates how to insert an example feature vector into the first three
levels of an example index tree. Root node at level 1 has four entries, each of
which has a child node at level 2. Each node at level 2 and level 3 has three
entries, and each of which has a child node at one lower level. Given a feature
vector f = (0.65, 0.15, -0.1, . . .), and let δ1 = 0.04, δi = 0.08 for i ≥ 2, and ε = 1.0.
Entries at the root node are checked with [0.65− 0.04, 0.65+0.04] = [0.61, 0.69].
Only the third entry overlaps with it, hence the vector f is forwarded only to
node n3 of level 2. At level 2, the feature vector covering range is [0.15-0.08,
0.15+0.08] or [0.07, 0.23]. The second and third entries of node n3 overlap with
the feature vector covering range [0.07, 0.23], hence the feature vector will be

..........

Level 1

Level 2

Level 3

n1

n3 n4

n5 n6

n2

..... ..... ..... ..... ..... .....

.......... ..........

-0.2, 0.3    0.3, 0.5    0.5, 0.7      0.7, 1

-1, -0.2      -0.2, 0.2     0.2, 1

-1, -0.2     -0.2, 0.2      0.2, 1 -1, -0.2       -0.2, 0.2    0.2, 1

Fig. 5. An index tree example showing three non-leaf levels. Bold lines show where a
feature vector is to be inserted.
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forwarded to node n5 and to node n6 at level 3. At level 3, the feature vector
covering range is [-0.1-0.08, -0.1+0.08] or [-0.16, -0.02]. Only the second entries
of nodes n5 and n6 overlap with this range, so the nodes pointed by the second
entries of nodes n5 and n6 will be traversed for insertion. This process goes on
until the leaf nodes are traversed for holding Pk of the feature vector f .

A query searching can be very simple: find the entry of the node whose interval
[a, b] covers the ith component ci of the query feature vector and traverse to the
corresponding chile node pointed by the entry. When a leaf node is reached, all
the motion identifiers included in that leaf node are returned for the query. Since
a node entry contains all possible similar motions in neighboring entries of the
same node, only one entry is needed to be traversed for a search at each level of
the tree, rather than multiple entries to be traversed as in [6].

5.2 Similarity Computation

After the index tree has been searched for a query, the majority of irrelevant
motions should have been pruned, and similar motions and a small number of
irrelevant motions are returned as the result of the query. To find out the motion
most similar to the query, a similarity measure shown below as defined in [5] can
be used to compute the similarity of the query and all the returned motions, and
the motion with the highest similarity is the one most similar to the query.

Ψ(Q,P ) =
1
2

k∑
i=1

((σi/

n∑
i=1

σi + λi/

n∑
i=1

λi)|ui · vi|)

where σi and λi are the ith singular values corresponding to the ith right singular
vectors ui and vi of square matrices of Q and P , respectively, and 1 < k < n.
Integer k determines how many singular vectors are considered and depends on
the number of attributes n of motion matrices. Experiments with hand gesture
motions (n = 22) and human body motions (n = 54) show that k = 6 is large
enough without loss of pattern recognition accuracy in streams.

6 Performance Evaluation

Let Npr be the number of irrelevant motions pruned for a query by the index
tree, and Nir be the total number of irrelevant motions in the database. We
define the pruning rate P as

P =
Npr

Nir
× 100%

6.1 Motion Data Generation

Motion data was generated for hand gestures by using CyberGlove and for dances
and other human motions captured by using 16 Vicon cameras. There are 22 at-
tributes for the CyberGlove data, and each attribute is for the angular values of
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one joint of the glove. There are 54 attributes for the motion capture data, and
each attribute is for the positional values of one joint of a moving subject. The
captured motion data had been transformed so that similar motions performed
at different locations, following different paths, or at different orientations have
”similar” data matrices. One hundred and ten different hand gestures were gen-
erated, and each one was repeated for 3 times, resulting in 330 data matrices of
22 columns. Sixty two different motions, including Taiqi and dances were per-
formed, and each one was repeated for 5 times, resulting in 310 data matrices of
54 columns.

6.2 Index Struction Building

We experimented with different tree configurations for CyberGlove data and
motion capture (MoCap) data. For CyberGlove data of 22 attributes, feature
vectors have 5 to 10 components, or trees of 5 to 10 levels were tested. For MoCap
data of 54 attributes, trees of 5 to 12 levels were tested. The entry interval factors
ε we tested were 1.5, 1.2, 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5. The smaller the entry
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interval factors, the smaller the entry intervals, and the more the number of
entries in a node at all levels.

6.3 Pruning Efficiency

We issued one query for every one of the 330 CyberGlove motions and the 310
MoCap motions. Figure 6 shows that when all similar motions were retrieved
and the feature vectors have 9 features, 95.7% irrelevant CyberGlove motions
and 91% irrelevant MoCap motions could be pruned. When the entry interval
factor ε is no less than 1.0, all similar motions can be retrieved, and when ε is
less than 1.0, the most similar motions can still be retrieved and only a small
number of less similar motions can be pruned as indicated by the high recalls as
shown in Figure 7.

6.4 Computational Efficiency

We tested the average CPU time taken by a query using different tree config-
urations. All experiments are performed on one 3.0 GHz Intel processor of a
GenuineIntel Linux box.

The search time of a query by using the proposed index structure takes less
than 3 μs as shown in Figure 8. As a comparison, the search time of a query
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by the algorithm in [6] can take several milliseconds as shown in Figure 9. As a
tradeoff, the proposed approach in this paper takes a little longer for inserting
feature vectors. Nevertheless, each insertion still takes less than 35 milliseconds
as shown in Figure 10 and is usually done off-line.

7 Conclusions

This paper has proposed a novel approach for indexing multi-attribute motion
data of different lengths. Feature vectors are extracted from motion data matrices
by using SVD properties, and an interval-based tree structure is proposed for
indexing the feature vectors. Feature vector IDs can be inserted into multiple
neighboring feature value intervals to cope with motion variations and can be
in multiple leaf nodes. As an advantage of this design, search of similar motions
can be done in several microseconds by traversing only one node once at each
tree level, and up to 95.7 % different CyberGlove motions and 91% captured
human motions can be pruned.
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Abstract. Mining useful patterns in image databases can not only re-
veal useful information to users but also help the task of data manage-
ment. In this paper, we propose an image mining framework, Frequent
Spatial Pattern mining in images (FSP), to mine frequent patterns lo-
cated in a pair of spatial locations of images. A pattern in the FSP is
associated with a pair of spatial locations and refers to the occurrence of
the same image content in a set of images. This framework is designed
to be general so as to accept different levels of representations of image
content and different layout forms of spatial representations.

Index Terms: Image mining, spatial pattern.

1 Introduction

Data mining has attracted a significant amount of research attention due to its
usefulness in many applications, including selective marketing, decision support,
business management, and user profile analysis, to name a few [1]. However,
most work focuses on extracting information from data stored in alphanumeric
databases. Recently, advances in digital technologies have led to tremendous
growth in the number of image repositories. A lot of studies have addressed the
problem of content-based data management [2]. It is known that mining useful
patterns from these image databases can not only reveal useful information to
users but also help the task of data management [3]. As a result, image mining
has emerged as an important research topic.

Compared with the traditional data mining, many new challenges arise in
image mining due to the unique properties exhibited by images. We summa-
rize these challenges into the following three issues: (1) Image content can be
presented in several concept levels, ranging from pixel values, low-level features
[4], visual thesaurus (category of features) [5] to objects [6], [7]. Which are the
features to be used in the mining process? (2) The spatial information of image
content conveys important messages to present an image [8]. How do we reflect
the spatial information of image content? (3) What are the applications of image
mining? In other words, how can we justify the usefulness of the mining results?

In our opinion, the third issue imposes the key challenge. The reason is that
the specific features that should be used to represent image content vary with
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individual cases, and so do the layout forms used to partition the spatial locations
of images. Only when we have an intended application in mind, can we select
the suitable features and determine the ways of spatial partitions so as to start
the mining process.

The main contribution of this paper is that we propose a general framework
to mine frequent spatial patterns, which are of the most interest in the image
mining context [4], [5], [6], [7]. The framework we propose, called Frequent Spa-
tial Pattern mining in images (FSP), aims to mine frequent patterns located in
specific spatial locations of images. A pattern in the FSP is associated with a pair
of spatial locations and refers to the occurrence of the same image content in a
set of images. In order to make this framework general enough to support various
applications, we allow FSP to accept different representations of image content
and different layout forms of representations of spatial locations. In FSP, an item
is used to refer to an abstract object which represents the extracted feature from
image content. Associated with each item is a region label which reflects the
spatial location of this item. In this paper, when there is no confusion, spatial
location and region are interchangeably used to mean the spatial property of an
item.

The mining algorithm, FSP-Mining, in FSP can be decomposed into two
phases: (1) Generation of the frequent itemsets in each of the partitioned regions
that are covered by S. (2) Generation of the frequent spatial patterns through
the frequent itemsets. Let Sc be the set of regions covered by S. In the 1st phase
of FSP-Mining, the Apriori algorithm [9] or its extensions such as FP-tree [10] or
DHP [11], can be used to generate the frequent itemsets in each region Ri, where
Ri ∈ Sc. In the 2nd phase, we first use the frequent itemsets generated in the
1st phase to generate the set of candidate patterns. After one scan of the image
set, we can obtain the support count of each candidate pattern. Consequently,
we are able to generate all the frequent patterns corresponding to the set S of
pairs of locations.

A significant amount of research effort has been elaborated upon addressing
the problem of image mining. In [4], the authors mine patterns in global image
features and associate these features with a class label. In contrast to this work,
the objective of our work is to design a general image mining framework. More-
over, in our framework, we take the spatial locations of features into account
rather than capture the global features. In [5], the authors partition images into
regions as well and the regions are labelled using a visual thesaurus. However,
in their paper, the patterns are not associated with regions, and the location
information is only used to determine region labels. That is, they do not take
into account the specific locations to mine the frequent itemsets. In [6] and [7],
the authors propose mining objects in images. They both conduct their experi-
ments on a synthetic data set composed of basic shapes. It is not clear, however,
whether the results can be generalized to real images and be evaluated for their
usefulness.

In the remainder of this paper, we present the design of the framework in
Section 2 and conclude this paper with Section 3.
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2 Design of FSP

In Section 2.1, we formally define the problem of mining frequent spatial patterns
in images. In Section 2.2, we introduce the FSP-Mining algorithm in the proposed
framework, Frequent Spatial Pattern mining in images (FSP).

2.1 Problem Formulation

Let D = {I1, ..., In} be a set of images, where Ii, i ∈ [1..n], denotes an image. In
the framework of FSP, we assume that each image Ii has been partitioned to a
set ) = {R1, ..., Rr} of regions (spatial locations) and that the abstract objects
in each region have been extracted. Therefore, an image I can be represented as
〈O1, ..., Or〉, where Oi, i ∈ [1..r], denotes the set of objects extracted from the
region Ri. Let S be the set of pairs of locations in which we are interested, i.e.,
S ⊆ {(Ri, Rj) |1 � i < j � r }.
Definition 1: A pattern pij , which is associated with regions Ri and Rj , is
defined to be of the form (A, B), where A ⊆ Oi and B ⊆ Oj denote the itemsets
located in Ri and Rj , respectively.

Note that in this paper when there is no confusion, we use the notation p,
omitting the subscripts i and j, to refer to a pattern whose associated spatial
pair could be any of those interesting location pairs in S.

Definition 2: A pattern p is called frequent if the ratio of the number of images
contain this pattern to the total number of images is no less than the minimum
support threshold min sup. That is, p is frequent if |{I|I contains p}|

|D| � min sup.

The problem of mining spatial patterns can be defined as follows: Given a set D
of images, a set S of pairs of spatial locations and a minimum support threshold
min sup, we aim to mine the frequent patterns corresponding to each pair of
locations in S.

2.2 Algorithm FSP-Mining

The mining algorithm, FSP-Mining, in FSP can be decomposed into two phases:
(1) Generation of the frequent itemsets in each of the partitioned regions that
are covered by S. (2) Generation of the frequent spatial patterns through the
frequent itemsets. Let Sc be the set of regions covered by S. For instance, if
S = {(R1, R2), (R1, R3), (R2, R4)}, Sc = {R1, R2, R3, R4}. In the 1st phase
of FSP-Mining, the Apriori algorithm [9] or its extensions such as FP-tree [10]
or DHP [11], can be used to generate the frequent itemsets in each region Ri,
where Ri ∈ Sc. Let Li = ∪kL

i
k be the set of all frequent itemsets mined in

Ri, where Li
k denotes the set of frequent k-itemsets found in Ri. To generate

Li in Ri, we only have to concern those items found in Ri. By restricting that
only those items found in Ri are counted in the mining process, the well known
Apriori algorithm or its extensions can be directly applied to the generation of
frequent itemsets in Ri.
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Algorithm: FSP-Mining(D, S, min_sup) 

Input: a set D of images, a set S of region pairs, 

      and a minimum support threshold min_sup; 

Output: the set L of all frequent spatial patterns;

1.   Let Sc be the set of regions covered by S; 

2.   C ;

3.   for each Ri  Sc { 

4.     Di ;

5.     for each I = <O , ..., Or>  D { 

6.        t  <Oi>; 

7.        Di  Di  t; } 

8.     Li gen_freqent_itemset(Di, min_sup);} 

9.   for each pair (Ri, Rj)  S { 

10.    Cij  { pij = (A, B) | (A, B) Li×Lj};

11.    C  C  Cij; } 

12.  L  gen_frequent_pattern(D, C, min_sup);

13.  return L;

Procedure: gen_frequent_pattern(D, C, min_sup)

Input: a set D of images, a set C of candidate patterns, 

      and a minimum support threshold min_sup; 

Output: the set L of all frequent spatial patterns;     

1.   for each image I=<O , ..., Or>  D { 

2.     for each candidate pij = (A, B)  C { 

3.        if (A Oi  B Oj)

4.           pij.count++; } } 

5.   L  { pij  C | pij.count min_sup}; 

6.   return L; 

Fig. 1. Algorithm FSP-Mining

In the 2nd phase, we first use Li generated in the 1st phase to generate the
set of candidate patterns. Then, we discover the frequent spatial patterns by
counting the support for these candidate patterns. Let C be the set of candidate
patterns for S and Cij the set of candidate patterns corresponding to the pair
of locations (Ri, Rj), where (Ri, Rj) ∈ S. We can use Li and Lj to generate Cij

as follows: Cij = {(A, B)
∣∣ (A, B) ∈ Li × Lj }. In other words, Cij is set as the

Cartesian product of Li and Lj because a pattern is frequent only if the items
in this pattern are frequent in their corresponding regions as well. Then, FSP-
Mining combines all Cij as C, i.e., C = ∪ijC

ij , where (Ri, Rj) ∈ S. After one
scan of the image set, we obtain the support count of each candidate pattern in
C. Consequently, we are able to generate all the frequent patterns corresponding
to the set S of pairs of locations.

Encoding Scheme. For the implementation of the 2nd phase, we devise an en-
coding scheme to utilize the hash-tree data structure [9] to speed up the counting
process of generating frequent patterns. The devised encoding scheme is to as-
sociate an item with a region label of which this item appears in. For instance,
if C13 = {({a}, {b}), ({b}, {a, c})} (i.e., there are two patterns in C13), it
can be encoded to C13′

= {{a1, b3} , {b1, a3, c3}}, where a1 stands for item
a in R1 and b3 stands for item b in R3 and so forth. Similarly, for an image
I = 〈{a, b}, {b, c} , {a}〉, it can be encoded to I

′
= 〈{a1, b1, b2, c2, a3}〉. With

this encoding scheme, the hash-tree data structure can be directly applied to
counting the support of a candidate pattern.

Algorithm FSP-Mining is outlined in Figure 1. We omit the pseudo code of
gen frequent itemset() because the Apriori algorithm or its extensions, such as
FP-tree or DHP, can be used to implement this procedure. Note that for ease
of presentation, we explore in this paper patterns located in a pair of spatial lo-
cations. However, FSP-Mining can be easily extended to mine frequent patterns
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located in a more diversified combination of spatial locations. To mine patterns
other than corresponding to a pair of spatial locations, we can modify both the
candidate set C and Procedure gen frequent pattern() accordingly to reflect
the new form of patterns.

3 Conclusions and Future Work

Many new challenges arise in image mining due to the unique properties exhib-
ited by images. To cope with these challenges, we have proposed in this paper a
frequent spatial pattern mining framework for images. The mining algorithm in
this framework is able to discover frequent spatial patterns in a set of images.
This framework is designed to be general because the specific features used to
represent image content vary with individual cases, and so do the layout forms
used to present represent spatial locations. In our future work, we will evaluate
the usefulness of the mining results by various image applications.
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Abstract. Normalized Information Distance (NID) [1] is a general-purpose sim-
ilarity metric based on the concept of Kolmogorov Complexity. We have devel-
oped this notion into a valid kernel distance, called LZ78-based string kernel [2]
and have shown that it can be used effectively for a variety of 1D sequence clas-
sification tasks [3]. In this paper, we further demonstrate its applicability on 2D
images. We report experiments with our technique on two real datasets: (i) a col-
lection of real-life photographs and (ii) a collection of medical diagnostic images
from Magnetic Resonance (MR) data. The classification results are compared
with those of the original similarity metric (i.e. NID) and several conventional
classification algorithms. In all cases, the proposed kernel approach demonstrates
better or equivalent performance when compared with other candidate methods
but with lower computational overhead.

1 Introduction

Defining a similarity measure between two objects, without explicitly modelling of their
task-specific statistical behaviour, is a fundamental problem with many important appli-
cations in areas like information retrieval and classification. A broad spectrum approach
to this problem is to use the compression-based techniques as a tool for measuring the
information redundancy among the objects. Informally, the more information shared
between two objects, the more likely they are similar. Based on the concept of (condi-
tional) Kolmogorov complexity [4], authors in [1] formalized such an idea into a sim-
ilarity metric called Normalized Information Distance (NID). It is illustrated in Fig. 1.
Although the Kolmogorov complexity KC(·) is not computable, any compression al-
gorithm gives an upper bound and this can be taken as an estimate of KC(·). Some
earlier studies on this approach can be found in [5, 6, 1], which were mainly focused on
1D sequences.

Recently, researchers start exploring the applicability of this compression-based
technique (i.e. NID) in the field of two-dimensional images. The key to its feasibil-
ity lies in the fact that the raster-scanned version of the raw image preserves enough
regularity in both dimensions for the compression algorithm to discover. The authors
in [7] tested the technique on the task of handwritten digit recognition and reported an
accuracy around 87% which is close to state-of-the-art performance (90% accuracy).
However, this image collection is relatively simple due to the binary image representa-
tion (i.e. ‘#’ for a black pixel and ‘·’ for a white pixel) and consistent object scale. In [8],

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 704–712, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Image Classification Via LZ78 Based String Kernel: A Comparative Study 705

the authors tackled a more challenging task i.e. object identification from real-life pho-
tographs where images are of unknown and varying scale of scene. The best accuracy
over the raw images is around 84% and it is reported to be better than conventional
intensity-histogram based techniques. Technically, in both studies, the kernel of Sup-
port Vector Machine (SVM) was simply replaced with the similarity (i.e. NID) approx-
imated by compressed length. The potential risk is that, compression-based similarity
may result in a non positive-semi-definite (PSD) kernel matrix and thus the optimiza-
tion problem is no longer convex; SVM learning with SMO-type implementation [9]
could converge but the global optimality might not be guaranteed.

To avoid the above problem, we developed the notion of NID into a valid kernel dis-
tance, called LZ78-based string kernel, which is suitable for use with SVM classifier [2].
Essentially, it is based on the mapping of example input to a high-dimensional feature
space that is indexed by all the phrases identified by a LZ78 parse of the input exam-
ples. Further comparisons with other state-of-the-art algorithms yield improved results
for a variety of distinct tasks e.g. the classification of music genre, spoken words, and
text documents [3].

In this paper, we investigate the applicability of the LZ78-based kernel on 2D image
data and empirically demonstrated its advantage over pure compression-based tech-
niques and conventional classification algorithms. The outline of the paper is as fol-
lows. In Section 2, we recall the fundamental tools used in this work: the concept of
normalized information distance and Lempel-Ziv type compression algorithm. In Sec-
tion 3, we describe our LZ78-based scheme for image classification. Section 4 presents
the application of the proposed method to two practical image classification tasks and
experimental results are presented and compared. Finally, conclusions are given in
Section 5.

2 Background in Normalized Information Distance and
Lempel-Ziv Coding

2.1 Approximation of Normalized Information Distance

The Normalized Information Distance (NID) as proposed in [1] is a similarity met-
ric based on the concept of Kolmogorov Complexity. Informally, it is the ratio of the
information shared by the two objects to the total information content of the pair of

A B KC(x|y)

KC(y|x)

KC(x) − KC(x|y) or KC(y) − KC(y|x)

NID =
KC(x|y) + KC(y|x)

KC(xy)

Fig. 1. Illustration of normalized information distance where circle A represents the Kolmogorov
complexity KC(x) of object x, circle B represents KC(y) and the total area of two circles (A+B)
is KC(xy), i.e. the Kolmogorov complexity of the combination of the objects x and y
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objects. This is illustrated in Fig. 1. Two identical objects will have NID=0, whilst two
objects with no common information content will have NID=1. Given an object en-
coded as a binary string x, its Kolmogorov complexity KC(x) is the minimum number
of bits into which the string can be compressed without losing information [4]. Intu-
itively, Kolmogorov complexity indicates the descriptive complexity contained in an
object. A random string has relatively high complexity since no structural pattern can
be recognized to help reduce the size of program. Strings like structured texts and musi-
cal melodies should have lower complexity due to repeated terms and musical structure.
Kolmogorov complexity is only an idealized notion be-cause it is not computable. How-
ever, any compression algorithm (e.g. LZ78 [10] and PPMZ [11]) gives an upper bound
and this can be taken as an estimate of the Kolmogorov complexity. As a result, the
theoretical elegant NID amounts to a normalized compression distance [7] in practice.

2.2 Lempel-Zip (LZ) Type Coding

As mentioned before, NID can be approximated by many compression algorithms. In
this work, we select a compressor from LZ family [10] i.e. LZ78, which is simple and
extremely fast. Moreover, LZ78 is driven by a dictionary-based coding scheme, which
can be easily developed into a valid string kernel.

/* simplified LZ78 coding scheme */
clear dictionary;
w = λ;1

while (more input)
C = next symbol;
pattern = wC;
if(pattern in dictionary)

w = wC;
else

add pattern to dictionary;
w = λ;

endif
endwhile
return dictionary;

The figure above captures the essence of LZ78, which works by identifying patterns,
called phrases, of the data and stores them in a dictionary (i.e. encoding table) that
defines shorter “entries” that can be used in their stead. In other words, it segments a
sequence into several distinct phrases such that each phrase is the shortest subsequence
that is not a previously parsed phrase. For example, given a sequence x =‘abcabcabc’,
LZ78 parsing yields (a, b, c, ab, ca, bc), namely, KC(x) = 6.

3 Image Classification Scheme

In this work, image classification implies to be able to measure the similarity between
the strings obtained by scanning the images in raster row-major order. As mentioned

1 λ represents the empty string.
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previously, such a raster-scanned version of the image retains enough regularity in both
dimensions.

Based on the coding scheme mentioned in Section 2.2, two alternatives for the cal-
culation of the similarity are: using compressed length (i.e. dictionary size) or using
compressed patterns (i.e. entries within the dictionary).

3.1 Using Compressed Length

In this way, compressed length is used to approximate the normalized information dis-
tance between two images. Following the works in [7] and [8], we choice a variant of
NID to calculate the pairwise similarity (see Equation 1). Furthermore, to avoid the
risk of finding local optimality because of the non-PSD problem, we convert the image
into a vector form where the ith element corresponds to the NID score between current
image and the ith image in the data, so that the standard kernel function (e.g. RBF ker-
nel) can be applied. Note that with this technique the dimension of feature space is set
by the number of examples.

NID(x, y) =
KC(xy)−min(KC(x),KC(y))

max(KC(x),KC(y))
(1)

3.2 Using Compressed Patterns

The second way to calculate the similarity is based on the patterns (i.e. phrases) iden-
tified during compression. In our case, the image (i.e. raster-scanned version) is repre-
sented by the set of all the features (i.e. Φlz78) identified by our modified LZ78 parsing
and the pairwise similarity is then defined as the inner product of the weighted2 feature
vectors:

Klz78(s, t) = 〈Φlz78(s), Φlz78(t)〉 (2)

As illustrated in Fig. 1, it is natural to normalize the similarity score in order to take
account of object size. In the kernel method, this effect can be achieved by normalizing
the feature vectors in the feature space:

Knorm
lz78 (s, t) =

Klz78(s, t)√
Klz78(s, s)Klz78(t, t)

(3)

4 Experiments

In this study, we take an empirical approach to evaluate the performance of our pro-
posed scheme for image classification. More specifically, we are concerned about two
issues: (i) how does our LZ78 kernel compare with other similarities approximated by
compressed length? (ii) is our approach competitive with conventional classification
algorithms applied in medical image classification? To conduct the evaluation, the pro-
posed approach is applied to two distinct applications. The first is the classification of

2 Feature importance is indicated by its relative frequency (i.e. tf ) within the sting. The loga-
rithm of tf is used to amend unfavorable linearity.
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the photograph dataset used in [8] that contains two classes, each of which consists of
761 grayscale images with 247× 165 pixel resolution3. The second is the detection of
extracapsular extension (ECE) [12] of prostate cancer using a collection of 18 prostate
MR images taken from 10 prostate cancer patients, among whom 6 have histological
confirmed ECE and the others are proven to have organ confined tumors. All experi-
ments are carried out using the libsvm4 package, which guarantees the convergence to
stationary points for non-PSD kernels.

4.1 Experiment on Photograph Collection

Some images about this collection are shown in Fig. 2. Based on a simple subset of the
whole collection, the authors in [8] pointed out that the two classes of this dataset are
separable on mean intensity alone. They therefore built a benchmark classifier based
on comparing intensity histograms. The results showed that compression-based classi-
fier outperforms the intensity-based classifier by 25% in accuracy, which demonstrates
a desirable characteristic of the compression-based techniques-they can automatically
identify discriminative regularities (i.e. patterns) from the training dataset. Further, a
more complicated image dataset, containing all 1492 images, was used in [8] to test
their technique.

Fig. 2. Photograph images showing either a battery-case or a coin-purse. Variation in the scene
was introduced by altering the location and rotation of the target objects, changing lighting con-
dition, presenting noise objects (e.g. a blue napkin, screws and a nut) together with complicated
background (e.g. magazines and newspapers).

For comparison, we evaluate our method on the same image dataset and
re-implement the alternative technique mentioned in [8] which uses partial matching
compression technique (PPM) [11] to approximate the NID between two images. The
performance is evaluated by a standard ten-fold stratified cross validation (CV). No
sieve transformation [13] or ground truth data5 are used in this experiment since we

3 The original photographs are of 2470 × 1650 pixel resolution. Before processing, the images
are down-sampled by a factor of ten using bicubic interpolation.

4 Available at http://www.csie.ntu.edu.tw/ cjlin/libsvmtools
5 In [8], the foreground (i.e. target object) of a subset of images (204 in total) was hand-labeled

to produce the ground truth and a significant improvement (around 15% in classification accu-
racy) was observed.
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Table 1. Accuracy obtained with various strategies for kernel matrix construction. RBF-
Independent means to replace the kernel matrix by the compression-based similarity matrix di-
rectly; RBF-Dependent means that each image is firstly converted into a vector form in which the
ith element represents the similarity between this image and the ith image in the data and then
the distance between two such vectors is calculated via RBF kernel function.

Similarity Calculation
Compression

Scheme
Kernel Matrix Construction

RBF Independent RBF Dependent

Using compressed
length (NID-based)

PPM over binary
encodings

54.1685
(3.97229)

75.6036
(1.46874)

LZ78 over descrip-
tive symbols

80.2324
(1.75635)

90.7559
(2.65936)

Using patterns discov-
ered by compression al-
gorithm (LZ78-Kernel-
based)

LZ78 over descrip-
tive symbols
(smoothed)6

89.1414
(3.42132)

91.6270
(2.17633)

are interested in comparing the performance made by the compression kernels rather
than the improvement made by other techniques (e.g. feature transformation and image
segmentation). Note that, when no ground truth data are utilized, the best performance
in Lan’s work (84%) is achieved by using sieve transformation. As shown later, our
approach could achieve even better performance with raw images only.

Table 1 displays the accuracy of SVM classifiers with various strategies for kernel
matrix construction. Lan’s experiments in [8] are repeated and the performance of their
SVM-based method on raw images (74% accuracy) is confirmed in our experiment:
note that it occurred only when RBF kernel is applied (i.e. using RBF function to re-
calculate the distance between two vectors representing the corresponding im-ages).
The bottom row of Table 1 shows that, based on smoothed greyscale images, our LZ78
kernel could achieve better performance but without such extra computational overhead.

It is interesting to note that PPM generally performs better than LZ-type coding in
terms of the compress ratio. However, comparing the results shown in the first and
second rows, LZ78-based approach performs better in terms of classification accu-
racy. Two points should be noted. Firstly, in our implementation, PPM acts on binary-
encodings of the image string while LZ-based algorithm directly acts on descriptive
symbol sequences (i.e. greyscale values); the results may imply the fact that, the format-
similarity7 [14] introduced by the low-level (e.g. binary) encodings may deteriorate
the complexity approximation, especially when the sequences are relatively short. Sec-
ondly, as mentioned before, compression-based similarity may result in a non-PSD ker-
nel matrix; although a SMO-type implementation could converge but no global opti-
mality is guaranteed, which is empirically confirmed in our experiments.

5 Experiment on Medical Diagnosis Image

Computer-aided diagnosis of diseases using medical images is an active research do-
main. We have previously described the use of a few classification algorithms to detect

6 Obtained by mapping greyscale pixel values into the nearest multiples of five.
7 It comes from either noisy or the duplication of the symbols used to encode the data.
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Fig. 3. (a) An example MR image slice (clipped), with the prostate boundary (slim solid line),
central zone (dashed line) and a region of ECE (thick solid line) manually annotated. (b) Profile
extraction positions on the slice, where large black dots indicate ECE positions according to the
manual annotation.

the extra-capsular extension (ECE) of prostate cancer using Magnetic Resonance (MR)
images [12]. Basically, each pixel along the prostate boundary is represented by a grey-
level intensity profile extracted orthogonal to the prostate boundary and centered on the
pixel. A classification model is trained to predict the ECE probability of the pixels (i.e.
intensity profiles) along the prostate boundary. Then, a probability filtering process is
applied to calculate the overall ECE probability of the image. The classifiers used in
this study are k Nearest Neighbor (kNN) and Parzen classifier (PZC).

In this study, we present the application of our LZ78-based SVM to ECE detection.
It begins with a sequence of intensity profiles representing a particular MR image, and
then applies the following steps: (i) a string example is constructed by concatenating
all the intensify profiles of the image in row-major order; (ii) the distances from the ex-
ample to the decision boundary of positive class c1 and negative class c2 are calculated
according to Equation 4; (iii) the final ECE probability of the image, P (x), is given by
Equation 5.

dci(x, sv(ci),α(ci)) =
∣∣∣ l∑

i=1

α
(ci)
i Klz78(sv

(ci)
i , x)

∣∣∣ (4)

P (x) =
dc1

dc1 + dc2
(5)

where sv(c) = {sv(c)
i } is the support vector from class c, α(c) = {α(c)

i } is the com-
bination coefficient and Klz78(·) is the kernel function (see Equation 2) to perform the
similarity calculation.

The MR image data set used in this study consists of 18 MR images from 10 patients,
among which seven patients have histologically confirmed ECE, and the other three are
proven to have organ confined (non-ECE) prostate cancer. Two mid-gland MRI slices
are used for each of the non-ECE patients and five of the seven ECE patients, and one
from each of the other two ECE patients. Each slice from the ECE patients includes at
least one ECE region.

Since the main aim of this experiment is to evaluate the ability of a trained model to
predict the ECE risk of unseen MR images, to avoid the effects of possible variations in
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Table 2. Comparison of classification results in terms of AUROC, Sensitivity/Specificity and
overall accuracy

Classifier
AUROC Sensitivity Accuracy

(0.0 − 1.0) (at 66.7%specificity) (threshold=0.5)
kNN 0.736 75.0% 72.2%
PZC 0.764 83.3% 77.8%

LZ78-SVM 0.764 100.0% 88.9%

automatic boundary localization and to provide an objective evaluation of the classifi-
cation models, manual annotations of the prostate and the ECE regions are used as the
ground truth. The annotations are provided by an expert radiologist, and subsequently
verified by a second expert to avoid inter-observer variation and ensure the accuracy
and consistency. A typical example slice, with a region of ECE annotated can be found
in Fig. 3 (a). Fig. 3 (b) shows the profile extraction positions on the example slice, as
well as the determination of profile labels according to the manual annotation.

To conduct a statistical evaluation of the methods, the area under the receiver opera-
tor characteristic curve (AUROC) of the classification results is computed and com-
pared. The results are obtained by using leave-one-image-out testing. As shown in
Table 2, the LZ78-SVM classifier correctly classified 16 of all 18 images, with only
2 images from a non-ECE patient detected as false positive, and hence correctly iden-
tified the ECE status of 9 of 10 patients. Overall, based on the intensity profile fea-
tures, LZ78-SVM offers the best detection results when compared to other classification
methods.

6 Conclusion

This paper has described the application of the LZ78-based kernel technique to the
classification of 2D images. Instead of following the commonly adopted strategy which
approximates the NID by the compressed length of the input data, the technique uses a
modified LZ78 compression algorithm as the heuristic for feature extraction and then
builds a valid string kernel for SVM. Experiments based on two image collections show
that, this method yields better performance when compared with previously proposed
approaches. This implies a promising efficiency and wide applicability of the presented
method.

Several issues would be considered for future work. Firstly, so far, we merely con-
sider the raw image information (i.e., intensity values or intensity profiles). The perfor-
mance of the proposed method can be further enhanced by incorporating more sophisti-
cated image representation techniques, e.g., morphological operators and content-based
descriptors. This should provide more compact and descriptive representation of the
images, and hence better classification outcome. Second, the experiment on MR image
data for prostate cancer diagnosis is based on a relatively small date set. Experiments
on larger data sets are expected to conduct a more comprehensive evaluation, and will
be performed in due time when such data are available. Furthermore, the use of other
compression algorithms as the feature extraction techniques, such as the block-sorting
algorithm [15] and the PPM family [11], will be investigated.
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Abstract. Given m groups of streams which consist of n1, . . . , nm co-
evolving streams in each group, we want to: (i) incrementally find lo-
cal patterns within a single group, (ii) efficiently obtain global patterns
across groups, and more importantly, (iii) efficiently do that in real time
while limiting shared information across groups. In this paper, we present
a distributed, hierarchical algorithm addressing these problems. Our ex-
perimental case study confirms that the proposed method can perform
hierarchical correlation detection efficiently and effectively.1

1 Introduction

Streams are often inherently correlated and it is possible to reduce hundreds of
numerical streams into just a handful of patterns that compactly describe the
key trends and dramatically reduce the complexity of further data processing.
Multiple co-evolving streams often arise in a large distributed system, such as
computer networks and sensor networks. Centralized approaches usually will
not work in this setting. The reasons are: (i) Communication constraint;
it is too expensive to transfer all data to a central node for processing and
mining. (ii) Power consumption; in a wireless sensor network, minimizing
information exchange is crucial because many sensors have very limited power.
(iii) Robustness concerns; centralized approaches always suffer from single
point of failure. (iv) Privacy concerns; in any network connecting multiple
autonomous systems (e.g., multiple companies forming a collaborative network),
no system is willing to share all the information, while they all want to know the
global patterns. To sum up, a distributed online algorithm is highly needed
to address all the above concerns.

To address this problem, we propose a hierarchical framework that intuitively
works as follows:1) Each autonomous system first finds its local patterns and
shares them with other groups. 2) Global patterns are discovered based on the
shared local patterns. 3) From the global patterns, each autonomous system
further refines/verifies their local patterns.

1 The technical report [6] is a longer version of this work.
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2 Problem Formalization and Framework

Given m groups of streams which consist of {n1, . . . , nm} co-evolving numeric
streams, respectively, we want to solve the following two problems: (i) incre-
mentally find patterns within a single group (local pattern monitoring), and (ii)
efficiently obtain global patterns from all the local patterns (global pattern de-
tection).

More specifically, local pattern monitoring can be modelled as a function,

FL : (Si(t + 1, :), G(t, :)) → Li(t + 1, :), (1)

where the inputs are 1) the new input point Si(t + 1, :) at time t + 1 and the
current global pattern G(t, :) and the output is the local pattern Li(t + 1, :) at
time t+1. Details on constructing such a function will be explained in section 3.
Likewise, global pattern detection is modelled as another function,

FG : (L1(t + 1, :), . . . , Lm(t + 1, :))→ G(t + 1, :), (2)

where the inputs are local patterns Li(t+ 1, :) from all groups at time t+ 1 and
the output is the new global pattern G(t + 1, :).

Now we introduce the general framework for distributed mining. More specif-
ically, we present the meta-algorithm to show the overall flow, using FL (local
patterns monitoring) and FG (global patterns detection) as black boxes.

Intuitively, it is natural that global patterns are computed based on all local
patterns from m groups. On the other hand, it might be a surprise that the local
patterns of group i take as input both the stream measurements of group i and
the global patterns. Stream measurements are a natural set of inputs, since local
patterns are their summary. However, we also need global patterns as another
input so that local patterns can be represented consistently across all groups.
This is important at the next stage, when constructing global patterns out of the
local patterns; we elaborate on this later. The meta-algorithm is the following:

Algorithm DistributedMining
0. (Initialization) At t = 0, set G(t, :) ← null
1. For all t > 1

(Update local patterns) For i ← 1 to m, set Li(t, :) := FL(Si(t, :), G(t − 1, :))
(update global patterns) Set G(t, :) := FG(L1, . . . , Lm)

3 Pattern Monitoring

Tracking Local Patterns. We now present the method for discovering patterns
within a stream group. More specifically, we explain the details of function FL

(Equation 1). We first describe the intuition behind the algorithm and then
present the algorithm formally. Finally we discuss how to determine the number
of local patterns ki.

The goal of FL is to find the low dimensional projection Li(t, :) and the partici-
pation weights Wi,t so as to guarantee that the reconstruction error
‖Si(t, :)− Ŝi(t, :)‖2 over time is predictably small.
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The first step is, for a given ki, to incrementally update the k×ni participation
weight matrix Wi,t, which serves as a basis of the low-dimensional projection for
Si(t, :). Later in this section, we describe the method for choosing ki. For the
moment, assume that the number of patterns ki is given.

The main idea behind the algorithm is to read the new values Si(t + 1, :) ≡
[Si(t + 1, 1), . . . , Si(t + 1, ni)] from the ni streams of group i at time t + 1, and
perform three steps: (1) Compute the low dimensional projection yj, 1 ≤ j ≤
ki, based on the current weights Wi,t, by projecting Si(t + 1, :) onto these.(2)
Estimate the reconstruction error (ej below) and the energy.(3) Compute Wi,t+1

and output the actual local pattern Li(t + 1, :).
The term λ is a forgetting factor between 0 and 1, which helps adapt to more

recent behavior. For instance, λ = 1 means putting equal weights on all historical
data, while smaller λ means putting higher weight on more recent data.

In practice, we do not know the number ki of local patterns. We propose to
estimate ki on the fly, so that we maintain a high percentage fi,E of the energy
Ei,t. For each group, we have a low-energy and a high-energy threshold, fi,E and
Fi,E , respectively. We keep enough local patterns ki, so the retained energy is
within the range [fi,E ·Ei,t, Fi,E ·Ei,t].

Algorithm FL

Input: new vector Si(t + 1, :), old global patterns G(t, :)
Output: local patterns (ki-dimensional projection) Li(t + 1, :)
1. Initialize x1 := Si(t + 1, :).
2. For 1 ≤ j ≤ k, we perform the following in order:

yj := xjWi,t(j, :)T (yj = projection onto Wi,t(j, :))

If G(t, :) = null, then G(t, j) := yj (handling boundary case)

dj ← λdj + y2
j (local energy, determining update magnitude)

e := xj − G(t, j)Wi,t(j, :) (error, e ⊥ Wi,t(j, :))

Wi,t+1(j, :) ← Wi,t(j, :) + 1
dj

G(t, j)e (update participation weight)

xj+1 := xj − G(t, j)Wi,t+1(j, :) (repeat with remainder of x).

3. Compute the new projection Li(t + 1, :) := Si(t + 1, :)W T
i,t+1

Tracking Global Patterns. We now present the method for obtaining global
patterns over all groups. More specifically, we explain the details of function FG.

First of all, what is a global pattern? Similar to local pattern, global pattern
is low dimensional projections of the streams from all groups. Loosely speaking,
assume only one global group exists which consists of all streams, the global
patterns are the local patterns obtained by applying FL on the global group—
this is essentially the centralized approach. In other words, we want to obtain
the result of the centralized approach without centralized computation.

The algorithm exactly follows the lemma above. The j-th global pattern is
the sum of all the j-th local patterns from m groups.
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Algorithm FG

Input: all local patterns L1(t, :), . . . , Lm(t, :)
Output: global patterns G(t, :)
0. Set k := max(ki) for 1 ≤ i ≤ m
1. For 1 ≤ j ≤ k, set G(t, j) := m

i=1 Li(t, j) (if j > ki then Li(t, j) ≡ 0)

4 Experimental Case Study

The Motes dataset consists of 4 groups of sensor measurements (i.e., light inten-
sity, humidity, temperature, battery voltages) collected using 48 Berkeley Mote
sensors at different locations in a lab, over a period of a month.

The main characteristics (see the blue curves in Figure 1) are: (1) Light mea-
surements exhibit a clear global periodic pattern (daily cycle) with occasional
big spikes from some sensors (outliers), (2) Temperature shows a weak daily
cycle and a lot of bursts. (3) Humidity does not have any regular pattern. (4)
Voltage is almost flat with a small downward trend.

The reconstruction is very good (see the red curves in Figure 1(a)), with
relative error below 6%. Furthermore, the local patterns from different groups
are correlated well with the original measurements (see Figure 2). The global
patterns (in Figure 3) are combinations of different patterns from all groups and
reveal the overall behavior of all the groups.

The relative reconstruction error as the evaluation metric. The best perfor-
mance is obtained when all groups exchange up-to-date local/global patterns at
every timestamp, which is prohibitively expensive. One efficient way to deal with
this problem is to increase the communication period, which is the number of
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Fig. 1. original measurements (blue) and reconstruction (red) are very close
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timestamps between successive local/global pattern transmissions.Overall, the
relative error rate increases very slowly as the communication period increases
(see Figure 4). This implies that we can dramatically reduce communication
with minimal sacrifice of accuracy.

5 Related Work

Distributed Data Mining. Most of works on distributed data mining focus
on extending classic (centralized) data mining algorithms into distributed en-
vironment, such as association rules mining [3], frequent item sets [5]. Web is
a popular distributed environment. Several techniques are proposed specifically
for that, for example, distributed top-k query [2] But our focus are on finding
numeric patterns, which is different.

Privacy Preserving Data Mining. The most related discussion here is on
how much privacy can be protected using subspace projection method [1, 4]. Liu
et al. [4] discuss the subspace projection method and propose a possible method
to breach the protection using Independent component analysis(ICA). All the
method provides a good insight on the issues on privacy protection. Our method
focuses more on incremental online computation of subspace projection.

