
Approximate Reachability Computation
for Polynomial Systems

Thao Dang

VERIMAG, Centre Equation, 2 avenue de Vignate,
38610 Gières, France
Thao.Dang@imag.fr

Abstract. In this paper we propose an algorithm for approximating the
reachable sets of systems defined by polynomial differential equations.
Such systems can be used to model a variety of physical phenomena. We
first derive an integration scheme that approximates the state reachable
in one time step by applying some polynomial map to the current state.
In order to use this scheme to compute all the states reachable by the
system starting from some initial set, we then consider the problem of
computing the image of a set by a multivariate polynomial. We propose
a method to do so using the Bézier control net of the polynomial map
and the blossoming technique to compute this control net. We also prove
that our overall method is of order 2. In addition, we have successfully
applied our reachability algorithm to two models of a biological system.

1 Introduction

Reachability analysis is an important problem in formal verification of hybrid
systems. A major ingredient in designing a reachability analysis algorithm for
hybrid systems is an efficient method to handle their continuous dynamics de-
scribed by differential equations (since their discrete dynamics can be handled
using existing discrete verification methods). Reachability computation methods
for a special class of systems with constant derivatives are well-developed. On
the other hand, while many well-known properties of linear differential equations
can be exploited to design relatively efficient methods, non-linear systems are
much more difficult to analyze. Numerical integration is a common method to
solve non-linear differential equations. Its goal is to derive a scheme to approx-
imate the solution at each time step based on the solution at one or several
previous steps. In general, a typical numerical integration scheme can be written
as: xk+1 = Yk(f, h,x0,x1, . . . ,xk) where f is the derivative and h is the step
size. Nevertheless, while this approach is concerned with computing a single so-
lution at a time and each xk in this scheme is a point, in reachability analysis one
has to deal with sets of all possible solutions (due to non-determinism in initial
conditions and in the dynamics of the system). Therefore, wishing to exploit the
numerical integration idea for reachable set computation purposes, a question
that arises is how to perform such schemes with sets, that is, when each xk is a
set of points. The essence behind the approach we propose in this paper can be

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 138–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.

Approximate Reachability Computation for Polynomial Systems 139

described as extending traditional numerical integration to set integration. In
particular, we are interested in systems defined by polynomial differential equa-
tions. Such systems can be used to model a variety of physical phenomena, in
particular the dynamics of bio-chemical networks. We first derive an integration
scheme that approximates the reachable state xk+1 by applying some polyno-
mial map to xk. In order to use this scheme to approximate the reachable set,
we then consider the problem of computing the image of a set by a multivariate
polynomial. To do so, we employ the techniques from computer aided geometric
design, in particular the Bézier techniques and the blossoming principle. We also
prove that our overall method is of order 2. Although this paper focuses on con-
tinuous systems, the proposed method can be extended to hybrid systems, since
reachable sets are represented by convex polyhedra, and Boolean operations (re-
quired to deal with discrete transitions) over such polyhedra can be computed
using a variety of existing algorithms. This is illustrated through an example in
Section 3.

Before continuing, we present a brief review of related work. The reachability
problem for continuous systems described by differential equations has motivated
much research both for theoretical problems, such as computability (see for ex-
ample [1]), and for the development of computation methods and tools. If the goal
is to exactly compute the reachable set or approximate it as accurately as possi-
ble, one can use a variety of methods for tracking the evolution of the reachable
set under the continuous flows using some set represention (such as polyhedra,
ellipsoids, level sets) [2, 3, 4, 5, 6, 7, 8, 9]. Since high quality approximations are
hard to compute, other methods seek approximations that are sufficiently good
to prove the property of interest1 (such as barrier certificates [10], polynomial
invariants [11]). Abstraction methods for hybrid systems are also close in spirit
to these methods. Indeed, their main idea is to approximate the original system
with a simpler system (that one can handle more efficiently) and refine it if the
analysis result obtained for the approximate system is too conservative (see for
example [12, 13, 14, 15, 16]).

The paper is organized as follows. In Section 2, after stating our problem,
we describe an integration scheme for polynomial differential equations. This
scheme requires computing the image of a set by a polynomial map, the prob-
lem we discuss in Section 3. We then present our reachability algorithm and
some experimental results obtained using the algorithm on the models of gene
transcription control of the bacteria Vibrio Fisheri.

2 Reachability Analysis of Polynomial Systems

Throughout the paper, vectors are often written using bold letters. Given a
vector x, x[i] denotes its ith component.

We consider a polynomial system:

ẋ(t) = g(x(t)). (1)
1 It should be noted that reachable set computations can also be used for controller

synthesis where the accuracy criterion is important.

