
Specification and Analysis of Distributed
Object-Based Stochastic Hybrid Systems
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Abstract. In practice, many stochastic hybrid systems are not auto-
nomous: they are objects that communicate with other objects by ex-
changing messages through an asynchronous medium such as a network.
Issues such as: how to compositionally specify distributed object-based
stochastic hybrid systems (OBSHS), how to formally model them, and
how to verify their properties seem therefore quite important. This pa-
per addresses these issues by: (i) defining a mathematical model for such
systems that can be naturally regarded as a generalized stochastic hybrid
system (GSHS) in the sense of [6]; (ii) proposing a formal OBSHS spec-
ification language in which system transitions are specified in a modular
way by probabilistic rewrite rules; and (iii) showing how these systems
can be subjected to statistical model checking analysis to verify their
probabilistic temporal logic properties.

1 Introduction

Stochastic hybrid systems (see the survey [28] and references there) generalize
ordinary hybrid systems (see, for example, [23, 3, 22, 4]) by allowing continuous
evolution to be governed by stochastic differential equations (SDE’s) and/or by
allowing instantaneous changes in system modes to be probabilistic. This fits
well the intrinsic uncertainty of the environments in which many hybrid systems
must operate, and is also very useful when some of the system’s algorithms
are probabilistic. Indeed, there is a wide range of application areas, including
communication networks [16], air traffic [18, 19], economics [9], fault tolerant
control [13], and so on. Bioinformatics, where symbolic, hybrid, and probabilistic
cell models are used, e.g., [11, 21, 15], seems also a field ripe for stochastic hybrid
system applications.

While a solid foundation already exists about the mathematical properties
of stochastic hybrid system models, such as being a strong Markov process,
the question of how to specify such systems in a compositional way, so that
larger systems can be described and understood in terms of smaller subsystems,
remains to a good extent open, although some proposals discussed below and
in Section 6 have already been made. Likewise, the question of how to formally
analyze such systems in ways that substantially extend the analytic power of
current simulation methods seems very much open. Since some application areas
(for example, air traffic control) require very high assurance, specification and
verification are important issues to address.
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The main goal of this paper is to address these specification and verification
issues, presenting a concrete proposal for how to formally specify and verify
stochastic hybrid systems that are distributed, and consist of different kinds of
stochastic hybrid objects that interact with each other by asynchronous message
passing. A distributed object-oriented style with asynchronous communication
seems very natural for specifying many such systems: for example, networked em-
bedded systems, or systems made out of aircraft and other, possibly unmanned,
vehicles. However, we are not aware of any formal model currently supporting
this specification style for stochastic hybrid systems. Our contributions in this
regard include: (i) a mathematical model of distributed and asynchronous object-
based stochastic hybrid systems (OBSHS) that has the strong Markov property
and can be mapped to the GSHS model of [6] (Section 3); and (ii) a formal
specification language in which such systems can be specified in a modular and
natural way using probabilistic rewrite rules (Section 4).

We also address formal verification issues in Section 5. Our specifications can
be simulated by translating them into Maude rewriting logic specifications [7].
They can also be subjected to statistical model checking analysis using the VeStA
tool [29]. In this way, probabilistic temporal logic properties of a stochastic hy-
brid system can be model checked with a desired degree of statistical confidence,
based on Monte Carlo simulations. We explain and illustrate this kind of model
checking analysis with two case studies.

In Section 6 we discuss related work and make some concluding remarks. In
particular, we discuss three other models that also address composition and
concurrency issues for stochastic hybrid systems, namely, those proposed in
[2, 31, 12]. As we further explain in Section 6 , although the model in [2] supports
objects, and that in [12] supports delayed interaction, none of these models sup-
ports distributed object communication by asynchronous message passing. To
make the paper reasonably self-contained and ease the presentation in Sections
3–4, we provide basic background on term rewriting, probabilistic rewriting, and
object-based specification in Section 2.

2 Probabilistic Rewriting and Distributed Objects

We review basic concepts on term rewriting, probabilistic rewriting, and dis-
tributed objects. This will help motivate our mathematical model of OBSHS
in Section 3 and our proposed OBSHS specification language in Section 4. The
exposition below is informal; we refer to [10] for more details on term rewriting,
and to [1] for more details on probabilistic rewriting.