6 Conclusion and Acknowledgement

We focus on finding patterns in a large number of distributed streams. More
specifically, we first find local patterns within each group, where the number of
local patterns is automatically determined based on reconstruction error. Next,
global patterns are identified, based on the local patterns from all groups. We
evaluated our method on several datasets, where it indeed discovered the pat-
terns. We gain significant communication savings, with small accuracy loss.

Work partially supported by the NSF under Grants No. IIS-0209107 IIS-
0205224 INT-0318547 SENSOR-0329549 IIS-0326322 and the Pennsylvania In-
frastructure Technology Alliance (PITA) This publication only reflects the au-
thors views.
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Abstract. In this paper, we present a framework for event-driven Clus-
tering Over Multiple Evolving sTreams, which, abbreviated as COMET,
monitors the distribution of clusters on multiple data streams and online
reports the results. This information is valuable to support correspond-
ing online decisions. Note that as time advances, the data streams are
evolving and the clusters they belong to will change. Instead of directly
clustering the multiple data streams periodically, COMET applies an
efficient cluster adjustment procedure only when it is required. The sig-
nal of requiring to do cluster adjustments is defined as an ”event.” We
design a mechanism of event detection which employs piecewise linear
approximation as the key technique. The piecewise linear approximation
is advantageous in that it can not only be performed in real time as the
data comes in, but also be able to capture the trend of data. When an
event occurs, through split and merge operations we can report the latest
clustering results effectively with high clustering quality.

1 Introduction

Research about mining in the data stream environment is flourishing in these
years [1][2][3][4][5][6][7][8]. In addition to those on considering a data stream at a
time, more and more emerging applications involve in monitoring multiple data
streams concurrently. Such applications include online stock market data analy-
sis, call detail records in telecommunication, sensor network, ATM operation in
banks, etc. We are able to find out interesting and useful knowledge by analyzing
the relationship between these multiple data streams. Therefore, mining multi-
ple data streams has attracted an increasing amount of attention from related
researchers. To discover the cross-relationship between streams, one way is to
calculate the correlation between streams and report the stream pairs with high
correlation [9][10][11][12]. Another one is to do similarity pattern query between
multiple data streams [9][13]. Last but not least, some works are reported on
applying the clustering technique to multiple data streams [14][15][16].

Among multiple evolving data streams, we want to trace not only those
streams becoming similar to one another but also those becoming dissimilar
along with the growing of streams. Clustering is a mining technique which puts
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the similar objects together and separates dissimilar ones into different clusters.
As a result, by clustering the streams dynamically, we can achieve the goal of
monitoring the evolution of stream clusters. From observing the clusters evo-
lution we are able to get the useful information for decision making or data
management in various applications. For example, in the stock market, the price
of each stock may vary from time to time and some stocks tend to rise and
fall concurrently in some time intervals. The stock monitoring system aims to
find the streams which are in the same group and have similar behavior. From
such evolving streams, the investors would like to buy a proper set of streams
to maximize the profit.

In [14], an online data summarization framework is designed for offline clus-
tering on multiple data streams when users submit requests. In contrast, we
want to provide in this paper a more real-time and automatic system which
performs online clustering. The system will report the revolution of clusters as
time advances. To achieve this goal, one intuitive solution is to cluster these data
streams periodically. We can just update each stream and apply an existing clus-
tering algorithm on these streams at the pre-determined time point. However,
due to the large stream number and the huge data volume, the distance update
between each stream is very costly. Furthermore, periodical clustering is not able
to cope with the data streams with different evolving speeds. If the values of data
streams are relatively steady, most of the clustering tasks are unnecessary since
the resulting clusters are likely to remain the same. On the other hand, if the
values of data streams are relatively fluctuant, we may lose some cluster infor-
mation when the fixed time period is too long. Concluding from above issues, we
need a solution which is able to perform clustering whenever it is necessary. Con-
sequently, a framework named event-driven Clustering Over Multiple Evolving
sTreams, abbreviated as COMET, is proposed in this paper.

For generality, we consider the data on the numerical domain. Our work can
be easily extended to the applications with categorical data via proper data
transformation. Initially, the streams are divided into several clusters by applying
any traditional clustering method. In fact, we can also apply our merge operation,
which will be introduced later, to obtain initial clusters. Due to the evolving
feature of data streams, a group of streams may be similar at this moment but
become dissimilar to one another later. In order to capture the significant changes
of each stream, we use continuous piecewise linear line segments to approximate
the original data stream. Explicitly, the piecewise linear approximation can not
only be performed in real time as the data comes in, but also be able to capture
the trend of data. Two line segments with different slopes are connected by an
end point. The end point represents the significant trend change point of the
stream data. If a stream in a cluster has a significant change, it is possible to
cause the split of this cluster. As a result, we can regard each end point of a
stream as a ”trigger” of the cluster evolution, and call the stream which has
a newly encountered end point as ”trigger-stream.” When a trigger occurs, the
distances between trigger-streams and other streams in the same cluster are then
updated incrementally. If the distance of any stream pair in a cluster exceeds
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a given threshold, we say an ”event” is detected. An event is a signal for the
system to make necessary cluster modifications. Similar ”event-driven” idea can
be found in [13], but it has different definition and usage. When an event is
found via the event detection mechanism, we perform necessary cluster split.
Then, a procedure for checking whether there exist clusters being close enough
to be merged together is activated. Since the split and merge processes are very
efficient, the event processing procedure is able to handle thousands of streams
concurrently.

2 Preliminaries

2.1 Problem Model

Given an integer n, an n-stream set is denoted as Γ = {S1, S2, ..., Sn} where Si

is the ith stream. A data stream Si can be represented as Si[t1, ..., tk, ...] where
Si[tk] is the data value of stream Si arriving at time tk. The objective of this
paper is that given a set of data streams Γ and the threshold parameters, the
summary of each stream Si, which is denoted as Ŝi, is online maintained and
the event detection mechanism is built. When events occur, cluster modifications
will be performed instead of re-clustering all streams and the latest clustering
results are reported.

2.2 Piecewise Linear Data Summarization

In COMET, piecewise linear approximation is adopting to detect the significant
trend changes of the data streams. The end points between line segments are
regarded as triggers of clustering evolution. The work in [17] describes the ba-
sic concept of online segmenting time series. Many variations are conceivable to
adapt different types of data. For example, [13] provides a three-tiered online seg-
mentation and pruning strategy for financial data streams. Base on sliding win-
dow techniques, a stream Si is summarized as : Ŝi = {(Si[tv1], tv1)(Si[tv2], tv2),
..., (Si[tvk], tvk)}.

3 Distance Measurement

We now discuss the distance measurement between two stream summaries. Since
streams may vary at different level, instead of directly using Euclidean distance,
we apply the distance measure in [18] and did some modification. Originally, it
projects end points of one time series to another one, and then calculate the
variance of length of these projected lines. The more similar these two series are,
the smaller variance will be got. To avoid the cross of two series, [18] add some
constant to separate them. In our case, due to the feature of streaming data, we
cannot know how big the constant should be added in advance. As a result, the
sign of the subtraction of two streaming data value is taken into consideration.
Moreover, we accumulated all difference value at each time point. When an end
point is met, we update the distance in an incremental fashion.
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4 Event Detection and Clustering

In essence, a cluster is the set of summarized streams and all the clusters become
a cluster set. Each cluster has a center which is simply the average of every
member in that cluster. Consequently, the center of a cluster is also a sequence
of end points. As data points come in, each stream is online doing piecewise linear
approximation. For streams which have a new end point, we first find out the
clusters that these streams belong to, and then only the distances between the
trigger-streams and the rest of the streams in the same cluster will be updated.
The stream pair distance is updated in an incremental manner as mentioned in
Section 3.

4.1 Split of a Cluster

When the distance between the trigger-stream and other streams in the same
cluster is updated, for each trigger-stream Ŝi, a list containing all Ŝj in the same
cluster Ck whose distance to Ŝi exceeds the threshold δa is kept. If the size of
the list is larger than a specific proportion, we regard Ŝi itself as being very
different from the original cluster. As a result, Ŝi is required to be split out from
the cluster Ck. On the other hand, if the size of this list is not larger than the
specific amount, we consider that the streams inside the list could become quite
different from the original cluster. Therefore the members of the list become the
candidate streams to be moved out.

After splitting, we need to update corresponding cluster centers. Then, the
inter-cluster distances are updated in the same way as updating distances be-
tween summarized streams.

4.2 Merge Clusters

The COMET framework checks whether there are clusters being close enough to
be merged after splitting and updating the inter-cluster distances of each cluster
pair. How close can two clusters be merged is defined by a user given threshold
δe. If the inter-cluster distance between any two clusters is under the threshold
δe, these two clusters are merged. Note that we can apply any agglomerative
hierarchical clustering method in this merge process by setting the stop criteria
as the threshold δe. The cluster number is relatively small compared to the
original number of streams, and thus the execution time is relative low.

5 Conclusion

In this paper, we proposed the COMET framework for online monitoring clusters
over multiple data streams. By using the piecewise linear approximation for data
summarization, we can regard each end point of the line segment as a trigger
point. At each trigger point, we update the distances between streams in the same
cluster. Whenever an event happens, i.e., any distance between two streams in a
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cluster exceeds the pre-defined threshold, the clusters are modified by the split
and merge processes. The COMET framework is efficient and of good scalability
while producing cluster results of good quality.
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Abstract. Mining frequent itemsets over data streams is an emergent research 
topic in recent years. Previous approaches generally use a fixed support thresh-
old to discover the patterns in the stream. However, the threshold will be 
changed to cope with the needs of the users and the characteristics of the in-
coming data in reality. Changing the threshold implies a re-mining of the whole 
transactions in a non-streaming environment. Nevertheless, the "look-once" fea-
ture of the streaming data cannot provide the discarded transactions so that a re-
mining on the stream is impossible. Therefore, we propose a method for vari-
able support mining of frequent itemsets over the data stream. A synopsis vec-
tor is constructed for maintaining statistics of past transactions and is invoked 
only when necessary. The conducted experimental results show that our ap-
proach is efficient and scalable for variable support mining in data streams. 

1   Introduction 

Many data-intensive applications continuously generate an unbounded sequence of 
data items at a high rate in real time nowadays. These transient data streams cannot be 
modeled as persistent relations so that traditional database management systems are 
becoming inadequate in supporting the functionalities of modeling this new class of 
data [2]. The unbounded nature of data streams disallows the holding of the entire 
stream in the memory, and often incurs a high call-back cost even if the past data can 
be stored in external media. Any algorithm designed for streaming data processing 
would generally be restricted to scan the data items only once. Consequently, algo-
rithms such as stream mining algorithms can present merely approximate results 
rather than accurate results because some data items will be inevitably discarded.  

The discovery of frequent items and frequent itemsets has been studied extensively 
in the data mining community, with many algorithms proposed and implemented [1, 
5, 9]. The ‘one-pass’ constraint, however, inhibits the direct application of these algo-
rithms over data streams. The mining of frequent items/itemsets in a data stream has 
been addressed recently. An algorithm in [10] uses the Buffer-Trie-SetGen to  
mine frequent itemsets in a transactional data stream. The FP-stream algorithm [4] 
incrementally maintains tilted-time windows for frequent itemsets at multiple time 
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granularities. The DSM-FI algorithm [7] uses a FP-tree [5] like forest and estimated 
supports for the mining. In addition, the Moment algorithm [3] employs a ‘closed 
enumeration tree’ for fast discovery of closed frequent itemsets in a data stream. 

Note that the above approaches for mining frequent itemsets over data streams ac-
cept only one minimum support in the mining. The minimum support cannot be 
changed during the mining for these approaches. In reality, the minimum support is 
not a fixed value for the entire stream of transactions. The user may specify a thresh-
old in the beginning, adjust the threshold after evaluating the discovered result, or 
change the threshold after a period of time after receiving volumes of transactions. 
The minimum support threshold therefore should be variable to suit the need of the 
user. In contrast to frequent itemset mining with a fixed support, the mining with 
respect to a changeable support is referred to as variable support mining. Although 
online association rule mining and interactive mining [8] may have changeable sup-
port thresholds, both algorithms are inapplicable to the stream data because a scan-
ning of entire transactions is required.  

In this paper, we formulate the problem of variable support mining in a data stream 
and propose the VSMDS (Variable Support Mining of Data Streams) algorithm for 
efficient variable mining of frequent itemsets in a stream of transactions. The VSMDS 
algorithm uses a compact structure (called PFI-tree) to maintain the set of potential 
frequent itemsets and update their support counts. A summary structure, called synop-
sis vector, is designed to approximate past transactions with a flexible distance 
threshold. The comprehensive experiments conducted show that VSMDS is highly 
efficient and linearly scalable. 

2   Problem Statement 

Let  = {α1, α2, …, αr} be a set of literals, called items. A data stream DS = {t1, t2, 
…, tc, …} is an infinite sequence of incoming transactions, where each transaction ti 
is an item-set associated with a unique transaction identifier. Let tc be the latest in-
coming transaction, called current transaction. The current length of the data stream 
is the number of transactions seen so far. A transaction ti contains an item-set e if e ⊆ 
ti. The support of an item-set e, denoted by sup(e), is the number of transactions con-
taining e divided by the current length in DS.  

The user specified a minimum support threshold ms ∈  (0,1] in the beginning of the 
data stream. At any point of time, along with the incoming of transactions, the user 
may change the minimum support threshold so that the thresholds form a series of 
minimum supports. Let msc, called current minimum support, be the minimum sup-
port when we saw tc. An item-set e is a frequent itemset if sup(e  msc. The objec-
tive is to discover all the frequent itemsets in the data stream, with respect to current 
minimum support. Since the specified minimum support is not a fixed value, such a 
mining is called variable support mining over the data stream. In contrast, previous 
mining with only one unchangeable minimum support is called fixed support mining. 
The goal is to use the up-to-update minimum support msc and consider all the transac-
tions, including the discarded ones, for the discovery of frequent itemsets. 
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3   VSMDS: Variable Support Mining for Data Streams 

We process the stream, in a bucket-by-bucket basis, by grouping |B| (called bucket 
size) incoming transactions into a bucket. A potential frequent itemset tree (called 
PFI-tree) is designed to maintain the set of potential frequent itemsets. To provide the 
user with the up-to-date result reflecting a newly specified minimum support, the 
proposed algorithm effectively compresses the discarded transactions into a summary 
structure called synopsis vector (abbreviated as SYV). Consequently, we may use the 
SYV to update the PFI-tree with respect to current minimum support. We use an idea 
similar to Proximus [6] for compressing the transactions but carry out a structure 
updating for more accurate results.  

The series of minimum supports specified by the user is collectively referred to as 
the support sequence (ms1, ms2, …, msλ), where msi indicates the minimum support 
used when DS has Bi buckets. In the following, The PFIi is the PFI-tree and SYVi is 
the SYV on seeing bucket Bi. Additionally, the msPFI denotes the minimum support 
threshold used in the PFI-tree.  

Fig. 1 depicts the overall concept of the proposed VSMDS algorithm. On seeing a 
new bucket Bi, VSMDS updates the PFIi-1 and compresses Bi with SYVi-1 into SYVi. 
The PFIi is used to output the desired patterns to the user. The SYVi-1 is used to build 
PFIi only when the PFIi cannot provide the up-to-date results, that is, when msi < 
msPFI. The PFIi-1 keeps all the itemsets having supports at least msPFI, considering 
buckets up to bucket Bi-1, during the process. If msi ≥ msPFI, the user are querying 
frequent itemsets that have higher supports. These itemsets can be located from PFIi-1 
and VSMDS replies to the user without the participation of the SYV. If msi < msPFI, 
those itemsets having supports greater than or equal to msi but smaller than msPFI, thus 
being excluded in PFIi-1, become frequent. Hence, VSMDS will use the SYVi-1 to 
build PFIi-1 for the mining of these itemsets at this moment. VSMDS utilizes the lexi-
cographic property of consecutive item-comparisons [9] in PFI-tree for fast mining 
and updating of potential frequent itemsets. The SYV is a list of (delegate, cardinal-
ity) pairs. The cardinality indicates the number of occurrences of the delegate; the 
delegate represents a group of approximated itemsets. A delegate dg is said to ap-
proximate to an itemset e if the distance (eg. the number of different items between dg 
and e) is no more than certain distance threshold (defined by the user). 

PFIi: Potential frequent 
itemsets on seeing bucket Bi

SYVi: Synopsis vector 
on seeing Bi

Data Stream t1, t2, …, t|B| t|B|+1, t|B|+2, …,t2*|B|

B1 B2 B3

…

Bi

ms1 ms2 ms3 msi
…Specified minimum 

support

(a)

Bucket Size=|B|

tc

Bi

(b)

update PFIi-1 PFIi

become

SYVi-1

SYVi
compress into

build

when msi < msPFI

(c)
retrieve e, sup(e) msi

 

Fig. 1. Overall concept of the VSMDS algorithm: (a) bucketed transactions (b) update and 
compress operations on seeing a bucket Bi  (c) retrieving the frequent itemsets from the PFIi 
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(a) (b)  
Fig. 2. (a) Mining the data stream with a support sequence of random thresholds (b) the break-
down of the processing time 

(a) (b)  
Fig. 3. (a) Effect on various bucket size (b) working memory size 
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Fig. 4. (a) varying distance threshold (b) scalability evaluation: 1000k to 10000k 

4   Experimental Results 

We have conducted extensive experiments to evaluate the algorithm. The experiments 
were performed on an AMD Sempron 2400+ PC with 1GB memory, running the 
Windows XP, using data-sets generated from [1]. Due to space limit, we only report 
the results on dataset T10I5D1000k. The distance threshold is 10 and |B|=10. 
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Fig. 2(a) shows the performance of VSMDS algorithm with respect to a support 
sequence of random values ranging from 1.1% to 2%, the breakdown of execution 
time is shown in Fig. 2(b). The performance with respect to various bucket sizes is 
shown in Fig. 3(a), and the working memory sizes for the experiment are depicted 
in Fig. 3(b). Let the compression ratio be the size of the synopsis vector divided by 
that of the original transactions. Fig. 4(a) confirms that a distance threshold of 15 
compresses more than 50% of the transactions in size.  Fig. 4(b) indicates that 
VSMDS algorithm scales up linearly with respect to the dataset size (from 1000k to 
10000k). 

5   Conclusion 

In this paper, we propose the VSMDS algorithm for mining frequent itemsets over a 
data stream with changeable support threshold. VSMDS utilizes the PFI-tree and the 
synopsis vector for the mining. The extensive experiments confirm that VSMDS 
efficiently mines frequent patterns with respect to variable supports, and has good 
linear scalability. 

References 

1. Agrawal, R. and Srikant, R.: Fast Algorithm for Mining Association Rules. In Proc. of 
the 20th International Conference on Very Large Databases (VLDB’94), pages 487-499, 
1994. 

2. Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J.: Models and Issues in data 
stream systems. In Proc. of the 2002 ACM Symposium on Principles of Database Systems 
(PODS 2002), ACM Press, 2002. 

3. Chi, Y. and Wang, H.: Moment: Maintaining Closed Frequent Itemsets over a Stream Slid-
ing Window. In Proc. of the Fourth IEEE International Conference on Data Mining 
(ICDM'04), pages 59-66, Brighton, United Kingdom, 01-04 November 2004. 

4. Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S.: Mining Frequent Patterns in Data 
Streams at Multiple Time Granularities. In Proc. of the NSF Workshop on Next Genera-
tion Data Mining, 2002. 

5. Han, J., Pei, J., and Yin, Y.: Mining Frequent Patterns without Candidate Generation. In 
Proc. of the 2000 ACM SIGMOD International Conference on Management of Data, Vol. 
9, Issue 2, pages 1-12, 1999. 

6. Koyuturk, M., Grama, A., and Ramakrishnan, N.: Compression, clustering and pattern dis-
covery in very high dimensional discrete-attribute datasets. IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 17, no. 5, pages 447-461, 2005. 

7. Li, H. F., Lee, S. Y., and Shan, M. K.: An Efficient Algorithm for Mining Frequent Item-
sets over the Entire History of Data Streams. In Proc. of the First International Workshop 
on Knowledge Discovery in Data Streams, pages 20-24, Pisa, Italy, September 2004. 

8. Lin, M. Y. and Lee, S. Y.: Interactive Sequence Discovery by Incremental Mining. Infor-
mation Sciences: An International Journal, Vol. 165, Issue 3-4, pages 187-205, 2004. 

9. Lin, M. Y. and Lee, S. Y.: A Fast Lexicographic Algorithm for Association Rule Mining 
in Web Applications. In Proc. of the ICDCS Workshop on Knowledge Discovery and Data 
Mining in the World-Wide Web, pages F7-F14, Taipei, Taiwan, R.O.C., 2000. 

10. Manku, G. S., Motwani, R.: Approximate Frequency Counts over Data Streams. In Proc. 
of the 28th VLDB Conference, pages 346-357, Hong Kong, China, August 2002. 



Hardware Enhanced Mining for Association
Rules

Wei-Chuan Liu, Ken-Hao Liu, and Ming-Syan Chen

Department of Electrical Engineering,
National Taiwan University,

Taipei, Taiwan, ROC
mschen@cc.ee.ntu.edu.tw,

{kenliu, weichuan}@arbor.ee.ntu.edu.tw

Abstract. In this paper, we propose a hardware-enhanced mining
framework to cope with many challenging data mining tasks in a data
stream environment. In this framework, hardware enhancements are im-
plemented in commercial Field Programmable Gate Array (FPGA) de-
vices, which have been growing rapidly in terms of density and speed.
By exploiting the parallelism in hardware, many data mining primitive
subtasks can be executed with high throughput, thus increasing the per-
formance of the overall data mining tasks. Simple operations like count-
ing, which take a major portion of conventional mining execution time,
can in fact be executed on the hardware enhancements very efficiently.
Subtask modules that are used repetitively can also be replaced with the
equivalent hardware enhancements. Specifically, we realize an Apriori-
like algorithm with our proposed hardware-enhanced mining framework
to mine frequent temporal patterns from data streams. The frequent
counts of 1-itemsets and 2-itemsets are obtained after one pass of scan-
ning the datasets with our hardware implementation. It is empirically
shown that the hardware enhancements provide the scalability by map-
ping the high complexity operations such as subset itemsets counting
to the hardware. Our approach achieve considerably higher throughput
than traditional database architectures with pure software implementa-
tion. With fast increase in applications of mobile devices where power
consumption is a concern and complicated software executions are pro-
hibited, it is envisioned that hardware enhanced mining is an important
direction to explore.

Keywords: Hardware enhanced mining, association rules.

1 Introduction

In several emerging applications, data is in the form of continuous data streams,
as opposed to finite stored databases. Examples include stock tickers, network
traffic measurements, web logs, click streams, data captured from sensor net-
works and call records. Specifically, a data stream is a massive unbounded se-
quence of data elements continuously generated at a rapid rate. It is recognized
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that the data stream processing has to satisfy the following requirements. First,
each data point should be examined at most once when analyzing the data
stream. Second, the storage cost of related data structures should be bounded.
Third, newly generated data points should be processed as fast as possible to
accomplish real-time computing, i.e., the processing rate should be at least the
same as the data arrival rate. Finally, the up-to-date analysis results of a data
stream should be instantly available when requested.

Note that traditional database architectures that focus solely on I/O opti-
mization are not designed to utilize the continued evolution of hardware infras-
tructure resources, especially those on mobile devices, efficiently to meet the
demand for high-speed data stream processing. Due to the dynamic and time-
sensitive nature of most data stream applications, data stream processors need
to be capable of handling huge amount of data in a limited length of time window
with bounded memory space. To achieve this goal, we need to exploit the charac-
teristics of modern hardware technologies to design efficient hardware framework
to maximize the performance of data mining algorithms. In this paper, we pro-
pose a novel paradigm that comprises a hardware-enhanced framework, which
exploits the massive parallelism in custom hardware to solve many high com-
plexity problems in data mining tasks and to further increase the throughput
and decrease the response time of the existing data mining systems. With fast
increase in applications of mobile devices where power consumption is a con-
cern and complicated software executions are prohibited, it is envisioned that
hardware enhanced mining is an important direction to explore.

The novelty of our hardware-enhanced approach is that we transform the
item transactions in a data stream into a matrix structure and efficiently map
operations for discovering frequent itemsets to highly efficient hardware process-
ing units. The matrix structure and the corresponding operations are optimally
implemented as a hardware enhancement to the existing database architectures.
Our approach finds the balance of the hardware and software design to solve
the high complexity issues such as the level-2 itemset counting to enable high
performance data stream processing systems that are not attainable with tra-
ditional architectures. Specifically, we realize Apriori-like algorithm within our
proposed hardware-enhanced mining framework to mine frequent temporal pat-
terns from data streams. Even with the quadratic increase of the size of 2-
itemsets, the counts of frequent 1-itemsets and 2-itemsets are obtained after
one pass of the datasets through our hardware implementation. The throughput
obtained with our proposed hardware enhanced framework is two orders of mag-
nitude larger than that attainable by reference software implementation. It is
empirically shown that the hardware enhancements provide the necessary scala-
bility to many high complexity operations such as subset itemsets counting and
achieve considerably higher throughput than traditional database architectures
with pure software implementation.

Many sequential algorithms to discover association rules are studies exten-
sively [1][3][4][6]. Parallel and distributed schemes based on the sequential Apri-
ori algorithm can be found in [2][5][10]. However, they did not focus on the
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scalability issues of the high complexity operations. To deal with the bottleneck
of the Apriori-like algorithms, i.e., finding all frequent 2-itemsets of transaction,
to mine for frequent itemsets in data streams, FTP-DS algorithm [13] utilized
the delayed pattern recognition approach to address the time and the space
constraints in a data stream environment. In [8][9], even though approximation
approaches are employed, it still needs excessive time to scan all 2-itemsets of
transaction.

We mention in passing that active storage which takes advantage of processing
power on individual disk drives to run application-level code is proposed in [12].
As the number of hard disk drives increases, I/O-bounded scans are benefited
by the partition of the data among the large number of disks and the reduction
in bandwidth by filtering. However, [12] relies on storage parallelism, i.e. the
number of physical hard disks, which does not scale up with the vast amount of
data. The reduction of I/O traffic by filtering will also affect the accuracies of the
data mining tasks. A commercial FPGA coprocessor board is used to accelerate
the processing of queries on a relational database that contains texts and images
in [7]. This approach is not directly applicable to the data mining tasks. [11]
builds a model to parameterize the communication overhead between processor
and programmable logic interface and logic delays in the programmable logic
device to evaluate the speedup of the addition of programmable logic to RISC
machine. To our knowledge, there was no prior work either designing hardware
stream processor or balancing task partitions among hardware and software, let
alone conducting the corresponding performance analysis. This feature distin-
guished our work from others.

The rest of the paper is organized as follows. The preliminaries of discov-
ering frequent patterns over data streams are explored in Section 2. Hardware
enhanced framework is described in Section 3. Performance analysis to evaluate
the advantages of exploiting the application specific hardware for data mining
tasks is conducted in Section 4. Empirical studies are showed in Section 5. This
paper concludes with Section 6.

2 Preliminaries

By following the concept of general support framework [13], we briefly describe
the determination of frequent temporal patterns as follows. A typical market-
basket application is used here for illustrative purposes. The transaction flow
in such an application is shown in Figure 1 where items a to h stand for items
purchased by customers. For example, the third customer bought item c during
time t=[0, 1), items c, e and g during t=[2, 3), and item g during t=[4, 5).
With the sliding window model, the support of a temporal pattern is defined as
follows.

Definition 1. The support or the occurrence frequency of a temporal pattern X
at a specific time t is denoted by the ratio of the number of customers having
pattern X in the current time window to the total number of customers.
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Occurrence(s) Support
t=1 w[0,1] none 0
t=2 w[0,2] CustomerID={2, 4} 2/5=0.4
t=3 w[0,3] CustomerID={2, 3,4} 3/5=0.6
t=4 w[1,4] CustomerID={2, 3} 2/5=0.4
t=5 w[2,5] CustomerID={1, 3,5} 3/5=0.6
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Fig. 1. (a) An example of online transaction flows. (b) The support values of the
inter-transaction itemset {c,g}.

For example, given the window size N=3, three sliding windows, i.e. w[0,3],
w[1,4], and w[2,5], are shown in Figure 1(a) for the transaction flows. According
to above definition, supports of the inter-transaction itemset {c,g} from TxTime
t=1 to t=5 are obtained as in Figure 1(b).

3 Hardware Enhanced Data Stream Processing

Because of the limited amount of instruction level parallelism (ILP) present
in most of the data mining tasks [4][14], high speed data streams cannot be
processed in time either by the multi-process or parallel systems to match their
arrival rates. Many emerging data mining environments, such as data streams,
sensor networks, and etc., demand higher throughputs and shorter response time
than those attainable by traditional data mining infrastructures.

Modern VLSI technology makes it possible to pack millions of transistors
in a single chip. Commercial FPGA devices provide millions of gates and also
hundreds of thousands of logic elements integrated with large memory and high
speed I/O interfaces. The hardware building blocks can be exploited for data
mining tasks. Mining algorithms partitionable into independent subtasks can be
executed in the hardware in a parallel fashion. Simple and frequently used rou-
tines are implemented in hardware redundantly to process incoming data simul-
taneously. Special purpose circuits can be implemented on field programmable
gate array (FPGA) devices and interfaced to the host data mining system as
an array processors. Similar architectures are used in the design of processors
for digital signal processing applications which are characterized by intensive
computations and real-time requirements. Similar coprocessors or accelerators
for multimedia and networking applications have already been widely used in
computing nowadays.

To achieve the throughput required in today’s high speed data streams, high
complexity operations in data mining tasks have to be executed within a rela-
tively short period of time. The time required by most of the high complexity
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Fig. 2. Computation model with hardware enhancement for data streams

operations, such as 2-itemset enumeration and counting in the discovery of fre-
quent patterns, becomes impractical as the size of the data and the data arrival
rate increase. From our performance model described later in section 4, we ex-
plore a novel direction, a hardware enhanced framework, which is to exploit the
massive number of parallel processing elements dedicated as an infrastructure
for data mining tasks.

3.1 Stream Processor

The computation model of our hardware enhanced mining framwork for data
streams is shown in Figure 2. There are various ways to partitions a data mining
task into hardware and software components depending on the nature of the
task. For the problem of finding frequent temporal patterns in data streams, since
the computation of L1- and L2-itemsets is the most time-consuming task in our
algorithm, we can offload this operation to the hardware to enhance performance.
Subsequent rule generations can be processed in software implementations for
flexibility.

Let a transaction I = {i1, i2, . . . , iN} be a set of items, where N is the
number of items and each item belongs to {0,1}. Each item stands for an event
according to its position in a transaction. The first item indicates the event A
and the second item stands for the event B, and so on. We use a bit to represent
the occurrence of the event, i.e., the event occurred if the bit is set to one. Note
that the number of items is pre-defined as part of the system specification. For
example, in Figure 3, each bit arrives in an interval of one time unit. The third
customer bought items {0,0,1,0,1,0,1,0} in order during time t=[16, 24), where
N is 8. Three bits are set to one to represent the occurrence of event C, E, and
G, respectively.

Figure 4 shows the architecture of hardware stream processor. As the input
to the stream processor, we have C customers and N distinct items that may
appear in a transaction. There are four function blocks in this processor, namely,
a serial/parallel converter, a sliding window buffer, a 2-itemset generator, and
a frequent decision maker. N items are grouped as a transaction in a parallel
form by the serial/parallel converter. The sliding window buffers the inputs of
the most recent N time units. The 2-itemset generator enumerates all the com-
binations of 2-itemsets. Each frequent decision maker determines whether its
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corresponding 2-itemset is frequent in the current sliding window. Here we use
parallel adders and comparators to make the frequent decisions in real time. Ac-
cording to Definition 1 in previous section, an itemset is frequent if the number
of occurrences in all customers exceeds in the number of user-specified threshold.

4 Performance Model

The characteristics of run-time behaviors are very different in hardware and
software. The pipeline of hardware is achieved in register level while there is only
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limited instruction level pipelining in software implementations on traditional
CPU-based framework. Only one task can be executed in any moment, such as
calculating, scanning, and sorting. Specifically, most CPU has only one ALU
to execute addition, shifting, comparison, and so on. Our specialized hardware
design can process all tasks simultaneously, including 2-itemset enumeration,
occurrence counting, etc. through the massive array of simple components. The
basic characteristics of functions suitable for hardware enhancements are that
they take up a significant portion of overall execution time, execute in a first-
in-first-out manner with minimal state memory, and exhibit simple and regular
structure. In this section we develop a simple model for the performance of the
hardware enhancements to illustrate the limitation of traditional framework and
the benefits of the proposed hardware enhanced framework.

Suppose that the operation i has N units of work. Each operation takes wcpu

clock cycles to complete in traditional architecture and wfpga clock cycles to
complete in the hardware enhancement. The CPU clock rate is fcpu and the
hardware enhancement clock rate is ffpga. The hardware enhancement has L
parallel units of processing elements. To keep the model simple, we assume that
the overhead in communication for each unit of work takes a constant wcomm

cycles. In traditional architecture, the execution time is

top = N∗wcpu

fcpu

and the throughput is
throughputop = N

top
= fcpu

wcpu
.

The throughput is limited by clock rate, fcpu. Latest CPU operates at several
GHz, beyond which the clock rate are not scalable. The execution clock cycle
needed per operation, wcpu, is constant for a given algorithm.

Now consider our hardware enhanced framework. For hardware enhance-
ments, the execution time is

t
′
op,enhanced = N∗wfpga

L∗ffpga
+ N∗wcomm

ffpga

and the throughput is

throughput
′
op,enhanced = N

t
′
op,enhanced

= L∗ffpga

wfpga+L∗wcomm
.

The throughput can be increased by increasing the number of parallel processing
elements L, decreasing the clock cycles needed per operation wfpga, or minimiz-
ing the communication delay wcomm. The density of processing elements packed
into commercial FPGA devices is growing almost exponentially and thus pro-
vides tremendous room for optimization of the throughput.

Example 1: Consider the algorithm in [13] for the discovery of frequent patterns
over data streams. The throughput of the algorithm is defined as the number of
transactions that are processed every unit of time interval. Suppose that N is
the average number of items per transaction and C is the number of customer.
The amount of transaction items that our stream process can process in one unit
of time is N . Note that the throughput is independent of the number of cus-
tomers because the proposed hardware infrastructure can deal with all customer
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streams in a parallel fashion. The maximal throughput of hardware enhance-
ment scales linearly with N . The bottleneck for the software implementation of
Apriori algorithm is identified as the phase during which N ·C comparisons are
required to check if any of the C

|L1|
2 candidates is frequent, where |L1| is the size

of the large 1-itemset. Therefore, the maximal throughput of a reference software
implementation scales with 1

N ·C·|L1|2 . For typical values of N , we observe that
the throughput in our proposed hardware enhanced framework is many orders
of magnitudes higher that that attainable with software implementation used in
traditional database architectures.

5 Experiments

The hardware is implemented and verified with Altera’s design software Quar-
tusII and executes on the Altera’s Stratix device. Software implementation of
the algorithm is also executed on the same device, with a NiosII 50MHz CPU
and 16MB of SDRAM. Transaction data sets are synthesized in a similar way
to those in [3].

5.1 Performance and Scalability

Our experiments are conducted with synthetic data sets. In order to show the
scalability of the proposed hardware enhanced framework, we measure the num-
ber of clock cycles needed to obtain the frequent patterns. The results are shown
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in Figure 5(a) and 5(b). The hardware enhanced stream processor offers through-
put that is two order of magnitudes larger than its software couterpart does. We
obtain similar results when we scale the support values as shown in Figure 6. The
results are consistent with our previous analysis. The throughput of the hard-
ware enhancement remains at constant level with different parameters, such as
number of items, support value, density of data while the software couterpart
scales poorly. Our hardware design scales linearly with both the number of items
and the number of customers, i.e., data streams. The througput of the hardware
enhanced data stream processing system remains constant while the throughput
of the reference software implementation reduces exponentially as the number
of items or customers increases.

6 Conclusion

The feasibility of our paradigm is shown by the implementation of hardware
enhancements in commercial FPGA devices. The hardware enhanced mining
framework is a promising new approach to boost the performance of many data
mining algorithms and cope with many of their inherent high complexity issues.
Specifically, our approach finds the balance of the hardware and software design
to solve the level-2 itemset counting in Apriori algorithms. We also point out
many applications that will benefit from the new paradigm. This promising
problem we have addressed here is an unexplored territory in the field of data
mining research. This paper is among the very first to explore this new direction.
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Abstract. Moving average transform is known to reduce the effect of
noise and has been used in many areas such as econometrics. Previous
subsequence matching methods with moving average transform, how-
ever, would incur index overhead both in storage space and in update
maintenance since the methods should build multiple indexes for sup-
porting arbitrary orders. To solve this problem, we propose a single in-
dex approach for subsequence matching that supports moving average
transform of arbitrary order. For a single index approach, we first pro-
vide the notion of poly-order moving average transform by generalizing
the original definition of moving average transform. We then formally
prove correctness of the poly-order transform-based subsequence match-
ing. By using the poly-order transform, we also propose two different
subsequence matching methods that support moving average transform
of arbitrary order. Experimental results for real stock data show that
our methods improve average performance significantly, by 22.4 ∼ 33.8
times, over the sequential scan.

1 Introduction

Time-series data are the sequences of real numbers representing values at spe-
cific points in time. Typical examples of time-series data include stock prices,
exchange rates, biomedical measurements, and financial data [1, 4, 11]. The time-
series data stored in a database are called data sequences, and those given
by users are called query sequences. And, finding data sequences similar to
the given query sequence from the database is called similar sequence match-
ing [1, 4, 8]. In many similar sequence matching models, two sequences X =
{X [1], X [2], ..., X [n]} and Y = {Y [1], Y [2], ..., Y [n]} of the same length n are
said to be similar if the distance D(X,Y ) is less than or equal to the user-
specified tolerance ε [1, 4]. In this paper, we use the Euclidean distance, which
has been widely used in [1, 4, 6, 7, 8, 9], as the distance function D(X,Y ), and
define that X and Y are in ε-match if D(X,Y ) is less than or equal to ε.

In this paper we focus on the subsequence matching that supports moving
average transform. Here, the subsequence matching[4, 8] is the problem of finding
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c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Summary of notation

Symbols Definitions
S[i : j] Subsequence of S, including entries from the i-th one to the j-th
S(k) k-moving average transformed sequence of S (S(k)[i] = 1

k
i+k−1
j=i S[j])

S(k)[i : j] Subsequence of S(k), including entries from the i-th one to the j-th
si The i-th disjoint window of S (= S[(i − 1) ∗ ω + 1 : i ∗ ω], i ≥ 1)

s
(k)
i The i-th disjoint window of S(k) (= S(k)[(i − 1) ∗ ω + 1 : i ∗ ω], i ≥ 1)

subsequences, contained in data sequences, similar to a query sequence of arbi-
trary length. And, moving average transform [3, 10], which has been widely used
in econometrics [3], converts a given sequence into a new sequence consisting of
the averages of k consecutive values in the sequence, where k is called the mov-
ing average order or simply the order [6]. The moving average transform is very
useful for finding the trend of the time-series data by reducing the effect of noise,
and has been used in various applications [3]. Since the users want to control the
degree of the noise reduction depending on the characteristics of data sequences
to be analyzed [5], efficient support of arbitrary orders is also necessary. Table 1
summarizes the notation to be used throughout the paper.

In this paper we focus on the subsequence matching model that supports
moving average transform of arbitrary order [6]. That is, the focused model uses
the distance between two k-moving average transformed sequences Q(k) and
S(k)[i : j], instead of the distance between two original sequences Q and S[i : j],
to determine whether the two sequences are in ε-match or not. We call this
similarity model as moving average transformed subsequence matching. Previous
research results [4, 6, 8], however, do not provide an efficient solution because of
incurring index overhead.

In this paper we propose a single index approach for the moving average
transformed subsequence matching. To explain our approach, we first provide
the notion of poly-order moving average transform (or simply poly-order trans-
form) by generalizing the original definition of moving average transform. The
poly-order transform is different from the original moving average transform in
a manner of using moving average orders. While the original transform uses
only one specific order, the poly-order transform uses a set of moving average
orders. That is, while the original transform makes a transformed sequence from
an original sequence, the poly-order transform generates a set of transformed
sequences from an original sequence. In this paper we show that, if constructing
a single index using the poly-order transform and using the index, we are able
to perform the moving average transformed subsequence matching correctly.

By applying the poly-order transform to both Faloutsos et al.’s method [4]
(called FRM for convenience) and DualMatch [8], we propose two different mov-
ing average transformed subsequence matching methods. The first one is an
FRM-based algorithm, which divides data sequences into sliding windows and a
query sequence into disjoint windows. The second one is a DualMatch-based algo-
rithm, which divides data sequences into disjoint windows and a query sequence
into sliding windows. Experimental results show that two proposed matching
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methods improve performance significantly over the sequential scan regardless
of selectivity ranges and query lengths.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 presents the concept of poly-order transform and explains the proposed
matching algorithms. Section 4 presents the results of performance evaluation.
Section 5 concludes the paper.

2 Related Work

We first review Agrawal et al.’s whole matching solution [1]. The whole matching
solution consists of index building and similar sequence matching algorithms. In
the index building algorithm, each data sequences of length n is transformed into
f -dimensional points (f . n), and the transformed points are stored into an R∗-
tree [2]. In the similar sequence matching algorithm, a query sequence is similarly
transformed to an f -dimensional point, and a range query is constructed using
the point and the tolerance ε. Then, by evaluating the range query using the
index, the candidates are identified. This method guarantees there be no false
dismissal, but may cause false alarms because it uses only f features instead
of n. Thus, it performs the post-processing step that eliminates false alarms by
accessing the actual data sequences from the disk [1].

Faloutsos et al. have proposed a subsequence matching solution (FRM) as
a generalization of the whole matching[4]. FRM uses the window construction
method of dividing data sequences into sliding windows and a query sequence
into disjoint windows. In the index building algorithm, FRM divides data se-
quences into sliding windows and transforms each window to an f -dimensional
point. However, dividing data sequences into sliding windows causes a serious
problem of generating too many points to be stored into the index [4, 8]. To solve
this problem, FRM does not store individual points directly into the R∗-tree,
but stores only MBRs (minimum bounding rectangles) that contains hundreds or
thousands of the f -dimensional points. In the subsequence matching algorithm,
FRM performs subsequence matching based on the following Lemma 1 [4].

Lemma 1. If two sequences S and Q are in ε-match, then at least one of the dis-
joint window pairs (si, qi) are in ε/

√
p (p = �Len(Q)/ω�). That is, the following

Eq. (1) holds:

D(S,Q) ≤ ε =⇒
p∨

i=1

D(si, qi) ≤ ε/
√
p (1)

According to Lemma 1, FRM divides a query sequence into disjoint windows,
transforms each window to an f -dimensional point, makes a range query using
the point and the tolerance ε, and constructs a candidate set by searching the
R∗-tree. Finally, it performs the post-processing step to eliminate false alarms.

DualMatch [8] and GeneralMatch [9] have improved performance significantly
in subsequence matching by using different window construction methods from
FRM. In constructing windows, DualMatch is a dual approach of FRM, and Gen-
eralMatch is a generalized approach of FRM and DualMatch. Except difference
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in window construction mechanism, index building and subsequence matching
algorithms of DualMatch and GeneralMatch are similar to those of FRM.