140 T. Dang

We first rewrite the dynamics of the system as the sum of its linear part Ax(t)
and its non-linear part f(x(t)), that is,

ẋ(t) = g(x(t)) = Ax(t) + f(x(t)). (2)

We then consider the non-linear term as independent input. In other words,
the system is treated as a linear system with input f(x(t)). This trick is to
separate the linear part for which we can derive the exact closed-form solution.
The interest in doing so will become clearer when we discuss the approximation
error. We now develop a numerical solution for (2). Let h > 0 be a time step
and tk = kh where k = 0, 1, 2, Then, we have

x(tk+1) = eAhx(tk) +
∫ h

0
eA(h−τ)f(x(tk + τ)) dτ. (3)

The idea is to approximate x(tk + τ) inside the above integral by its Taylor
expansion around tk to the first order, that is α(tk + τ) = x(tk) + g(x(tk))τ .
Denoting x(tk) = xk, f(x(tk)) = fk and g(x(tk)) = gk, we have α(tk + τ) =
xk + gkτ = xk + (Axk + fk)τ . Replacing x(tk + τ) with α(tk + τ), we obtain an
approximation x̄k+1 of the exact solution xk+1:

x̄k+1 = eAhxk +
∫ h

0
eA(h−τ)f(α(tk + τ)) dτ. (4)

The integral in the above equation is a function of xk, and we denote it by
Q(xk) =

∫ h

0 eA(h−τ)f(α(tk + τ)) dτ.

Proposition 1. The map Q(xk) can be written as a polynomial in xk.

Proof. The proof of the proposition is straightforward, however we present it
here for the clarity of the development that follows. It is easy to see that if the
total degree of f(x) is d in x, then α(tk +τ) is a multivariate polynomial of total
degree d in xk, and therefore f(α(tk+τ)) is a polynomial of degree d in τ . We can
write f(α(tk + τ)) =

∑d
l=0 ψl(xk)τ l where for every l ∈ {0, 1, . . . , d}, ψl(xk) is a

polynomial in xk. We then denote Γl =
∫ h

0 eA(h−τ)τ l dτ , which can be written in
a closed form. It then follows that

∫ h

0 eA(h−τ)f(α(tk + τ)) dτ =
∑d

l=0 Γlψl(xk).
��

The resulting integration scheme to approximate the solution of (1) is:
{

x̄k+1 = eAhx̄k + Q(x̄k) = P (x̄k),
x̄0 = x(0).

We call P (xk) the integration map.

Example of multi-affine systems. Let us illustrate the proof with a simple
case where g(x) is a multi-affine function of degree 2. This is the case of a
biological model we study in Section 5. The function f(x) can be written as:

Approximate Reachability Computation for Polynomial Systems 141

f(x) =
∑

i,j∈{1,...,n},i�=j x[i]x[j]cij with cij ∈ R
n. Then, replacing x(tk + τ) with

α(tk + τ) = xk + gkτ , we have:

f(α(tk + τ))=
∑

i�=j∈{1,...,n}
(gk[i]gk[j]τ2 + (xk[i]gk[j]+gk[i]xk[j])τ +xk[i]xk[j])cij

Therefore, the equation (4) becomes:

x̄k+1 = P (xk) = Φxk +
∑

i�=j∈{1,...,n}
(γ2Γ2 + γ1Γ1 + γ0Γ0)cij . (5)

where Φ = eAh and γ2 = gk[i]gk[j], γ1 = gk[i]xk[j] + xk[i]gk[j], γ0 = xk[i]xk[j].
After straightforward calculations, we obtain:

Γl = l!
∞∑

i=0

Aihi+l+1

(i + l + 1)!
(6)

It is thus easy to see that, due to the term γ2, P (xk) in (5) is a polynomial
of degree 4 in xk. The equation (5) can be readily used as a scheme specialized
for multi-affine systems of degree 2.

Convergence. A bound on the error in our approximation is given in the
following theorem.

Theorem 1. Let x̄(tk+1) be the approximate solution at time tk+1 (computed
by (4)) and x(·) be the corresponding exact solution such that x̄(tk) = x(tk).
Then, a bound on the local error is given by: ||x̄(tk+1) − x(tk+1)|| = O(h3).

The proof of this result is presented in Appendix. This theorem shows that the
equation (4) is a second order scheme. In addition. we can show that the global
error is also convergent. As one can see from the proof, the error bound depends
on the Lipschitz constant of the non-linear function f . So now we can see the
interest in separating the linear part since the Lipschitz constant of f is smaller
than that of g.

