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Abstract. A general Hybrid Minimum Principle (HMP) for hybrid op-
timal control problems (HOCPs) is presented in [1, 2, 3, 4] and in [4, 5], a
class of efficient, provably convergent Hybrid Minimum Principle (HMP)
algorithms were obtained based upon the HMP. The notion of optimality
zones (OZs) ([3, 4]) provides a theoretical framework for the computa-
tion of optimal location (i.e. discrete state) schedules for HOCPs (i.e.
discrete state sequences with the associated switching times and states).
This paper presents the algorithm HMPOZ which fully integrates the
prior computation of the OZs into the HMP algorithms class. Summing
(a) the computational investment in the construction of the OZs for a
given HOCP, and (b) the complexity of (i) the computation of the opti-
mal schedule, (ii) the optimal switching time and optimal switching state
sequence, and (iii) the optimal continuous control input, yields a com-
plexity estimate for the algorithm HMPOZ which is linear (i.e. O(L)) in
the number of switching times L.

1 Introduction

Over the last few years the notion of a hybrid control system with continuous
and discrete states and dynamics has crystallized and various classes of opti-
mal control problems for such systems have been formalized (see for example
[3, 6, 2, 1, 7, 8, 9]). In particular, generalizing the standard Minimum Principle
(MP), Sussmann [10] and Riedinger et al. [11], among other authors, have given
versions of the Hybrid Minimum Principle (HMP) with indications of proof
methods. An explicit theory for the two stage controlled switching optimal con-
trol problem was given by Tomiyama in [12] and a complete, rigorous treatment
of the HMP is given in [13, 14] for the case of a priori fixed location sequences.
In [1, 2, 3, 4] a set of necessary conditions for hybrid optimal control problems
(HOCPs) was derived which constitutes a general Hybrid Minimum Principle
(HMP); based upon this, a class of efficient Hybrid Minimum Principle (HMP)
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algorithms has been constructed [5] and their convergence established. Next, in
[3, 4] the notion of optimality zones (OZs) was introduced as a theoretical frame-
work enabling the computation of optimal schedules (i.e. location sequences with
the associated switching times and states) for HOCPs. A distinct approach to
the computational solution of HOCPs with fixed schedules is to be found in [7],
while [15, 16, 17] present progress on parallel work on the solution of HOCPs
including schedule optimization using a location (i.e. discrete state) insertion
method.

The contributions of this paper include: (i) the algorithm HMPOZ which fully
integrates the prior computation (termed the PREP computation) of the OZs
into the HMP algorithms of [4, 5]; and (ii) computed examples of the application
of HMPOZ to a bilinear quadratic regulator HOCP, demonstrating the efficacy
of HMPOZ.

The computational complexity of HMPOZ has two components: (a) the
complexity of the construction of the optimality zones for a given HOCP, which
depends upon the cardinality of the discrete state set Q and the number of
grid points |G| but is independent of the number of switchings, and (b) the
complexity of a single run of the HMP algorithm which is linear (i.e. O(L)) in
the number of switchings L. This gives the overall complexity of HMPOZ as
O(|G|2 · |Q|) + O(L); this is to be compared with the geometric (i.e. O(|Q|L))
growth of a direct combinatoric search over the set of location sequences.

Efficient Dynamic Programming (DP) based computational methods exist for
certain classes of standard optimal control problems (see [18, 19]); furthermore,
in case the upper bound L̄ on the number of switchings is infinite (see [8, 4])
or the switchings occur at fixed instants, numerical methods for HOCP may,
in principle, be formulated within a DP framework. However, severe complexity
issues arise for DP based methods when the constraint L̄ < ∞ must be taken
into account at each iterative step of a DP procedure; these do not arise for local
optima seeking methods such as HMPOZ.

While the computational complexity of PREP for HMPOZ and DP meth-
ods increases geometrically with the dimension of the continuous state space
R

n, the complexity of HMPOZ implementations increase proportionally to that
of the TPBVP methods used by HMP. For reasons of space, and to concen-
trate on the dependence on L̄, the examples in this paper concern scalar
systems.