We assume a signature Σ of function symbols, say, f, g, h, a, b, . . . ∈ Σ, having
an arity function ar : Σ −→ N specifying the number of arguments of each
function symbol. We then denote by TΣ(X) the algebra of Σ-terms on a set
X of variables. For example, f(x, g(b, y)) ∈ TΣ(X) is a Σ-term with ar(f) =
ar(g) = 2, ar(b) = 0, and x ∈ X . We illustrate with an example the notions of
subterm, subterm position, and subterm replacement For example, x, g(b, y), and
b are subterms of f(x, g(b, y). If we think of a term as a labeled tree, then its
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subterms are its subtrees. We can indicate subterm positions by finite strings of
natural numbers denoting paths from the root of the tree. For example, the above
three subterms are at positions 1, 2, and 2.1, respectively. Given a position p in a
term t, t/p denotes the subterm at position p. Given terms t and u, and a position
p in t, we denote by t[u]p the new term obtained by replacing the subterm t/p
by u at position p. For example, for t our example term and u = h(a) we have
t[u]2 = f(x, h(a)). Note that each term t has a set vars(t) of variables appearing
in it. A substitution θ is a function θ : Y −→ TΣ(X) with Y a set of variables.
It extends in a unique way to a Σ-homomorphism θ : TΣ(Y ) −→ TΣ(X). For
our example term t, if θ(x) = h(z) and θ(y) = c, then θ(t) = f(h(z), g(b, c)). A
rewrite rule is a sequent l −→ r with l, r ∈ TΣ(X). We call l the rule’s lefthand
side, and r its righthand side, Let R be a set of rewrite rules. We say that a term
t is rewritten in one step by R to t′, denoted t −→R t′, if there is a position p in
t and a substitution θ such that t/p = θ(l) and t′ = t[θ(r)]p. We denote by −→∗

R

the reflexive and transitive closure of R. Intuitively, we will think of terms as
the states of a system. Then a set R of rewrite rules can be understood as a set
of parametric state transitions, and −→∗

R as the system’s reachability relation.
We call a rewrite rule l −→ r nondeterministic if vars(r) �⊆ vars(l).

We can generalize this picture by rewriting not just terms, but equivalence
classes of terms modulo an equational theory E. This is accomplished by the no-
tion of a rewrite theory (Σ, E, R) [24], with Σ a signature, E a set of
Σ-equations, and R a set of rewrite rules. Intuitively, the idea is to view the
states of our system as elements of the algebraic data type TΣ/E specified by the
equations E, its so-called initial algebra. The elements of TΣ/E are E-equivalence
classes [t] of Σ-terms t without variables modulo the equations E. Now R rewrites
such equivalence classes instead of rewriting just terms. This is particularly use-
ful for modeling distributed object systems that communicate with each other
by message passing. We can view an object, say of a given object class C, as a
record-like term of the form 〈o : C | a1 : v1, . . . , an : vn〉, where o is the object’s
name or identifier, C is its class name, and the ai are its state variables (each
of an appropriate type) with the vi the corresponding values. We can similarly
view a message addressed to o as another term of the form 〈o ← c〉 with c its
contents and o its addressee. We can then model the distributed state of an
object system as a multiset or “soup” of objects and messages. We denote mul-
tiset union with the parallel composition operator ‖ , where the two underbars
indicate argument positions. For example the distributed state

〈o : C | a1 : v1, . . . , an : vn〉 ‖ 〈o ← c〉 ‖ 〈o′ : C′ | b1 : v′1, . . . , bk : v′k〉 ‖ 〈o′ ← c′〉

has two objects o and o′ of classes C and C′, each with a message addressed
to it and not yet received. Since multiset union is associative and commutative,
the order of objects and messages is immaterial. In the case of objects in an
OBSHS, the only additional fact is that some of the variables ai of an object
〈o : C | a1 : v1, . . . , an : vn〉 are continuous, that is, they take real numbers as
values, while other variables can be discrete. Since for OBSHS real time is of
the essence, in addition to ordinary messages ready for instantaneous reception,
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there will also be scheduled messages of the form [d, 〈o ← c〉], where d is a time
called the deadline, which is decreased by time elapse. This allows us to model
the fact that asynchronous communication in a distributed system takes time, so
that a message sent is not immediately available for reception. In an OBSHS at
any given time there will be at most one message available for reception, called
the active message: all other messages will be scheduled messages.

The discrete transitions of a distributed object systems typically take place
in response to messages: an object, upon receiving a message, may change its
state, send other messages, and may disappear and/or spawn new objects. Such
discrete concurrent transitions, as we will illustrate in a moment, can be natu-
rally specified by rewrite rules. The point, however, is that for such systems the
rewriting should be multiset rewriting, in which the order of objects and mes-
sasages in the “soup” is immaterial. This can be neatly captured by a rewrite
theory (Σ, AC ∪ E, R), where Σ specifies all the operators building up objects
and messages, and the parallel composition operator ‖ , AC are equations of
associativity and commutativity for ‖ , and E are other equations specifying
auxiliary functions.