Higher order integration schemes. Note that we have used an approxi-
mation of the exact solution x(tk + τ) by the its first order Taylor expansion
around tk. To obtain better convergence orders, we can use higher order ex-
pansions which results in integration schemes involving high order derivatives of
f(x). The derivation of such schemes is similar to the above development, but
the degree of the resulting integration map P (xk) can be higher. In the other
direction, if we use a simpler approximation α(tk + τ) = xk for all τ ∈ [tk, tk+1),
then Q(xk) = Γ0f(xk) and we obtain the classic Euler scheme for the non-linear
part. The advantage of this scheme is that the resulting polynomial Q(xk) has
the same degree as f(x). As we shall see later, the degree of the integration map
is one of the factors determining the complexity of the reachability algorithm.
It remains to compute the polynomial map Q(xk), the problem we tackle in the
next section.

142 T. Dang

3 Computing Polynomial Maps

The problem we are interested in can be formally stated as follows. Given a
polynomial map π : R

n → R
n of total degree d and a bounded set X ⊂ R

n, we
want to compute the image π(X) defined as: π(X) = {π(x) | x ∈ X}. We shall
focus on the case where X is a simplex in R

n.

3.1 Bézier Simplices

To determine the image of a simplex by a polynomial map, we use the results
on Bézier simplices [17]. We need to introduce first some notation.

A multi-index i = (i[1], . . . , i[n+1]) is a vector of (n+1) non-negative integers.
We define the norm of i by ||i|| =

∑n+1
j=1 i[j] and let Id

n denote the set of all
multi-indices i = (i[1], . . . , i[n + 1]) with ||i|| = d. We define two special multi-
indices: ej is a multi-index that has all the components equal to 0 except for
the jth component which is equal to 1, and o is a multi-index that has all the
components equal to 0. We call o the zero multi-index.

Let ∆ be a full-dimensional simplex in R
n with vertices {v1, . . . ,vn+1}. Given

a point x ∈ ∆, let λ(x) = (λ1(x), . . . , λn+1(x)) be the function that gives the
barycentric coordinates of x with respect to the vertices of ∆, that is, x =∑n+1

j=1 λj(x)vj and
∑n+1

j=1 λj(x) = 1. A Bézier simplex of degree d of the form
π : R

n → R
n is defined as2:

π(x) =
∑

||i||=d

biB
d
i (λ1(x), . . . , λn+1(x)) (7)

where for a given multi-index i, bi is a vector in R
n and Bd

i : R
n → R is a

Bernstein polynomial of degree d defined as:

Bd
i (y1, . . . , yn+1) =

(
d

i

)
y
i[1]
1 y

i[2]
2 . . . y

i[n+1]
n+1 (8)

with the multimonial coefficient
(
d
i

)
= d!

i[1]! i[2]! ... i[n+1]! . In the above formula (7),
each vector bi is called a Bézier control point and the set of all such bi form the
Bézier control net of π with respect to ∆.

Any polynomial can be written in form of a Bézier simplex, as in formula (7).
This form is a popular way to write polynomials in computer aided geomet-
ric design (see [17] and references therein). The following properties of Bern-
stein polynomials are well-known. The Bernstein polynomials form a partition
of unity, that is,

∑
||i||=d Bd

i (y1, . . . , yn+1) = 1, and they are non-negative, that
is, Bd

i (y1, . . . , yn+1) ≥ 0 for all 0 ≤ y1, . . . , yn+1 ≤ 1. These properties of Bern-
stein polynomials imply the following shape properties of Bézier simplices, which
we shall use for reachability computation purposes.

2 The definition holds for more general polynomials of the form π : R
n → R

m.

Approximate Reachability Computation for Polynomial Systems 143

Lemma 1. Given an arbitrary point x ∈ ∆,

1. [Convex hull property] the point π(x) lies inside the convex hull of the
control net, that is π(x) ∈ conv{bi | i ∈ Id

n}.
2. [End-point interpolation property] π interpolates the control net at the

corner control points specified by bdek
for all k ∈ {1, . . . , n + 1}.

Note that the number of multi-indices in Id
k is

(
d+n

n

)
; therefore, the number of

points bi is exactly
(
d+n

n

)
= (d+n)!

d! n! . We denote this number by β(n, d).
These shape properties can be used to approximate polynomial maps. In-

deed, the convex hull property in Lemma 1 shows that one can over-approximate
π(∆) by taking the convex hull of the Bézier control net of π with respect
to ∆. In addition, this over-approximation is tight due to the above end-point
interpolation property. In the rest of this section we focus on the problem of
computing the Bézier control net of the polynomial π. To avoid confusion,
it is worthy to emphasize that for reachability computation purposes, we are
dealing with the systems whose vector fields are given in monomial form (i.e.
sums of monomials), hence the integration map is also defined in this form. To
compute the control points of a polynomial given in monomial forms, we shall
exploit the techniques for approximating and designing polynomial curves and
surfaces. However, it is important to mention that most of such existing tools
deal with univariate or bivariate polynomials (often expressed in terms of
control points), their application to solve our problem requires an adaptation
to multivariate polynomials as well as geometric manipulation in general
dimension.