Loh and Kim [6] have first proposed a subsequence matching method that
supports moving average transform of arbitrary order. In the index building al-
gorithm, the method builds an m-index by performing m-moving average trans-
form on data sequences, by dividing the transformed sequences into windows,
and by mapping the windows into lower-dimensional points. In the subsequence
matching algorithm, given the order k that may or may not be equal to m, the
method uses the m-index to perform k-order moving average transform. How-
ever, the method has a serious drawback that it is necessary to modify existing
algorithms and node structures used in the R∗-tree. Also, Loh and Kim have
proposed the index interpolation [7] that constructs multiple m-indexes for arbi-
trary orders. However, this index interpolation causes another critical drawback
that, as the number of m-indexes increases, much more space would be required
for the indexes, and index maintenance overhead would be increased to maintain
multiple indexes.

3 The Proposed Single Index Approach

3.1 The Concept

The motivation of the research is on how we can use Lemma 1, which has been
used for a theoretical basis in many subsequence matching methods. If using
Lemma 1, we can perform subsequence matching efficiently since we can reduce
the index search range from ε to ε/

√
p. To do this, we first derive the following

Lemma 2 by applying k-moving average transform to Lemma 1.

Lemma 2. If two k-order moving average transformed sequences S(k) and Q(k)

are in ε-match, then at least one of the pairs (s(k)
i , q

(k)
i ) are in ε/

√
p (p =

�Len(Q(k))/ω�). That is, the following Eq. (2) holds:

D(S(k), Q(k)) ≤ ε =⇒
p∨

i=1

D(s(k)
i , q

(k)
i ) ≤ ε/

√
p (2)

Proof: We omit the proof since it can be easily done using Lemma 1. ��
To use Lemma 2 in moving average transformed subsequence matching without
any modification, however, we have to build a lot of indexes since we require each
index for every possible order k. To solve this problem, we propose an efficient
approach that uses only one index rather than multiple indexes.

To support moving average transform of arbitrary order in FRM and Dual-
Match without incurring the problem of multiple indexes, we generalize the
definition of moving average transform as the following Definition 1.

Definition 1. Given a window S[a : b] contained in a sequence S and a set K of
orders, k1, k2, · · · , km, the poly-order moving average transformed window set,
S(K)[a : b], of S[a : b] on K is defined as follows:

S(K)[a : b] = {S(ki)[a : b] | ki ∈ K, 1 ≤ i ≤ m } (3)
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To represent an area of containing multiple windows, we now rewrite the defini-
tion of MBR using a set of windows as follows.

Definition 2. Given a set W of windows, W1,W2, · · · ,Wm, of the same size
ω, an MBR of the set W, MBR(W), is defined as an ω-dimensional MBR that
contains every ω-dimensional point Wi in W.

According to Definitions 1 and 2, the poly-order transformed window set of si on
K is denoted by s

(K)
i , and the MBR of containing all windows in s

(K)
i is denoted

by MBR(s(K)
i ).

If using the poly-order transform, we can perform the moving average trans-
formed subsequence matching correctly, i.e., we do not incur any false dismissal.
To explain the correctness, we present Lemma 3 that represents the relationship
between k-order transform and the poly-order transform on K containing k.

Lemma 3. When k ∈ K, if q
(k)
i is in ε-match with s

(k)
i , then q

(k)
i is also in

ε-match with MBR(s(K)
i ). That is, the following Eq. (4) holds:

D(q(k)
i , s

(k)
i ) ≤ ε =⇒ D(q(k)

i ,MBR(s(K)
i )) ≤ ε (4)

Proof: We omit the proof due to space limitation. ��
Based on Lemmas 2 and 3, we now derive Theorem 1, which provides a theoret-
ical basis of the algorithms to be proposed.

Theorem 1. When k ∈ K, if Q(k) is in ε-match with S(k)[a : b], then at least
one q

(k)
i is in ε/

√
p-match with MBR(S(K)[a + (i − 1) · ω : a + i · ω − 1]). That

is, the following Eq. (5) holds:

D(Q(k)
i , S(k)[a : b]) ≤ ε

=⇒
p∨

i=1

D(q(k)
i ,MBR(S(K)[a + (i− 1) · ω : a + i · ω − 1])) ≤ ε/

√
p, (5)

where p =
⌊
Len(Q(k))/ω

⌋
, and Len(S(k)[a : b]) = Len(Q(k)).

Proof: We can prove the theorem using Lemmas 2 and 3. We omit the detailed
proof due to space limitation. ��
Theorem 1 guarantees that the candidate set consisting of the subsequences
S(k)[a : b] such that q

(k)
i and MBR(S(K)[a + (i − 1) · ω : a + i · ω − 1]) are in

ε/
√
p-match (i.e., satisfying the necessary condition of Eq. (5)) contains no false

dismissal.
To use Theorem 1 for the FRM-based (or DualMatch-based) moving average

transformed subsequence matching method, we need to construct a set of win-
dows for each window of data sequences. That is, the methods to be proposed
first construct an MBR that contains multiple poly-order transformed windows.
The methods then transform the MBR to a lower-dimensional MBR, and finally
build an index by storing the MBR.
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3.2 FRM-MAT: FRM with Moving Average Transform

In this subsection we explain FRM-MAT, the moving average transformed sub-
sequence matching method that is derived from FRM [4] by using the poly-order
moving average transform.

Figure 1 shows the index building algorithm of FRM-MAT. In Step (1), we
divides a data sequence S into sliding windows of length ω. In Steps (2) ∼
(6), for each sliding window, we construct an MBR and store the MBR into the
multidimensional index. First, in Step (3), we make a set of transformed windows
from a sliding window by performing the poly-order transform on a given set
of orders. Next, in Step (4), we construct an f -dimensional MBR by using the
lower-dimensional transformation on the set of windows. Last, in Step (5), we
store the MBR into the multidimensional index with the starting offset of the
corresponding sliding window.

Procedure FRM-MAT-BuildIndex(Data Sequence S , Window size ω, Set of orders ) 
(1) Divide S  into sliding windows of length ω; 
(2) for each sliding window [ : ]S a b  do 
(3)  Make a set of windows 

( )[ : ]S a b  by using the poly-order moving average transform on ; 
(4)  Construct an f-dimensional MBR f-D MBR by using the lower-dimensional  
  transformation on 

( )[ : ]S a b ; 
(5)  Make a record < f-D MBR, offset=a>, and store it into the index; 

(6) endfor 

 Fig. 1. The index building algorithm of FRM-MAT

Like FRM, however, FRM-MAT has a problem of generating a lot of MBRs
to be stored in the index since it divides data sequences into sliding windows.
To solve this problem, FRM has constructed an MBR that contains multiple
points corresponding to multiple sliding windows [4]. Thus, in FRM-MAT, we
also construct an MBR that contains multiple MBRs corresponding to multiple
sliding windows. That is, in the index building algorithm, we construct an MBR
that represents multiple consecutive sliding windows and store the MBR with
the starting offsets of the first and the last windows. For easy explanation and
understanding, however, we describe the algorithm in Figure 1 as that FRM-
MAT stores an individual MBR for each sliding window directly.

Next, Figure 2 shows the subsequence matching algorithm of FRM-MAT. In
Steps (1) and (2), for a give query sequence Q, we obtain p disjoint windows
q
(k)
i from the k-order moving average transformed sequence Q(k). In Steps (3) ∼

(8), for each disjoint window q
(k)
i , we find candidate subsequences by searching

the index using the window and the given tolerance ε. First, in Step (4), we
transform the corresponding window to an f -dimensional point using lower-
dimensional transformation. Second, in Step (5), we construct a range query
using the point and ε/

√
p. Third, in Step (6), we search the multidimensional

index using the range query and find the MBRs that are in ε/
√
p-match with the

point. Last, in Step (7), we obtain candidate subsequences using offset , which is
stored in the record with the MBR as the starting position of the sliding window.
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Procedure FRM-MAT-SubsequenceMatching (Query Sequence Q , Tolerance ε, Window size ω, Order k) 
(1) Make 

( )kQ  from Q  by using k-order moving average transform; 
(2) Divide 

( )kQ  into disjoint windows 
( ) ( )(1 ,  ( ) )k k
iq i p p Len Q≤ ≤ = ω  of length ω; 

(3) for each window 
( )k
iq  do 

(4)  Transform the window to an f-dimensional point by using the lower-dimensional transformation; 
(5)  Construct a range query using the point and pε ; 
(6)  Search the index and find the records of the form <f-D MBR, offset >; 
(7)  Include in the candidate set the subsequences 

( )[ ( 1) : ( 1) ( ) 1]− − ⋅ω − − ⋅ω+ −kS offset i offset i Len Q ; 
(8) endfor 
(9) Do the post-processing step; 

Fig. 2. The subsequence matching algorithm of FRM-MAT

Finally, in Step (9), the post-processing step, we select only similar subsequences
by discarding false alarms from the candidate set.

3.3 DM-MAT: DualMatch with Moving Average Transform

DM-MAT can also be derived from DualMatch [8] by using the poly-order trans-
form. Since algorithms of DM-MAT are similar to those of FRM-MAT except
difference in constructing windows, we omit the detailed algorithms of DM-MAT.

4 Performance Evaluation

4.1 Experimental Data and Environment

We have performed extensive experiments using two types of data sets. A data
set consists of a long data sequence and has the same effect as the one consisting
of multiple data sequences [4, 8, 9]. The first data set, a real stock data set used
in FRM [4] and DualMatch [8], consists of 329,112 entries. We call this data set
STOCK-DATA. The second data set, also used in FRM and DualMatch, contains
random walk synthetic data consisting of one million enties: the first entry is set
to 1.5, and subsequent entries are obtained by adding a random value in the
range (-0.001,0.001) to the previous one. We call this data set WALK-DATA.

We have performed experiments on the following five matching methods:

• SEQ-SCAN : As a sequential scan solution, we find similar subsequences by
fully scanning the entire database once.

• FRM-MAT : The FRM-based solution proposed in Section 3.2.
• FRM-ORG: As a simple solution obtained from FRM, we build each index

for all orders and use algorithms of FRM with slight modification.
• DM-MAT : The DualMatch-based solution proposed in Section 3.3.
• DM-ORG: As a simple solution obtained from DualMatch, we build each in-

dex for all orders and use algorithms of DualMatch with slight modification.

The hardware platform for the experiment is a PC equipped with an Intel Pen-
tium IV 2.80 GHz CPU, 512 MB RAM, and a 70.0GB hard disk. The operating
system is GNU/Linux Version 2.6.6. We use the R∗-tree [2] as a multidimensional
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index and extract six features[4, 8] from a window using Discrete Fourier Trans-
form [4]. We use 256 as the minimum query length to be given, and accordingly,
we set the window sizes for FRM-MAT and FRM-ORG to 256 [4], and those
for DM-MAT and DM-ORG to 128 [8]. Next, we let K = {2, 4, 8, 16, 32, 64, 128}.
Therefore, we build only one index for FRM-MAT (or for DM-MAT) on K, but
seven indexes for FRM-ORG (or for DM-ORG) for each order in K.

For the experimental results, we measure the elapsed time as the metric of effi-
ciency and the storage space as the metric of overhead for the indexes. To avoid
effects of noise, we experiment with 10 different query sequences of the same
length and use the average as the result. We obtain the desired selectivity[4, 8]
by controlling the tolerance ε.

4.2 Experimental Results

We conduct three different experiments: Experiment 1) measures the elapsed
time by changing order k on different selectivities; Experiment 2) measures the
elapsed time by changing order k on different query lengths; and Experiment 3)
shows each index storage space required for the methods.

Experiment 1) The elapsed times on different selectivities
Figure 3 shows the experimental results for STOCK-DATA while changing order
k on each selectivity of 0.0001, 0.001, and 0.01. Here, we use 512 as the query
length. As shown in the figure, the proposed methods, both FRM-MAT and DM-
MAT, reduce the elapsed time significantly over the sequential scan regardless of
selectivity ranges. In summary, comparing with the sequential scan, FRM-MAT
reduces the elapsed time by 22.4 times on the average, and DM-MAT by 33.8
times on the average. However, the elapsed times of FRM-MAT and DM-MAT
are slighlty longer than those of FRM-ORG and DM-ORG respectively. It is be-
cause the sizes of MBRs stored in the index in FRM-MAT and DM-MAT, which
build only one index for all orders, is relatively larger than those in FRM-ORG
and DM-ORG, which build each index for all orders. And, in the figure, DM-
MAT shows better performance than FRM-MAT. It is because DM-MAT like
DualMatch can use the index-level filtering but FRM-MAT like FRM cannot [8].
Experimental results for WALK-DATA are very similar to those of STOCK-
DATA. We omit the results due to space limitation.

SEQ-SCAN FRM-MAT FRM-ORG DM-MAT DM-ORG
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Fig. 3. The elapsed times for STOCK-DATA on different selectivities
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Fig. 4. The elapsed times for STOCK-DATA on different query lengths

Experiment 2) The elapsed times on different query lengths
Figure 4 shows the experimental results for STOCK-DATA while changing order
k on each query length of 256, 512, and 1024. Here, we use 0.0001 as the selectiv-
ity. Figure 4 (a) is the case of using 256 as the query length, (b) for 512, and (c)
for 1024. As shown in the figure, the proposed FRM-MAT and DM-MAT also
reduce the elapsed time significantly over the sequential scan regardless query
lengths. In summary of the results, FRM-MAT and DM-MAT reduce the aver-
age elapsed time by 20.2 ∼ 42.6 times compared with the sequential scan. And,
the results of WALK-DATA are also similar to those of STOCK-DATA.

Experiment 3) Storage space required for multidimensional indexes
Table 2 shows index storage spaces of five matching methods. The space for
the sequential scan is 0 since it does not use any index. As shown in the table,
FRM-ORG needs about seven times more storage space than FRM-MAT since
it builds total seven indexes while FRM-MAT builds only one index. Similarly,
DM-ORG needs about seven times more storage space than DM-MAT. Likewise,
the number of indexes, i.e., index storage space, required for FRM-MAT (or DM-
MAT) is only 1/|K| of that for FRM-ORG (or DM-ORG). And accordingly, our
methods can also reduce the index maintenance overhead, which are required to
support insertion, deletion, and update of data sequences, by up to 1/|K|.

Table 2. Storage space comparison of the five matching methods for indexes

Data SEQ FRM-based approaches DualMatch-based approaches
types -SCAN FRM-MAT FRM-ORG

FRM−ORG
FRM−MAT

DM-MAT DM-ORG
DM−ORG
DM−MAT

STOCK-DATA 0 KB 618 KB 1,526 KB 7.0 198 KB 1,434 KB 7.2

WALK-DATA 0 KB 618 KB 4,254 KB 6.9 562 KB 4,158 KB 7.4

5 Conclusions

Moving average transform is known to reduce the effect of noise and has been
used in many areas such as econometrics since it is useful in finding overall
trends. The previous researches on subsequence matching with moving average
transform, however, would incur a critical overhead both in index space and
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in index maintenance. To solve this problem, we have proposed a single index
approach for the moving average transformed subsequence matching.

The contribution of the paper can be summarized as follows. First, we have
analyzed the problems that occur when we apply the previous matching algo-
rithms to the moving average transformed subsequence matching. Second, we
have formally defined the poly-order moving average transform by generalizing
the original definition of moving average transform. Third, we have presented
a related theorem to guarantee correctness of the poly-order transform-based
subsequence matching and formally proven the theorem. Fourth, we have pro-
posed two different moving average transformed subsequence matching algo-
rithms, FRM-MAT and DM-MAT. Last, we have empirically shown superiority
of the proposed methods through the extensive experiments on various data
types, selectivity ranges, and query lengths. Experimental results for real-stock
data show that our approach improves average performance by 22.4 ∼ 33.8 times
over the sequential scan. And, when comparing with the cases of building each
index for all orders, our approach reduces the storage space and maintenance
effort required for indexes significantly by sacrificing only a little performance
degradation.
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Abstract. This paper presents an efficient data mining technique for modeling 
multidimensional time variant data series and its suitability for mining emerg-
ing events in a spatiotemporal environment.  The data is modeled using a data 
structure that interleaves a clustering method with a dynamic Markov chain. 
Novel operations are used for deleting obsolete states, and finding emerging 
events based on a scoring scheme. The model is incremental, scalable, adaptive, 
and suitable for online processing. Algorithm analysis and experiments demon-
strate the efficiency and effectiveness of the proposed technique. 

1   Introduction 

We present an efficient data mining technique for modeling multidimensional time 
variant data series and its suitability for mining emerging events in a spatiotemporal 
environment. Given an ordered time series or a data stream that is composed of a 
(large) set of data points (events) collected by a real-world application, we are inter-
ested in many cases in finding those events that are relatively new but potentially 
have significant impact on the system. The data mining technique is desired to model 
the dynamically changing profile and provide capabilities to accommodate new trend 
and to forget obsolete profile. 

The significance of mining emerging events rests on detecting them dynamically at 
an early stage. Thus we aim at finding them when they are rare but new in occurrence 
in a soft real time manner. The rarity of emerging events makes it related to identify-
ing patterns of rarity [2-9]. However previous work does not address this problem in a 
dynamic spatiotemporal environment. First, existing algorithms require that the entire 
dataset be accessed at one time [5, 8, 10] or mine within a data window [3, 4, 9]. Min-
ing with the entire dataset implicitly assumes stationarity and therefore losses the 
dynamically changing nature of the dataset.  On the other hand, mining within a time 
window has made an assumption that the history prior to the window does not influ-
ence current behavior and is totally forgettable. The second issue is that existing algo-
rithms either keep temporal information of the datasets without examining spatial 
                                                           
*  This material is based upon work supported by the National Science Foundation under Grant 

No. IIS-0208741. 
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relationship among data points [4, 5] or otherwise focus on spatial clustering but ig-
nore temporal dependency of data [3, 10]. In the practical examples such as computer 
network traffic, highway traffic and electric power demand management, both the 
spatial relationship of data points and their temporal dependency are important.  

Therefore previous related techniques can be viewed at three different levels.  The 
first level work (outlier detection, anomaly detection, and rare event detection) is to 
detect those events which our deviate from the majority in the whole dataset. The 
second level work (surprising patterns, concept drifting) takes a time-variant statisti-
cal distribution of the data profile into consideration. The third level work (emerging 
events) seeks those events which are rare but with a support larger than a threshold. 
 Moreover, mining of rarity can be either spatial or temporal or both. Our work repre-
sents this new fourth level.   

The proposed technique is built based on the Extensible Markov model (EMM), a 
spatiotemporal modeling technique proposed by the authors [1]. EMM interleaves a 
clustering algorithm with a dynamic Markov chain to model spatiotemporal data. In 
this paper, modules for adding and deleting states of Markov chain are used in model-
ing. To extract emerging events, an aging score of occurrences is proposed to reflect 
decay of importance. Both emerging events and obsolete events are judged using 
functions of the score and thus the proposed technique is able to continuously model 
the change of the data profile. The proposed technique inherits the traits of EMM and 
therefore is efficient, scalable, incremental and thus suitable for unsupervised online 
processing. 

2   Methodology 

In this section we present new EMM techniques to be used in the identification of 
emerging events. An additional labeling element, the aging score of occurrence (or 
the score in short), is introduced to each node (or cluster or state) and each link (or 
transition) in EMM. We first define the score, and then investigate its properties and 
present how the score scheme is applied to identifying obsolete events and emerging 
events.  

The score of node or link is built using an indicator function:  

IEk( tξ  ) =  1

0
    

tk

tk

E

E

ξ
ξ

≠
=  

Here Ek is an EMM component (either node or link) and t is the current component 
of the same type at time t.  We may eliminate the subscript k for simplicity.  

Definition 1: (Aging Score of Occurrence for an EMM component). At time t, the 
aging score of occurrence for an EMM component E is defined by 

St
(E)=  

1

( ( ) (1 ) )
t

t i
E i

i

I ξ α −

=
⋅ − , 

where 0<  < 1 is an aging coefficient, t is current time. 
A Cluster Feature (CF) refers to a labeling presentation of a cluster or a state of 

EMM. A cluster feature introduced by BIRCH [10] is defined using a vector of three 



752 Y. Meng and M.H. Dunham 

attributes which denote the count of occurrence, CNi, the first moment, LSj, and the 
second moment, SSj, of data points in a cluster. To use the score of the EMM compo-
nents, we extend the labeling schemes of both with a score St and a time t, as defined 
in Definitions 2 and 3. It is easy to see that the CF, CLij, and St are additive, and thus 
computation of e-CF and e-CL is as efficient as the adopted clustering method such as 
BIRCH.  

Definition 2: Extended Cluster Feature (e-CF) is a vector with five attributes to 
summarize the information of a cluster or a node at time t, defined by: 

e-CFt = < CNt, LS t, SSt, St
N, t >. 

Definition 3: Extended EMM Transition Labeling e-CL is defined by: 

e-CLij = < CLij, St
L, t >. 

The t indicates the last time that e-CF was updated. This makes us not have to update 
all EMM components at every time but only update current coponents. 

In addition to the decay of importance, we use a sliding window to achieve the sta-
tionary approximation. The idea is to examine whether a node of EMM has been 
visited (to be current) in the window w. If a node is visited, then it is in active use; 
otherwise the node is considered an obsolete node and will drop from EMM along 
with associated links. Note that not all links occurred within the sliding window. 

Definition 4: Obsolete Events. Assume current time is t.  If an EMM node No is not 
seen in a window [t-w, t], it is recognized as an obsolete node. All links in and out of 
obsolete node No are obsolete and are removed from EMM.  

Definition 5: Emerging Event. Assume a transition Lij between two EMM nodes Ni 
and Nj occurs at time t. The transition Lij and the absorbing node Nj is considered as an 
emerging events if  

Rt
(L) = ( )L

t

t

S
CL

  > 1 - ε , or 

Rt
(N) = ( )N

t

t

S
CN

> 1 - ε , 

where ε  is a predefined threshold.  

Definition 5 discerns the EMM components with majority of occurrences introduced 
in the recent history and thus considered to be associated with developing trends. 
Scores of a node and a link are computed incrementally. In addition, two comparisons 
are needed to determine an emerging event. Thus for an EMM with m nodes, the time 
for these computations has O(1) complexity. Thus the proposed technique inherits the 
efficiency of the EMM framework. 

3   Experiments 

In this section, we briefly report the performance experiments in terms of efficiency 
and effectiveness of the proposed technique. Experiments were performed on the 
VoIP traffic data provided by Cisco Systems which represents 1.5 million logged 
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VoIP CDRs in their Richardson, Texas facility from Sep 22 to Nov 17.  The site re-
lated traffics comprising the calls of internal to internal, internal to local, internal to 
national, internal to international, as well as those in opposite directions were selected 
for investigation. Statistics were measured every 15 minutes. After preprocessing, 
there are 5422 points and the data format at each time point is:  

Vt = <Dt, Tt, S1t, S2t, ... S7t >, 

where Dt denotes type of day, Tt time of the day, and Sit the value of statistic volume 
found at that call direction i, at time t.  BIRCH and nearest neighbor clustering algo-
rithms are used. Euclidean distance is used as the dissimilarity measure.  Four pa-
rameters, namely clustering threshold th, window size w, decay coefficient  and 
threshold of score/count ratio r (note that r=1- ), are used throughout the experiments. 
Default values, i.e. th = 30, w = 1000,  =0.01 and r = 0.9 are used unless the parame-
ter is a variable of investigation. The th is calibrated using EMM prediction [1]. 
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Fig. 1. Node increment, node deletion, and emerging event finding with EMM 

    

Fig. 2. Number of EMM Nodes deleted               Fig. 3. Run time to process the dataset 

Fig. 1 illustrates the modeling process with increment of nodes (the envelope), 
deletions of obsolete nodes (x) and detections of emerging nodes (+) of EMM on the 
fly. The growth rate is sublinear and decreases as the time goes.  The growth rate is 
less than 0.6% at the end of the modeling process and thus is efficient in terms of 
space usage. Fig. 2 shows that the number of deletions dramatically changes with 
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different window sizes. However the total run time of the application at hand does not 
change much as illustrated in Fig. 3. Further experiments show that examinations of 
both spatial and temporal relationships are important. Temporal dependency gives 
more conservative judgments. Plateaus exist for parameters such as window size, 
score/count ratio and decay coefficient, with which appropriate ranges of parameters 
that reflect the dynamic profile of the data can be determined. 

4   Conclusions 

In this paper, we have presented an efficient data mining modeling technique suitable 
for finding emerging events in a spatiotemporal environment. The model 
accommodates anomaly, concept drifting, support, and temporality in one framework 
without losing time and space efficiency. Novel operations are proposed for deleting 
obsolete states, and finding emerging events based on a scoring scheme. Selection of 
parameters for appropriate capturing the dynamic data profile is found to have a 
range. Offline mining of the results generated by this model is possible for more 
complex patterns.  
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Abstract. In a large time series database, similarity searching is a fre-
quent subroutine to find the similar time series of the given one. In the
process, the performance of similarity measurement directly effects the
usability of the searching results. The proposed methods mostly use the
sum of the distances between the values on the time points, e.g. Eu-
clidean Distance, dynamic time warping (DTW) etc. However, in mea-
suring, they do not consider the hierarchy of each point in time series
according to importance. This causes that they cannot accurately and
efficiently measure similarity of time series. In the paper, we propose
a Multi-Hierarchical Representation (MHR) to replace the original one
based on the opinion that the points of one time series should be com-
pared with the ones of another with the same importance in measuring.
MHR gives the hierarchies of the points, and then the original one can be
represented by the Multi-Hierarchical subseries, which consist of points
in the same hierarchy. The distance between the representations can be
computed as the measuring result. Finally, the synthetic and real data
sets were used in the effectiveness experiments comparing ours with other
major methods. And the comparison of their efficiencies was also per-
formed on the real data set. All the results showed the superiority of ours
in terms of effectiveness and efficiency.

1 Introduction

Time series has been a ubiquitous data in the real-world, e.g. daily temperature,
stock prices, various sensor data etc. There have been a lot of research works in
searching and mining time series. Similarity measurement is a frequent subrou-
tine in many applications. Due to the variety of different data, it is difficult to
design a direct distance function to obtain better performance. As a preprocess-
ing step, representation, which transforms time series into more meaningful and
usable format, is a suitable solution.

Many popular representations are based on the segmentation of time domain,
e.g. Symbolic Representation, Piecewise Linear Representation (PLR). Gener-
ally, the time series is segmented into many subseries. Then the original one
is represented by the resulting segmentation based on the content of each sub-
series or the distribution of the values using various techniques, e.g. clustering
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or statistic etc. And other methods give the new representation using frequency
transforms, e.g. Fourier Transforms [1], Wavelets [2]. But they are not enough to
solve the similarity problem of time series, due to their ignoring on the hierarchy
of each point in time series according to importance.

The accurate and suitable representation problem has brought challenges in
the research on time series. So, it is by no means trivial to study this problem
and put forward an effective solution that represents time series accurately and
usably for similarity measurement. In this paper, we propose a novel approach,
called Multi-Hierarchical Representation (MHR), to fill this gap. Our strategy
is to partition the points into different hierarchies using Fast Fourier Transform
(FFT). Then the time series is represented by the Multi-Hierarchical subseries,
which consist of the points in the same hierarchy. The distance between the new
representations can be computed by the sum of distances of the subseries in dif-
ferent hierarchies. We used best match searching and clustering experiments on
both synthetic and real data sets to evaluate the effectiveness of MHR comparing
with other methods. And the comparison of their efficiencies was also performed
on the real data set. All the results showed the superiority of ours in terms of
effectiveness and efficiency.

The rest of the paper is organized as follows. Sect. 2 provide some background
materials. Sect. 3 introduces MHR and its similarity measurement. In Sect. 4, we
give the exhaustive performance comparisons between ours and other methods.
Finally, in Sect. 5 we offer some conclusion remarks.

2 Background

2.1 Related Work

Many representations of time series have been proposed in searching or min-
ing applications. Symbolic representation is a popular method to transform the
numerical series into symbolic sequence. The simple is to automatically cluster
all the subseries in a fixed-window into some classes, and then use the sym-
bols standing for the classes, to replace each subseries [3]. The method may be
disabled due to the inaccuracy of the interval boundaries, e.g. a whole shape
(or content) is segmented. Recently in [4], the Symbolic Approximation (SAX)
has been proposed with an approximate distance function that lower bounds
the Euclidean Distance. In [5], a new method for meaningful unsupervised sym-
bolization of time series, called Persist, was proposed utilizing incorporation of
temporal information. Clipped representation has attracted much interest [6, 7],
and it has superior space benefits due to only saving 0 and 1. In [8], a multireso-
lution symbolic representation was proposed, and Hierarchical Histogram Model
was used as the distance function. It integrated the segmental results of several
fixed-window. The multiresolution seems similar to MHR, but, actually, we have
the essential difference that we emphasize the corresponding hierarchical relation
of the points in similarity measure, and they used the multiresolution segmental
windows to solve the inaccuracy using only one fixed-window.
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Dimensionality reduction is also one kind of representation, representing the
time series with a multidimensional vector. In [1], the Discrete Fourier Trans-
form (DFT) was utilized to perform the dimensionality reduction, and other
techniques have been suggested, including Singular Value Decomposition (SVD)
[9] and the Discrete Wavelet Transform (DWT) [2]. In [10], an extended repre-
sentation of time series using piece-wise linear segments was proposed, as well as
a weight vector that contains the relative importance of each individual linear
segment, which allows fast and accurate classification, clustering and relevance
feedback. In [11, 12], Piecewise Aggregate Approximation (PAA) was proposed,
and in [13], a more effective method Adaptive Piecewise Constant Approxima-
tion (APCA) was proposed with segments of varying lengths of each time series.

All the methods above is to find a new representation that can represent
the time series accurately with simple format or high level content to obtain
the preferable results in the relevant post-process, e.g. similarity measurement,
searching, clustering etc. Most of them are based on the local information. In
this paper, we focus on the accurate and suitable representation based on the
global consideration.

2.2 Preliminaries

In this subsection, we start with some basic definitions. A time series X =
x1, x2, ..., xn is a sequence of real values in which each value corresponds to a
time point. xi (or X [i]) stands for the value at i-th sampling time. The value
might be of various dimensions. |X | = n denotes the length of X . We give the
definitions of two kinds of subseries for our approach as follows:

Definition 1. Sequential Subseries: A sequential subseries from time point s to
e is defined as X [s, e] = xs, xs+1, ..., xe with the length of |X [s, e]| = e− s + 1.

Definition 2. Unsequential Subseries: An unsequential subseries is formalized
by X(S) where S = S(1), S(2), ..., S(m) is the ordered subset of natural number
with the restriction S(1) < S(2) < ... < S(m). Each value in X(S) can be got
by the formula X(S)i = X [S(i)].

Then we introduce DFT, which transforms a time series from time domain
into frequency domain. The contrary process is named Inverse Discrete Fourier
Transform (IDFT). Formally, the DFT of X is defined to a sequence Xf =
X1, X2, ...Xn consists of n complex numbers. And FFT and Inverse Fast Fourier
Transform (IFFT) are the faster algorithms with O(nlog(n)) time performance
corresponding to DFT and IDFT with O(n2).

3 MHR Approach

The hierarchical strategy is adopted in our approach. Firstly, the time points
in time series are partitioned into different hierarchies. In each hierarchy, an
unsequential subseries defined in Definition 2 is formed by the values on the
time points belong to the hierarchy. Then a time series can be represented by
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Table 1. Symbols and their Explanations

Symbol Explanation
X Time series, X = x1, x2, ..., xn

Sxi The set contains the points of X in i-th hierarchy
X(Sxi) The unsequential subseries of X in i-th hierarchy

X ′
i The reconstructed with a linear combination of the first i Fourier waves

nx Length of time series X

nxi Length of X(Sxi)
h Number of the hierarchies
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(b) X and time points in first 5 hierarchies (c)

Fig. 1. The original time series and its unsequential subseries of first 5 hierarchies (c)

the unsequential subseries of all the hierarchies. Table 1 shows the main symbols
used in this paper. Then we introduce our approach detailedly in the following.

3.1 Hierarchical Representation

Given a time series X with length n and a hierarchy parameter h (h < n), we
use FFT to generate h waves as Fig. 1(a). Then we combined linearly the first i
waves, labelled as X ′

i with the same length as X , like the five curves in Fig. 1(b).
The larger i is, the more similar X ′

i is to the original X , which can be found
from Fig. 1(b).

Then we can get the unsequential subseries of each hierarchy. In i-th (1 ≤
i ≤ h) hierarchy, Sxi consists of the time points with extremum in X ′

i, i.e. the
black points in Fig. 1(b). The unsequential subseries can be formed according to
Definition 2 as shown in Fig. 1(c). In addition, if a time point has been in the
higher hierarchy, it will not be added in the lower, even if it is also the extremum
point in any lower hierarchy. The first and last time points are initialized as the
points in first hierarchy. Choosing the extremum points is due to their importance
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Input: X, h //Time series X, hierarchy parameter h
Output: Sx1, Sx2, ..., Sxh //Sxi is the set of the points in i-th hierarchy

1. Xf = FFT(X)
2. generate the first h waves series.

3. for i=1:h

4. X ′
i=combination of the first i waves

5. construct Sxi with the extremum points set of X ′
i

6. end

7. return Sx1, Sx2, ..., Sxh

Fig. 2. The algorithm generating each Sxi in MHR

in the whole series. The algorithm generating each Sxi is illustrated formally in
Fig 2, and then MHR of X can be formed using Definition 2.

3.2 Distance Measurement

In this subsection, we give the distance measurement of MHR. After hierar-
chical partition of two time series, we can compute the distance between the
unsequential subseries in each hierarchy using a distance function that allows
time warping, e.g. DTW. And then the sum of distances of all h hierarchies is
calculated as the distance of the two time series. Given two time series X and
Y with lengths nx and ny respectively, the hierarchy parameter h (h < nx, ny),
and a warping distance function Dw. Formally, the MHR Distance (MHRD) can
be defined as follows: MHRD(X,Y, h) =

∑h
i=1 Dw(X(Sxi),Y(Syi)).

We take DTW as the distance function to analysis the time performance of
MHRD. The time consumption of calculating the distance of two time series is
O(
∑h

i=1 nxinyi) with obvious superiority over DTW with O(nxny) (nxi . nx

and
∑h

i=1 nxi < nx). Mostly, it is more accurate with larger h, but with more
time consumption. So h can be selected according to the particular require-
ment. We performed the experiment to show the time performances of ours and
others.

3.3 Additional and the Expansion

In our approach, there might be the case that nxi = 0 but nyi 	= 0, i.e. the
extremum points in i-th hierarchy of X are also with extremum in k-th hierarchy
(k < i). We use the unsequential subseries in the (i− 1) hierarchy of X instead
of that of the i-th in this case. This is the important addition for our approach.

Our approach can be expanded in the following directions: ordering the waves,
and giving a gradual segmentation approach using the time points in each hi-
erarchy. We can reset the order of the waves with decreasing amplitude of the
corresponding Fourier coefficients of Xf . Then X ′

i can be got by the linear combi-
nation of the first waves with the largest i Fourier coefficients. Then the following
process is as same as the description above. Using the extremum points in each
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hierarchy, we can segment the time series gradually. Then it can be used in many
methods, which are based on segmentation of time series.

4 Experimental Evaluation

In this section, we used best match searching and clustering experiments to test
the accuracies of ours and others on both synthetic and real data sets. In the
experiments, DTW was selected as the warping distance function Dw in our
approach (MHRD), because it is widely used in many applications. The com-
petitors included Euclidean Distance and DTW. Finally, we give the efficiency
comparison in Sect. 4.4.

4.1 Datasets

The synthetic data set is Synthetic Control Chart Time Series (SYNDATA) data
set which was downloaded from the UCI KDD archive1. It contains 600 examples
of synthetic control charts belong to 6 different classes, and each class consists
of 100 time series. The length of each time series is equal to 60.

The real data set is the Standard and Poor 500 index (S&P) historical stock
data from Mar. 27, 2004 to Mar 26, 2005 2. We chose the opening price as our
experimental data. Each stock data is a series of length d, where d ≤ 252 (d
might be smaller if the company is removed from the Index). We only used the
stocks whose length is 252. Based on the official S&P clustering information, we
divided the stock data into the classes. Finally, 50 classes contain 442 stock data
were used by removing the classes which contain only one stock.

4.2 Best Match Searching

Evaluation method. Best match searching is the process to find the time
series whose distance with the given one is below a predefined threshold, or the
most similar k matches in database. Because the threshold is difficult to set for
different measurements with different value ranges, we used KNN searching for
the experiment. The accuracy evaluation is following, which was also adopted
in [8]: The standard (right) searching result of a query Q, labelled as std(Q), is
the set of time series which belong to the same class as Q, which can be got by
the apriori classification information, and the results by different methods are
marked knn(Q). The accuracy (precision) related to Q is defined as follows:

Accuracy(Q) =
|knn(Q) ∩ std(Q)|

k
(1)

In our experiment, we set the number of time series belong to the same class
as the query as the value of k. In the experiment, each time series is treated as
a query. The average of the accuracies is calculated as the final result.
1 The UCI KDD Archive, http://kdd.ics.uci.edu
2 S&P500, http://kumo.swcp.com/stocks/
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Method h Accuracy
5 0.6324
7 0.6531
9 0.6952

MHRD 11 0.7451
13 0.7725
15 0.8156
17 0.8616

Method window Accuracy
5 0.2380
7 0.2364
9 0.2779

Euclidean 11 0.2792
13 0.3194
15 0.3406
17 0.3724
60 0.5112

DTW 0.8207

Fig. 3. Matching accuracy on SYNDATA

Method h Accuracy
5 0.3722
7 0.3925
9 0.4067

MHRD 11 0.4532
13 0.4623
15 0.4511
17 0.4632

Method window Accuracy
5 0.3637
7 0.4514
9 0.4164

Euclidean 11 0.3792
13 0.3657
15 0.3564
17 0.3478
252 0.2186

DTW 0.1538

Fig. 4. Matching accuracy on S&P

Experiment on SYNDATA. We show the matching accuracies of the meth-
ods on SYNDATA in Fig. 3. In the experiment, we also realized the piecewise
normalization in Euclidean Distance, which can get better clustering results than
plain Euclidean Distance on stock data proofed in [14]. When window is set to
60 (252) in Fig. 3 (Fig. 4), it is the plain Euclidean Distance. The results of ours
with different h are given, as well as that of Euclidean distance and DTW. From
the results, we can get that DTW obtains a much better result. And the results
of Euclidean Distance are the worst, so we can conclude that the data are not
sensitive to time warping. Our results are approximative to that of DTW, but
more efficient. When h in ours is set as 17, we can get the best result of all.

Experiment on S&P. Fig. 4 show the matching accuracies of the methods
on S&P data. The results display that ours is the best of all, though ours is
inferior to the Euclidean Distance only in a few cases, e.g. h = 5 or 7. The result
of DTW is the worst, so we can conclude that the stock data is sensitive to
time warping. The results also demonstrated that Euclidean Distance with the
piecewise normalization is an accepted method on stock data.

4.3 Clustering Experiment

Evaluation method. We used Hierarchical Agglomerative Clustering (HAC)
to realize the clustering experiment. The clustering result can be taken with
the predefined clustering number. We used the complete distance to compute
the distance between two classes. We computed the clustering accuracy using
the method, which is adopted in many applications [8, 14]. Given the standard
clustering result C = C1, C2, ..., Ck from the apriori classification information
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Method h Accuracy
5 0.5993
7 0.6012
9 0.6211

MHRD 11 0.7100
13 0.7521
15 0.7912
17 0.8455

Method window Accuracy
5 0.2724
7 0.2979
9 0.3551

Euclidean 11 0.2980
13 0.3967
15 0.4088
17 0.4177
60 0.4996

DTW 0.6850

Fig. 5. Clustering accuracy on SYNDATA

Method h Accuracy
5 0.2735
7 0.3006
9 0.3454

MHRD 11 0.3844
13 0.4026
15 0.4255
17 0.4923

Method window Accuracy
5 0.3404
7 0.4507
9 0.3934

Euclidean 11 0.2709
13 0.3091
15 0.2447
17 0.2651
252 0.2443

DTW 0.2113

Fig. 6. Clustering accuracy on S&P

and the clustering result using each method C′ = C′
1, C

′
2, ..., C

′
k, compute the

accuracy by the following formulas:

Accuracy =
sim(C,C′) + sim(C′, C)

2
(2)

sim(C,C′) = (
∑

i

max
j

sim(Ci, C
′
j))/k; sim(Ci, C

′
j) = 2

|Ci ∩C′
j |

|Ci|+ |C′
j |

(3)

sim(C′, C) above can be calculated similarly as sim(C,C′) in Eq 3. We computed
both sim(C′, C) and sim(C,C′), because they are not symmetric. The clustering
numbers used in HAC were set to 6 and 50 on SYNDATA and S&P data set
respectively as same as their class numbers.

Experiment on SYNDATA. The clustering results on SYNDATA are given in
the Fig. 5. From the figure, we can observe that the best result is also obtained by
ours as best match searching experiment, when h = 17. The results of Euclidean
Distance are also the worst, and DTW can get much better results. Our approach
can be seen a “unsequential piecewise” DTW algorithm, and it have better
accuracy and efficiency than DTW.

Experiment on S&P. The experimental results on S&P are listed in Fig. 6.
From the figure, we can find that Euclidean Distance with piecewise normaliza-
tion is superior to DTW. It is the further proof to confirm that the stock data is
sensitive to time warping. But ours with time warping, when h = 17, is the best
due to its hierarchical strategy. And the results of ours with other parameters
also gain the advantages over other methods.



A Multi-Hierarchical Representation for Similarity Measurement 763

Euclidean h=5 h=7 h=9 h=11 h=13 h=15 h=17 DTW
0

50

100

150

200

250

300

350

400

450

MHRD

Ti
m

e 
(s

ec
)

Fig. 7. Time performances of the methods in the experiment

4.4 Time Performance Comparison Experiment

In this subsection, we tested time performances of the methods using 1-NN
queries with sequential scan in the S&P data set. The time consumption of
each method was the time in 442 times queries corresponds to each time series,
and we assume that each time series had been preprocessed for each method.
The experiment were conducted on the machine with CPU of Celeron 1.70Ghz
and 512 MB of physical memory, running Microsoft Windows Server 2003. We
only counted the time consumption of distance calculation for exact comparison
except accessing the disk. In Fig. 7, we give the experimental results, which show
that DTW is much shower than others. The time of MHRD increases linearly
along with h. Though Euclidean Distance is faster than ours, considering the
accuracy and efficiency, our approach is superior to it.

5 Discussion and Conclusion

In this paper, we introduce a new representation of time series that can be used
in similarity measurement with better effectiveness and efficiency, named Multi-
Hierarchical Representation (MHR). Our idea is based on the opinion that the
points of one time series should be compared with the ones of another with
the same importance in similarity measurement. The unsequential subseries is
defined in time series different from the general sequential subseries. In our
approach, firstly, we partition the time points into different hierarchies. Then
time series is represented by the Multi-Hierarchical subseries consisting of points
in each hierarchy. The sum of distances between subseries in all hierarchy can be
taken as the measuring result using a distance function that allows time warping.

We used best matching searching and clustering experiments on both SYN-
DATA and S&P to evaluate the effectiveness of our approach comparing with
other methods. The results showed the superiority of ours on accuracy over oth-
ers. There are some cases that the effectiveness of ours is little inferior to the
others. But in most cases, MHR is a more accurate representation for measuring
the similarity of time series. And we also tested the time performances of ours
and other competitors. The results demonstrated that ours is slower than Eu-
clidean Distance but much faster than DTW. In the future, we will continue to
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research the extensive problems. And in our approach, the weight of the distance
in each hierarchy is same. We will also study further in this aspect.
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Abstract. Multistep-ahead prediction is the task of predicting a sequence of 
values in a time series. A typical approach, known as multi-stage prediction, is 
to apply a predictive model step-by-step and use the predicted value of the 
current time step to determine its value in the next time step. This paper 
examines two alternative approaches known as independent value prediction 
and parameter prediction. The first approach builds a separate model for each 
prediction step using the values observed in the past. The second approach fits a 
parametric function to the time series and builds models to predict the 
parameters of the function. We perform a comparative study on the three 
approaches using multiple linear regression, recurrent neural networks, and a 
hybrid of hidden Markov model with multiple linear regression. The advantages 
and disadvantages of each approach are analyzed in terms of their error 
accumulation, smoothness of prediction, and learning difficulty. 