The notion of optimality zones must be distinguished from the so-called
“switching regions” presented in [20, 21, 22]; switching regions partition the
continuous state space of autonomous (steady state) hybrid systems whereas
optimality zones partition the Cartesian product of the system’s time and state
space (R1×R

n) with itself, that is to say, they partition (R1×R
n)2. As explained

in Section 4, these partitions are defined for any given finite horizon hybrid opti-
mal control problem (HOCP) and their specification is completely independent
of the number of switchings L in the associated HOCP.
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2 Hybrid Optimal Control Theory

In this paper we consider hybrid systems which in each location are governed by
globally controllable non-linear dynamics of the form

H : ẋq = fq(xq, u), q ∈ Q ∆ {1, 2, . . . , |Q|}.

At a controlled location transition at an instant t, t ∈ [t0, tf ], the piecewise con-
stant, right continuous, Q valued, discrete state (component) trajectory satisfies

H : q(t−) = qi ∈ Q, q(t) = qj ∈ Q, qi �= qj .

In this paper no constraints are imposed on the dynamics of the location transi-
tion while in [4, 5] the controlled transitions satisfy the Q-dependent dynamics of
the form qj = Γ (qi, σij), where σij is a partially defined discrete input; however,
the algorithms presented here are easily extended to the more general case.

Consider the initial time t0, final time tf < ∞, initial hybrid state h0 =
(q0, x0), and an upper bound on the number of switchings L̄ ≤ ∞. Let SL

= ((t0, q0), (t1, q1), . . . , (tL, qL)) be a hybrid switching sequence and let IL ∆
(SL, u), u ∈ Ucpt, L̄ ≤ ∞, be a hybrid input trajectory which (subject to the
assumptions of [4, 5]) results in a (necessarily unique) hybrid execution and is
such that L ≤ L̄ switchings occur on the time interval [t0, tf ]. Here the set
of admissible input control functions is Ucpt ∆ U(U cpt, L∞([0, tf ])), the set of
all bounded measurable functions on some interval [0, tf ], taking values in the
compact set U cpt. Further let the collection of such inputs be denoted {IL}. We
define the hybrid cost function as:

J : J(t0, tf , h0; IL, L̄, Ucpt) ∆
L∑

i=0

∫ ti+1

ti

lqi(xqi (s), u(s)) ds + g(xqL(tf )), (1)

where for i = 0, 1, . . . , L,

ẋqi(t) = fqi(xqi (t), u(t)), a.e. t ∈ [ti, ti+1),
u(t) ∈ U cpt ⊂ R

n,

u(·) ∈ L∞(U cpt),
h0 = (q0, xq0 (t0)) = (q0, x0),
xqi+1(ti+1) = lim

t↑ti+1
xqi (t), and

tL+1 = tf < ∞, L ≤ L̄ ≤ ∞.

Definition 1. ([4, 5], Hybrid Optimal Control Problem (HOCP)) Given a hy-
brid system H, loss functions {lq, q ∈ Q}, initial and final times, t0, tf , the initial
hybrid state h0 = (q0, x0), and an upper bound on the number of switchings L̄ ≤
∞, the hybrid optimal control problem (HOCP(t0, tf , x0, L̄, Ucpt)), is to find the
infimum J0(t0, tf , h0, L̄, Ucpt) of the hybrid cost function J(t0, tf , h0; IL, L̄, Ucpt)
over the family of input trajectories {IL}.

If a hybrid input trajectory IL0 exists which realizes J0(t0, tf , h0, L̄, Ucpt) it is
called a hybrid optimal control for the HOCP(t0, tf , x0, L̄, Ucpt). �
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In Theorem 1 we state the necessary conditions, for the controlled switchings
case, upon which the algorithms of this paper are based; the theorem is stated
for the cases where the control takes values in the compact set U cpt. The reader
is referred to [4] and the associated paper [5] for a complete exposition of the
HMP necessary conditions covering compact and open bounded control value
sets and both the autonomous and controlled switchings cases.

Theorem 1. ([4, 5]) Consider a hybrid system H and the HOCP(t0, tf , x0, L̄,
Ucpt), and define

Hq(x, λ, u) = λT fq(x, u) + l(x, u), x, λ ∈ R
n, u ∈ U cpt, q ∈ Q.