3.2 Computing the Bézier Control Net

Our goal is to obtain the Bézier control net of a polynomial π given in monomial
form. By the definition (7), the most natural approach is to solve the following
interpolation problem. Let S be a set of β(n, d) points in ∆. For each x ∈ S,
we evaluate π(x) and use (7) to obtain a system of linear equations with the
coordinates of the Bézier control points bi as unknown variables. One can choose
the set S such that the unique solution to these linear equations exists [18].
Although this method is conceptually simple, it may require solving a large linear
system3 (which is of size n∗β(n, d)). We shall use a more efficient approach based
on the blossoming principle, which is summarized in the following theorem. A
thorough description of this principle and its various applications can be found
in [19, 20].

Theorem 2 (Blossoming principle). For any polynomial π : R
n → R

n of
degree d, there is a unique symmetric d-affine map p : (Rn)d → R

n such that
for all x ∈ R

n p(x, . . . ,x) = π(x). The map p is called the blossom or the polar
form of π.

3 The Gaussian elimination algorithm to solve a linear system of size m × m has the
time complexity O(m3).

144 T. Dang

We recall that a map q(x1, . . . ,xd) is called d-affine if it is affine when all but one
of its arguments are kept fixed; it is said to be symmetric if its value does not de-
pend on the ordering of the arguments, that is, for any permutation (y1, . . . ,yd)
of (x1, . . . ,xd) we have q(y1, . . . ,yd) = q(x1, . . . ,xd). Given a polynomial π, the
connection between its Bézier control net relative to a simplex ∆ and its blossom
p is described by the following lemma.

Lemma 2. For all i ∈ Id
n, bi = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, v2, . . . ,v2︸ ︷︷ ︸
i[2]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

where {v1, . . . ,vn+1} are the vertices of ∆.

This fact is also well-known [19], and we present its proof in Appendix, which
can facilitate understanding the subsequent development.

Computing the blossom. We have seen that the Bézier control points can
be computed by evaluating the blossom values at some particular points shown
in Lemma 2. To compute them, we first derive an analytic expression of the
polar form and then show how to compute this expression efficiently. We do so
by extending the results for bivariate polynomial surfaces [21] to multivariate
polynomials.

Before proceeding, we mention that the problem of computing the Bézier con-
trol net can be formulated as a problem of changing from the monomial basis to
the Bézier basis, which can be solved using the algorithms proposed in [22, 23].
These algorithms also make use of the blossoming principle. The idea is to ex-
press the coordinates of the new basis vectors in the old basis, and then apply
the transformation matrix to the old coefficients. However, when the polynomial
representation is “sparse”, that is it contains many zero coefficients, this spar-
sity is not exploited. The method discussed in the following deals better with
such sparsity since it considers only the monomials with non-null coefficients.
More precisely, by “sparse polynomial representations” we mean those where
the number of monomials (with non-null coefficients) is much smaller than the
number of all combinations of coordinate variables up to degree d. The sparse
case indeed happens in many practical applications we have encountered.

Let us now show how to compute the blossom of monomials which are prod-
ucts of only two variables, such as x[i]hx[j]k. Similar treatment can be used for
monomials involving more variables, but due to the length of the involved for-
mulas we do not detail it here. On the other hand, using linearity, we can obtain
the blossom of any polynomial expressed as a sum of monomials.

The blossom of degree d of the monomial (x[i])h(x[j])k is given by:

pd
h,k(u1,u2, . . . ,ud) =

1(
d
h

)(
d−h

k

) ∑
I ∪ J ⊂ {1, . . . , d},

|I| = h, |J | = k, I ∩ J = ∅

∏
r∈I

ur[i]
∏
s∈J

us[j].

To prove this, it suffices to check that the right hand side is a symmetric multi-
affine function, and moreover pd

h,k(u,u, . . . ,u) = (u[i])h(u[j])k. ��

Approximate Reachability Computation for Polynomial Systems 145

To compute the blossom values using the above expression, we make use of a
recurrence equation on p, as proposed in [21]. We first denote

σd
h,k =

1(
d
h

)(
d−h

k

)pd
h,k(u1,u2, . . . ,ud).

The function σ is symmetric and has the following interpretation: this function
is computed by choosing h ith coordinates of the argument points and k ith

coordinates and forming their product, then summing these products over all
possible choices. We can thus derive the following recurrence formula:

{
σd

h,k = σd−1
h,k + ud[i]σd−1

h−1,k + ud[j]σd−1
h,k−1 if h, k ≥ 0 and h + k ≥ 1,

σd
0,0 = 0

(9)

This means that to compute the required blossom value pd
h,k(u1,u2, . . . ,ud) we

compute all the intermediate values pd′

h′,k′(u1, . . . ,ud′) with d′ ≤ d, h′ + k′ ≤ d′.
This computation can be done in time O(d3).