1   Introduction 

Many time series problems involve the task of predicting a sequence of future values 
using only the values observed in the past. Examples of this task, which is known as 
multistep-ahead time series prediction [1], include predicting the time series for crop 
yield, stock prices, traffic volume, and electrical power consumption. By knowing the 
sequence of future values, we may derive interesting properties of the time series such 
as its projected amplitude, variability, onset period, and frequency of abnormally high 
or low values. For example, multistep-ahead time series prediction allows us to 
forecast the growing period of corn for next year, the maximum and minimum 
temperature for next month, the frequency of El-Nino events in the next decade, etc. 

A typical approach to solve this problem is to construct a single model from 
historical values of the time series and then applies the model step by step to predict 
its future values. This approach is known as multi-stage prediction. Since it uses the 
predicted values from the past, it can be shown empirically that multi-stage prediction 
is susceptible to the error accumulation problem, i.e., errors committed in the past are 
propagated into future predictions.  

This paper considers two alternative approaches for multistep-ahead time series 
prediction. The first approach, known as independent value prediction, builds a 
separate model for each prediction step using only its past observations. The second 
approach, known as parameter prediction, fits a parametric function to the time series 
and builds regression models to predict the parameters of the function.  
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We implement all three prediction approaches using multiple linear regression [2], 
recurrent neural networks [3], and a hybrid of hidden Markov model with multiple 
linear regression [7] as the underlying regression methods. The advantages and 
disadvantages of each prediction approach are analyzed in terms of their error 
accumulation, smoothness of prediction, and learning difficulty. 

2   Methodology 

A time series is a sequence of observations in which each observation tx is recorded at 

a particular timestamp t. A time series of length t can be represented as a sequence 
],...,,[ 21 txxxX = . We use the notation t

ptX −
 to denote a segment of the time series 

],...,,[ 1 tptpt xxx +−− . Multistep-ahead prediction is the task of predicting a sequence of h 

future values, ht
tX +

+ 1 , given its p past observations, t
ptX 1+− .  

2.1   Regression Methods 

This section presents the regression methods used for modeling the time series.  

2.1.1   Multiple Linear Regression (MLR) 
The MLR model, which is also called the AR model, is given by the equation: 

( ) t

p

i
iti

t
pt xaXf ε+=

=
+−+−

1
11

 , where εt  corresponds to a random noise term with 

zero mean and variance 2. The coefficient vector [a1, a2, …, ap]
T is estimated using 

the least square method by minimizing the sum of squared error, SSE, of the training 
data. The variance is estimated using SSE/h, where h is the size of the prediction 
window. 

2.1.2   Recurrent Neural Networks(RNN) 
RNN has been successfully applied to noisy and non-stationary time series prediction. 
In RNN, the temporal relationship of the time series is explicitly modeled using 
feedback connections [3] to the internal nodes (known as hidden units). An RNN 
model is trained by presenting the past values of the time series to the input layer of 
the Elman back propagation network [4]. The weights of the network are then 
adjusted based on the error between the true output and the output predicted by the 
network until the algorithm converges. Before the network is trained, the user must 
specify the number of hidden units in the network and the stopping criteria of the 
learning algorithm. 

2.1.3   Hybrid HMM/MLR Model 
Hybrid HMM/MLR model is an extension of traditional hidden Markov model 
applied to regression analysis [7]. This method is an effective way for modeling 
piecewise stationary time series, where the observed values are assumed to be 
generated by a finite number of hidden states. Let ( tZ ) denote the Markov chain on 

the state space S = {s1, s2, …, sN} .  The initial probability for a given state s is 
denoted as πs while the transition from one state to another is characterized by the 
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transition matrix A = (aij), where P(Zt+1 = sj | Zt = sj) = aij. At time t, the observed 

value tx depends only on the current state
tZ : ),0()( 1

tt z
t

ptzt eXfx σ+= −
−  

where },...,,{
21 Nt sssz ffff ∈  is the corresponding regression function and e(0,σs) is 

a noise term with mean zero and a variance σs
2 that depends on the current state, s. 

We use the regression function produced by MLR in our experiments. The hybrid 
HMM/MLR model is trained by maximizing the following likelihood function: 

( )∏
=

−
−+ −Φ==

Z

t

i

i
piziiiz

Z

tt XfXzzPZXPXL
i

2

1
111 )()|();()(

1
πθ  (1) 

A brute force method for maximizing the likelihood function requires a complexity of 

)( TNO operations. However, an efficient approach called the forward-backward 

procedure can reduce the complexity of the computation down to )( 2TNO . This 

procedure is based on the well-known expectation-maximization (EM) algorithm.  

2.2   Prediction Approaches 

We investigate three approaches for predicting the sequence of future 

values ht
tX +
+1 from a given time series tX1 .  A training set D is initially created from 

the time series using a sliding window of length p+h (see Figure 1). Each instance of 
the sliding window corresponds to a record in the training set, as shown in Table 1. 
The input X corresponds to the first p values of the window while the output Y 
corresponds to the remaining h values of the window. For example, the first record of 
the training set D contains X = ],...,,[ 21 pxxx  as its input variables and Y = 

],...,,[ 21 hppp xxx +++  as its output variables. Similarly, the second record contains X = 

],...,,[ 132 +pxxx  as its input variables and Y = ],...,,[ 132 ++++ hppp xxx  as its output 

variables, while the last record contains X = ],...,,[ 21 htphtpht xxx −+−−+−−  as its input 

variables and Y = ],...,,[ 21 ththt xxx +−+−  as its output variables. For notational 

convenience, we use Y(i) to refer to all the values in the ith column of Y in D. For 

example, Y(3) = T
htpp xxx ],...,,[ 343 +−++ . 

 

Fig. 1. A sliding window is used to create the 
regression training set D=X’+Y  

Table 1. Traning Set D = X × Y 

X = [X(1), …,X(p)] Y=[Y(1),…,Y(h)] 

],...,,[ 21 pxxx  ],...,,[ 21 hppp xxx +++  

],...,,[ 132 +pxxx  ],...,,[ 132 ++++ hppp xxx  

…
. 

…
. 
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2.2.1   Multi-stage Prediction  
Multi-stage prediction predicts the future values of a time series in a step by step 

manner. We first predict 1+tx  using the previous p values, ttpt xxx ,,..., 11 −−+ . We then 

predict 2+tx based on its previous p values, which includes the predicted value 

for 1+tx . The procedure is repeated until the last value, htx + , has been estimated. In 

this approach, it is sufficient to construct a single model for making the prediction. 

2.2.2   Independent Value Prediction  
Independent value prediction predicts the value at each time step using a separate 
model. Given the initial data set shown in Table 1, we first create h training sets, each 
of which has the same input X, but different output Y. We use Y(1) as the output 
variable for the first training set, Y(2) as the output variable for the second training 
set, and so on. By learning each training set independently, we obtain h regression 
models fi (i = 1,2,…, h). The models are then used to predict the next h values as 
follows: hiXfx iit ,...,2,1   ),( ==+ .  

2.2.3   Parameter Prediction  
Parameter prediction transforms the problem of predicting h output values into an 
equivalent problem of predicting (d+1) parameters. For each record in Table 1, we fit 
a parametric function g to the output vector Y. Let (c0, c1,…, cd) denote the 
parameters of the function g. We then replace the original output vector 
Y=[Y(1),Y(2),…,Y(h)] with a modified output vector  Y’=[c0, c1, …, cd]. We now 
construct (d+1) regression models fi (i = 0,1,2,…,d), one for each output column Y’. 
The models are then applied to predict the (d+1) parameters of a test sequence. The 
test sequence is reconstructed by substituting the predicted parameters into the 
parametric function g. While this methodology is generally applicable to any family 
of parametric functions, we use polynomial functions in our experiments. 

2.3   Model Selection 

The parameters for our prediction approaches include the order of regression model p, 
the size of prediction window h, and the degree of polynomial fit d (for parameter 
prediction). The size of the prediction window h is domain dependent and depends on 
the nature of the application. We use Akaike’s final prediction error (FPE) [8] as our 
criterion for determining the right order for p in the MLR model.  
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The same criterion is applicable to estimate the degree of the polynomial function 
used in parameter prediction. To determine the correct order for RNN, we employ the 

method described by Kennel in [5]. Let pX  denote as an instance of the training data 

and )(n
pX  denote its nearest neighbor. The pair is declared as false nearest neighbors 
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distance between a pair of observations). Our goal is to choose a value for p such that 
the number of false nearest neighbors is close to zero. 

3   Experiments and Discussions 

We perform a comparative study on the three prediction approaches using both real 
and synthetic datasets. The real datasets are obtained from the UCI Machine Learning 
Repository [9] and the Time Series Data Library [6]. Our experiments were conducted 
on a Pentium 4 machine with 3GHz CPU and 1GB of RAM.  

3.1   Evaluation Metric  

The estimation error of a prediction approach is evaluated based on the following 
measure: −−=

i
i

i
ii yyyyRMSE 22 )(/)ˆ( , where yi is the true value, iy

) is the 

predicted value, and 
−
y is the average value of the time series. The RMSE values 

recorded in our experimental results are obtained using ten-fold cross validation.  
A Win-Draw-Loss Table is created to compare the relative performance between 

two prediction approaches when applied to n data sets. We use the criterion of 0.01 
difference in RMSE to determine whether one approach wins or loses against another 
approach. For a stricter evaluation, we also apply the paired t significance test to 
determine whether the observed difference in RMSE is statistically significant. To do 
this, we first calculate the difference (d) in the RMSE obtained from two prediction 

approaches on each data set. The mean d and standard deviation ds of the observed 

differences are also calculated. To determine whether the differences are significant, 
we compute their T-statistic: 

dsndt = which follows a t-distribution with n-1 

degrees of freedom. Under the null hypothesis that the two prediction approaches are 
comparable in performance, we expect the value of t should be close to zero. From the 
computed value for t, we estimate the p-value of the difference, which corresponds to 
the probability of rejecting the null hypothesis. We say the difference in performance 
is statistically significant if p<0.05 and highly statistically significant if p < 0.001. 

3.2   Error Accumulation 

Error accumulation refers to the propagation of past prediction errors into future 
predictions. To gain a better insight into this problem, we employ the bias-variance 
decomposition for squared loss functions. Consider a time series generated by the 
model ),0()( 2

1 σeXfx t
ptt += −+ . Let ( )hyyy ,,, 21 L  denote the observed values of 

the time series in a prediction window of length h, i.e.,  y1 = xt+1, y2 = xt+2,  …, yh = 
xt+h. Furthermore, let ( )**

2
*

1 ,,, hyyy L  be the corresponding values generated by the 

deterministic model f. In other words, yi = yi
* + e(0,σ2).  We use the notation 

( )hvvv ,,, 21 L  to denote the values predicted by a regression model, g. The mean 

squared error (MSE) at each prediction step j is defined as: ])[()( 2
jj vyEjMSE −= . 

The MSE at each step can be decomposed into the following three components [10]: 
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])[( ]))([( ))(()( 2*22*
jjjjjj yyEvEvEyvEjMSE −+−+−=  (3) 

The first term represents the squared bias of the model; the second term represents 
the variance of the model; while the third term represents the variability due to noise. 
The next example illustrates the error accumulation problem for the noise term.  

Example 1: Consider the following AR(2) model: ε++= −+ 1211 ttt xaxax , where ε has 

mean zero and variance σ2. Suppose we were able to model accurately the 
coefficients a1 and a2 using MLR. For the multi-stage approach, we can show that: 
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The preceding formula shows the accumulation of errors due to noise for multi-stage 
prediction as the prediction step increases. For independent value prediction: 
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Assuming that the coefficients for xt and xt-1 can be accurately estimated by MLR, the 
noise terms for multi-stage and independent value prediction are identical. 

The preceding example illustrates that error accumulation due to noise is unavoidable, 
regardless of the prediction approach. To analyze the error accumulation due to the 
bias and variance of a model, we generate the following time series: 

ε++= −− 21 6340418.0 ttt X.XX , where ε is a Gaussian noise with mean zero and variance 

σ2=0.1. The length of the time series is set to 1000 and the prediction window is h = 
50. To ensure there is sufficient bias in the model, we set p = 1. The bias and variance 
of the models are estimated by generating 500 bootstrap replicates of the training set D 
and inducing a model g from each bootstrap replicate. The models are then applied to 
the test sequence to obtain 500 estimated values (

jv ) for each prediction step j. The 

empirical bias is computed by taking the average value of the 500 predictions (
jv ) and 

subtracting it from the value predicted using the deterministic model. The variance of 
the models can also be estimated as follows: ])[()var( 2

jj vvEj −= . Figures 2 and 3 

illustrate the bias and variance for multi-stage and independent value predictions (using 
MLR and a hybrid HMM/MLR as the underlying regression methods). Both figures 
show that the bias and variance for multi-stage prediction grows steadily with increasing 
time steps, whereas the bias and variance for independent value prediction do not appear 
to be propagated into future predictions.  
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Therefore, error accumulation is a major problem in multi-stage prediction, 
irrespective of the choice of regression methods. However, it is not a problem for 
parameter prediction because the models for predicting different parameters are built 
independently (similar to independent value prediction).  

 
Fig. 2.  Bias and variance for MLR                     Fig. 3. Bias and variance for HMM/MLR 

3.3   Learning Difficulty 

Multi-stage prediction builds a single model to fit the entire time series. In contrast, 
we need to build h models for independent value prediction and (d+1) models for 
parameter prediction. Model building is therefore more expensive for independent 
value and parameter prediction approaches compared to the multi-stage approach. 

The model to be learnt by independent value prediction also becomes more 
complex with increasing time steps. To illustrate this, let f denote the true model that 
generates the data, i.e., )( 1−

−= t
ptt XfX . For simplicity, let (x1, x2, …, xp) denote the 

input variables and yi = xp+i denote the h output variables:  

 

                                                         Fig. 4. Prediction Results (p=12,h=12)  

If f is a linear function, then all the fk’s constructed by the independent value 
prediction approach are also linear functions. If f is non-linear, then the fk’s become 
increasingly complex functions of the input variables (x1, x2, …, xp). Unless the 
regression method is very flexible, learning the appropriate model for each time step 
can be quite a challenging task. For parameter prediction, the learning difficulty 
depends on how easy it is to find the appropriate function that fits the output vector.  
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To compare parameter prediction against independent value prediction, we apply 
both methods to the monthly milk production data (see the top diagram in Figure 4) 
using h=12 and p=12. For parameter prediction, we use a polynomial function to fit 
the output vector and vary the degree of the polynomial from 0 to 11. We then employ 
MLR to predict the parameters of the polynomial. The bottom diagram of Figure 4 
shows a comparison between the RMSE of parameter prediction against independent 
value prediction as the degree of the polynomial function is varied. Observe that the 
RMSE for parameter prediction drops dramatically when the polynomial degree 
increases to 3 and decreases slowly thereafter. This result suggests that it is sufficient 
to fit a polynomial of degree 4 to the output vector and achieves comparable accuracy 
as independent value prediction (which must construct 12 regression models). 

3.4   Smoothness of Prediction 

Another factor to consider is the influence of noise on the prediction approaches. To 
do this, we conduct an experiment using a simple, stationary time series, i.e., white 
noise, as shown in Figure 5. Figure 6 shows that multi-stage prediction tends to 
smooth out the time series to its mean value after p time steps. Such smoothing effect 
is not present in independent value prediction, which makes spurious predictions 
around the mean, because the prediction at each time step is modeled independently. 
This method may suffer from overfitting as it tries to capture the fluctuations of the 
noise time series. For parameter prediction, the best fit model of the data is found to 
be a polynomial of degree zero. Even though the parameters are predicted 
independently, the smoothness of the time series is guaranteed by the parametric 
function used to fit the output vector. 

           

          Fig. 5. White Noise WN(0,0.5)                 Fig. 6. Predicting Results (p=12,h=100,d=6) 

3.5   A General Comparison 

Finally, we apply the three prediction approaches to 21 real data sets to compare their 
relative performance. The RMSE value for each data set is obtained by 10-fold cross 
validation. The size of the prediction window is set to h=24. Table 2 summarizes the 
RMSE for the three prediction approaches using MLR as the underlying regression 
method. Their relative performance is summarized in Table 3 in terms of the number 
of wins, draws and losses. We also test the significance of the difference using paired 
t-significance test. The result shows that the observed difference between the RMSE 
of multi-stage and independent value prediction is not that significant. However, the 
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performance of parameter prediction is significantly worse than independent value 
prediction. This is because MLR may not be suitable to fit the parameters of the 
function, which have nonlinear relationships with the time series values.  

 
Table 2. Multiple Linear Regression Table 4. RNN 

Multi-
stage

Indepen
dent

Parame
ter

milk 0.0733 0.0705 0.0918
Temp. 0.2776 0.2959 0.2936
PET 0.0419 0.0414 0.0619
PREC 0.0310 0.0317 0.0534
Solar 0.1218 0.1236 0.2132
appb 0.2974 0.3804 0.3803
appd 0.2152 0.2395 0.2766
appf 0.3147 0.2445 0.2991
appg 0.8642 0.9343 0.9218
deaths 0.7309 0.5560 0.5633
lead 0.4195 0.4207 0.4206
sales 0.3187 0.3637 0.3637
wine 0.2738 0.2902 0.3209
seriesc 0.9359 0.9845 0.9845
odono 0.4226 0.4731 0.4712
qbirth 0.5450 0.4793 0.5231
Bond2 0.5226 0.5886 0.5884
Daily 0.2006 0.2137 0.2137
food 0.1995 0.1929 0.1950
treerin 0.8929 0.8807 0.8818
pork 0.9462 0.7948 0.7918

Multi-
stage

Indepen
dent

Parame
ter

Milk 0.0733 0.0705 0.0918
Temp. 0.2776 0.2959 0.2936
PET 0.0419 0.0414 0.0619
PREC 0.0310 0.0317 0.0534
Solar 0.1218 0.1236 0.2132
Appb 0.2974 0.3804 0.3803
Appd 0.2152 0.2395 0.2766
Appf 0.3147 0.2445 0.2991
Appg 0.8642 0.9343 0.9218
Deaths 0.7309 0.5560 0.5633
Lead 0.4195 0.4207 0.4206
Sales 0.3187 0.3637 0.3637
Wine 0.2738 0.2902 0.3209
Seriesc 0.9359 0.9845 0.9845
Odono 0.4226 0.4731 0.4712
Qbirth 0.5450 0.4793 0.5231
Bond2 0.5226 0.5886 0.5884
Daily 0.2006 0.2137 0.2137
Food 0.1995 0.1929 0.1950
Treerin 0.8929 0.8807 0.8818
Pork 0.9462 0.7948 0.7918

 
 

Table 3. Win-Draw-Loss results for MLP              Table 5. Win-Draw-Loss results for RNN 

 Multi 
vs  
Indep 

Multi 
vs  
Param 

Indep  
vs  
Param 

0.01 diff 7-0-14 5-2-14 13-1-7 
T value 2.6396 3.3884 0.3012 
P value 0.0157 0.0029 0.7664 
 

Tables 4 and 5 show the results using RNN as the underlying regression method. 
Observe that the independent value and parameter prediction approaches perform 
significantly better than multi-stage prediction (p < 0.05). For multi-stage prediction, 
the RMSE for RNN is higher than the RMSE of MLR in 10 out of 21 data sets, which 
suggests the possibility of model overfitting when using a flexible regression method 
such as RNN. Nevertheless, we still find 17 data sets in which independent value 
prediction with RNN outperforms all the prediction approaches using MLR and 12 

 Multi 
vs  
Indep 

Multi 
vs  
Param 

Indep  
vs  
Param 

0.01diff 10-6-5 14-2-5 8-12-1 
T value 0.1496 0.8761 2.7299 
P value 0.8826 0.3914 0.0129 
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data sets in which parameter prediction with RNN outperforms all the prediction 
approaches using MLR. This result suggests that, using nonlinear regression methods 
such as RNN, the independent value and parameter prediction approaches may 
achieve better performance than multi-stage prediction. Moreover, for parameter 
prediction, most of the data sets require d < 5, which makes it more efficient to build 
compared to independent value prediction (which requires building h = 24 models). 

4   Conclusions  

In this paper, we conduct an empirical study on three prediction approaches for 
solving multistep-ahead time series prediction problems. The tradeoffs among these 
approaches are studied using both real and synthetic data sets. Our experimental 
results show that multi-stage prediction tends to suffer from error accumulation 
problems when the prediction period is long. This is because the bias and variance 
from previous time steps are propagated into future predictions. Independent value 
prediction is less susceptible to this problem because its predictions are made 
independently at each time step. However, it has difficulty in learning the true model 
because the function to be modeled becomes more complex with increasing time 
steps. This approach also does not smooth out the effect of noise unlike multi-stage 
prediction. Parameter prediction handles noisy data by fitting a function over the 
entire output sequence while alleviating the error accumulation problem by making 
independent predictions. It also tends to be more efficient than independent value 
prediction when the number of parameters to be fitted is small. However, finding the 
appropriate parameter function to fit the time series can be quite a challenging task. 
Finally, we observe successful applications of both independent value and parameter 
prediction approaches when applied to real data sets using RNN. 
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Abstract. Sequential pattern mining can be used to extract frequent
sequences maintaining their transaction order. As conventional sequen-
tial pattern mining methods do not consider transaction occurrence time
intervals, it is impossible to predict the time intervals of any two trans-
actions extracted as frequent sequences. Thus, from extracted sequential
patterns, although users are able to predict what events will occur, they
are not able to predict when the events will occur. Here, we propose
a new sequential pattern mining method that considers time intervals.
Using Japanese earthquake data, we confirmed that our method is able
to extract new types of frequent sequences that are not extracted by
conventional sequential pattern mining methods.

1 Introduction

Sequential pattern mining methods[1, 2] extract frequent sequences with their
transaction occurrence order, but without time intervals between their occur-
rence time. Thus, it is impossible to identify the time intervals between any two
transactions extracted as frequent sequential patterns. It is useful to be able
to understand what events will occur, and moreover when these events will oc-
cur. To distinguish time intervals from extracted sequences using conventional
sequential pattern mining methods, it is necessary to add constraints of time in-
fomation to extracted sequences[3, 4]. However, in order to distinguish sequences
which consist of the same items with different time intervals, constraint approach
algorithms need to be re-executed with changing their constraints.

To solve this problem, we propose a new sequential pattern mining with time
intervals. The proposed method enables sequential patterns to be distinguished
with any time interval that are multiples of a user-defined base interval.

2 Related Work

Modified PrefixSpan[5], which is an alternative sequential pattern mining, defines
sequences with the same items and different item gaps as different sequences.
Item Gaps are defined as the number of items between any two items. Modified
PrefixSpan works well when applied to datasets whose item intervals are defined
as the number of items, such as DNA sequences. However, it does not work well
when applied to datasets whose items have their own occurrence time.

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 775–779, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



776 Y. Hirate and H. Yamana

3 Sequential Pattern Mining with Time Intervals

3.1 Problem Definition

Let I = {i1, i2, · · · , in} be a set of items. A transaction t is a list of items sorted
alphabetically. A transaction t has a time-stamp infomation, denoted as t.time.
The time interval extended sequence, denoted as ts, is a list of transactions with
time intervals, and is defined as follows:

ts = < −D(t1, t1)− t1,−D(t1, t2)− t2,−D(t1, t3)− t3, · · · ,−D(t1, tm)− tm >

∧t1.time ≤ t2.time ≤ t3.time ≤ · · · ≤ tm.time (1)

Here, D(tα, tβ) is the time interval between tα and tβ, and is defined by the
following expression:

D(tα, tβ) = dn | n = � tβ .time− tα.time

Δt
� (2)

Note that Δt is a user-defined parameter, and determines the unit of time interval
partition. For example, when Δt is set to 1 day, D(tα, tβ) is defined as follows:

D(tα, tβ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d0 (tβ .time− tα.time = 0)
d1 (0 < tβ .time− tα.time ≤ 1day)
d2 (1day < tβ.time− tα.time ≤ 2days)

...

(3)

Note that when ts starts with < −d0 − t1, · · · >, it is possible to omit “−d0−”
and to represent as < t1, · · · >.

The time interval extended sequential database, TSDB, which is a target of
pattern extraction, is a set of time intervals for the extended sequence ts, and
is defined as TSDB = {ts1, ts2, · · · , tst}. When two time interval extended se-
quences, ts1 =< −D(t1, t1)−t1, · · · ,−D(t1, tm)−tm > and ts2 =< −D(t′1, t

′
1)−

t′1, · · · ,−D(t′1, t′m) − t′m, · · · ,−D(t′1, t′n) − t′n > (m ≤ n), are given, we say that
ts2 includes ts1 iff ti ⊂ t′i for all {i|1 ≤ i ≤ m} and D(t1, tk) = D(t′1, t

′
k)

for all {k|1 ≤ k ≤ m}. The support of time interval extended sequence ts in
TSDB, denoted as supTSDB(ts), is the percentage of time interval extended se-
quences that include ts. A frequent time interval extended sequence is defined as
the time interval extended sequence whose support is higher than min sup(0 ≤
min sup ≤ 1). Given TSDB and min sup, sequential pattern mining with time
intervals extracts all the frequent time interval extended sequences.

3.2 Proposed Method

To extract frequent time interval extended sequences, we extended the sequen-
tial database projection operation in the PrefixSpan algorithm[2]. Similar to
PrefixSpan, our algorithm extracts frequent time interval extended sequences
with a depth-first search by executing the projection operation recursively. In
this section, we describe our projection operation in detail.
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Definition1. Projection Level
Projection level is the number of items included in a projection sequence. For
example, let ts1 be a time interval extended sequence with l items. Generating
TSDB|ts1 is level l projection.

Definition2. Prefix and Postfix of Time Interval Extended Sequences
Let ts =< −D(t1, t1) − t1, · · · ,−D(t1, tm) − tm > be a time interval extended
sequence, and tα be any transaction. When there exists an integer j(1 ≤ j ≤ m)
satisfying tα ∈ tj and D(t1, tα) = D(t1, tj), we define the time interval extended
sequence < −D(t1, t1)−t1, · · · ,−D(t1, tj)−tα > as a prefix with regard to tα and
D(t1, tα), denoted as pref ix(ts, tα, D(t1, tα)), and the remaining time interval
extended sequence < −D(tj, tj) − t′j , · · · ,−D(tj , tm) − tm > as a postfix with
regard to tα and D(t1, tα), denoted as postf ix(ts, tα, D(t1, tα)), where t′j is the
subset of tj from which items also including in tα are excluded. When t′j = φ,
postf ix(ts, tα, D(t1, tα)) becomes < −D(tj , tj+1)−tj+1, · · · ,−D(tj , tm)−tm > .
On the other hand, when there exists no integer j, both pref ix(ts, tα, D(t1, tα))
and postf ix(ts, tα, D(t1, tα)) are defined as φ.

Our projection operation performs differently between Level 1 projection and
Level 2 or later projection.

Level 1 Projection. In the case of Level 1 Projection, as it is impossible
to define time intervals with a single transaction, our algorithm scans TSDB
and checks all items’ supports, similar to PrefixSpan. For every item iα whose
support is higher than the minimum support, generate TSDB|iα then execute
the level 2 projection operation. Note that when item iα appears more than
once in the same ts, our algorithm generates multiple prefixes and postfixes
at each item iα, and then treats them as different sequences. For example, let
ts1 =< −d0 − a,−d1 − (abc),−d2 − (ac) >, then the projection result whose
projection transaction is < a > becomes 3 time interval extended sequences,
< −d1 − (abc),−d2 − (ac) >, < −d0 − (bc),−d2 − (ac) > , and < −d0 − c >.

Level 2 or later Projection. In the case of Level 2 or later projection, our
algorithm scans projected TSDB and counts pairs of items included in projected
sequences and their time intervals. Our algorithm projects TSDB in the follow-
ing way. Let tsα =< −D(t1, t1)− t1, · · · ,−D(t1, tα−1)− tα−1,−D(t1, tα)− tα >,
tsα−1 = pref ix(tsα, tα−1, D(t1, tα−1)) (α ≥ 1). tsα-projected database, denoted
as TSDB|tsα, is defined as follows:

TSDB|tsα =
{
ts′
∣∣∣ts ∈ TSDB|tsα−1 ∧ ts′ = postf ix(ts, tα−1, D(tα−1, tα))

∧supTSDB|tsα−1(tα, D(tα−1, tα)) ≥ min sup ∧ ts′ 	= φ
}

(4)

tsα-projected database is a collection of projected time interval extended se-
quences, which are postfixes of time interval extended sequences included in
tsα−1-projected database, with regard to tα and D(tα−1, tα), and tsα is called a
projection time interval extended sequence of TSDB|tsα.
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4 Evaluation

In this evaluation, a Japanese earthquake dataset was used. The dataset is dis-
tributed via K-net[6] provided by the National Research Institute of Earth Sci-
ence and Disaster Prevention and includes data from 3,296 earthquakes that
occurred from May 1995 to December 2003.

A sequence of this dataset is defined as a list of earthquakes in the same
grid. A grid is defined as 1-degree latitude and 1-degree longitude square. And
all earthquake data are itemized to the same item referring to depth of the
epicenter and magnitude on the Richter scale.

Extracted sequence quality. Table 1 shows a part of the frequent time inter-
val extended sequential patterns extracted by proposed method with min sup =
0.05 and Δt = 1day. Calculating the confidence based on the support of pat-
terns shown in Table 1 yielded the following knowledge. Once item-A occurred,
item-A will occur again:

– within 1 day with probability of 0.222
0.723 × 100 = 30%.

– within 1 to 2 days with probability of 0.101
0.723 × 100 = 13%.

– within 2 to 3 days with probability of 0.081
0.723 × 100 = 11%.

On the other hand, there is no time interval information in extracted patterns
using conventional sequential pattern mining. Thus, users are not able to predict
how long after item-A the event will occur again. These results indicate that the
patterns extracted by the proposed method are more useful than those extracted
by the conventional sequential pattern mining algorithm.

Performance evaluation. In the next section, the running times of both Pre-
fixSpan and the proposed Algorithm are compared. Figure 1 shows the relation
between the number of extracted frequent sequential patterns and min sup. Fig-
ure 2 shows the relation between execution time and min sup.

Figure 1 and Figure 2 shows the following. Using PrefixSpan, as the number
of extracted sequences increased exponentially as min sup decreased, thus ex-
ecution time increase exponentially as min sup decreased. On the other hand,

Table 1. Partial results extracted using the proposed method

Extended Time Interval Extended
Sequential Patterns

Support

< A > 0.723
< A,−d0 − A > 0.222
< A,−d1 − A > 0.101
< A,−d2 − A > 0.081

item-A: Earthquake of magnitude >4.0 and <6.0, and with an epicenter depth from
10 km to 100 km.
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Fig. 1. # of Patterns vs. min sup Fig. 2. Execution time vs.min sup

since the proposed method distinguishes between sequences consisting of the
same transactions with different time intervals, proposed method can prevent
the huge increase in both the number of extracted sequences and running time.
These results indicate that users can analyze more sensitive patterns in a short
time using the proposed method.

5 Conclusions

Here, we propose a new type of sequential pattern mining method based on
time intervals. Evaluations confirmed that the sequential pattern mining based
on time intervals is able to extract more useful patterns for feedback to the
real world than conventional sequential pattern mining, and that users can also
analyze more sensitive patterns in a shorter time in comparison with using con-
ventional sequential pattern mining.
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Abstract. This paper presents wavelet method for time series in business-field 
forecasting. An autoregressive moving average (ARMA) model is used, it can 
model the near-periodicity, nonstationarity and nonlinearity existed in business 
short-term time series. According to the wavelet denoising, wavelet 
decomposition and wavelet reconstruction, the hidden period and the 
nonstationarity existed in time series are extracted and separated by wavelet 
transformation. The characteristic of wavelet decomposition series is applied to 
BP networks and an autoregressive moving average (ARMA) model. It shows 
that the proposed method can provide more accurate results than the 
conventional techniques, like those only using BP networks or autoregressive 
moving average (ARMA) models. 

1   Introduction 

The reliable, secure and economical commercial forecasting plays an important role 
in the business field.  Therefore forecasting methods have been studied deeply and 
can be divided into two categories, namely classical methods and intellectual 
technologies [1]-[3]. The classical methods mainly include many models based on 
various statistical theories, whereas intellectual technologies include artificial neural 
network methods and expert system approaches [4]-[11]. In practice all these methods 
have been applied in the research of time series to certain degrees. However, because 
of time series’ near-periodicity, non-stationarity and nonlinearity, difficulties do occur 
when using these methods to solve practical problems [4], [6]. Firstly, Classical time 
series analysis methods mainly depend on linear time model and linear spectral 
estimation. Although these methods are based on the simple theories and are 
convenient to be applied in practice, when forecasting precision needs to be enhanced 
so as to amplify the model’s scale, the forecasting precision becomes lower and the 
forecasting speed becomes slower due to time series’ essence of non-linearity. 
Secondly, expert system techniques, utilizing the knowledge and analogical reasoning 
of experienced human operators, have been investigated [12]. Although expert system 
can synthesize many influencing factors, its knowledge base is very difficult to 
describe and build and its parameters can't be adjusted flexibly. As a result, in 
                                                           
* Sponsored by National Natural Science Foundation of China (Grant No. 70501009). 
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practice, the application of expert system is much limited. In addition, several 
research groups have studied the use of artificial neural networks (ANN) [13], [14] 
for ANN techniques are excellent tools to describe nonlinear relation [5]. However 
when the dependence of ANN learns represents relatively strong nonlinearity, it 
requires a large numbers of input cells, so the neural network training can often run 
into local minimum and the convergence speed is extremely low, and finally a great 
quantity of cyber-resources and times have been consumed. This proves that ANN 
techniques are inappropriate to solve practical problems [15]-[17]. In this paper, we 
intend to apply wavelet methods into data mining in the business field, and elucidate 
in details the procedure and effect of this new method applied in the time series 
prediction, through analyzing the real data of one supermarket. 

2   Wavelet Analysis and ARMA Model 

In this paper the data processing flow can be divided into four phases. The first phase 
is wavelet denoising. Its aim is to eliminate the noise of signal. The second phase is 
the wavelet decomposition. It aims to attain the wavelet decomposition series and the 
last approximation series of original time series at each scale domains. The third is 
modeling and forecasting. Its role is modeling and forecasting for these wavelet 
decomposition series at each transformation domains by using BP neural net, and for 
the final scale decomposition series by using ARMA model. The fourth is the wavelet 
reconstruction. Here the wavelet reconstructions have been achieved with purpose of 
synthesizing those forecast series obtained at each transformation domains, to system 
final forecasting, utilizing the wavelet reconstruction technique. 

 

Fig. 1. The architecture of wavelet-neural network-ARMA model 
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In figure 1, original system is any time series needs to be analyzed. Wavelet 
denoising level 1, Wavelet decomposition level 2, wavelet decomposition level 3… 
wavelet decomposition level M are M wavelet decomposition series of original time 
series at M levels (decomposition layer) and their notations are

1d , 
2d , …, 

Md , 

respectively. Scale decomposition level M is Mth scale decomposition series, its 

notation is Ma . 

The final phase of these forecasting models is to synthesize forecasting series at 
various transformation domains in order to obtain final forecasting series by using 
wavelet reconstruction technology. 

3   Time Series-Based Data Predict 

There will be an analysis of 2688 sample datum (4 weeks) of one supermarket, and 
make forecasting. 

3.1   Noise Elimination of Original Data by Wavelet Analysis 

Because the original data we collected contain big noise, the original data have obvious 
false data and can’t be used directly. Aiming to this problem, noise elimination 
processing using the fault soft threshold due to the lack of enough data and correlative 
empirical equation. The fault threshold we assigned is 32.259. The low frequency 
coefficient hasn’t quantization of threshold. The wavelet we chose is biorthogonal 
wavelet, and its parameter is (4,4) and level number is 5. The results comparison 
between original data and de-noised results are shown in figure 2 and figure 3. 

In the following text, the time series of load we will analyze are the de-noised time 
series except for special illustration. 

3.2   Wavelet Decompositions 

According to the characteristic of the wavelet transformation, the length of 
decomposition series is decreased doubly with scale increased doubly. Since the  scale 

 

Fig. 2. The sample time series of original system load 
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Fig. 3. The de-noised signal by using the default threshold 

 

Fig. 4. Time series and its redundant wavelet and scale transforms 

of the new series is different on each scale, the intervals of samples from neighboring 
data of series are different too. In order to facilitate modeling, it can make the new 
series and original series have the same length and sample, and name them as 
redundant wavelet transformation and redundant scale transformation. The coefficient 
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of Low-pass filter in Biorthogonal wavelets bior(4,4) is (0, 0.0378, -0.0238, -0.1106, 
0.3774, 0.8527, 0.3774, -0.1106, -0.0238, 0.0378), the coefficient of High-pass filter 
is (0, -0.0645, 0.0407, 0.4181, -0.7885, 0.0407, 0.4181, -0.0645, 0, 0), they also have 
10 coefficient. 

In figure 4, on the top is the primitive time series of 1344 data, its notation is S. In 
addition to it, from the top to the bottom the scale transformation time series of the 
5th scale level is a5. The wavelet transformation time series of 5th, 4th, 3rd, 2nd, 1st 
scale level is d5, d4, d3, d2, d1. By all appearances, there is obvious near-periodicity in 
series S, a5 and d5, and this near- periodicity is one day, it reflects for 96 continuous 
points in the figure. 

As for scale level, in fact 1st scale level corresponds to scale 2, afterwards 4, 8, and 
16, 32 in turn. When scale is short, wavelet transformation series express strong 
change, embodying that the reliance relation of the data is not good, namely, the 
reliance time is short, but change scope is little (compared with original data). All 
these show that this component have no great impact on change trend of original time 
series, it is just a kind of part influence factor, so the prediction data of this time series 
has little impact on total predict of original time series. With the increasing scale, 
wavelet time series becomes more and more smooth. It becomes plainness in the 5th 
scale, showing that it has stable impact on original time series, and effect time is 
much longer. In addition, the scale transformations in 5th scale has also become plain 
and keep the same trend with the original time series, furthermore its value is close to 
the original time series. This shows that the scale transformation series has the 
essential impact on original time series. The characters of the time series make 
wavelet-neural networks-ARMA model available to predict and analysis the original 
time series. 

3.3   Modeling and Forecasting in Scale 

When BP neutral nets are built at five wavelet transformation domains, every net 
model includes three layers, namely, an input layer, a hidden layer and a output layer, 
and there is only one output cell in every output layer. Design parameters of the five 
net models are shown in the table 1. In this table, the notation BP1 is the BP neutral 
net model, which is built for d1. 

Table 1. Design parameters of BP networks at every scale 

   Model 
Parameter 

BP1 BP2 BP3 BP4 BP5

Input 7 7 7 7 13 
Output 14 28 28 56 112

Because the characteristic of these 5 wavelet transformation series is that the range 
changed is very small relative to original series, and d5which range changed is a little 
greater than other fours has near-periodicity, every input cell of this 5 models is not 
data on continuous position of time series, but is a vector that contains 96 datum in 
succession. For example, there are 13 input cells in model BP5, and X={x1, x2… x13} 
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is the input vector, then x1is a vector which consists of the first 96 data of series d5, 
and x2is a vector which consists of the second 96 data of series d5, and so on.  

For conveniently describing, x1, x2…xn represent each value in the processed 5th 
scale decomposition series a5 received zero equalization transfers, then the problem of 
model building for the 5th scale decomposition series a5is equal to how to make the 
series (x1, x2…xn) fit into ARMA (p, q) model, the model is: 

qtqtttptpttt xxxx −−−−−− −−−−++++= εβεβεβεααα 22112211
. 

nppt ,,2,1 ++=  
(1) 

}{ tε  is white noise series 22 σε =tE , 0=st xEε )( ts <  

Firstly the parameter evaluation is processed. The regression approximation 
method is applied in this paper and consists of two steps. The first step is to make the 
series (x1, x2…xn) fit the regression model AR (p). And properly large positive integer 
is empirically selected as order P >> p, q . Base on the premise that assure precision 
of evaluation and reduce calculation amount, we select p= 300 in this paper. The 
fitted model is: 

tPtPttt xxxx εααα ˆˆˆˆ 2211 ++++= −−− . (2) 

The second step is to calculate fitted residual error through the formula (2). 

PtPtttt xxxx −−− −−−−= αααε ˆˆˆˆ 2211 . nPPt ,,2,1 ++=  (3) 

This fitted residual error series, nPP εεε ˆ,,ˆ,ˆ 21 ++ , can be seen as the sample values 

of }{ tε  series in the formula (1). Then, the formula (1) can be near written as 

tqtqttptpttt xxxx εεβεβεβααα +−−−−+++= −−−−−− ˆˆˆ 22112211
.      

nPPt ,,2,1 ++=  
(4) 

Besides }{ tε  in the formula (4), }{ tx and }ˆ{ tε  have sample values or near-

sample values in the formula nPPt ,,2,1 ++= . Thereby the formula (4) has 

matrix form: 

ε
β

α
+

−
= )ˆ( EXx . (5) 

Due to only value of data series x1, x2…xn are known, the order is also unknown 
when we fit into ARMA (p, q) model. Therefore it is essential to evaluate the values 
of p and q when the formula (1) is fitted, AIC order-confirmation criterion is 
employed to get the ARMA (2, 1) model in this paper. Next this model will forecast 
the scale transformation series of 5th scale as follows: 

Because p 2, q 1 it can be deduced that 

112211 ˆˆ −−− +−−= kkkkk xxx εβααε nk ,,2,1= . 
(6) 
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After kε̂ values have been confirmed each xn k can be ascertained via 

confirmation of xn k conditional expectation, namely 

nnn

nnnn

nn

xx

xxE

xEx

εβαα
εβεαα

ˆ

)ˆ(

)(

121

1121

11

−+=
−++=

=

−

+−

++

 (7) 

When k>1, moving average part disappear, 

2211 −+−++ += knknkn xxx αα  (8) 

xn k near-forecasting value can be calculated combining with  known kε̂ , then the 

forecasting series can be gotten by each value of series {xn k} plus scale 
transformation series mean value finally.  

3.4   Short Term Time Series Forecasting 

According to the wavelet method, in order to get the systematic short-term forecast of 
15- minute interval, wavelet rebuild technology is used to combine the six forecasting 
series in turn and finally get the prediction data. 

In order to compare with other methods (for example, only using BP neural 
networks or ARMA for model building), Nzz

N

t tt=
−=

1

2)ˆ(MSE is defined and 

mean square error is used to describe index of forecasting performance. tz  stands for 

the actual data of time series, and tẑ  stands for the forecasting data. After using 1334 

datum of two weeks predicts 96 data in the next day through three different methods, 
the indexes of forecasting performance of three methods, which are wavelet-NN-
ARMA method, BP-NN method and ARMA method, are shown in the table 2. These 
results prove that the performance of wavelet-NN-ARMA is more ideal than the other 
two methods’. 