However, in an OBSHS the rewrite rules R specifying the instantaneous ob-
ject transitions are typically probabilistic. A probabilistic rewrite rule [20, 1] is a
rewrite rule of the form

l(x) → r(x, y) with probability y := p(x)

The first thing to observe is that such a rule is nondeterministic, because the
term r has new variables y disjoint from the variables x appearing in l. Therefore,
a substitution θ for the variables x appearing in l that matches a subterm of
a term t at position p does not uniquely determine the next state after the
rewrite: there can be many different choices for the next state, depending on
how we instantiate the extra variables y in r. In fact, we can denote the different
next states by expressions of the form t[r(θ(x), ρ(y))]p, where θ is fixed as the
given matching substitution, but ρ ranges over all the possible substitutions for
the new variables y. The probabilistic nature of the rule is expressed by the
notation: with probability y := p(x), where p(x) is a probability measure on
the set of substitutions ρ (modulo the equations E in the given rewrite theory).
However, the probability measure p(x) may depend on the matching substitution
θ. We sample y, that is, the substitution ρ, probabilistically according to the
probability measure p(θ(x)).

A simple example can illustrate many of the ideas presented so far. A possible
object in an OBSHS can be a bidder object in an auction (Section 5.1). This is an
object of the form 〈o : Bidder | motivation : m〉, with motivation a continuous
variable measuring the bidder’s degree of interest in the auction. The bidder
sends bids to the auction at random times, but a bidder with greater motivation
will bid more often. This can be modeled by the probabilistic rewrite rule

〈X : Bidder | motivation : M〉 ‖ 〈X ← schedule.bid〉 −→
〈X : Bidder | motivation : M〉 ‖ [T, 〈X ← place.bid〉]

with probability T := Exp(0.1 ∗ duration/0.1 + M)
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were upon receiving a message 〈X ← schedule.bid〉 the bidder X schedules
its next bid according to an exponential distribution whose rate involves both
the auction duration and its own motivation. The probability measure crucially
depends on the bidder’s motivation, which is determined in each rule instance
by the substitution θ instantiating the lefthand side variable M .

3 Object-Based Stochastic Hybrid Systems

This section presents our OBSHS model and shows its relation to the GSHS
model. To simplify the mathematical details, we adopt a more Spartan notation
for object states as tuples (o, q, v), with o the objects name, q a single discrete
element that tuples together the class name and the discrete variables, and v
the vector of values of the continuous variables. For (X, O) a topological space,
(X, B(X)) denotes its associated measurable space.

Definition 1. Given measurable spaces (X, FX), (Y, FY ), we call a function
K : X × FY → [0, 1] a Markov kernel (from (X, FX) to (Y, FY )) iff K satisfies:
(i) ∀x ∈ X, K(x, ·) is a probability measure, and (ii) ∀B ∈ FY , K(·, B) is
measurable. Intuitively, we think of K as a “probabilistic transition relation”
from X to Y . �

Definition 2. A stochastic hybrid object class (OBSHS class) C is a tuple
C = (QC , Oid, InvC , µ, σ, JumpC), where:

Discrete States: QC is a countable set of discrete states.
Object Identifiers: A countable set Oid of object names.
Invariants: For a fixed dimension l, a function InvC : QC → O(Rl), where
O(Rl) is the set of open sets of the Euclidean space R

l.
Object States: The state of an object o, with o ∈ Oid, is a triple s = (o, q, v)
with q ∈ QC and v ∈ InvC(q). The set of all such states for all objects in the
class C is denoted

SC =
⋃

o∈Oid, q∈QC

{o} × {q} × InvC(q)

we also define its closure SC as the set

SC =
⋃

o∈Oid, q∈QC

{o} × {q} × InvC(q)

with InvC(q) the topological closure of the open set InvC(q), and its boundary
∂SC = SC �SC. Note that SC is a disjoint union of metric spaces and therefore
has an associated measurable space (SC , B(SC)).
SDE Dynamics: is specified by a pair of functions µ : DC → R

l and σ : DC →
R

l×m, with DC =
⋃

q∈QC
{q} × InvC(q), and with µ(q, x), σ(q, x) bounded and

Lipschitz continuous in x.
Jump Kernel: a Markov kernel JumpC : ∂SC × B(SC) → [0, 1]. �



Specification and Analysis of Distributed OBSHS 465

A message has an object o from some class C as its addressee, and can also
contain discrete and continuous parameters.

Definition 3. Given an OBSHS class C, a message type M for objects of class
C is a tuple M = (OidC , Q′, d) with OidC the object names of class C, Q′ a
countable set of discrete parameters, and d ∈ N the dimension of the set of
continuous parameters R

d. The set SM of messages of type M is then SM =
OidC × Q′ × R

d. Similarly, the set SSM of scheduled messages of type M is
SSM = SM × R≥0. �
Definition 4. An Object-Based Stochastic Hybrid System (OBSHS) A is
given by:

• a set C1, . . . , Cn of OBSHS classes.
•a setM1,. . . , Mm of message types, each involvingsome Ci among the C1,. . . ,Cn.