3.3 Approximation Error and Subdivision

We proceed to estimate an error bound for the approximation of the polynomial
map π by its the Bézier control points.

Theorem 3. For each Bézier control point bi there exists a point y ∈ π(∆)
such that ||bi − y|| ≤ Kρ2 where ρ be the maximal side length of ∆ and K is
some constant not depending on ∆.

The proof of this theorem can be found in Appendix.
Consequently, when the simplicial domain ∆ is large, to achieve the desired

accuracy we may need to subdivide it into smaller simplices. This subdivision
creates new Bézier bases and therefore new control points. However, due to the
properties of multi-affine maps, one can compute the new control nets in a clever
way which reuses the computations performed for the original simplex. Suppose
that we want to partition the simplex ∆ by adding a point x ∈ ∆ and forming
(n+1) new smaller simplices. Then, we can use de Catesljau algorithm [24, 17] to
compute the value of the polynomial π at x. It turns out that this computation
also produces the control net for the new simplices. Note that this algorithm can
only be applied when the Bézier control points of the polynomial are known.

We denote bl
i = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

,x1, . . . ,xl︸ ︷︷ ︸
l

) with i[1] + . . . +

i[n + 1] + l = d. Since p is symmetric and multi-affine, we have:

bl
i = λ1(xl)bl−1

i+e1
+ . . . + λn(xl)bl−1

i+en
(10)

Note that bn
o = p(x1, . . . ,xn) where o is the zero multi-index. In addition, with

l = 0, b0
i are exactly the Bézier control points of the polynomial. Therefore,

by running the above recursion starting from l = 0 until l = n we obtain the
blossom value at (x1, . . . ,xn). If all the argument points of the blossom are equal

146 T. Dang

Fig. 1. Subdividing a Bézier control net

to x, the result of the algorithm is π(x). The de Catesljau algorithm is illustrated
with a 2-dimensional example in Figure 1 where each node is annotated with
the arguments of the blossom to evaluate. The nodes on the outermost layer
correspond to the control points for the original triangle uzw. The incoming
arrows of uux show that the blossom value at this point is computed from
the blossom values at uuu and uuw. As mentioned earlier, we can see that
the computation of π(x) indeed produces the Bézier control points for the sub-
simplices. Figure 1 shows the values p(u, . . . ,u︸ ︷︷ ︸

i[1]

,x, . . . ,x︸ ︷︷ ︸
i[2]

,w, . . . ,w︸ ︷︷ ︸
i[3]

) which are the

Bézier control points for the triangle uxw.
One important remark is that the subdivision at the center of the simplex

does not reduce the maximal side length of the simplices. By Theorem 3 this
means that the convergence of the Bézier control net towards the polynomial is
not guaranteed. However, one can repeat the bisection at the mid-point of the
logest edge, as shown in Figure 1 to achieve the desired accuracy. More generally,
the subdivision of a simplex can be defined as follows. For each barycentric
coordinate λi(x) > 0 of a point x ∈ ∆ we define a simplex ∆i obtained from
∆ by replacing the vertex vi with x. Hence, when the point x is the mid-point
of an edge we obtain a bisection. It was proved in [25] that using the bisection
at the mid-point of the longest edge, after n steps (where n is the dimension
of the simplex) the simplex diameter is reduced at least by

√
3/2 times. In two

dimensions, another method of subdivision via all the mid-points of the edges
was discussed in [21]. This method is however more complex to implement for
dimensions higher than 2.

4 Reachability Algorithm

Let us summarize our development so far. In Section 2, we presented a scheme
to approximate the successor in one time step by applying a polynomial, called

Approximate Reachability Computation for Polynomial Systems 147

the integration map, to the current state. We then showed in Section 3 how to
over-approximate the image of a simplex by a polynomial map using the Bézier
control net. The result of this approximation is in general a polyhedron.

We are now ready to describe our reachability algorithm for polynomial sys-
tems. In Algorithm 1, X0 is the initial set which is assumed to be a convex
polyhedron in R

n, each Rk is a set of convex polyhedra. The function Bez over-
approximates the image of a simplex ∆ by the integration map P , using the
method presented in Section 3. The goal of the function triangulation is to
triangulate a set of convex polyhedra and return the set of all simplices of the
triangulation. To do so, we collect all the vertices of the polyhedra and compute
a triangulation of this set. We then exclude all the simplices in the triangulation
whose interior does not intersect with Rk. Let us briefly discuss the precision of

Algorithm 1. Reachable set computation
R0 = {X0}, k = 0
repeat

S∆ = triangulation(Rk)
C = ∅
for all ∆ ∈ S∆ do

C = C ∪ Bez(∆)
end for
Rk+1 = C
k = k + 1

until Rk+1 = Rk

the algorithm. We suppose that ρ is the maximal size of the simplices that are
produced by the function triangulation and h is the integration time step. If the
integration map P can be exactly computed, using Theorem 1, the integration
error is O(h3). In addition, Theorem 3 shows that our approximation of the
integration map P induces an error O(ρ2). By the triangle inequality, the total
error in each iteration of Algorithm 1 is bounded by (O(h3)+O(ρ2)). Therefore,
by choosing appropriate values ρ in function of h, we can guarantee a bound
O(h3) on the local error and thus the order 2 of Algorithm 1.