Table 2. The comparison of mean-square error of the three methods 

 
Method of 
This Paper 

BP ARMA 

Forecasting 
Data 

5.6228 115.9997 19.4109 

In order to show forecasting performance further there are statistic result by relative 
error in the table 3, 4 and 5. According to this comparison the advantage of wavelet-
NN-ARMA method is even apparent. The statistical results of relative error analysis 
of load forecast on the next day forecasted by above-mentioned three forecast 
methods are shown respectively in the table 3, 4 and 5. These comparison results 
demonstrate the superiority of the method in this paper adequately. 
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Fig. 5. The forecasting effects of BP network and ARMA 

Table 3. The relative error accuracy analysis of the method in this paper 

Statistic  RE<1% RE<2% RE<3% RE>3% 

Points 60 96 96 0 

Percentage 62.5% 100% 100% 0% 

Maximal RE 1.80% Average RE 0.69%  

Table 4. The relative error accuracy analysis of BP network forecasting method 

Statistic RE<1% RE<2% RE<3% RE>3% 

Points 46 57 62 34 

Percentage 47.92% 59.38% 64.58% 35.42% 

Maximal RE 7.80% 
Average 

RE 
2.60%  

 actual data 
 prediction data

 actual data 
 prediction data
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Table 5. The relative error accuracy analysis of ARMA forecasting method 

Statistic RE<1% RE<2% RE<3% RE>3% 

Points 40 73 96 0 

Percentage 41.67% 76.04% 100% 0% 

Maximal RE 2.64% 
Average 

RE 1.22%  

4   Conclusions 

Wavelet denoising is emphasized in this paper. Combining wavelet, ARMA model 
and neural networks in data mining time series forecast can not only separate all kinds 
of hidden periods and describe them effectively, but also well depict its essential 
nonlinearity, thus increase the forecast precision of the data mining time series. The 
analysis of the examples in practice proves that, the forecast method mentioned in this 
paper can be applied successfully and effectively in the business field. 
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Abstract. In this paper, we proposes a novel intelligent multi-objective particle 
swarm optimization (IMOPSO) to solve multi-objective optimization problems. 
High performance of IMOPSO mainly arises from two parts: one is using gen-
eralized Pareto-based scale-independent fitness function (GPSISF) can effi-
ciently given all candidate solutions a score, and then decided candidate solu-
tions level. The other one is replacing the conventional particle move process of 
PSO with an intelligent move mechanism (IMM) based on orthogonal experi-
mental design to enhance the search ability. IMM can evenly sample and ana-
lyze from the best experience of an individual particle and group particles by 
using a systematic reasoning method, and then efficiently generate a good can-
didate solution for the next move of the particle. Some benchmark functions are 
used to evaluate the performance of IMOPSO, and compared with some exist-
ing multi-objective evolution algorithms. According to experimental results and 
analysis, they show that IMOPSO performs well. 

1   Introduction 

Multi-objective optimization is an important research topic for both scientists and 
engineers. The use of evolutionary algorithms for multi-objective optimization prob-
lem (MOOP) has significantly grown in the last few years. This gives rise to a wide 
variety of new algorithms [1]-[7]. Particle swarm optimization (PSO) is one of the 
evolutionary computation techniques. Kennedy and Eberhart, inspired by the choreog-
raphy of a bird flock, proposed PSO [8]. PSO is characterized by its simplicity and 
straightforward applicability, and it has proved to be efficient for a lot of problems in 
science and engineering. New variants of the method more suitable for such problems 
have been developed [9]-[12]. 

In this paper, we propose an intelligent multi-objective particle swarm optimization 
IMOPSO using a novel intelligent move mechanism (IMM) and a novel generalized 
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Pareto-based scale-independent fitness function (GPSISF) to solve multi-objective 
optimization problem. Based on orthogonal experimental design (OED) [13]-[15], 
IMM uses a divide-and-conquer approach to efficiently determine the next move of a 
particle. Generally, a D-dimensional vector of the next move is divided into N ( D) 
partial vectors. IMM spends at most 2N objective function evaluations to find a poten-
tially good solution consisting of N good partial vectors to be the next move. 
IMOPSO with IMM has both the advantages of global exploration and local exploita-
tion by focusing on accuracy and computation time. 

OED with both orthogonal array (OA) and factor analysis is a typical method in 
quality control, also an efficient technique in the Taguchi method [16]. Tsai et al. [17] 
proposed a hybrid Taguchi-genetic algorithm for global numerical optimization 
therein the Taguchi method is inserted between crossover and mutation operations of 
a traditional GA. Tanaka proposed an orthogonal design algorithm (ODA) for a com-
parison with genetic algorithm (GA) searching mechanisms [18]. ODA uses GA-
encoding and OED, but uses no recombination or mutation. OED can also be incorpo-
rated into the recombination operation of GA. Zhang and Leung proposed an or-
thogonal genetic algorithm (OGA) [19]. Leung and Wang proposed an improved 
OGA with quantization (OGA/Q) using an OA-based initial population for global 
numerical optimization [20]. Both OGA and OGA/Q use OA, but use no factor analy-
sis. Ho et al. proposed population-based evolutionary algorithms with an OED-based 
recombination for efficiently solving large parameter optimization problems [7], [21]-
[23]. In addition, OED also performs well when cooperating with simulated annealing 
(SA). A point-based orthogonal simulated annealing (OSA) algorithm with OED-
based generation mechanism for efficiently determining the next move of SA is re-
cently proposed by Ho et al. [24], [26]. 

2   Description of the IMOPSO 

IMM is the main phase in adjusting the particles’ velocities of IMOPSO. Let the par-
ticle be a D-dimensional vector X = [x1, x2, …, XD]T. The major concerns of efficiently 
using IMM are 1) how to encode system parameters into the particle X and 2) how to 
effectively divide X into N partial vectors where each partial vector is treated as factor 
of OED. 

2.1   Particle Representation 

A suitable way of encoding system parameters into the particle X is important in effi-
ciently using IMM. Problem-specific particle representation and specialized opera-
tions are generally more efficient in solving constrained problems than any other 
methods using penalty approaches [25]. It is shown that maintaining feasibility can 
make the OED-based operation more efficient than the penalty approach [26]. An 
illustrative example using an effective parameter transformation to reduce the degree 
of epitasis and confine searches within feasible regions for designing genetic-fuzzy 
systems can be referred to in [21]. 
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2.2   IMM 

For each particle Xi(t) = [xi1, xi2, …, xiD]T, IMM generates two temporary moves 
C=[C1, …, CD]T and S = [S1, …, SD]T corresponding to cognitive and social parts re-
spectively: 

))()(()()( 11 tXtPrctwVtxC iiii −++= , (1) 

))()(()()( 22 tXtPrctwVtxS igii −++= , (2) 

IMM aims at efficiently combining good partial vectors of C and S to generate the 
next move Xi(t+1), as described below. 

Divide the D-dimensional vector of Xi into N non-overlapping partial vectors with 
sizes li, i=1, …, N, using the same division scheme for C and S such that  

Dl
N

i
i =

=1

. (3) 

The proper value of N is problem-dependent. The larger the value of N, the more 
efficient the IMM if the interactions among partial vectors are weak. Considering the 
tradeoff, an efficient division criterion is to minimize the interactions among partial 
vectors while maximizing the value of N. to efficiently use all columns of OA exclud-
ing the study of intractable interactions, the used OA is LN+1(2

N) and largest value of 

N is equal to 12 )1(log2 −+D  where the bracket represents a lower ceiling operation. 
For example, a coarse-to-fine strategy using a variable value of N is sometimes more 
efficient [22]. In this study, IMOPSO uses a constant value of N. 

How to perform an IMM operation using the particle Xi(t) of a D-dimensional vec-
tor with an objective function f is described as follows: 

 
Step 1: Generate two temporary moves C and S for Xi(t) using Eq. (1) and Eq. (2). 
Step 2: Divide each of C and S into N partial vectors where each partial vector is 

treated as a factor. 

Step 3: Use the first N columns of an OA )2( 1−M
ML , where M= )1(log22 +N . 

Step 4: Let levels 1 and 2 of factor i represent the ith partial vector of C and S, re-
spectively. 

Step 5: Compute the objective function value ft of the combination t, where t= 
 1,…,M. Note that f1 is the value of f(C). 

Step 6: Compute the main effect Sjk where j=1, …,N and k=1,2. 
Step 7: Determine the better one of two levels of each factor based on the main ef-

fect. 
Step 8: The next move Xi(t+1) is formed using the combination of the better par-

tial vectors. 
Step 9: Verify that Xi(t+1) is better than the Xi(t) and the M sample solutions de-

rived from OA combinations. If it is not true, let Xi(t+1) be the best one of 
Xi(t) and these M sample solutions. 

 



 Intelligent Particle Swarm Optimization in Multi-objective Problems 793 

 

OA specifies a small number M of representative combinations that are uniformly 
distributed over the neighborhood of the particle Xi(t). The number of objective func-
tion evaluation is M+1 per IMM operation, which includes M evaluations in Step 5 
and one in Step 9. IMM spends M+1 function evaluations while PSO spends one 
function evaluation using the generate-and-go method to determine the next move. 
However, the M sampling solutions and factor analysis make IMM more efficient in 
obtaining the next move. If interactions among partial vectors are weak, Xi(t+1) is a 
potentially good approximation to the best one of all the 2N combinations in the 
neighborhood of Xi(t) 

2.3   Fitness Function GPSISF 

GPSISF considers the quantitative fitness performances in the objective space for 
both dominated and non-dominated individuals and makes the best use of Pareto 
dominance relationship to evaluate individuals using a single measure of perform-
ance. Let the fitness value of an individual X be a tournament-like score obtained 
from all participating individuals according to the following function: 

GPSISF(X) = p – q + c, (4) 

where p is the number of individuals which can be dominated by X, and q is the num-
ber of individuals which can dominate X in the objective space. Generally, a constant 
c can be optionally added in the fitness function to make fitness values positive. In 
this study, c is the number of all participant individuals. 

First GPSISF uses a pure Pareto-ranking fitness assignment strategy, which differs 
from the traditional Pareto-ranking methods, such as non-dominated sorting and Zitzler 
and Thiele’s method, in two aspects. First GPSISF can assign discriminative fitness 
values to not only non-dominated individuals but also dominated ones. IMM can take 
advantage of this assignment strategy to accurately estimate the main effect of factors. It 
is less efficient for IMM to use Zitzler and Thiele’s method where the fitness values of 
dominated individuals in cluster are always identical. Fig. 1(a) shows an example illus-
trating the fitness values using GPSISF for a bi-objective minimization problem. For 
 

 
(a)                                                      (b) 

Fig. 1. The fitness values of 12 participant individuals in the objective space of a bi-objective 
minimization problem. The fitness values of the same dominated individual A in (a) and (b) 
using GPSISF are different depending on the Pareto dominance relationship. 
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example, three individuals are dominated by A (p=3) and two individuals dominate A 
(q=2). Therefore, the fitness value of A is 3-2+12=13. It can be found that one individ-
ual has a larger fitness value if it dominates more individuals. On the contrary, one indi-
vidual has a smaller fitness value if more individuals dominate it. 

Second, GPSISF has an implicit niching mechanism based on the Pareto domi-
nance relationship. Fig. 1(b) is derived from Fig. 1(a) by moving the individual A, 
such that B dominates A. Considering the rectangle formed by A, the value of q is 
increased from 2 to 3 and thus the fitness value of A is decreased from 13 to 12. This 
scenario reveals that the same individual dominated by crowed individuals has a 
smaller fitness value than that dominated by sparse individuals. Therefore, no addi-
tional techniques such as fitness sharing are needed to achieve the niching effect. 

2.4   IMOPSO 

Since it has been recognized that the incorporation of elitism may be useful in main-
taining diversity and improving the performance of multi-objective PSOs, IMOPSO 
uses an elite set E with capacity NEmax to maintain the best non-dominated individuals 
generated so far. The simple IMOPSO can be written as follows: 

Step 1: (Initialization) Randomly generate an initial population NPOP and create an 
empty elite set E and an empty temporary elite set E’. 

1) The position of the i-th particle, Xi are initialized with random real 
number within the specified decision variable range; 

2) The velocities of the i-th particle, Vi are initialized to 0. 
Step 2: (Evaluation) Compute all objective function values of each individual par-

ticle in the population. Assign each individual a fitness value by using 
GPSISF. 

Step 3: (Update elite sets) Add the non-dominated individuals in both the popula-
tion and E’ to E, and empty E’. Remove the dominated individuals in E. If 
the number NE of non-dominated individuals in E is larger than NEmax, ran-
domly discard excess individuals. 

Step 4: (Selection gbest) Select a global best Pg for the i-th particle from E. 
Step 5: (Update position and velocity) Apply IMM to generate next position 

Xi(t+1) and velocity Vi(t+1). 
Step 6: (Update pbest) If new solution dominates the current pbest then pbest up-

dated.  
Step 7: (Termination test) If a stopping condition is satisfied, stop the algorithm. 

Otherwise, go to Step 2. 

3   Performance Comparisons of IMOPSO 

High performance of IMOPSO is demonstrated by showing its superiority over the 
following multi-objective PSOs and EAs, such as AMOPSO[9], [10], DNPSO[11], 
mDNPSO[12], SPEA[5], SPEA2[6], NSGA[2], NSGA2[3], and IMOEA[7].  
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Zitzler et al. [4] constructed six test problems and investigated the performance of 
various popular multi-objective EAs. Each of the test problems is structured in the 
same manner and consists of three functions f1, g, h: 

                           min.  T(X) = (f1(x1), f2(X)), 

s. t.  f2(X) = g(x2, … , xm)h(f1(x1), g(x2, … , xm)), 
(5) 

where X = [x1, x2, … , xm]T, f1 is a function consisted of the first decision variable x1 
only, g is a function of the remaining m-1 parameters, and the two parameters of the 
function h are the function values of f1 and g. In this paper, we were used five test 
problems ZDT1 and ZDT2 to evaluate the performance of IMOPSO and compared 
with some existing algorithms. Those test problems can be retrieved from [4]. 

3.1   Small-Scale Problem 

The non-dominated solutions merged from 30 runs of NSGA, SPEA, DNPSO, 
mDNPSO, AMOPSO and IMOPSO in the objective space are reported, as shown in 
Figs. 2 and 3, and the curve in each figure is the Pareto-optimal front of each test 
problem. In our experiments, benchmark of NSGA and SPEA were downloaded from 
[27], source code of AMOPSO was downloaded from [27]. DNPSO and mDNPSO 
were written by ourselves. For test problems ZDT1 and ZDT2, IMOPSO, AMOPSO, 
DNPSO and mDNPSO can obtain well-distributed Pareto fronts, and the Pareto fronts 
for each test function are very close to the Pareto-optimal fonts. 

As shown in Figs. 2 and 3, the quality of non-dominated solutions obtained by 
IMOPSO is superior to those of all compared algorithms in terms of the number of 
non-dominated solutions, the distance between the obtained Pareto front and Pareto-
optimal front, and the distribution of non-dominated solutions. 

 
  

Fig. 2. Convex test  ZDT1 (n=30)                Fig. 3. Non-convex test ZDT2 (n=30) 

3.2   Large-Scale Problem 

Ho et al.[7] extended test problems with a large number of parameters (n=63) and 
proposed IMOEA to solving large MOOPs. For shown IMOPSO have high 
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performance at large scale problem. We apply IMOPSO to solving large scale prob-
lem and compare the performance with IMOEA and other algorithms. 

The non-dominated solutions merged from 30 runs of NSGA2, SPEA, SPEA2, 
IMOEA, AMOPSO and IMOPSO in the objective space are reported, as shown in 
Figs. 4 and 5. As shown in Figs. 4 and 5, the quality of non-dominated solutions ob-
tained by IMOPSO is superior to those of all compared algorithms in terms of the 
number of non-dominated solutions, the distance between the obtained Pareto front 
and Pareto-optimal front, and the distribution of non-dominated solutions. 

Fig. 4. Convex test ZDT1 (n=63) Fig. 5. Non-convex test ZDT2 (n=63) 

We also used three issues are normally taken into consideration, describe as below: 

1) Minimize the distance of the Pareto front produced by our algorithm with re-
spect to the global Pareto front 

2) Maximize the spread of solutions found, so that we can have a distribution 
of vectors as smooth and uniform as possible. 

3) Maximize the number of elements of the Pareto optimal set found. 

Based on this notion, we adopted one metric to evaluate each of three aspects pre-
viously indicated. 

1) Generational distance (GD): The concept of generational distance was in-
troduced by Van Veldhuizen and Lamont as a way of estimating how far the 
elements are in the set of non-dominated vector found so far from those in 
the Pareto optimal set and is defined as 

ndGD
n

i
i /

1

2

=
=  

  where n is the number of vectors in the set of non-dominated solutions found 
so far and di is the Euclidean distance (measured in objective space) between 
each of these and the nearest member of the Pareto optimal set. 

2) Spacing (SP): Here, one desires to measure the spread of vectors throughout 
the non-dominated vectors found so far. Schott proposed such a metric 
measuring the range variance of neighboring vectors in the non-dominated 
vectors found so far. This metric is defined as 
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the mean of all di, and n is the number of non-dominated vectors found so far. 
3) Error ratio (ER): This metric was proposed by Van Veldhuizen to indicate 

the percentage of solutions that are non members of the true Pareto optimal 
set 

neER
n

i
i /

1=

=  

  where n is the number of vectors in the current set of non-dominated vectors 
available, ei = 0 if vector i is a member of the Pareto optimal set, and ei = 1, 
otherwise. 

A. ZDT1: Fig 4 show the graphical results produced by our IMOPSO, the AMOPSO, 
the IMOEA, the SPEA, the SPEA2 and the NSGA2. The true Pareto front of the prob-
lems is shown as a continuous line. Tables 1-3 show the comparison of results among 
the six algorithms considering the metrics previously described. It can be seen that the 
average performance of IMOPSO and AMOPSO are the best compared with other 
algorithms. 

B. ZDT2: Fig 5 show the graphical results produced by our IMOPSO, the AMOPSO, 
the IMOEA, the SPEA, the SPEA2 and the NSGA2. The true Pareto front of the prob-
lems is shown as a continuous line. Tables 4-6 show the comparison of results among 
the six algorithms considering the metrics previously described. It can be seen that the 
average performance of IMOPSO is the best than other algorithms. 

Table 1. Results of the error ratio metric for zdt1 

ER IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.1061 0.0002 1.0000 1.0000 1.0000 1.0000 
Best 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 

Average 0.0320 0.0000 1.0000 1.0000 1.0000 1.0000 
Median 0.0253 0.0000 1.0000 1.0000 1.0000 1.0000 

Std. Dev. 0.0253 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 2. Results of the generational distance metric for zdt1 

GD IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.0018 0.0000 0.0347 0.0353 0.0285 0.0503 
Best 0.0001 0.0000 0.0138 0.0224 0.0212 0.0308 

Average 0.0004 0.0000 0.0200 0.0296 0.0246 0.0392 
Median 0.0003 0.0000 0.0194 0.0295 0.0248 0.0387 

Std. Dev. 0.0003 0.0000 0.0041 0.0027 0.0021 0.0042 
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Table 3. Results of the spacing metric for zdt1 

SP IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.0252 0.0002 0.0658 0.0574 0.0538 0.0899 
Best 0.0009 0.0000 0.0162 0.0382 0.0313 0.0415 

Average 0.0033 0.0000 0.0302 0.0464 0.0400 0.0586 
Median 0.0025 0.0000 0.0281 0.0471 0.0401 0.0566 

Std. Dev. 0.0042 0.0000 0.0127 0.0052 0.0049 0.0091 

Table 4. Results of the error ratio metric for zdt2 

ER IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.9444 1.0000 1.0000 1.0000 1.0000 1.0000 
Best 0.0302 0.0204 1.0000 1.0000 1.0000 1.0000 

Average 0.4107 0.7257 1.0000 1.0000 1.0000 1.0000 
Median 0.4350 0.8245 1.0000 1.0000 1.0000 1.0000 

Std. Dev. 0.2512 0.2938 0.0000 0.0000 0.0000 0.0000 

Table 5. Results of the generational distance metric for zdt2 

GD IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.0002 0.0131 0.0559 0.0696 0.0595 0.1691 
Best 0.0000 0.0000 0.0159 0.0501 0.0424 0.0657 

Average 0.0001 0.0011 0.0287 0.0581 0.0499 0.0920 
Median 0.0001 0.0001 0.0274 0.0581 0.0497 0.0885 

Std. Dev. 0.0000 0.0033 0.0097 0.0049 0.0042 0.0207 

Table 6. Results of the spacing metric for zdt2 

SP IMOPSO AMOPSO IMOEA NSGA2 SPEA2 SPEA 
Worst 0.0027 0.0683 0.1034 0.0744 0.0639 0.0972 
Best 0.0001 0.0000 0.0060 0.0462 0.0382 0.0437 

Average 0.0010 0.0063 0.0287 0.0617 0.0548 0.0756 
Median 0.0010 0.0007 0.0221 0.0617 0.0556 0.0758 

Std. Dev. 0.0005 0.0173 0.0181 0.0068 0.0057 0.0134 

4   Conclusion 

We have proposed an intelligent multi-objective particle swarm optimization 
IMOPSO using a novel intelligent move mechanism IMM and generalized Pareto-
based scale-independent scoring function (GPSISF) to solve multi-objective optimiza-
tion problems (MOOPs). Since OED is advantageous for problems with weak interac-
tions among parameters and IMOPSO works without using linkage identification, it is 
essential to encode parameters into particle such that the degree of epitasis can be 
minimized. IMOPSO is powerful based on the abilities of the proposed GPSISF and 
IMM. We believe that the auxiliary techniques, which can improve performance of 
conventional MOPSOs, can also improve performances of IMOPSO. Due to its  
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simplicity, theoretical elegance, generality, and superiority, IMOPSO can be most 
widely used for solving real-world applications of MOOPs. 
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Abstract. A new nonlinear principle component analysis (PCA) method, 
hidden space principal component analysis (HSPCA) is presented in this paper. 
Firstly, the data in the input space is mapped into a high hidden space by a 
nonlinear function whose role is similar to that of hidden neurons in Artificial 
Neural Networks. Then the goal of features extraction and data compression 
will be implemented by performing PCA on the mapped data in the hidden 
space. Compared with linear PCA method, our algorithm is a nonlinear PCA 
one essentially and can extract the data features more efficiently. While 
compared with kernel PCA method presented recently, the mapped samples are 
exactly known and the conditions satisfied by nonlinear mapping functions are 
more relaxed. The unique condition is symmetry for kernel function in HSPCA. 
Finally, experimental results on artificial and real-world data show the 
feasibility and validity of HSPCA. 

1   Introduction 

Linear PCA (LPCA) is an important method of the statistical analysis of data. LPCA 
is a powerful tool for extracting linear structures from possibly high-dimensional data 
sets. It directly deals with the covariance matrix of the data to extract second-order 
uncorrelated principal components of the data, and it can implement features 
extraction and data compress of the data. Kernel PCA (KPCA) presented by 
Sch lkopf is a generalization of LPCA [1]. In KPCA, the data in an input space firstly 
is mapped into a high (possibly infinite) dimensional feature space by a nonlinear 
kernel function. And then LPCA is performed on the mapped data in the feature 
space, which performs a nonlinear PCA in the input space essentially. It is necessary 
for kernel functions adopted in KPCA to satisfy Mercer’s condition. The nonlinear 
mapping functions never need to be known explicitly. Since it is the mapping 
functions that are unknown, the mapped data is unknown, it is impossible to compute 
of the statistics of the data such as one-order or high-order statistics, except for two-
order ones. It constrains the further analysis and processing on the mapped data to a 
certain extent. 

A new nonlinear PCA method, hidden space principal component analysis (HSPCA) 
is presented in this paper. Firstly, the data is mapped into a high-dimensional hidden 
                                                           
*  This work was supported in part by the Shaanxi Province Natural Science Foundation of 

China under grant 2004F1. 
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space by a nonlinear function whose role is similar to that of hidden neurons in 
Artificial Neural Networks. Then linear PCA is performed on the mapped data to 
implement the goal of feature extraction and data compression. Compared with linear 
PCA, HSPCA is an intrinsic nonlinear method. It can extract the data features more 
efficiently than LPCA does. Compared with kernel PCA presented recently, the 
mapped data is known explicitly in HSPCA. Therefore we can handle these mapped 
data in the feature space directly. Moreover the nonlinear kernel functions adopted in 
HSPCA need not to satisfy Mercer’s condition and only satisfy the symmetry 
condition which is the basic condition for kernel function. 

2   Hidden Space Principle Analysis (HSPCA) 

As we know, the introduction of kernel functions is to implement the nonlinear 
mapping in SVMs. Before SVMs were presents, the nonlinear mapping had been 
successfully applied to some other methods, such as the hidden function mapping in 
forward neural networks (FNNs) and radial basis function networks (RBFNs). It has 
been proven that the separability of patterns will be increased greatly if patterns in a 
low dimensional space are mapped into a high-dimensional space [2]. SVMs for 
classification and regression estimation in hidden space have been presented in [3]. 
Note that the unique condition for the hidden kernel functions is the symmetry, which 
will extend the set of usable Mercer kernel functions in SVMs [3]. Some useful 
symmetric hidden kernel functions were given in [3].  In the following, we present the 
PCA method in hidden space. 

Let the set of i.i.d. patterns be { }1 2, , d
N iX = ∈x x x x  and kernel function be 

( ),k x y . The set of the mapped patterns by ( ),k x y  in the hidden space   

( ) ( ) ( ){ }1 2, , , , , , , 1, ,
T

i i i i Nk k k i N= =z x x x x x x  (1) 

Since the mapped patterns in the feature space or the hidden space are known 
definitely shown in Eq. (1), we can simply compute the statistics of the patterns in the 
hidden space, which is impossible for KPCA. For the sake of simplicity, we have 
made the assumption that the data is centered. If not, we can remove the following 
mean from the mapped data simply  

1

1 N

i
iN =

=m z  
 

Let 

[ ]1 2, , , NK = z z z  (2) 

Obviously the matrix K  is a real-valued symmetric matrix of order N N× . 
The covariance matrix of the patterns in the hidden space can be expressed as 

1

1 1N
T T

i i
i

C KK
N N=

= =z z  (3) 
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Implement eigen-decomposition of the real-valued symmetric matrix (3), we have 

C λ=v v  (4) 

which can be rewritten as   

1 TC KK K
N

λ= = =v v u v  (5) 

where 
1 T NK
N

= ∈u v . Hence { }1 2, , , Nspan∈v z z z . Now suppose  

1

N

i i
i

Kα α
=

= =v z  (6) 

where 1 1[ , , , ]T
Nα α α α= . Combining Eq. (6) and Eq. (4), we get 

1 TKK K K
N

α λ α=  (7) 

The coefficient 1 N  in Eq. (7) can be ignored because its role is only to multiply 

the eigenvalues by N . Eliminating K  in both sides in Eq. (7), we obtain 

TK Kα λα=  (8) 

With respect to the positive semi-definite, symmetrical and real-valued matrix 
TKK , we can obtain N  normalized eigenvectors 1 2, , , Nα α α  where 

1, 1, ,ia i N= =  and the corresponding eigenvalues 1 2, , , Nλ λ λ . But the work is 

not complete, our goal is to obtain the eigenvector v  in the hidden space. 

Normalizing 1, 1, ,i i N= =v , from Eq. (6) we have 

, , 1, ,
i

i i i

i
K i N

αβ β
λ

= = =v  (9) 

Thus we select the n  larger eigenvalues from N  eigenvalues 1 2, , , Nλ λ λ  and 
the corresponding n  eigenvectors, which compose the transform matrix of HSPCA as 
follows 

{ }1 2
1 2, , , , , , , 1, ,nii i

nV i i i N= ∈v v v  (10) 

For each pattern, the extracted principle components are 

1 2

1 2

1 2

, , ,

, , , 1, ,

n

n

n

Tii iT
i i i

T
ii i

i

i i i

V K

K i N

β β β

α α α
λ λ λ

= =

= =

z z z

z
 (11) 
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Now we have finished the derivation of extracting principle components in the 
hidden space as above. 

3   Simulation 

In order to evaluate the performance of HSPCA, we performed experiments on two-
spiral data. We used two methods to perform our simulation. One method is nonlinear 
SVMs. Other is a mixed method of HSPCA and linear SVM. We used the HSPCA to 
extract the principal components of data that was the training and testing patterns of 
linear SVM. 

The two-spiral problem is referred to as “touchstone” to test the performance of a 
learning algorithm in the field of pattern recognition [4]. In this experiment, the two-
spiral data can be expressed as  

( )
( )1

0.05 sin , (0,1), 0.04
( , )

0.05 cos , (0,1), 0.04
x x x x

y y y y

x n n N
X x y

y n n N

θ θ σ σ
θ θ σ σ

= + =
=

= + =
 

and  

( )
( )2

0.05 0.2 sin , (0,1), 0.04
( , )

0.05 0.2 cos , (0,1), 0.04
x x x x

y y y y

x n n N
X x y

y n n N

θ θ σ σ
θ θ σ σ

= + + =
=

= + + =
 

We sampled 32 patterns as the training patterns and 126 ones on [ ]0,2θ π∈ as the 

test patterns in each spiral randomly. We performed 30 runs totally and adopted two 

kinds of kernel function: Gaussian RBF kernel ( ) ( )2 2, exp / 2 ,k p p= − − ∈x y x y  

and generalized two-quadrics kernel ( )2
( , ) 1 ,

p

k p= + − ∉x y x y  (which is Mercer 

kernel if and only if 0p < ). Let 100C = . Table 1 shows the average results of 
 

Table 1.  Comparison of HSPCA+LSVMs and NSVMs on two-spiral data 

Kernel 
function 

Optimal 
parameter 

Method 
# PC 

extracted by 
HSPCA  

Test error 
(%) 

p=0.07 NSVMs — 2.7 

p=0.11 
HSPCA+ 
LSVMs 

32 3.5 Gaussian RBF 

p=0.11 
HSPCA+ 
LSVMs 

16 4.1 

p= -7.5 NSVMs — 3.8 

p= -9.9 
HSPCA+ 
LSVMs 

15 5.0 Generalized 
Multi-quadrics 

p= -9.5 
HSPCA+ 
LSVMs 

7 6.0 
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HSPCA+LSVMs and NSVMs over 30 runs. The recognition performance of the 
mixed method is lightly lower than that of NSVMs. It is natural. HSPCA only extract 
a part of principal components of the data and delete other minor components. So the 
mixed method only used a part of features of the data, while NSVMs used all features 
of the data. It is acceptable that the recognition error does not increased greatly as the 
reducing of the number of principal components. 

4   Conclusion 

A new nonlinear PCA method, hidden space principal component analysis (HSPCA) 
is presented in this paper. Firstly, the data is mapped in a high-dimensional hidden 
space by a nonlinear function whose role is similar to that of hidden neurons in 
Artificial Neural Networks. Then LPCA is performed on the mapped data to 
implement the goal of features extraction and data compression. Compared with 
linear PCA, HSPCA is a nonlinear method essentially. It can extract data features 
more efficiently than LPCA does. Compared with kernel PCA presented recently, the 
mapped data is known explicitly in HSPCA. Therefore we can handle these mapped 
data in the feature space directly and at any means. Moreover the nonlinear kernel 
functions adopted in HSPCA need not to satisfy Mercer’s condition and only satisfy 
the symmetry condition, the most relaxed condition for kernel function. 

Since the inverse mapping of kernel mapping adopted in HSPCA and KPCA 
almost does not exist. It is almost impossible for HSPCA and KPCA to perform data 
construction or de-noising. It is worth studying how to implement data reconstruction 
or de-noising base on nonlinear PCA.  
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Abstract. Locally linear embedding (Lle) is a powerful approach for
mapping high-dimensional data nonlinearly to a lower-dimensional space.
However, when the training examples are not densely sampled, Lle often
returns invalid results. In this paper, the Nl3e (Neighbor Line-based
Lle) approach is proposed, which generates some virtual examples with
the help of neighbor line such that the Lle learning can be executed on
an enriched training set. Experiments show that Nl3e outperforms Lle
in visualization.

1 Introduction

Many real-world problems suffer from a large amount features [5]. Therefore,
dimensionality reduction techniques are needed. Popular linear dimensionality
reduction methods such as Pca [7] and Mds [2] are easy to implement. The main
idea of Pca is to find the projection direction with the largest possible variance
and then project the original data onto that direction, while that of Mds is to
find the low-dimensional embeddings which best restore the pair-wised distances
between the original samples. Although these linear methods have achieved some
success, most real-world data are non-linearly distributed and therefore, these
methods can hardly work well.

Recently, a number of non-linear dimensionality reduction methods have been
proposed, e.g. the manifold learning methods Lle [9], Isomap [10], etc. Lle
preserves the information of local distance between the concerned data and its
neighbors, while Isomap preserves the pairwise geodesic distances between the
original samples. Both Lle and Isomap have been applied to data visualiza-
tion [6][9][10], and encouraging results have been reported when the data are
densely sampled and there is no serious noise in the data.

De Silva and Tenenbaum [4] proposed two improved Isomap algorithms,
namely, C-Isomap and L-Isomap. C-Isomap has the ability to invert confor-
mal maps while L-Isomap attempts to reduce the computational load. Unfortu-
nately, similar to Isomap, C-Isomap performs pool when the training data are
not densely sampled [4][10]. Even more worse, C-Isomap requires more samples
than Isomap [4]. L-Isomap reduces computational complexity by mapping only
the landmark points. Unfortunately, it is more unstable than Isomap since the
landmarks may be not densely sampled [4]. Like Isomap series of algorithms [10],
given sufficient data, Lle is guaranteed asymptotically to recover the geometric

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 806–815, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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structure [9]. Recently, Lle and Lda have been combined as new classification
algorithms [3][12], which work well only with dense samples either. Since in
real-world tasks it is hard to guarantee that the data is densely sampled, the
performance of these manifold learning algorithms are often not satisfying.

In this paper, the Nl3e (Neighbor Line-based Lle) method is proposed.
Through generating virtual samples with the help of the neighbor line, Nl3e
can work well in some cases where the data are not densely sampled.

The rest part of this paper is organized as follows. In section 2, the Lle and
Nnl algorithms and some works utilizing virtual samples are introduced. In
section 3, the Nl3e method is proposed. In section 4, experiments are reported.
Finally, in section 5, conclusions are drawn.

2 Background

2.1 LLE

Lle [9] maps a data set X = {x1,x2, · · · ,xn}, xi ∈ Rd, to a data set Z =
{z1, z2, · · · , zn}, zi ∈ Rm, where d > m. It assumes the data lie on a low-
dimensional manifold which can be approximated linearly in a local area of the
high-dimensional space. Roughly speaking, Lle firstly fits hyperplanes around
each sample xi, based on its k nearest neighbors, and then calculates the recon-
struction weights. After that, it finds the lower-dimensional coordinates zi for
each xi, which preserve those reconstruction weights as good as possible.

Formally, the k nearest neighbors of xi are identified according to Euclidean
distance at first. Then the neighboring points are used to reconstruct xi, and the
total reconstruction error over all the xi’s is defined as Eq. 1, where xij is the
jth neighbor of xi, and wij encodes the contribution of xij to the reconstruction
of xi. By minimizing Eq. 1, wij can be determined.

ε (W) =
∑

i

∣∣∣xi −
∑

j
wijxij

∣∣∣2, (1)

Then, the weights w’s are fixed and the corresponding zi’s are sought through
minimizing Eq. 2. Like Eq. 1, Eq. 2 is based on local linear reconstruction errors,
but here the weights w’s are fixed while the coordinates zi’s are optimized.

ε (Z) =
∑

i

∣∣∣zi −
∑

j
wijzij

∣∣∣2. (2)

The Lle algorithm has been applied to visualization and achieved some suc-
cess [9]. It is noteworthy that the original Lle algorithm was mainly designed for
visualization, which does not take into account the label information. However,
the working scheme of Lle can be modified to utilize the label information, and
therefore it can also be used in classification [3][12]. Nevertheless, as mentioned
before, like other existing manifold learning algorithms, Lle can hardly work
well when the data are not densely sampled.
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2.2 NNL

The Nfl (Nearest Feature Line) method was originally proposed for face recog-
nition [8]. In Nfl, feature line is defined as the line passing through two points
from a same class. The distance between an unseen point to the line is regarded
as a measurement of the strength of the point belonging to the concerned class.
Besides suffering from large computational costs, Nfl often fails when the query
point, i.e. the unseen data point to be classified, is far from the prototype points
because in this case, unreliable extrapolated points may be queried for classify-
ing the unseen data. In order to reduce the influence of this problem, the Nnl
(Nearest Neighbor Line) method, which is a modified version of Nfl, was pro-
posed, where only the neighbors of the query point instead of all the possible
feature lines are used [13].

Formally, let {xi
j} (i = 1, · · · , c; j = 1, · · · , Ni) denote the training set, where

c is the number of classes, xi
j is the jth sample of the ith class, and Ni is the

number of the samples belonging to the ith class. Let x denote the query sample.
Suppose xi

a and xi
b denote the two nearest neighbors of x in the ith class. Then,

the straight line xi
ax

i
b passing through xi

a and xi
b is called the neighbor line of

x in the ith class. The neighbor line distance between x and xi
axi

b is given by
dist(x,xi

ax
i
b) = ‖x− Ixi

axi
b
‖, where ‖ · ‖ stands for the Euclidean distance, and

Ixi
axi

b
is the image of x projected onto the neighbor line, or equally, the plumb

root. Then, x is classified as belonging to the class corresponding to its nearest
neighbor line, that is,

label(x) = arg min
i∈{1,···,c}

dist(x,xi
ax

i
b). (3)

2.3 Virtual Samples

In pattern recognition, much effort has been devoted to tackling the small sample
problem, where the utilization of virtual samples is an effective scheme. For
example, in the (PC)2A method designed for face recognition with one training
image per person [11], the horizontal and vertical projections of the original face
image are used to help create some virtual face images such that the intra-class
differences can be computed in Pca.

In machine learning, virtual samples have been used in comprehensible learn-
ing. For example, virtual samples were generated to help extract symbolic rules
from complicated learning systems such as neural network ensembles [16]. In the
twice-learning paradigm [14][15], a learner with strong generalization ability is
used to generate virtual samples which are then given to a learner with good
comprehensibility, such that the learning results are with high accuracy as well
as good comprehensibility.

Virtual Samples are also useful in learning with imbalanced data sets. For
example, in the Smote algorithm [1], virtual samples of the minority class are
generated such that the number of minority training samples is increased. Here
the virtual samples are generated through interpolating between each minor-
ity class point and its k nearest neighboring minority class points, which looks
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somewhat like the interpolating scheme used in Nfl [8] and Nnl [13]. In fact,
the Nfl and Nnl algorithms have implicitly utilized virtual samples since they
use a virtual point instead of a real data point to help compute the distance
between a data point and a class.

3 NL3E

Since many real-world data sets are not densely sampled, the performance of
manifold learning algorithms are often not satisfying. It can be anticipated that
if more samples with helpful information are available, the learning results could
be better. As introduced in section 2.3, virtual samples are useful in many areas.
However, almost all the existing techniques for generating virtual samples were
developed in fields other than manifold learning. In order to design suitable
methods for manifold learning, the characteristics of manifold learning algo-
rithms must be taken into account. Here only Lle is considered.

The principal idea of Lle is to keep the local relationship between the samples
during the mapping process. Therefore, in order to keep the local relationship,
virtual samples must be created in local areas. Thus, the neighbor line used in
Nnl seems helpful.

Here the neighbor line method is generalized. In its original form, the in-
terpolated points on only the nearest neighbor line could be used as potential
virtual samples. Here the interpolated points on a number of neighbor lines can
be used as virtual samples. It is anticipated that through generating more virtual
samples, the data set will become densely distributed meanwhile the underlying
distribution is reserved.

In Lle, there is a neighbor selection parameter, k. When the input samples
are not densely sampled, if k is set to a large value, Lle may return invalid
answer due to the lose of locality; but if k is set to a small value, Lle can
hardly get sufficient information. In Nl3e, the k-nearest neighboring points of
the concerned data point will be identified, as that in Lle. But rather than using
only these k neighboring points as Lle does, Nl3e can obtain more data points
to use because a number of virtual samples on the neighbor lines corresponding
to the identified k neighboring points will be generated. Therefore, with the same
setting of k, the samples used by Nl3e can cover the local area better than that
used by Lle. Fig. 1 gives an illustration.

In Fig. 1, the concerned point is xi, and its four nearest neighbors, i.e. xij

(j = 1, · · · , 4) , have been identified. Assume the circle around xi specifies the
underlying locality of xi. Thus, xi has only one neighbor, i.e. xi1, locating in the
real local area. It is obvious that xi can hardly be faithfully reconstructed when
the local information is too little. Fortunately, Nl3e can use virtual samples
to enrich the local information. As Fig. 1 shows, there are six virtual samples
created with the help of the neighbor lines. In this case, if k is set to 1 in the
original data set to find neighborhood area, then after virtual sample creation,
7 points should be selected in order to get a neighbor area with similar size. In
general, in order to obtain the local area with similar size, the neighbor selection
parameter used after the virtual sample generation process should be bigger than
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Fig. 1. An illustration of the virtual samples generated in Nl3e

k. Let p denote the number of virtual examples generated when k is 1. Then,
the neighbor selection parameter used after the virtual selection process could
be determined according to k′ = (1 + p) × k because roughly p virtual samples
will be generated based on every points of the k nearest neighbors.

Note that the neighbor area used for generating virtual examples is not needed
to be the same as that used for reconstructing the concerned data point xi.
Actually, Nl3e identifies a big neighbor area through consulting the l (l ≥ k)
nearest neighbors of xi, in which the virtual examples are generated. Then, on
the enriched training set, k′ (k′ = (1 + p) × k) nearest neighbors of xi will be
used to reconstruct xi according to Eq. 1.

When a big l value is used, a lot of virtual samples will be created. Considering
that in a d-dimensional space (d+1) neighbors are sufficient for reconstructing a
data point, in Nl3e the number of virtual samples to be generated is restricted
to (d + 1). That is, only (d + 1) number of virtual samples is really generated
among the C2

l possible virtual samples.
The pseudo-code describing the Nl3e algorithm is shown in Table 1. In con-

trast to Lle, Nl3e has only one more parameter to set, that is, l.

4 Experiments

For visualization, the goal is to map the original data set into a two- or three-
dimensional space that preserves as much as possible the intrinsic structure. In
many previous works on visualization, the results are mainly compared through
examining the figures to point out which looks better. To compare the results
more impersonally, it was suggested to use the variance fraction to measure the
visualization effect [10]. However, variance fraction in fact measures the rela-
tionship between the reconstructed pairwise geodesic distances and the lower-
dimensional distances, not the structure inflexibility. In another work, the cor-
relation coefficient between the distance vectors, i.e. the vectors that comprises
the distances between all pairs of the true structure and that of the recovered
structure, was used [6]. It has been shown that this method provides a good
measurement of the validity of the visualization [6]. Suppose the distance vector
of the true structure is DV and that of the recovered structure is DV′, then the
correlation coefficient between DV and DV′ is computed by
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Table 1. Pseudo-code describing the Nl3e approach

Nl3e (X, l, k, m)

Input:
X: original samples {x1, x2, · · · , xn}, x ∈ Rd

l: the neighbor selection parameter used in virtual sample generation
k: the neighbor selection parameter used in Lle
m: the dimensionality of the output coordinates

Process:
1. V = ∅
2. For i = 1, 2, · · · , n do
3. identify xi’s l-nearest neighbors according to Euclidean distance
4. For j = 1, 2, · · · , d do
5. Select a pair of neighbors randomly and non-repeatedly, and

assume they are xiR1 and xiR2 (1 ≤ R1 < R2 ≤ l)
6. rij = getPlumbRoot (xi, xiR1xiR2)

% rij is the plumb root of xi on the neighbor line xiR1xiR2

7. If rij is identical to xi % xiR1xiR2 passes through xi

8. j = j − 1
9. else
10. V = V {rij}
11. End If
12. End For
13. End For
14. X′ = X V
15. Z′ =Lle(X′, (d + 1) × k, m)

% (d + 1) × k is the neighbor selection parameter used by Lle
16. Z =getXcor(Z′,X) % Get X’s lower-dimensional coordinates

Output: Z

ρ =
(DV ·DV′)−DV ·DV′

σ(DV)σ(DV′)
, (4)

where (A ·B) is the inner product of A and B, U returns the average value of U
and σ(U) is the standard deviation of U. Generally, the larger the ρ, the better
the performance.