1) Let J0(t0, tf , h0, Ucpt) = inf{IL} J0(t0, tf , h0, IL, L̄, Ucpt) be realized at I0
L0 ,

(x0, q0).
2) Let t1, t2, . . . , tL0 , denote the switching times along the optimal trajectory
(x0, q0).

3) Assume that either (a) L̄ < ∞ and L0+2 ≤ L̄, or (b) L̄ = ∞ and L0 < ∞.

Then

(i) There exists a (continuous to the right), piecewise absolutely continuous
adjoint process λ0 satisfying

λ̇0 = −
∂Hq0(t)

∂x
(x0, λ0, u0), t ∈ (tj , tj+1), j ∈ {0, 1, 2, . . . , L0}, (2)

where tL0+1 = tf and where the following boundary value conditions hold
with λ0(t0) free:
(a) λ0(tf ) = ∇xg(x0(tf )).
(b) If tj is a switching time, then

λ0(tj−) ≡ λ0(tj) = λ0(tj+), j ∈ {0, 1, 2, . . . , L0}. (3)

(ii) The Hamiltonian minimization conditions are satisfied, i.e.
(a)

Hq0(t)(x0(t), λ0(t), u0(t)) ≤ Hq0(t)(x0(t), λ0(t), v),

a.e. t ∈ [tj , tj+1), ∀v ∈ U cpt, j ∈ {0, 1, 2, . . . , L0}. (4)

(b)

Hq0(t)(x0(t), λ0(t), u0(t)) ≤ Hq(x0(t), λ0(t), u0(t)),

a.e. t ∈ [tj , tj+1), j ∈ {0, 1, 2, . . . , L0}, ∀q ∈ Q. (5)

(iii) The following Hamiltonian continuity condition holds at a controlled
switching time t = tj

H(tj−) ≡ Hq0(tj−)(tj−) = Hq0(tj−)(tj) = Hq0(tj)(tj)

= Hq0(tj+)(tj+) ≡ H(tj+), j ∈ {1, 2, . . . , L0}.

�
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3 HMP Conceptual Algorithm

Based on the necessary conditions for hybrid optimality in Theorem 1 we pro-
posed the HMP algorithm in [4, 5] and established its convergence properties.
This algorithm is presented below for the single switching time case but can be
generalized to multiple switching times case in an obvious manner. This algo-
rithm forms the basis of the algorithm HMPOZ which is given in Section 5.

We reproduce the HMP algorithm below; in Steps 3 and 4 {rk} is either a
constant sequence of strictly positive numbers or is an unbounded monotonically
increasing sequence.

0. Algorithm Initialization: Fix 0 < εf 	 1. Let (ts, xs) be a nominal switching
time-state pair such that t0 < ts < tf . Set the iteration counter k = 0.
Set tks = ts and xk

s = xs. Compute the optimal control functions uk
1(t),

t0 ≤ t < ts and uk
2(t), ts ≤ t ≤ tf . Compute the associated state and costate

trajectories and Hamiltonians over the two intervals [t0, tks ] and [tks , tf ], with
the terminal state pairs (x0, x

k
s) and (xk

s , xf ) respectively. Also compute the
new total cost Jk(tks , xk

s).
1. Increment k by 1.
2. Let zk

s ∆ (tks , xk
s) and set

zk
s = zk−1

s − rk

(
Hk

1 (tk−1
s ) − Hk

2 (tk−1
s )

λk
2(tk−1

s ) − λk
1(tk−1

s )

)
.

3. Compute the optimal control functions uk
1(t), t0 ≤ t < ts and uk

2(t), ts ≤ t ≤
tf . Compute the associated state and costate trajectories and Hamiltonians
over the two intervals [t0, tks ] and [tks , tf ] with the terminal state pairs (x0, x

k
s)

and (xk
s , xf ) respectively. Next, compute the Jk ∆ Jk(tks , xk

s).
4. If |Jk − Jk−1| < εf , then Stop; else go to Step 1.

The convergence of the HMP algorithm is established in [4, 5, 23] for the case
of unbounded increasing {rk} by use of penalty function methods and Ekeland’s
variational principle. The efficiency of the HMP algorithm in comparison with
other fixed discrete state sequence hybrid optimal control algorithms is discussed
with illustrative examples in [4, 5].