We now discuss some computation issues. The first remark is that the total
number of the Bézier control points is β(n, d), but the actual number of vertices
of their convex hull (that is, Bez(∆)) is often much smaller, depending on the
geometric structure of the polynomial map P . On the other hand, in order to
speed up the computation (at the price of less precise results), one can approx-
imate C by its convex hull or even by a simplex. Algorithms for doing so have
been developed and some algorithms can compute a minimal volume enclosing
simplex (such as, [26, 27]).

Let us now briefly discuss the relation between our new algorithm and the
reachability algorithm based on hybridization, proposed in [15]. The latter first
approximates the (general) non-linear dynamics by a piecewise linear dynamics,
using a simplicial decomposition of the state space. Hence, for the approximate

148 T. Dang

system, one can indeed compute the reachable set of each linear dynamics more
accurately. However, the treatement of discrete transitions (i.e. the dynamics
changes) makes the overall computation very expensive due to the geometric
complexity of the intersection between the reachable set and the switching hy-
perplanes. In the algorithm of this paper, the one-step computation for polyno-
mial systems is in general more costly than that for linear systems, but discrete
transitions are avoided. Nevertheless, more experimentation is needed to draw
conclusions about the advantages and inconvenients of these two approaches.

5 Application to a Biological System

We have implemented Algorithm 1 and applied it to a well-known biological
system. The initial motivation of our study of polynomial systems come from the
interest in applying hybrid systems techniques to biological systems. Indeed, the
continuous dynamics of many such systems can be described using multi-affine
or more generally polynomial differential equations. We have experimented the
implementation of our algorithm on two simplified models of gene transcription
control in the bacteria Vibrio Fisheri. The reader is refered to the papers [28, 29]
for a detailed description of the models and the related gene control problems.
The first model corresponds to one mode of a simplified hybrid system where
the continuous dynamics is described by the following multi-affine system:

⎧⎨
⎩

ẋ1 = k2x2 − k1x1x3 + u1
ẋ2 = k1x1x3 − k2x2
ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

(11)

The state variables x = (x1, x2, x3) represent the cellular concentrations of dif-
ferent species, and the parameters k1, k2, n are the binding, dissociation and
diffusion constants. The variables u1 and u2 are control variables, which respec-
tively represent the plasmid and external source of autoinducer. In [29] the fol-
lowing control law for steering all the states in the rectangle [1, 2]× [1, 2]× [1, 2]

Fig. 2. Reachable sets: with u1 = u2 = 0 (left) and with the specified control law
(right). The control law indeed drives the system to the face x2 = 2.

Approximate Reachability Computation for Polynomial Systems 149

to the face x2 = 2 was proposed: u1(x) = −10(x2 + x1(−1 + 3) − 4x3) and
u2(x) = x1(3 + x2(−1 + x3)) − (−2 + x2)x3. This control objective corresponds
to the activation of some genes in the system. We consider two cases: with no
control (i.e. u1 = u2 = 0) and with the above control law. Figure 2 shows the
projection on x2 and x3 of the reachable sets obtained using our algorithm for
polynomial systems. In [16] we have already treated this model using an abstrac-
tion method based on projection. This method approximates the multi-affine
system by a lower dimensional bilinear system. Comparing with the result pre-
sented in [16], one can see that our new algorithm for polynomial systems is more
accurate, and in addition we have observed that it is also more time-efficient.

The second model is taken from [28]. It is a hybrid model4 with two modes
and one additional continuous variable x4. The continuous dynamics is ẋ =
Ax+g(x)+bij where b01 and b10 correspond respectively to the non-luminescent
and luminescent modes, and