The states of an OBSHS are multisets which contain objects in C1, . . . , Cn,
scheduled messages in M1, . . . , Mm, and at most one message in one of the Mj:

s={((o1, q1, v1), . . . , (ok, qk, vk), [(o′, q′, v′)], ((o′1, q
′
1, v

′
1), t1), . . . , ((o

′
s, q

′
s, v

′
s), ts))}

where the object identities o1, . . . , ok are all different, we have a set inclusion
{o′, o′1, . . . , o′s} ⊆ {o1, . . . , ok}, and [(o′, q′, v′)] means that the single message
(o′, q′, v′) may not be present. The discrete component of the above state is the
multiset

q = disc(s) = {(o1, q1), . . . , (ok, qk), < (o′, q′) >, (o′1, q
′
1), . . . , (o

′
s, q

′
s)}

where the angle bracket operator < (o′, q′) > acts as a marker to distinguish
the discrete part of the unique active message (o′, q′, v′) if such a message is
present. The set QA of all discrete components disc(s) of the states s of an
OBSHS A is by construction a countable set. The continuous component of the
state s is of course scattered through the different objects and messages, but
we can easily consolidate it into a single component as follows. Without loss
of generality we may assume that the sets OidC1 , . . . , OidCn and Q′

M1
, . . . , Q′

Mm

are all disjoint and that the discrete message parts q′, q′1, . . . , q
′
s are all different1.

Then, by linearly ordering the C1, . . . , Cn, M1, . . . , Mm, and assuming linear
orders in the OidCi and Q′

Mj
, we can lexicographically sort the elements of any

discrete state disc(s) in a unique way. Suppose that the sorted form of the state s
above is exactly the order in which its elements are listed. Then, the continuous
component of s is the vector

v = cont(s) = (v1, . . . , vk, v′, v′1, t1, . . . , v
′
s, ts)

This means that we can represent the set of all states of the OBSHS A as a
disjoint union

SA =
⋃

q∈QA

{q} × Inv(q)

1 They can always be made different, for example, by including a message identifier
in each message.
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where if (o1, q1), . . . , (ok, qk) (of classes Ci1 , . . . Cik
) are the discrete objects parts

of the state q, then

Inv(q) = InvCi1
(q1) × . . . × InvCik

(qk) × R
md(q)

where md(q), the message dimension of q, is obtained by adding all the dimen-
sions of the continuous components in the optional active message and in the
scheduled messages.

• a Markov kernel Msg : ŜA × B(SA) → [0, 1] called the instantaneous message
reception kernel, with ŜA ⊂ SA the measurable subset of states containing ex-
actly one active message.
• an initial probability measure Init : B(SA) → [0, 1]. �

Assumption 1 . (i) Msg, when thought of as a “probabilistic transition rela-
tion” leaves all scheduled messages untouched, and all new scheduled messages
introduced by the transition have a deadline in R>0

2. (ii) From a state in ŜA,
a state in SA � ŜA (no active messages) is reached in a finite number of Msg
“transitions” with probability 1; therefore, all Msg transition sequences almost
surely terminate.

Since SA is a disjoint union of metric spaces, it has a measurable space struc-
ture (SA, B(SA)). The JumpCi kernels specified for each class C1, . . . , Cn in an
OBSHS A can be “glued together” to define a jump kernel JumpA : ∂SA ×
B(SA) → [0, 1], where, by definition, SA =

⋃
q∈QA

{q} × Inv(q), and ∂SA =
SA � SA. The proof of the following proposition can be found in Appendix B of
[25].

Proposition 1. Given an OBSHS A with classes C1, . . . , Cn, the jump ker-
nels JumpC1 , . . . , JumpCn can be extended to a jump kernel JumpA : ∂SA ×
B(SA) → [0, 1] in such a way that for states in ∂SA consisting of a single object
(o, q, v) of class Ci, then JumpCi((o, q, v), ·) and JumpA({o, q, v}, ·) agree, when
∂SCi is homeomorphically embedded as a subspace of ∂SA. �

An execution of an OBSHS is a trajectory of a stochastic process P . The state
space of P is SA. The initial state is chosen according to the initial distribution
Init. The system has evolutions of two types: continuous evolution and discrete
evolution.

The system follows the continuous evolution (CE) when in its state all objects
have their continuous states inside their boundaries, there is no active message,
and there are no scheduled messages with their deadline times equal to zero. We
denote the set of all such states by SCE

A . During its continuous evolution the
system evolves with each object evolution governed by the SDE of its class. The
deadline time of each scheduled message decreases by the time elapsed.