4 Optimality Zones, Location Sequences and the HMPOZ
Algorithm

Henceforth in this paper the HMP algorithm shall be treated as a modular unit
in more general algorithmic procedures. In this section, the properties of optimal
hybrid controlled trajectories are shown to permit the exploitation of the HMP
algorithm in computational methods which converge to discrete and continuous
control functions with certain local and global optimality properties.
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4.1 Fundamental Implications of the DP Principle for Optimal
Location Sequences

DP Principle. Along an optimal hybrid execution (I0
L0 , x0) the Dynamic Pro-

gramming Principle implies that the part of the hybrid input I0
L0 (and cor-

respondingly the hybrid trajectory (q0, x0)) from the j-th switching time and
state pair to the j + 1-st switching time and state pair, (t0j , x

0
j ) → (t0j+1, x

0
j+1),

0 ≤ j ≤ L0, is optimal. Hence, in particular, q0(t), t ∈ [t0j , t
0
j+1), must be an

optimal location for the trajectory from (t0j , x
0
j ) to (t0j+1, x

0
j+1).

Non-hybrid Optimal Control Problem. It is to be noted that for each
q((t0j , x

0
j), (t

0
j+1, x

0
j+1)) ∈ Q the optimization above is a standard (non-hybrid)

optimal control problem which is not linked to an analogous optimization over
any other interval.

|Q| Complexity Search. We further note that for each time and state pair
{(tj , xj), (tj+1, xj+1)} the set-up cost of a search over a set Q to find the optimal
q0((tj , xj), (tj+1, xj+1)) is proportional to |Q| and is not linked to an analogous
search over any other interval.

4.2 Variations in Switching Time and State and Local Optimality
with respect to Discrete Location

Local Optimality for fixed q ∈ Q. In [4, 23] we show that under weak as-
sumptions the value function v(t, x, q) of HOCP is bounded and continuous in
(t, x) for each q ∈ Q. For simplicity, consider the case where we have two loca-
tions, Q = {q1, q2}, and two controlled switchings at (t1, x1) and (t2, x2) with
t0 ≤ t1 < t2 ≤ tf . Further assume that over the interval [t1, t2] the optimal
cost J0

q1
((t1, x1), (t2, x2)) of a trajectory from x1 to x2 in location q1 is strictly

smaller than the corresponding cost J0
q2

((t1, x1), (t2, x2)) in location q2. Hence
by the continuity of each J0

qi
, i = 1, 2, in ((t1, x1), (t2, x2)), there is a neighbour-

hood N((t1,x1),(t2,x2)) of ((t1, x1), (t2, x2)) such that for any ((t′1, x
′
1), (t

′
2, x

′
2)) ∈

N((t1,x1),(t2,x2)) the optimality of location q1 is preserved.

Specification of OZs. The preservation of the optimality of location q1 with
respect to the perturbations of ((t1, x1), (t2, x2)) gives rise to the notion of (the
set of) optimality zones (OZs).

Under the assumptions generating the class of hybrid systems H (and the
associated HOCP) the value function J0((t1, x1), (t2, x2), q) of HOCP is bounded
and continuous in ((t1, x1), (t2, x2)) for each q ∈ Q (see [4]). So it is possible to
define a region OZq of points ((t1, x1), (t2, x2)) in the space (R × R

n)2 for which
a specific location q ∈ Q corresponds to the optimal hybrid system trajectory
starting at (t1, x1) and terminating at (t2, x2).

We adopt the convention that if (t2, x2) is not accessible from (t1, x1) and
similarly if (t1, x1) is not co-accessible to (t2, x2)) when the system H is in the
location q ∈ Q then Jq((t1, x1), (t2, x2)) = ∞.
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Definition 2. For t0 ≤ t1 < t2 ≤ tf , the optimality zone OZq, corresponding
to the location q ∈ Q, is given by

OZq ∆ {((t1, x1), (t2, x2)) ∈ ((t0, tf ) × R
n)2 :

J0
q ((t1, x1), (t2, x2)) ≤ J0

q′((t1, x1), (t2, x2)), t1 < t2, ∀q′ ∈ Q}. �

Under reasonable conditions [5, 24] optimality zones are closed sets with disjoint
interiors.