A =

⎛
⎜⎜⎜⎝

−1
Hsp

0 0 rCo

0 0 0 −1
Hsp

− rCo

0 x0rAII
−1

HAI
x0rCo

0 −1
Hsp

0 0

⎞
⎟⎟⎟⎠ ; g(x) =

⎛
⎜⎜⎝

−1
1

−x0
0

⎞
⎟⎟⎠ rAIRx1x3

We are interested in the question of how to determine the sets of states from
which the system can reach the luminescent equilibrium. The condition for
switching between the two modes is x2 = x2sw . This problem was also pre-
viously studied in [28] using the tool d/dt. However, in [28] the multi-affine
dynamics was approximated by a 3-dimensional linear system, assuming that x1
remains constant. Using our new algorithm for polynomial systems, we can now
handle the non-linearity in the dynamics. To deal with the discrete dynamics of
the model, it suffices to implement some Boolean operations over the reachable
set by the continuous dynamics, which are represented in form of convex polyhe-
dra. Concerning qualitative behavior, the result obtained for the 4-dimensional
multi-affine model is compatible with the result for the linear approximate model
in [28], that is, from the non-luminescent mode the system can reach the guard
to switch to the luminescent mode and then converge to the equilibrium. How-
ever, the new result obtained for the 4-dimensional model shows a larger set of
states that can reach the equilibrium. This can be explained by the fact that in
this model the variable x1 is not kept constant and can evolve in time.

6 Concluding Remarks

In this paper, we presented a new approach to approximate reachability analysis
of polynomial systems by combining the ideas from numerical integration and
techniques from computer aided geometric design. The reachability algorithm
we proposed is of order 2, and these results can be straightforwardly applied to
safety verification of hybrid systems. This work opens interesting directions to
4 The numbering of variables is different from that in [28].

150 T. Dang

explore. Indeed, different tools from geometric modeling (such as, splines) could
be exploited to approximate polynomial maps more efficiently. In addition, we
plan to do more experimentation on other case studies, such as a model of
metabolic mechanism of a plant.

References

1. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proc. of the IEEE (2000)

2. Greenstreet, M., Mitchell, I.: Integrating projections. In Henzinger, T., Sastry,
S., eds.: Hybrid Systems: Computation and Control. LNCS 1386, Springer (1998)
159–1740

3. Dang, T., Maler, O.: Reachability analysis via face lifting. In Henzinger, T., Sastry,
S., eds.: Hybrid Systems: Computation and Control. LNCS 1386, Springer (1998)
96–109

4. Chutinan, A., Krogh, B.: Verification of polyhedral invariant hybrid automata us-
ing polygonal flow pipe approximations. In Vaandrager, F., van Schuppen, J.,
eds.: Hybrid Systems: Computation and Control. LNCS 1569, Springer (1999)
76–90

5. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In
Krogh, B., Lynch, N., eds.: Hybrid Systems: Computation and Control. LNCS
1790, Springer (2000) 202–214

6. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of
piecewise-linear dynamical systems. In Krogh, B., Lynch, N., eds.: Hybrid Systems:
Computation and Control. LNCS 1790, Springer (2000) 20–31

7. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the
verification of hybrid systems. Proceedings of the IEEE 91(7) (2003) 986–1001

8. Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis
of nondeterministic continuous and hybrid systems. In: Hybrid Systems: Compu-
tation and Control. LNCS, Springer (2005, to appear)

9. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Hybrid
Systems : Computation and Control. LNCS 3414, Springer (2005) 291–305

10. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Control.
LNCS 2993, Springer (2004) 477–492

11. Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Hybrid
Systems: Computation and Control. LNCS 2993, Springer (2004) 600–614

12. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In Tomlin,
C., Greenstreet, M., eds.: Hybrid Systems: Computation and Control. LNCS 2289,
Springer (2002) 465–478

13. Alur, R., Dang, T., Ivancic, F.: Reachability analysis via predicate abstraction.
In Greenstreet, M., Tomlin, C., eds.: Hybrid Systems: Computation and Control.
LNCS 2289, Springer (2002)

14. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4) (2003) 583–604

15. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems us-
ing conservative approximation. In Maler, O., Pnueli, A., eds.: Hybrid Systems:
Computation and Control. LNCS 2623, Springer (2003) 20–35

Approximate Reachability Computation for Polynomial Systems 151

16. Asarin, E., Dang, T.: Abstraction by projection. In Alur, R., Pappas, G., eds.:
Hybrid Systems: Computation and Control. LNCS 2993, Springer (2004) 32–47

17. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic
Press (1990)

18. Davyrov, O., M.Sommer, H.Strauss: On almost interpolation by multivariate
splines. In G.Nürnberger, J., G.Walz, eds.: Multivariate Approximation and
Splines, ISNM, Birkhäuser (1997) 45–58

19. Ramshaw, L.: Blossoms are polar forms. Computer Aided Geometric Design 6
(1989) 323–358

20. Seidel, H.P.: Polar forms and triangular B-spline surfaces. In: Blossoming: The
New Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH ’91 Course
Notes 26, ACM SIGGRAPH. (1991) 8.1–8.52

21. Gallier, J.: Curves and surfaces in geometric modeling: theory and algorithms.
Series In Computer Graphics and Geometric Modeling. Morgan Kaufmann (1999)

22. DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition via blos-
soming. ACM Transactions on Graphics 12(2) (April 1993)