Several synthetic data sets are used in the experiments. First, a two-dimensional
rectangle is selected as the basic structure, and then 200, 300, or 400 points
are randomly sampled from the structure. After that, the points are separately
embedded onto “Scurve” (SC) or “Swiss roll” (SW). So there are 6 data sets,
i.e.SC-200, SC-300, SC-400, SW-200, SW-300 and SW-400. SC-400 and SW-400
are shown in Fig. 2. The colors reveal the structure of each data set.

Nl3e is used to map these data sets onto two-dimensional space, and then
the visualization effect is evaluated. The performance of Nl3e is compared with
that of Lle according to the correlation coefficient. Since the data sets are gener-
ated through embedding some two-dimensional samples onto higher-dimensional
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(a) 400 random sampled
points

(b) 400 points
embedded on Scurve

(c) 400 points embedded
on Swiss-roll

Fig. 2. Embedded Samples

space, the intrinsic dimension of these data sets are all two. The parameter l of
Nl3e is set from 6 to 10. The experiments are repeated for 5 times under each
configuration, and the average value of ρ which is denoted by ρ is recorded. The
parameter k of both Nl3e and Lle is set from 3 to 7.

In Table 2, the performance measured by ρ is reported (k = 6, l = 8), where
Ri (i = 1, 2, · · · , 5) denotes the ith run of the experiment. The table shows that
Nl3e outperforms Lle in most situations. Only on SW-300, the average value
of ρ of Nl3e is worse than that of Lle.

Table 2. ρ value of each data set (k = 6, l = 8)

Nl3e

R1 R2 R3 R4 R5 AVG. Lle

SC-200 0.740 0.771 0.865 0.829 0.831 0.807 0.747
SC-300 0.832 0.843 0.808 0.812 0.852 0.829 0.714
SC-400 0.828 0.716 0.751 0.823 0.763 0.776 0.576
SW-200 0.381 0.341 0.367 0.355 0.372 0.363 0.305
SW-300 0.610 0.659 0.620 0.726 0.615 0.646 0.694
SW-400 0.781 0.707 0.716 0.711 0.450 0.673 0.588

Fig. 3 shows the visualization results of Nl3e and Lle on the SC series data
sets when k = 6 and l = 8. Note that under each configuration the experiment
has been run for 5 times, and Fig. 3 shows the situation where the ρ value is
the median in these 5 runs. Colors reveal the structure of embedding samples.
It is obvious that Lle’s performance is poor while the result of Nl3e are quite
well.

Fig. 4 shows the visualization results of Nl3e and Lle on the SW series data
sets when k = 6 and l = 8. It can be found that the performance of Nl3e is
not so good as that in Fig. 3. This can also be observed in Table 2, where the ρ
value of Nl3e on the SW series data sets are lower than these on the SC series
data sets. Nevertheless, it is obvious that Nl3e still performs better than Lle.

For studying how the parameter l affecting the performance of Nl3e, more
experiments are conducted. The results are shown in Fig. 5, where k = 6 while
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(a) Lle on SC-200 (c) Lle on SC-300 (e) Lle on SC-400

(b) Nl3e on SC-200 (d) Nl3e on SC-300 (f) Nl3e on SC-400

Fig. 3. Visualization results on SC series data sets

(a) Lle on SW-200 (c) Lle on SW-300 (e) Lle on SW-400

(b) Nl3e on SW-200 (d) Nl3e on SW-300 (f) Nl3e on SW-400

Fig. 4. Visualization results on SW series data sets

l changes from 6 to 10. It’s obvious that no matter which value l takes, except
on SW-300, the performance of Nl3e is better than that of Lle in most cases.

In order to explore the influence of the parameter k on the performance of
Nl3e, further more experiments are performed. The results are shown in Fig. 6,
where l = 8 and k changes from 3 to 7. As this figure tells, when k increases,
firstly Lle’s performance becomes better and Nl3e’s becomes better too. If k
continuously increases, Lle’s performance may decrease. This can be observed
clearly on SC-200, SW-300 and SW-400. Although Nl3e’s effect may decrease
either, it is more slowly. Almost in every point, Nl3e is better than Lle. In fact,
no matter which value is set to k, the performance of Nl3e remains quite well.
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Fig. 5. The influence of the parameter l on the performance of NL3E
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Fig. 6. The influence of the parameter k on the performance of NL3E

5 Conclusion

Many manifold learning algorithms often return invalid results when the data
is not densely sampled. This paper proposes the Nl3e algorithm, which is a
variant of Lle but can work well in some cases where the data is not densely
sampled. The reason lies in the fact that using virtual samples, Nl3e can use
more information. Experiments on synthetic data sets show that the performance
of Nl3e is better than that of Lle. The performance of Nl3e on real-world data
will be evaluated in the future.

In this paper, the virtual samples generated with the help of neighbor lines
are all plumb roots in a local area, therefore the local information is enriched
while the locality is kept. It is evident that such kind of virtual samples can
also be used by other manifold learning algorithms such as Isomap, C-Isomap,
etc. to relax the requirement of dense samples. This will be studied in the
future.

Note that in order to enrich the local information, the computational cost of
Nl3e is bigger than that of Lle. Fortunately, the computational cost of Nl3e
can be reduced by using smaller number of virtual samples. Nevertheless, de-
signing efficient virtual sample utilization scheme is also an important future
work.
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Abstract. Modelling extreme data is very important in several appli-
cation domains, like for instance finance, meteorology, ecology, etc.. This
paper addresses the problem of predicting extreme values of a continu-
ous variable. The main distinguishing feature of our target applications
resides on the fact that these values are rare. Any prediction model is
obtained by some sort of search process guided by a pre-specified evalua-
tion criterion. In this work we argue against the use of standard criteria
for evaluating regression models in the context of our target applica-
tions. We propose a new predictive performance metric for this class of
problems that our experiments show to perform better in distinguishing
models that are more accurate at rare extreme values. This new evalu-
ation metric could be used as the basis for developing better models in
terms of rare extreme values prediction.

1 Introduction

In several applications the main focus of interest is a small proportion of the
available data. These unusual cases have a large importance, and as such, antici-
pating them is a critical task for these domains. An example of such applications
is the prediction of the future returns of a stock. Unusually high (low) returns
are rare, but they are the most interesting values for investors and thus they
should be the target of any financial prediction model.

A related problem has been receiving great attention in the data mining
community: the construction of classification models based on samples with un-
balanced class distributions (e.g. [1]). Predicting extreme values of a continuous
variable can be handled through a classification approach by means of a dis-
cretization process (e.g. [2]) off the continuous target variable. This would have
the advantage of using all work that has been around in the areas of unbal-
anced classification problems and evaluation under differentiated misclassifica-
tion costs. However, this approach would require to establish the number of
classes and, moreover, would lead to an undesirable crisp division between what
is an extreme and what is a “normal” case. These are some of the major draw-
backs of handling regression as a classification problem1.

The problem of predicting rare extreme values is a particular case of multiple
regression where a target continuous variable Y is being modelled using a set
1 More details on this argument can be found on [4],an extended version of this work.
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of predictor or input variables X1, X2, · · · , Xp. Any modelling method tries to
find the model parameters that minimise an error function over the training
sample. Standard functions used in regression setups are the Mean Squared
Error, MSE = 1

n

∑n
i=1 (yi − ŷi)

2, or the Mean Absolute Deviation, MAD =
1
n

∑n
i=1 |yi − ŷi|. Both these measures take all errors equally (with the same

cost) and thus can be regarded as less adequate for our target applications,
where errors on extreme values are more important.

One possible method for giving more weight to the errors on extreme values
is to use case weights. Some algorithms allow the user to attach a weight to
each case of the training sample. Model parameters can then be obtained by
minimising a criterion that takes into account these weights. Using case weights
that depend on the respective Y value being an extreme allows us to bias the
obtained model to correctly predict these extreme cases. The main drawback
of this approach is that it only sees one side of the problem, the true values.
In effect, this method does not try to avoid (or penalise) the cases where an
extreme value is predicted by the model, but the truth value is “normal”, i.e.
false positives according to the classification terminology. This drawback stems
from the fact that the weights are dependent solely on the true value of the cases,
yi, instead of being dependent on both yi and ŷi. Our proposal builds upon this
idea by trying to eliminate this drawback through the use of a weight function
that depends on both yi and ŷi.

2 Our Proposal

The overall goal of this work is to have an evaluation metric that is biased
towards valuating more the predictions of rare extreme values. Our proposal was
developed with the following requirements in mind: i) the cost of a prediction
error should depend on both the predicted and the true values, i.e. we should
penalise both false positives and false negatives; ii) the cost of the errors should
vary smoothly (no crisp divisions between extremes and non-extremes); iii) the
method should have reasonable default costs (according to the overall goal) for
applications where knowledge about the costs is not available.

We propose an evaluation metric that is basically a weighted average of the
errors. Our key contribution lies on the form of calculating the weights. We use a
weight function that depends on both the true and predicted values. We propose
to use a smooth cost surface, w(Y, Ŷ ), that can be seen as a continuous version
of cost matrixes used in classification tasks. Summarising, our proposed Rare
Extremes Error metric is defined as,

RExE =
1
n

n∑
i=1

w(yi, ŷi)× L(yi, ŷi) (1)

where L(yi, ŷi) can be any loss function, e.g. the squared error.
In order to make the use of smooth cost surfaces practical we need to devise

an easy way of specifying them. Our proposal consists of requiring the specifica-
tion of the cost values at a small set of properly selected points and then using
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a function approximation method to interpolate the complete surface. The axes
of the surface are the true, Y , and predicted, Ŷ , values of the target variable.
These range from low extreme values (extrL) to high extreme values (extrH).
The points selected for specifying the cost surface should be related to the most
relevant areas of the surface. These are the areas of lower cost (the model accu-
rately predicts and extreme as such), and of the worse performance (the model
predicts an extreme high for a true extreme low, or vice versa).

For applications where no cost information is available but still extremes are
more important, we need to describe means to setup the costs for the key points
used for surface approximation. The critical question is to define what is a rare
extreme value. We use the same definition as in Torgo and Ribeiro [3]. This means
that we set extrL = adjL and extrH = adjH , where adjL(adjH) is the smallest
observation that is greater or equal to the 1st quartile minus 1.5r, with r being the
interquartile range. After having defined these two extreme values we artificially
create n grid points by diving the interval extrH −extrL in n equally spaced bins.
This means that we will have a (n+2)x(n+2) matrix to fill in with costs. We use
an arithmetic progression to setup the costs from the lowest to the highest cost.
Full details and illustrative examples can be found in [4].

3 An Experimental Evaluation of the Proposal

We have carried out a series of experiments with the goal of checking the validity
of our proposed metric in the task of identifying the models that are better from
the perspective of being more accurate at rare extreme values. With this purpose
we have designed the following experimental setup for each data set:

1. Draw a stratified test sample with 50% of the cases;
2. Randomly generate a set of prediction errors with the same size as the test

sample. The errors are drawn from a normal distribution. We then pick the
n largest errors, where n is the number of extreme values of the distribution
of Y , and increase these errors by a constant k. The overall objective of this
step is to obtain a set of credible prediction errors for a standard model
when making predictions for a problem with some extremes. For this type
of problems we expect (we have confirmed this experimentally using several
modelling techniques and several real world data sets), the models to achieve
a performance of this type: normal-shape distribution of the error with some
extreme errors typically occurring on test cases with extreme values of Y .

3. We then artificially allocate this set of generated errors to each case on
the test set in two different ways, leading to the “artificial performance”
of models A and B. For model A, the smallest errors are allocated to the
extremes in the test set, thus leading to what could be considered to be an
ideal model for our target applications. On the contrary, model B has the
largest errors on the extreme values of the target, in what could be considered
a “normal” behaviour of a model in this type of tasks.

A performance metric that is biased towards accurate predictions on extremes,
should clearly indicate that the performance of Model A is better than the
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Table 1. The results in terms of percentage difference between Models A and B

Data Set SigMetric NRExE Data Set SigMetric NRExE
(avg±sd) (avg±sd) (avg±sd) (avg±sd)

algae1 52.6±4.8 82.9±1 deltaAilerons 55.2±0.6 5±0.4
algae2 55±4.6 79.3±1.6 ibm 71.9±0.3 7.4±0.4
algae3 71.1±2.4 88.1±1 abalone 70.5±1.1 6.5±0.5
algae4 73.8±14.1 87.3±5.1 cpuSmall 63±1 81.1±0.4
algae5 56.1±4.6 83.9±1.5 servo 74.4±5.8 85.2±0.9
algae6 84.2±0.8 91.1±0.5 cwDrag 57.4±1.6 2.8±2.6
algae7 52.4±11.1 82.7±2.3 co2Emission 58.4±0.6 17.8±6.5
Boston 65±1.6 21±25.3 availablePower 69.7±1.5 71.5±0.7
machineCpu 76.5±3.4 77.9±1 china 68.9±2.8 71.8±1.4
bank8FM 55.3±0.5 63.6±0.8 add 56.6±0.3 5.5±0.7

performance of Model B. Notice that, given that the errors of the two models
are exactly the same (only occurring at different test cases), metrics like the
MSE or the MAD will show both models as having exactly the same score.

As we are testing on a large set of domains with a quite different range of
target variable values, we have used a normalised version of our performance
statistic to allow comparisons across domains,

NRExE =
∑ntest

i=1 w(yi, ŷi) · |yi − ŷi|∑ntest

i=1 w(yi, Ỹ ) · |yi − Ỹ | (2)

where Ỹ is the sample median.
The goal of our experiments is to assert the score difference between models

A and B, when evaluating them using our proposed metric and an alternative
measure. With this purpose we have measured the percentual difference of scores
for all data sets. Positive values of this difference indicate that our metric is able
to identify Model A as performing better than Model B. We obviously want the
difference to be as high as possible, as Model A has an “ideal” performance. We
have compared our proposed metric, NRExE, against the score obtained by the
most similar alternative, an error measure using case weights as mentioned in
Section 1. For this competitor we have setup the case weights such that more
weight is given to cases with extreme values of the target (details on [4]). Notice
that contrary to our approach the weights of this measure only consider the true
value of the target, thus not taking into account the predictions of the models.

For each data set we have repeated the experiment outlined above 10 times.
The results shown on Table 1 are the average and standard deviation of the
observed percentual differences between Model A and B, when using NRExE
and the metric with sigmoid-based case weights. The best scores for each data set
are indicated in bold. The used datasets are real world problems with a diverse
set of rare extreme values types. For instance, some include both low and high
extremes, while others include only one type of extremes. Due to space reasons
we are not able to present the full characteristics of these problems.
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The results reported in Table 1 show the advantages of our proposed metric
for domains where the main objective is to be accurate at rare extreme values.
In effect, in most problems our metric correctly signals model A as being signif-
icantly better than model B, in spite of being compared against a competitor
metric that also take extremes into account. Notice that standard measures, like
MSE, would signal both models as being equal (difference equal to zero).

4 Conclusions

In this paper we have described the particular features of a class of problems
with high practical importance: the prediction of rare extreme values. We claim
that existing metrics for evaluating the performance of different models have
several drawbacks and perform poorly on identifying the best models in terms
of predictive accuracy on the most important cases for these applications. We
have presented a new metric that is particularly suited for these applications.

In a set of experiments using real world data we have shown that this measure
is able to identify the best model in terms of accuracy on the rare extreme values,
even on the most difficult scenario where both models have exactly the same error
distribution and thus have the same score in “standard” metrics like MSE.

One of the main impacts of the results of this work is that our metric can be
used to compare different existing models on tasks where the main goal is the
accuracy on rare extreme values. The use of our metric should provide better in-
formation concerning the merits of alternative models for these important tasks.
Another important side effect of this work is the possibility of using the described
metric in the search process of any modelling technique, so as to develop models
that are built for maximising the predictive performance on extreme values.
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Abstract. Actionable knowledge discovery is one of Grand Challenges in 
KDD. To this end, many methodologies have been developed. However, they 
either view data mining as an autonomous data-driven trial-and-error process, 
or only analyze the issues in an isolated and case-by-case manner. As a result, 
the knowledge discovered is often not actionable to constrained business. This 
paper proposes a practical perspective, referred to as domain-driven in-depth 
pattern discovery (DDID-PD). It presents a domain-driven view of discovering 
knowledge satisfying real business needs. Its main ideas include constraint 
mining, in-depth mining, human-cooperated mining, and loop-closed mining. 
We demonstrate its deployment in mining actionable trading strategies in 
Australian Stock Exchange data. 

1   Introduction 

Actionable knowledge discovery can afford important grounds to business decision 
makers. In the panel discussions of SIGKDD 2002 and 2003 [2, 7], it was highlighted 
by panelists as one of the Grand Challenges for extant and future data mining. This 
situation partly results from the scenario that extant data mining is a data-driven trial-
and-error process [2] where data mining algorithms extract patterns from converted 
data via some predefined models based on experts’ hypothesis. Data mining is 
presumed as an automated process producing automatic algorithms and tools without 
human involvement and the capability to adapt to external environment constraints.  

However, data mining in the real world, for instance financial data mining, is 
highly constraint-based [8, 11]. Constraints involve technical, economic and social 
aspects. The real-world business problems and requirements are often tightly 
embedded in domain-specific business rules and process with expertise (domain 
constraint). Patterns actionable to business are often hidden in large quantities of data 
with complex structures, dynamics and source distribution (data constraint). Often 
mined patterns are not actionable to business even though they are interesting to 
research. There exist big interestingness gaps between academia and business 
(interestingness constraint). Furthermore, interesting patterns often cannot be 
deployed to real life if they are not integrated with business rules, regulations and 
processes (deployment constraint). There could be other types of constraints such as 
knowledge constraint, dimension/level constraint and rule constraint [8]. 
                                                           
∗ This work is sponsored by UTS Chancellor research fund and ECRG Fund. 
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To discover actionable knowledge from data embedded in the above constraints, it 
is essential to slough off the superficial and captures the essential information from 
the data mining. However, this is a non-trivial task. Tricks may not only include how 
to find a right pattern with a right algorithm in a right manner, they also involve a 
suitable process-centric support with a suitable deliverable to business. Even many 
methodologies are studied, they either view data mining as an automated process, or 
deal with the constraints in a case-by-case manner. Our experience [3] and lessons 
learned in data mining in capital markets [6] show that the involvement of domain 
knowledge and experts, the consideration of constraints, and the development of in-
depth patterns are essential for filtering subtle concerns while capturing incisive 
issues. Combining these aspects together, it can advise the process of real-world data 
mining in a manner more actionable and reliable to business. These are our 
motivation to develop a practical framework, called domain-driven in-depth pattern 
discovery (DDID-PD), for the discovery of actionable knowledge from the real world.  

DDID-PD views actionable knowledge discovery as an iteratively interactive in-
depth pattern mining process in domain-specific context. It exploits key components 
including (i) constraint mining, (ii) incorporating domain knowledge through human-
mining-cooperation, (iii) in-depth mining, and (iv) loop-closed mining. Mining 
constraint-based context requests to develop workable mechanisms to deal with 
comprehensive constraints. The involvement of domain experts and their knowledge 
can reduce the complexity of the knowledge discovery process in the constrained 
world. In-depth pattern mining discovers actionable patterns. A system following the 
DDID-PD framework can embed effective supports for domain knowledge and 
experts’ feedback, and refines the lifecycle of data mining in an iterative manner.  

Taking financial data mining as an example, this paper introduces some case 
studies deploying the DDID-PD framework to mine actionable trading strategies for 
improving trading performance and costs. It shows that the DDID-PD can benefit the 
actionable knowledge mining in a more realistic and reliable manner than data-driven 
methodology such as CRISP-DM [13].  

2   Domain-Driven In-Depth Pattern Discovery 

The existing data mining methodology, for instance CRISP, generally supports 
autonomous pattern discovery from data. The DDID-PD, on the other hand, highlights 
a process that discovers in-depth patterns from constraint-based context with the 
involvement of domain experts/knowledge. This section outlines key ideas and 
relevant research issues of the DDID-PD. 

2.1   Pattern Actionability 

Let I = {i1, i2, . . . , im} be a set of items, DB be a database consisting of a set of 
transactions, x is an itemset in DB. Let P be a pattern discovered in DB through a 
model M. In DDID-PD [4], the following concepts measure pattern actionability, i.e., 
whether or not, or to what extent, P can be used to answer real business needs. 

DEFINITION 1. Technical Interestingness – The technical interestingness tech_int() 
measures how interesting the pattern is from technical perspective. It is measured 
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through certain technical metrics specified for a data mining method. For instance, the 
following logic formula indicates that an association rule P is technically interesting if 
it satisfies a user-defined min_support and min_confidence.  

∀x∈I, ∃P : x.min_support(P) ∧ x.min_confidence(P)  x.tech_int(P) 

DEFINITION 2. Business Interestingness – The business interestingness biz_int() of a 
pattern is determined by some domain-oriented social and/or economic criteria 
accepted by real users. In stock data mining, a stock price predictor P is interesting to 
trading if it satisfies the profit and roi (return on investment) requests. 

∀x∈I, ∃P : x.profit(P) ∧ x.roi(P)  x.biz_int(P) 

DEFINITION 3. Actionability of a pattern – The actionability of a pattern act() 
indicates to what degree it satisfies both technical and business interestingness. If both 
technical and business interestingness or a hybrid interestingness measure integrating 
both aspects are satisfied, it is called an actionable pattern. Such kind of patterns are 
not only interesting to data miners, but generally interesting to decision-makers.  

∀x∈I, ∃P : x.tech_int(P) ∧ x.biz_int(P)  x.act(P) 

2.2   Actionable Knowledge Discovery Process 

The components of the DDID-PD are shown in Figure 1, where we highlight those 
processes specific to DDID-PD in thicken boxes. The lifecycle of DDID-PD is as 
follows, but be aware that the sequence is not rigid, some phases may be bypassed or 
moved back and forth in a real problem. Every step of the DDID-PD process may 
involve domain knowledge and the interaction with real users or domain experts.  

 

Fig. 1. DDID-PD process model 

P1. Problem understanding; 
P2. Constraints analysis; 
P3. Analytical objective definition, feature construction; 
P4. Data preprocessing; 
P5. Method selection and modeling; or 
P5’. In-depth modeling; 
P6. Initial generic results analysis and evaluation; 
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P7. It is quite possible that each phase from P1 may be iteratively reviewed through 
analyzing constraints and interaction with domain experts in a back-and-forth manner; or  

P7’: In-depth mining on the initial generic results where applicable;  
P8. Results post-processing;  
P9. Reviewing phases from P1 may be required; 
P10. Deployment; 
P11. Knowledge delivery and report synthesis for smart decision making. 

The DDID-PD process highlights four highly correlated procedures that are critical 
for the success of data mining in the real world. They are (i) constraint mining, (ii) in-
depth mining, (iii) human-cooperated mining, and (iv) loop-closed mining. The 
following sections discuss them respectively. 

2.3   Constraint Mining 

Specifically, in Section 1, we list several types of constraints, which play significant 
roles in a process effectively discovering knowledge actionable to business. In 
practice, many other aspects such as data stream and the scalability and efficiency of 
algorithms may be enumerated. In DDID-PD, constraints are domain-specific, 
functional, nonfunctional and environmental. These ubiquitous constraints form a 
constrained context for actionable knowledge discovery. All the above constraints 
must, to varying degrees, be considered in relevant phases of DDID-PD. In this case, 
the analysis is called constraint mining [8, 11]. 

Some major aspects of domain constraints include the domain and characteristics 
of a problem, domain terminology, specific business process, policies and regulations, 
user profiling and favorite deliverables. Potential matters to satisfy or react on domain 
constraints could consist of building domain model, domain metadata, semantics and 
ontologies [5], supporting human involvement, human-machine interaction, 
qualitative and quantitative hypotheses and conditions, merging with business 
processes and enterprise information infrastructure, fitting regulatory measures, 
conducting user profile analysis and modeling, etc. Relevant hot research areas 
include interactive mining, guided mining, and knowledge and human involvement. 

Constraints on particular domain data may be embodied in terms of aspects such as 
very large volume, ill-structure, multimedia, diversity, high dimensions, high 
frequency and density, distribution and privacy, etc. Data constraints seriously affect 
the development of and performance requirements on mining algorithms and systems, 
and constitute some grand challenges to data mining. As a result, some popular 
researches on data constraints-oriented issues are emerging such as stream data 
mining, link mining, multi-relational mining, structure-based mining, privacy mining, 
multimedia mining and temporal mining. 

What makes this rule, pattern and finding more interesting than the other? In the 
real world, simply emphasizing technical interestingness such as objective statistical 
measures of validity and surprise is not adequate. In DDID-PD, social and economic 
interestingness such as user preferences and domain knowledge are also considered in 
assessing whether a pattern is actionable or not.  

Furthermore, DDID-PD advocates the delivery of an interesting pattern integrated 
with the domain environment such as business rules, process, information flow, 
presentation, etc. In addition, many other realistic issues are considered. For instance, 
a software infrastructure may be established to support the full lifecycle of data 
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mining; the infrastructure needs to integrate with existing enterprise information 
systems and workflow; parallel KDD [10] with parallel supports are implemented on 
multiple sources, parallel I/O, parallel algorithms and memory storage; visualization, 
privacy and security should receive much-deserved attention.  

2.4   In-Depth Mining 

In general, data mining publications tend to push the use of specific algorithms rather 
than answer real business needs. As a result, patterns interesting to data miners often 
can not achieve business benefits when deployed. We call them generic patterns. 
Such situations have hindered the deployment and adoption of data mining in real 
applications. Therefore it is essential to evaluate the actionability of a pattern and 
focus on discovering actionable patterns satisfying both tech_int(P) and biz_int(P) to 
support realistic and reliable decision-making. This is in-depth pattern mining. Its 
objective is not to push the use of a specific algorithm, rather try to answer real 
business needs in a workable manner. 

In-depth patterns mining targets to improve both technical (tech_int()) and business 
(biz_int()) interestingness in the above constraint-based context. Technically, it could 
be through enhancing or generating more effective interestingness measures [12]. It 
could also be through developing alternative models for discovering deeper patterns. 
Some other options include rule reduction, model refinement or parameter tuning by 
optimizing generic pattern set. Additionally, techniques can be developed to deeply 
understand, select and refine the target data set.  

In in-depth mining, more attention should be paid to business requirements, 
objectives, domain knowledge and qualitative intelligence of domain experts for their 
impact on mining deep patterns. This could be through selecting and adding business 
features, considering domain and background knowledge in modeling, supporting 
interaction with domain experts, fine tuning parameters and data set by domain 
experts, optimizing models and parameters, adding factors into technical 
interestingness measures or building business measures, improving result evaluation 
mechanism through embedding domain knowledge and human involvement, etc.  

2.5   Human Cooperated Mining 

The real requirements for discovering actionable knowledge in constraint-based 
context determine that real data mining is more likely to be human involved rather 
than automated. Human involvement is embodied through cooperation between 
humans (including users and business analysts, mainly domain experts) and data 
mining system. This is achieved through the compensation between human qualitative 
intelligence such as domain knowledge and field supervision, and mining quantitative 
intelligence like computational capability. Therefore, real-world data mining likely 
presents as a human-machine-cooperated interactive knowledge discovery process.  

In DDID-PD, the role of human (mainly domain users and experts) could be 
embodied in the full period of data mining from business and data understanding, 
problem definition, data integration and sampling, feature selection, hypothesis proposal, 
business modeling and learning to the evaluation, refinement and interpretation of 
algorithms and resulting outcomes. For instance, experience, metaknowledge and 
imaginary thinking of domain experts can guide or assist with the selection of features 
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and models, adding business factors into the modeling, creating high quality hypotheses, 
designing interestingness measures by injecting business concerns, and quickly 
evaluate mining results. This assistance may largely improve the effectiveness and 
efficiency of mining actionable knowledge. 

In general, human often serve on the feature selection and result evaluation. DDID-
PD views that human could be an essential constituent of or the centre of data mining 
system. The complexity of discovering actionable knowledge in constraint-based 
context determines to what extent human must be involved. As a result, human 
mining cooperation could be, to varying degrees, human-centred or guided mining 
[2, 8], or human-supported or assisted mining, etc.  

To support human involvement, human mining interaction, or in a sense presented 
as interactive mining [1, 2], is absolutely necessary. Interaction often takes explicit 
form, for instance, setting up direct interaction interfaces to fine tune parameters. 
Interaction interfaces may take various forms as well, such as visual interfaces, virtual 
reality technique, multi-modal, mobile agents, etc. On the other hand, it could also go 
through implicit mechanisms, for example accessing a knowledge base or 
communicating with a user assistant agent. Interaction quality relies on performance 
such as user-friendliness, flexibility, run-time capability and understandability.  

2.6   Loop-Closed Mining 

Actionable knowledge discovery in a constraint-based context is likely to be a closed 
rather than open process. It encloses iterative feedback to varying stages such as 
sampling, hypothesis, feature selection, modeling, evaluation and interpretation in a 
human-involved manner. On the other hand, real-world mining process is highly 
iterative because the evaluation and refinement of features, models and outcomes 
cannot be completed once, rather is based on iterative feedback and interaction before 
reaching the final stage of knowledge and decision-support report delivery.  

The above key points of the DDID-PD indicate that real-world data mining cannot 
be dealt just with an algorithm, rather it is really necessary to build a proper data 
mining infrastructure to discover actionable knowledge from constraint-based 
scenarios in a loop-closed iterative manner. To this end, agent-based data mining 
infrastructure [14] presents good facilities since it provides good supports for both 
autonomous problem-solving and user modeling and user agent interaction.  

3   Case Study: Developing Actionable Trading Strategies 

In stock data mining [6], we deploy the DDID-PD to mine actionable trading patterns. 
Our objective is to develop actionable trading strategies which can not only trigger 
profitable trading signals, but also result in the proper measurement and support of 
market dynamics. For space limit, we only illustrate two case studies here. There is 
other work under development in terms of domain-driven perspective such as trading 
strategy-stock correlation analysis, broker-based association analysis, and so forth. 

3.1   Designing Actionable Trading Strategy 

A quality trading strategy can be designed from scratch via analyzing market 
dynamics and microstructure. For instance, in real trading, traders often trade multiple 
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stocks to manage risk. DDID-PD based technology extracts evidences about what 
stocks are correlated with others, and discover trading patterns effective on multiple 
instruments. A typical example is the pairs trading strategy, which is based on the 
correlation analysis between stocks. We find that an effective pairs trading strategy is 
not only dependent on correlations but also considering constraints and domain 
knowledge such as relevant market factors. 

The design of an actionable strategy is a human-mining interaction process 
supporting iterative development, back-testing, refinement and optimization of 
trading strategies. To this end, we built a financial trading rule automated 
development and evaluation system called F-Trade1. Figure 2 shows signals for a 
stock pair in ASX market. Figure 3 further shows the impact of business factors – 
distance and weight on return and the number of triggered signals.  

 

Fig. 2. Simulated trading via pairs trading strategy in F-Trade (ASX intraday data from 1 Jan 
2000 to 20 Jun 2000) 

 

Fig. 3. Relation between d0, weight, return and signal number 

The exercise in testing ASX Top 32 stocks from January 1997 to June 2002 shows 
that DDID-PD based strategy has led to some interesting emergence beyond the 
normal mining algorithm design and domain expectation.  

• Pair relationship between stocks and the combination of the above four factors 
interesting to trading cannot just be determined by technical measures such as 
coefficient ρ. They are also highly affected by stock movement such as volatility 
and liquidity. High volatility improves return while high liquidity balances the 
market impact on return.  

• All 13 correlated stocks mined in Top 32 ASX come from different sectors. This 
finding means that pairs are not necessary from the same sector as presumed by 
financial researchers. 

                                                           
1 F-Trade: accessible from http://www.f-trade.info with authorization. 
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3.2   Mining Actionable Trading Strategy 

There exist many generic trading strategies in the literature and trading houses. Let’s 
take the very common moving average strategy MA(sr, lr) as an instance. It actually 
indicates a generic correlated trading pattern between indicators short-run moving 
average (sr) and long-run moving average (lr).  

ALGORITHM 1: A generic strategy MA(sr, lr) 
IF sr > lr THEN Buy 
IF sr < lr THEN Sell 

Generally speaking, this pattern doesn’t work in market trading. The actionability 
of a MA instance is determined in terms of the performance in real data, traders’ 
interestingness and market dynamics such as transaction cost. To this end, the 
involvement of domain knowledge is quite significant for finding actionable rules. 
Using the DDID-PD ideas, we improve the generic MA and design an in-depth rule 
MA(t, sr, lr, x, y, h, d) as follows.  

ALGORITHM 2: A revised MA(t, sr, lr, x, y, h, d) 
IF sr *(1- x) >= lr; triggering ‘buy’ signal 

t = t+h; holding ‘h’ transactions or days 
IF sr *(1- x) >= lr THEN 

Buy; ‘buy’ signal is steady 
t = t+d; delaying ‘d’ transactions or days 

IF sr *(1+ x) <= lr; triggering ‘sell’ signal  
t = t+h; holding ‘h’ transactions or days 
IF sr *(1+ x) <= lr THEN 

Sell; ‘sell’ signal is steady 
t = t+d; delaying ‘d’ transactions or days 

This in-depth rule considers the following constraints and background knowledge, 
which make it more adaptable to market dynamics compared with MA(sr, lr). 

• More filters are imposed on the generic MA to assist in filtering out false 
trading signals which would result in losses, for instance, fixed percentage band 
filter , time delay filter d, and time hold filter h; 

• The fixed band filter x (or y) requires the buy or sell signal to exceed sr or lr 
by a fixed multiplicative band x (or y); 

• The time delay filter d requires the buy or sell signal to remain valid for a 
prespecified number of transactions or days d before action is taken; 

• The time hold filter h requires the buy or sell signal to hold the long or short 
position for a prespecified number of transactions or days h to effectively 
ignore all other signals generated during that time; 

• In practice, note that only one filter is imposed at a given time. 

Furthermore, we built interaction interfaces to support the definition and 
refinement of both technical and business parameters. Figure 4 illustrates some of 
such interfaces for the revised MA(t, sr, lr, x, y, h, d). Through the interfaces, users 
can trigger the process in terms of either Automated execution or Interactive mode 
with the involvement of users. In Interactive mode, technical analysts can advise the 
above process as well as refining technical factors for setting data mining process and 
tuning algorithm parameters. Business analysts can supervise the construction of 
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features, fine tune the parameters, and set evaluation criteria for the business 
concerns. For instance, the measure sharpe_ratio is used for evaluating the business 
actionability of an identified rule.  

sharpe_ratio = (rP- rR) / P 

where rP is expected portfolio return, rR is risk free rate, and P is portfolio standard 
deviation. Higher sharpe_ratio means more return with lower risk. Additionally, the 
system supports ad-hoc execution. Users can tune the parameters and interestingness 
measure at run time to evaluate the strategy. 

 

Fig. 4. Interfaces supporting human-mining system interaction 

 

Fig. 5. Improved business interestingness by actionable rules 

DDID-PD assists us in finding a collection of actionable rules. For instance, in 
ASX interday data, MA(4, 19, 0.033) could be an actionable rule using training data 
from 1 January 2000 to 31 December 2000 and testing set between 1 January 2001 
and 31 December 2001. The number of trading signals generated by this rule is much 
bigger with better sharpe_ratio than other possible rules. Figure 5 (b) shows that its 
sharpe_ratio has a greatly improved positive scope compared with (a) the results of a 
generic MA rule. This demonstrates that DDID-PD driven strategy mining can 
improve strategy actionability. 
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4   Conclusions and Future Work 

Actionable knowledge discovery is significant and also very challenging. It is 
nominated as one of Grand Challenges of KDD in the next 10 years. The research on 
this issue may change the existing situation where a great number of rules are mined 
while few of them are interesting to business, and promote the widely deployment of 
data mining into business. This paper has developed a new data mining framework, 
referred to as Domain-Driven In-Depth Pattern Discovery (DDID-PD). It provides a 
systematic overview of the issues in discovering actionable knowledge, and advocates 
the methodology of mining actionable knowledge in constraint-based context through 
human-mining system cooperation in a loop-closed iterative refinement manner. 

The main phases and components of the DDID-PD include almost all phases of the 
CRISP-DM. It has enclosed some big differences from the CRISP-DM. For instance, 
(i) some new essential components, such as constraint mining, in-depth mining, the 
involvement of domain experts and knowledge, are taken into the lifecycle of KDD 
for consideration, (ii) in the DDID-PD, the normal steps of CRISP-DM are enhanced 
by dynamic cooperation with domain experts and the consideration of constraints and 
domain knowledge. These differences actually play key roles in improving the 
existing knowledge discovery in a more realistic and reliable way.  

References 

[1] Aggarwal, C., Towards effective and interpretable data mining by visual interaction, ACM 
SIGKDD Explorations Newsletter, 3(2): 11-22, 2002. 

[2] Ankerst, M., Report on the SIGKDD-2002 panel the perfect data mining tool: interactive 
or automated? ACM SIGKDD Explorations Newsletter, 4(2):110-111, 2002. 

[3] Cao, L., Dai., R., Human-Computer Cooperated Intelligent Information System Based on 
Multi-Agents, ACTA AUTOMATICA SINICA, 29(1):86-94, 2003. 

[4] Cao, L., et al., Domain-driven in-depth pattern discovery: a practical perspective. 
Proceeding of AusDM, 101-114, 2005. 

[5] Cao, L., et al., Ontology-Based Integration of Business Intelligence. Int. J. on Web 
Intelligence and Agent Systems, Vol.4 No 4, 2006. 

[6] Financial data mining program: http://datamining.it.uts.edu.au/. 
[7] Fayyad, U., Shapiro G., Uthurusamy R., Summary from the KDD-03 panel – Data 

mining: the next 10 years. ACM SIGKDD Explorations Newsletter, 5(2): 191-196, 2003. 
[8] Han, J., Towards Human-Centered, Constraint-Based, Multi-Dimensional Data Mining. 

An invited talk at Univ. Minnesota, Minneapolis, Minnesota, Nov. 1999. 
[9] Tan, P., Kumar, V., Srivastava, J., Selecting the Right Interestingness Measure for 

Association Patterns, SIGKDD’02, pp32-41. 
[10] Manlatty,M., etc. Systems support for scalable data mining, SIGKDD Explorations, 

2(2):56-65, 2000. 
[11] J-F. Boulicaut, B. Jeudy. Constraint-based data mining. The Data Mining and Knowledge 

Discovery Handbook, O. Maimon and L. Rokach (Eds.), Springer, pp. 399-416, 2005. 
[12] Omiecinski, E., Alternative Interest Measures for Mining Associations. IEEE 

Transactions on Knowledge and Data Engineering, 15:57-69, 2003. 
[13] http://www.crisp-dm.org. 
[14] Zhang, C., Zhang, Z., Cao, L., Agents and Data Mining: Mutual Enhancement by 

Integration, LNCS 3505, 50-61, 2005. 



Evaluation of Attribute-Aware Recommender
System Algorithms on Data with Varying

Characteristics

Karen H.L. Tso and Lars Schmidt-Thieme

Computer-based New Media Group (CGNM),
Department of Computer Science, University of Freiburg,

Georges-Koehler-Allee 51, Freiburg 79110, Germany
{tso, lst}@informatik.uni-freiburg.de

Abstract. The growth of Internet commerce has provoked the use of
Recommender Systems (RS). Adequate datasets of users and products
have always been demanding to better evaluate RS algorithms. Yet, the
amount of public data, especially data containing content information
(attributes) is limited. In addition, the performance of RS is highly de-
pendent on various characteristics of the datasets. Thus, few others have
conducted studies on synthetically generated datasets to mimic the user-
product relationship. Evaluating algorithms based on only one or two
datasets is often not sufficient. A more thorough analysis can be con-
ducted by applying systematic changes to data, which cannot be done
with real data. However, synthetic datasets that include attributes are
rarely investigated. In this paper, we review synthetic datasets applied in
RS and present our synthetic data generation methodology that consid-
ers attributes. Furthermore, we conduct empirical evaluations on existing
hybrid recommendation algorithms and other state-of-the-art algorithms
using these variable synthetic data and observe their behavior as the
characteristic of data varies. In addition, we also introduce the use of
entropy to control the randomness of the generated data.

1 Introduction

Recommender systems use collaborative filtering to generate recommendations
by predicting what users might be interested in, given some user’s profile. Several
prominent online commercial sites (e.g. amazon.com and ebay.com) offer this
kind of recommendation services.

There are two different recommendation tasks typically considered: (i) pre-
dicting the ratings, i.e. how much a given user will like a particular item, and
(ii) predicting the items, i.e. which N items a user will rate, buy or visit next
(topN).

For RSs, nearest-neighbor methods, called collaborative filtering (CF ; [7]),
is the prevalent method in practice. On the other hand, methods that rely only
on attributes and disregard the rating information of other users, are commonly
called the Content-Based Filtering (CBF). They have shown to perform very
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poorly. Yet, attributes usually contain valuable information; hence it makes
it desirable to include attribute information in CF models – so called hybrid
collaborative/content-based filtering methods.

There are many proposals on how to integrate attributes in CF for ratings.
For instance, few others attempt linear combination of recommendation of CBF
and CF predictions [5, 8, 10, 16]. There also exists methods that apply a CBF
and a CF model sequentially, i.e. predict ratings by means of CBF and then
re-estimate them from the completed rating matrix by means of CF [13]. There
are also further proposals on how to integrate attributes when the problem is
viewed as a classification problem [3, 4, 19]. As we lose the simplicity of CF, we
do not consider those more complex methods here. We have selected three basic
methods that predict items and try to keep the simplicity of CF, but still should
improve prediction results.

When evaluating these recommendation algorithms, suitable datasets of users
and items have always been demanding, especially when diversity of public data
is limited. To compare the recommendation quality of different algorithms, it
is not enough to evaluate the algorithms on just one or two datasets. Instead,
one should investigate the behavior of the algorithms as systematic changes are
applied to the data. Although there are already few attempts in generating syn-
thetic data for the use in RS, to our best knowledge, there is no prior approach
in generating synthetic data for evaluating recommender algorithms that incor-
porate attributes.

In this paper, we will make the following contributions: (i) we will propose
our Synthetic Data Generator which produces user-item and user/item-attribute
datasets and introduce the use of entropy to measure the randomness in the arti-
ficial data, (ii) we will survey some of the existing hybrid methods that consider
attribute information in CF for predicting items. In addition, (iii) we will con-
duct empirical evaluations on three existing hybrid recommendation algorithms
and other state-of-the-art algorithms using the generated synthetic data and
observe their behavior when the characteristic of attribute data varies.