4.3 Formulation of the HMPOZ Algorithm

Discretization of Space-Time. For simplicity and for the purpose of esti-
mation of computational complexity assume that Γ is a rectangular region in
R

n+1:
Γ ∆ [t0, tf ] × [x1

i , x
1
f ] × · · · × [xn

i , xn
f ]

Let a grid G on Γ be defined as follows. The time interval [t0, tf ] ∈ R is divided
into N0 uniform subintervals and let δ0 ∆ (tf − t0)/N0. For each point t0 + δ0k,
k = 0, 1, . . . , N0, let each edge of Γ be divided into Ni uniform subintervals and
let δi ∆ (xi

f − xi
0)/Ni, i = 1, 2, . . . , n. Then

G ∆ {t0, . . . , tf} ×
(
×n

k=1{xk
i , . . . , xk

f}
)
.

Set-Up Computation. We shall adopt the name PREP (G) for an algorithm
performing the following calculation: find the optimal location q0 = q0((t1, x1),
(t2, x2)) ∈ Q, ((t1, x1), (t2, x2)) ∈ G, t0 ≤ t1 < t2 ≤ tf , for all such strictly
ordered tr, ts on the lattice points of the grid G with |G| elements, where the
envelope of G is assumed to contain the optimal trajectory (x0(t); t0 ≤ t ≤ tf ).

HMP with OZ Data; Conceptual Algorithm. Let the execution of the
basic HOCP algorithm HMP (see [4, 5]) be modified so that, after an iterative
shift of the vector of switching time and state pairs (tj , xj)[k] to (tj , xj)[k+1] in
R

L(n+1), the location q
[k+1]
j on the interval [t[k+1]

j , t
[k+1]
j+1 ) is chosen so as to be

optimal among all trajectories from x
[k+1]
j to x

[k+1]
j+1 (such a location is generated

by PREP (G)). Upon incrementing k to k+1 the HMPOZ algorithm repeats its
basic HMP operation if the halting rule of HMP has not been satisfied.

4.4 Optimality and Complexity of HMPOZ

Based upon the conceptual specification of Algorithm HMPOZ above, and invok-
ing the DP Principle 4.1 together with the global convergence analysis (subject
to the associated conditions) of the Algorithm HMP in [4, 5], it is shown in Theo-
rem 2 below that if HMPOZ halts at some (xH , uH , qH) ≡ (uH , qH) then neither
(i) a change in qH with the given {tHs , xH

s }, nor (ii) a change in uH for the given
qH can strictly decrease the cost J .

The algorithm PREP (G) solves one standard (i.e. non-hybrid) optimal con-
trol problem for each pair of points in the grid G, for each location q ∈ Q. Hence
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the computational cost of the determination of the optimality zones for HOCP
by use of PREP (G) in R

2(n+1) is O(|G|2 · |Q|) which is independent of the num-
ber of switchings L. The HMPOZ algorithm resulting from the enhancement of
HMP with PREP computes (i) the optimal continuous variables and controls,
and (ii) the optimal discrete location sequence with an overall complexity cost of
O(|G|2 · |Q|) + O(L), where O(L) corresponds to the complexity of a single run
of the HMP algorithm. Hence, over k HOCP problems with possibly differing
initial and terminal data, the complexity comparison between the repeated ap-
plication of HMPOZ and of a full combinatorial search method employing HMP
is given by:

α|Q||G|2|x|+1 + βk|Pont(|x|)|(L + 1) < γk|Pont(|x|)|(L + 1)|Q|L,

where α, β, γ are constants, k = number of problems, |G| = space-time sample
point density, L = number of switchings, |Q| = cardinality of Q, |x| = dimension
of x, and |Pont(|x|)| denotes the complexity of solving one classical optimal
control problem by application of a TPBVP algorithm (which constitutes the
basic module of HMP).

Figure 1 shows the projections P1(OZq) and P2(OZq) of the optimality zone
OZq on (t1, x1) and (t2, x2) spaces respectively.

Fig. 1. Optimality zones

5 Halting and Convergence of HMPOZ Algorithms

Let zi ∆ (ti, xi) and let OZ : R
(n+1)L → QL+1 be such that OZ({zi}L

i=1) =
{qi}L

i=0, i.e. for a given HOCP, the function OZ takes a sequence of time and
state pairs and returns a sequence of locations from the precomputed Optimality
Zones database computed by PREP (G). Notice that the initial and final time-
state are not passed to the OZ as they are part of the specification of HOCP.
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Let HMP : R
(n+1)L × QL+1 → R

(n+1)L be such that for a given HOCP it
performs the switching time and switching state update step of the Algorithm
HMP of [4, 5].