23. Lodha, S., Goldman, R.: Change of basis algorithms for surfaces in cagd. Computer
Aided Geometric Design 12 (1995) 801–824

24. de Casteljau, P.: Formes à pôles. Hermes, Paris (1985)
25. Rivara, M.C.: Mesh refinement process based on the generalized bisection of sim-

plices. SIAM Journal on Numerical Analysis 21 (1984) 604–613
26. Vegter, G., Yap, C.: Minimal circumscribing simplices. In: Proc. of the 3rd Cana-

dian Conference on Computational Geometry, Vancouver, Canada. (1991) 58–61
27. Fuhrmann, D.R.: A simplex shrink-wrap algorithm. In: Proceedings of SPIE,

AeroSense (1999)
28. Belta, C., Schug, J., Dang, T., Kumar, V., Pappas, G., Rubin, H., Dunlap, P.:

Stability and reachability analysis of a hybrid model of luminescence in the marine
bacterium vibrio fisheri. In: Proc. of CDC. (2001)

29. Belta, C., Habets, L.C.G.J.M., Kumar, V.: Control of multi-affine systems on
rectangles with an application to gene transcription control. In: Proc. of CDC.
(2003)

Proof of Theorem 1. From (3) and (4), the local error can be written as:

x(tk + τ) − x̄(tk + τ) =
∫ h

0
eA(h−τ)[f(x(tk + τ)) − f(α(tk + τ))] dτ.

On the other hand, due to the Taylor expansion, we have ||x(tk +τ)−α(tk +τ)||
≤ Mτ2 where M is some constant. We then have || f(x(tk+τ))−f(α(tk+τ)) || ≤
LMτ2 where L is the Lipschitz constant of f . Using the expression (6), we have
Γ2 =

∫ h

0 eA(h−τ)τ2 dτ = A3

3! h3 + O(h4), it then follows that

||x(tk + τ) − x̄(tk + τ)|| = O(h3).

This completes the proof of the theorem. ��

Proof of Lemma 2. We consider p(x1,x2, . . . ,xd) where each argument xj

can be expressed using the barycentric coordinates as: xj = λ1(xj)v1 + . . . +

152 T. Dang

λn+1(xj)vn+1. Due to the property of multi-affine maps, replacing the first ar-
gument x1 with its barycentric coordinates, we have:

p(x1,x2, . . . ,xd) = λ1(x1)p(v1,x2, . . . ,xn+1) + . . . + λn+1(x1)p(vn+1,x2, . . . ,xn+1).

We then do the same with other arguments to obtain:

p(x1, . . . ,xd) =
�
I∈Ξ

�
k∈I1

λ1(xk) . . .
�

k∈In+1

λn+1(xk)p(v1, . . . ,v1� �� �
i[1]

, . . . ,vn+1, . . . ,vn+1� �� �
i[n+1]

)

(12)
where Ξ is the set of all partitions of {1, 2, . . . , d} defined as follows. We say that
I = {Ik}k=1,2...,n+1 is a partition of {1, 2, . . . , d} iff all Ik are pairwise disjoint
and ∪k∈{1,...,n+1}Ik = {1, 2, . . . , d}. We write |Ik| to denote the cardinality of
Ik. Then, by letting the arguments xi to be equal, it is not hard to see that the
equation (12) becomes:

p(x, . . . ,x) =
∑

||i||=d

(
d

i

)
λ
i[0]
1 (x)λi[1]

2 (x). . .λi[n]
n (x)p(v1, . . . ,v1� �� �

i[1]

, . . . ,vn+1, . . . ,vn+1� �� �
i[n+1]

)

Comparing the above with the definition of Bézier simplices (7), it is easy to see
that all the points p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

) form the control net of a π

whose polar form is p. ��

Proof of Theorem 3. Given a multi-index i with ||i|| = d, we consider a point
y ∈ ∆ which is written as y =

∑
i∈{1,...,n}

i[i]
d vi. We first observe that due to

symmetry, p(x,y, . . . ,y) = p(y,x, . . . ,y) = . . . = p(y,y, . . . ,x). Let D denote
the partial derivative of these functions at x = y. Using the Taylor expansion of
p(x1,x2, . . . ,xd) around (y,y, . . . ,y), we have:

bi = p(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

= p(y,y, . . . ,y) + i[1]D(v1 − y) + . . . + i[n + 1]D(vn+1 − y) + O(ρ2)

Note that i[0](v0 − y) + . . . + i[n + 1](vn+1 − y) = 0. It then follows that
bi = π(y) + O(ρ2). This means that ||bi − π(y)|| is indeed of order O(ρ2). ��

	Introduction
	Reachability Analysis of Polynomial Systems
	Computing Polynomial Maps
	Bézier Simplices
	Computing the Bézier Control Net
	Approximation Error and Subdivision

	Reachability Algorithm
	Application to a Biological System
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