When some objects reach their boundary or the deadline times of some sched-
uled messages reach zero, the system starts its discrete evolution. We denote by
2 Note that, by definition of SA, Msg will introduce at most one active message.
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SA! the set of states in SA such that at least one scheduled message has reached
its deadline. Therefore, discrete evolution begins when the process hits ∂SA∪SA!.
During the discrete evolution the system proceeds as follows:

(i) if there are some objects whose continuous state is in the boundary of their
invariants, the JumpA kernel is used to perform a transition to the new state.
(ii) if there are no objects in the boundary, and there is an active message in the
state, then the Msg kernel is used to perform a transition to the new state3.
(iii) if there are no objects in the boundary and no active message, but some
scheduled messages have their deadline time equal to 0, a scheduled message is
chosen uniformly among the scheduled messages with 0 deadline and becomes
the active message.

By the fact that JumpA moves states outside ∂SA, plus Assumption 1, plus
the fact that each transition of type (iii) decreases the number of zero-deadline
messages, we know that after a finite number of iterations of transitions (i)-(iii) a
state in SCE

A (which is an absorbing state for transitions (i)-(iii)) is reached with
probability 1. Therefore, all such transition sequences almost surely terminate.

After reaching a state in SCE
A through a finite number of instantaneous transi-

tions (i)-(iii), the system continues in time according to its continuous dynamics
until a new time Ti+1 is reached in which P hits ∂SA ∪ SA!. Therefore, instan-
taneous transitions happen at discrete times T1 < T2 < T3 < . . ...

Assumption 2 (Non-Zeno Dynamics). The expectation of Nt, the number
of instantaneous transition times on [0, t] is finite for all t.

We are now ready to relate the OBSHS model to a very general model proposed
by Bujorianu and Lygeros, namely, General Stochastic Hybrid Systems (GSHS)
[6]. Intuitively, the key observation is that the sequence of instantaneous tran-
sitions (i)-(iii) after a process hits a state in ∂SA ∪ SA! can be packed together
into a single Markov kernel. The proof of the following proposition is given in
Appendix B of [25].

Proposition 2. Under Assumptions 1-2 an OBSHS A can be naturally under-
stood as a GSHS.4 �
As corollary of the above proposition, by using the same results proven for
GSHS’s in [6], we immediately obtain

Theorem 1. Under Assumptions 1-2 an OBSHS A is a Borel right process.
�

4 Specifying OBSHS’s with Rewrite Rules

The different components of an OBSHS should be specified in a simple and
highly reusable way by means of class specifications that are then composed into
3 Note that, by the definition of Msg, the resulting state will have no objects in the

boundary.
4 In fact, by GSHS we mean a slight generalization of the model introduced in [6]. See

Appendix B of [25] for details.
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overall OBSHS specifications involving different class objects and messages and
specifying their message-passing communication. We discuss below an object-
based stochastic hybrid system example specified in SHYMaude, an extension of
the PMaude language [1] supporting OBSHS features. PMaude itself supports
specification of probabilistic rewrite theories in the Maude style; and simulation
of such theories in the underlying Maude rewriting logic language [7].

A SHYMaude (Stochastic HYbrid Maude) module specifies an OBSHS and
may contain several class declarations. It is introduced with the keyword shymod
followed by its name and ends with the keyword endshy. In this example, the
module is called ROOM&SENSOR and contains two classes: a class Room of rooms
endowed with a thermostat control which can handle stochastic changes in room
temperature, and a class Sensor of sensor objects that collect temperature infor-
mation from rooms for statistical purposes. A module may import other mod-
ules, such as the NAT natural number module importation declared with the
protecting keyword. Different types, called sorts, can also be declared; here
we declare a sort RMode of room modes with two constants (heat and cool)
introduced with the ops keyword. Similarly, several constants of sort Real are
declared. Inside such a module, several stochastic hybrid object classes may
be declared, each beginning with the class keyword followed by its name, and
ending with endclass. After the class name, the discrete (disc) and continuous
(cont) variables of objects in the class are declared, with the separation be-
tween both sets of variables marked by a vertical bar. For each discrete variable
its corresponding sort is specified. Room objects have just one discrete variable
(mode) holding the current mode, and one continuous variable (temp) holding
the current temperature.