Also, let SC : R
2(n+1)L ×Q2(L+1)×Z+ → R+ be a function which, for a given

HOCP, computes a quantity to be compared to the stopping condition tolerance
ε > 0 of the Algorithm HMP of [4, 5].

Then the Algorithm HMPOZ may be specified as follows:

1. Initialization: Fix 0 < ε 	 1. Set the iteration counter k = 0. Let {zi}L
i=1 ∆

{(ti, xi)}L
i=1 be initial switching time and state pairs satisfying t0 < t1 <

t2 < · · · < tL < tf . Also let {qi}L
i=0 = OZ({zi}L

i=1) be the initial location
sequence.

2. {zi}L
i=1 ← HMP

(
{zi}L

i=1, {qi}L
i=0

)
.

3. {qi}L
i=0 ← OZ({zi}L

i=1).
4. If SC

(
{zi}L

i=1, {qi}L
i=0; k, k − 1

)
≤ ε then STOP;

else k ← k + 1, go to Step 2. �
Figures 2 and 3 show a typical iteration of the Algorithm HMPOZ where an OZ
boundary crossing takes place.

Fig. 2. An iteration of the Algorithm HMPOZ: ∂OZ crossing

Fig. 3. An iteration of the Algorithm HMPOZ: switching time and switching state
update
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5.1 Convergence of HMPOZ

For brevity let us denote the sequence of switching times, switching states and
locations

(
{(ti, xi)}L

i=1, {qi}L
i=0

)
as (z, q). Also let u0(z, q) denote the optimal

continuous control for the sequence (z, q), i.e. for i = 0, 1, · · · , L, the restriction
of u0(z, q) to the interval [ti, ti+1] is optimal for transferring the system from
the continuous state xi to continuous state xi+1 when the discrete state of the
system is qi. We define a product optimality zone OZq corresponding to the
location sequence {qi}L

i=0 as

OZq ∆ OZq0 × OZq1 × · · · × OZqL ⊂ R
2(n+1)(L+1),

and denote its interior as
◦

OZq. Then the following theorem gives the properties
of the halting point of the Algorithm HMPOZ.

Theorem 2. Assume A1 and A2 hold and assume HMPOZ halts at (zH , qH),
then (zH , qH) has the following properties:

(i) For all q ∈ QN+1: J(u0(zH , qH)) ≤ J(u0(zH , q)).

(ii) Let zH ∈
◦

OZqH , then there exists a neighbourhood N(zH) of zH such that
for all z ∈ N(zH): J(u0(zH , qH)) ≤ J(u0(z, qH)).

Proof. (i) The optimality with respect to location sequence, for a given sequence
of switching times and states, follows from the specification of PREP (G) and
the construction of the function OZ.
(ii) In this case N(zH) can be taken to be a subset of

◦
OZqH for which necessarily

N(zH)∩
◦

OZqH = N(zH). Then locally (i.e. for the iterations of HMPOZ which
result in switching times and states which lie in N(zH)) HMPOZ behaves as
HMP and its convergence proof in [4, 5] is applicable. �

6 The Hybrid Bilinear Quadratic Regulator (BLQR)
Problem

Consider the HOCP specified by a hybrid system whose discrete state set consists
of the two locations corresponding to the bilinear dynamics:

q1 : ẋ = x + xu, q2 : ẋ = −x + xu,

with initial condition x0 at t0 and final condition xf at tf , and for which the
cost function is

J(u) =
1
2

∫ tf

t0

u2(s) ds.

In the set of computational experiments applying HMPOZ to this problem, the
program PREP was first applied to the product time-space (R1+1)2 and this
generated the OZ region data which was stored in the main program look-up
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Fig. 5. OZ boundary for x1, x2, t2 varying with t1 = 0.7

table. The zonal boundary for the OZs corresponding to Q = {q1, q2} is shown
in Figures 4 and 5.