2 Related Works

One of the most widely known Synthetic Data Generators (SDG) in data mining
is the one provided by the IBM Quest group [2]. It mimics the “real” world
transactions in the retailing environment. It generates data with a structure
and was originally intended for evaluating association rule algorithms. Later on,
Deshpande and Karypis used this SDG for evaluating their item-based top-N
recommendation algorithm [6]. Popescul et .al have proposed a simple approach
by assigning a fixed number of users and items into clusters evenly and draw a
uniform probability for each user and item in each cluster [17]. A similar attempt
has been done for Usenet News [11, 14] as well as Aggarwal et .al for their horting
approach [1]. Traupman and Wilensky tried to reproduce data by introducing
skewed data to the synthetic data similar to a real dataset [20]. Another approach
is to produce datasets by first sampling a complete dataset and re-sample the
data again by missing data effect [12].
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Fig. 1. Overview structure of synthetic data

The focus of this paper is to investigate SDG for CF algorithms which consider
attributes. To the best of our knowledge, there is no prior attempt in examining
SDGs for hybrid RS algorithms.

3 Synthetic Data Generator

The SDG can be divided into two phases: drawing distributions and sampling
data. In the first phase, it draws distribution of User Cluster (UC) and Item
Cluster (IC), next it affiliates UC or IC with user/item attribute respectively
as well as to associate the UC and IC. Using these generated correlations, the
users, items, ratings and item/user-attribute datasets can then be produced in
the second phase. Fig. 1 presents an overview of how the artificial data are
generally structured.

3.1 Drawing Distributions

To create the ratings and attributes datasets, we generate five random distribu-
tions models:

– P (UC), how users are distributed in N number of UC.
– P(IC ), how items are distributed in M number of IC.
– P(A|UC ) ∀ UC, how user attributes (A) are distributed in UC.
– P(B |IC ) ∀ IC, how item attributes (B) are distributed in IC.
– P(UC |IC ) ∀ IC, how UC are distributed in IC.
– q be the probability that an item in ICi is assigned to UCj

The SDG first draws P (UC) and P (IC) from a Dirichlet distribution (with
parameters set to 1). This asserts that the sum of P (UC) or P (IC) forms to
one. P (B|IC) shows the affiliation of item attributes with the item clusters
by drawing from a special Chi-square distribution rejecting values greater than
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Algorithm 1. Drawing distribution
Input: |A|, |B|, N, M, εA, εB , εC

Output: P (UC), P (IC), P (A|UC), P (B|IC), P (UC|IC)
h = 0
P (UC) ∼ Dira1,a2...,aN

P (IC) ∼ Dirb1,b2...,bM

repeat
P (B|IC)h = Sχ2ED(|B|, M, h, εB)
P (UC|IC)h = Sχ2ED(N, M, h, εIC)
P (A|UC)h = Sχ2ED(|A|, N, h, εA)
h = h + 0.1

until h < 1

Algorithm 2. Drawing Special χ2 distribution with specified entropy values
Sχ2ED(n, m, HXY , εXY ) :
d = 1
repeat

P (Xi|Yj) ∼ χ2
d|[0,1] ∀i = 1...n, ∀j = 1...m

d = d + 1
until |H(X|Y ) − HXY | < εXY

P (X|Y )

1. Likewise, the correlation between UC and IC, P (UC|IC), as well as the
correlation between user attributes and user clusters, P (A|UC), are done with
similar manner. However, the attribute-aware CF algorithms we discuss in this
paper do not take user-attributes into account. The overall drawing distributions
process is summarized in (Algo. 1.).

By virtue of the randomness in those generated models, it is necessary to
control or to measure the informativeness of these random data. Hence, we apply
the Information Entropy and compute the average normalized entropy of the
models.

H(X) = −
∑

x∈dom(X)

P (x) log2 P (x)
log2 | dom(X)| . (1)

The conditional entropy for the item-attribute data therefore is:

H(Bi|IC) = −
1∑

b=0

∑
j∈dom IC

P (Bi = b, IC = j) · log2 P (Bi = b|IC = j)
log2 | dom IC| (2)

In our experiment, P (B|IC) is sampled eleven times for eleven different en-
tropy values from 0 to 1 with 0.1 interval. By rejection sampling, P (B | IC)
is drawn iteratively with various Chi-square degrees of freedom until H(B|IC)
reaches desired entropies (Algo. 2.). Other types of distribution have also been
examined, yet, Chi-square distribution has shown to give the most diverse en-
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Algorithm 3. Sampling data
ucu ∼ P (UC) user cluster of user u
ici ∼ P (IC) item cluster of item i
ocl,k ∼ P (UCl|ICk) user of cluster l who prefer item of cluster k
ou,i ∼ binom(q) ∀u, i : ocucu,ici = 1 occurrence of user of ucu prefers item of ici

ou,i = 0 else
bi,t ∼ P (Bt|IC = ici) item i contains attribute t

tropy range. We expect that as the entropy increases, which implies the data is
less structured, the recommendation quality should decrease.

3.2 Sampling Data

Once these distributions have beendrawn,users, items, ratings and item-attributes
data are then sampled accordingly to those distributions. Firstly,users are assigned
to user clusters by random sampling from P (UC). Similar procedure, applies
for sampling items. The user-item(ratings) data is generated by first sample
P (UCl|ICk) of users belonging to UCl who prefer items in ICk, then sample q
portion of items of ICk to these sampled users. The affiliation between items and
attributes is done by sampling P (B|IC) of items which contain attribute B. The
sameprocedure canbe applied to generate the user-attributes datasets. The overall
sampling data process is summarized in (Algo. 3.).

4 Hybrid Attribute-Aware CF Methods

Here, we discuss three existing hybrid methods [21], which will be evaluated
using the data generated from the SDG.

1. Sequential CBF and CF (Adapted Content-Boosted CF),
2. Joint Weighting of CF and CBF, and
3. Attribute-Aware Item-Based CF.

Sequential CBF and CF is the adapted version of an existing hybrid ap-
proach, Content-Boosted CF, originally proposed by [13] for predicting ratings.
This method has been conformed to the predicting items problem here. It first
uses CBF to predict ratings for unrated items and then filters out ratings with
lower scores (i.e. keeping ratings above 4 on a 5-point scale) and applies CF to
recommend topN items.

Joint Weighting of CF and CBF (Joint-Weighting CF-CBF), first applies
CBF on attribute-dependent data to infer the fondness of users for attributes.
In parallel, user-based CF is used to predict topN items with ratings-dependent
data. Both predictions are joint by computing their geometric mean.

Attribute-Aware Item-Based CF (Attr-Item-based CF) extends item-
based CF [6]. It exploits the content/attribute information by computing the
similarities between items using attributes thereupon combining it with the sim-
ilarities between items using ratings-dependent data.
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All three approaches recommend items that contain the highest frequency of
their neighboring items. For the last two algorithms, λ is used as a weighting
factor to vary the significance applied to CF or CBF.

5 Evaluation and Experimental Results

In this section, we present the evaluation of the selected attributes-aware CF
algorithms using artificial data generated by SDG discussed in Section 3 and
compare their performances with their corresponding non-hybrid base models,
which do not integrate attributes, i.e. user-based and item-based CF, as well as
to observe the behavior of the algorithms after supplement of attributes.

Metrics. Our paper focuses on the item prediction problem, which is to predict
a fixed number of top recommendations and not the ratings. Suitable evaluation
metrics are Precision, Recall and F1.

Similar to Sarwar et al. [18], our evaluations consider any item in the recom-
mendation set that matches any item in the testing set as a “hit”. F1 measure
is then used to combine Precision and Recall into a single metric.

Precision =
Number of hits

Number of recommendations

Recall =
Number of hits

Number of items in test set

F1 =
2 · Precision · Recall
Precision + Recall

Parameters. Due to the nature of collaborative filtering, the size of neighbor-
hood has significant impact on the recommendation quality [9]. Thus, each of
the randomly generated data should have an assorted neighborhood sizes for
each method. In our experiments, we have selected optimal neighborhood sizes
and λ parameters for the hybrid methods by means of a grid search. See Ta-
ble 1. Lambda is used to weight the contribution of attribute-dependent and
rating-dependent models. Threshold and max, for the Sequential CBF-CF are
set to 50 and 2 accordingly as chosen in the original model [13]. For more detail
explanation of the parameters used in those algorithms, please refer to [21] and
[13].

Table 1. The parameters chosen for the respective algorithms

Method Neighborhood Size λ

user-based CF 35-50 –
item-based CF 40-60 –

joint weighting CF–CBF 35-50 0.15
attr-aware item-based CF 40-60 0.15
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Table 2. The parameters settings for the synthetic data generator

Description Symbol Value
Number of users n 250
Number of items m 500

Number of User Clusters N 5
Number of Item Clusters M 10

Number of Item Attributes |B| 50
Probability of i in IC assigned to a UC q 0.2

As our algorithms do not consider user attributes, our SDG only generates
models for item attributes. The parameter settings for our experiments are sum-
marized in Table 2.

Experimental Results. In our experiments, we have generated five different trials.
For each trial, we produce one dataset of user-item (ratings) and eleven different
item-attributes datasets with increasing entropy from 0-1 with 0.1 interval, by
rejection sampling. In addition, to reduce the complexity of the experiment, it
is assumed that the correlation between the user and item clusters to be fairly
well-structure and have a constant entropy of 0.05. The results of the average of
five random trials where only item-attributes with entropy of 0.05 are presented
in Fig. 2.

As shown in Fig. 2, Joint-Weighting CF-CBF achieves the highest Recall value
by around 4% difference w.r.t. its base method. On the other hand, Attr-Item-
based CF does not seem to be effective at all as attributes are appended to its
base model. It also has a very high standard deivation. This suggests that the
algorithms to be rather unstable and unreliable. Although Melville et al. [13]
reported that Content-Boosted CF performed better than user-based and pure
CBF for ratings, it fails to provide quality top-N recommendations for items

Fig. 2. Recall by selecting item-attributes with entropy ≤ 0.05
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Fig. 3. Recall vs. Entropy ranging from 0-1

in our experiments. Therefore, we will focus our evaluation on the other two
algorithms in the rest of the paper.

As the aim of the paper is to examine the behavior of the models as the char-
acteristic of data varies, what is more important is to observe the performance
as entropy varies. As anticipated, the recommendation quality increases, when
there exists more structure in the data. The results of an average of five random
trials of item-attribute datasets with eleven various entropies are presented in
Fig. 3.

We can see that for both Attr-Item-based CF and Joint-Weighting CF-CBF
algorithms, the quality of recommendation reaches its peaks when the entropy
approaches zero and it gradually decreases as entropy increases. As for Attr-
Item-based CF, although it carries the right entropy trend, its peak does not
surpass its base model and the quality drops gradually below its base model,
which does not make use of attributes. On the other hand, for Joint-Weighting
CF-CBF, the value of recall descends gradually as the entropy raises, still the
recall maintain above its base-model until entropy approaches 1 where recall
plummets to below its base-line score.

6 Conclusions and Future Works

The aim of this paper is to conduct an empirical evaluation on three exist-
ing hybrid recommendation models and other state-of-the-art algorithms with
data generated by the SDG presented in this paper. All algorithms discussed
here focus on the predicting items problem. Joint-Weighting CF-CBF, appears
to enhance recommendations quality when reasonable amount of informative
attributes are presented. The other algorithms do not seem to be sensitive to
attributes. Yet, we expect the outcomes could be ameliorated by adding more
structural dependency between clusters. In addition, currently the data are only
controlled by the entropy of item-attribute datasets; however, other distributions
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such as the user-item data should also be investigated when various entropies are
considered. Furthermore, more extensive experiments should be done to exam-
ine the effect of varying other parameters settings and to conduct an empirical
evaluation with models that predict ratings.
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Abstract. This paper presents work on developing a software system for pre-
dicting crop yield from climate and plantation data. At the core of this system is 
a method for unsupervised partitioning of data for finding spatio-temporal pat-
terns in climate data using kernel methods which offer strength to deal with 
complex data. For this purpose, a robust weighted kernel k-means algorithm in-
corporating spatial constraints is presented. The algorithm can effectively han-
dle noise, outliers and auto-correlation in the spatial data, for effective and effi-
cient data analysis, and thus can be used for predicting oil-palm yield by ana-
lyzing various factors affecting the yield. 

1   Introduction  

Clustering is a useful machine learning technique that can capture meaningful pat-
terns in the agro-hydrological data. Finding good quality clusters in spatial data (eg, 
temperature, precipitation, pressure, etc) is more challenging because of its peculiar 
characteristics such as auto-correlation, non-linear separability, outliers, noise, 
high-dimensionality, and when the data has clusters of differing shapes and sizes 
[10, 15, 18]. The popular clustering algorithms, like k-means, have some limitations 
for this type of data [16, 18]. Therefore, we present a weighted kernel k-means 
clustering algorithm incorporating spatial constraints bearing spatial neighborhood 
information in order to handle spatial auto-correlation, outliers and noise in the 
spatial data.  

A number of kernel-based learning methods have been proposed in recent years [3, 
4, 7-9, 11, 13]. Generally speaking, a kernel function implicitly defines a non-linear 
transformation that maps the data from their original space to a high dimensional 
space where the data are expected to be more separable. 

2   Application Area and Methods 

A simplified view of the problem domain is shown in Figure 1. The data consists of a 
sequence of snapshots of the earth areas consisting of measurement values for vari-
ables like temperature, pressure, precipitation, crop yield, etc. 
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Fig. 1. A simplified view of the problem domain 

This work uses clustering to divide areas of the land into disjoint regions in an 
automatic but meaningful way that enables us to identify regions of the land whose 
constituent points have similar short-term and long-term characteristics. The spatial 
and temporal nature of the target data poses a number of challenges. For instance, 
such type of data is noisy. In addition, such data displays autocorrelation (i.e., meas-
ured values that are close in time and space tend to be highly correlated, or similar), 
high dimensionality, clusters of non-convex shapes, outliers. 

If we apply a clustering algorithm to cluster time series associated with points on 
the land, we obtain clusters that represent land regions with relatively homogeneous 
behavior. We can then identify how various parameters influence the climate and oil-
palm produce of different areas using correlation. A simplified architecture of the 
agro-hydrological system is shown in Figure 2: 

 

 
 
 

 
 
 
 
 

Fig. 2. A simplified architecture for the system 

3   Kernel-Based Methods 

The kernel methods are among the most researched subjects within machine-learning 
community in recent years and have been widely applied to pattern recognition and 
function approximation [2,5,6,12,14,17]. There are instances where a linear hyper-
plane cannot separate classes without misclassification, an instance relevant to our 
problem domain. However, those classes can be separated by a nonlinear separating 
hyperplane. This concept is based on Cover’s theorem on the separability of patterns.  

Let a nonlinear transformation function φ maps the data into a higher dimensional 
space. Suppose there exists a function K, called a kernel function, such that, 
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A kernel function is substituted for the dot product of the transformed vectors. So, 
kernels allow large non-linear feature spaces to be explored while avoiding curse of 
dimensionality. Further, the use of the kernel function is less computationally inten-
sive. The formulation of the kernel function from the dot product is a special case of 
Mercer’s theorem [13].  

4   Weighted Kernel K-Means with Spatial Constraints (SWK-Means) 

Let X = { xi }i=1, . . .,n be a data set with xi ∈ RN. We call codebook the set W =  
{wj}j=1, ., ., .,k with wj ∈ RN  and k << n. The k-means clustering algorithm can be en-
hanced by the use of a kernel function. The kernel k-means algorithm can be general-
ized by introducing a weight for each point x, denoted by u(x), as: 
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The Euclidean distance from φ(x) to center wj is given by the following eq. 
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If we adopt Guassian radial basis function (RBF), viz., )exp(),( 2
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For increasing the robustness of fuzzy c-means to noise, an approach is proposed in 
[1]. Here we propose a modification to the weighted kernel k-means to increase the 
robustness to noise and to account for spatial autocorrelation in the spatial data. It can 
be achieved by a modification to eq. (1) by introducing a penalty term containing 
spatial neighborhood information, as: 
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where Nk stands for the set of neighbors that exist in a window around xi and NR is the 
cardinality of Nk. The parameter γ  controls the effect of the penalty term. The dis-
tance in the last term of eq. (5), can be calculated as 
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The expression for effective minimum distance from each point to every cluster rep-
resentative can be obtained from eq. (5) using eq. (4) and (6): 
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As K(xi,xj) measures similarity between xi and xj, and when xi is an outlier, then 
K(xi,xj) will be very small. So, the second term in the above expression will get very 
low value. The total expression will get higher value and hence results in robustness 
by not assigning the point to the cluster. For detail about the algorithm, pls. see [11]. 

5   Experimental Results 

The system is implemented in C++. We get results regarding analyzing various fac-
tors impacting oil-palm yield. However, because of space constraints, here we briefly 
describe the clustering results of the SWK-means algorithm.  

For experimentation we selected 24 rainfall stations. A 12-month moving average 
is used for removing seasonality from the data. For monthly rainfall values for 5 
years, we get a data matrix of 24×60. SWK-means partitioned it into 2 clusters. For 
visualization of results, we also applied the algorithm to the monthly average rainfall 
values of this period. Its results are shown in Figure 3. For the next five year periods 
of time for the selected 24 rainfall stations we get data matrices as 48×60, 72×60 and 
so on. The algorithm proportionally partitioned the data into two clusters. The corre-
sponding results are given in table 1 (a record represents 5-year monthly rainfall val-
ues taken at a station). It also validates the proper working of the algorithm. 

 

Fig. 3. Clustering results of SWK-means algorithm showing two clusters of monthly rainfall 
(average) of 24 stations 

Table 1. Results of SWK-means on rainfall data at 24 stations for 5, 10, 15, 20, 25, 30 years 

No. of Records No. of records in cluster 1 No. of records in cluster 2 
24 
48 
72 
96 

120 
144 

10 
20 
30 
40 
50 
60 

14 
28 
42 
56 
70 
84 
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For the overall system, the information about the landcover areas of oil palm plan-
tation is gathered. The analysis of these and other time series (e.g., precipitation, tem-
perature, pressure, etc) is conducted using clustering. We can then identify how vari-
ous parameters, such as precipitation, temperature etc, influence the climate and oil-
palm produce of different areas using correlation. Our initial study shows that the 
rainfall patterns alone affect oil-palm yield after 6-7 months. This way we are able to 
predict oil-palm yield for the next 1-3 quarters on the basis of analysis of present 
plantation and environmental data. 

6   Conclusions 

Computational machine learning techniques like clustering can be effectively used in 
analyzing the impacts of various hydrological and meteorological factors on vegeta-
tion. Kernel methods are helpful for clustering complex and high dimensional data 
that is non-linearly separable in input space. Consequently for developing a system 
for oil-palm yield prediction, an algorithm, weighted kernel k-means incorporating 
spatial constraints, is presented which is a central part of the system. We get promis-
ing results on our test data sets. It is hoped that the algorithm would prove to be ro-
bust and effective for spatial (climate) data analysis, and it would be very useful for 
oil-palm yield prediction. 
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Abstract. Apply machine learning methods to data mining domain can be more 
helpful to extract useful knowledge for problems with changing conditions. 
Human resource allocation is a kind of problem in data mining domain. It pre-
sents machine learning techniques to dissolve it. First, we construct a new 
model which optimizes the multi-objectives allocation problem by using fuzzy 
logic strategy. One of the most important problems in the model is how to get 
the precise individual capability matrixes. Machine learning method by being 
told is well used to settle the problem in this paper. In the model, appraisal val-
ues about employees are saved in knowledge warehouse. Before tasks alloca-
tion, machine learning approach provides the capability matrixes based on the 
existing data sets. Then Task-Arrange or Hungarian Algorithm provides the fi-
nal solution with our proposed matrixes. After present tasks are finished, ma-
chine learning method by being told can update the matrixes according to the 
suggestions on employees’ performance provided by the specialists. Useful 
knowledge can be well mined in cycles by learning approach. As a numerical 
example demonstrated, it is helpful to make a realistic decision on human re-
source allocation under a dynamic environment for organizations. 

1   Introduction 

As data sets are continuously growing in size and number, there is a need to extract 
useful information from collections of data. The disciplines of data mining and ma-
chine learning are concerned with the application of methods such as clustering, clas-
sification, rule induction, and others to potentially large data repositories in order to 
extract relevant information and eventually convert data and information into knowl-
edge [1, 2]. 

Machine learning makes the computer be intelligent and deals with the issue of 
how to build programs that improve their performance at some task through experi-
ence. A key research area in machine learning is extracting conceptual description 
from data samples. Meanwhile, the key purpose of data mining is to search interesting 
patterns and important rules from large-scale databases. Therefore, many machine 
                                                           
∗ National 973 Project in China (Grant No. 2004CB719401). 
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learning methods could be used directly into data mining domain. In this paper, we 
will apply machine learning to human resource allocation, which is one of the prob-
lems in data mining domain. 

Surveying the past research, there are two types of modeling about Human Re-
source Allocation. One is linear programming model [3]; the other is goal program-
ming [4]. Linear programming is a single goal optimization technique; this is not the 
situation for a majority of firms with multiple goals. Goal programming can not deal 
with the organizational differentiation problems [6]. In addition, neither do the models 
studied take advantage of the machine learning method. 

Currently many resource allocation algorithms have existed. It uses multi-
processors to solve distributed resource allocation in [7], where the processor number 
is correlated with the task number. The approaches proposed by [8-9] provide algo-
rithms on task scheduling problem. These algorithms do not consider the time con-
straints among tasks. It limits further application 

There are great deals of data about every employee. Before tasks allocation, man-
agers will provide appraisal values aimed to every employee. But the appraisal values 
each specialist gives are very subjective. Moreover, data is changing according to 
one’s changing experience. Actually, Human resource allocation is a kind of problem 
in data mining domain. In the process of task allocation, it is crucial to identify and 
mine useful information from existing data sets. Here we bring forward a machine 
learning approach to dissolve the allocation problem. 

In our paper, a new model is proposed. And we apply fuzzy logic concept into the 
model. Individual capability matrixes about employees are the data need to be mined. 
Machine learning methods can offer the matrixes not only based on the previous ap-
praisal data sets the managers provide but also suited to changing conditions. Through 
the matrixes, we get the fuzzy synthesis appraisal matrixes finally. Then Task-
Arrange or Hungarian Algorithm [12] can obtain the best assignment solution based 
on the matrixes. After the allocation, the specialists feed back the evaluation values 
which will be saved in the knowledge warehouse. The self-learning process revises 
the original data in the warehouse. The refreshed matrixes will be offered when next 
allocation comes. So we can mine useful knowledge based on existing data sets in 
cycles. 

The layout of the paper is as follows: In section 2, we first present our basic model. 
Section 3 introduces the machine learning method by being told. And then we de-
scribe fuzzy concepts and define fuzzy membership sets in Section 4. We give the 
optimization target in Section 5. Section 6 briefly describes our algorithm which 
achieves the optimization solution, and a numerical example is also given in section 7 
to show how the algorithm works. Section 8 gives the comparison with other algo-
rithms. Finally, we conclude in section 9.   

2   The Fuzzy Modeling 

The management of human resource includes three aspects: human capital control, 
tasks control and time control.  
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2.1   Model on Human Capital Control 

1. The follow parameters are aimed at the whole human resource of the firm: 

–   Matrix Shr = [si,j i,j N, 1 ≤ i ≤ A or B , 1 ≤ j ≤ T ,  0 ≤  si,j ≤ 1] 

The individual capability matrix is in this form.  
si,j means the satisfaction degree certain employee doing all the jobs. 
A or B are the satisfaction degree fuzzy sets of the tasks, T is the number of tasks. 

–   Matrix S2 = [si,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ A or B ,  si,j = 0 or 1] 

S2 is the satisfaction degree appraisal matrix specialists give. 
si,j means the satisfaction degree employee i doing the assigned job. 
A or B are the satisfaction degree fuzzy sets of the tasks. 

– Matrix S3 = [si,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ T , 0 ≤  si,j ≤ 1] 

In the above definition, S3 is an evaluation matrix about the employees, the element of 
which shows the performance evaluation of employee i on task j.  

R represents the number of the employees; T is the number of the tasks. 
The final fuzzy synthesis appraisal matrixes needed in our algorithm is in the form. 

– group r
m 

The parameter r is the group name in a firm, and m represents the number of employ-
ees in the group. 

2. For concrete human resource, it needs other parameters: 
hr{group, ifFree, freeTimes, tasks, cost} 

– group: The name of technique group the employee belongs to. 
– ifFree: Indicate whether or not the employee is free currently. The value concludes 

“1”(occupied) and “0”(free). 
– freeTimes: Time during which the employee can keep free. 
– tasks: Which task the employee has been assigned to. 
– cost: The premium paid for accomplishing certain job. 

2.2   Model on Tasks Control 

1. For the whole set of tasks: 

– Matrix T = [ti,j i,j N, 1 ≤ i,j ≤ T ] 

The matrix T represents the time orders among tasks. If ti,j = 1, task i is earlier than 
task j; otherwise, ti,j = 0 means task i is not earlier than task j or there is no time order 
between the two tasks. We can also use PERT for distinguishing distinctly. 

2. For concrete task, the parameters are defined here: 
task{state, endTime, totalTime, needGroup, penaltyFunc, budget} 

– state: Indicate whether or not the task has begun. The value includes “1”(yes) and 
“0”(no).

– endTime: The end time of a task.
– totalTime: The total time of a task. 
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– needGroup: The group and the number of the employees needed in a task. 
Its data is in the form of g r

m .  
– penaltyFunc: The penalty function if the task is delayed. 
– budget: The max cost of the task. 

2.3   Model on Time Control 

time{endTime, totalTime} 

– endTime: The end time of a task. 
– totalTime: The total time of a task.

3    Learning Method by Being Told 

The basic model of machine learning can be pictured as follows. 

 

Machine learning in Artificial Intelligent (AI) kingdom is the core of data mining. 
There are many applications about collaborations of data mining and machine learn-
ing. Many machine learning methods could be used directly into data mining domain. 

Induction learning is one of the machine learning methods. Learning by being told 
is one of the induction learning methods. In our paper, we will apply machine learn-
ing by being told method to mine useful data about human resources. 

The learning process of learning method by being told can be described as 
follows: 

1. Machine asks appraisals from specialists 
The manner may be simple or complex, maybe initiative or passive. 

2. Machine accepts and explains the appraisals. 
Machine makes the suggestions be identified by the system. 

3. Machine converts the appraisals into concrete knowledge. 
The suggestions can be operational and usable.  
Here the appraisals are in the matrix form. 
Matrix S = [si,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ A or B ,  si,j = 0 or 1] 
si,j means the satisfaction degree employee i doing the assigned job. 
The above matrixes will be converted into the individual capability matrixes, 
which is in the following form. 
Matrix Shr = [si,j i,j N, 1 ≤ i ≤ A or B , 1 ≤ j ≤ T ,  0 ≤  si,j ≤ 1] 

        A or B are the satisfaction degree fuzzy sets of the tasks, T is the number            
 of the tasks. 

If the satisfaction degree implies that the employee is very capable of doing a 
certain task, his/her appraisal values in the individual capability matrix will be 
adjusted bigger; in the contrary, the appraisal values will be adjusted smaller if 
the employee is overrated, otherwise, the value will remain still. 
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4. Machine adds the new knowledge into the knowledge warehouse. 
The problems about knowledge redundancy and conflict must be considered. 
The old data is replaced by the new ones. 

5. System provides the refreshed results with the help of the knowledge.  

In fact, the whole process is rotated. Machine provides the results necessary for the 
allocation; the algorithm gets the allocation plan through the above results; when the 
tasks have been finished, specialists feed back appraisals which will be converted and 
added to the knowledge warehouse; the new data will be provided when the next 
allocation comes. The method will adjust the values from time to time according to 
the employees’ changing experience. And the data will be closer to the individual 
capability. 

4   Fuzzy Logic 

Define the fuzzy membership sets we use as follows: 

1. fuzzy sets for degree of job satisfaction 
Specialists will build the fuzzy sets for degree of job satisfaction. The values of 
the sets are different aiming at different goals.  

2. weight values of the fuzzy sets 
The values of the elements in the weight sets are between “0” and “1”. The sum 
in one set is usually “1”.  

3. individual capability matrixes 
The elements’ values indicate the different satisfaction probability if certain em-
ployee occupy different tasks. For example: 

4. fuzzy synthesis appraisal matrixes 
The matrixes are used in Fuzzy appraisal decision-making method which is an ef-
fective appraisal way to solve problems involving multi-factors. The matrixes are 
derived through the model M(·,+). 

5   Optimization Goal of the Allocation Model 

When directors implement the human resource allocation among tasks, they usually 
expect the optimized result in the following multi-objectives programming. 

1. Minimize the time in executing the entire tasks 
TimeTask (R*) = TTask(R*) + TTTask(R*) 

  s.t:  0 ≤ TimeTask (R*) ≤ Task.totalTime   R* ⊂ R 

R is the set of the human resource, R* is the subset of R. TTask(R*) is the calculated 
time, which is necessary to perform task set. TTTask (R*) is the calculated waiting time, 
which appears only in the case of allocation of so-called busy resources. The time 
spent on the tasks must be less than the total time regulated beforehand. 

2. Minimize the whole premium cost to the whole employees 

CostTask(R*) = TTask(R*) r R* cost  
s.t:  0 ≤ CostTask(R*) ≤ Task.budget   R* ⊂ R 
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R is the set of the human resource, R* is the subset of R.  And the money cost by the 
employees must be less than the budget regulated beforehand. 

To simplify the model, we only consider the human pay with no regard of cost of 
penaltyFunc of the tasks here.  

6   Our Approach 

The optimized solution of multi-objective-Function is to make multi-objective-
Function be best satisfied. But these functions can not reach the best optimization at 
the same time. So we can only acquire the fuzzy optimization solution.  

1. Definition 1: 
If the number of employee certain task i needs is j, then dividing the task i into sub-
tasks. And the number of the subtasks is j. The whole amount of the tasks will be 
added to j-1. The set of the subtasks replaces its parent task. 

ti = ti1 + ti2 + …….+ tij 

2. The algorithm can be described as follows: 
Suppose Task = {task1, task2……taskn}, Hr = {hr1, hr2….hrm} 

Algorithm: 
1. Scheduling the current set of tasks according to matrix T. 

If the value of the element in T is “1”, schedule the two tasks. Otherwise, calcu-
late the latest-begin time (taski.endTIme – taski.totalTime) of the other tasks. 
Scheduling them based on the time. 

2. Calculating g r
m = taski.needGroup. Acquire the sets of subtasks, and replace their 

parent task. Changing the value of the number of the new tasks set. 
3. Finding out the sets of the usable human resource. 

If hri.ifFree == true then labeling the employee. 
4. Grouping the labeling employee according to the employee’s attributes “group”. 

The result is represented in the form of hri
j 

5. Building the fuzzy sets for degree of job satisfaction Ai based on factor time. 
6. Acquiring Ai’s weight QA and Bi ‘s weight QB. 
7. Building the fuzzy sets for degree of job satisfaction Bi based on factor cost. 
8. The individual capability matrix Rhr considering the time factor is provided by the 

machine learning method. 
Matrix Rhr = [si,j i,j N, 1 ≤ i ≤ T , 1 ≤ j ≤ A , 0 ≤  si,j ≤ 1] 

A is the number of the elements in the satisfaction degree fuzzy set A. 
9. The individual capability matrix Rhr considering the cost factor is provided by the 

machine learning method. 
Matrix Rhr = [si,j i,j N, 1 ≤ i ≤ T , 1 ≤ j ≤ B , 0 ≤  si,j ≤ 1] 

B is the number of the elements in the satisfaction degree fuzzy set B 
10. Calculating the fuzzy synthesis appraisal matrix C by Using the model M(·,+) in 

the fuzzy mathematics. 
Matrix Cij = [ci,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ T , 0 ≤  ci,j ≤ 1] 

11. Using Task-Arrange or Hungarian Algorithm to obtain the optimization result.  
Refer to [12] for more detailed description of the algorithms. 
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12. After the present tasks have been finished, specialists feed back the satisfaction 
appraisal matrixes according to employees’ performance. 
Matrix Vij = [vi,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ A ,  vi,j = 0 or 1] 
Matrix Vij’ = [vi,j’ i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ B ,  vi,j’ = 0 or 1] 
vi,j or vi,j’  means the satisfaction degree employee i doing the assigned job. 

A or B is the number of the elements in the satisfaction degree fuzzy set 
A or B. 

13. If     the appraisal result is A1(shorter than expected),  
Then    the element’s value in individual capability matrix is added 0.01;  
If     the appraisal result is A2(approximately expected), 
Then    the element’s value in individual capability matrix is kept invariable;  
If     the appraisal result is A3(longer than expected),  
Then    the element’s value in individual capability matrix is subtracted 0.01; 

14. If     the appraisal result is B1(less than expected),  
Then    the element’s value in individual capability matrix is added 0.01;  
If     the appraisal result is B2(approximately expected), 
Then    the element’s value in individual capability matrix is kept invariable;  
If     the appraisal result is B3(more than expected),  
Then    the element’s value in individual capability matrix is subtracted 0.01; 

15. Updating the values of the employees’ individual capability matrix in knowledge 
warehouse. 

7   A Numerical Example 

Conditions: 
Task = {task1, task2, task3} 
task1:{g 1

2, g 2
2 }  task2:{g 1

1, g 3
2 } task3:{g 2

2, g 3
2 } 

The set value in the machine learning method is 9/10 
After the fifth step we can get the data: 

Task={task11, task12, task13, task14, task21, task22, task23, task31, task32, task33, task34} 
usable hr = {hr1

3 , hr2
4 , hr3

2} 
Then we know: 

{hr11, hr12, hr13} are allocated among {task11, task12, task21} 
{hr21, hr22, hr23, hr24} are allocated among {task11, task12, task31, task32} 
{hr31, hr32}

 are allocated among {task21, task22, task33, task34} 
First we consider the first allocation. 
1. Building the fuzzy sets for degree of job satisfaction due to the goal of time. 

A = {A1(shorter than expected), A2(approximately expected), A3(longer than 
expected)}, weight QA = (0.5, 0.3, 0.2) 

2. Building the fuzzy sets for degree of job satisfaction due to the goal of cost. 
B = {B1(less than expected), B2(approximately expected), B3(more than ex-
pected) }, weight QB = (0.6, 03, 0.1) 

3. The weight of the two goals Q = {0.6, 0.4} 
4. The individual capability matrixes of {hr11, hr12 hr13} about {task11, task12, 

task21} aiming at A are provided by the machine learning method: 
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R1 r11 = 

1.01.02.0

2.03.02.0

7.06.06.0
 R1 r12 = 

1.01.03.0

3.04.03.0

6.05.04.0
R1 r13 =  

2.02.03.0

3.04.02.0

5.04.05.0
   

5. The individual capability matrixes of {hr11, hr12 hr13} about {task11, task12, 
task21} aiming at B are: 

R1 r11 = 

1.01.02.0

4.02.02.0

5.07.06.0
   R1 r12 = 

3.02.03.0

3.02.03.0

4.05.04.0
   R1 r13 = 

1.02.02.0

3.04.03.0

6.04.05.0
    

6. Using the model M(·,+) in the fuzzy mathematics, we can get the fuzzy synthesis 
appraisal matrix. 

C = 

223.0182.02042.0

228.02102.01736.0

25.02548.0236.0
 

7. Task-Arrange or Hungarian Algorithm gives the best allocation. 
 task11 is assigned to hr12, task12 is assigned to hr13, task21 is assigned to hr11. 
8. Also we can get the allocation result about other tasks and human resources. 
9. After the tasks have been finished, some specialists will feed back the appraisals 

according to employees’ performance. The appraisals are in matrix form.  
 Matrix V = [vi,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ A ,  vi,j = 0 or 1] 
  Matrix V = [vi,j i,j N, 1 ≤ i ≤ R , 1 ≤ j ≤ B ,  vi,j = 0 or 1] 
  A or B is the number of the elements in the satisfaction degree fuzzy 

 set A or B. 
 Here we have three candidates in each degree fuzzy set. The columns of the 

matrix represent the members in the satisfaction degree sets. For example, if the 
satisfaction degree about hr11 doing task21 the specialist think is 
A1(approximately expected), then we set v12 = 1. The rest may be deduced by 
analogy. 

V11 = 

010

001

010
   V21 = 

010

001

010
   V31 = 

010

010

001
 

    The above matrixes are aimed to Time factor. 

V12’ = 

001

100

100
  V22’ = 

001

010

010
  V32’ = 

001

100

001
 

    The above matrixes are aimed to Cost factor. 
10. Refresh the individual capability matrixes. 

If     the appraisal result is A1,  
Then    the element’s value in individual capability matrix is added 0.01;  
If     the appraisal result is A2, 
Then    the element’s value in individual capability matrix is kept invariable;  
If     the appraisal result is A3,  
Then    the element’s value in individual capability matrix is subtracted 0.01; 
If     the appraisal result is B1,  
Then    the element’s value in individual capability matrix is added 0.01;  
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If     the appraisal result is B2, 
Then    the element’s value in individual capability matrix is kept invariable;  
If     the appraisal result is B3,  
Then    the element’s value in individual capability matrix is subtracted 0.01; 
The new matrixes about factor Time are as follows. 

R1 r11 = 

09.01.02.0

2.03.02.0

71.06.06.0  R1 r12 = 

1.01.028.0

3.04.03.0

6.05.042.0  R1 r13 =  

2.02.03.0

3.04.02.0

5.04.05.0
   

The new matrixes about factor Cost are as follows. 

R1 r11 = 

1.01.02.0

4.02.02.0

5.07.06.0
 R1 r12 = 

3.02.032.0

3.02.03.0

4.05.038.0  R1 r13 = 

1.017.02.0

3.04.03.0

6.043.05.0    

11. These weight values will be added to the knowledge warehouse and the individ-
ual capability matrixes will be refreshed in the warehouse.  

12. When the next allocation comes, the new evaluation matrixes above will be 
provided to the managers. 

8   Comparison with Other Models and Methods 

 Comparison with linear programming model 
1. Linear programming is a single goal optimization technique; this is not the 

situation for a majority of firms with multiple goals. 
2. Our new model can deal with allocation problems with two optimization 

goals. 
 Comparison with goal programming model 

1. Goal programming can not deal with the organizational differentiation 
problems. 

2. Though our new model, managers can get concrete information about every 
employee. So it could be more flexible and accurate when planning. 

 Comparison with distributed resource allocation algorithm [7] 
1. Distributed algorithm is one of the algorithms to solve the allocation prob-

lems. It uses multi-processors to solve distributed resource allocation, and the 
processor number is correlated with the task number. In our model, there are 
eleven tasks and nine employees to be allocated. The number of the processor 
is (m+1)(n-1)+2 = 10*10 + 2 = 102. It is so big that the algorithm is not suit-
able to dissolve the allocation problem involved many tasks and employees. 
And the procedure takes time O(nm2). 

2. The complexity of the algorithm is O(nm). 

9   Conclusions 

Human resource allocation is a kind of problem in data mining domain. How to get 
useful information from so much existing data is crucial to solve the problem. First 
we construct a human resource fuzzy allocation model. In the model it uses machine 
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learning method by being told to get the individual capability evaluation matrixes. It 
is suitable for the multi-objective assignment problem under a dynamic environment. 
Machine learning method and fuzzy logic concepts provide better solutions in plan-
ning problems than the previous approaches. In the solution, the individual capability 
matrixes in the knowledge warehouse are updated in time through the process of the 
self-learning. Machine learning method by being told will adjust the elements’ values 
in the matrixes to be closer to the reality from time to time. Based on the values, we 
can get the final synthesis evaluation matrix via fuzzy logic. Machine learning and 
fuzzy set theories are proper to be applied to human decision-making problems.  
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Abstract. As an important branch of evolvable hardware, evolutionary design 
of circuit (EDC) is a promising way to realize automated design of complex 
electronic circuits. To improve EDC in efficiency, scalability and capability of 
optimization, a novel technique was developed. It features an adaptive multi-
objective genetic algorithm and interactions between EDC and data mining. It 
was validated by the experiments on arithmetic circuits, showing some exciting 
results. Some circuits evolved are the best ones ever reported in terms of gate 
count and operating speed. Moreover, some novel knowledge, e.g., efficient and 
scalable design formulae and generalized transform rules have been discovered 
by mining the data and results of EDC, which are easy to verify but difficult to 
dig out by human experts with existing knowledge. 

1   Introduction 

With ever-growing scales and complexities of electronic circuits, both automated 
design and knowledge discovery of them become even more challenging tasks for 
artificial intelligence. As an important branch of Evolvable Hardware (EHW) [1,2], 
an emerging field, evolutionary design of circuits (EDC) [2] refers to applications of 
artificial-evolution based techniques especially Genetic Algorithms (GAs)[3] to 
circuit design to seek optimal or feasible solutions (i.e. structures and parameters of 
circuits) according to design targets. It is theoretically capable of automatic searching 
out optimized solutions to problems of circuit design even without a priori knowledge 
and human interventions, although the reality is far from ideal.  

As to logic or digital circuits, EDC is mainly implemented at two distinct abstract-
levels, gate-level and function-level. In contrast with a function-level evolution 
[1,2,4] that usually employs larger scale modules with more complex functions and 
directly evaluates fitness on hardware (e.g. programmable logic devices), a gate-level 
evolution [5-7] usually takes logic gates as basic units and evaluates individual's 
fitness through software simulation, which endow it with some advantages such as 
applicability and analyzability. So far, most works reported in gate-level evolution are 
concentrated on combinational circuits especially arithmetic circuits, mainly for the 
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sake of seeking novel or efficient building-blocks. But they seldom managed to deal 
with multiple objectives or design requirements involving function, gate count and 
operating speed of logic circuits [5-7, 10].  

We have developed a novel approach to gate-level multi-objective evolution of 
larger scale logic circuits. The approach features an adaptive multi-objective genetic 
algorithm and a mechanism of two-way enhancements of EDC and knowledge 
discovery, as illustrated in Fig. 1. The remainder of this paper was contributed to 
introduction of main ideas, algorithms and experimental results of it.  

 

Fig. 1. An illustration of two-way enhancements between EDC and knowledge discovery 

2   Circuit Model and Representation Scheme 

As depicted in Fig. 2, the gate-level abstract model adopted in this paper take the form 
of a rectangle array comprising logic units of C rows by L columns, each of which has 
K inputs, M outputs and N kinds of configurable functions. For all logic units, let the 
input set is CI={CIi,j |1≤i≤C, 1≤j≤L} and the output set is CO={COi,j |1≤i≤C, 1≤j≤L}, 
while for the array the external input set is S={Si |1≤i≤p} and the output is O={Oi 
|1≤i≤q}. Then, if each unit is allowed to input from the arrays' external inputs, units' 
outcomes and logic constant LC={0,1} and to feed its outcomes to other units and the 
array (i.e., its outputs), or formally CI⊂S∪CO∪LC, O⊂CO, feedbacks (i.e. resultant 
signals are subsequently taken as sources) are permitted which consequently result in 
 

 

Fig. 2. Abstract model for gate-level evolution 
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a sequential circuit. Otherwise, if each unit is not allowed to input from the units located 
in the subsequent (dextral) columns, or formally CI=S∪LC∪{COi,j |1≤i≤C, 1≤j≤x}for a 
unit located in column x, feedbacks are actually prohibited and the array is restricted to 
represent combinational circuits. Thus, such an array model is universal and convenient 
for representation of both sequential and combinational circuits. 