The invariant, SDE dynamics, and jump kernel of the class are declared with
the inv, dyn, and jump keywords, with each declaration finished by a respective
end keyword. The invariants are specified by equations identifying each invariant
with a boolean predicate. The SDE dynamics is specified by a finite set of (in
general parametric on the discrete state) SDE’s with self-explanatory notation.
Here we have just two discrete states for each object; therefore and SDE is spec-
ified for the temperature changes in each case. The Jump kernel specification is
specified by probabilistic rewrite rules whose lefthand sides specify object states
that have reached the boundary of their invariant, and with the corresponding
righthand side specifying the state to which the object jumps according to a
certain probability measure. Since for this class the jump outcomes are deter-
ministic, the rules in this case are ordinary rewrite rules and the righthand side
states are reached with probability 1.

Before specifying the Sensor class, its two sleep and wait modes are de-
clared as constants of sort SMode. This class is very simple. It has three discrete
variables: its mode, the oid of the room object it is sensing, and a counter,
its only continuous variable (a temperature average) has no SDE dynamics, no
invariants, and no jumps. The syntax for messages and for their contents are
specified with operators of sorts Msg and Contents. Here a sensor S can send to
its room R a message asking to report its temperature, and the room answers
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back with a temperature report. These message exchanges are specified by the
first two rules. We assume that the sensor and the room are contiguous, so the
reply message sent back by the room in the first rule has no delay. In the second
rule, the sensor, upon receiving a temperature report, schedules a check message
with delay chosen according to an exponential probability measure. The third
rule shows how the sensor wakes up upon receiving a check message and queries
the room again. Note that, by convention, variables not modified by a rule need
not be mentioned. Note also that such message reception rules are implicitly
conditional to the corresponding object being inside its current invariant. For
example, the first rule must satisfy the implicit condition Inv(mode : M, temp
: T) = true for M the current mode. Note finally, that the parallel composition
operator ( ‖ ) is denoted here with empty (juxtaposition) syntax ( ).

shymod ROOM&SENSOR is protecting NAT . sort RMode . ops heat cool
: -> RMode . ops T_max T_min intensity epsilon : -> Real .

class Room is disc mode : RMode | cont temp .

inv
Inv(mode : heat, temp : T) = T < T_max .
Inv(mode : cool, temp : T) = T > T_min .

endinv

dyn
sde(mode : heat) d(temp) = intensity * dt + epsilon * dW(t) .
sde(mode : cool) d(temp) = - intensity * dt + epsilon * dW(t) .

enddyn

jump
rl < O : Room | mode : heat, temp : T_max > => < O : Room | mode: cool, temp : T_max > .
rl < O : Room | mode : cool, temp : T_min > => < O : Room | mode :heat, temp : T_min > .

endjump endclass

sort SMode . ops sleep wait : -> SMode .

class Sensor is disc mode : SMode, room : Oid, count : Nat | cont
average . endclass

op < _ <- _ > : Oid Contents -> Msg . op report : Oid -> Contents
. op temp :_ : Real -> Contents . op check : -> Contents .

rl < R : Room | temp : T > < R <- report(S) > => < R : Room |
temp : T > < S <- temp : T > .

rl < S : Sensor | mode : wait, average : A, count : N > < S <-
temp : T > =>

< S : Sensor | mode : sleep, average : (A * N + T)/(N + 1), count : N + 1 >
[D, < S <- check >] with probability D := Exponential(1) .

rl < S : Sensor | mode : sleep, room : R > < S <- check > =>
< S : Sensor | mode : wait, room : R > < R <- report(S) > .

endshy

A SHYMaude specification can be desugared into a corresponding PMaude
specification. Since probabilistic rewrite rules have extra variables in their right-
hand sides, they are not directly executable. However, as explained in [1], pro-
vided sampling functions for the corresponding probability measures have been
implemented in the underlying Maude, a PMaude specification can be simu-
lated by an ordinary rewrite theory in Maude, in which the probabilistic choice
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is realized by the corresponding sampling function. In this way, SHYMaude
specifications can be simulated in the underlying Maude system. The Maude
translation of a SHYMaude module approximates the SDE dynamics using the
Euler-Maruyama method. In this way, Monte Carlo simulations of the OBSHS
specification can be performed. Furthermore, such simulations can be input to
a statistical model checker like VeStA [29] to formally verify system properties.

5 Statistical Model Checking of OBSHS’s

Developing formal verification methods for stochastic hybrid system properties
that go beyond current simulation methods is an important research issue. Prob-
abilistic temporal logics are possible candidates to state properties; but they are
somewhat restrictive: they give a true or false answer when one would often be
interested in a quantitative answer. For this reason, we use the QuaTEx lan-
guage of Quantitative Temporal Expressions proposed in [1]. This language is
supported by the VeStA tool [29], which has an interface to Maude allowing
PMaude and SHYMaude specifications to be model checked with respect to
QuaTEx properties using their Maude translations.