For this particular HOCP it is possible to obtain closed form expressions for
the optimal cost of transferring the system from a general (t1, x1) to a general
(t2, x2) under the two dynamics (i = 1, 2) respectively:

Ji((t1, x1), (t2, x2)) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

[
1 + (−1)i

t2−t1
log

(
x2
x1

)]2
(t2 − t1), if t1 �= t2 ∧ x1x2 > 0

0, if t1 = t2 ∧ x1 = x2 ∧ x1x2 > 0
∞, if (t1 = t2 ∧ x1 �= x2) ∨ (x1x2 ≤ 0).
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The interesting case is that of t1 �= t2 and in this case equating the costs
corresponding to the two distinct dynamics gives:

1
2

[
1 − 1

t2 − t1
log

(
x2

x1

)]2

(t2 − t1) =
1
2

[
1 +

1
t2 − t1

log
(

x2

x1

)]2

(t2 − t1),

Hence 1
t2−t1

log
(

x2
x1

)
= 0, so x1 = x2, and the switching surface is given in

(t1, t2, x1, x2)-space by:

∂OZ = {(t1, t2, x1, x2) ∈ R
4 : x1 = x2},

which is illustrated by the computational experiments in Examples 1 and 2
below.

Example 1. For the subsequent implementation of HMPOZ the initial and final
time and initial and final state were arbitrarily chosen to be t0 = 0, tf = 2,
x0 = −1.2, and x0 = −1.4 respectively.

The control objective was to transfer the continuous state from its initial value
at the initial time to the final value at the final time while minimizing the cost
function J(u) = 1

2

∫ 2
0 u2(s) ds. After two iterations of HMP the second and third

switching time and state pairs passed through the OZ boundary; in each case
this corresponded to the ratio of the subsequent switching state values passing
through the value 1 as specified in the exact analysis above. These transitions
resulted in the location sequence evolving from (2, 1, 1, 2) to (2, 2, 2, 2) as shown
in the third line of Table 1. After three iterations the algorithm converged giving
the optimal cost 1.21587.

The computational time for PREP in this experiment was 7231 seconds
(about two hours). For the HMPOZ implementation the computation time was
2.5637 seconds. All computations were performed in Matlab 6.5 under Windows
2000 SP4 operating system on a P4 3.2 GHz machine with 512 MB of RAM. �

Table 1. Execution of Algorithm HMPOZ

Iter. Loc. sequence Cost xs1 xs2 xs3

1 (2, 1, 1, 2) 1.33775 -1.3329 -1.3000 -1.2684

2 (2, 1, 1, 2) 1.27524 -1.3159 -1.3000 -1.2862

3 (2, 2, 2, 2) 1.21587 -1.2979 -1.3000 -1.3042

Example 2. To demonstrate the power of the HMPOZ algorithm we applied it to
solve an HOCP involving the BLQR of Example 1 with ten switchings. It is to be
noted that the specification of the Optimality Zones for the three switchings case
(Example 1) is reused for this ten switchings example without any modification.
This would have been the case even if the zones had been obtained numerically.
The problem data was: t0 = 0, tf = 2, x0 = 2.4, xf = 2.6 and number of
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Table 2. Execution of Algorithm HMPOZ: Ten switchings case

Iteration Location sequence Cost

1 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.75653

2 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.70324

3 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.68563

4 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.63887

5 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.61678

6 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.60291

7 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.58548

8 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.54783

9 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.49985

10 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.47789

11 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.43679

12 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.39453

13 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.35672

14 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.33756

15 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.31957

16 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21986

17 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21897

18 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21897

switchings was set to 10. The algorithm initially computed (i) ten uniformly
distributed switching times between t0 = 0 and tf = 2, (ii) ten randomly dis-
tributed switching states between x0 = 2.4 and xf = 2.6, and (iii) the initial
switching sequence: (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) which corresponds to the initial
choice of switching times and states. The initial cost as computed by the algo-
rithm is J = 0.75653 which drops down to J = 0.31957 by the 15th iteration. In
the next (i.e. 16th) iteration the algorithm switches to the zone corresponding
to the optimal switching sequence: (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) giving the optimal
cost J = 0.21897 at the 18th iteration. The running time was 45.596 seconds.
The iterations of the program execution are shown in Table 2. �
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