To encode the array, all units including the virtual units for external inputs are 
numbered orderly from rows to columns. A unit located in row i and column j, 1≤i≤C, 
0≤j≤L, is assigned a sequence number CN=i+j⋅C and encoded as a character string 
[IS1,CN, IS2,CN, ... , ISK,CN, TSCN], where {ISj,CN|1≤j≤K} indicate its input sources that 
equal to the sequence numbers of the K units that output to it respectively, and TSCN 
corresponds to its current function selected. By linking all units' encoding strings and 
an encoding string indicates sources of the array's outputs, [OS1,…,OSq], the array's 
encoding, i.e. chromosome of a potential circuit looks as follows 

],,][,,[],,,[ 1,,2,111,1,21,1 qGGKGGK OSOSTSISISISTSISISIS LLLL  (1) 

For the binary encoding adopted in this paper, the string length of ISxi and OSi is 
LS= log2 (C⋅(L+1)) , and that of TSi is LT= log2 N  ( x  denotes upper bound of x). 
Thus, the chromosome length of a circuit candidate is CL=C⋅L⋅(K⋅LS+LT)+q⋅LS. To 
decrease the problem scale and to improve efficiency, it is helpful to define as 
compact as possible a subset of logic functions, considering research intention of and 
the design task. For most EDC tasks of combinational circuits, it is feasible to adopt 
just two-input logic gates with 4 configurable functions, AND2, OR2, NOT and XOR 
(eXclusive-OR), which are most often used in conventional designs and form a 
complete logic set. As to sequential circuits, it is usually necessary to include 
additional memory-units, e.g., registers or latches in the subset. 

3   Dynamic Multi-objective Evaluation 

To design circuits is unavoidable to meet multiple targets or specifications, which 
make it a typically difficult multi-objective optimization problem expressed as 

Ω∈= XXfXfXfXfMaximize n )),(),(),(()( 21 L  (2) 

To solve the problem with efficiency and simplicity, a well-known fitness function 
in the form of 'sum of weighted objective functions' was adopted with modifications, 
which converts the problem into its single-objective equivalent that a GA is good at 

)()(
1

XFitwXFitMaximize i

n

i
i

=

•=  (3) 

Where Fiti(X) denotes the normalized objective function corresponding to object 
function fi(X); wi denotes the relevant weight factor for i=1…N, which satisfies 

1
1

=
=

n

i
iw  (4) 

To let the genetic search process pay attention to all objectives, the weight factors 
{wi} are designed to change dynamically in a way similar to that of the back-
propagation learning algorithm commonly used in artificial neural networks 
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])(/)(/2[)1()()1(
1=

−•−+•=+
N

j
jiii tFittFitNtwtw αα  

(5) 

Where α ∈ [0, 1] is a constant suggested 0.8 or so by experiments; )(tFiti
denotes the 

average fitness of all individuals in the population. Provided that wi(0)=1, Equation 
(4) will hold for all t as expected. Then, the more an objective optimized, the less the 
relevant weight factor and resultant optimizing pressure on the objective would be, 
while an less optimized objective and its weight factor will be treated in a reverse 
direction. Meanwhile, initial values of the weight factors are still meaningful to 
express user-preferences, although it is usually set as wi(0)=1/n, 1≤i≤n. 

For gate-level EDC, design targets mainly include expected functions or behaviors, 
efficiency of resource usage and operating speed of circuits. It is vital for an evolved 
circuit to behave 100% correctly according to the expectation, which is usually 
described with a truth table for combinational circuit or a state table for a sequential 
one. So, it is natural to express such a design object with a ratio of Number of 
Matched Operations (NMO) to Total Number of defined Operations (TNO) 

TNONMOFit /1 =  (6) 

Each operation corresponds to a specified combination of (input, output) or (input, 
current state, output, next state), and it is scored 1 for 'correct' and 0 for 'incorrect' by 
a simulation subprogram designed to figure out every unit's logic level and active time 
for every operation. The active time is estimated by the unit's location in a signal path, 
based on the assumption that each unit's propagation-delay is independent of its logic 
function. To get a smoother landscape that is consequently easier to search, each 
output variable is counted respectively when computing NMO and TNO.  

As a less gate-number is usually preferable, it is also natural to measure efficiency 
of resource usage of a circuit in terms of gate count. While every candidate circuit 
seemingly occupies all units in the array, it is feasible to express the objective with 
Number of Unused Gates (NUG), which are gates that have no effective effect on the 
candidate's behavior, e.g. even numbers of NOT gates linked in serial, a gate with its 
output not referred, etc. By identifying all Unused Gates in a circuit with their 
predefined features and simulation results, the relevant objective function can be 
computed as NUG divided by TNG (i.e., Total Number of Gates comprised) 

TNGNUGFit /2 =  (7) 

Operating speed of a candidate circuit can be estimated with its Maximal 
Propagation-Delay (MPD) from external inputs to array outputs, using simulation 
results regarding active time. The objective function can be computed as 

)1/(1 13 MPDkFit •+=  (8) 

Where, k1 is a user-defined parameter. With the normalized objective functions to be 
maximized, Fit1, Fit2 and Fit3, the fitness function to synthetically evaluate a 
candidate circuit can be defined as  

)()()(
3

1

tFittwtFit i
i

i •=
=

 (9) 
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4   Adaptation of Genetic Parameters 

Some GA parameters especially crossover probability Pc and mutation probability Pm 
have great effects on performances of the GA, and their optimal values are hard to be 
predefined because they vary with conditions. To improve the GA's performances, Pc 
and Pm are ordered to self-adapt to genetic-procedure and individuals' diversity. The 
former is estimated by relative generation number, a ratio of the current generation 
number t to the maximal generation number defined tmax. The latter is measured with 
concentration degree of individuals in the population, which is estimated as 

)]()(/[)()( minmax tftftftf d −+= ε  (10) 

Where fmax(t), fmin(t) and )(tf are maximal, minimum and average fitness of all 

individuals in the population respectively. Obviously, the index fd(t) satisfies 0< fd(t) 
<+∞, and it is closely related to the distribution or diversity of individuals, or more 
exactly, it will simultaneously vary with the latter but in a reverse direction. On these 
bases, Pc and Pm are ordered to adapt themselves in the following manners 
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(12) 

Where Pc0 and Pm0 are initial values of Pc and Pm respectively, and it is usually 
feasible to let Pc0 =0.8 and Pm0 =0.1; t0 and t1 are user-defined parameters that satisfy 
the inequality, 0≤t0≤t1≤tmax, and it is suggested to let t0=0.2tmax and t1=0.8tmax; k3 and k4 

are constant parameters that can be assigned as k3=k4=3. In this way, Pc and Pm will 
slowly decrease in the evolution process, meanwhile they will respond to the changes 
of individuals' diversity. With such a self-adaptation mechanism simulating some 
principles of bionomics and developmental biology [8-9], Pc and Pm will be probably 
suitable for a whole evolution process, e.g., a higher Pc and a higher Pm to speed the 
genetic search at the first stage of evolution (t<t0), a lower Pc and a higher Pm to stop 
the coming premature (local) convergence implied by an increasing fd(t) during the 
whole process of evolution search, a lower Pc and a lower Pm to improve the quality 
of the 'optimal solution' at the final stage of evolution (t0≤t≤tmax), etc. 

5   CBR-Based Extraction and Reuse of Principles 

Although EDC has succeeded in obtaining efficient or novel solutions, it is weak in 
solving large-scale and complex problems mainly due to its computation-expensive 
nature. Therefore, the idea of divide and conquer featured by conventional design 
methodologies is also useful to EDC, that is, to decompose a problem into several 
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simpler sub-problems and solve them (top-down), or conversely, to build a circuit by 
connecting modules of several types together (bottom-up). As shown in Fig. 1, these 
involve extracting meaningful sub-circuits or design principles from the evolved 
solutions and reusing them by integrating EDC with Case-Based Reasoning (CBR), 
so as to solve the scaling problem and to understand the evolved circuits. 

CBR is an artificial intelligence technique that solves new problems by using or 
adapting past solutions. In CBR systems knowledge is embodied in a library of past 
cases (i.e., case-base), rather than being encoded in classical rules. Each case typically 
contains a description of the problem, plus a solution containing implicit knowledge 
and/or the outcome. To solve a current problem with CBR, it is matched against the 
cases in the case-base, and similar cases are retrieved and used to suggest a solution 
which is reused and tested for success and then revised if necessary. Finally the 
current problem and the final solution are retained as part of a new case. Therefore, 
CBR quite suits EDC requirements of extraction and reuse of principles contained in 
EDC results, as demonstrated by some preliminary results [11, 12].  

The primary difficulties herein exist in building a case-base. While CBR relies on 
cases that have known structure, e.g. attribute value pairs, evolved circuits lack any 
understanding incorporated in their structures. As a result, all knowledge beyond their 
functionality must be identified before building a useful case-base. Instead of using a 
GA as a knowledge lean method to generate knowledge for a case-base, we employed 
the GA with efficient and flexible genotype-phenotype mapping to produce efficient 
solutions and to consequently ease the creation of a case-base.  

The first step to create a case-base is to remove redundant information and 
duplicate circuits in EDC results, and to compress (in terms of the spaces left in the 
genotypes) and normalize (in terms of the cells' order) the resultant circuits so as to 
facilitate the CBR functions of matching, retrieval and adaptation. The second step 
involves splitting the normalized circuits into sub-circuits and calculation of their 
structure, behavior and functionality. It is followed by separating the sub-circuits into 
perfect and imperfect solution elements for the given requirements. Finally, the 
circuits are indexed according to their function, behavior, structure, and sub-circuits, 
by using a case-based indexing mechanism. Each circuit or case in the case-base 
stores its own information on its similarity to all other cases, which is represented by 
four indexes correspond to its function, behavior, structure and sub-circuits 
respectively. These indexes need only be calculated once, and additional cases can be 
indexed in linear time proportional to the size of the case-base. 

With the case-base built, matching of cases is achieved efficiently by using the 
Nearest Neighbor Matching function that ranks the cases, giving rise to applications 
such as discovery of equivalent circuits or implementations of logic functions, 
transform formulas and optimal circuits in terms of gate count, speed, etc. Moreover, 
imitating the way that human designs manage to solve relatively large scale problems 
mainly by assembling verified build-blocks, appropriate cases or circuits in the case-
base can be retrieved, assembled and tested automatically towards larger and more 
complex circuits in accordance with the expected behaviors and performances of 
circuits. In this way, novel knowledge for circuit design could be discovered from 
EDC results, and in return the knowledge discovered will help understand the evolved 
circuits and partly solve the scaling problem of EDC.  
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6   Experimental Results of EDC 

By integrating the ideas discussed above into an EGA framework with roulette-wheel 
selection, one-point crossover and simple mutation, which is theoretically proved able 
to converge in a probability 1, the approach for evolutionary discovery is created. 
With this approach, evolutionary design experiments on some benchmark problems 
for gate-level evolution [6,7,10], including even-parity checkers and multipliers, have 
been implemented successfully. Thanks to the adaptation measures that are validated 
to improve robustness of GA, the experiments worked very well with a set of 
parameters. Besides the parameters given, initial values of weight factors are set as 
w1(0)=w2(0)=w3(0)=1/3, whereas population size and maximal generation number 
were specified according to the problem scale.  

An n-bit digital multiplier is a combinational circuit that output the product of two 
groups of n-bit binary numbers. A series of experiments were carried out on 
multipliers of increasing scales. For each scale from 2-bit to 4-bit, 20 runs of the 
program were performed. A 2-bit multiplier evolved is depicted in Fig. 3, which is as 
good as the best one ever known. A 3-bit multiplier evolved is depicted in Fig. 4, 
where GN is short for gate number and DN for delay number. It is 10.7% more 
efficient and 20% faster than the best one designed by a human expert, which features 
 

 

Fig. 3. A 2-bit multiplier evolved 

 

Fig. 4. A 3-bit multiplier evolved (GN=25, DN=9) 
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Fig. 5. Standard implementations of the AND gate with one input inverted, as A⊕AB=AB' 

 

Fig. 6. A 4-bit multiplier evolved (GN=58, DN=18. With input-inverted AND gates, GN=55) 

GN=28 and DN=10. Meanwhile, it is in fact as good as the most efficient one evolved 
by Miller et al [6, 10], which consists of 21 standard gates and 2 nonstandard AND 
gates with one input inverted. One such nonstandard AND gate is actually equivalent 
to 2 gates, i.e., a AND gate in conjunction with a XOR gate as emerged in our results 
or a Not gate in series with a AND gate, as shown in Fig. 5. As to a 4-bit multiplier 
that is rather difficult even for human experts to design, our result evolved from  
scratch is depicted in Fig. 6, which is much better than that of a human expert (with 
GN=64, DN=24) and that evolved by Miller et al [6, 10] from a conventional design 
result, which consists of 57 gates including 10 nonstandard AND gates and features 
DN=20. All these evolved circuits feature wondrous reuses of inner outcomes. They 
imply that our approach is effective and it surpassed its congeners and human experts, 
especially with larger circuits. 

7   Experimental Results of Data Mining 

With the techniques discussed in section 5, some experiments were carried out on 
evolved circuits. For a binary addition, the core of a binary multiplication, following 
expressions that derive the carry from the addends have been identified 
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CFn+1=CFn⊕[In+1•(I1⊕…⊕In)] (13) 
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(14) 

Where CFn and CSn denote respectively the least-bit and the secondary-least-bit of the 
carry derived from n bit-addends, I1,…,In; CFn+1 denotes the successor of CFn with an 
additional input In+1, n≥1. As CF1=0, it is easy to derive and efficiently implement 
CFn for binary additions of arbitrary bits by iteratively using Equation (13). Although 
Equations (14) have complex forms and limited applicability, they are also useful for 
efficient implementations of multipliers.  

By analyzing the experimental results of even-parity checkers of increasing inputs, 
which output '1' iff inputs contain nonzero even numbers of '1', a universal design 
formula for even-parity checkers of arbitrary bits was also found as 

Fn+1=In+1•(I1+…+In)⊕Fn (15) 

Where Fn denotes the output of a n-bit even-parity checker with n inputs, I1,…,In; Fn+1 
denotes the successor of Fn updated by In+1 joining; F1=0. In addition, some novel 
transform formulas regarding exclusive-OR logic were also obtained as 

)()()( CABACBA •⊕•=⊕•  (16) 

BABABA +=•+⊕  (17) 

)()()'()( BABABABABA •⊕+=••+=⊕  (18) 

)()()()( CABACBCABA •⊕•⊕⊕=+•+  (19) 

Although the above extracted principles are easy to prove with knowledge of 
Boolean algebra, they are rather difficult for human experts to dig out with conventional 
approaches. These results imply that the approach is useful to acquisition and discovery 
of relevant knowledge. 

8   Conclusions 

In this paper, a novel EDC approach involving CBR-based data mining was proposed 
and verified. By virtue of a series of measures cooperating together, this approach was 
proved capable of automated design of multi-objective optimized logic circuits, and it 
was shown very helpful in discovery of novel and optimized building-blocks along 
with new principles and rules. In future we will study the ways to enhance EDC and 
knowledge discovery more efficiently and interactively so as to solve large-scale 
problems and acquire new knowledge.  
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Abstract. Adverse reactions to drugs are a leading cause of hospitalisa-
tion and death worldwide. Most post-marketing Adverse Drug Reaction
(ADR) detection techniques analyse spontaneous ADR reports which
underestimate ADRs significantly. This paper aims to signal ADRs from
administrative health databases in which data are collected routinely
and are readily available. We introduce a new knowledge representation,
Unexpected Temporal Association Rules (UTARs), to describe patterns
characteristic of ADRs. Due to their unexpectedness and infrequency,
existing techniques cannot perform effectively. To handle this unexpect-
edness we introduce a new interestingness measure, unexpected-leverage,
and give a user-based exclusion technique for its calculation. Combin-
ing it with an event-oriented data preparation technique to handle in-
frequency, we develop a new algorithm, MUTARA, for mining simple
UTARs. MUTARA effectively short-lists some known ADRs such as the
disease esophagitis unexpectedly associated with the drug alendronate.
Similarly, MUTARA signals atorvastatin followed by nizatidine or di-
cloxacillin which may be prescribed to treat its side effects stomach ulcer
or urinary tract infection, respectively. Compared with association mining
techniques, MUTARA signals potential ADRs more effectively.

1 Introduction

Adverse Drug Reactions (ADRs) represent causal relationships between adverse
events and use of medicines, such as alendronate1 causing esophagitis [9]. Adverse
events contribute to about 5% of all hospital admissions, and are about the
5th commonest cause of death in hospital [4]. Among them, 30% to 60% are
preventable/avoidable by careful prescribing and monitoring [1]. With ADRs
like drug-symptom/diagnosis patterns, computerised systems can search health

1 Alendronate is an antiresorptive agent, approved for treatment of osteoporosis [7]. Its
adverse reactions or side effects include esophagitis, diarrhoea, vomiting, etc [7, 9].

W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 867–876, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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records to monitor adverse events [1]. Such patterns may be used to find at-
risk patient groups [5], or to help practitioners ameliorate their diagnoses and
prescriptions [3]. Therefore, systematically signalling and validating ADRs is of
financial and social importance.

Because of limited trial size and duration, pre-market drug testing cannot
recognise all ADRs [8]. There exist several post-marketing ADR detection tech-
niques, known as signal detection in pharmacovigilance, like EBGM (Empirical
Bayes Geometric Mean) and BCPNN (Bayesian confidence propagation neural
network) [3]. They work mainly on spontaneous ADR reports in which drugs
reportedly cause symptoms/diagnoses [3]. However, when based only on these
spontaneous ADR reports, the frequency of adverse reactions is underestimated,
typically by a factor of about 20 [1]. Adverse reactions may go unnoticed until
lots of drug users have been affected, e.g., recent experience with Vioxx [7, 9].
In contrast, administrative health databases routinely record health events such
as medical services, diagnoses, and drug prescriptions for, say, subsidy purposes.
They cover quite extensive users and are readily available. Signalling ADRs from
these databases would complement existing techniques. This data mining work
is the first and preliminary attempt on this new direction.

For each patient in an administrative health database, an event sequence can
be generated using event timestamps. Among these sequences, ADRs as patterns
are normally unexpected and infrequent due to rigorous pre-market drug testing.
It is inappropriate to signal ADRs by looking for frequent patterns/association
from the event sequences, as is done in current temporal data mining [2]. Another
difficulty is that a drug is strongly associated with certain diagnoses due to
treatment/prevention. Thus, new techniques are essential for signaling ADRs
from the sequences.

We signal ADRs by finding patterns where an event pattern C occurs unex-
pectedly in a T -sized period after another event pattern A. For simplicity, we
assume that both A and C comprise a set of event types. These patterns are de-

noted by A
T
↪→ C, called Unexpected Temporal Association Rules (UTARs). T , a

period length, constrains the temporal relation between the antecedent A and
the consequent C, and so ensures the UTARs’ plausibility. To handle the un-
expectedness, we introduce a new interestingness measure, unexpected-leverage
and give a user-based exclusion technique for its calculation. The basic idea is
to exclude expected events in a single T -constrained subsequence and then ag-
gregate unexpectedness over all the remaining T -constrained subsequences. In
contrast to [11], it need not compare new rules with existing knowledge rules
during the mining procedure in order to find unexpected rules. We also use an
event-oriented data preparation technique to handle infrequency. We develop a
new data mining algorithm, MUTARA (Mining UTAR given the Antecedent),
to signal simple ADRs where a drug causes a symptom. The technique is easily
extended for longer patterns such as adverse events induced by drug interac-
tion. Its performance is demonstrated on linked administrative health databases
by short-listing ADRs. Compared with OPUS ARt, extended from OPUS AR
(OPUS Association Rule) [12], MUTARA can short-list ADRs more effectively.
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The rest of the paper is organised as follows. We define UTARs in Section 2,
and propose its mining algorithm MUTARA in Section 3. Results and compar-
isons are presented in Section 4, followed by conclusion in Section 5.

2 Problem Formulation

We first introduce Temporal Association Rules (TARs) as a representation for
signalling ADRs from a set of health event sequences Ω. The effect of an event
is usually short-acting, e.g., less than 6 months for acute or sub-acute ADRs [8].
By embedding a temporal constraint into association rules A → C, we get a
category of TARs A

T→ C. The notation T→ is used to indicate explicitly that the
antecedent A and the consequent C occur within subsequences constrained
by a time window of length T . For simplicity, we choose such a T -constrained
subsequence from each sequence in Ω. As illustrated in Fig. 1, e.g., the subse-
quences for drug User 1 and drug Nonuser 1 are {A1,A5,A6,C1-C3} and {A3-
A5,A8,C2} within the hazard and the control periods respectively. The support
of a TAR, supp(A T→ C), is the proportion of subsequences where A occurs
before C at least once, among all the T -constrained subsequences. Thus, the
support describes how often A followed by C occurs in the subsequences. For
the two subsequences in Fig. 1, e.g., supp(A6

T→ C3)= 1
2 . Similar to associa-

tion rules, we have confidence of a TAR, conf(A T→ C) = supp(A
T→C)

supp(A
T→)

where

supp(A T→) indicates the proportion of T -constrained subsequences that con-
tain A. As another measure of the association strength [12], leverage is de-
fined as leverage(A T→ C) = supp(A T→ C) − supp(A T→) × supp( T→ C). For
the two subsequences in Fig. 1, leverage(A6

T→ C1)= 1
2 − 1

2 × 1
2 = 1

4 , and

leverage(A6
T→ C3)= 1

2 − 1
2 × 1

2= 1
4 .

Adverse events are infrequent in administrative health databases because (1)
all drugs are screened before marketing, and (2) some post-marketed drugs that
strongly led to adverse events are removed from the market. As a result, if we
want to signal ADRs by finding valid TARs whose support and confidence exceed
pre-specified thresholds θs and θc respectively, two problems emerge. (1) The
thresholds θs and θc should be set pretty small [2]. This leads to innumerable
valid TARs and makes mining algorithms unmanageable [12]. (2) It is hard
to set problem-specific thresholds properly. The same difficulties exist in other
temporal data mining models, e.g., sequential patterns [2].

One solution to signal ADRs from innumerable TARs is to short-list those
most interesting rules [12]. For example, we may simply apply OPUS AR [12]
on the T -constrained subsequences. We call this OPUS ARt. It can return a
pre-specified number of TARs that maximise a rule quality measure.

The existing interestingness measures, including risk ratio, odds ratio, and
leverage, are not suitable for ranking TARs to signal ADRs. Risk ratio and odds
ratio are two appealing measures of effect to medical experts [6, 8]. For example,
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Fig. 1. Illustration of two event sequences and concepts of MUTARA given the an-
tecedent A6. A1-A8 are prescribed drugs. C1-C5 are, e.g., diagnoses. T -constrained
subsequences for User 1 and Nonuser 1 include event types within the hazard and the
control periods respectively. Th

.= Tc = T . In MUTARA, a hazard period unites the
first 2 effect periods around A6, or a control period is set randomly for each sequence.

risk ratio is RR(A T→ C) = supp(A
T→C)/supp(A

T→)

supp(¬A
T→C)/supp(¬A

T→)
where ¬A indicates ‘no A’.

It describes to which degree A increases the occurrence rate of C with the T -
constraint. Because these two measures are commonly used in pre-market testing,
their values for ADRs in administrative health databases are relatively low.
Leverage can not indicate the unexpectedness between drugs and adverse events
for effectively signalling ADRs. Based on leverage, e.g., hypertension NOS (last
row in Tables 1 and 2) is strongly associated with alendronate1. This condition
is highlighted due to its high frequency among alendronate users, even before
taking the drug. It is not evidentially an adverse reaction.

Thus we need a new knowledge representation for ADRs. Our strategy is to
embed unexpectedness into rules directly. To clearly indicate temporal unexpect-
edness, we introduce an Unexpected Temporal Association Rule (UTAR),

denoted by A
T
↪→ C, which means that the consequent C occurs unexpectedly

within a T -sized period after the antecedent A. Rather than defining unex-
pectedness explicitly, we aggregate it from individual sequences.

Definition 1. The support of the UTAR supp(A
T
↪→ C) is the proportion of the

T -constrained subsequences that contain A unexpectedly followed by C, among
all of the T -constrained subsequences.

In other words, only the subsequences that contain A and then unexpectedly

contain C will favor A
T
↪→ C. Within a single sequence, we bypass the problem

of determining whether event types unexpectedly follow A and only exclude ex-
pected event types following A. In the first sequence in Fig. 1, e.g., C3 occurs
both after and before the first A6. For its subsequence within the hazard period,
C3 is expectable after A. That is, this subsequence does not favor the unexpected

temporal association between A6 and C3. Thus supp(A6
T
↪→ C3) = 0. Sequence

information outside of subsequences can be used to prune expected event types,
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and remaining subsequences may be aggregated together to express the unex-
pectedness of UTARs. A simple user-based exclusion operation will be given in
Section 3.

Having defined the support for UTARs, we can now introduce a new measure.

Definition 2. The unexpected-leverage of the UTAR A
T
↪→ C is the propor-

tion, among all the T -constrained subsequences, of the subsequences that exhibit
the unexpected association in excess of those that would be supposed if A and
unexpected C were independent of each other. That is,

unexlev(A
T
↪→ C) = supp(A

T
↪→ C)− supp(A T→)× supp(

T
↪→ C) (1)

where supp(
T
↪→ C) is the proportion of subsequences that unexpectedly contain C.

Thus, only the subsequences which unexpectedly contain C will contribute to
unexpected-leverage. For example, for the two subsequences in Fig. 1, we have

unexlev(A6
T
↪→ C1) = 1

4 > unexlev(A6
T
↪→ C3) = 0. The measure successfully

distinguishes C1 from the others.
To avoid the problem of proper threshold settings, we generate a pre-specified

number of, say 10, UTARs with high unexpected-leverage for signalling ADRs.
Another reason to rank UTARs only based on unexpected-leverage is that large
unexpected-leverage also indicates large support and confidence.

3 Mining UTARs Given the Antecedent (MUTARA)

In this section, we develop a simple but effective algorithm to search for in-
teresting UTARs when the antecedent, say a drug, is specified in advance. We
concentrate on simple UTARs corresponding to an ADR in which the use of a

drug causes a diagnosis, i.e., drug A
T
↪→ diagnosis C. These UTARs are of great

practical value, and the success on them may also pave the way for mining so-
phisticated UTARs in future. The mining algorithm, MUTARA, is outlined in
Algorithm 1. We exemplify it on the two health event sequences as illustrated
in Fig. 1.

In Step 1, we initialise parameters as explained below.

– The antecedent A is specified to restrict the search space, e.g., A6. The
sequences having A are called user sequences, and otherwise nonuser
sequences.

– Event types of interest determine the possible candidates for the consequent
C, e.g., diagnoses C1-C5.

– A study period is specified by [tS , tE ] according to the antecedent A. User
sequences that do not contain A in this period are ignored.

– The time lengths Te, Tr, Tb, and Tc indicate lengths of, respectively, the effect
period, the reference period, the period between the first A and the starting
point of the reference period, and the control period as illustrated in Fig. 1.
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Algorithm 1 Mining UTARs given the Antecedent (MUTARA).

1. Initialise parameters, such as the antecedent A, event types of interest, the study
period [tS , tE], time period lengths Te, Tr, Tb, and Tc.

2. Prepare user subsequences from user sequences which have A during the study
period: choose event types from the hazard period, and exclude some of them
based on the user-based exclusion with respect to the antecedent A;

3. Choose nonuser subsequences from the control period from nonuser sequences;
4. Calculate supports and unexpected-leverage of each event type of interest;
5. Rank the event types in the descending order of unexpected-leverage, and return

the top 10 UTARs with high unexpected-leverage.

– In order to offset low frequency of adverse reactions, a hazard period may
cover several effect periods in a single user sequence. Effect periods starting
with A ensures there exists A within a Te-size period before any event in the
hazard period. Based on empirical results, the hazard period is set as the
union of the first two effect periods as illustrated in Fig. 1.

Clearly, event types within the hazard period may associate with the an-
tecedent A. Among them, some are not likely to be unexpectedly induced by A.
For each user sequence, we can use the event types which occurred before the
first occurrence of A to infer event types which are not unexpectedly induced by
A. We can disregard these expected ones in the hazard period, and infer that
the remaining ones are more likely caused by A unexpectedly. An underlying
reason is that most event types are more common in certain patient groups, say,
the condition hypertension for the elderly [6] no matter whether A occurs or not.
To simplify this exclusion operation for Step 2, we borrow the concept of the
reference period from case-crossover studies [6]. It is a Tr-sized period which is
a Tb-sized interval before the first occurrence of A as illustrated in Fig. 1. If the
event type (e.g., suffering a disease) occurs in the reference period, the patient
(or his/her doctors) would be not surprised to see its occurrence after A, espe-
cially if A is likely used to treat/prevent that event type. The event types within
the reference period are probably not unexpected to the user with respect to the
antecedent A, and they can be excluded for mining simple UTARs. For User 1
in Fig. 1, e.g., C3 is in the reference period, and C1, C2, C3 in the hazard period.
Then, C3 is excluded and {C1, C2} are left for this subsequence. This exclusion
operation is carried out only based on a single user sequence, and is termed as
the user-based exclusion. It is basically designed to exclude some expected
event types from a single drug user’s viewpoint.

In Step 3 of MUTARA, for each nonuser sequence, we may randomly choose
the control period within [tS , tE + Tc]. In order to avoid other confounding
factors like age and gender, all nonusers are chosen from the same age-gender
group as drug users. The event types within the control period comprise the
nonuser subsequence.

In Step 4, putting the user subsequences after exclusion and the nonuser
subsequences together, we calculate supports for each event type with respect
to A. We compute unexpected-leverage of each event type according to Eq. (1).
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Unexpected-leverage then aggregates unexpectedness among the subsequences.
Finally, MUTARA outputs the top 10 UTARs with highest unexpected-leverage.

In MUTARA, the hazard, the effect and the control periods are set accord-
ing to the antecedent A, and it restricts the event types in the calculation of
supports. This event-oriented data preparation makes it possible to signal
the usually infrequent ADRs. The user-based exclusion in Step 2 is simple and
easily implemented, but it is crucial in MUTARA. In order to make a clear com-
parison, the only difference of our implemented OPUS ARt from MUTARA is
without using the user-based exclusion.

4 Experimental Results on Administrative Databases

The CSIRO, through its Division of Mathematical and Information Sciences,
was commissioned by the now Australian Government Department of Health
and Ageing (DoHA) in August 2002 to analyse a linked data set produced from
MBS, PBS and Queensland Hospital morbidity data, more commonly referred
to as the Queensland Linked Data Set (QLDS). The objective was to provide
a demonstration of the utility of data mining on de-identified administrative
health data to investigate patterns of utilisation, adverse events and other health
outcomes.

The QLDS was made available to CSIRO under a negotiated agreement be-
tween DoHA and Queensland Health. The data set contained de-identified and
confidentially linked patient level hospital separation data (1 July 1995 to 30
June 1999), Medicare Benefits Scheme (MBS) data and Pharmaceutical Benefits
Scheme (PBS) data (both 1 January 1995 to 31 December 1999). All data were
de-identified, and actual dates of service were removed, so that time sequences
were indicated only by time from first admission. This process provided strong
privacy protection, consistent with the requirements of the relevant Federal and
State legislations. CSIRO held the QLDS in a secure computer environment and
limited access to authorised staff directly involved in the data analysis.

Each record in the hospital separation data may have several inpatient diag-
noses coded in the ICD9 system. There are 2020 different diagnoses. Each record
in the PBS data corresponds to one prescription supplied to one patient, and
there are 758 distinct codes in the WHO ATC system [10]. The ATC codes for
alendronate and atorvastatin, e.g., are M05BA04 and C10AA05 respectively [10].
For convenience, we refer to 1 January 1995 as Day 1 hereinafter. Thus the time
period is [1, 1826] for all the health event sequences.

Like other data mining results, it is unrealistic to expect every interesting
UTAR generated to be of value to domain experts. There may several reasons
for UTARs being mined from the QLDS. (1) The QLDS only contains data for
hospitalised patients which may not be representative of the general population.
(2) The QLDS contains incomplete health data for each patient. Thus, similar to
signal ADRs from spontaneous ADR reports [3], a practical goal is to short-list
the unexpected associations between adverse events and use of medicines among
the most interesting UTARs. These associations would have to be further evalu-
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Table 1. Comparison results on inpatient diagnoses for older females given alendronate
(4341 patients have used alendronate during [672, 1465], 121962 nonusers, and totally
there are N = 4341 + 121962 = 126303 subsequences)

Rank based on ICD9 Diagnosis Unexlev supp(
T
↪→ C) UTAR Leverage supp(T→ C) TAR

Unexlev Leverage code name ×N support ×N support

1 1 73300 OSTEOPOROSIS NOS 1.13E-03 954 175 2.02E-03 1071 292
2 3 73313 PATH FX VERTEBRAE 3.57E-04 260 54 5.63E-04 287 81
3 6 —– ——– 1.90E-04 118 28 3.50E-04 139 49
4 13 53011 REFLUX ESOPHAGITIS 1.59E-04 579 40 2.20E-04 587 48
5 11 —– ——– 1.52E-04 344 31 2.28E-04 354 41
6 24 —– ——– 1.35E-04 85 20 1.43E-04 86 21
7 5 —– ——– 1.35E-04 1396 65 3.64E-04 1426 95
8 9 —– ——– 1.31E-04 682 40 2.69E-04 700 58
9 23 —– ——– 1.13E-04 225 22 1.43E-04 229 26
10 15 —– ——– 1.12E-04 489 31 1.89E-04 499 41
· · · · · · · · · · · ·
1163 2 4019 HYPERTENSION NOS -4.61E-04 6757 174 7.24E-04 6912 329

ated by causality analysis [3], and other health aspects taken into consideration
in interpretation on any findings. Because this isn’t yet to be done for our re-
sults, only those results corresponding to known ADRs are reported. If a drug
is prescribed to treat a condition, it can be taken as a proxy for side effects
associated with the condition. Prescription of nizatidine, e.g., may be a proxy
for ulcers [7]. Some ADRs then may be signalled from unexpected associations
between drugs probably used to treat adverse reactions and a given drug.

We report some preliminary results generated by MUTARA, in comparison
with OPUS ARt. We concentrate on two drugs, alendronate1 and atorvastatin2.
Since atorvastatin is well-tolerated and its adverse drug reactions rarely lead to
hospitalisation, we use prescribed drugs as proxies for signalling its side effects.

Due to space limitation, we only report some results on two cohorts, ‘older
(≥60) females’ and ‘older (≥60) males’. The parameters are set as follows. Te =
Tc = 180 and Tc = Tb = 6×Te in days. For the study period [tS , tE ], in order to
leave reasonable room for hazard periods, tE = 1645−Te for inpatient diagnoses
and tE = 1826− Te for prescribed drugs. tS is set as the drug introduction day,
i.e., 672 and 1114 for alendronate and atorvastatin respectively.

Table 1 lists some inpatient diagnoses in the descending order of unexpected-
leverage for older females given alendronate generated by MUTARA. They are
compared with results generated by OPUS ARt. In Table 1, reflux esophagitis
(53011) is ranked as No 4 based on its unexpected-leverage value of 1.59E-04
(Column 5) among 2020 different diagnoses. It is worth noting that 48 (Column
10) patients suffer reflux esophagitis within 180 days after taking alendronate.
Among them, about 40 (Column 7) drug users start suffering reflux esophagitis
after drug usage. That is, only 8 patients suffered reflux esophagitis in their haz-
ard and reference periods. As a comparison, reflux esophagitis is ranked as No
13 (Column 2) based on leverage (Column 8). It is interesting to observe that
the first two diagnoses in Table 1 are closely related with osteoporosis which
2 Atorvastatin is used to reduce the amount of cholesterol and certain fatty substances

in the blood. Its side effects include stomach ulcer, urinary tract infection, etc [7].
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Table 2. Comparison results on inpatient diagnoses for older males given alendronate
(1027 alendronate users during [672,1465], 101304 nonusers, and N=102331)

Rank based on ICD9 Diagnosis Unexlev supp(
T
↪→ C) UTAR Leverage supp(T→ C) TAR

Unexlev Leverage code name ×N support ×N support

1 1 —– ——– 2.13E-04 119 23 3.78E-04 136 40
2 11 53081 ESOPHAGEAL REFLUX 4.85E-05 402 9 5.82E-05 403 10
3 4 —– ——– 4.83E-05 305 8 9.66E-05 310 13
4 13 —– ——– 4.31E-05 358 8 5.27E-05 359 9
5 25 —– ——– 3.41E-05 250 6 3.41E-05 250 6

· · · · · · · · · · · ·
495 2 4019 HYPERTENSION NOS -7.87E-05 4390 36 2.02E-04 4419 65

Table 3. Top 10 drugs unexpectedly associated with atorvastatin for older males (6236
atorvastatin users during [1114, 1646], 78800 non-users, and N=85036)

Rank based on ATC Drug Unexlev supp(
T
↪→ C) UTAR Leverage supp(T→ C) TAR

Unexlev Leverage code name ×N support ×N support

1 8 —– ——– 4.01E-03 3463 595 5.33E-03 3584 716
2 24 —– ——– 2.59E-03 2588 410 2.75E-03 2603 425
3 46 —– ——– 1.09E-03 1490 202 1.65E-03 1541 253
4 56 A02BA04 Nizatidine 7.39E-04 1461 170 1.40E-03 1522 231
5 19 —– ——– 6.73E-04 2247 222 2.94E-03 2455 430
6 98 J01CF01 Dicloxacillin 6.25E-04 993 126 7.67E-04 1006 139
7 103 —– ——– 5.51E-04 466 81 7.25E-04 482 97
8 90 —– ——– 5.45E-04 1100 127 9.04E-04 1133 160
9 125 —– ——– 5.01E-04 237 60 5.23E-04 239 62
10 63 —– ——– 4.85E-04 1388 143 1.25E-03 1458 213

alendronate1 is used to treat/prevent. We attribute these results to ‘therapeutic
failures’ and the incomplete data. If the health event sequences contained all
the diagnoses/symptoms before alendronate prescription, the user-based exclu-
sion would decrease the unexpected-leverage values of these failures. This would

further highlight ADRs like alendronate
T
↪→ reflux esophigitis in Table 1. Though

hypertension NOS is ranked as No 2 by OPUS ARt, it is ranked as low as 1163
by MUTARA. Similar results can be found in Table 2. On the other hand, MU-
TARA and OPUS ARt run about 63.1 and 64.8 seconds on an Intel Pentium 4
(3.2GHz)/Linux computer respectively. Both run comparably fast.

Table 2 shows inpatient diagnoses with highest unexlev values for older males
given alendronate. Among the 10 drug users suffering esophageal reflux, only one
suffers it in its reference period. Based on its unexlev value of 4.85E-5, esophageal
reflux which belongs to esophagitis1 is ranked as No 2 by MUTARA. It is No 11
based on leverage by OPUS ARt.

Table 3 lists top 10 drugs with highest unexlev values for older males when
atorvastatin is specified. It is interesting to see that No 4 and 6 drugs may be
prescribed to treat side effects of atorvastatin2. Nizatidine (A02BA04) is used to
treat the recurrence of ulcers and to treat other conditions where the stomach
produces too much acid [7]. Nizatidine is presumably prescribed to treat side
effects like stomach ulcer related to atorvastatin. Similarly, dicloxacillin (J01CF01)
is presumably prescribed for urinary tract infection2. As a comparison, these two
drugs are ranked as low as 56 and 98 by OPUS ARt respectively.
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5 Conclusion and Future Work

In this paper, we have proposed the new knowledge representation, Unexpected
Temporal Association Rule (UTAR), and its interestingness measure, unexpected-
leverage, in the context of signalling unexpected and infrequent Adverse Drug Re-
actions (ADRs) from administrative health databases. Based on our user-based
exclusion and event-oriented data preparation techniques, we have developed a
simple mining algorithm MUTARA to signal simple ADRs.

From the QLDS, MUTARA has short-listed some known ADRs such as alen-

dronate
T
↪→esophagitis, and atorvastatin

T
↪→ stomach ulcer or urinary tract infection

using drugs as proxies for diagnoses. Considering data biases and incompleteness
in the QLDS, these shortlists are quite promising to help medical experts identify
ADRs efficiently and effectively. It demonstrates the usefulness of this research.
We are currently extending the proposed techniques to signal more complicated
ADRs. In addition, we are interested in mining ADRs from large administrative
health databases without specifying the drug exposure or outcome event.
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Kröger, Peer 119
Kryszkiewicz, Marzena 468
Ku, Wen-Yuan 790

Lam, Wai 334
Le, Hoai Minh 160
Le, Minh-Hoang 265
Le, Si Quang 493
Le Thi, Hoai An 160
Lee, Hansung 603
Leschi, Claire 60
Leskovec, Jure 380
Li, Chuanjun 689
Li, Chunping 400
Li, Jinyan 425
Li, Ming 704
Li, Xiaoming 361
Li, Yijun 780
Liao, Lingzhi 20
Lim, Ee-Peng 250, 415
Lin, Ming-Yen 724
Ling, Ping 225
Liu, Baw-Jhiune 530
Liu, Fei Tony 81
Liu, Ken-Hao 729
Liu, Mengxu 91
Liu, Rey-Long 255

Liu, Tie-Yan 240, 313
Liu, Wei-Chuan 729
Liu, Yang 107
Lu, Jingli 499
Lu, Yumao 205
Luo, Siwei 20

Ma, Wei-Ying 240, 275, 313
Ma, Xiuli 149
Ma, Xuesong 657
Majumdar, A.K. 611
McAullay, Damien 867
Meng, Yu 750
Mogi, Akira 390
Moon, Yang-Sae 739
Motoda, Hiroshi 390

Nakamori, Yoshiteru 265
Nayak, Richi 292
Newton, Glen 657
Ng, Jackey 199
Ng, Wilfred 462
Ng, Yen Kaow 540
Nguyen, Phu Chien 390
Nichele, Caren Moraes 346

O’Keefe, Christine M. 867
O’Keefe, Richard 473
Ohara, Kouzou 390
Ohsaki, Miho 509

Padmanabhan, Srihari 673
Papadimitriou, Spiros 713
Park, Cheong Hee 30
Park, Daihee 603
Pfahringer, Bernhard 60, 97
Pfeifle, Martin 179
Polat, Huseyin 637
Prabhakaran, B. 689
Precup, Doina 657
Pryakhin, Alexey 139, 174

Qian, Weining 621
Qiang, Qi 15

Raghavan, Prabhakar 11
Ramamohanarao, Kotagiri 91
Reutemann, Peter 60
Ribeiro, Rita 816
Rountree, Nathan 473
Roychowdhury, Vwani 205



Author Index 879

Saad, F.H. 285
Sap, Mohd. Noor Md. 841
Schmidt-Thieme, Lars 831
Schubert, Matthias 139, 174
Scripps, Jerry 765
Shinohara, Takeshi 540
Silvescu, Adrian 45, 55
Simoff, Simeon J. 410
Simovici, Dan A. 35
Singh, Ajit 380
Song, Binheng 847
Srivastava, Abhinav 611
Sun, Aixin 250, 351
Sun, Jimeng 713
Sundaram, Hari 371
Sung, Sam Y. 552
Sural, Shamik 611

Tan, Henry 450
Tan, Pang-Ning 765
Tang, Shiwei 149
Taniar, David 415
Tao, Pham Dinh 160
Thuraisingham, Bhavani M. 12
Ting, Kai Ming 81
Tong, Weimin 780
Torgo, Luis 816
Tseng, Belle 371
Tseng, Shian-Shyong 483
Tso, Karen H.L. 831
Tsumoto, Shusaku 509
Tung, Anthony K.H. 577

Vaidya, Jaideep 647
Vasile, Flavian 55
Vinh, Le Sy 493

Wang, Ching-Yao 483
Wang, Wei 577
Wang, Yan 225
Wang, Zhihai 20
Washio, Takashi 390
Wee, Kyubum 594
Wen, Ji-Rong 275
Williams, Graham 189
Wong, Tak-Lam 334
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