The key idea of QuaTEx is to generalize probabilistic temporal logic formulas
from Boolean-valued expressions to real-valued expressions. The Boolean inter-
pretation is preserved as a special case using the real numbers 0 and 1. As usual,
QuaTEx has state expressions, evaluated on states, and (real-valued) path ex-
pressions evaluated on computation paths. The notion of state predicates is now
generalized to that of state functions, which can evaluate quantitative properties
of a state. QuaTEx is particularly expressive because of the possibility of defin-
ing recursive expressions. In this way, only the next operator © (represented as
# in the VeStA syntax) and conditional branching if Bexp then Pexp then Pexp′

fi, with Bexp Boolean and Pexp,Pexp′ path expressions, are needed to define
more complex operators like the until U of probabilistic computational tree logic
(PCTL) and of continuous stochastic logic (CSL) [5], and the CSL bounded
until U≤t. We refer to [1] for a detailed account of QuaTEx and its semantics.
We give a flavor for it here by means of one of the QuaTEx expressions that
we have evaluated in one of the case studies described below (an auction). The
expression in question, numToGet(n,id), computes the number of times that a
bidder named id has to compete in a repeated auction to get the auctioned item
n times. This is an expression evaluated on computation paths. The two auxil-
iary state functions in this case are won(id), counting the number of times that
id has already won a bid, and numberOfAuctions(id), counting the number of
auctions id has participated in. The corresponding QuaTEx expression is

numToGet(n,id) = if won(id) = n then numberOfAuctions(id) else #numToGet(n,id) fi;

VeStA performs statistical model checking on a probabilistic system by evaluat-
ing QuaTEx expressions on computation paths obtained by Monte Carlo simu-
lations. For the above formula the VeStA command is E[numToGet(n,id)]. Two
other parameters α and δ are also provided to the tool. VeStA then responds
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with a real number v, which is the estimated value of the expression with a
(1 − α)100% confidence interval bounded by δ. Depending on the tightness of
the parameters, VeStA may need a greater or smaller number of sample runs to
compute such a value.

5.1 Repeated Second-Price Auction

We have specified and analyzed a model of consecutive second-price online auc-
tions repeated on similar items inspired by [27]. During each auction a similar
item is on sale and throughout the auction the second highest bid is posted.
To overbid the current bid a bidder must submit a bid higher then the cur-
rent winning bid (which is not public). The winner pays the second highest bid.
We enrich the model with the assumption that the bidders reside in different
countries and hence the exchange rates (which fluctuate over time and whose
dynamics we can model using SDE’s [32]) must be used. The specification of
the system consists of several object classes: a class of auctioneer who receives
bids and updates the current state of the auction, the agency who provides the
exchange rate modeling them using the appropriate SDE’s, and two classes of
bidders one being a class of “normal” bidders who bid throughout the auction
with a certain probability and the other being a class of “experts” who bid at
the very end of the auction with the price which they consider to be appropriate.

VeStA Analysis. We have used VeStA to estimate a quantitative property of
the system. In the analysis we considered a system consisting of 1 auctioneer,
3 early bidders with 1 domestic and 2 in different foreign countries, and one
foreign sniper.

The quantitative property was the expected number of auctions for a bidder
to get N items. The QuaTEx query for this quantitative property was explained
above. The results of estimating this quantitative property for n = 2 with 95%
confidence were: (i) for the domestic bidder the interval [6.8, 7.5], (ii) for a foreign
bidder [8.2, 9.1], and (iii) for the sniper [7.8, 8.6].

5.2 Thermostat

We have specified and analyzed a system consisting of N rooms, each equipped
with a thermostat and a central server unit controlling them. Each thermostat
can be in one of three modes: heating, cooling, and idle. The temperature in
each room changes randomly according to the SDE dT = Idt + IndWt, where I
depends on the thermostat mode and is either the rate of heating Ih , the rate of
cooling Ic, or equal to zero in the idle mode. The server checks the temperature
in each room at random times and sends commands to the thermostat according
to three rules: (i) if the temperature T in a room is T > Tmax, then it sends
a messages to to start cooling, (ii) if T < Tmin, then it sends a message to
start heating, (iii) if the temperature is in the region close to T0 with T0 =
(Tmax + Tmin)/2, then it sends a message to go to the idle mode.

VeStA Analysis. We used VeStA to estimate a quantitative property of the
thermostat system. The property was the probability that if during a run the
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temperature goes out of some desired interval ID = [T0−∆, T0+∆]⊆ [Tmin,Tmax]
in a specific room it will return to the desired interval in a specified amount of
time. The QuaTEx query for this probability is

Eventually(t,id) = if time() >= T then 0
else if time() > t + I then 0

else if InInterval(id) = 1 then #Always(id)
else #Eventually(t,id) fi fi ;

Always(id) = if time() > T then 1
else if InInterval(id) = 1 then #Always(id)

else #Eventually(time(),id) fi fi ;
eval E[Always(id)];

where T bounds the lengths of paths, and I defines the interval during which the
temperature has to return to the desired interval after leaving it. The function
InInterval returns 1 if the temperature of the room with the identifier id is
in the desired interval ID and 0 otherwise. The function Always returns 1 if the
path satisfies the property stated above and 0 otherwise. Thus the expectation
of this function is the desired quantitative property [1]. We used T = 20 minutes
and I = 60 seconds. As in the previous property we used Tmax = 74, Tmin = 70,
∆ = 1. Using this values we obtained that with 95% confidence the desired
probability lies in the confidence interval [0.31,0.34].

6 Related Work and Conclusions

Since under Assumption 3 the OBSHS model can be mapped into the GSHS
model, the relation to less general models — including PDP [8], SHS [17], and
SDP [14] — which are encompassed by GSHS as special cases is then very
direct. We refer to [28] for a recent survey of stochastic hybrid system models,
and focus instead on the relation of OBSHS to the three other stochastic hybrid
system models addressing concurrency and composition that we are aware of,
namely: (i) the model presented in [2], with associated Charon specifications;
(ii) communicating piecewise deterministic Markov processes (CPDP) [31]; and
(iii) stochastically and dynamically colored Petri nets (SDCPN) [12].

Like OBSHS specifications, the Charon specifications in [2] also support
stochastic hybrid objects (called agents in Charon) and object composition;
however, the forms of composition supported in each model are orthogonal and
complementary. Charon objects can be composed out of subobjects that com-
municate instantaneously with each other by sharing variables. Once a closed
object is thus composed, no dynamic object creation is possible; also, no support
for non-instantaneous asynchronous message passing is provided. By contrast, in
OBSHS objects are composed into distributed configurations by means the ‖
operator. We view these composition operations as serving different purposes:
Charon object composition is best suited for building a single object out of tightly
coupled subobjects that are contiguouous to each other and can communicate
instantaneously. OBSHS composition is best suited for asynchronous distributed
object composition. We believe that the methods presented in this paper could
be generalized to encompass both Charon and OBSHS compositions, essentially
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by viewing composed Charon objects as “Russian doll” objects [26] that could
then communicate asynchronously with other such objects by messages in the
OBSHS style.

The CPDP model [31] is a hybrid automaton formalism with two types of syn-
chronization: on shared events, and on active-passive events with complementary
labels. Composition is then synchronous parallel automaton composition. As in
the PDP model [8], to which CPDP models can be reduced if their nondeter-
minism is eliminated by means of a scheduler, no diffusion is allowed, and no
dynamic process creation is possible. Also, all communication (which can be
value-passing) is assumed to be instantaneous. Therefore, CPDP models seem
best suited for composing tightly coupled stochastic processes, not involving
diffusion, out of simpler subprocesses.

The SDCPN model [12] has some similarities and some differences with re-
spect to OBSHS. Both models map to GSHS. Both have distributed states
formed by multiset union. In fact, by using the formalization of Petri nets as
rewrite theories presented in [30], SDCPN transitions can be understood as prob-
abilistic rewrite rules that perform multiset rewriting in the current marking
multiset. In both models, both instantaneous and delayed interactions are pos-
sible (the analogous role of scheduled messages in OBSHS is played by delay
transitions in SDCPN). But SDCPN models do not directly support objects and
asynchronous message passing. In our view, SDCPN and OBSHS models, while
having a comparable expressive power at the level of their GSHS translations,
support quite different specification styles. We think that the most fruitful way
of relating these models would be by unifying them within a more general model
that specifies transitions as probabilistic rewrite rules.

We can summarize the work just presented as the first proposal we are aware of
for a formal model and specification language for distributed object-based stochas-
tic hybrid systems that communicate by asynchronous message passing; and for
analyzing such systems by statistical model checking. We view explicit modeling of
asynchronous communication as essential for many classes of applications in which
objects are physically distributed over non-negligible distances. Furthermore, net-
work communication makes message delays unavoidable. Compositionality is sup-
ported in OBSHS at two different levels: at the object level by the parallel object
composition operator ‖ , and at the class level by multiple inheritance.

The work presented here is a first step. Further work is needed in several di-
rections, including: (i) further advancing the design and implementation of our
OBSHS specification language; (ii) experimenting with a wider class of applica-
tions, including Bioinformatics applications; and (iii) developing, as suggested
above, a more general formalism for stochastic hybrid system specification based
on probabilistic rewrite rules that can combine the benefits of the OBSHS model
with those of other models such as those proposed in [2, 12].
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